Science.gov

Sample records for high blood ethanol

  1. Distribution of ethanol between saliva and blood in man.

    PubMed

    Jones, A W

    1979-01-01

    1. Forty-eight male subjects drank ethanol (0.72 g/kg) as neat whisky on a fasting stomach within 20 min and the ethanol concentrations in saliva and capillary blood were determined at 30--60 min intervals for the next 7 h. 2. The concentration of ethanol in saliva was generally slightly higher than in capillary blood, as expected from their relative water contents. The mean saliva/blood ethanol ratio between 60 and 360 min from the start of drinking was 1.082 (s.e.m. = 0.0059), (n = 336). Moreover, the saliva/blood ethanol ratio was remarkably constant throughout the absorption, distribution and elimination phases of ethanol metabolism. 3. The saliva (y) and blood ethanol (x) concentrations (mmol/l) were highly correlated (r = 0.976, standard error = 0.011, P less than 0.001). The regression equation was y = 0.109 + 1.071x. The saliva and blood ethanol concentrations reached zero nearly simultaneously, there being no appreciable time lag in the saliva. 4. The results indicate that saliva is a practical medium for ethanol determinations and that blood ethanol can be reliably estimated from analysis of a saliva specimen. Saliva ethanol analysis could well serve as supporting evidence in clinical and medico-legal diagnosis of ethanol intoxication.

  2. Ethanol Extract of Persimmon Tree Leaves Improves Blood Circulation and Lipid Metabolism in Rats Fed a High-Fat Diet

    PubMed Central

    Ryu, Ri; Kim, Hye-Jin; Moon, Byeongseok; Jung, Un Ju; Lee, Mi-Kyung; Lee, Dong Gun; Ryoo, ZaeYoung; Park, Yong Bok

    2015-01-01

    Abstract The leaves of the persimmon tree (PL) are known to have beneficial effects on hyperglycemia, dyslipidemia, and nonalcoholic fatty liver disease. We recently demonstrated that PL had antithrombotic properties in vitro. However, little is known about the antiplatelet and anticoagulant properties of PL in vivo. Omega-3 fatty acid (n-3 FA)-containing fish oil has been widely prescribed to improve blood circulation. This study compared the effects of dietary supplementation with an ethanol extract of PL or n-3 FA on blood coagulation, platelet activation, and lipid levels in vivo. Sprague–Dawley rats were fed a high-fat diet with either PL ethanol extract (0.5% w/w) or n-3 FA (2.5% w/w) for 9 weeks. Coagulation was examined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time. We examined plasma thromboxane B2 (TXB2), serotonin, and soluble P-selectin (sP-selectin) levels. The aPTT was significantly prolonged in the PL and n-3 FA supplement groups. PL also attenuated the TXB2 level and lowered arterial serotonin transporter mRNA expression, although it did not alter plasma serotonin or sP-selectin levels. C-reactive protein and leptin levels were significantly reduced by PL and n-3 FA supplementation. In addition, PL decreased plasma total- and low-density lipoprotein-cholesterol levels, as did n-3 FA treatment. These results indicated that the PL ethanol extract may have the potential to improve circulation by inhibiting blood coagulation and platelet activation and by reducing plasma cholesterol levels. PMID:26061228

  3. Ethanol Extract of Persimmon Tree Leaves Improves Blood Circulation and Lipid Metabolism in Rats Fed a High-Fat Diet.

    PubMed

    Ryu, Ri; Kim, Hye-Jin; Moon, Byeongseok; Jung, Un Ju; Lee, Mi-Kyung; Lee, Dong Gun; Ryoo, ZaeYoung; Park, Yong Bok; Choi, Myung-Sook

    2015-07-01

    The leaves of the persimmon tree (PL) are known to have beneficial effects on hyperglycemia, dyslipidemia, and nonalcoholic fatty liver disease. We recently demonstrated that PL had antithrombotic properties in vitro. However, little is known about the antiplatelet and anticoagulant properties of PL in vivo. Omega-3 fatty acid (n-3 FA)-containing fish oil has been widely prescribed to improve blood circulation. This study compared the effects of dietary supplementation with an ethanol extract of PL or n-3 FA on blood coagulation, platelet activation, and lipid levels in vivo. Sprague-Dawley rats were fed a high-fat diet with either PL ethanol extract (0.5% w/w) or n-3 FA (2.5% w/w) for 9 weeks. Coagulation was examined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time. We examined plasma thromboxane B2 (TXB2), serotonin, and soluble P-selectin (sP-selectin) levels. The aPTT was significantly prolonged in the PL and n-3 FA supplement groups. PL also attenuated the TXB2 level and lowered arterial serotonin transporter mRNA expression, although it did not alter plasma serotonin or sP-selectin levels. C-reactive protein and leptin levels were significantly reduced by PL and n-3 FA supplementation. In addition, PL decreased plasma total- and low-density lipoprotein-cholesterol levels, as did n-3 FA treatment. These results indicated that the PL ethanol extract may have the potential to improve circulation by inhibiting blood coagulation and platelet activation and by reducing plasma cholesterol levels. PMID:26061228

  4. Ethanol Extract of Persimmon Tree Leaves Improves Blood Circulation and Lipid Metabolism in Rats Fed a High-Fat Diet.

    PubMed

    Ryu, Ri; Kim, Hye-Jin; Moon, Byeongseok; Jung, Un Ju; Lee, Mi-Kyung; Lee, Dong Gun; Ryoo, ZaeYoung; Park, Yong Bok; Choi, Myung-Sook

    2015-07-01

    The leaves of the persimmon tree (PL) are known to have beneficial effects on hyperglycemia, dyslipidemia, and nonalcoholic fatty liver disease. We recently demonstrated that PL had antithrombotic properties in vitro. However, little is known about the antiplatelet and anticoagulant properties of PL in vivo. Omega-3 fatty acid (n-3 FA)-containing fish oil has been widely prescribed to improve blood circulation. This study compared the effects of dietary supplementation with an ethanol extract of PL or n-3 FA on blood coagulation, platelet activation, and lipid levels in vivo. Sprague-Dawley rats were fed a high-fat diet with either PL ethanol extract (0.5% w/w) or n-3 FA (2.5% w/w) for 9 weeks. Coagulation was examined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time. We examined plasma thromboxane B2 (TXB2), serotonin, and soluble P-selectin (sP-selectin) levels. The aPTT was significantly prolonged in the PL and n-3 FA supplement groups. PL also attenuated the TXB2 level and lowered arterial serotonin transporter mRNA expression, although it did not alter plasma serotonin or sP-selectin levels. C-reactive protein and leptin levels were significantly reduced by PL and n-3 FA supplementation. In addition, PL decreased plasma total- and low-density lipoprotein-cholesterol levels, as did n-3 FA treatment. These results indicated that the PL ethanol extract may have the potential to improve circulation by inhibiting blood coagulation and platelet activation and by reducing plasma cholesterol levels.

  5. Ethanol and blood pressure in rats

    SciTech Connect

    Hatton, D.C.; Edgar, S.; McCarron, D.A. )

    1989-02-09

    Epidemiologists have identified alcohol as a risk factor in hypertension. Attempts to increase blood pressure in rats with chronic alcohol ingestion have met with mixed results. Some investigators have reported increases in blood pressure while others have reported decreases. Most investigators have given alcohol in the drinking water which produced differences in food intake across groups. To control for food intake, Wister rats were simultaneously pair fed a liquid diet with either ethanol as 35% of calories or a control diet using ARF/Israel pair-feeding devices. At 5 weeks of age, animals on ethanol diets had lower systolic blood pressure than control animals (145 (n-19) vs. 121 (n-19) mmHg). There was no difference in weight between ethanol and control animals. The same pattern of results was apparent at 7 weeks (143 (n-13) vs. 119 (n-13) mmHg) and 9 weeks (147 (n-7) vs. 124 (n-7)). The data indicate that ethanol produces hypotension in rats when food intake is controlled.

  6. Factors affecting contamination of blood samples for ethanol determinations.

    PubMed

    Winek, C L; Eastly, T

    1977-01-01

    Contamination of blood samples collected for alcohol analysis from swabbing with an ethanolic antiseptic is minimal (less than 0.6 mg/100 ml or 0.0006 percent ethanol) when routine clinical technique is followed. When technicians were told to be deliberately sloppy, considerable contamination (89 mg/100 ml or 0.09 percent ethanol) occurred. The incidence and extent of contamination from banked blood intended for transfusions are minimal. Two percent of the 1,450 samples analyzed contained alcohol. The average blood alcohol concentration was 26 mg/100 ml or 0.03 percent ethanol. One microliter of rubbing alcohol per milliliter of whole blood, or one-tenth of a drop of rubbing alcohol per milliliter of whole blood, increases the BAC 56.5 mg/100 ml (0.06 percent ethanol) and 67.5 mg/100 ml (0.07 percent ethanol), respectively.

  7. High Blood Pressure

    MedlinePlus

    ... version High Blood Pressure Overview What is blood pressure? Blood pressure is the amount of force that your ... called your blood pressure. What is high blood pressure? High blood pressure (also called hypertension) occurs when your blood ...

  8. Regional cerebral blood flow changes associated with ethanol intoxication

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1986-11-01

    Regional cerebral blood flow (CBF) was measured via the 133Xenon inhalation technique in 26 healthy volunteers before and 60 minutes after the oral administration of ethyl alcohol or placebo on a double-blind basis. The cerebral blood flow values, corrected for test-retest differences in carbon dioxide showed a significant bilateral increase after ethanol administration. Blood levels of ethanol, estimated with a breath analyser, did not correlate with the CBF changes.

  9. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  10. Blood and liver acetaldehyde concentration in rats following acetaldehyde inhalation and intravenous and intragastric ethanol administration

    SciTech Connect

    Watanabe, A.; Hobara, N.; Nagashima, H.

    1986-10-01

    Ethanol is metabolized to acetaldehyde, a highly reactive product of ethanol oxidation. Ethanol might be blended with gasoline and used as a fuel in the future; biohazard of acetaldehyde inhalation must be discussed. Recent improvements in our ability to measure acetaldehyde levels in blood and various tissues have made the assessment of acetaldehyde's role in alcoholic organ intoxication possible. Blood and liver acetaldehyde concentrations in rats were reported as being linearly correlated following intragastric ethanol administration. Acetaldehyde was administered by inhalation to study its toxicity. However, liver concentrations following the inhalation was not investigated. The present communication describes the relationship between blood and liver acetaldehyde concentrations in rats following acetaldehyde inhalation and different routes of ethanol administration.

  11. High blood pressure - infants

    MedlinePlus

    Hypertension - infants ... and blood vessels The health of the kidneys High blood pressure in infants may be due to kidney or ... blood vessel of the kidney) In newborn babies, high blood pressure is often caused by a blood clot in ...

  12. Comparison of blood ethanol stabilities in different storage periods

    PubMed Central

    Isiklar, Ozben Ozden; Kocak, Havva; Meral, Ayfer

    2015-01-01

    Introduction Measurements of blood ethanol concentrations must be accurate and reliable. The most important factors affecting blood ethanol stability are temperature and storage time. In this study, we aimed to compare ethanol stability in plasma samples at -20 °C for the different storage periods. Materials and methods Blood samples were collected from intoxicated drivers (N = 80) and initial plasma ethanol concentrations were measured immediately. Plasma samples were then stored at -20 °C and re-assessed after 2, 3, 4, or 5 months of storage. Differences between the initial and stored ethanol concentrations in each group (N = 20) were analyzed using Wilcoxon matched-pairs test. The deviation from the initial concentration was calculated and compared with Clinical Laboratory Improvement Amendments (CLIA’88) Proficiency Testing Limits. Relationships between the initial concentrations and deviations from initial concentrations were analyzed by Spearman’s correlation analysis. For all statistical tests, differences with P values of less than 0.05 were considered statistically significant. Results Statistically significant differences were observed between the initial and poststorage ethanol concentrations in the overall sample group (P < 0.001). However, for the individual storage duration groups, analytically significant decreases were observed only for samples stored for 5 months, deviations from the initial concentrations exceeded the allowable total error (TEa). Ethanol decreases in the other groups did not exceed the TEa. Conclusion According to our results, plasma ethanol samples can be kept at -20 °C for up to 3-4 months until re-analysis. However, each laboratory should also establish its own work-flow rules and criterion for reliable ethanol measurement in forensic cases. PMID:25672467

  13. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has high ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  14. High Blood Pressure

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... the heart, kidneys, brain, and eyes. Types of High Blood Pressure There are two main types of high blood ...

  15. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  16. High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Description of High Blood Pressure Español High blood pressure is a common disease ... defines high blood pressure severity levels. Stages of High Blood Pressure in Adults Stages Systolic (top number) Diastolic (bottom ...

  17. Biotransformation of ethanol to ethyl glucuronide in a rat model after a single high oral dosage.

    PubMed

    Wright, Trista H; Ferslew, Kenneth E

    2012-03-01

    Ethyl glucuronide (EtG) is a minor ethanol metabolite that confirms the absorption and metabolism of ethanol after oral or dermal exposure. Human data suggest that maximum blood EtG (BEtG) concentrations are reached between 3.5 and 5.5h after ethanol administration. This study was undertaken to determine if the Sprague-Dawley (SD) rat biotransforms ethanol to EtG after a single high oral dose of ethanol. SD rats (male, n=6) were gavaged with a single ethanol dose (4 g/kg), and urine was collected for 3 h in metabolic cages, followed by euthanization and collection of heart blood. Blood and urine were analyzed for ethanol and EtG by gas chromatography and enzyme immunoassay. Blood and urine ethanol concentrations were 195±23 and 218±19 mg/dL, whereas BEtG and urine EtG (UEtG) concentrations were 1,363±98 ng equivalents/mL and 210±0.29 mg equivalents/dL (X ± standard error of the mean [S.E.M.]). Sixty-six male SD rats were gavaged ethanol (4 g/kg) and placed in metabolic cages to determine the extent and duration of ethanol to EtG biotransformation and urinary excretion. Blood and urine were collected up to 24 h after administration for ethanol and EtG analysis. Maximum blood ethanol, urine ethanol, and UEtG were reached within 4 h, whereas maximum BEtG was reached 6 h after administration. Maximum concentrations were blood ethanol, 213±20 mg/dL; urine ethanol, 308±34 mg/dL; BEtG, 2,683±145 ng equivalents/mL; UEtG, 1.2±0.06 mg equivalents/mL (X±S.E.M.). Areas under the concentration-time curve were blood ethanol, 1,578 h*mg/dL; urine ethanol, 3,096 h*mg/dL; BEtG, 18,284 h*ng equivalents/mL; and UEtG, 850 h*mg equivalents/dL. Blood ethanol and BEtG levels were reduced to below limits of detection (LODs) within 12 and 18 h after ethanol administration. Urine ethanols were below LOD at 18 h, but UEtG was still detectable at 24h after administration. Our data prove that the SD rat biotransforms ethanol to EtG and excretes both in the urine and suggest that it

  18. Biotransformation of ethanol to ethyl glucuronide in a rat model after a single high oral dosage.

    PubMed

    Wright, Trista H; Ferslew, Kenneth E

    2012-03-01

    Ethyl glucuronide (EtG) is a minor ethanol metabolite that confirms the absorption and metabolism of ethanol after oral or dermal exposure. Human data suggest that maximum blood EtG (BEtG) concentrations are reached between 3.5 and 5.5h after ethanol administration. This study was undertaken to determine if the Sprague-Dawley (SD) rat biotransforms ethanol to EtG after a single high oral dose of ethanol. SD rats (male, n=6) were gavaged with a single ethanol dose (4 g/kg), and urine was collected for 3 h in metabolic cages, followed by euthanization and collection of heart blood. Blood and urine were analyzed for ethanol and EtG by gas chromatography and enzyme immunoassay. Blood and urine ethanol concentrations were 195±23 and 218±19 mg/dL, whereas BEtG and urine EtG (UEtG) concentrations were 1,363±98 ng equivalents/mL and 210±0.29 mg equivalents/dL (X ± standard error of the mean [S.E.M.]). Sixty-six male SD rats were gavaged ethanol (4 g/kg) and placed in metabolic cages to determine the extent and duration of ethanol to EtG biotransformation and urinary excretion. Blood and urine were collected up to 24 h after administration for ethanol and EtG analysis. Maximum blood ethanol, urine ethanol, and UEtG were reached within 4 h, whereas maximum BEtG was reached 6 h after administration. Maximum concentrations were blood ethanol, 213±20 mg/dL; urine ethanol, 308±34 mg/dL; BEtG, 2,683±145 ng equivalents/mL; UEtG, 1.2±0.06 mg equivalents/mL (X±S.E.M.). Areas under the concentration-time curve were blood ethanol, 1,578 h*mg/dL; urine ethanol, 3,096 h*mg/dL; BEtG, 18,284 h*ng equivalents/mL; and UEtG, 850 h*mg equivalents/dL. Blood ethanol and BEtG levels were reduced to below limits of detection (LODs) within 12 and 18 h after ethanol administration. Urine ethanols were below LOD at 18 h, but UEtG was still detectable at 24h after administration. Our data prove that the SD rat biotransforms ethanol to EtG and excretes both in the urine and suggest that it

  19. High Blood Pressure in Pregnancy

    MedlinePlus

    ... The Health Information Center High Blood Pressure in Pregnancy What Is High Blood Pressure? Blood pressure is ... Are the Effects of High Blood Pressure in Pregnancy? Although many pregnant women with high blood pressure ...

  20. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing options ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  1. Hypertension (High Blood Pressure)

    MedlinePlus

    ... pressure to live. Without it, blood can't flow through our bodies and carry oxygen to our vital organs. But when blood pressure gets too high — a condition called hypertension — it can lead to ...

  2. Ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography with cryogenic oven trapping.

    PubMed

    Watanabe-Suzuki, K; Seno, H; Ishii, A; Kumazawa, T; Suzuki, O

    1999-04-30

    We have established an ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography (GC) with cryogenic oven trapping. After heating a blood sample containing ethanol and isobutyl alcohol (internal standard, IS) in a 7.0-ml vial at 55 degrees C for 15 min, 5 ml of the headspace vapor was drawn into a glass syringe and injected into a GC port. All vapor was introduced into an Rtx-BAC2 wide-bore capillary column in the splitless mode at -60 degrees C oven temperature to trap entire analytes, and then the oven temperature was programmed up to 240 degrees C for GC measurements with flame ionization detection. The present method gave sharp peaks of ethanol and IS, and low background noise for whole blood samples. The mean partition into the gaseous phase for ethanol and IS was 3.06+/-0.733 and 8.33+/-2.19%, respectively. The calibration curves showed linearity in the range 0.02-5.0 microg/ml whole blood. The detection limit was estimated to be 0.01 microg/ml. The coefficients of intra-day and inter-day variation for spiked ethanol were 8.72 and 9.47%, respectively. Because of the extremely high sensitivity, we could measure low levels of endogenous ethanol in whole blood of subjects without drinking. The concentration of endogenous ethanol measured for 10 subjects under uncontrolled conditions varied from 0 to 0.377 microg/ml (mean, 0.180 microg/ml). Data on the diurnal changes of endogenous ethanol in whole blood of five subjects under strict food control are also presented; they are in accordance with the idea that endogenous blood ethanol is of enteric bacterial origin.

  3. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  4. The determination of ethanol in blood and urine by mass fragmentography

    NASA Technical Reports Server (NTRS)

    Pereira, W. E.; Summons, R. E.; Rindfleisch, T. C.; Duffield, A. M.

    1974-01-01

    A mass fragmentographic technique for a rapid, specific and sensitive determination of ethanol in blood and urine is described. A Varian gas chromatograph coupled through an all-glass membrane separator to a Finnigan quadripole mass spectrometer and interfaced to a computer system is used for ethanol determination in blood and urine samples. A procedure for plotting calibration curves for ethanol quantitation is also described. Quantitation is achieved by plotting the peak area ratios of undeuterated-to-deuterated ethanol fragment ions against the amount of ethanol added. Representative results obtained by this technique are included.

  5. Ethanol Extract of Peanut Sprout Lowers Blood Triglyceride Levels, Possibly Through a Pathway Involving SREBP-1c in Rats Fed a High-Fat Diet.

    PubMed

    Ha, Ae Wha; Kang, Nam E; Kim, Woo Kyoung

    2015-08-01

    The hypothesis of this study was that peanut sprout extracts (PSE) could reduce fat accumulation through activating the transcription of SREBP-1c genes. Sprague-Dawley (SD) were randomly assigned into two groups and fed the following diet for 4 weeks; 10 normal fat (NF, 7 g of fat/100 g diet) and 30 high fat (HF, 20 g of fat/100 g diet). After 4 weeks, the HF group was divided into three groups; HF, HF with 15 mg of PSE/kg diet (HF+low PSE, 0.025% resveratrol), and HF with 30 mg of PSE/kg diet (HF+high PSE, 0.05% resveratrol) and fed for an additional 5 weeks. The HF+high PSE group had significantly lower weight gain than the HF group. Plasma triglyceride (TG) level and the hepatic total lipid level were significantly lower in the HF+high PSE group compared to the HF group. Fecal excretions of total lipids, cholesterol, and TG in the HF+high PSE group tended to be higher than in the HF group, but these differences were not significant. The mRNA expressions of fatty acid synthase, glucose-6-phosphate dehydrogenase, and sterol regulatory element binding protein-c (SREBP-1c) were significantly lower in the HF+high PSE group than in the HF group. The mRNA expressions of hydroxy-3-methylglutaryl coenzyme A reductase and acyl-CoA cholesterol acyltransferase were significantly lower in the HF+high PSE groups compared to the HF group. The mRNA expression of cholesterol 7α-hydroxylase1 was significantly higher than the HF group in both the HF+low PSE and HF+high PSE groups, with much greater increase observed in the HF+high PSE group. In conclusion, consumption of PSE was effective for improving blood lipid levels, possibly by suppressing the expression of SREBP-1c, in rats fed a high-fat diet.

  6. High blood cholesterol levels

    MedlinePlus

    ... adults: selective update of 2001 US Preventive Services Task Force Review. Rockville, MD: Agency for Healthcare Research and ... 2016:chap 206. Siu AL; U.S. Preventive Services Task Force. Screening for high blood pressure in adults: U.S. ...

  7. Prevention of High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  8. Ethanol metabolism in ALDH2 knockout mice--blood acetate levels.

    PubMed

    Kiyoshi, Ameno; Weihuan, Wang; Mostofa, Jamal; Mitsuru, Kumihashi; Toyoshi, Isse; Toshihiro, Kawamoto; Kyoko, Kitagawa; Keiichi, Nakayama; Iwao, Ijiri; Hiroshi, Kinoshita

    2009-04-01

    We described here blood acetate levels in aldehyde dehydrogenase 2 knockout (ALDH2 KO) male mice based on C57BL/6J strain after ethanol (EtOH) dosing (2 g/kg). Blood samples were collected at 30, 60, 90, 120 180, and 240 min after decapitation, and then EtOH, acetaldehyde (AcH) and acetate were determined by head-space gas chromatography. We found that blood acetate levels in ALDH2 KO mice were slightly lower than those in wild type (WT), whereas EtOH and AcH levels in ALDH2 KO were significantly higher than those in WT. These observations indicate that high EtOH, AcH and low acetate in the blood of ALDH2 KO are due to the deficient effect of ALDH2 enzyme activity. PMID:19356968

  9. Effect of ethanol of heart rate and blood pressure in nonstressed and stressed rats

    SciTech Connect

    Sparrow, M.G.; Roggendorf, H.; Vogel, W.H.

    1987-06-29

    The effect of ethanol on the cardiovascular system (ECG, heart rate, blood pressure) was studied in anesthetized, nonstressed or stressed rats. In anesthetized rats, ethanol showed no effect on heart rate or ECG. In nonstressed rats, ethanol sedated the animals but increased heart rate significantly. This ethanol induced tachycardia seemed the result of a direct stimulation of the sympathetic nerves to the heart. Blood pressure was not significantly affected by ethanol in these nonstressed rats. In stressed rats, marked behavioral excitation and significant increases in heart rate and blood pressure were noted. Ethanol pretreatment calmed the animals considerably during restraint. Ethanol did reduce slightly the stress-induced tachycardia but markedly reduced or antagonized stress-induced blood pressure increases. No major changes in the ECG were noted during these studies with the exception of a few individual animals which showed pathologic ECG responses to ethanol. These data show that ethanol affects cardiovascular functions differently in anesthetized, non stressed or stressed rats, and that ethanol can significantly reduce or antagonize stress-induced behavioral excitation, tachycardia and hypertension. 32 references, 4 tables.

  10. What Is High Blood Pressure?

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More What is High Blood Pressure? Updated:Aug 26,2016 High blood pressure, also ... content was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) Introduction What ...

  11. Diagnosis of High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  12. Warsaw high-preferring (WHP) and Warsaw low-preferring (WLP) lines of rats selectively bred for high and low voluntary ethanol intake: preliminary phenotypic characterization.

    PubMed

    Dyr, Wanda; Kostowski, Wojciech

    2008-05-01

    The Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) lines were bred from Wistar foundation stock to obtain lines of rats that differ in their preference for ethanol solutions. The WHP line has met several major criteria for an animal model of alcoholism. The WHP rats voluntarily drink excessive amounts of ethanol while the WLP rats consume negligible amounts of ethanol. The WHP rats attain physiologically active blood ethanol concentrations with chronic free-choice drinking. They also develop subtle but visible signs of physical dependence (the withdrawal signs). The patterns of ethanol consumption in WHP and WLP lines are stable in time and independent of the manner of access to ethanol solutions. Notably, when exposed to the increasing ethanol concentrations WHP rats gradually increased total ethanol intake whereas the WLP rats consumed invariably very low amounts of ethanol. Furthermore, the WHP rats show an increased responsiveness to the stimulatory effects of low dose of ethanol.

  13. What Causes High Blood Pressure?

    MedlinePlus

    ... page from the NHLBI on Twitter. Causes of High Blood Pressure Changes, either from genes or the environment, in ... and blood vessel structure and function. Biology and High Blood Pressure Researchers continue to study how various changes in ...

  14. Intermittent High-Dose Ethanol Exposure Increases Ethanol Preference in Rats

    PubMed Central

    Peris, Joanna; Rhodes, Nathaniel; McCullough, Brian; Aramini, Richard; Zharikova, Alevtina

    2015-01-01

    Objective: Alcohol use disorders have both high social and economic costs and are among the leading causes of preventable death in the United States. Understanding the factors that contribute to escalation of alcohol intake is important in developing effective treatments for this problem. This study further characterizes the effects of limited intermittent exposure to high levels of alcohol on the preference for alcohol consumption over other incentives. Method: Fourteen male, Sprague-Dawley rats were trained to consume ethanol in a gelatin vehicle. They were then given free access to both ethanol gelatin and plain gelatin during daily choice periods interspersed with nonchoice periods (only plain gelatin access). After baseline ethanol preference was established, half of the rats were given eight injections of 3 g/kg ethanol during nonchoice periods (spread out over about 2 months), and the other half received saline injections. Ethanol preference was measured during subsequent choice periods. Results: Intermittent ethanol injections increased ethanol preference from 21% (SEM = 2.3%) of their total gelatin consumption during the first choice period to 46.8% (SEM = 3.4%) during the third choice period. The saline-treated rats had no significant change in ethanol preference. In addition, the ethanol-treated rats exhibited higher ethanol intake than saline-treated rats when ethanol gelatin was the only choice available. Conclusions: The results indicate that intermittent exposure to sedative doses of ethanol leads to an increased ethanol preference in rats. This suggests that occasional high-dose alcohol exposure could be an important contributor to the development of enhanced ethanol intake, which may affect the incidence of chronic alcoholism. PMID:25486406

  15. High Blood Pressure

    MedlinePlus

    Blood pressure is the force of your blood pushing against the walls of your arteries. Each time your heart ... it pumps blood into the arteries. Your blood pressure is highest when your heart beats, pumping the ...

  16. Effect of diet and disulfiram on acetaldehyde blood levels after ethanol in UChA and UChB rats.

    PubMed

    Quintanilla, M E; Sepúlveda, S; Tampier, L

    1993-01-01

    Acetaldehyde (AcH) levels in blood samples taken from different zones of the vascular system 2 h after a p.o. dose of ethanol (2.76 g/kg) were studied in UChA (low ethanol consumer) and UChB (high ethanol consumer) rats fed a diet devoid of animal products, diet 1 (D1), and a diet containing fish meal, diet 2 (D2), and in rats pretreated with disulfiram (600 mg/kg p.o.). The results showed that, while there is no significant difference between UChA and UChB rats fed D1 with respect to blood AcH levels and the basal activity of the hepatic mitochondrial high-affinity aldehyde dehydrogenase (AIDH), a significant strain difference was observed in rats fed D2, which induced high blood AcH levels in UChA rats but not in UChB ones. No strain differences were observed in blood ethanol levels in the two groups of rats. When rats fed D1 were pretreated with disulfiram, the raising of AcH blood levels induced by ethanol after disulfiram was significantly higher in UChA than in UChB rats in suprahepatic vein, femoral vein, and tail blood. This difference was concomitant with a greater inhibition of the hepatic mitochondrial high-affinity ADH activity in UChA rats than in UChB ones, whether disulfiram was administered in vivo or in vitro, which excluded the possibility that the strain difference would be caused by a different bioavailability of disulfiram.

  17. Living with High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  18. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats.

    PubMed

    Szulc, Michal; Mikolajczak, Przemyslaw L; Geppert, Bogna; Wachowiak, Roman; Dyr, Wanda; Bobkiewicz-Kozlowska, Teresa

    2013-07-01

    There is a hypothesis that ghrelin could take part in the central effects of alcohol as well as function as a peripheral indicator of the changes which occur during long-term alcohol consumption. The aim of this study was to determine a correlation between alcohol concentration and acylated and total form of ghrelin after a single administration of alcohol (intraperitoneal, i.p.) (experiment 1) and prolonged ethanol consumption (experiment 2). The study was performed using Wistar alcohol preferring (PR) and non-preferring (NP) rats and rats from inbred line (Warsaw High Preferring, WHP; Warsaw Low Preferring, WLP). It was found that ghrelin in ethanol-naive WHP animals showed a significantly lower level when compared with the ethanol-naive WLP or Wistar rats. After acute ethanol administration in doses of 1.0; 2.0 and 4.0 g/kg, i.p., the simple (WHP) or inverse (WLP and Wistar) relationship between alcohol concentration and both form of ghrelin levels in plasma were found. Chronic alcohol intake in all groups of rats led to decrease of acylated ghrelin concentration. PR and WHP rats, after chronic alcohol drinking, had lower levels of both form of ghrelin in comparison with NP and WLP rats, respectively, and the observed differences in ghrelin levels were in inverse relationship with their alcohol intake. In conclusion, it is suggested that there is a strong relationship between alcohol administration or intake, ethanol concentration in blood and both active and total ghrelin level in the experimental animals, and that ghrelin plasma concentration can be a marker of alcohol drinking predisposition.

  19. Place conditioning with ethanol in rats bred for high (UChB) and low (UChA) voluntary alcohol drinking.

    PubMed

    Quintanilla, María Elena; Tampier, Lutske

    2011-12-01

    The main goal of this study was to investigate the ability of an ethanol dose (1g/kg) administered intraperitoneally to induce conditioned place preference (CPP) and/or conditioned place aversion (CPA) in two lines of rats selectively bred for their high (UChB) or low (UChA) voluntary ethanol intake. It was found that five pairings with ethanol induced CPA in ethanol-naïve rats of both lines, but the magnitude of avoidance was lower in the UChB relative to the UChA rats, indicating that ethanol was less aversive to naïve rats bred for high alcohol drinking. After 2 months of high voluntary ethanol drinking (~6-7g/kg/day), in free choice between 10% ethanol and water, ethanol produced CPP in UChB rats, reflecting that ethanol had become rewarding to these rats. By contrast, the low voluntary ethanol intake (<1g/kg/day) displayed by UChA rats preexposed for 2 months in free choice did not change ethanol-induced CPA. However, preexposure of UChA rats to forced ethanol drinking (~5.7g/kg/day) and the later inhibition of ethanol-derived acetaldehyde by 4-methylpyrazole (10mg/kg intraperitoneal), an inhibitor of the enzyme alcohol dehydrogenase, not only increased their voluntary ethanol intake in free choice, but also had a facilitating effect on the development of CPP. Taken together, these results show that the expression of the reinforcing effects of ethanol required a period of voluntary ethanol intake in UChB rats, whereas in UChA rats, both prior exposure to forced ethanol drinking and reduction of high blood ethanol-derived acetaldehyde were required.

  20. Stroke and High Blood Pressure

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Stroke and High Blood Pressure Updated:Jan 6,2015 Stroke is a leading ... to heart disease and stroke. Start exploring today ! High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  1. Lack of differences in blood and tissue concentrations of endogenous ethanol in conventional and germfree rats.

    PubMed

    Jones, A W; Ostrovsky YuM; Wallin, A; Midtvedt, T

    1984-01-01

    Headspace gas chromatography was used to determine the concentrations of endogenous ethanol in blood and tissue of conventional and germfree rats. In all biological specimens analysed, the four principal volatile endogenous substances were identified as methanol, acetaldehyde, ethanol and acetone. No statistically significant differences in the concentrations of endogenous ethanol were noted between conventional and germfree animals. In whole blood, liver, kidney, and brain of germfree rats the concentrations of endogenous ethanol were 4.2 +/- 0.19 microM, 5.1 +/- 0.55 microM, 8.2 +/- 0.59 microM and 4.4 +/- 0.17 microM (means +/- SE), respectively. The higher concentration in kidney was also observed in conventional rats. Our results suggest that ethanol is a normal metabolic intermediate in rats and does not exclusively arise from microbial fermentation reactions in the gastrointestinal tract.

  2. [Endogenous ethanol in the blood and tissues of rats with hypobaric hypoxia].

    PubMed

    Tarasov, Iu A; Ostrovskiĭ, Iu M; Satanovskaia, V I; Liopo, A V; Velichko, M G; Abakumov, G Z

    1989-01-01

    Albino male rats weighing 160-180 g were used to study the effect of short-term hypobaric hypoxia (ascent in an altitude chamber to 2500 m and 5000 m for 1 hr) on endogenous ethanol measured in blood, brain and liver; simultaneously enzymes responsible for ethanol and acetaldehyde metabolism were determined. Endogenous ethanol in blood and tissues was found to be a very sensitive marker of hypoxia which was not correlated with lactate, pyruvate, lipid peroxidation or 11-hydroxycorticosteroids. The latter parameters varied in response to severe hypoxia.

  3. Vacuum stripping of ethanol during high solids fermentation of corn.

    PubMed

    Shihadeh, Jameel K; Huang, Haibo; Rausch, Kent D; Tumbleson, Mike E; Singh, Vijay

    2014-05-01

    In corn-ethanol industry, yeast stress inducing glucose concentrations produced during liquefaction and subsequent high ethanol concentrations produced during fermentation restrict slurry solids to 32 % w/w. These limits were circumvented by combining two novel technologies: (1) granular starch hydrolyzing enzyme (GSHE) to break down starch simultaneously with fermentation and (2) vacuum stripping to remove ethanol. A vacuum stripping system was constructed and applied to fermentations at 30, 40, and 45 % solids. As solids increased from 30 to 40 %, ethanol yield decreased from 0.35 to 0.29 L/kg. Ethanol yield from 45 % solids was only 0.18 L/kg. An improvement was conducted by increasing enzyme dose from 0.25 to 0.75 g/g corn and reducing yeast inoculum by half. After improvement, ethanol yield from 40 % solids vacuum treatment increased to 0.36 L/kg, comparable to ethanol yield from 30 % solids (control).

  4. High Blood Pressure Fact Sheet

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... Prevent and Control Chronic Diseases Million Hearts® WISEWOMAN Web Sites with More Information About High Blood Pressure ...

  5. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  6. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  7. Hypertension (High Blood Pressure)

    MedlinePlus

    ... blood pressure with the development of a practical method to measure it. Physicians began to note associations between hypertension and risk of heart failure, stroke, and kidney failure. Although scientists had yet to prove that lowering blood pressure ...

  8. Ethanol-induced increase in portal blood glow: Role of adenosine

    SciTech Connect

    Orrego, H.; Carmichael, F.J.; Saldivia, V.; Giles, H.G.; Sandrin, S.; Israel, Y. )

    1988-04-01

    The mechanism by which ethanol induces an increase in portal vein blood flow was studied in rats using radiolabeled microspheres. Ethanol by gavage resulted in an increase of 50-70% in portal vein blood flow. The ethanol-induced increase in portal blood flow was suppressed by the adenosine receptor blocker 8-phenyltheophylline. By itself, 8-phenyltheophylline was without effect on cardiac output or portal blood flow. Adenosine infusion resulted in a dose-dependent increase in portal blood flow. This adenosine-induced increase in portal blood flow was inhibited by 8-phenyltheophylline in a dose-dependent manner. Both alcohol and adenosine significantly reduced preportal vascular resistance by 40% and 60%, respectively. These effects were fully suppressed by 8-phenyltheophylline. It is concluded that adenosine is a likely candidate to mediate the ethanol-induced increase in portal vein blood flow. It is suggested that an increase in circulating acetate and liver hypoxia may mediate the effects of alcohol by increasing tissue and interstitial adenosine levels.

  9. False-positive ethanol blood concentrations leading to clinical confusion on Christmas Day.

    PubMed

    Jones, Terry E

    2011-11-01

    A case of altered consciousness in which ethanol ingestion was one of the differential diagnoses is described. Three separate blood samples were conveyed to the hospital biochemistry laboratory and each returned a positive value when assayed via an indirect, enzymatic method. The family strongly denied alcohol ingestion and hence, a few days later, the samples were conveyed to an external laboratory using a 'specific', chromatographic method. These samples were all reported as negative for ethanol. Alternative causes of altered consciousness were restricted by the false-positive ethanol laboratory results.

  10. High Blood Pressure in Pregnancy

    MedlinePlus

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  11. Operant ethanol-reinforced behavior in P, NP, HAD, and LAD rats bred for high versus low ethanol preference.

    PubMed

    Ritz, M C; Garcia, J M; Protz, D; George, F R

    1994-12-01

    These studies examined the reinforcing effects of ethanol in rats selectively bred for high versus low ethanol drinking in a two-bottle choice preference task, namely the Preferring (P), Non-Preferring (NP), High Alcohol Drinking (HAD), and Low Alcohol Drinking (LAD) rats. The results substantiate findings suggesting that genetic factors are significant in determining whether ethanol will come to serve as a reinforcer. P rats exhibited high levels of responding for ethanol compared with the water vehicle, NP and HAD rats exhibited more moderate levels of responding for ethanol, and the behavior of LAD rats suggested that ethanol served only inconsistently as a reinforcer for these rats. Overall, the results suggest the existence of distinct, biologically influenced components of ethanol drinking behavior. Preference appears to measure an inherent facilitative factor allowing animals to initiate ethanol drinking. The operant chamber paradigm appears to measure factors related to whether and to what extent ethanol will serve as a positive reinforcer following conditioned exposure to the drug. Although preferring animals generally find ethanol reinforcing there seems to be little quantitative relationship between degree of preference and whether ethanol will serve as a reinforcer. Lack of preference does not seem to be predictive of lack of reinforcement. Thus, it appears that preference for ethanol and reinforcement from ethanol are somewhat overlapping, but distinct factors that contribute to ethanol drinking. These results suggest the existence of multiple components of behavior mediated by multiple mechanisms that contribute to ethanol drinking. PMID:7695037

  12. Preventive effect of sesquiterpenes from bay leaf on blood ethanol elevation in ethanol-loaded rat: structure requirement and suppression of gastric emptying.

    PubMed

    Matsuda, H; Shimoda, H; Uemura, T; Yoshikawa, M

    1999-09-20

    The methanolic extract from the leaves of Laurus nobilis (bay leaf, laurel) potently inhibited the elevation of blood ethanol level in ethanol-loaded rat. Through bioassay-guided separation, costunolide, dehydrocostus lactone, and santamarine were isolated as the active constituents and the alpha-methylene-gamma-butyrolactone structure was found to be essential for the preventive effect on ethanol absorption. In addition, the retardation of gastric emptying seemed to be partially involved in the preventive effects.

  13. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  14. Phosphatidylethanol in blood as a marker of ethanol consumption in healthy volunteers: comparison with other markers.

    PubMed

    Varga, A; Hansson, P; Lundqvist, C; Alling, C

    1998-11-01

    Phosphatidylethanol is a "pathological" phospholipid, formed via the action of phospholipase D only in the presence of ethanol. The present study was made to elucidate how different levels and patterns of alcohol intake affect blood levels of phosphatidylethanol in comparison with other markers of abuse. We used a new HPLC-evaporative light-scattering detection technique for phosphatidylethanol quantitation. This method had a total coefficient of variation of <20% at the detection limit of 0.2 nmol, equaling 0.8 micromol/liter of whole blood. Two groups were studied. (a) Five healthy volunteers were given 32 to 47 g of ethanol in a single dose, to give blood ethanol levels of approximately 25 mmol/liter after 30 to 60 min. Phosphatidylethanol, carbohydrate-deficient transferrin (CDT), and blood ethanol were measured before and after the intake. (b) Twelve student volunteers were studied during a 3 week period of prolonged alcohol consumption (total estimated intake: 1334 +/- 488 g, mean +/- SD) and phosphatidylethanol, serum-CDT, gamma-glutamyltransferase, and blood ethanol were measured at the start of the period (day 1) and twice at the end of the period (days 18 and 21). In group (a), no phosphatidylethanol was detected at any time after ethanol dosage/intake. In group (b), no blood phosphatidylethanol or blood ethanol could be demonstrated at the start, and serum-CDT was below the discrimination limit (1.3%) in all persons. No phosphatidylethanol was detected in those four persons with the lowest intake (742 +/- 150 g). However, the remaining eight persons had detectable levels of phosphatidylethanol (1.0 to 2.1 micromol/liter), and these had a higher total intake (1630 +/- 389 g). There was a statistically significant (p = 0.02) increase in serum CDT for 3 weeks. However, only 3 of 12 persons increased above the discrimination limit. The present results indicate that a substantial alcohol intake is needed to elevate blood phosphatidylethanol. In comparison

  15. High-pressure vapor-liquid equilibrium for R-22 + ethanol and R-22 + ethanol + water

    SciTech Connect

    Elbaccouch, M.M.; Raymond, M.B.; Elliott, J.R.

    2000-04-01

    High-pressure vapor-liquid equilibrium (VLE) data for the systems CO{sub 2} + methanol at 313.05 K, CO{sub 2} + ethanol at 323.55, 325.15, and 333.35 K, R-22 (chlorodifluoromethane) + ethanol at 343.25, 361.45, and 382.45 K, and R-22 + ethanol + water at 351.55, 362.65, and 371.85 K are obtained using a circulation-type VLE apparatus. The apparatus is tested with measurements of the CO{sub 2} + methanol and CO{sub 2} + ethanol systems. The experimental data are correlated using the Peng-Robinson and Elliott-Suresh-Donohue equations of state.

  16. When Blood Sugar is Too High

    MedlinePlus

    ... your diabetes treatment plan. Signs That Blood Sugar Levels Are High People with high blood sugar may: ... fine. previous continue How Are High Blood Sugar Levels Treated? To treat high blood sugar, it helps ...

  17. Controlling your high blood pressure

    MedlinePlus

    Controlling hypertension ... when you wake up. For people with very high blood pressure, this is when they are most at risk ... 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed ...

  18. Ethanol enhances de novo synthesis of high density lipoprotein cholesterol

    SciTech Connect

    Cluette, J.E.; Mulligan, J.J.; Noring, R.; Doyle, K.; Hojnacki, J.

    1984-05-01

    Male squirrel monkeys fed ethanol at variable doses were used to assess whether alcohol enhances de novo synthesis of high density lipoprotein (HDL) cholesterol in vivo. Monkeys were divided into three groups: 1) controls fed isocaloric liquid diet; 2) low ethanol monkeys fed liquid diet with vodka substituted isocalorically for carbohydrate at 12% of calories; and 3) High Ethanol animals fed diet plus vodka at 24% of calories. High Ethanol primates had significantly higher levels of HDL nonesterified cholesterol than Control and Low Ethanol animals while serum glutamate oxaloacetate transaminase was similar for the three treatments. There were no significant differences between the groups in HDL cholesteryl ester mass or specific activity following intravenous injection of labeled mevalonolactone. By contrast, High Ethanol monkeys had significantly greater HDL nonesterified cholesterol specific activity with approximately 60% of the radioactivity distributed in the HDL/sub 3/ subfraction. This report provides the first experimental evidence that ethanol at 24% of calories induces elevations in HDL cholesterol in primates through enhanced de novo synthesis without adverse effects on liver function.

  19. Risk Factors for High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Risk Factors for High Blood Pressure Anyone can develop high blood pressure; however, age, ... can increase your risk for developing high blood pressure. Age Blood pressure tends to rise with age. About 65 ...

  20. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models.

    PubMed

    Anderson, Rachel I; Becker, Howard C; Adams, Benjamin L; Jesudason, Cynthia D; Rorick-Kehn, Linda M

    2014-01-01

    To examine the role of orexin-1 and orexin-2 receptor activity on ethanol self-administration, compounds that differentially target orexin (OX) receptor subtypes were assessed in various self-administration paradigms using high-drinking rodent models. Effects of the OX1 antagonist SB334867, the OX2 antagonist LSN2424100, and the mixed OX1/2 antagonist almorexant (ACT-078573) on home cage ethanol consumption were tested in ethanol-preferring (P) rats using a 2-bottle choice procedure. In separate experiments, effects of SB334867, LSN2424100, and almorexant on operant ethanol self-administration were assessed in P rats maintained on a progressive ratio operant schedule of reinforcement. In a third series of experiments, SB334867, LSN2424100, and almorexant were administered to ethanol-preferring C57BL/6J mice to examine effects of OX receptor blockade on ethanol intake in a binge-like drinking (drinking-in-the-dark) model. In P rats with chronic home cage free-choice ethanol access, SB334867 and almorexant significantly reduced ethanol intake, but almorexant also reduced water intake, suggesting non-specific effects on consummatory behavior. In the progressive ratio operant experiments, LSN2424100 and almorexant reduced breakpoints and ethanol consumption in P rats, whereas the almorexant inactive enantiomer and SB334867 did not significantly affect the motivation to consume ethanol. As expected, vehicle-injected mice exhibited binge-like drinking patterns in the drinking-in-the-dark model. All three OX antagonists reduced both ethanol intake and resulting blood ethanol concentrations relative to vehicle-injected controls, but SB334867 and LSN2424100 also reduced sucrose consumption in a different cohort of mice, suggesting non-specific effects. Collectively, these results contribute to a growing body of evidence indicating that OX1 and OX2 receptor activity influences ethanol self-administration, although the effects may not be selective for ethanol consumption

  1. [Effect of tranquilizing agents on the blood level of endogenous ethanol in alcoholics].

    PubMed

    Burov, Iu V; Treskov, V G; Drozdov, E S; Kovalenko, A E

    1983-01-01

    Experiments on alcohol addicts blood were made to study the time course of the endogenous ethanol level after a single administration of mebicar (1.5 g), a derivative of bicyclic bisuria, 50 ml of 5% sodium hydroxybutyric syrup, a derivative of gamma-hydroxybutyric acid, and 20 mg diazepam, a derivative of 1,4-benzodiazepines. The clinical effect was recorded simultaneously. It was established that different tranquilizers stimulate the increase in the endogenous ethanol level as regards the spectrum of psychotropic activity. This effect was the most pronounced with mebicar and to a less measure with diazepam.

  2. Comparison of ethanol concentrations in venous blood and end-expired breath during a controlled drinking study.

    PubMed

    Jones, A W; Andersson, L

    2003-03-12

    Concentration-time profiles of ethanol were determined for venous whole blood and end-expired breath during a controlled drinking experiment in which healthy men (n=9) and women (n=9) drank 0.40-0.65 g ethanol per kg body weight in 20-30 min. Specimens of blood and breath were obtained for analysis of ethanol starting at 50-60 min post-dosing and then every 30-60 min for 3-6 h. This protocol furnished 130 blood-breath pairs for statistical evaluation. Blood-ethanol concentration (BAC, mg/g) was determined by headspace gas chromatography and breath-ethanol concentration (BrAC, mg/2l) was determined with a quantitative infrared analyzer (Intoxilyzer 5000S), which is the instrument currently used in Sweden for legal purposes. In 18 instances the Intoxilyzer 5000S gave readings of 0.00 mg/2l whereas the actual BAC was 0.08 mg/g on average (range 0.04-0.15 mg/g). The remaining 112 blood- and breath-alcohol measurements were highly correlated (r=0.97) and the regression relationship was BAC=0.10+0.91BrAC and the residual standard deviation (S.D.) was 0.042 mg/g (8.4%). The slope (0.91+/-0.0217) differed significantly from unity being 9% low and the intercept (0.10+/-0.0101) deviated from zero (t=10.2, P<0.001), indicating the presence of both proportional and constant bias, respectively. The mean bias (BAC - BrAC) was 0.068 mg/g and the 95% limits of agreement were -0.021 and 0.156 mg/g. The average BAC/BrAC ratio was 2448+/-540 (+/-S.D.) with a median of 2351 and 2.5th and 97.5th percentiles of 1836 and 4082. We found no significant gender-related differences in BAC/BrAC ratios, being 2553+/-576 for men and 2417+/-494 for women (t=1.34, P>0.05). The mean rate of ethanol disappearance from blood was 0.157+/-0.021 mg/(g per hour), which was very close to the elimination rate from breath of 0.161+/-0.021 mg/(2l per hour) (P>0.05). Breath-test results obtained with Intoxilyzer 5000S (mg/2l) were generally less than the coexisting concentrations of ethanol in venous blood

  3. Medications for High Blood Pressure

    MedlinePlus

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hypertension tends to worsen with age and you cannot ...

  4. The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells

    PubMed Central

    Lee, Sang Yun; Park, Hyun Joo; Best-Popescu, Catherine; Jang, Seongsoo; Park, Yong Keun

    2015-01-01

    Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization. PMID:26690915

  5. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    PubMed

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity.

  6. Ethanol-induced CD3 and CD2 hyporesponsiveness of peripheral blood T lymphocytes.

    PubMed

    Spinozzi, F; Agea, E; Fiorucci, G; Gerli, R; Muscat, C; Belia, S; Bertotto, A

    1992-01-01

    The functional relevance of a direct ethanol effect on the membrane structure of T lymphocytes and accessory cells (APC), as well as on signal transduction systems was studied in ten normal subjects. Ethanol incubation (80 mM for 24h) of highly purified T cells increased the number of CD4+/CD45RA+ lymphocytes. In contrast, ethanol exposure induced a drop in CD14+/LFA-3+ APC values. These changes were accompanied by faulty T-cell proliferation in response to anti-CD3 and anti-CD2 mAb and inhibition of CD3- and CD2-mediated rises in intracellular calcium and, to a lesser extent, inositol 1,4,5-triphosphate levels. These data clearly indicate that a membrane-specific ethanol interaction both modifies surface glycoproteic and/or glycolipidic structures and alters transmembrane transduction of the activation signals. PMID:1363475

  7. An ethanol extract of Ramulus mori improves blood circulation by inhibiting platelet aggregation.

    PubMed

    Lee, Jiyun; Kwon, Gayeung; Park, Jieun; Kim, Jeong-Keun; Choe, Soo Young; Seo, Yoonhee; Lim, Young-Hee

    2016-07-01

    Inappropriate platelet aggregation can cause blood coagulation and thrombosis. In this study, the effect of an ethanol extract of Ramulus mori (ERM) on blood circulation was investigated. The antithrombotic activity of ERM on rat carotid arterial thrombosis was evaluated in vivo, and the effect of ERM on platelet aggregation and blood coagulation time was evaluated ex vivo. To evaluate the safety of ERM, its cytotoxicity to platelets and its effect on tail bleeding time were assessed; ERM was not toxic to rat platelets and did not prolong bleeding time. Moreover, administering ERM to rats had a significant preventive effect on carotid arterial thrombosis in vivo, and significantly inhibited adenosine diphosphate- and collagen-induced platelet aggregation ex vivo, whereas it did not prolong coagulation periods, such as prothrombin time and activated partial thromboplastin time. The results suggest that ERM is effective in improving blood circulation via antiplatelet activity rather than anticoagulation activity.

  8. When Blood Sugar Is Too High

    MedlinePlus

    ... levels are. continue Causes of High Blood Sugar Levels Managing diabetes is like a three-way balancing ... unusually tired. previous continue Treating High Blood Sugar Levels Treating high blood sugar levels involves fixing what ...

  9. High Blood Pressure: Medicines to Help You

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  10. Avoid the Consequences of High Blood Pressure

    MedlinePlus

    ... Tools & Resources Stroke More Avoid the Consequences of High Blood Pressure Infographic Updated:Jun 19,2014 View a downloadable version of this infographic High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  11. Retrobulbar blood flow and visual field alterations after acute ethanol ingestion

    PubMed Central

    Weber, Anke; Remky, Andreas; Bienert, Marion; der Velden, Klaudia Huber-van; Kirschkamp, Thomas; Rennings, Corinna; Roessler, Gernot; Plange, Niklas

    2013-01-01

    Background The purpose of this study was to test the effect of ethyl alcohol on the koniocellular and magnocellular pathway of visual function and to investigate the relationship between such visual field changes and retrobulbar blood flow in healthy subjects. Methods In 12 healthy subjects (mean age 32 ± 4 years), color Doppler imaging, short-wavelength automated perimetry, and frequency doubling perimetry was performed before and 60 minutes after oral intake of 80 mL of 40 vol% ethanol. Mean and pattern standard deviations for short-wavelength automated and frequency doubling perimetry were assessed. End diastolic velocity (EDV) and peak systolic velocity (PSV) were measured in the central retinal and ophthalmic arteries using color Doppler imaging. Systemic blood pressure, heart rate, intraocular pressure, and blood alcohol concentration were determined. Results Mean PSV and EDV in the central retinal artery showed a significant increase after alcohol intake (P = 0.03 and P = 0.02, respectively). Similarly, we found a significant acceleration of blood flow velocity in the ophthalmic artery (P = 0.02 for PSV; P = 0.04 for EDV). Mean intraocular pressure decreased by 1.0 mmHg after alcohol ingestion (P = 0.01). Retinal sensitivity in short-wavelength automated perimetry did not alter, whereas in frequency doubling perimetry, the mean deviation decreased significantly. Systolic and diastolic blood pressure did not change significantly. Mean blood alcohol concentration was 0.38 ± 0.16 g/L. Conclusion Although ethanol is known to cause peripheral vasodilation, our subjects had no significant drop in systemic blood pressure. However, a significant increase of blood flow velocity was seen in the retrobulbar vessels. Regarding visual function, moderate alcohol consumption led to reduced performance in the magnocellular visual system tested by frequency doubling perimetry, but had no effect on short-wavelength automated perimetry. PMID:23990703

  12. 40 CFR 1065.725 - High-level ethanol-gasoline blends.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ethanol used for blending must be either denatured ethanol meeting the specifications in 40 CFR 80.1610... 40 Protection of Environment 33 2014-07-01 2014-07-01 false High-level ethanol-gasoline blends... Calibration Standards § 1065.725 High-level ethanol-gasoline blends. For testing vehicles capable of...

  13. Fast quantification of ethanol in whole blood specimens by the enzymatic alcohol dehydrogenase method. Optimization by experimental design.

    PubMed

    Kristoffersen, Lena; Skuterud, Bjørn; Larssen, Bente R; Skurtveit, Svetlana; Smith-Kielland, Anne

    2005-01-01

    A sensitive, fast, simple, and high-throughput enzymatic method for the quantification of ethanol in whole blood (blood) on Hitachi 917 is presented. Alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde using the coenzyme nicotinamide adenine dinucleotide (NAD), which is concurrently reduced to form NADH. Method development was performed with the aid of factorial design, varying pH, and concentrations of NAD+ and ADH. The linear range increased and reaction end point decreased with increasing NAD+ concentration and pH. The method was linear in the concentration range 0.0024-0.4220 g/dL. The limits of detection and quantification were 0.0007 g/dL and 0.0024 g/dL, respectively. Relative standard deviations for the repeatability and within-laboratory reproducibility were in the ranges 0.7-5.7% and 1.6-8.9%, respectively. The correlation coefficient when compared with headspace gas chromatography-flame ionization detection methods was 0.9903. Analysis of authentic positive blood specimens gave results that were slightly lower than those of the reference method.

  14. Effects of concurrent access to multiple ethanol concentrations and repeated deprivations on alcohol intake of high-alcohol-drinking (HAD) rats.

    PubMed

    Rodd, Zachary A; Bell, Richard L; Kuc, Kelly A; Murphy, James M; Lumeng, Lawrence; McBride, William J

    2009-04-01

    High-alcohol-drinking rats, given access to 10% ethanol, expressed an alcohol deprivation effect (ADE) only after multiple deprivations. In alcohol-preferring (P) rats, concurrent access to multiple ethanol concentrations combined with repeated cycles of EtOH access and deprivation produced excessive ethanol drinking. The current study was undertaken to examine the effects of repeated alcohol deprivations with concurrent access to multiple concentrations of ethanol on ethanol intake of HAD replicate lines of rats. HAD-1 and HAD-2 rats received access to 10, 20 and 30% (v/v) ethanol for 6 weeks. Rats from each replicate line were assigned to: (1) a non-deprived group; (2) a group initially deprived of ethanol for 2 weeks; or (3) a group initially deprived for 8 weeks. Following the restoration of the ethanol solutions, cycle of 2 weeks of ethanol exposure and 2 weeks of alcohol deprivation was repeated three times for a total of four deprivations. Following the initial ethanol deprivation period, deprived groups significantly increased ethanol intakes during the initial 24-hour re-exposure period. Multiple deprivations increased ethanol intakes, shifted preference to higher ethanol concentrations and prolonged the duration of the elevated ethanol intakes for up to 5 days. In addition, repeated deprivations increased ethanol intake in the first 2-hour re-exposure period as high as 5-7 g/kg (which are equivalent to amounts consumed in 24 hours by HAD rats), and produced blood ethanol levels in excess of 150 mg%. The results indicate that HAD rats exhibit 'loss-of-control' of alcohol drinking with repeated deprivations when multiple ethanol concentrations are available.

  15. Interaction of ethanol and microwaves on the blood-brain barrier of rats

    SciTech Connect

    Neilly, J.P.; Lin, J.C.

    1986-01-01

    The combined effects of ethanol and microwaves on the permeation of Evans blue dye through the mammalian blood-brain barrier was studied in male Wistar rats. Anesthetized rats were infused through a cannula in the left femoral vein with 0.1, 0.3, 0.5 or 0.7 grams of absolute ethanol per kilogram of body mass. A control group was given 0.7 g/kg of isotonic saline. The left hemisphere of the brain was irradiated by 3.15-GHz microwave energy at 3.0 W/cm2 rms for 15 min. The rat's rectal temperature was maintained at 37.0 degrees C. Immediately after irradiation, 2% Evans blue dye in saline (2.0 ml/kg body mass) was injected through the cannula. The results show that as the quantity of alcohol was increased, the degree of staining was decreased or eliminated. The temperature of the irradiated area of the brain increased for the first 4 to 5 minutes of irradiation and then stabilized for the remainder of the irradiation period. The steady-state temperature was highest in animals receiving saline or the smallest dose of alcohol. As the quantity of alcohol was increased, the steady-state temperature was reduced. These results indicate that ethanol inhibits microwave-induced permeation of the blood-brain barrier through reduced heating of the brain.

  16. Effects of ethanol consumption on the B-group vitamin contents of liver, blood and urine in rats.

    PubMed

    Miyazaki, Aiko; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2012-09-28

    Several studies have shown that blood vitamin levels are lower in alcoholic patients than in control subjects. Acute ethanol exposure enhances the release of vitamins from liver cells in vitro. The aim of the present study is to confirm the effects of ethanol consumption on vitamin contents in vivo. We compared the contents of B-group vitamins in the liver, blood and urine between ethanol-fed and control rats fed a diet containing a sufficient- and low-vitamin mixture. The experimental rats were fed a 15 % ethanol solution freely for 28 d, and then 24 h urine samples were collected, after which the animals were killed. The B-group vitamin contents in the liver, blood and urine were measured. No differences in liver, blood and urine contents were observed between the control and ethanol-fed rats fed a diet containing a sufficient-vitamin mixture. On the contrary, in rats fed a diet containing a low-vitamin mixture, consumption of ethanol caused a decrease in the contents of vitamins B₁, B₂ and pantothenic acid in the liver; however, the contents of the other vitamins did not decrease. In the blood, the contents of vitamins B₁, B₂, B₆ and pantothenic acid were lower in the ethanol-fed rats than in the controls. Urinary excretion of the B-group vitamins, except for niacin, was lower in the ethanol-fed rats. These results show that ethanol consumption affects the absorption, distribution and excretion of each of the vitamins in rats fed a diet containing a low-vitamin mixture.

  17. Purification of ethanol for highly sensitive self-assembly experiments

    PubMed Central

    Barbe, Kathrin; Kind, Martin; Pfeiffer, Christian

    2014-01-01

    Summary Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs) of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only show high capacities for surface-active contaminants, such as thiols, but can be fully regenerated via a simple pyrolysis protocol. PMID:25161861

  18. Genetics of alcoholism: rapid development of a new high-ethanol-preferring (HEP) strain of female and male rats.

    PubMed

    Myers, R D; Robinson, D E; West, M W; Biggs, T A; McMillen, B A

    1998-11-01

    A genetically based animal model of alcoholism has been developed in a relatively short period of 3 years. The new strain is characterized by an intense preference for ethanol over water as well as unique behavioral, neurochemical and other attributes. This new strain, termed high-ethanol-preferring (HEP) rats, was derived initially from selective cross-breeding of a variant strain of female Harlan Sprague-Dawley (SD) rats with the outbred Wistar line of male ethanol-preferring (P) rats. In this study, drinking patterns of both genders were obtained over 10 days by presenting water and ethanol in concentrations ranging from 3% to 30%. To expedite the development of the new strain, only three to five female and male rats served as breeders, which were chosen from all litters on the basis of their maximum g/kg intake integrated with proportion of ethanol to total fluid values. Profiles of intake of preferred concentrations of ethanol were obtained over 24 h of unlimited access as well as during 2-h intervals of limited access to ethanol. Levels of blood ethanol were measured in both female and male HEP animals during bouts of ethanol drinking in the limited access paradigm. By the sixth generation of HEP rats, ethanol consumption of the females often exceeded that of any other rat genetically bred to drink ethanol (e.g., at a concentration of 15.7%, 10.3 g/kg per day). Seven additional characteristics are notable: 1) the HEP rats prefer ethanol in the presence of a nutritious chocolate drink or nonnutrient sweetened solution (aspartame); 2) high levels of blood ethanol are associated with their drinking; 3) females drink significantly greater g/kg amounts of ethanol than HEP males and prefer a higher percent concentration of ethanol; 4) the drinking of ethanol by the female HEP animals does not fluctuate during the estrous cycle; 5) neurochemical assays show differential profiles of 5-HT, dopamine, and their metabolites in different regions of the brain; 6) measures

  19. How Is High Blood Pressure Treated?

    MedlinePlus

    ... blood pressure and maintain normal blood pressure readings. Healthy Eating To help treat high blood pressure, health care ... Read more about the DASH eating plan. Heart-Healthy Eating Your health care provider also may recommend heart- ...

  20. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels

    PubMed Central

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  1. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels.

    PubMed

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  2. [The comparison of concentration of endogenous ethanol blood serum in alcoholics and in non-alcoholics at different stages of abstinence].

    PubMed

    Lukaszewicz, A; Markowski, T; Pawlak, D

    1997-01-01

    In this report the concentration of endogenous ethanol in blood serum in alcoholics at different stages of abstinence and in non-alcoholics was studied. 36 people--26 alcoholics and 10 non-alcoholics were examined and gas chromatography was used. It was revealed that the longer the period of abstinence in alcoholics, the lower the concentration of endogenous ethanol in blood serum. Moreover, the alcoholics showed a higher concentration of endogenous ethanol in blood serum as compared to non-alcoholics.

  3. An attempt to evaluate diagnostic and prognostic significance of blood endogenous ethanol in alcoholics and their relatives.

    PubMed

    Ostrovsky, Y M; Pronko, P S; Shishkin, S N; Kolesnikov, V B; Volynets, S I

    1989-01-01

    Endogenous ethanol in the blood of human subjects was measured by gas chromatography. In healthy males, 12-13-year-old boys (sons of alcoholic and nonalcoholic fathers), and alcoholic inpatients (after cessation of all drugs), the endogenous ethanol levels ranged from 0 to 4.3 mg/l. The results showed no significant differences between the groups. At the period of alcohol withdrawal reactions the concentrations of endogenous ethanol were minimal in patients with delirium tremens and maximal in patients with mild alcohol withdrawal syndrome, the dynamics of this parameter being dependent on the severity of the alcohol withdrawal syndrome and the nature of the drugs prescribed.

  4. Ethyl glucuronide concentrations in oral fluid, blood, and urine after volunteers drank 0.5 and 1.0 g/kg doses of ethanol.

    PubMed

    Høiseth, Gudrun; Yttredal, Borghild; Karinen, Ritva; Gjerde, Hallvard; Mørland, Jørg; Christophersen, Asbjørg

    2010-01-01

    The aim of this study was to investigate the concentrations of ethyl glucuronide (EtG) in oral fluid, blood, and urine after healthy volunteers drank two doses of ethanol, 0.5 (n = 11) and 1.0 g/kg (n = 10), after an overnight fast. Samples of oral fluid, blood, and urine were collected before drinking started and at 1.5, 3.5, 5.5, 8.5, 11.5, and 24 h post-dosing. Following ingestion of low dose of ethanol, the Cmax for EtG was 0.36 mg/L (range 0.28-0.41 mg/L) in blood and 69.8 mg/L (range 47.1-96.5 mg/L) in urine. In oral fluid, the concentrations were < 1% of those in blood, and only three subjects exceeded the limit of quantification for EtG in oral fluid. After ingestion of the high dose of ethanol, the Cmax for EtG was 1.06 mg/L (range 0.8-1.22 mg/L) in blood, 159.9 mg/L (range 97.2-225.5 mg/L) in urine, and 0.032 mg/L (range 0.013-0.059 mg/L) in oral fluid. The median oral fluid/blood ratio was 0.029 (range 0.012-0.054) for EtG. The detection time for EtG was median 11.5 h (range 3.5-11.5 h) in oral fluid. According to this, the detection time for EtG in oral fluid is therefore only a few hours longer than for ethanol itself and represents limited additional value. PMID:20663284

  5. Ethanol and Acetaldehyde After Intraperitoneal Administration to Aldh2-Knockout Mice-Reflection in Blood and Brain Levels.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Tanaka, Naoko; Ito, Asuka; Takakura, Ayaka; Kumihashi, Mitsuru; Kinoshita, Hiroshi

    2016-05-01

    This paper reports, for the first time, on the analysis of ethanol (EtOH) and acetaldehyde (AcH) concentrations in the blood and brains of Aldh2-knockout (Aldh2-KO) and C57B6/6J (WT) mice. Animals were administrated EtOH (1.0, 2.0 or 4.0 g/kg) or 4-methylpyrazole (4-MP, 82 mg/kg) plus AcH (50, 100 or 200 mg/kg) intraperitoneally. During the blood tests, samples from the orbital sinus of the eye were collected. During the brain tests, dialysates were collected every 5 min (equal to a 15 µl sample) from the striatum using in vivo brain microdialysis. Samples were collected at 5, 10, 15, 20, 25, 30 and 60 min intervals post-EtOH and -AcH injection, and then analyzed by head-space GC. In the EtOH groups, high AcH levels were found in the blood and brains of Aldh2-KO mice, while only small traces of AcH were seen in the blood and brains of WT mice. No significant differences in EtOH levels were observed between the WT and the Aldh2-KO mice for either the EtOH dose. EtOH concentrations in the brain were comparable to the EtOH concentrations in the blood, but the AcH concentrations in the brain were four to five times lower compared to the AcH concentrations in the blood. In the AcH groups, high AcH levels were found in both WT and Aldh2-KO mice. Levels reached a sharp peak at 5 min and then quickly declined for 60 min. Brain AcH concentrations were almost equal to the concentrations found in the blood, where the AcH concentrations were approximately two times higher in the Aldh2-KO mice than in the WT mice, both in the blood and the brain. Our results suggest that systemic EtOH and AcH administration can cause a greater increase in AcH accumulation in the blood and brains of Aldh2-KO mice, where EtOH concentrations in the Aldh2-KO mice were comparable to the EtOH concentrations in the WT mice. Furthermore, detection of EtOH and AcH in the blood and brain was found to be dose-dependent in both genotypes. PMID:26646001

  6. Use of high-ethanol-resistant yeast isolates from Nigerian palm wine in lager beer brewing.

    PubMed

    Agu, R C; Anyanwu, T U; Onwumelu, A H

    1993-11-01

    High-ethanol-resistant yeasts, characterized as Saccharomyces sp., were isolated from Nigerian palm wine with added sucrose for high gravity brewing. The yeast isolates that survived the highest ethanol production were used to ferment brewery wort and produced 8.2 to 8.5% (v/v) ethanol; values almost double that of the control yeast from a local brewery.

  7. High Blood Pressure May Hike Dementia Risk

    MedlinePlus

    ... medlineplus.gov/news/fullstory_161398.html High Blood Pressure May Hike Dementia Risk New statement from American ... MONDAY, Oct. 10, 2016 (HealthDay News) -- High blood pressure, particularly in middle age, might open the door ...

  8. High blood pressure and eye disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features ... Hypertensive retinopathy is damage to the retina from high blood pressure. The retina is the layer of tissue at ...

  9. Reduced blood clearance and increased urinary excretion of N-nitrosodimethylamine in patas monkeys exposed to ethanol or isopropyl alcohol.

    PubMed

    Anderson, L M; Koseniauskas, R; Burak, E S; Moskal, T J; Gombar, C T; Phillips, J M; Sansone, E B; Keimig, S; Magee, P N; Rice, J M

    1992-03-15

    Low concentrations of N-nitrosodimethylamine are metabolized in rodent and human liver by cytochrome P450IIE1, an activity competitively inhibitable by ethanol. In rodents coadministration of ethanol with N-nitrosodimethylamine results in increased tumorigenicity in extrahepatic organs, probably as a result of reduced hepatic clearance. To test this concept in a primate, the effects of ethanol cotreatment on the pharmacokinetics of N-nitrosodimethylamine were measured in male patas monkeys. Ethanol, 1.2 g/kg given p.o. before i.v. N-nitrosodimethylamine (1 mg/kg) or concurrently with an intragastric dose resulted in a 10-50-fold increase in the area under the blood concentration versus time curves and a 4-13-fold increase in mean residence times for N-nitrosodimethylamine. Isopropyl alcohol, 3.2 g/kg 24 h before N-nitrosodimethylamine, also increased these parameters 7-10-fold; this effect was associated with persistence of isopropyl alcohol and its metabolic product acetone, both IIE1 inhibitors, in the blood. While no N-nitrosodimethylamine was detected in expired air, trace amounts were found in urine. Ethanol and isopropyl alcohol pretreatment increased the maximum urinary N-nitrosodimethylamine concentration 15-50-fold and the percentage of the dose excreted in the urine by 100-800-fold. Thus ethanol and isopropyl alcohol greatly increase systemic exposure of extrahepatic organs to N-nitrosodimethylamine in a primate.

  10. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  11. Calculation and verification of blood ethanol measurement uncertainty for headspace gas chromatography.

    PubMed

    Sklerov, Jason H; Couper, Fiona J

    2011-09-01

    An estimate was made of the measurement uncertainty for blood ethanol testing by headspace gas chromatography. While uncertainty often focuses on compliance to a single threshold level (0.08 g/100 mL), the existence of multiple thresholds, related to enhanced sentencing, subject age, or commercial vehicle licensure, necessitate the use of an estimate with validity across multiple specification levels. The uncertainty sources, in order of decreasing magnitude, were method reproducibility, linear calibration, recovery, calibrator preparation, reference material, and sample preparation. A large set of reproducibility data was evaluated (n = 15,433) in order to encompass measurement variability across multiple conditions, operators, instruments, concentrations and timeframes. The relative, combined standard uncertainty was calculated as ±2.7%, with an expanded uncertainty of ±8.2% (99.7% level of confidence, k = 3). Bias was separately evaluated through a recovery study using standard reference material from a national metrology institute. The uncertainty estimate was verified through the use of proficiency test (PT) results. Assigned values for PT results and their associated uncertainties were calculated as robust means (x*) and standard deviations (s*) of participant values. Performance scores demonstrated that the uncertainty estimate was appropriate across the full range of PT concentrations (0.010-0.370 g/100 mL). The use of PT data as an empirical estimate of uncertainty was not examined. Until providers of blood ethanol PT samples include details on how an assigned value is obtained along with its uncertainty and traceability, the use of PT data should be restricted to the role of verification of uncertainty estimates.

  12. Immobilization-induced increases of systolic blood pressure and dysregulation of electrolyte balance in ethanol-treated rats.

    PubMed

    Yasmin, Farzana; Haque, Zeba; Ikram, Huma; Haleem, Darakhshan Jabeen

    2015-07-01

    Clinical and experimental studies revealed that alcohol drinking and life event stresses are predisposing factors to hypertension. Intra and extra cellular levels of electrolytes may play important role in the pathogenesis and treatment of hypertension. Dietary intake of sodium, potassium, calcium and magnesium is suggested to have a role in the regulation of blood pressure. The present study was designed to monitor the effects of acute exposure to 2h immobilization stress and ethanol administration at a dose of 2.5 g/kg body weight (i.p.) and combined effect of acute administration of ethanol and immobilization stress on systolic blood pressure (SBP), intraerythrocyte, serum and tissue electrolytes in rats. Results showed that acute exposure to 2h immobilization increased SBP, intraerythrocyte sodium and decreased intraerythrocyte potassium in water as well as in ethanol injected rats. The concentration of Na⁺ and Ca²⁺ increased while that of K⁺ and Mg²⁺ decreased in the heart and kidney tissue. Ethanol administration also increased Na⁺ and Ca²⁺ levels and decreased K⁺ and Mg²⁺ levels in the heart and kidney tissue. Restraint stress decreased serum levels of Na⁺, K⁺, Ca²⁺, P, and Cl⁻ and increased serum Mg²⁺, glucose and haematocrit. Ethanol administration also decreased serum levels of Na⁺, K⁺, Ca²⁺, P, and Cl⁻ and increased serum Mg²⁺, glucose and haematocrit. The effects of ethanol and stress on the changes of blood and tissues electrolytes were additive and may be involved in the greater occurrence of hypertension in alcoholics. Our results suggested an important role of intra and extra cellular electrolytes in both stress and ethanol-induced hypertension. The findings may help to develop strategies for the treatment of hypertension in alcoholics.

  13. [Optimization of a method of determination of endogenous ethanol in the blood and tissues of man and experimental animals].

    PubMed

    Shishkin, S N; Ostrovskiĭ, Iu M; Pron'ko, P S

    1988-01-01

    An improved procedure is described for estimation of endogenous ethanol in human and animal biological fluids using gas chromatographic analysis of equilibrated steam. Sensitivity of the procedure was as low as 0.05 mg/L and relative error--about 6%. Content of endogenous ethanol constituted from 0.08 mg/L to 1.30 mg/l (the mean value was 0.38 +/- 0.07 mg/L) in blood of healthy men which did not consume alcohol for a long time. In blood and tissues of white rats content of ethanol was equal to 0.06-1.32 mg/L and 0.07-3.12 mg/l, respectively.

  14. High Blood Pressure: Unique to Older Adults

    MedlinePlus

    ... below to read more. High Blood Pressure and Edema : You may notice swelling in some parts of ... blood pressure. This buildup of fluids, called peripheral edema, usually occurs in your ankles, feet, lower legs, ...

  15. Preeclampsia and High Blood Pressure During Pregnancy

    MedlinePlus

    ... thrombophilia , or lupus • are obese •had in vitro fertilization What are the risks for my baby if ... blood cells. Hypertension: High blood pressure. In Vitro Fertilization: A procedure in which an egg is removed ...

  16. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    PubMed

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-01

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production.

  17. THE CYCLIC PATTERN OF BLOOD ALCOHOL LEVELS DURING CONTINUOUS ETHANOL FEEDING IN RATS. THE EFFECT OF FEEDING S-ADENOSYLMETHIONINE

    PubMed Central

    Bardag-Gorce, F; Li, J; Oliva, J; Lu, SC; French, BA; French, SW

    2010-01-01

    S-adenosylmethionine (SAMe), the major methyl donor for DNA and histone methylation was fed with ethanol for one month in order to modify the effects of ethanol on rat liver. The following parameters were studied to determine the effects of SAMe; liver histology, the blood alcohol cycle (BAL), changes in gene expression mined from microarray analysis, changes in histone methylation, changes in liver SAMe levels and its metabolites and ADH. SAMe changed the type of fatty liver, reduced liver ALT levels and prevented the BAL cycle caused by intragastric ethanol feeding. Microarray analysis showed that SAMe feeding prevented most of the changes in gene expression induced by ethanol feeding, presumably by inducing H3K27me3 and gene silencing. H3K27me3 was significantly increased by SAMe with or without ethanol feeding. It is concluded that SAMe feeding stabilized global gene expression so that the changes in gene expression involved in the blood alcohol cycle were prevented. PMID:20303346

  18. How do yeast cells become tolerant to high ethanol concentrations?

    PubMed

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance. PMID:26758993

  19. `Sausage string' patterns in blood vessels at high blood pressures

    NASA Astrophysics Data System (ADS)

    Alstrøm, Preben; Eguíluz, Victor M.; Gustafsson, Finn; Holstein-Rathlou, Niels-Henrik

    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dialtations formed in blood vessels at high blood pressure conditions. Our theory involves the nonlinear stress-strain characteristics of the vessel wall, and provides predictions for the conditions under which the normal cylindrical geometry of a blood vessel becomes unstable. The theory explains key features observed experimentally, e.g. the limited occurrence of the sausage-string pattern to small arteries and large arterioles, and only in those with small wall-to-lumen ratios.

  20. Potassium and High Blood Pressure

    MedlinePlus

    ... in blood pressure to certain patterns of food consumption. For example, the D.A.S.H. (Dietary Approaches ... are good natural sources of potassium. Potassium-rich foods include: Sweet ... Levels Mean * ...

  1. ATP metabolism in rat liver chronically treated with ethanol and high fat

    SciTech Connect

    Miyamoto, K.; French, S.W.

    1986-03-01

    Five pairs of Wistar male rats weighing about 350 g were continuously infused with a liquid diet in which 25-35% of total calories was derived from fat, plus ethanol or isocaloric dextrose through gastrostomy cannulas for 3 wks to 3.5 mos. Mean ethanol intake was 12.9 +/- 0.7 g/kg B.W. (55% of total calories). High blood alcohol levels (BAL, 342 +/- 151 mg/dl) were maintained. The liver showed severe steatosis (4+) in all the ethanol-fed rats (ER). Two had mild focal mononuclear cell infiltration, one had mild fibrosis and one had spotty necrosis. Mild steatosis (1+) was seen in 4 out of 5 pair-fed control rats (CR). Serum ALT was significantly higher in ER (129 +/- 44 U) compared with Cr (59 +/- 30 U) or rats fed chow ad lib (NR) (48 +/- 26 U). Biopsied liver tissue was used to measure the concentration of adenine nucleotides by HPLC (6 pairs). There was a significant decrease of ATP in ER (1.7 +/- 0.3 ..mu..mol/g liver) as compared to CR (2.5 +/- 0.5 ..mu..mol/g) or NR (2.8 +/- 0.2 ..mu..mol/g, n = 6). There was no significant change in the ADP or AMP content, however. The total adenylate pool of the liver was also significantly reduced in ER when compared to that of CR or NR (3.2 +/- 0.4, 4.0 +/- 0.5 and 4.3 +/- 0.2 ..mu..mol/g liver, respectively). Adeynlate energy charge (E.C.) of the ER livers (0.71 +/- 0.05) was significantly reduced compared to NR (0.77 +/- 0.02) but not with CR (0.75 +/- 0.06). The results indicate that ethanol decreases the level of ATP as well as the biological mechanism to compensate for the lowered level.

  2. Increased Delay Discounting Tracks with a High Ethanol-Seeking Phenotype and Subsequent Ethanol-Seeking but not Consumption

    PubMed Central

    Beckwith, Steven Wesley; Czachowski, Cristine Lynn

    2014-01-01

    Background Increased levels of delay discounting have been associated with alcoholism and problematic levels of drinking. Attempts to assess the directionality of this relationship by studying individuals with a family history of alcoholism as well as rodent lines selectively bred for high home cage alcohol preference have yielded discordant results. One possible reason for this discordance is that increased levels of delay discounting may only track with specific processes that lead to addiction vulnerability. The current study investigated this possibility by assessing three strains of rats previously identified to exhibit heritable differences in ethanol-seeking and consumption. Methods In an adjusting amount delay discounting task, alcohol-preferring P rats who display high levels of both ethanol-seeking and consumption were compared to High Alcohol Drinking (HAD2) rats who only exhibit moderate ethanol-seeking despite high levels of consumption, and Long Evans (LE) rats who display moderate seeking and consumption. Ethanol-seeking and consumption phenotypes were subsequently confirmed in an operant self-administration task with a procedural separation between ethanol-seeking and drinking. Results P rats discounted delayed rewards to a greater extent than both HAD2s and LE who did not show differences in discounting. Moreover, the ethanol-seeking and drinking phenotypes were replicated with P rats displaying greater ethanol-seeking compared to both the HAD2s and LE, and both the HAD2s and P rats consuming more ethanol than LEs. Conclusions Only the high seeking strain, the P rats, exhibited increased levels of delay discounting. This suggests that this measure of behavioral under-control is specifically associated with alcohol-related appetitive, but not consummatory, processes since the moderate seeking/high drinking line did not show increased levels of impulsivity. This finding supports the hypothesis that delay discounting is specifically associated with

  3. Dual effects of zinc sulphate on ethanol-induced gastric injury in rats: possibly mediated by an action on mucosal blood flow.

    PubMed

    Cho, C H; Chen, B W; Poon, Y K; Ng, M M; Hui, W M; Lam, S K; Ogle, C W

    1989-10-01

    The present study examines the protective effect of zinc sulphate against ethanol-induced gastric mucosal ulcers in rats. Absolute ethanol decreased the gastric mucosal blood flow and produced haemorrhagic lesions in the glandular mucosa. Zinc sulphate preincubation in an ex-vivo stomach chamber preparation prevented the formation of ethanol-induced lesions and attenuated the decrease of blood flow produced by ethanol. Subcutaneous injection of the same doses of the drug at 15 and 30 min before ethanol exposure, markedly reduced the blood flow and also aggravated ethanol-induced gastric injury; however, when injected at 23 and 24 h before ethanol administration, zinc sulphate protected against lesion formation but had no effect on the vascular changes induced by ethanol in the gastric glandular mucosa. These findings show that the antiulcer effect of zinc sulphate occurs only when the drug is given orally, or injected s.c. 23 and 24 h before ethanol challenge. Furthermore, this protective action is probably not entirely mediated by preservation of the gastric mucosal blood flow.

  4. Mechanistic Study of Silver Nanoparticle's Synthesis by Dragon's Blood Resin Ethanol Extract and Antiradiation Activity.

    PubMed

    Hasan, Murtaza; Iqbal, Javed; Awan, Umer; Saeed, Yasmeen; Ranran, Yuan; Liang, Yanli; Dai, Rongji; Deng, Yulin

    2015-02-01

    Biological synthesis of nanoparticles is best way to avoid exposure of hazardous materials as compared to chemical manufacturing process which is a severe threat not only to biodiversity but also to environment. In present study, we reported a novel method of finding antiradiation compounds by bioreducing mechanism of silver nanoparticles formation using 50% ethanol extract of Dragons blood, a famous Chinese herbal plant. Color change during silver nanoparticles synthesis was observed and it was confirmed by ultra violet (UV) visible spectroscopy at wave length at 430 nm after 30 min of reaction at 60 °C. Well dispersed round shaped silver nanoparticles with approximate size (4 nm to 50 nm) were measured by TEM and particle size analyser. Capping of biomolecules on Ag nanoparticles was characterized by FTIR spectra. HPLC analysis was carried out to find active compounds in the extract. Furthermore, antiradiation activity of this extract was tested by MTT assay in vitro after incubating the SH-SY5Y cells for 24 h at 37 °C. The results indicate that presence of active compounds in plant extract not only involves in bioreduction process but also shows response against radiation. The dual role of plant extract as green synthesis of nanoparticles and exhibit activity against radiation which gives a new way of fishing out active compounds from complex herbal plants.

  5. Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-12-01

    In cellulosic ethanol production using lignocellulose, an increase in biomass solids loading during the pretreatment process significantly affects the final ethanol titer and the production cost. In this study, pretreatment using rice straw at high solids loading (20% (w/v)) was evaluated, using maleic acid as a catalyst. After pretreatment at optimal conditions of 190°C, 20 min, and 0.2% or 5% (w/v) maleic acid, the highest enzymatic digestibility obtained was over 80%. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated rice straw in the presence of activated carbon to separate inhibitory compounds generated a high ethanol yield of 62.8%, based on the initial glucan in unpretreated rice straw. These findings suggest that high solids loading pretreatment using maleic acid and SSF of the whole slurry of pretreated rice straw can be combined to improve the process economics of ethanol production.

  6. Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-12-01

    In cellulosic ethanol production using lignocellulose, an increase in biomass solids loading during the pretreatment process significantly affects the final ethanol titer and the production cost. In this study, pretreatment using rice straw at high solids loading (20% (w/v)) was evaluated, using maleic acid as a catalyst. After pretreatment at optimal conditions of 190°C, 20 min, and 0.2% or 5% (w/v) maleic acid, the highest enzymatic digestibility obtained was over 80%. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated rice straw in the presence of activated carbon to separate inhibitory compounds generated a high ethanol yield of 62.8%, based on the initial glucan in unpretreated rice straw. These findings suggest that high solids loading pretreatment using maleic acid and SSF of the whole slurry of pretreated rice straw can be combined to improve the process economics of ethanol production. PMID:26461793

  7. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  8. Let's Talk about High Blood Pressure and Stroke

    MedlinePlus

    ... Tools & Resources Stroke More Let's Talk About High Blood Pressure and Stroke Updated:Dec 9,2015 What is ... Blood Pressure? How Can I Reduce High Blood Pressure? High Blood Pressure and Stroke What Is Diabetes and How ...

  9. Determination of endogenous ethanol in blood and breath by gas chromatography-mass spectrometry.

    PubMed

    Jones, A W; Mårdh, G; Anggård, E

    1983-01-01

    We describe methods for the determination of endogenous ethanol in biological specimens from healthy abstaining subjects. The analytical methods were headspace gas chromatography (GC) for plasma samples and gas chromatography-mass spectometry (GC/MS) with deuterium labelled species 2H3-ethanol and 2H5-ethanol as internal standards for breath analysis. Ethanol in rebreathed air was about 10% higher than in directly analysed end-expired alveolar air. Known volumes of rebreathed air were passed through a liquid-N2 freeze trap and the volatile constituents of breath were concentrated prior to analysis by GC or GC/MS. Besides endogenous ethanol, peaks were seen on the chromatograms for methanol, acetone and acetaldehyde as well as several as yet unidentified substances. The endogenous alcohols ethanol and methanol were confirmed from their mass chromatograms and the GC/MS profile also indicated the presence of endogenous propan-1-ol. The concentration of endogenous ethanol in plasma showed wide inter-subject variations ranging from below detection limits to 1.6 micrograms/ml (34.8 mumol/l) and with mean +/- SD of 0.39 +/- 0.45 micrograms/ml (8.5 +/- 9.8 mumol/l). We aim to characterise further the role of endogenous ethanol with the main focus on dynamic aspects such as the rate of formation and turnover.

  10. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation

    PubMed Central

    2013-01-01

    Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of

  11. Effects of ethanol on body temperature of rats at high ambient pressure.

    PubMed

    Berge, O G; Garcia-Cabrera, I

    1991-05-01

    Separately, ethanol and high ambient pressure cause hypothermia in laboratory animals. However, ethanol and high pressure have mutually antagonistic effects on several biological functions and the present experiments investigate their combined action on body temperature. Rats given saline, 1.5 g/kg ethanol or 3.5 g/kg ethanol were exposed to 1 bar air at 25-26 degrees C, 1 bar helium-oxygen at 30-31 degrees C, or 48 bar helium-oxygen at 33.5-34.5 degrees C. Ambient, colonic and tail-skin temperatures were monitored for 60 min. There were no significant differences in mean ambient or tail-skin temperatures between groups belonging to the same ambient condition. Colonic temperatures under the 1 bar conditions were 1.5-2 degrees C lower in the 3.5 g/kg ethanol group than in the saline and 1.5 g/kg ethanol groups, while no significant differences were observed between the groups at 48 bar. Comparisons of the colonic temperatures at the end of the observation period, i.e., 60 min after administration of ethanol, demonstrated that their values at 48 bar were significantly lower than at 1 bar after saline, significantly higher after 3.5 g/kg ethanol and identical across conditions in the 1.5 g/kg groups. The results suggest that high ambient pressure may counteract rather than potentiate the hypothermic effect of ethanol.

  12. Acrylonitrile has Distinct Hormetic Effects on Acetyl-Cholinesterase Activity in Mouse Brain and Blood that are Modulated by Ethanol.

    PubMed

    Yuanqing, He; Suhua, Wang; Guangwei, Xing; Chunlan, Ren; Hai, Qian; Wenrong, Xu; Rongzhu, Lu; Aschner, Michael; Milatovic, Dejan

    2013-01-01

    Acrylonitrile(AN) is a neurotoxin both in animals and humans, but its effects on acetylcholinesterase (AChE) activity remain controversial. This study aimed to determine the dose-response effects of AN on AChE activity and the modulatory role of ethanol pre-treatment. A total of 144 Kunming mice were randomly divided into 18 groups: nine groups received 5% ethanol in their drinking water, and the remaining nine groups received regular tap water. One week later, both the ethanol and tap water only groups were given an intraperitoneal injection of AN at the following doses: 0 (control), 0.156, 0.3125, 0.625, 1.25, 2.5, 5, 10 or 20 mg AN/kg body weight. AChE activity was determined on whole blood and brain 24 h later. Blood AChE activity was higher in AN-injected mice than in controls at all doses. AChE activity in blood increased in a dose-dependent manner, peaking at 0.156 mg/kg, after which a gradual decrease ensued, displaying a β-typed dose-response relationship. In contrast, brain AChE activity, following a single AN injection, was consistently lower than in control mice, and continued to fall up to a dose of 0.313 mg/kg, and thereafter increased gradually with higher doses. Mice receiving a 20 mg/kg dose of AN exhibited AChE brain activity indistinguishable from that of control mice, demonstrating a typical U-typed dose-response relationship. The activity of AChE in the blood and brain of the AN + ethanol-treated groups displayed a shift to the right, and the magnitude of the decrease in AChE activity induced by AN was attenuated relative to the AN-only group. These results suggest that AN affects AChE activity in both mouse blood and brain in a hormetic manner. Pretreatment with ethanol modifies the effect of AN on AChE, indicating that parent AN has a more prominent role than its metabolites in modulating enzyme activity. PMID:23550232

  13. High Blood Pressure and Kidney Disease

    MedlinePlus

    ... Information Center National Kidney Foundation Smokefree.gov MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Alternate Language URL Español High Blood Pressure and Kidney Disease Page Content On this page: What is ...

  14. Rise of inhaled toluene, ethyl benzene, m-xylene, or mesitylene in rat blood after treatment with ethanol

    SciTech Connect

    Roemer, K.G.; Federsel, R.J.; Freundt, K.J.

    1986-12-01

    Toluene, ethyl benzene, m-xylene, and mesitylene (1,3,5-methyl benzene) are widespread as solvents in industries and laboratories or in the manufacture and application of glues, paints, printing inks etc. These aromatics may be absorbed by employees during exposure at the workplace. Alcoholic beverages may be consumed during occupational inhalation or after shift's end at times. Toxicokinetic interactions between the aromatics and ethanol must be assumed because of the common pathway of biotransformation. The blood levels of toluene and m-xylene after inhalation increased significantly in volunteers dosed simultaneously with ethanol. In this view the present experiments in rats should elucidate whether the blood concentrations of inhaled ethyl benzene and mesitylene (both structurally related to toluene and m-xylene) can rise under the influence of ethanol, and whether quantitative differences of this effect due to the structure of these aromatics can occur. From the results informations important for the assessment of occupational health risk are to be expected.

  15. Ethanol production from food waste at high solid contents with vacuum recovery technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol production from food wastes does not only solve the environmental issues but also provide renewable biofuel to partially substitute fossil fuels. This study investigated the feasibility of utilization of food wastes for producing ethanol at high solid contents (35%, w/w). Vacuum recovery sys...

  16. Myths about High Blood Pressure

    MedlinePlus

    ... sodium – and count the same toward total sodium consumption. Table salt is a combination of the two ... can be highly addictive. If you drink, limit consumption to no more than two drinks per day ...

  17. Ethanol preference, metabolism, blood pressure, and conditioned taste aversion in experimental cholestasis.

    PubMed

    Lane, J R; Starbuck, E M; Fitts, D A

    1997-08-01

    The effect of a ligation of the common bile duct (BDL) on the chronic free-selection intake of ethanol was investigated. Rats were given a choice between water and a solution of either 6% (v/v) ethanol, 0.06% (w/v) sodium saccharin, or a mixture of both ethanol and saccharin. In different experiments, solutions were first presented either 3 weeks before surgery, about the time of surgery, or 2 weeks after surgery. Reductions in ethanol or saccharin intake were observed in BDL rats whenever the solutions were first presented either 3 weeks before or shortly after the surgery. No differences attributable to BDL were seen when ethanol solutions were first presented 2 weeks after surgery. The contingent nature of the effect suggests that the reduction results from a conditioned taste aversion rather than from differences in ethanol metabolism, sensitivity, or neurohormones such as angiotensin. The findings urge caution in the monitoring of the dietary habits of patients with a rapidly developing biliary obstruction. PMID:9259003

  18. Utilization of household food waste for the production of ethanol at high dry material content

    PubMed Central

    2014-01-01

    Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could

  19. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  20. "Jello® shots" and cocktails as ethanol vehicles: parametric studies with high- and low-saccharin-consuming rats.

    PubMed

    Dess, Nancy K; Madkins, Chardonnay D; Geary, Bree A; Chapman, Clinton D

    2013-11-21

    Naïve humans and rats voluntarily consume little ethanol at concentrations above ~6% due to its aversive flavor. Developing procedures that boost intake of ethanol or ethanol-paired flavors facilitates research on neural mechanisms of ethanol-associated behaviors and helps identify variables that modulate ethanol intake outside of the lab. The present study explored the impact on consumption of ethanol and ethanol-paired flavors of nutritionally significant parametric variations: ethanol vehicle (gelatin or solution, with or without polycose); ethanol concentration (4% or 10%); and feeding status (chow deprived or ad lib.) during flavor conditioning and flavor preference testing. Individual differences were modeled by testing rats of lines selectively bred for high (HiS) or low (LoS) saccharin intake. A previously reported preference for ethanol-paired flavors was replicated when ethanol had been drunk during conditioning. However, indifference or aversion to ethanol-paired flavors generally obtained when ethanol had been eaten in gelatin during conditioning, regardless of ethanol concentration, feeding status, or caloric value of the vehicle. Modest sex and line variations occurred. Engaging different behavioral systems when eating gelatin, rather than drinking solution, may account for these findings. Implications for parameter selection in future neurobiological research and for understanding conditions that influence ethanol intake outside of the lab are discussed.

  1. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform

    PubMed Central

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G.; Abell, Chris

    2015-01-01

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production. PMID:25878135

  2. Effects of short deprivation and re-exposure intervals on the ethanol drinking behavior of selectively bred high alcohol-consuming rats.

    PubMed

    Bell, Richard L; Rodd, Zachary A; Schultz, Jonathon A; Peper, Caron L; Lumeng, Lawrence; Murphy, James M; McBride, William J

    2008-08-01

    Alcoholics generally display cycles of excessive ethanol intake, abstinence and relapse behavior. Using an animal model of relapse-like drinking, the alcohol deprivation effect (ADE), our laboratory has shown that repeated 2-week cycles of ethanol deprivation and re-exposure, following an initial 6-week access period, result in a robust ADE by alcohol-preferring (P) and high alcohol-drinking (HAD-1 and HAD-2) rats. These rat lines have been selectively bred to prefer a 10% ethanol solution over water. The present study examined whether P and HAD rats would display an ADE using much shorter ethanol deprivation and re-exposure intervals. Rats were given either continuous or periodic concurrent access to multiple concentrations (10%, 20%, and 30% [vol/vol]) of ethanol. The periodic protocol involved access to ethanol for 12 days followed by four cycles of 4 days of deprivation and 4 days of re-exposure to ethanol access. High-alcohol-drinking rats displayed a robust 24-h ADE upon first re-exposure (HAD-1: approximately 5 vs. 8g/kg/day; HAD-2: approximately 6 vs. 9g/kg/day, baseline vs. re-exposure), whereas P rats ( approximately 7 vs. 8g/kg/day) displayed a modest, nonsignificant, increase in 24-h intake. In a separate group of rats, ethanol intake and blood alcohol concentrations after the first hour of the fourth re-exposure cycle were HAD-1: 2.0g/kg and 97 mg%, HAD-2: 2.3g/kg and 73 mg%, and P: 1.2g/kg and 71 mg%; with all three lines displaying a robust first hour ADE. These findings suggest that (a) an ADE may be observed with short ethanol deprivation and re-exposure intervals in HAD rats, and (b) the genetic make-up of the P and HAD rats influences the expression of this ADE.

  3. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat.

    PubMed

    Gamella, M; Campuzano, S; Manso, J; González de Rivera, G; López-Colino, F; Reviejo, A J; Pingarrón, J M

    2014-01-01

    A non-invasive, passive and simple to use skin surface based sensing device for determining the blood's ethanol content (BAC) by monitoring transdermal alcohol concentration (TAC) is designed and developed. The proposed prototype is based on bienzyme amperometric composite biosensors that are sensitive to the variation of ethanol concentration. The prototype correlates, through previous calibration set-up, the amperometric signal generated from ethanol in sweat with its content in blood in a short period of time. The characteristics of this sensor device permit determination of the ethanol concentration in isolated and in continuous form, giving information of the BAC of a subject either in a given moment or its evolution during long periods of time (8h). Moreover, as the measurements are performed in a biological fluid, the evaluated individual is not able to alter the result of the analysis. The maximum limit of ethanol in blood allowed by legislation is included within the linear range of the device (0.0005-0.6 g L(-1)). Moreover, the device shows higher sensitivity than the breathalyzers marketed at the moment, allowing the monitoring of the ethanol content in blood to be obtained just 5 min after ingestion of the alcoholic drink. The comparison of the obtained results using the proposed device in the analysis of 40 volunteers with those provided by the gas chromatographic reference method for determination of BAC pointed out that there were no significant differences between both methods.

  4. Behavioral interactions between ethanol and imidazodiazepines with high affinities for benzodiazepine receptors

    SciTech Connect

    Lister, R.G.

    1988-01-01

    The intrinsic effect of two imidazodiazepines RO 15-3505 and RO 17-1812 on the behavior of mice in a holeboard test were investigated. The interactions of these two drugs with ethanol were also studied. RO 15-3505 failed to significantly alter either exploratory head-dipping or locomotor activity when administered alone but doses of 0.75 and 1.5 mg/kg reversed the reduction in the number of head-dips caused by ethanol and partially reversed ethanol's locomotor stimulant action. In contrast, RO 17-1812 increased locomotor activity when administered alone, and enhanced the reduction in exploration caused by ethanol. Neither RO 15-3505 nor RO 17-1812 altered blood alcohol concentrations suggesting a pharmacodynamic basis for these interactions. The results suggest that in the holeboard test the interactions of imidazodiazepines with ethanol are related to the nature of their interaction with benzodiazepine receptors, inverse agonists antagonising and agonists enhancing ethanol's effects on exploration.

  5. What about African Americans and High Blood Pressure?

    MedlinePlus

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? The prevalence of high blood pressure in African Americans is among the highest in ...

  6. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress

    PubMed Central

    Swinnen, Steve; Goovaerts, Annelies; Schaerlaekens, Kristien; Dumortier, Françoise; Verdyck, Pieter; Souvereyns, Kris; Van Zeebroeck, Griet; Foulquié-Moreno, María R.

    2015-01-01

    Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress. PMID:26116212

  7. The frequency of daily ethanol consumption influences the effect of ethanol on insulin sensitivity in rats fed a high-fat diet.

    PubMed

    Feng, Li; Han, Bo; Wang, Ruxia; Li, Qiu; Bian, Dezhi; Ma, Chunyan; Song, Guangyao; Gao, Ling; Zhao, J

    2012-03-01

    The different effects of ethanol on insulin sensitivity may be due to complex reasons. Here, we focus on the various daily ethanol consumption frequencies in rats fed a high-fat (HF) diet and explore the possible mechanism mediated by adiponectin and AMP-activated protein kinase (AMPK). A total of thirty-six male Wistar rats were fed a HF diet and were randomly divided into three groups: those that received tap water (C); those that received ethanol via a gastric tube twice per d (E1); those that received free access to ethanol for drinking (E2). The total daily ethanol dosage in groups E1 and E2 were the same (5 g/kg per d). At the end of 18 weeks, insulin sensitivity was evaluated. Adiponectin AMPK and GLUT4 levels were determined. We found that the different administration frequencies led to markedly different plasma ethanol concentrations and there were intimate relationships between plasma ethanol concentration and insulin sensitivity. Insulin resistance was markedly improved in group E1, whereas only a slight improvement was observed in group E2. Accordingly, adiponectin, phosphorylated AMPK and GLUT4 levels were significantly increased in group E1. Based on these findings, we propose that ethanol concentration might be the major influencing factor mediating the effect of ethanol on insulin sensitivity. At a total daily dosage of 5 g/kg per d, twice daily administration of ethanol was more beneficial than continuous drinking. The protective effect of ethanol might be mediated by increased adiponectin levels, which subsequently improve the activation of AMPKα and GLUT4 expression in adipose tissue.

  8. Effect of concurrent saccharin intake on ethanol consumption by high-alcohol-drinking (UChB) rats.

    PubMed

    Tampier, Lutske; Quintanilla, Maria Elena

    2009-07-01

    This study examined the effect of concurrent presentation of a highly palatable saccharin solution on ethanol consumption during the acquisition or maintenance of ethanol drinking by high-alcohol-drinking (UChB) rats. Rats were exposed to ethanol (10% v/v) and water under a home cage, two-bottle, free-choice regimen with unlimited access for 24 hours/day. After 7 days (acquisition) of ethanol exposure, a third bottle containing saccharin (0.2% w/v) was concomitantly offered for an additional seven consecutive days, and the same process was repeated after 3 months (maintenance) of ethanol exposure. We found that concurrent saccharin intake significantly reduced ethanol intake by UChB rats after 7 days of ethanol exposure indicating that preference for sweet taste tends to override the preference for ethanol. However, the concurrent saccharin presentation to rats after 3 months of stable ethanol consumption did not reduce ethanol intake, whereas their saccharin consumption reached polydipsic-like values. These results support the notion that in UChB rats, a time-dependent sensitization to the rewarding effects of ethanol is developed that may account for the increases in ethanol volition seen following chronic ethanol intake.

  9. [The correlation of results of breath analysers and laboratory blood examinations of blood-ethanol concentration (Czech and Slovak study)].

    PubMed

    Hirt, M; Vojtísek, T; Zelený, M; Krajsa, J; Stanková, M; Fialka, J; Holoubek, J; Novotná, Rychtecká A; Vlcková, A; Pilin, A; Ondra, P; Hejna, P; Mudrová, J; Duchanová, S; Zedniková, K; Machácek, R; Cerná, I; Krejzlíková, E; Válka, I; Schneller, K; Vanerková, H; Datko, M; Novomeský, F; Straka, L; Krajcovic, J; Hajtman, A; Macko, V; Vorel, F

    2010-01-01

    The target of this study was to compare the results of breath analysers and "lege artis" laboratory blood examinations when determining alcohol levels. This was then used to determine whether any differences exist between the two methods, and how large these differences are. 610 cases from 11 workplaces in the Czech Republic and Slovakia were analysed. The type of breath analyser was not taken into consideration. All cases had to be in the elimination phase. Difference of time between breath test and blood test were rectified through the use of reverse recomputation. It was detected that only 20.8% of the results of respiratory analyser tests correspond to the detected real alcohol level in blood. The maximum difference when a respiratory analyser measured more than a blood test was 1.34 g x kg(-1). and the maximum difference when the analyse measured less was 1.86 g x kg(-1). PMID:21280283

  10. Ethanol-mediated operant learning in the infant rat leads to increased ethanol intake during adolescence

    PubMed Central

    Ponce, Luciano Federico; Pautassi, Ricardo Marcos; Spear, Norman E; Molina, Juan Carlos

    2008-01-01

    Recent studies indicate that the infant rat has high affinity for ethanol ingestion and marked sensitivity to the drug’s reinforcing effects (Spear & Molina, 2005). A novel operant technique was developed to analyze reinforcing effects of ethanol delivery during the third postnatal week. The impact of this ethanol-reinforcement experience upon subsequent ethanol consumption during adolescence (postnatal weeks 5–6 was also examined. In Experiment 1, pups (postnatal days 14–17 were given an explicit contingency between nose-poking behavior and intraoral delivery of either water or 3.75% v/v ethanol (paired groups). Yoked controls (pups receiving either reinforcer independently of their behavior) were also included. Paired subjects reinforced with ethanol exhibited rapid and robust operant conditioning leading to blood ethanol concentrations in the 25–48 mg% range. In Experiment 2, a higher ethanol concentration (7.5% v/v) provided significant reinforcement. During adolescence, animals originally reinforced with 3.75% v/v ethanol exhibited greater ingestion of ethanol than control animals without prior ethanol reinforcement. These results indicate that, without extensive initiation to ethanol, infant rats rapidly learn to gain access to ethanol and that this experience has a significant impact upon later ethanol intake patterns. PMID:18571224

  11. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    PubMed

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  12. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats

    PubMed Central

    Li, Jing; Zuo, Wanhong; Fu, Rao; Xie, Guiqin; Kaur, Amandeep; Bekker, Alex

    2016-01-01

    Background: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. Methods: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. Results: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. Conclusions: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics. PMID:27234303

  13. Experimental Study on Thermal Interaction of Ethanol Jets in High Temperature Fluorinert

    NASA Astrophysics Data System (ADS)

    Sa, Rongyuan; Takahashi, Minoru

    As a fundamental study for the direct contact heat exchange which was employed for in-vessel heat exchange in the Pb-Bi-cooled direct contact boiling water small fast reactor (PBWFR) and for the steam generator tube rupture (SGTR) accident in lead alloy-cooled fast reactor (LFR), ethanol jet was injected into high temperature fluorinert (FC-3283) as a simulation experiment in order to investigate the jet boiling phenomena just after volatile water contacting with the high temperature continuous lead alloy liquid. Two series of tests (no-boiling and boiling) were initiated to evaluate the ethanol vapor volume which generated around the ethanol jet. From synchronized temperature measurement around ethanol jet, the overview of the boiling behavior showed that jet boiling occurred at bottom part of jet first and developed to the upper part within very narrow area around jet.

  14. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    PubMed

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  15. Protective Effect of Gymnema sylvestre Ethanol Extract on High Fat Diet-induced Obese Diabetic Wistar Rats.

    PubMed

    Kumar, V; Bhandari, Uma; Tripathi, C D; Khanna, Geetika

    2014-07-01

    Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg) via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate), serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose), cardiomyocyte apoptosis (cardiac caspase-3, Na(+)/K(+) ATPase activity and DNA fragmentation) organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o.) for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na(+)/K(+) ATPase activity and DNA laddering, visceral fat pad and organ's weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus.

  16. Different pituitary. beta. -endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism

    SciTech Connect

    Gianoulakis, C.G.; Beliveau, D.; Angelogianni, P.; Meaney, M.; Thavundayil, J.; Tawar, V.; Dumas, M. )

    1989-01-01

    The purpose of the present studies was to investigate the activity of the adrenal gland and the pituitary {beta}-endorphin system in individuals from families with a 3 generation history of alcoholism, High Risk group, or from families without history of alcoholism, Low Risk group. On the day of testing, blood sample was taken at 9:00 a.m., then the subject drank a placebo drink or an ethanol solution. Additional blood samples were taken at 15, 45 and 120 minutes post-drink. Results indicated that individuals of the High Risk group had lower basal levels of {beta}-endorphin like immunoreactivity ({beta}-EPLIR) than individuals of the Low Risk group. The dose of 0.5 g ethanol/kg B.Wt. induced an induce an increase in the plasma content of {beta}-EPLIR of the High Risk group, but not of the Low Risk group. In the Low Risk group ethanol did not induce an increase above the 9:00 a.m. levels, however, it attenuated the {beta}-endorphin decrease overtime, observed following the placebo drink. Analysis of {beta}-endorphin-like peptides in the plasma of the High Risk group, with Sephadex G-75 chromatography indicated that the major component of the plasma {beta}-EPLIR was {beta}-lipotropin. Plasma cortisol levels, following ethanol intake, presented a small increase in the High Risk group but not in the Low Risk group.

  17. A novel direct ethanol fuel cell with high power density

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.; Chen, R.; Wu, Q. X.

    2011-08-01

    A new type of direct ethanol fuel cell (DEFC) that is composed of an alkaline anode and an acid cathode separated with a charger conducting membrane is developed. Theoretically it is shown that the voltage of this novel fuel cell is 2.52 V, while, experimentally it has been demonstrated that this fuel cell can yield an open-circuit voltage (OCV) of 1.60 V and a peak power density of 240 mW cm-2 at 60 °C, which represent the highest performance of DEFCs that has so far been reported in the open literature.

  18. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats.

    PubMed

    Dyr, Wanda; Wyszogrodzka, Edyta; Paterak, Justyna; Siwińska-Ziółkowska, Agnieszka; Małkowska, Anna; Polak, Piotr

    2016-03-01

    The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats.

  19. Inactivation of Bacillus subtilis spores by combining high-pressure thermal sterilization and ethanol.

    PubMed

    Zhang, Zhong; Jiang, Bin; Liao, Xiaojun; Yi, Jianyong; Hu, Xiaosong; Zhang, Yan

    2012-11-15

    High-pressure thermal sterilization (HPTS) is a new and promising sterilization technology of foods. Effects of combining HPTS and ethanol treatment on inactivation of Bacillus subtilis spores were investigated. An interesting phenomenon was observed. The inactivation effect of HPTS treatment on the spores was enhanced significantly with the increase in ethanol concentration from 0 to 15%. However, the inactivation effect was decreased with further increase in ethanol concentration up to 70%. In addition, the release of DPA and leakages of OD(260) and OD(280) material from the spores increased continuously with the increase in ethanol concentration. Moreover, flow cytometry analysis suggested that although the inner membrane of the spores was damaged, PI could not bind with the spore DNA immediately after HPTS treatment. In conclusion, the mechanism of this special phenomenon could be attributed to the germination of spores under HPTS treatment and effects of ethanol on the protein or water activity. HPTS caused other lethal damages to the spores besides its damage to the inner membrane. Ethanol of low concentrations could significantly enhance the sterilization effects of HPTS, which was good for keeping the qualities of foods.

  20. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes.

    PubMed

    Maehara, Tomoko; Ichinose, Hitomi; Furukawa, Takanori; Ogasawara, Wataru; Takabatake, Koji; Kaneko, Satoshi

    2013-03-01

    Ethanol production by Flammulina velutipes from high substrate concentrations was evaluated. F. velutipes produces approximately 40-60 g l(-1) ethanol from 15% (w/v) D-glucose, D-fructose, D-mannose, sucrose, maltose, and cellobiose, with the highest conversion rate of 83% observed using cellobiose as a carbon source. We also attempted to assess direct ethanol fermentation from sugarcane bagasse cellulose (SCBC) by F. velutipes. The hydrolysis rate of 15% (w/v) SCBC with commercial cellulase was approximately 20%. In contrast, F. velutipes was able to produce a significant amount of ethanol from 15% SCBC with the production of β-glucosidase, cellobohydrolase, and cellulase, although the addition of a small amount of commercial cellulase to the culture was required for the conversion. When 9 mg g(-1) biomass of commercial cellulase was added to cultures, 0.36 g of ethanol was produced from 1 g of cellulose, corresponding to an ethanol conversion rate of 69.6%. These results indicate that F. velutipes would be useful for consolidated bioprocessing of lignocellulosic biomass to bioethanol.

  1. Mitigating effects of combined prenatal and postnatal exposure to ethanol on learned persistence in the weanling rat: a replication under high-peak conditions.

    PubMed

    Diaz-Granados, J L; Greene, P L; Amsel, A

    1993-12-01

    Replicating an earlier report under low-peak blood ethanol concentration (BEC) conditions, weanling rats, exposed in utero or postnatally to levels of ethanol that resulted in high-peak BECs, showed an attenuated partial reinforcement extinction effect, whereas pups exposed both pre- and postnatally did not differ from controls. Also supporting earlier work, postnatal exposure resulted in significantly reduced brain weight and had effects on hippocampal measures. These results from the combined-exposure group, along with earlier work, point to a possible mitigating influence in the rat of prenatal exposure to ethanol on the behavioral effects of postnatal exposure. They suggest that a protective factor may be operating, akin to the proactive immunoreactive effects of heat shock proteins shown in recent work at the cellular and hippocampal levels.

  2. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  3. Construction of lactose-assimilating and high-ethanol-producing yeasts by protoplast fusion

    SciTech Connect

    Farahnak, F.; Seki, T.; Ryu, D.D.Y.; Ogrydziak, D.

    1986-02-01

    The availability of a yeast strain which is capable of fermenting lactose and at the same time is tolerant to high concentrations of ethanol would be useful for the production of ethanol from lactose. Kluyveromyces fragilis is capable of fermenting lactose, but it is not as tolerant as Saccharomyces cerevisiae to high concentrations of ethanol. In this study, the authors have used the protoplast fusion technique to construct hybrids between auxotrophic strains of S. cerevisiae having high ethanol tolerance and an auxotrophic strain of lactose-fermenting K. fragilis isolated by ethyl methanesulfonate mutagenesis. The fusants obtained were prototrophic and capable of assimilating lactose and producing ethanol in excess of 13% (vol/vol). The complementation frequency of fusion was about 0.7%. Formation of fusants was confirmed by the increased amount of chromosomal DNA per cell. Fusants contained 8 x 10/sup -9/ to 16 x 10/sup -8/ ..mu..g of DNA per cell as compared with about 4 x 10/sup -8/ ..mu..g of DNA per cell for the parental strains, suggesting that multiple fusions had taken place.

  4. Ethanol-induced increase in portal blood flow: Role of acetate and A sub 1 - and A sub 2 -adenosine receptors

    SciTech Connect

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H. Univ. of Toronto, Ontario )

    1988-10-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A{sub 1}-adenosine receptor agonist N-6-cyclohexyl adenosine and the A{sub 2}-agonist 5{prime}-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A{sub 2}-subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues.

  5. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGES

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  6. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.

    PubMed

    Benjaphokee, Suthee; Hasegawa, Daisuke; Yokota, Daiki; Asvarak, Thipa; Auesukaree, Choowong; Sugiyama, Minetaka; Kaneko, Yoshinobu; Boonchird, Chuenchit; Harashima, Satoshi

    2012-02-15

    Use of super strains exhibiting tolerance to high temperature, acidity and ethanol is a promising way to make ethanol production economically feasible. We describe here the breeding and performance of such a multiple-tolerant strain of Saccharomyces cerevisiae generated by a spore-to-cell hybridization technique without recombinant DNA technology. A heterothallic strain showing a high-temperature (41°C) tolerant (Htg(+)) phenotype, a derivative from a strain isolated from nature, was crossed with a homothallic strain displaying high-ethanol productivity (Hep(+)), a stock culture at the Thailand Institute of Scientific and Technological Research. The resultant hybrid TJ14 displayed ability to rapidly utilize glucose, and produced ethanol (46.6g/l) from 10% glucose fermentation medium at high temperature (41°C). Not only ethanol productivity at 41°C but also acid tolerance (Acd(+)) was improved in TJ14 as compared with its parental strains, enabling TJ14 to grow in liquid medium even at pH 3. TJ14 maintained high ethanol productivity (46.0g/l) from 10% glucose when fermentation was done under multiple-stress conditions (41°C and pH 3.5). Furthermore, when TJ14 was subjected to a repeated-batch fermentation scheme, the growth and ethanol production of TJ14 were maintained at excellent levels over ten cycles of fermentation. Thus, the multiple-stress (Htg(+) Hep(+) Acd(+)) resistant strain TJ14 should be useful for cost-effective bioethanol production under high-temperature and acidic conditions.

  7. [Very high gravity ethanol fermentation with cassava flour and sugarcane juice].

    PubMed

    Shen, Naikun; Zhang, Hongyan; Wang, Qingyan; Qin, Yan; Liao, Siming; Wang, Chenghua; Huang, Ribo

    2010-09-01

    We optimized the conditions of mixed fermentation of very high gravity ethanol with cassava flour and sugarcane juice. Based on the single factor experiment, we screened the important parameters for very high gravity ethanol fermentation with cassava flour and sugarcane juice by the Plackeet-burman design. Then, we obtained the optimum values of the important parameters by the orthogonal experiments: the mixing ratio of cassava flour to sugarcane juice, 1:5; initial pH of fermentation, 4.0-4.5; the concentrations of urea and MgSO4, 0.25% and 0.04% (W/W), respectively. Finally, we used a gradient temperature control strategy with the optimized conditions, and ethanol concentration of 17.84% (V/V) and fermentation efficiency of 91.82% were achieved, correspondingly.

  8. The relationship between adjunctive drinking, blood ethanol concentration and plasma corticosterone across fixed-time intervals of food delivery in two inbred mouse strains.

    PubMed

    Ford, Matthew M; Steele, Andrea M; McCracken, Aubrey D; Finn, Deborah A; Grant, Kathleen A

    2013-11-01

    Schedules of intermittent food delivery induce excessive fluid intake, termed schedule-induced polydipsia (SIP), and hypothalamic-pituitary-adrenal (HPA) axis activation is important for the expression and maintenance of this adjunctive behavior. Previous work has focused on examining the relationship between water intake and plasma corticosterone (CORT) in rats at a single or a limited range of fixed time (FT) intervals. However, little remains known regarding SIP and the corresponding stress response (1) across the bitonic function that epitomizes adjunctive behavior, (2) when ethanol is the available fluid, and (3) when a species other than rat or multiple strains are studied. Here we report the findings from ethanol-preferring C57BL/6J (B6) and non-preferring DBA/2J (D2) mice serially exposed to progressively larger FT intervals (0 → 60 min) and given access to either water or a 5% (v/v) ethanol solution. Following 2 weeks of experience with each schedule, blood samples were collected at the conclusion of the last 60-min session to evaluate CORT and the blood ethanol concentration (BEC) achieved. While both strains exhibited a bitonic function of ethanol intake and BEC that peaked at or near a 5-min interval, only D2 mice showed a similar response with water. In contrast, CORT levels rose monotonically with incremental increases in the FT interval regardless of the strain examined or fluid type offered, indicating that glucocorticoid release likely reflects the aversive aspects of increasing intervals between reinforcement rather than engagement in adjunctive behavior. These findings also caution against the use of a single intensity stressor to evaluate the relationship between stress and ethanol intake, as the magnitude of stress appears to affect ethanol consumption in a non-linear fashion.

  9. The relationship between adjunctive drinking, blood ethanol concentration and plasma corticosterone across fixed-time intervals of food delivery in two inbred mouse strains.

    PubMed

    Ford, Matthew M; Steele, Andrea M; McCracken, Aubrey D; Finn, Deborah A; Grant, Kathleen A

    2013-11-01

    Schedules of intermittent food delivery induce excessive fluid intake, termed schedule-induced polydipsia (SIP), and hypothalamic-pituitary-adrenal (HPA) axis activation is important for the expression and maintenance of this adjunctive behavior. Previous work has focused on examining the relationship between water intake and plasma corticosterone (CORT) in rats at a single or a limited range of fixed time (FT) intervals. However, little remains known regarding SIP and the corresponding stress response (1) across the bitonic function that epitomizes adjunctive behavior, (2) when ethanol is the available fluid, and (3) when a species other than rat or multiple strains are studied. Here we report the findings from ethanol-preferring C57BL/6J (B6) and non-preferring DBA/2J (D2) mice serially exposed to progressively larger FT intervals (0 → 60 min) and given access to either water or a 5% (v/v) ethanol solution. Following 2 weeks of experience with each schedule, blood samples were collected at the conclusion of the last 60-min session to evaluate CORT and the blood ethanol concentration (BEC) achieved. While both strains exhibited a bitonic function of ethanol intake and BEC that peaked at or near a 5-min interval, only D2 mice showed a similar response with water. In contrast, CORT levels rose monotonically with incremental increases in the FT interval regardless of the strain examined or fluid type offered, indicating that glucocorticoid release likely reflects the aversive aspects of increasing intervals between reinforcement rather than engagement in adjunctive behavior. These findings also caution against the use of a single intensity stressor to evaluate the relationship between stress and ethanol intake, as the magnitude of stress appears to affect ethanol consumption in a non-linear fashion. PMID:23827168

  10. Repeated Binge-Like Ethanol Drinking Alters Ethanol Drinking Patterns and Depresses Striatal GABAergic Transmission

    PubMed Central

    Wilcox, Mark V; Carlson, Verginia C Cuzon; Sherazee, Nyssa; Sprow, Gretchen M; Bock, Roland; Thiele, Todd E; Lovinger, David M; Alvarez, Veronica A

    2014-01-01

    Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the ‘drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a ‘front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum. PMID:23995582

  11. Extraction of high-quality DNA from ethanol-preserved tropical plant tissues

    PubMed Central

    2014-01-01

    Background Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Results Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Conclusions Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue. PMID:24761774

  12. High Blood Pressure Might Affect Some Kids' Thinking Ability

    MedlinePlus

    ... Services, or federal policy. More Health News on: Child Development High Blood Pressure Recent Health News Related MedlinePlus Health Topics Child Development High Blood Pressure About MedlinePlus Site Map FAQs ...

  13. High blood pressure - what to ask your doctor

    MedlinePlus

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  14. Even Poorer Nations Not Immune to High Blood Pressure

    MedlinePlus

    ... Even Poorer Nations Not Immune to High Blood Pressure Researchers cite aging populations, diet, inactivity and lack ... News) -- For the first time ever, high blood pressure rates are higher in low- and middle-income ...

  15. A Nutritional Strategy for the Treatment of High Blood Pressure.

    ERIC Educational Resources Information Center

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  16. Highly Efficient Process for Production of Biofuel from Ethanol Catalyzed by Ruthenium Pincer Complexes.

    PubMed

    Xie, Yinjun; Ben-David, Yehoshoa; Shimon, Linda J W; Milstein, David

    2016-07-27

    A highly efficient ruthenium pincer-catalyzed Guerbet-type process for the production of biofuel from ethanol has been developed. It produces the highest conversion of ethanol (73.4%, 0.02 mol% catalyst) for a Guerbet-type reaction, including significant amounts of C4 (35.8% yield), C6 (28.2% yield), and C8 (9.4% yield) alcohols. Catalyst loadings as low as 0.001 mol% can be used, leading to a record turnover number of 18 209. Mechanistic studies reveal the likely active ruthenium species and the main deactivation process. PMID:27399841

  17. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation.

    PubMed

    Reis, Karina Pires; Heimfarth, Luana; Pierozan, Paula; Ferreira, Fernanda; Loureiro, Samanta Oliveira; Fernandes, Carolina Gonçalves; Carvalho, Rônan Vivian; Pessoa-Pureur, Regina

    2015-11-01

    Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.

  18. Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453.

    PubMed

    Kumar, Sachin; Singh, Surendra P; Mishra, Indra M; Adhikari, Dilip K

    2009-12-01

    A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45 degrees C to 50 degrees C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 +/- 0.5 g l(-1) (10.4% v/v) on initial glucose concentration of 200 g l(-1), and ethanol concentration of 1.75 +/- 0.05 g l(-1) as well as xylitol concentration of 11.5 +/- 0.4 g l(-1) on initial xylose concentration of 20 g l(-1) at 50 degrees C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l(-1) and xylose concentration of 25 g l(-1), achieving maximum ethanol concentration of 38 +/- 0.5 g l(-1) and xylitol concentration of 14.5 +/- 0.2 g l(-1) in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l(-1) and xylose concentration of 25 g l(-1) by recycling the cells, achieving maximum ethanol concentration of 30.8 +/- 6.2 g l(-1) and xylitol concentration of 7.35 +/- 3.3 g l(-1) with ethanol productivity of 3.1 +/- 0.6 g l(-1) h(-1) and xylitol productivity of 0.75 +/- 0.35 g l(-1) h(-1), respectively.

  19. Heart and Artery Damage and High Blood Pressure

    MedlinePlus

    ... Resources Stroke More Heart and Artery Damage and High Blood Pressure Updated:Oct 22,2015 There are several harmful ... content was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  20. ETHANOL, ACETIC ACID, AND WATER ADSORPTION FROM BINARY AND TERNARY LIQUID MIXTURES ON HIGH-SILICA ZEOLITES

    EPA Science Inventory

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  1. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process

    PubMed Central

    Sassner, Per; Zacchi, Guido

    2008-01-01

    Background There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. Results For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41–0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Conclusion Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production

  2. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method.

    PubMed

    Yang, Kewei; Delaney, Joseph T; Schubert, Ulrich S; Fahr, Alfred

    2012-03-01

    A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50 nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.

  3. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis.

    PubMed

    Peralta-Contreras, Mayeli; Aguilar-Zamarripa, Edna; Pérez-Carrillo, Esther; Escamilla-García, Erandi; Serna-Saldívar, Sergio Othon

    2014-01-01

    A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency. PMID:25530885

  4. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis

    PubMed Central

    Peralta-Contreras, Mayeli; Aguilar-Zamarripa, Edna; Pérez-Carrillo, Esther; Escamilla-García, Erandi; Serna-Saldívar, Sergio Othon

    2014-01-01

    A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency. PMID:25530885

  5. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.

    PubMed

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-01-01

    Ethanol fermentation was investigated at the high solids content of the dry dilute sulfuric acid pretreated corn stover feedstock using an evolutionary adapted Saccharomyces cerevisiae DQ1 strain. The evolutionary adaptation was conducted by successively transferring the S. cerevisiae DQ1 cells into the inhibitors containing corn stover hydrolysate every 12h and finally a stable yeast strain was obtained after 65 days' continuous adaptation. The ethanol fermentation performance using the adapted strain was significantly improved with the high ethanol titer of 71.40 g/L and the high yield of 80.34% in the simultaneous saccharification and fermentation (SSF) at 30% solids content. No wastewater was generated from pretreatment to fermentation steps. The results were compared with the published cellulosic ethanol fermentation cases, and the obvious advantages of the present work were demonstrated not only at the high ethanol titer and yield, but also the significant reduction of wastewater generation and potential cost reduction.

  6. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.

    PubMed

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-01-01

    Ethanol fermentation was investigated at the high solids content of the dry dilute sulfuric acid pretreated corn stover feedstock using an evolutionary adapted Saccharomyces cerevisiae DQ1 strain. The evolutionary adaptation was conducted by successively transferring the S. cerevisiae DQ1 cells into the inhibitors containing corn stover hydrolysate every 12h and finally a stable yeast strain was obtained after 65 days' continuous adaptation. The ethanol fermentation performance using the adapted strain was significantly improved with the high ethanol titer of 71.40 g/L and the high yield of 80.34% in the simultaneous saccharification and fermentation (SSF) at 30% solids content. No wastewater was generated from pretreatment to fermentation steps. The results were compared with the published cellulosic ethanol fermentation cases, and the obvious advantages of the present work were demonstrated not only at the high ethanol titer and yield, but also the significant reduction of wastewater generation and potential cost reduction. PMID:25930238

  7. Impact of reformulated ethanol-gasoline blends on high-emitting vehicles.

    PubMed

    Schifter, I; Díaz, L; González, Uriel

    2013-01-01

    In-use vehicles which are high emitters (HEVs) make a large contribution to the emissions inventory. It is not known, however, whether HEVs share common emissions characteristics, and particularly the effect of ethanol blends. We study this by first examining laboratory measurements of exhaust and evaporative emissions on ethanol blends containing 21%, 26% and 30% aromatics, and a reference fuel formulated with methyl-tertiary butyl ether (MTBE). Switching from MTBE to ethanol fuels on HEVs shows no effect on the total emissions of regulated pollutants, but 1,3-butadiene emissions would increased substantially while the emissions of total carbonyls would not be affected except in the case of acetaldehyde, which would increase with EtOH. The ozone-forming potential of exhaust and evaporative emissions would be less using the EtOH blends and specific reactivity will not be incremented. Lowering the vapour pressure of the gasoline and increasing the proportions of alkylate and isomerate in the composition produces an ethanol-blended fuel with lower environmental impact both in normal vehicles and HEVs. PMID:23837342

  8. Impact of reformulated ethanol-gasoline blends on high-emitting vehicles.

    PubMed

    Schifter, I; Díaz, L; González, Uriel

    2013-01-01

    In-use vehicles which are high emitters (HEVs) make a large contribution to the emissions inventory. It is not known, however, whether HEVs share common emissions characteristics, and particularly the effect of ethanol blends. We study this by first examining laboratory measurements of exhaust and evaporative emissions on ethanol blends containing 21%, 26% and 30% aromatics, and a reference fuel formulated with methyl-tertiary butyl ether (MTBE). Switching from MTBE to ethanol fuels on HEVs shows no effect on the total emissions of regulated pollutants, but 1,3-butadiene emissions would increased substantially while the emissions of total carbonyls would not be affected except in the case of acetaldehyde, which would increase with EtOH. The ozone-forming potential of exhaust and evaporative emissions would be less using the EtOH blends and specific reactivity will not be incremented. Lowering the vapour pressure of the gasoline and increasing the proportions of alkylate and isomerate in the composition produces an ethanol-blended fuel with lower environmental impact both in normal vehicles and HEVs.

  9. Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation.

    PubMed

    Guo, Lihao; Zhang, Jian; Hu, Fengxian; Dy Ryu, Dewey; Bao, Jie

    2013-10-01

    Consolidated bioprocessing (CBP) of Jerusalem artichoke tuber (Jat) for ethanol production is one of the most promising options for an alternate biofuel technology development. The technical barriers include the weak saccharolytic enzyme (inulinase) activity of the fermentation strain, and the well mixing of the high viscous fermentation slurry at the highly concentrated Jat loading. In this study, Saccharomyces cerevisiae DQ1 was found to produce relatively large amount of inulinase for hydrolysis of inulin in Jat, and the helical ribbon stirring bioreactor used provided well mixing performance under the high Jat loading. Even a highly concentrated Jat loading up to 35% (w/w) in the helical ribbon bioreactor for CBP was allowed. The results obtained from this study have demonstrated a feasibility of developing a CBP process technology in the helical ribbon bioreactor for ethanol production at a high yield 128.7 g/L and the theoretical yield 73.5%, respectively. This level of ethanol yield from Jat is relatively higher than others reported so far. The results of this study could provide a practical CBP process technology in the helical ribbon bioreactor for economically sustainable alternate biofuel production using highly concentrated inulin containing biomass feedstock such as Jat, at least 35%.

  10. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact. PMID:25299491

  11. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact.

  12. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  13. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases.

    PubMed

    Yamada, Ryosuke; Yamakawa, Syun-Ichi; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2011-04-01

    Efficient ethanol producing yeast Saccharomyces cerevisiae cannot produce ethanol from raw starch directly. Thus the conventional ethanol production required expensive and complex process. In this study, we developed a direct and efficient ethanol production process from high-yielding rice harvested in Japan by using amylase expressing yeast without any pretreatment or addition of enzymes or nutrients. Ethanol productivity from high-yielding brown rice (1.1g/L/h) was about 5-fold higher than that obtained from purified raw corn starch (0.2g/L/h) when nutrients were added. Using an inoculum volume equivalent to 10% of the fermentation volume without any nutrient supplementation resulted in ethanol productivity and yield reaching 1.2g/L/h and 101%, respectively, in a 24-h period. High-yielding rice was demonstrated to be a suitable feedstock for bioethanol production. In addition, our polyploid amylase-expressing yeast was sufficiently robust to produce ethanol efficiently from real biomass. This is first report of direct ethanol production on real biomass using an amylase-expressing yeast strain without any pretreatment or commercial enzyme addition.

  14. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-07-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly

  15. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  16. High Blood Pressure (Hypertension) (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... when the sounds disappear. When a blood pressure reading is taken, the higher number represents the systolic ...

  17. Alcoholic fatty liver in rats: Role of fat and ethanol intake

    SciTech Connect

    Sankaran, H.; Deveney, C.W. ); Larkin, E.C.; Rao, G.A. )

    1991-03-11

    The claim that high intake of both ethanol and fat is essential to induce fatty liver and high blood alcohol levels (BAL) was tested. Two groups of rats were fed liquid diets containing 26% and 36% of calories as ethanol respectively. After 4 weeks, all rats were bled for BAL and some were sacrificed to obtain liver morphology. Remaining rats in Group 1 (26% ethanol) were switched to 36% ethanol diet and Group 2 (36% ethanol) to 26% ethanol diet. All rats were sacrificed after 4 weeks to obtain blood for BAL and liver morphology. The results indicate that high ethanol intake and high fat ingestion is not the criterion for induction of fatty liver. Inadequate ingestion of macronutrients plays a major role in alcoholic fatty liver and BAL.

  18. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    PubMed

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.

  19. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.

    PubMed

    Wang, Zhen; Lv, Zhe; Du, Jiliang; Mo, Chunling; Yang, Xiushan; Tian, Shen

    2014-08-01

    A combined process was designed for the co-production of ethanol and methane from unwashed steam-exploded corn stover. A terminal ethanol titer of 69.8 g/kg mass weight (72.5%) was achieved when the fed-batch mode was performed at a final solids loading of 35.5% (w/w) dry matter (DM) content. The whole stillage from high-solids ethanol fermentation was directly transferred in a 3-L anaerobic digester. During 52-day single-stage digester operation, the methane productivity was 320 mL CH₄/g volatile solids (VS) with a maximum VS reduction efficiency of 55.3%. The calculated overall product yield was 197 g ethanol + 96 g methane/kg corn stover. This indicated that the combined process was able to improve overall content utilization and extract a greater yield of lignocellulosic biomass compared to ethanol fermentation alone.

  20. Ethanol and High Cholesterol Diet Causes Severe Steatohepatitis and Early Liver Fibrosis in Mice

    PubMed Central

    Krishnasamy, Yasodha; Ramshesh, Venkat K.; Gooz, Monika; Schnellmann, Rick G.; Lemasters, John J.; Zhong, Zhi

    2016-01-01

    Background and Aim Because ethanol consumption is commonly associated with a high cholesterol diet, we examined whether combined consumption of ethanol and high cholesterol increases liver injury and fibrosis. Methods Male C57BL/6J mice were fed diets containing: 1) 35% of calories from corn oil (CTR), 2) CTR plus 0.5% (w/v) cholesterol (Chol), 3) CTR plus ethanol (27% of calories) (EtOH), or 4) EtOH+Chol for 3 months. Results In mice fed Chol or EtOH alone, ALT increased to ~160 U/L, moderate hepatic steatosis occurred, and leukocyte infiltration, necrosis, and apoptosis increased modestly, but no observable fibrosis developed. By contrast in mice fed EtOH+Chol, ALT increased to ~270 U/L, steatosis was more extensive and mostly macrovesicular, and expression of proinflammatory molecules (HMGB-1, TLR4, TNFα, ICAM-1) and leukocyte infiltration increased substantially. Necrosis and apoptosis also increased. Trichrome staining and second harmonic generation microscopy revealed hepatic fibrosis. Fibrosis was mostly sinusoidal and/or perivenular, but in some mice bridging fibrosis occurred. Expression of smooth muscle α-actin and TGF-β1 increased slightly by Chol, moderately by EtOH, and markedly by EtOH+Chol. TGF-β pseudoreceptor BAMBI increased slightly by Chol, remained unchanged by EtOH and decreased by EtOH+Chol. MicroRNA-33a, which enhances TGF-β fibrotic effects, and phospho-Smad2/3, the down-stream signal of TGF-β, also increased more greatly by EtOH+Chol than Chol or EtOH. Metalloproteinase-2 and -9 were decreased only by EtOH+Chol. Conclusion High dietary cholesterol and chronic ethanol consumption synergistically increase liver injury, inflammation, and profibrotic responses and suppress antifibrotic responses, leading to severe steatohepatitis and early fibrosis in mice. PMID:27676640

  1. Ethanol-Induced ADH Activity in Zebrafish: Differential Concentration-Dependent Effects on High- Versus Low-Affinity ADH Enzymes.

    PubMed

    Tran, Steven; Nowicki, Magda; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert

    2016-04-01

    Zebrafish express enzymes that metabolize ethanol in a manner comparable to that of mammals, including humans. We previously demonstrated that acute ethanol exposure increases alcohol dehydrogenase (ADH) activity in an inverted U-shaped dose-dependent manner. It was hypothesized that the biphasic dose-response was due to the increased activity of a high-affinity ADH isoform following exposure to low concentrations of ethanol and increased activity of a low-affinity ADH isoform following exposure to higher concentrations of ethanol. To test this hypothesis, we exposed zebrafish to different concentrations of ethanol (0%, 0.25%, 0.5%, and 1.0% v/v) for 30 min and measured the total ADH activity in the zebrafish liver. However, we also repeated this enzyme activity assay using a low concentration of the substrate (ethanol) to determine the activity of high-affinity ADH isoforms. We found that total ADH activity in response to ethanol induces an inverted U-shaped dose-response similar to our previous study. Using a lower substrate level in our enzyme assay targeting high-affinity isozymes, we found a similar dose-response. However, the difference in activity between the high and low substrate assays (high substrate activity - low substrate activity), which provide an index of activity for low-affinity ADH isoforms, revealed no significant effect of ethanol exposure. Our results suggest that the inverted U-shaped dose-response for total ADH activity in response to ethanol is driven primarily by high-affinity isoforms of ADH.

  2. A highly sensitive ethanol sensor based on mesoporous ZnO–SnO2 nanofibers

    PubMed Central

    Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan

    2009-01-01

    A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO–SnO2 (m-Z–S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO2), and a mesoporous structure was observed in the m-Z–S nanofibers. The sensor performance of the prepared m-Z–S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3–500 ppm. PMID:19417420

  3. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast

    PubMed Central

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at −150, −100 and −50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  4. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation.

    PubMed

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-08-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.

  5. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    PubMed

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  6. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    PubMed

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  7. [Endogenous blood ethanol in alcoholic patients and healthy subjects with and without a family history of alcoholism].

    PubMed

    Pron'ko, P S; Shishkin, S N; Kolesnikov, V B; Volynets, S I; Ostrovskiĭ, Iu M

    1987-01-01

    Levels of endogenous ethanol were studied in healthy males, 12-13-year-old boys (sons of alcoholics and normal fathers) and alcoholic patients (after discontinuation of all drugs). The results showed no significant differences between the groups. On the other hand endogenous ethanol concentrations were higher than normal in oligophrenic boys irrespective of whether their fathers were alcoholics or healthy subjects. In the abstinence period endogenic ethanol concentrations were the minimal in patients with delirium tremens and a severe abstinence syndrome, the dynamics of this parameter in the process of treatment being dependent on the severity of the abstinence syndrome and on the nature of treatment.

  8. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes.

    PubMed

    Yanase, Shuhei; Hasunuma, Tomohisa; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-09-01

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 degrees C and 37 degrees C, while the activity of cellulolytic enzymes is highest at around 50 degrees C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus beta-glucosidase on the cell surface, which successfully converts a cellulosic beta-glucan to ethanol directly at 48 degrees C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of beta-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface.

  9. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    PubMed Central

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  10. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    PubMed

    Ali, Shahin S; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose)) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  11. A highly efficient chemical sensor material for ethanol: Al2O3/Graphene nanocomposites fabricated from graphene oxide.

    PubMed

    Jiang, Zaixing; Wang, Jiajun; Meng, Linghui; Huang, Yudong; Liu, Li

    2011-06-14

    Al(2)O(3)/Graphene nanocomposites are firstly produced from GO solution by a one-step, green, facile, low-cost SC CO(2) method. The as-prepared nanocomposite papers display high CL sensitivity and high selectivity to the ethanol gas, which provides a facile, green and low-cost route for the preparation of ethanol nanoscopic sensing devices with wide applications. PMID:21547307

  12. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

    PubMed

    Cannella, David; Jørgensen, Henning

    2014-01-01

    Production of ethanol from lignocellulosic materials has a promising market potential, but the process is still only at pilot/demonstration scale due to the technical and economical difficulties of the process. Operating the process at very high solids concentrations (above 20% dry matter-DM) has proven essential for economic feasibility at industrial scale. Historically, simultaneous saccharification and fermentation (SSF) was found to give better ethanol yields compared to separate hydrolysis and fermentation (SHF), but data in literature are typically based on operating the process at low dry matter conditions. In this work the impact of selected enzyme preparation and processing strategy (SHF, presaccharification and simultaneous saccharification and fermentation-PSSF, and SSF) on final ethanol yield and overall performance was investigated with pretreated wheat straw up to 30% DM. The experiments revealed that an SSF strategy was indeed better than SHF when applying an older generation enzyme cocktail (Celluclast-Novozym 188). In case of the newer product Cellic CTec 2, SHF resulted in 20% higher final ethanol yield compared to SSF. It was possible to close the mass balance around cellulose to around 94%, revealing that the most relevant products could be accounted for. One observation was the presence of oxidized sugar (gluconic acid) upon enzymatic hydrolysis with the latest enzyme preparation. Experiments showed gluconic acid formation by recently discovered enzymatic class of lytic polysaccharides monoxygenases (LPMO's) to be depending on the processing strategy. The lowest concentration was achieved in SSF, which could be correlated with less available oxygen due to simultaneous oxygen consumption by the yeast. Quantity of glycerol and cell mass was also depending on the selected processing strategy.

  13. High Blood Pressure in Pregnancy - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الدم أثناء الحمل - العربية Bilingual PDF Health Information Translations Bosnian (Bosanski) High Blood Pressure in Pregnancy Visok ... u trudnoći - Bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) High Blood Pressure in Pregnancy ...

  14. High Blood Pressure - Multiple Languages: MedlinePlus

    MedlinePlus

    ... ارتفاع ضغط الدم - العربية Bilingual PDF Health Information Translations Bosnian (Bosanski) High Blood Pressure Visoki krvni tlak - Bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) High Blood Pressure 高血压 - 简体中文 ( ...

  15. Simultaneous measurement of red blood cell aggregation and whole blood coagulation using high-frequency ultrasound.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang Joon

    2012-03-01

    This study aims to investigate the feasibility of using high-frequency ultrasound (HFUS) for simultaneous monitoring of blood coagulation and red blood cell (RBC) aggregation. Using a 35-MHz ultrasound scanner, ultrasound speckle data were acquired from whole blood samples of three experimental groups of rats, including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-treated, noncoagulation and normal control groups. The variations of blood echogenicity, the shape parameters of probability distribution of speckle intensity (skewness and kurtosis) and the correlation coefficient between two consecutive speckle data were calculated as a function of time starting from immediately after taking blood. The blood echogenicity increases rapidly to plateaus at the early stage of measurement for all the experimental groups caused by the formation of RBC aggregates. The DIDS-treated group exhibits the lowest echogenicity level due to the inhibitory effect of DIDS on RBC aggregation. The correlation analysis between consecutive speckle patterns seems to be useful to examine the variation of blood fluidity and the progress of clot formation. Whole blood coagulation is observed to be accelerated by DIDS treatment. In addition, the results of skewness and kurtosis analysis indicated that RBC aggregates may be disrupted during blood coagulation. The present study suggests that HFUS has good potential for simultaneous monitoring of RBC aggregation and blood coagulation to examine the relationship between them.

  16. Highly Selective Formation of n-Butanol from Ethanol through the Guerbet Process: A Tandem Catalytic Approach.

    PubMed

    Chakraborty, Sumit; Piszel, Paige E; Hayes, Cassandra E; Baker, R Tom; Jones, William D

    2015-11-18

    A highly selective (>99%) tandem catalytic system for the conversion of ethanol (up to 37%) to n-butanol, through the Guerbet process, has been developed using a bifunctional iridium catalyst coupled with bulky nickel or copper hydroxides. These sterically crowded nickel and copper hydroxides catalyze the key aldol coupling reaction of acetaldehyde to exclusively yield the C4 coupling product, crotonaldehyde. Iridium-mediated dehydrogenation of ethanol to acetaldehyde has led to the development of an ethanol-to-butanol process operated at a lower temperature. PMID:26526779

  17. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue.

    PubMed

    Cui, BoKang; Liu, Su; Lin, XiaoJun; Wang, Jun; Li, ShuHong; Wang, QiBo; Li, ShengPing

    2011-11-01

    This study evaluated the protective effects of aqueous extract of Lycium barbarum (LBAE) and ethanol extract of Lycium barbarum (LBEE) on blood lipid levels, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities and liver tissue antioxidant enzyme activities in rats fed a high fat diet (HF). The rats were randomly divided into seven groups of ten rats each and fed a different diet for eight weeks as follows: One group (NC group) was fed a standard diet, one group was fed a high-fat diet (HF group), one group was fed a high-fat diet and orally fed with 20 mg/kg b.w. simvastatin (HF + simvastatin group), and the other group was fed the high fat diet and orally fed with 50 mg/kg b.w. or 100 mg/kg b.w. LBAE (HF + LBAE), or 50 mg/kg b.w. or 100 mg/kg b.w. LBEE (HF + LBEE), respectively. After eight weeks, the HF diet caused deleterious metabolic effects. Rats fed the HF diet alone showed increased hepatocellular enzyme activities in plasma, a significant decline in antioxidant enzyme activities, and elevated liver lipid peroxidation indices. LBAE and LBEE administration significantly reduced liver damage and oxidative changes, and brought back the antioxidants and lipids towards normal levels. These data suggest that these antioxidants protect against toxicity parameters in HF rats.

  18. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury.

  19. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus.

    PubMed

    Limtong, Savitree; Sringiew, Chutima; Yongmanitchai, Wichien

    2007-12-01

    Kluyveromyces marxianus DMKU 3-1042, isolated by an enrichment technique in a sugar cane juice medium supplemented with 4% (w/v) ethanol at 35 degrees C, produced high concentrations of ethanol at both 40 and 45 degrees C. Ethanol production by this strain in shaking flask cultivation in sugar cane juice media at 37 degrees C was highest in a medium containing 22% total sugars, 0.05% (NH(4))(2)SO(4), 0.05% KH(2)PO(4), and 0.15% MgSO(4).7H(2)O and having a pH of 5.0; the ethanol concentration reached 8.7% (w/v), productivity 1.45 g/l/h and yield 77.5% of theoretical yield. At 40 degrees C, a maximal ethanol concentration of 6.78% (w/v), a productivity of 1.13 and a yield 60.4% of theoretical yield were obtained from the same medium, except that the pH was adjusted to 5.5. In a study on ethanol production in a 5l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.2 vvm throughout the fermentation, K. marxianus DMKU 3-1042 yielded a final ethanol concentration of 6.43% (w/v), a productivity of 1.3g/l/h and a yield of 57.1% of theoretical yield.

  20. Changes in lymphocyte subsets and macrophage functions from high, short-term dietary ethanol in C57/BL6 mice

    SciTech Connect

    Watson, R.R.; Prabhala, R.H.; Abril, E.; Smith, T.L.

    1988-01-01

    Chronic administration of a diet containing 7% ethanol (36% of total calories) for 8 days to male C57/BL6 mice resulted in significant changes in functioning of macrophages. Peritoneal exudate macrophages from the ethanol-fed mice released more tumor cell cytotoxic materials upon culturing in vitro than cells from controls. However, peritoneal exudate cells continued to respond to exogenous beta carotene in vitro to produce additional cytotoxic materials. Phagocytosis of sheep red blood cells in vitro was suppressed in cells from ethanol treated mice. The number of splenic lymphocytes of various subsets was significantly changed by the ethanol exposure. Total T cells and T suppressor cells were lower, with a significant decrease in B cells containing IgM on their surface. The percentage of spleen cells showing markers for macrophage functions and their activation were significantly reduced. It is concluded that short-term chronic consumption of dietary ethanol, which was sufficient to produce physical dependence, results in significant alterations in lymphocyte subtypes and suppression of some macrophage functions.

  1. Motivating Factors and Potential Deterrents to Blood Donation in High School Aged Blood Donors

    PubMed Central

    Phan-Tang, Michelle

    2016-01-01

    Background. To ensure an adequate supply of blood, collection centers must design campaigns that successfully recruit and maintain an active donor pool. Understanding factors that motivate and deter individuals from donating may help centers develop targeted recruitment campaigns. These factors among high school aged blood donors have not yet been fully investigated. Study Design and Methods. A voluntary, anonymous survey was administered to student donors at high school mobile blood drives. The survey instrument asked the students to rate several potential motivating factors in their importance in the decision to donate blood and several potential deterring factors in their future decision whether or not to donate blood again. The survey also asked the students to rate the desirability of several potential incentives. Results. Motivating factors that reflected prosocial, empathetic, and altruistic thoughts and beliefs were rated highly by students. Pain from phlebotomy was most commonly chosen as potential deterrent. Movie tickets and cookies/snacks at the drive were rated as the most attractive incentives. Conclusion. High school aged blood donors are similar to other donor groups in their expressed motives for donating blood. This group may be unique in the factors that deter them from donating and in their preferences for different incentives. PMID:27293985

  2. Motivating Factors and Potential Deterrents to Blood Donation in High School Aged Blood Donors.

    PubMed

    Finck, Rachel; Ziman, Alyssa; Hoffman, Matthew; Phan-Tang, Michelle; Yuan, Shan

    2016-01-01

    Background. To ensure an adequate supply of blood, collection centers must design campaigns that successfully recruit and maintain an active donor pool. Understanding factors that motivate and deter individuals from donating may help centers develop targeted recruitment campaigns. These factors among high school aged blood donors have not yet been fully investigated. Study Design and Methods. A voluntary, anonymous survey was administered to student donors at high school mobile blood drives. The survey instrument asked the students to rate several potential motivating factors in their importance in the decision to donate blood and several potential deterring factors in their future decision whether or not to donate blood again. The survey also asked the students to rate the desirability of several potential incentives. Results. Motivating factors that reflected prosocial, empathetic, and altruistic thoughts and beliefs were rated highly by students. Pain from phlebotomy was most commonly chosen as potential deterrent. Movie tickets and cookies/snacks at the drive were rated as the most attractive incentives. Conclusion. High school aged blood donors are similar to other donor groups in their expressed motives for donating blood. This group may be unique in the factors that deter them from donating and in their preferences for different incentives. PMID:27293985

  3. The kinetics of transdermal ethanol exchange.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2006-02-01

    The kinetics of ethanol transport from the blood to the skin surface are incompletely understood. We present a mathematical model to predict the transient exchange of ethanol across the skin while it is being absorbed from the gut and eliminated from the body. The model simulates the behavior of a commercial device that is used to estimate the blood alcohol concentration (BAC). During the elimination phase, the stratum corneum of the skin has a higher ethanol concentration than the blood. We studied the effect of varying the maximum BAC and the absorption rate from the gut on the relationship between BAC and equivalent concentration in the gas phase above the skin. The results showed that the ethanol concentration in the gas compartment always took longer to reach its maximum, had a lower maximum, and had a slower apparent elimination rate than the BAC. These effects increased as the maximum BAC increased. Our model's predictions are consistent with experimental data from the literature. We performed a sensitivity analysis (using Latin hypercube sampling) to identify and rank the importance of parameters. The analysis showed that outputs were sensitive to solubility and diffusivity within the stratum corneum, to stratum corneum thickness, and to the volume of gas in the sampling chamber above the skin. We conclude that ethanol transport through the skin is primarily governed by the washin and washout of ethanol through the stratum corneum. The dynamics can be highly variable from subject to subject because of variability in the physical properties of the stratum corneum. PMID:16239611

  4. Hierarchical Pd-Sn Alloy Nanosheet Dendrites: An Economical and Highly Active Catalyst for Ethanol Electrooxidation

    PubMed Central

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures. PMID:23383368

  5. Blood

    MedlinePlus

    ... solid part of your blood contains red blood cells, white blood cells, and platelets. Red blood cells (RBC) deliver oxygen from your lungs to your tissues and organs. White blood cells (WBC) fight infection and are part of your ...

  6. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs.

    PubMed

    Pereira, Francisco B; Guimarães, Pedro M R; Teixeira, José A; Domingues, Lucília

    2010-10-01

    Statistical experimental designs were used to develop a medium based on corn steep liquor (CSL) and other low-cost nutrient sources for high-performance very high gravity (VHG) ethanol fermentations by Saccharomyces cerevisiae. The critical nutrients were initially selected according to a Plackett-Burman design and the optimized medium composition (44.3 g/L CSL; 2.3 g/L urea; 3.8 g/L MgSO₄·7H₂O; 0.03 g/L CuSO₄·5H₂O) for maximum ethanol production by the laboratory strain CEN.PK 113-7D was obtained by response surface methodology, based on a three-level four-factor Box-Behnken design. The optimization process resulted in significantly enhanced final ethanol titre, productivity and yeast viability in batch VHG fermentations (up to 330 g/L glucose) with CEN.PK113-7D and with industrial strain PE-2, which is used for bio-ethanol production in Brazil. Strain PE-2 was able to produce 18.6±0.5% (v/v) ethanol with a corresponding productivity of 2.4±0.1g/L/h. This study provides valuable insights into cost-effective nutritional supplementation of industrial fuel ethanol VHG fermentations.

  7. Naloxone and ethanol intoxication.

    PubMed

    Askenasi, R; Fontaine, J

    1982-01-01

    Naloxone has been said to be an antidote of acute ethanol intoxication in man. Experimental and clinical studies are however not convincing and contradictory. We have used naloxone to antagonize the effect of ethanol in mice. Results are compared to those obtained with morphine intoxication. Even at high doses (5 mg/kg) naloxone is not a good antagonist of ethanol intoxication in mice.

  8. Highly loaded Ni-based catalysts for low temperature ethanol steam reforming.

    PubMed

    Wang, Tuo; Ma, Hongyan; Zeng, Liang; Li, Di; Tian, Hao; Xiao, Shengning; Gong, Jinlong

    2016-05-21

    This paper describes the design of high-loading Ni/Al2O3 catalysts (78 wt% Ni) for low temperature ethanol steam reforming. The catalysts were synthesized via both co-precipitation (COP) and impregnation (IMP) methods. All the catalysts were measured by N2 adsorption-desorption, XRD, H2-TPR, and H2 pulse chemisorption. The characterization results demonstrated that the preparation method and the loading significantly affected the nickel particle size, active nickel surface area and catalytic performance. Over COP catalysts, large nickel particles were presented in nickel aluminum mixed oxides. In comparison, IMP catalysts gained more "free" NiO particles with weak interaction with the aluminum oxide. Consequently, COP catalysts yielded smaller nickel particles and larger active nickel surface areas than those of IMP catalysts. High loading is beneficial for obtaining sufficient active nickel sites when nickel particles are dispersed via COP, whereas excessive nickel content is not desired for catalysts prepared by IMP. Specifically, the 78 wt% nickel loaded catalyst synthesized by COP possessed small nickel particles (∼6.0 nm) and an abundant active nickel area (35.1 m(2) gcat(-1)). Consequently, COP-78 achieved superior stability with 92% ethanol conversion and ∼35% H2 selectivity at 673 K for 30 h despite the presence of a considerable amount of coke.

  9. Highly loaded Ni-based catalysts for low temperature ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Wang, Tuo; Ma, Hongyan; Zeng, Liang; Li, Di; Tian, Hao; Xiao, Shengning; Gong, Jinlong

    2016-05-01

    This paper describes the design of high-loading Ni/Al2O3 catalysts (78 wt% Ni) for low temperature ethanol steam reforming. The catalysts were synthesized via both co-precipitation (COP) and impregnation (IMP) methods. All the catalysts were measured by N2 adsorption-desorption, XRD, H2-TPR, and H2 pulse chemisorption. The characterization results demonstrated that the preparation method and the loading significantly affected the nickel particle size, active nickel surface area and catalytic performance. Over COP catalysts, large nickel particles were presented in nickel aluminum mixed oxides. In comparison, IMP catalysts gained more ``free'' NiO particles with weak interaction with the aluminum oxide. Consequently, COP catalysts yielded smaller nickel particles and larger active nickel surface areas than those of IMP catalysts. High loading is beneficial for obtaining sufficient active nickel sites when nickel particles are dispersed via COP, whereas excessive nickel content is not desired for catalysts prepared by IMP. Specifically, the 78 wt% nickel loaded catalyst synthesized by COP possessed small nickel particles (~6.0 nm) and an abundant active nickel area (35.1 m2 gcat-1). Consequently, COP-78 achieved superior stability with 92% ethanol conversion and ~35% H2 selectivity at 673 K for 30 h despite the presence of a considerable amount of coke.

  10. Highly loaded Ni-based catalysts for low temperature ethanol steam reforming.

    PubMed

    Wang, Tuo; Ma, Hongyan; Zeng, Liang; Li, Di; Tian, Hao; Xiao, Shengning; Gong, Jinlong

    2016-05-21

    This paper describes the design of high-loading Ni/Al2O3 catalysts (78 wt% Ni) for low temperature ethanol steam reforming. The catalysts were synthesized via both co-precipitation (COP) and impregnation (IMP) methods. All the catalysts were measured by N2 adsorption-desorption, XRD, H2-TPR, and H2 pulse chemisorption. The characterization results demonstrated that the preparation method and the loading significantly affected the nickel particle size, active nickel surface area and catalytic performance. Over COP catalysts, large nickel particles were presented in nickel aluminum mixed oxides. In comparison, IMP catalysts gained more "free" NiO particles with weak interaction with the aluminum oxide. Consequently, COP catalysts yielded smaller nickel particles and larger active nickel surface areas than those of IMP catalysts. High loading is beneficial for obtaining sufficient active nickel sites when nickel particles are dispersed via COP, whereas excessive nickel content is not desired for catalysts prepared by IMP. Specifically, the 78 wt% nickel loaded catalyst synthesized by COP possessed small nickel particles (∼6.0 nm) and an abundant active nickel area (35.1 m(2) gcat(-1)). Consequently, COP-78 achieved superior stability with 92% ethanol conversion and ∼35% H2 selectivity at 673 K for 30 h despite the presence of a considerable amount of coke. PMID:27122228

  11. [The effect of the inhalation of ethanol and acetone on the indices of the antioxidant protection system and on lipid peroxidation in the brain tissue and blood serum of rats].

    PubMed

    Burmistrov, S O; Mashek, O N; Stepanova, I I

    1992-01-01

    Ethanol or acetone inhalation resulted in a reduction in motor activity in rats, affecting largely their explorative behavior. The biochemical parameters of free-radical processes (catalyse and SOD activities, LPO levels) remained unchanged in the inhaling animals. Ethanol or acetone inhalation caused a significant decrease in blood catalyse activity and serum LPO levels. The acetone- and ethanol-induced changes in the activity of ceruloplasmin were heterodirectional. It can be concluded that it is useful to study the biochemical parameters of serum free-radical processes and to employ the findings in the therapy of inhalation toxicomanias.

  12. Low concentration of ethanol favors progenitor cell differentiation and neovascularization in high-fat diet-fed mice model.

    PubMed

    Vergori, Luisa; Lauret, Emilie; Soleti, Raffaella; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2016-09-01

    Endothelial progenitor cells (EPCs) and monocytic cells from bone marrow (BM) can be recruited to the injured endothelium and contribute to its regeneration. During metabolic diseases such as obesity and diabetes, progenitor cell function is impaired. Several studies have shown that moderate alcohol consumption prevents the development and progression of atherosclerosis in a variety of animal/mouse models and increases mobilization of progenitor cells. Along with these studies, we identify ethanol at low concentration as therapeutic tool to in vitro expand progenitor cells in order to obtain an adequate number of cells for their use in the treatment of cardiovascular diseases. We evaluated the effects of ethanol on the phenotype of BM-derived cells from mice fed with high-fat diet (HFD). HFD did not induce changes in weight of mice but induced metabolic alterations. HFD feeding increased the differentiation of monocytic progenitors but not EPCs. Whereas ethanol at 0.6% is able to increase monocytic progenitor differentiation, 1% ethanol diminished it. Furthermore, ethanol at 0.6% increased the ability of progenitor cells to promote in vivo angiogenesis as well as secretome of BM-derived cells from mice fed with HFD, but not in mice fed normal diet. In conclusion, ethanol at low concentration is able to increase angiogenic abilities of progenitor cells from animals with early metabolic alterations.

  13. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    SciTech Connect

    Bastami, Tahereh Rohani; Entezari, Mohammad H.

    2013-09-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM). The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.

  14. Synergistic ablation of liver tissue and liver cancer cells with high-intensity focused ultrasound and ethanol.

    PubMed

    Hoang, Nguyen H; Murad, Hakm Y; Ratnayaka, Sithira H; Chen, Chong; Khismatullin, Damir B

    2014-08-01

    We investigated the combined effect of ethanol and high-intensity focused ultrasound (HIFU), first, on heating and cavitation bubble activity in tissue-mimicking phantoms and porcine liver tissues and, second, on the viability of HepG2 liver cancer cells. Phantoms or porcine tissues were injected with ethanol and then subjected to HIFU at acoustic power ranging from 1.2 to 20.5 W (HIFU levels 1-7). Cavitation events and the temperature around the focal zone were measured with a passive cavitation detector and embedded type K thermocouples, respectively. HepG2 cells were subjected to 4% ethanol solution in growth medium (v/v) just before the cells were exposed to HIFU at 2.7, 8.7 or 12.0 W for 30 s. Cell viability was measured 2, 24 and 72 h post-treatment. The results indicate that ethanol and HIFU have a synergistic effect on liver cancer ablation as manifested by greater temperature rise and lesion volume in liver tissues and reduced viability of liver cancer cells. This effect is likely caused by reduction of the cavitation threshold in the presence of ethanol and the increased rate of ethanol diffusion through the cell membrane caused by HIFU-induced streaming, sonoporation and heating.

  15. Beneficial effect of a low dose of ethanol on liver function and serum urate in rats fed a high-fat diet.

    PubMed

    Osaki, Aimi; Okazaki, Yukako; Kimoto, Akiko; Izu, Hanae; Kato, Norihisa

    2014-01-01

    This study investigated the effects of the consumption of 1% or 2% (v/v) ethanol in drinking water for 12 wk on rats fed a high-fat diet. Body weight gain, food intake, and fluid intake were unaffected by ethanol intake. Adipose tissue weight, and serum glucose and lipids were unaffected. Compared to the control (no ethanol), 1% ethanol intake significantly reduced serum levels of alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and ammonia (p<0.05), whereas 2% ethanol intake did so to a lesser extent. Serum urate was significantly lower in both the 1% and 2% ethanol groups than that in the control group (p<0.05). The results suggest a low dose of ethanol has beneficial effects on liver function and serum urate in rats fed a high-fat diet.

  16. Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplast fusion.

    PubMed

    Zhang, Min; Xiao, Yu; Zhu, Rongrong; Zhang, Qin; Wang, Shi-Long

    2012-11-01

    To increase thermotolerance and ethanol tolerance in Saccharomyces cerevisiae strain YZ1, the strategies of high-energy pulse electron beam (HEPE) and three rounds of protoplast fusion were explored. The YF31 strain had the characteristics of resistant to high-temperature, high-ethanol tolerance, rapid growth and high yield. The YF31 could grow on plate cultures up to 47 °C, containing 237.5 g L(-1) of ethanol. In particular, the mutant strain YF31 generated 94.2 ± 4.8 g L(-1) ethanol from 200 g glucose L(-1) at 42 °C, which was 2.48 times the production of the wild strain YZ1. Results demonstrated that the variant phenotypes from the strains screening by HEPE irradiation could be used as parent stock for yeast regeneration and the protoplast fusion technology is sufficiently powerful in combining suitable characteristics in a single strain for ethanol fermentation.

  17. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung

    2013-03-01

    Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.

  18. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  19. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  20. BOOGIE: Predicting Blood Groups from High Throughput Sequencing Data

    PubMed Central

    Giollo, Manuel; Minervini, Giovanni; Scalzotto, Marta; Leonardi, Emanuela; Ferrari, Carlo; Tosatto, Silvio C. E.

    2015-01-01

    Over the last decade, we have witnessed an incredible growth in the amount of available genotype data due to high throughput sequencing (HTS) techniques. This information may be used to predict phenotypes of medical relevance, and pave the way towards personalized medicine. Blood phenotypes (e.g. ABO and Rh) are a purely genetic trait that has been extensively studied for decades, with currently over thirty known blood groups. Given the public availability of blood group data, it is of interest to predict these phenotypes from HTS data which may translate into more accurate blood typing in clinical practice. Here we propose BOOGIE, a fast predictor for the inference of blood groups from single nucleotide variant (SNV) databases. We focus on the prediction of thirty blood groups ranging from the well known ABO and Rh, to the less studied Junior or Diego. BOOGIE correctly predicted the blood group with 94% accuracy for the Personal Genome Project whole genome profiles where good quality SNV annotation was available. Additionally, our tool produces a high quality haplotype phase, which is of interest in the context of ethnicity-specific polymorphisms or traits. The versatility and simplicity of the analysis make it easily interpretable and allow easy extension of the protocol towards other phenotypes. BOOGIE can be downloaded from URL http://protein.bio.unipd.it/download/. PMID:25893845

  1. The magnitude of blood lactate increases from high speed workouts.

    PubMed

    Caruso, J F; Kucera, S; Jackson, T; Hari, P; Olson, N; McLagan, J; Taylor, S T; Shepherd, C

    2011-05-01

    To examine blood lactate concentrations from high-speed exercise resistive exercise, subjects performed workouts on an inertial kinetic exercise (Oconomowoc, WI) device. Workouts entailed two 60-s sets of elbow flexor (curling) repetitions. Pre- and post-exercise blood lactate concentrations were measured, via a fingertip blood drop, with an analyzer. From workouts the average acceleration, maximum force and total torque were derived. Blood lactate concentrations were analyzed with a 2 (gender)×2 (time) ANOVA, with repeated measures for time. Average acceleration, maximum force and total torque were analyzed with one-way (gender) ANOVAs. With an α=0.05, blood lactate concentrations had a time (prewomen) effects. Current blood lactate concentrations were commensurate with other studies that used a modest level of resistance and engaged a small muscle mass. Given the current workout protocol and muscle mass engaged, as well as parallels to other results, our study appears to offer a valid portrayal of subsequent changes in blood lactate concentrations from high-speed resistive exercise.

  2. Relative Fluid Novelty Differentially Alters the Time Course of Limited-Access Ethanol and Water Intake in Selectively Bred High Alcohol Preferring Mice

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2015-01-01

    Background The influence of previous alcohol (ethanol) drinking experience on increasing the rate and amount of future ethanol consumption might be a genetically-regulated phenomenon critical to the development and maintenance of repeated excessive ethanol abuse. We have recently found evidence supporting this view, wherein inbred C57BL/6J (B6) mice develop progressive increases in the rate of binge-ethanol consumption over repeated Drinking-in-the-Dark (DID) ethanol access sessions (i.e. ‘front-loading’). The primary goal of the present study was to evaluate identical parameters in High Alcohol Preferring (HAP) mice to determine if similar temporal alterations in limited-access ethanol drinking develop in a population selected for high ethanol preference/intake under continuous (24hr) access conditions. Methods Using specialized volumetric drinking devices, HAP mice received 14 daily 2 hour DID ethanol or water access sessions. A subset of these mice was then given one day access to the opposite assigned fluid on day 15. Home cage locomotor activity was recorded concomitantly on each day of these studies. The possibility of behavioral/metabolic tolerance was evaluated on day 16 using experimenter administered ethanol. Results The amount of ethanol consumed within the first 15 minutes of access increased markedly over days. However, in contrast to previous observations in B6 mice, ethanol front-loading was also observed on day 15 in mice that only had previous DID experience with water. Furthermore, a decrease in the amount of water consumed within the first 15 minutes of access compared to animals given repeated water access was observed on day 15 in mice with 14 previous days of ethanol access. Conclusions These data further illustrate the complexity and importance of the temporal aspects of limited-access ethanol consumption, and suggest that previous procedural/fluid experience in HAP mice selectively alters the time course of ethanol and water consumption

  3. Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process.

    PubMed

    Koike, Yoji; An, Ming-Zhe; Tang, Yue-Qin; Syo, Tomohiro; Osaka, Noriko; Morimura, Shigeru; Kida, Kenji

    2009-12-01

    A two-stage fermentation process, consisting of a simultaneous saccharification and fermentation (SSF) stage and a dry methane fermentation stage, was developed to utilize garbage for the production of fuel ethanol and methane. Garbage from families, canteens and concessionaires was used for the study. Saccharification method was studied and the results indicated that the liquefaction pretreatment and the combination of cellulase and glucoamylase was effective for polysaccharide hydrolysis of family garbage with a high content of holocellulose and that SSF was suitable for ethanol fermentation of garbage. Ethanol productivity could be markedly increased from 1.7 to 7.0 g/l/h by repeated-batch SSF of family garbage. A high ethanol productivity of 17.7 g/l/h was achieved when canteen garbage was used. The stillage after distillation was treated by dry methane fermentation and the results indicated that the stillage was almost fully digested and that about 850 ml of biogas was recovered from 1 g of volatile total solid (VTS). Approximately 85% of the energy of the garbage was converted to fuels, ethanol and methane by this process.

  4. Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process.

    PubMed

    Koike, Yoji; An, Ming-Zhe; Tang, Yue-Qin; Syo, Tomohiro; Osaka, Noriko; Morimura, Shigeru; Kida, Kenji

    2009-12-01

    A two-stage fermentation process, consisting of a simultaneous saccharification and fermentation (SSF) stage and a dry methane fermentation stage, was developed to utilize garbage for the production of fuel ethanol and methane. Garbage from families, canteens and concessionaires was used for the study. Saccharification method was studied and the results indicated that the liquefaction pretreatment and the combination of cellulase and glucoamylase was effective for polysaccharide hydrolysis of family garbage with a high content of holocellulose and that SSF was suitable for ethanol fermentation of garbage. Ethanol productivity could be markedly increased from 1.7 to 7.0 g/l/h by repeated-batch SSF of family garbage. A high ethanol productivity of 17.7 g/l/h was achieved when canteen garbage was used. The stillage after distillation was treated by dry methane fermentation and the results indicated that the stillage was almost fully digested and that about 850 ml of biogas was recovered from 1 g of volatile total solid (VTS). Approximately 85% of the energy of the garbage was converted to fuels, ethanol and methane by this process. PMID:19914584

  5. Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse.

    PubMed

    Martins, Luiza Helena da Silva; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-09-01

    This work evaluated ethanol production from sugarcane bagasse at high solids loadings in the pretreatment (20-40% w/v) and hydrolysis (10-20% w/v) stages. The best conditions for diluted sulfuric acid, AHP and Ox-B pretreatments were determined and mass balances including pretreatment, hydrolysis and fermentation were calculated. From a technical point of view, the best pretreatment was AHP, which enabled the production of glucose concentrations near 8% with high productivity (3.27 g/Lh), as well as ethanol production from 100.9 to 135.4 kg ethanol/ton raw bagasse. However, reagent consumption for acid pretreatment was much lower. Furthermore, for processes that use pentoses and hexoses separately, this pretreatment produces the most desirable pentoses liquor, with higher xylose concentration in the monomeric form.

  6. The Malaria-High Blood Pressure Hypothesis

    PubMed Central

    Smeeth, Liam; Cruickshank, J. Kennedy; Scott, J. Anthony G.

    2016-01-01

    Rationale: Several studies have demonstrated links between infectious diseases and cardiovascular conditions. Malaria and hypertension are widespread in many low- and middle-income countries, but the possible link between them has not been considered. Objective: In this article, we outline the basis for a possible link between malaria and hypertension and discuss how the hypothesis could be confirmed or refuted. Methods and Results: We reviewed published literature on factors associated with hypertension and checked whether any of these were also associated with malaria. We then considered various study designs that could be used to test the hypothesis. Malaria causes low birth weight, malnutrition, and inflammation, all of which are associated with hypertension in high-income countries. The hypothetical link between malaria and hypertension can be tested through the use of ecological, cohort, or Mendelian randomization studies, each of which poses specific challenges. Conclusions: Confirmation of the existence of a causative link with malaria would be a paradigm shift in efforts to prevent and control hypertension and would stimulate wider research on the links between infectious and noncommunicable disease. PMID:27151400

  7. Viral metagenomics applied to blood donors and recipients at high risk for blood-borne infections

    PubMed Central

    Sauvage, Virginie; Laperche, Syria; Cheval, Justine; Muth, Erika; Dubois, Myriam; Boizeau, Laure; Hébert, Charles; Lionnet, François; Lefrère, Jean-Jacques; Eloit, Marc

    2016-01-01

    Background Characterisation of human-associated viral communities is essential for epidemiological surveillance and to be able to anticipate new potential threats for blood transfusion safety. In high-resource countries, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) is currently considered to be under control. However, other unknown or unsuspected viruses may be transmitted to recipients by blood-derived products. To investigate this, the virome of plasma from individuals at high risk for parenterally and sexually transmitted infections was analysed by high throughput sequencing (HTS). Materials and methods Purified nucleic acids from two pools of 50 samples from recipients of multiple transfusions, and three pools containing seven plasma samples from either HBV−, HCV− or HIV-infected blood donors, were submitted to HTS. Results Sequences from resident anelloviruses and HPgV were evidenced in all pools. HBV and HCV sequences were detected in pools containing 3.8×103 IU/mL of HBV-DNA and 1.7×105 IU/mL of HCV-RNA, respectively, whereas no HIV sequence was found in a pool of 150 copies/mL of HIV-RNA. This suggests a lack of sensitivity in HTS performance in detecting low levels of virus. In addition, this study identified other issues, including laboratory contaminants and the uncertainty of taxonomic assignment of short sequence. No sequence suggestive of a new viral species was identified. Discussion This study did not identify any new blood-borne virus in high-risk individuals. However, rare and/or viruses present at very low titre could have escaped our protocol. Our results demonstrate the positive contribution of HTS in the detection of viral sequences in blood donations. PMID:27136432

  8. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    SciTech Connect

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O'Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  9. Racial differences in hypertension: implications for high blood pressure management.

    PubMed

    Lackland, Daniel T

    2014-08-01

    The racial disparity in hypertension and hypertension-related outcomes has been recognized for decades with African Americans with greater risks than Caucasians. Blood pressure levels have consistently been higher for African Americans with an earlier onset of hypertension. Although awareness and treatment levels of high blood pressure have been similar, racial differences in control rates are evident. The higher blood pressure levels for African Americans are associated with higher rates of stroke, end-stage renal disease and congestive heart failure. The reasons for the racial disparities in elevated blood pressure and hypertension-related outcomes risk remain unclear. However, the implications of the disparities of hypertension for prevention and clinical management are substantial, identifying African American men and women with excel hypertension risk and warranting interventions focused on these differences. In addition, focused research to identify the factors attributed to these disparities in risk burden is an essential need to address the evidence gaps.

  10. Racial differences in hypertension: implications for high blood pressure management.

    PubMed

    Lackland, Daniel T

    2014-08-01

    The racial disparity in hypertension and hypertension-related outcomes has been recognized for decades with African Americans with greater risks than Caucasians. Blood pressure levels have consistently been higher for African Americans with an earlier onset of hypertension. Although awareness and treatment levels of high blood pressure have been similar, racial differences in control rates are evident. The higher blood pressure levels for African Americans are associated with higher rates of stroke, end-stage renal disease and congestive heart failure. The reasons for the racial disparities in elevated blood pressure and hypertension-related outcomes risk remain unclear. However, the implications of the disparities of hypertension for prevention and clinical management are substantial, identifying African American men and women with excel hypertension risk and warranting interventions focused on these differences. In addition, focused research to identify the factors attributed to these disparities in risk burden is an essential need to address the evidence gaps. PMID:24983758

  11. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  12. Continuous High-solids corn liquefaction and fermentation with stripping of ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous resear...

  13. Novel technologies for enhanced production of ethanol: impact of high productivity on process economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In these studies Saccharomyces cerevisiae NRRL Y-566 was used to produce ethanol from a concentrated glucose (250-300 gL-1) solution. When fermentation media were supplemented with CaCO3 and CaCl2, ethanol concentrations, yield, and productivities were improved significantly. In control batch fermen...

  14. HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION

    EPA Science Inventory

    Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

  15. High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H/sub 2/O/sub 2/

    SciTech Connect

    Gould, J.M.; Freer, S.N.

    1984-06-01

    Pretreatment should be economic and should not utilize toxic reagents. In this study locally obtained residues were used - wheat straw, cornstalks, corn husks and kenaf -as substrates. The high efficiency of glucose production from alkaline H/sub 2/O/sub 2/ pretreated lignocellulosic residues made these materials excellent substrates for ethanol production by Saccharomyces cerevisiae in combined saccharification/fermentation experiments. Results showed that overall efficiency of ethanol formation was 90% for pretreated corn cobs, stalks and husks compared to 50% for untreated materials. Yields from kenaf and oak were also enhanced although below the theoretical maximum. The lignin containing supernatant does not appear to be inhibitory to Saccharomyces cerevisiae growth or ethanol production. The improvement in conversion efficiency is apparently the result of the removal of about one half of the lignin along with an apparent reduction in the degree of crystallinity within the cellulose structure itself. 16 references.

  16. Enhanced ethanol catabolism in orphan nuclear receptor SHP-null mice.

    PubMed

    Park, Jung Eun; Lee, Mikang; Mifflin, Ryan; Lee, Yoon Kwang

    2016-05-15

    Deficiency of the orphan nuclear hormone receptor small heterodimer partner (SHP, NR0B2) protects mice from diet-induced hepatic steatosis, in part, via repression of peroxisome proliferator-activated receptor (PPAR)-γ2 (Pparg2) gene expression. Alcoholic fatty liver diseases (AFLD) share many common pathophysiological features with non-AFLD. To study the role of SHP and PPARγ2 in AFLD, we used a strategy of chronic ethanol feeding plus a single binge ethanol feeding to challenge wild-type (WT) and SHP-null (SHP(-/-)) mice with ethanol. The ethanol feeding induced liver fat accumulation and mRNA expression of hepatic Pparg2 in WT mice, which suggests that a high level of PPARγ2 is a common driving force for fat accumulation induced by ethanol or a high-fat diet. Interestingly, ethanol-fed SHP(-/-) mice displayed hepatic fat accumulation similar to that of ethanol-fed WT mice, even though their Pparg2 expression level remained lower. Mortality of SHP(-/-) mice after ethanol binge feeding was significantly reduced and their acetaldehyde dehydrogenase (Aldh2) mRNA level was higher than that of their WT counterparts. After an intoxicating dose of ethanol, SHP(-/-) mice exhibited faster blood ethanol clearance and earlier wake-up time than WT mice. Higher blood acetate, the end product of ethanol metabolism, and lower acetaldehyde levels were evident in the ethanol-challenged SHP(-/-) than WT mice. Ethanol-induced inflammatory responses and lipid peroxidation were also lower in SHP(-/-) mice. The current data show faster ethanol catabolism and extra fat storage through conversion of acetate to acetyl-CoA before its release into the circulation in this ethanol-feeding model in SHP(-/-) mice.

  17. Effect of some drugs on ethanol-induced changes in blood brain barrier permeability for /sup 14/C-tyrosine

    SciTech Connect

    Borisenko, S.A.; Burov, Yu.V.

    1987-06-01

    This investigation seeks to compare the effects of membrane stabilizers chlorpromazine and alpha-tocopherol, and also the dopaminergic antagonist haloperidol, in changes in permeability of the blood-brain barrier for carbon 14-labelled tyrosine.

  18. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  19. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin

    2015-06-01

    4:1 methanol-ethanol (ME) mixture and silicone oil are common, important pressure transmitting media used in high pressure diamond anvil cell (DAC) experiments. Their thermal conductivities and elastic properties are critical for modeling heat conduction in the DAC experiments and for determining thermal conductivity of measurement samples under extreme conditions. We used time-domain thermoreflectance and picosecond interferometry combined with the DAC to study the thermal conductivities and elastic constants C11 of the ME mixture and silicone oil at room temperature and to pressures as high as ≈23 GPa. We found that pressure dependence of the thermal conductivity of ME and silicone oil are both well described by the prediction of the minimum thermal conductivity model, confirming the diffusion of thermal energy between nonpropagating molecular vibrational modes is the dominant heat transport mechanism in a liquid and amorphous polymer. Our results not only provide new insights into the physics of thermal transport in these common pressure media for high pressure thermal measurements, but will also significantly extend the feasibility of using silicone fluid medium to much higher pressure and moderately high temperature conditions with higher measurement accuracy than other pressure media.

  20. Total body water and lean body mass estimated by ethanol dilution

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.

    1977-01-01

    A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.

  1. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE PAGES

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  2. Aging, High Altitude, and Blood Pressure: A Complex Relationship.

    PubMed

    Parati, Gianfranco; Ochoa, Juan Eugenio; Torlasco, Camilla; Salvi, Paolo; Lombardi, Carolina; Bilo, Grzegorz

    2015-06-01

    Parati, Gianfranco, Juan Eugenio Ochoa, Camilla Torlasco, Paolo Salvi, Carolina Lombardi, and Grzegorz Bilo. Aging, high altitude, and blood pressure: A complex relationship. High Alt Biol Med 16:97-109, 2015.--Both aging and high altitude exposure may induce important changes in BP regulation, leading to significant increases in BP levels. By inducing atherosclerotic changes, stiffening of large arteries, renal dysfunction, and arterial baroreflex impairment, advancing age may induce progressive increases in systolic BP levels, promoting development and progression of arterial hypertension. It is also known, although mainly from studies in young or middle-aged subjects, that exposure to high altitude may influence different mechanisms involved in BP regulation (i.e., neural central and reflex control of sympathetic activity), leading to important increases in BP levels. The evidence is less clear, however, on whether and to what extent advancing age may influence the BP response to acute or chronic high altitude exposure. This is a question not only of scientific interest but also of practical relevance given the consistent number of elderly individuals who are exposed for short time periods (either for leisure or work) or live permanently at high altitude, in whom arterial hypertension is frequently observed. This article will review the evidence available on the relationship between aging and blood pressure levels at high altitude, the pathophysiological mechanisms behind this complex association, as well as some questions of practical interest regarding antihypertensive treatment in elderly subjects, and the effects of antihypertensive drugs on blood pressure response during high altitude exposure.

  3. A Nutrition Curriculum for Families with High Blood Pressure.

    ERIC Educational Resources Information Center

    Farris, Rosanne P.; And Others

    1985-01-01

    A nutrition curriculum for elementary and secondary school students with high blood pressure was implemented as part of a Dietary/Exercise Alteration Program trial. Reduced sodium and energy intake and increased potassium intake were promoted. Materials and methods of the program are described. (Author/DF)

  4. National High Blood Pressure 12-Month Kit. May 1988.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD. National High Blood Pressure Education Program.

    Part I of this kit provides information for program planners and health professionals on ways to overcome barriers to health care among the medically underserved, promote high blood pressure control through the media and other community channels, and improve adherence to treatment among hypertensive patients. It lists additional resources for…

  5. High speed optical holography of retinal blood flow

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  6. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol.

    PubMed

    Tang, Yu Pan; Wang, Huan; Chung, Tai Shung

    2015-01-01

    The microstructural evolution of a series of triazine framework-based microporous (TFM) membranes under different conditions has been explored in this work. The pristine TFM membrane is in situ fabricated in the course of polymer synthesis via a facile Brønsted-acid-catalyzed cyclotrimerizaiton reaction. The as-synthesized polymer exhibits a microporous network with high thermal stability. The free volume size of the TFM membranes gradually evolved from a unimodal distribution to a bimodal distribution under annealing, as analyzed by positron annihilation lifetime spectroscopy (PALS). The emergence of the bimodal distribution is probably ascribed to the synergetic effect of quenching and thermal cyclization reaction. In addition, the fractional free volume (FFV) of the membranes presents a concave trend with increasing annealing temperature. Vapor sorption tests reveal that the mass transport properties are closely associated with the free volume evolution, which provides an optimal condition for dehydration of biofuels. A promising separation performance with extremely high water permeability has been attained for dehydration of an 85 wt % ethanol aqueous solution at 45 °C. The study on the free volume evolution of the TFM membranes may provide useful insights about the microstructure and mass transport behavior of the microporous polymeric materials.

  7. High-speed imaging of blood splatter patterns

    SciTech Connect

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. ); Levine, G.F. . Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  8. High-speed imaging of blood splatter patterns

    SciTech Connect

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J.; Levine, G.F.

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  9. Genetic and sociocultural components of high blood pressure.

    PubMed

    Ward, R H

    1983-09-01

    The cardiovascular diseases exert widely differing contributions to the total burden of mortality and morbidity in extant human populations. To a large extent these differences are a reflection of the variable distribution of specific antecedent risk factors. For one such risk factor, blood pressure, there is considerable variability in its distribution between different ethnic groups, especially between traditional and nontraditional societies. Intensive epidemiological studies in Western societies, together with a number of cross-cultural comparisons, suggest that the major determinants of high blood pressure are likely to be a constellation of sociocultural factors, with genetic determination being limited to the interaction between genotype and environment. Studies of populations in sociocultural transition offer an unique opportunity to identify the relative influence of specific sociocultural factors on the rate of change of blood pressure. In addition, when the study of such populations is placed in a quasi-experimental context, genetic-environmental interactions may also be detected. This strategy is illustrated by a study of the changing blood pressure distribution in Tokelauan migrants. Such an approach requires the initial definition of a response variable which measures change in blood pressure as a consequence of migration. The response variable, which identifies the relative influence of concomitants such as weight, age, and obesity, can then be subjected to genetic analysis. In the Tokelau case, blood pressure response tends to be positive in migrants but negative in nonmigrants. Further statistical analysis indicates that there is a small proportion of high responders in both populations and that these cluster in families in the migrant population. However, estimates of the transmission parameter suggest that sociocultural transmission, rather than Mendelian segregation, is responsible. To date there is little evidence that genetic

  10. Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet.

    PubMed

    He, Zheng; Li, Jing; Luo, Hanwen; Zhang, Li; Ma, Lu; Chen, Liaobin; Wang, Hui

    2015-12-03

    Prenatal ethanol exposure (PEE) is an established risk factor for intrauterine growth retardation. The present study was designed to determine whether PEE can increase the susceptibility of high-fat diet (HFD)-induced metabolic syndrome (MS) in adult offspring in a sex-specific manner, based on a generalized linear model analysis. Pregnant Wistar rats were administered ethanol (4 g/kg.d) from gestational day 11 until term delivery. All offspring were fed either a normal diet or a HFD after weaning and were sacrificed at postnatal week 20, and blood samples were collected. Results showed that PEE reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels but enhanced serum glucose, insulin, insulin resistant index (IRI), triglyceride and total cholesterol (TC) concentrations. Moreover, the analysis showed interactions among PEE, HFD and sex. In the PEE offspring, HFD aggravated the decrease in ACTH and corticosterone levels and further increased serum glucose, insulin, triglyceride and TC levels. The changes of serum ACTH, glucose and IRI levels in the female HFD rats were greater than those in the male HFD rats. Our findings suggest that PEE enhances the susceptibility to MS induced by HFD in a sex-specific manner, which might be primarily associated with the neuroendocrine metabolic programming by PEE.

  11. Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet

    PubMed Central

    He, Zheng; Li, Jing; Luo, Hanwen; Zhang, Li; Ma, Lu; Chen, Liaobin; Wang, Hui

    2015-01-01

    Prenatal ethanol exposure (PEE) is an established risk factor for intrauterine growth retardation. The present study was designed to determine whether PEE can increase the susceptibility of high-fat diet (HFD)-induced metabolic syndrome (MS) in adult offspring in a sex-specific manner, based on a generalized linear model analysis. Pregnant Wistar rats were administered ethanol (4 g/kg.d) from gestational day 11 until term delivery. All offspring were fed either a normal diet or a HFD after weaning and were sacrificed at postnatal week 20, and blood samples were collected. Results showed that PEE reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels but enhanced serum glucose, insulin, insulin resistant index (IRI), triglyceride and total cholesterol (TC) concentrations. Moreover, the analysis showed interactions among PEE, HFD and sex. In the PEE offspring, HFD aggravated the decrease in ACTH and corticosterone levels and further increased serum glucose, insulin, triglyceride and TC levels. The changes of serum ACTH, glucose and IRI levels in the female HFD rats were greater than those in the male HFD rats. Our findings suggest that PEE enhances the susceptibility to MS induced by HFD in a sex-specific manner, which might be primarily associated with the neuroendocrine metabolic programming by PEE. PMID:26631430

  12. Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome.

    PubMed

    Draberova, Lubica; Paulenda, Tomas; Halova, Ivana; Potuckova, Lucie; Bugajev, Viktor; Bambouskova, Monika; Tumova, Magda; Draber, Petr

    2015-01-01

    Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of Fc

  13. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  14. Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes

    PubMed Central

    Montoro, A.; Barquinero, J. F.; Almonacid, M.; Montoro, A.; Sebastià, N.; Verdú, G.; Sahuquillo, V.; Serrano, J.; Saiz, M.; Villaescusa, J. I.; Soriano, J. M.

    2011-01-01

    Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation. PMID:20981159

  15. A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles

    PubMed Central

    Arafat, M. M.; Haseeb, A. S. M. A.; Akbar, Sheikh A.

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346

  16. A selective ultrahigh responding high temperature ethanol sensor using TiO2 nanoparticles.

    PubMed

    Arafat, M M; Haseeb, A S M A; Akbar, Sheikh A

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.

  17. Chemical characterization of high-molar-mass fractions in a Norway spruce knotwood ethanol extract.

    PubMed

    Smeds, Annika I; Eklund, Patrik C; Willför, Stefan M

    2016-10-01

    The low-molar-mass (LMM) fraction, only, i.e., the GC-eluting compounds, which are mainly lignans, has been characterized in Norway spruce knotwood hydrophilic extracts previously. Of this fraction, many lignans and sesquilignans and all GC peaks supposedly representing dilignans remain unidentified. In this work, dilignans and the GC non-eluting compounds (the high-molar mass fractions, HMM) were characterized in a 7-hydroxymatairesinol-reduced knotwood ethanol extract of Norway spruce by using several fractionation and analytical techniques. A methyl tert-butyl ether (MTBE) insoluble fraction of the extract contained mainly HMM material, of which the main part was shown to consist of lignan oligomers. The oligolignans (with a molar mass up to approximately 3700 Da) seemed to be linked by 55' bonds, some of them containing one or two guaiacylglycerol ether units linked to the lignan by βO4 or β5 bonds. Several oligolignans were identified or tentatively identified. The MTBE soluble fraction, which accounted for the major part (81%) of the extract, contained mainly LMM material (lignans, sesqui- and dilignans). The part of the HMM material in the MTBE soluble fraction that was easily isolable (2%) seemed to contain polymers of fatty acids and alcohols, resin acids, and sterols. PMID:27256310

  18. High Ethanol Titers from Cellulose by Using Metabolically Engineered Thermophilic, Anaerobic Microbes ▿ † ‡

    PubMed Central

    Argyros, D. Aaron; Tripathi, Shital A.; Barrett, Trisha F.; Rogers, Stephen R.; Feinberg, Lawrence F.; Olson, Daniel G.; Foden, Justine M.; Miller, Bethany B.; Lynd, Lee R.; Hogsett, David A.; Caiazza, Nicky C.

    2011-01-01

    This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of both C. thermocellum and T. saccharolyticum. Fermentation of 92 g/liter Avicel by this coculture resulted in 38 g/liter ethanol, with acetic and lactic acids below detection limits, in 146 h. These results demonstrate that ethanol production by thermophilic, cellulolytic microbes is amenable to substantial improvement by metabolic engineering. PMID:21965408

  19. High-throughput acoustic separation of platelets from whole blood.

    PubMed

    Chen, Yuchao; Wu, Mengxi; Ren, Liqiang; Liu, Jiayang; Whitley, Pamela H; Wang, Lin; Huang, Tony Jun

    2016-09-21

    Platelets contain growth factors which are important in biomedical and clinical applications. In this work, we present an acoustic separation device for high-throughput, non-invasive platelet isolation. In particular, we separated platelets from whole blood at a 10 mL min(-1) throughput, which is three orders of magnitude greater than that of existing acoustic-based platelet separation techniques. Without sample dilution, we observed more than 80% RBC/WBC removal and platelet recovery. High throughput, high separation efficiency, and biocompatibility make this device useful for many clinical applications. PMID:27477388

  20. High-throughput acoustic separation of platelets from whole blood.

    PubMed

    Chen, Yuchao; Wu, Mengxi; Ren, Liqiang; Liu, Jiayang; Whitley, Pamela H; Wang, Lin; Huang, Tony Jun

    2016-09-21

    Platelets contain growth factors which are important in biomedical and clinical applications. In this work, we present an acoustic separation device for high-throughput, non-invasive platelet isolation. In particular, we separated platelets from whole blood at a 10 mL min(-1) throughput, which is three orders of magnitude greater than that of existing acoustic-based platelet separation techniques. Without sample dilution, we observed more than 80% RBC/WBC removal and platelet recovery. High throughput, high separation efficiency, and biocompatibility make this device useful for many clinical applications.

  1. The intrinsic and interactive effects of RO 15-4513 and ethanol on locomotor activity, body temperature, and blood glucose concentration

    SciTech Connect

    Wood, A.L.; Healey, P.A.; Menendez, J.A.; Verne, S.L.; Atrens, D.M. )

    1989-01-01

    The ability of the putative ethanol antagonist RO 15-4513 to antagonize ethanol-induced hypoactivity, hypothermia and hyperglycemia was investigated in rats. Although RO 15-4513 produced hypoactivity by itself, it attenuated ethanol-induced hypoactivity. This antagonism suggests that ethanol-induced hypoactivity is mediated by the GABA-benzodiazepine receptor complex which is thought to be the site of action of RO 15-4513. In contrast, although RO 15-4513 produced hypothermia by itself, it had no significant effect on ethanol-induced hypothermia. This suggests that the hypothermic effect of ethanol is not mediated by the GABA-benzodiazepine receptor complex. The fact that RO 15-4513, ethanol and the vehicle all produced hyperglycemia suggests a common stress effect and does not permit any firm conclusions to be drawn as to the interaction between ethanol and RO 15-4513 in modulating glycemic responses. These data indicate that the ethanol antagonism of RO 15-4513 is primarily confined to ethanol's behavioral effects and that ethanol's behavioral and physiological effects are mediated by neurochemically distinct mechanisms.

  2. Blood coagulation using High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc V.; Oh, Junghwan; Kang, Hyun Wook

    2014-03-01

    High Intensity Focused Ultrasound (HIFU) technology provides a feasible method of achieving thermal coagulation during surgical procedures. One of the potential clinical benefits of HIFU can induce immediate hemostasis without suturing. The objective of this study was to investigate the efficiency of a HIFU system for blood coagulation on severe vascular injury. ngHIFU treatment was implemented immediately after bleeding in artery. The ultrasound probe was made of piezoelectric material, generating a central frequency of 2.0 MHz as well as an ellipsoidal focal spot of 2 mm in lateral dimension and 10 mm in axial dimension. Acoustic coagulation was employed on a perfused chicken artery model in vitro. A surgical incision (1 to 2 mm long) was made with a scapel on the arterial wall, and heparinized autologous blood was made to leak out from the incision with a syringe pump. A total of 5 femoral artery incisions was treated with the HIFU beam. The intensity of 4500 W/cm2 at the focus was applied for all treatments. Complete hemostasis was achieved in all treatments, along with the treatment times of 25 to 50 seconds. The estimated intraoperative blood loss was from 2 to 5 mL. The proposed HIFU system may provide an effective method for immediate blood coagulation for arteries and veins in clinical applications.

  3. Consolidated bioprocessing (CBP) of AFEX™-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading.

    PubMed

    Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E

    2012-08-01

    Consolidated bioprocessing (CBP) using Clostridium phytofermentans (ATCC 700394) on ammonia fiber expansion (AFEX™)-treated corn stover (AFEX™-CS) at a low solids loading showed promising results [Jin et al. (2011) Biotechnol Bioeng 108(6): 1290-1297]. However, industrial relevant process requires high solids loading. Therefore, we studied high solids loading CBP performance on AFEX™-CS. The factors potentially affecting the performance including solids loading, CBP products acetate and ethanol, and degradation products resulting from pretreatment were investigated. At 4% (w/w) glucan loading, C. phytofermentans performed well on AFEX™-CS with no nutrients supplementation and reached similar sugar conversions as a fermentation with nutrients supplementation. A glucan conversion of 48.9% and a xylan conversion of 77.9% were achieved after 264 h with 7.0 g/L ethanol and 8.8 g/L acetate produced. Relatively high concentrations of acetate produced at high solids loading was found to be the major factor limiting the CBP performance. Degradation products in AFEX™-CS helped enhance ethanol production.

  4. Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood Cholesterol,"…

  5. [High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw].

    PubMed

    Wang, Liang; Liu, Jianquan; Zhang, Zhe; Zhang, Feiyang; Ren, Junli; Sun, Fubao; Zhang, Zhenyu; Ding, Cancan; Lin, Qiaowen

    2015-10-01

    The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP.

  6. [High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw].

    PubMed

    Wang, Liang; Liu, Jianquan; Zhang, Zhe; Zhang, Feiyang; Ren, Junli; Sun, Fubao; Zhang, Zhenyu; Ding, Cancan; Lin, Qiaowen

    2015-10-01

    The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP. PMID:26964336

  7. Acute ethanol effects on focal cerebral ischemia in fasted rats.

    PubMed

    Zhao, Y J; Yang, G Y; Ben-Joseph, O; Ross, B D; Chenevert, T L; Domino, E F

    1998-05-01

    The effects of acute ethanol intoxication were investigated in a rat model of unilateral middle cerebral artery occlusion. Groups of 5 to 8 male Sprague-Dawley rats were subjected to 4 hr of left middle cerebral artery occlusion. All groups were deprived of food overnight and were pretreated intraperitoneally with 5% dextrose solution (10 ml/kg), 20% ethyl alcohol in 5% dextrose solution (2 g/kg), or 30% ethyl alcohol in a 5% dextrose solution (3 g/kg) 1 hr before middle cerebral artery occlusion. Regional cerebral blood flow during ipsilateral occlusion was approximately 9.1 to 10% of baseline in all groups. The mean % brain water content in control, 2 g/kg ethanol-treated groups, and 3 g/kg ethanol-treated groups were: in the ischemic core--81.6, 81.2, and 82.4; intermediate zone--80.5, 80.6, and 81.7; and outer zone--79.7, 79.7, and 80.8, respectively. Brain Na+ and K+ content in the three groups was related to water content, but much greater with ethanol pretreatment. The water content of the intermediate zones in the 3 g/kg ethanol-treated animals was significantly greater than in the control (p < 0.01 and 0.001) and the 2 g/kg ethanol-treated groups. One-way analysis of variance indicated a significant dose-effect relationship in which the lower dose of ethanol tended to reduce ischemic core water content, and the larger dose increased ischemic core water, compared with the control. None of the overnight fasted groups had any significant hyperglycemia. The group given 3 g/kg i.p. ethanol 1 hr before had exacerbated edema formation with a mean whole blood level of ethanol of approximately 230 mg/dl. The neurotoxic effects of high concentrations of ethanol were unrelated to any change in plasma glucose concentrations.

  8. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    PubMed

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.

  9. Ethanol poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  10. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability

    NASA Astrophysics Data System (ADS)

    Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan

    2016-10-01

    The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.

  11. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong; Zhou, Qing-Jun

    2016-06-01

    Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.

  12. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].

    PubMed

    Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie

    2010-07-01

    The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.

  13. Localized brain differences in Arc expression between mice showing low vs. high propensity to ethanol sensitization.

    PubMed

    Nona, Christina N; Lam, Marcus; Nobrega, José N

    2016-03-01

    Behavioral sensitization to ethanol (EtOH) manifests as a progressive and enduring increase in locomotor activity with repeated drug exposure. However, not all mice sensitize to EtOH and the neuronal mechanisms mediating vulnerability and resistance to EtOH sensitization remain unclear. We examined regional brain expression of the immediate early gene activity-regulated cytoskeleton-associated protein (Arc) in order to identify brain areas in which neuroplastic changes may contribute to the development and expression of EtOH sensitization. Male DBA/2J mice received 5 biweekly injections of EtOH (2.2g/kg, i.p.) or saline (SAL). They were categorized as high- (HS) or low-sensitized (LS) on the basis of final locomotor activity scores. In both LS and HS mice sacrificed after the last sensitization injection, Arc expression was decreased throughout the brain in comparison to SAL animals. A similar pattern was seen in mice sacrificed after an EtOH challenge two weeks after the last sensitization injection. However in this cohort, Arc expression was significantly increased in the central amygdala (CeA) in LS mice and in SAL mice receiving EtOH for the first time. No significant increases in Arc expression were seen in brains of sensitized (HS) animals. These results indicate an acute EtOH challenge results in different patterns of Arc expression in brains of LS, HS, and SAL mice. The dramatic increases in Arc expression in the CeA in LS and SAL mice showing little or no behavioral activation suggests that neural activity in this region may serve to inhibit the stimulant effects of EtOH. The observation that HS mice do not show increases in Arc expression with an EtOH challenge suggests the possibility that increased tolerance to the Arc-inducing effects of EtOH may be a factor in behavioral sensitization.

  14. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  15. Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews the current process technologies for fuel ethanol production. In the US, almost all commercial fuel ethanol is produced from corn whereas cane sugar is used almost exclusively in Brazil. In Europe, two major types of feedstock considered for fuel ethanol production are be...

  16. Construction and analysis of high-ethanol-producing fusants with co-fermentation ability through protoplast fusion and double labeling technology.

    PubMed

    Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang

    2014-01-01

    Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g-1, which compares with 0.240 g g-1 (W5) and 0.353 g g-1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.

  17. High speed optical holography of retinal blood flow.

    PubMed

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms. PMID:27472604

  18. High speed optical holography of retinal blood flow.

    PubMed

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms.

  19. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  20. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    PubMed

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  1. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels.

    PubMed

    Sreekumar, Sanil; Baer, Zachary C; Pazhamalai, Anbarasan; Gunbas, Gorkem; Grippo, Adam; Blanch, Harvey W; Clark, Douglas S; Toste, F Dean

    2015-03-01

    Clostridium acetobutylicum is a bacterial species that ferments sugar to a mixture of organic solvents (acetone, butanol and ethanol). This protocol delineates a methodology to combine solventogenic clostridial fermentation and chemical catalysis via extractive fermentation for the production of biofuel blendstocks. Extractive fermentation of C. acetobutylicum is operated in fed-batch mode with a concentrated feed solution (500 grams per liter glucose and 50 grams per liter yeast extract) for 60 h, producing in excess of 40 g of solvents (acetone, butanol and ethanol) between the completely immiscible extractant and aqueous phases of the bioreactor. After distillation of the extractant phase, the acetone, butanol and ethanol mixture is upgraded to long-chain ketones over a palladium-hydrotalcite (Pd-HT) catalyst. This reaction is generally carried out in batch with a high-pressure Q-tube for 20 h at 250 °C. Following this protocol enables the production of ∼0.5 g of high-value biofuel precursors from a 1.7-g portion of fermentation solvents.

  2. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper

    PubMed Central

    Elliston, Adam; Collins, Samuel R.A.; Wilson, David R.; Roberts, Ian N.; Waldron, Keith W.

    2013-01-01

    A fundamental goal of second generation ethanol production is to increase the ethanol concentration to 10% (v/v) or more to optimise distillation costs. Semi simultaneous saccharification and fermentations (SSSF) were conducted at small pilot scale (5 L) utilising fed-batch additions of solid shredded copier paper substrate. Early addition of Accellerase® 1500 at 16 FPU/g substrate and 30 U/g β-glucosidase followed by substrate only batch addition allowed low final equivalent enzyme concentrations to be achieved (3.7 FPU/g substrate) whilst maintaining digestion. Batch addition resulted in a cumulative substrate concentration equivalent to 65% (w/v). This in turn resulted in the production of high concentrations of ethanol (11.6% v/v). The success of this strategy relied on the capacity of the bioreactor to perform high shear mixing as required. Further research into the timing and number of substrate additions could lead to further improvement in overall yields from the 65.5% attained. PMID:23500568

  3. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    PubMed

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  4. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    SciTech Connect

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARS Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.

  5. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate.

    PubMed

    Yuangsaard, Napatchanok; Yongmanitchai, Wichien; Yamada, Mumoru; Limtong, Savitree

    2013-03-01

    Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH(4))(2)SO(4), 0.09 % yeast extract, 0.05 % KH(2)PO(4), and 0.05 % MgSO(4)·7H(2)O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield.

  6. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate.

    PubMed

    Yuangsaard, Napatchanok; Yongmanitchai, Wichien; Yamada, Mumoru; Limtong, Savitree

    2013-03-01

    Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH(4))(2)SO(4), 0.09 % yeast extract, 0.05 % KH(2)PO(4), and 0.05 % MgSO(4)·7H(2)O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield. PMID:23132277

  7. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance.

  8. Acute Ethanol Effects on Brain Activation in Low- and High-Level Responders to Alcohol

    PubMed Central

    Trim, Ryan S.; Simmons, Alan N.; Tolentino, Neil J.; Hall, Shana A.; Matthews, Scott C.; Robinson, Shannon K.; Smith, Tom L.; Padula, Claudia B.; Paulus, Martin P.; Tapert, Susan F.; Schuckit, Marc A.

    2013-01-01

    Background A low level of response (LR) to alcohol is an important endophenotype associated with an increased risk for alcoholism. However, little is known about how neural functioning may differ between individuals with low and high LRs to alcohol. This study examined whether LR group effects on neural activity varied as a function of acute alcohol consumption. Methods 30 matched high- and low-LR pairs (N=60 healthy young adults) were recruited from the University of California, San Diego and administered a structured diagnostic interview and laboratory alcohol challenge followed by two fMRI sessions under placebo and alcohol conditions, in randomized order. Task performance and BOLD response contrast to high relative to low working memory load in an event-related visual working memory (VWM) task was examined across 120 fMRI sessions. Results Both LR groups performed similarly on the VWM task across conditions. A significant LR group by condition interaction effect was observed in inferior frontal and cingulate regions, such that alcohol attenuated the LR group differences found under placebo (p<.05). The LR group by condition effect remained even after controlling for cerebral blood flow, age, and typical drinking quantity. Conclusions Alcohol had differential effects on brain activation for low and high LR individuals within frontal and cingulate regions. These findings represent an additional step in the search for physiological correlates of a low LR, and identify brain regions that may be associated with the low LR response. PMID:20477775

  9. Acceleration of the rate of ethanol fermentation by addition of nitrogen in high tannin grain sorghum

    SciTech Connect

    Mullins, J.T.; NeSmith, C.C.

    1987-01-01

    In this communication, the authors show that accelerated rates of ethanol production, comparable to sorghum varieties containing low levels of tannins and to corn, can occur without the removal of the tannins. The basis of the inhibition appears to be a lack of sufficient nitrogen in the mash for protein synthesis required to support an accelerated fermentative metabolism in Saccharomyces. No inhibition of the enzymes used for starch hydrolysis was found.

  10. Impact of high temperature on ethanol fermentation by Kluyveromyces marxianus immobilized on banana leaf sheath pieces.

    PubMed

    Le, Hoang Du; Thanonkeo, Pornthap; Le, Van Viet Man

    2013-10-01

    Ethanol fermentation was carried out with Kluyveromyces marxianus cells at various temperatures (30, 35, 40, and 45 °C). Fermentation performance of the immobilized yeast on banana leaf sheath pieces and the free yeast were evaluated and compared. Generally, ethanol production of the immobilized and free yeast was stable in a temperature range of 30-40 °C. Temperature of 45 °C restricted yeast growth and lengthened the fermentation. The immobilized yeast demonstrated faster sugar assimilation and higher ethanol level in the fermentation broth in comparison with the free yeast at all fermentation temperatures. Change in fatty acid level in cellular membrane was determined to clarify the response of the free and immobilized yeast to thermal stress. The free cells of K. marxianus responded to temperature increase by increasing saturated fatty acid (C16:0 and C18:0) level and by decreasing unsaturated fatty acid (C18:1 and C18:2) level in cellular membrane. For fermentation at 40 °C with immobilized cells of K. marxianus, however, the changes were not observed in both saturated fatty acid (C16:0) and unsaturated fatty acid (C18:1 and C18:2) level.

  11. Northern contaminant mixtures induced morphological and functional changes in human coronary artery endothelial cells under culture conditions typifying high fat/sugar diet and ethanol exposure.

    PubMed

    Florian, Maria; Yan, Jin; Ulhaq, Saad; Coughlan, Melanie; Laziyan, Mahemuti; Willmore, William; Jin, Xiaolei

    2013-11-16

    It has been reported that Northern populations are exposed to mixtures of various environmental contaminants unique to the Arctic (Northern contaminant mixtures - NCM) at a large range of concentrations, depending on their geological location, age, lifestyle and dietary habits. To determine if these contaminants may contribute to a cardiovascular health risk, especially when combined with a high fat and sugar diet and ethanol exposure, we treated human coronary artery endothelial cells (HCAEC) with two mixtures of 4 organic (NCM1) or 22 organic and inorganic (NCM2) chemicals detected in Northerners' blood during 2004-2005 in the presence or absence of low-density lipoprotein (1.5mg/ml), very-low-density lipoprotein (1.0mg/ml) and glucose (10mmol/L) (LVG), and in the absence or presence of 0.1% ethanol. After 24h of exposure, cell morphology and markers of cytotoxicity and endothelial function were examined. NCM1 treatment did not affect cell viability, but increased cell size, disrupted cell membrane integrity, and decreased cell density, uptake of small peptides, release of endothelin-1 (ET-1) and plasminogen activator inhibitor (PAI), while causing no changes in endothelial nitric oxide synthase (eNOS) protein expression and nitric oxide (NO) release. In contrast, NCM2 decreased cell viability, total protein yield, uptake of small peptides, eNOS protein expression, and NO release and caused membrane damage, but caused no changes in the secretion of ET-1, prostacyclin and PAI. The presence of LVG and/or alcohol did or did not influence the effects of NCM1 or NCM2 depending on the endpoint and the mixture examined. These results suggested that the effects of one or one group of contaminants may be altered by the presence of other contaminants, and that with or without the interaction of high fat and sugar diet and/or ethanol exposure, NCMs at the concentrations used caused endothelial dysfunction in vitro. It remains to be investigated if these effects of NCMs also

  12. Ethanol tolerance in bacteria.

    PubMed

    Ingram, L O

    1990-01-01

    The adverse effects of ethanol on bacterial growth, viability, and metabolism are caused primarily by ethanol-induced leakage of the plasma membrane. This increase in membrane leakage is consistent with known biophysical properties of membranes and ethanolic solutions. The primary actions of ethanol result from colligative effects of the high molar concentrations rather than from specific interactions with receptors. The ethanol tolerance of growth in different microorganisms appears to result in large part from adaptive and evolutionary changes in cell membrane composition. Different cellular activities vary in their tolerance to ethanol. Therefore, it is essential that the aspect of cellular function under study be specifically defined and that comparisons of ethanol tolerance among systems share this common definition. Growth is typically one of the most sensitive cellular activities to inhibition by ethanol, followed by survival, or loss of reproductive ability. Glycolysis is the most resistant of these three activities. Since glycolysis is an exergonic process, a cell need not be able to grow or remain viable for glycolysis to occur.

  13. 'White Coat' High Blood Pressure May Signal Trouble in Older People

    MedlinePlus

    ... news/fullstory_161774.html 'White Coat' High Blood Pressure May Signal Trouble in Older People Researchers found ... suggests. White coat hypertension refers to high blood pressure readings in a doctor's office or other medical ...

  14. Percentage of Adults with High Blood Pressure Whose Hypertension Is Adequately Controlled

    MedlinePlus

    ... is Adequately Controlled Percentage of Adults with High Blood Pressure Whose Hypertension is Adequately Controlled Heart disease ... Survey. Age Group Percentage of People with High Blood Pressure that is Controlled by Age Group f94q- ...

  15. Highly Active Iridium/Iridium Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction

    SciTech Connect

    Du W.; Su D.; Wang Q.; Saxner D.; Deskins N.A.; Krzanowski J.E.; Frenkel A.I.; Teng X.

    2011-08-03

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC

  16. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  17. Talk with Your Health Care Provider about High Blood Pressure

    MedlinePlus

    ... mean? Blood pressure is measured by two numbers. systolic pressure 120 80 diastolic pressure Your provider will ... 120 over 80” The first (or top) number—“systolic”—is the pressure in your blood vessels when ...

  18. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  19. Ethanol induces human red cell shape transformations and enhanced ligand-mediated agglutinability

    SciTech Connect

    Weinstein, R.S.; McLawhon, R.W.; Marikovsky, Y.

    1986-03-01

    Ethanol concentrations are markedly elevated in rat stomach wall when ulcerogenic doses of 100 % ethanol (2 ml for 5 to 10 minutes) are instilled in rat gastric lumen. The authors observed that red cells in gastric mucosal postcapillary venules become spiculated and interadherent under these conditions. The authors have now studied this phenomenon in vitro using washing human red cells. Concentrations of high grade ethanol ranging from 2 to 10% (v/v) in physiological buffered saline (pH 7.3) without Ca/sup + +/ or Mg/sup + +/ at 25/sup 0/C rapidly transformed human red cells into spiculated forms. 2% ethanol transformed human red cells into disco-echinocytes in 15 min. whereas 10% ethanol transformed red blood cells into echinocytes within 3 min. Washing out of ethanol at 1 hour reverted the echinocytes into discocytes. However, following 3 hours of incubation in 10% ethanol washing out of ethanol produced stomatocytes. The ethanol-induced echinocytic shape transformations were accompanied by a dose-related increase in red cell agglutinability with poly-L-lysine or the plant lectin wheat germ agglutinin. The enhanced agglutinability was reversed by restoring the red cell shape changes and alterations in surface properties may play a role in the pathogenesis of ethanol-induced gastric ulcers.

  20. Ethanol Causes Protein Precipitation—New Safety Issues for Catheter Locking Techniques

    PubMed Central

    Schilcher, Gernot; Schlagenhauf, Axel; Schneditz, Daniel; Scharnagl, Hubert; Ribitsch, Werner; Krause, Robert; Rosenkranz, Alexander R.; Stojakovic, Tatjana; Horina, Joerg H.

    2013-01-01

    Objective The ethanol lock technique has shown great potential to eradicate organisms in biofilms and to treat or prevent central venous catheter related infections. Following instillation of ethanol lock solution, however, the inherent density gradient between blood and ethanol causes gravity induced seepage of ethanol out of the catheter and blood influx into the catheter. Plasma proteins so are exposed to highly concentrated ethanol, which is a classic agent for protein precipitation. We aimed to investigate the precipitating effect of ethanol locks on plasma proteins as a possible cause for reported catheter occlusions. Methods Plasma samples were exposed in-vitro to ethanol (concentrations ranging from 7 to 70 v/v%) and heparin lock solutions. In catheter studies designed to mimic different in-vivo situations, the catheter tip was placed in a plasma reservoir and the material contained within the catheter was analyzed after ethanol lock instillation. The samples underwent standardized investigation for protein precipitation. Results Protein precipitation was observed in plasma samples containing ethanol solutions above a concentration of 28%, as well as in material retrieved from vertically positioned femoral catheters and jugular (subclavian) catheters simulating recumbent or head down tilt body positions. Precipitates could not be re-dissolved by dilution with plasma, urokinase or alteplase. Plasma samples containing heparin lock solutions showed no signs of precipitation. Conclusions Our in-vitro results demonstrate that ethanol locks may be associated with plasma protein precipitation in central venous catheters. This phenomenon could be related to occlusion of vascular access devices locked with ethanol, as has been reported. Concerns should be raised regarding possible complications upon injection or spontaneous gravity induced leakage of such irreversibly precipitated protein particles into the systemic circulation. We suggest limiting the maximum

  1. Effects of fenfluramine, 8-OH-DPAT, and tryptophan-enriched diet on the high-ethanol intake by rats bred for susceptibility to stress.

    PubMed

    West, Charles H K; Boss-Williams, Katherine A; Weiss, Jay M

    2011-12-01

    The swim-test susceptible (SUS) line of rats has been bred in our laboratory for the characteristic of reduced motor activity in the swim test following exposure to an acute stressor. Testing of multiple generations of SUS rats has also revealed that they consume large amounts of ethanol voluntarily. As reported for lines of rats that show a propensity for high-ethanol intake, the SUS rats show evidence of low serotonergic function. Because serotonergic function has often been shown to be involved in the regulation of alcohol consumption, here we examined the effects of manipulations of serotonin transmission on intake of ethanol by SUS rats. Fenfluramine, a serotonin-releasing drug, was injected at various doses (0.625, 1.25, 2.5, and 5.0mg/kg) twice per day and ethanol intake was measured using a two-bottle free-choice method. The 8-OH-DPAT, a 5‑HT(1A) agonist, was injected at various doses (0.03125, 0.0625, 0.125, 0.25, 0.5, and 1.0mg/kg) before a 1-h session of exposure to ethanol (single-bottle test, water available the other 23h per day). A diet enriched with 3% tryptophan (TRP), the amino acid precursor for serotonin synthesis, was administered in a restricted feeding schedule (5h per day) with ethanol intake measured the last 4h. Fenfluramine decreased ethanol intake at all doses tested. The 8-OH-DPAT increased ethanol intake at lower doses, presumably acting at autoreceptors, which inhibit serotonergic neurons, and decreased intake at higher doses, presumably acting at postsynaptic 5-HT(1A) receptors. TRP-enriched diet also significantly decreased ethanol intake. Food and water intake were less or unaffected by these three manipulations. With all three manipulations, ethanol intake remained suppressed one or more days after the day of tests that decreased ethanol intake. These data suggest that SUS rats, like many other lines/strains of rodents that consume large amounts of alcohol, show an inverse relationship between serotonin transmission and

  2. Effects of fenfluramine, 8-OH-DPAT, and tryptophan-enriched diet on the high-ethanol intake by rats bred for susceptibility to stress.

    PubMed

    West, Charles H K; Boss-Williams, Katherine A; Weiss, Jay M

    2011-12-01

    The swim-test susceptible (SUS) line of rats has been bred in our laboratory for the characteristic of reduced motor activity in the swim test following exposure to an acute stressor. Testing of multiple generations of SUS rats has also revealed that they consume large amounts of ethanol voluntarily. As reported for lines of rats that show a propensity for high-ethanol intake, the SUS rats show evidence of low serotonergic function. Because serotonergic function has often been shown to be involved in the regulation of alcohol consumption, here we examined the effects of manipulations of serotonin transmission on intake of ethanol by SUS rats. Fenfluramine, a serotonin-releasing drug, was injected at various doses (0.625, 1.25, 2.5, and 5.0mg/kg) twice per day and ethanol intake was measured using a two-bottle free-choice method. The 8-OH-DPAT, a 5‑HT(1A) agonist, was injected at various doses (0.03125, 0.0625, 0.125, 0.25, 0.5, and 1.0mg/kg) before a 1-h session of exposure to ethanol (single-bottle test, water available the other 23h per day). A diet enriched with 3% tryptophan (TRP), the amino acid precursor for serotonin synthesis, was administered in a restricted feeding schedule (5h per day) with ethanol intake measured the last 4h. Fenfluramine decreased ethanol intake at all doses tested. The 8-OH-DPAT increased ethanol intake at lower doses, presumably acting at autoreceptors, which inhibit serotonergic neurons, and decreased intake at higher doses, presumably acting at postsynaptic 5-HT(1A) receptors. TRP-enriched diet also significantly decreased ethanol intake. Food and water intake were less or unaffected by these three manipulations. With all three manipulations, ethanol intake remained suppressed one or more days after the day of tests that decreased ethanol intake. These data suggest that SUS rats, like many other lines/strains of rodents that consume large amounts of alcohol, show an inverse relationship between serotonin transmission and

  3. Nursing Education in High Blood Pressure Control. Report of the Task Force on the Role of Nursing in High Blood Pressure Control.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    This curriculum guide on high blood pressure (hypertension) for nursing educators has five sections: (1) Introduction and Objectives provides information regarding the establishment and objectives of the National Task Force on the Role of Nursing in High Blood Pressure Control and briefly discusses nursing's role in hypertension control; (2) Goals…

  4. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  5. Ethanol production by engineered thermophiles.

    PubMed

    Olson, Daniel G; Sparling, Richard; Lynd, Lee R

    2015-06-01

    We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. PMID:25745810

  6. Major Risk Factors for Heart Disease: High Blood Cholesterol

    MedlinePlus

    ... lipoprotein profile test will also measure levels of triglycerides, another fatty substance in the blood. (See "What Are Triglycerides?" .) * Cholesterol levels are measured in milligrams (mg) of ...

  7. Prenatal ethanol exposure leads to greater ethanol-induced appetitive reinforcement.

    PubMed

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C

    2012-09-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of 'this effect of prenatal ethanol on the sensitivity to ethanol's reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol's aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30-45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance.

  8. Gene specific modifications unravel ethanol and acetaldehyde actions

    PubMed Central

    Israel, Yedy; Rivera-Meza, Mario; Karahanian, Eduardo; Quintanilla, María E.; Tampier, Lutske; Morales, Paola; Herrera-Marschitz, Mario

    2013-01-01

    Ethanol is metabolized into acetaldehyde mainly by the action of alcohol dehydrogenase in the liver, while mainly by the action of catalase in the brain. Aldehyde dehydrogenase-2 metabolizes acetaldehyde into acetate in both organs. Gene specific modifications reviewed here show that an increased liver generation of acetaldehyde (by transduction of a gene coding for a high-activity liver alcohol dehydrogenase ADH1*B2) leads to increased blood acetaldehyde levels and aversion to ethanol in animals. Similarly aversive is an increased acetaldehyde level resulting from the inhibition of liver aldehyde dehydrogenase-2 (ALDH2) synthesis (by an antisense coding gene against aldh2 mRNA). The situation is diametrically different when acetaldehyde is generated in the brain. When the brain ventral tegmental area (VTA) is endowed with an increased ability to generate acetaldehyde (by transfection of liver rADH) the reinforcing effects of ethanol are increased, while a highly specific inhibition of catalase synthesis (by transduction of a shRNA anti catalase mRNA) virtually abolishes the reinforcing effects of ethanol as seen by a complete abolition of ethanol intake in rats bred for generations as high ethanol drinkers. Data shows two divergent effects of increases in acetaldehyde generation: aversive in the periphery but reinforcing in the brain. PMID:23847486

  9. Low-potential synthesis of "clean" Au nanodendrites and their high performance toward ethanol oxidation.

    PubMed

    Feng, Jiu-Ju; Li, Ao-Qi; Lei, Zhen; Wang, Ai-Jun

    2012-05-01

    The shape control of Au nanocrystals is crucial to their catalytic applications and optical properties. Well-defined Au nanodendrites (NDs) have been prepared on a glassy carbon electrode using low-potential synthesis, assisted by ethylenediamine (EDA). The effects of applied potential, deposition time, and HAuCl(4) (or EDA) concentrations on the morphology of the Au deposits are discussed in our work. The growth mechanism can be explained by a two-staged growth of dendrites: initial branching and subsequent dendritic growth. The Au NDs exhibits superior catalytic performance toward ethanol oxidation, in comparison with the polycrystalline Au nanoparticles. The simple and facile synthetic technique can be applied to the construction of other metals with complex hierarchical structures on a large-scale.

  10. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing.

    PubMed

    Charoensopharat, Kanlayani; Thanonkeo, Pornthap; Thanonkeo, Sudarat; Yamada, Mamoru

    2015-07-01

    Thermotolerant inulin-utilizing yeast strains were successfully isolated in this study. Among the isolated strains, Kluyveromyces marxianus DBKKU Y-102 was found to be the most effective strain for direct ethanol fermentation at high temperature from fresh Jerusalem artichoke (JA) tubers without inulin hydrolysis under consolidated bioprocessing (CBP). The maximum ethanol concentrations produced by this strain under the optimum culture conditions were 104.83 and 97.46 g L(-1) at 37 and 40 °C, respectively. Data from this study clearly demonstrated that the use of thermotolerant inulin-utilizing yeast K. marxianus for ethanol production from fresh JA tubers in the CBP process not only provided high levels of ethanol, but also could eliminate the addition of external enzyme for inulin hydrolysis, which might lead to the reduction of operating costs. The expression of genes involved in carbohydrate metabolism in K. marxianus DBKKU Y-102 during ethanol fermentation was investigated by real-time RT-PCR, and the results revealed that expression levels were distinctive depending on the growth phase and growth conditions. However, among the genes tested, adh4 and tdh2 were highly expressed under high temperature conditions in both exponential- and stationary-growth phases, suggesting that these genes might play a crucial role in acquiring thermotolerance ability in this organism under stress conditions.

  11. Identification of highly active flocculant proteins in bovine blood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine blood is an excellent flocculating agent, faster acting and as effective on a mass basis as polyacrylamide, the most widely utilized polymeric flocculant. To determine the molecular basis of flocculation activity, whole bovine blood (BB) and BB plasma were fractionated by size exclusion chro...

  12. Single phase flow characteristics of FC-72 and ethanol in high aspect ratio rectangular mini- and micro-channels

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Wang, Zhen-guo

    2016-11-01

    Single phase flow friction factor of FC-72 and ethanol in mini-and micro-channels are experimentally investigated in the present study. High aspect ratio3 rectangular channels are selected, the hydraulic diameters of which are 571 µm, 762 µm and 1454 µm, and the aspect ratios are 20, 20 and 10 respectively. Degassed ethanol and FC-72 are used as working fluids. All the friction factors acquired in the 571 µm and 762 µm channels agree with the conventional friction theory within  ±20%–±25%. In the 1454 µm channel, however, deviations from the conventional theory occur and a modified empirical correlation of friction factor as a function of Reynolds number is proposed. Early transition from laminar to transitional flow is captured. Besides, effects of liquid physical properties are discussed. Lower viscosity and higher liquid density are responsible for the higher friction factor of FC-72. The influence of liquid properties weakens as the Reynolds number increases.

  13. Bivariate and multivariate analyses of the influence of blood variables of patients submitted to Roux-en-Y gastric bypass on the stability of erythrocyte membrane against the chaotropic action of ethanol.

    PubMed

    de Arvelos, Leticia Ramos; Rocha, Vanessa Custódio Afonso; Felix, Gabriela Pereira; da Cunha, Cleine Chagas; Bernardino Neto, Morun; da Silva Garrote Filho, Mario; de Fátima Pinheiro, Conceição; Resende, Elmiro Santos; Penha-Silva, Nilson

    2013-03-01

    The stability of the erythrocyte membrane, which is essential for the maintenance of cell functions, occurs in a critical region of fluidity, which depends largely on its composition and the composition and characteristics of the medium. As the composition of the erythrocyte membrane is influenced by several blood variables, the stability of the erythrocyte membrane must have relations with them. The present study aimed to evaluate, by bivariate and multivariate statistical analyses, the correlations and causal relationships between hematologic and biochemical variables and the stability of the erythrocyte membrane against the chaotropic action of ethanol. The validity of this type of analysis depends on the homogeneity of the population and on the variability of the studied parameters, conditions that can be filled by patients who undergo bariatric surgery by the technique of Roux-en-Y gastric bypass since they will suffer feeding restrictions that have great impact on their blood composition. Pathway analysis revealed that an increase in hemoglobin leads to decreased stability of the cell, probably through a process mediated by an increase in mean corpuscular volume. Furthermore, an increase in the mean corpuscular hemoglobin (MCH) leads to an increase in erythrocyte membrane stability, probably because higher values of MCH are associated with smaller quantities of red blood cells and a larger contact area between the cell membrane and ethanol present in the medium.

  14. DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L-1) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration

    DOE PAGES

    Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.; Nelson, Robert; Tao, Ling; Zhang, Min; Tucker, Melvin P.

    2016-04-01

    Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L-1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L-1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less

  15. Influence of fiber degradation and concentration of fermentable sugars on simultaneous saccharification and fermentation of high-solids spruce slurry to ethanol

    PubMed Central

    2013-01-01

    Background Saccharification and fermentation of pretreated lignocellulosic materials, such as spruce, should be performed at high solids contents in order to reduce the cost of the produced bioethanol. However, this has been shown to result in reduced ethanol yields or a complete lack of ethanol production. Previous studies have shown inconsistent results when prehydrolysis is performed at a higher temperature prior to the simultaneous saccharification and fermentation (SSF) of steam-pretreated lignocellulosic materials. In some cases, a significant increase in overall ethanol yield was reported, while in others, a slight decrease in ethanol yield was observed. In order to investigate the influence of prehydrolysis on high-solids SSF of steam-pretreated spruce slurry, in the present study, the presence of fibers and inhibitors, degree of fiber degradation and initial fermentable sugar concentration has been studied. Results SSF of whole steam-pretreated spruce slurry at a solids content of 13.7% water-insoluble solids (WIS) resulted in a very low overall ethanol yield, mostly due to poor fermentation. The yeast was, however, able to ferment the washed slurry and the liquid fraction of the pretreated slurry. Performing prehydrolysis at 48°C for 22 hours prior to SSF of the whole pretreated slurry increased the overall ethanol yield from 3.9 to 62.1%. The initial concentration of fermentable sugars in SSF could not explain the increase in ethanol yield in SSF with prehydrolysis. Although the viscosity of the material did not appear to decrease significantly during prehydrolysis, the degradation of the fibers prior to the addition of the yeast had a positive effect on ethanol yield when using whole steam-pretreated spruce slurry. Conclusions The results of the present study suggest that the increase in ethanol yield from SSF when performing prehydrolysis is a result of fiber degradation rather than a decrease in viscosity. The increased concentration of fermentable

  16. Process for producing ethanol

    SciTech Connect

    Lantero, O.J.; Fish, J.J.

    1993-07-27

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  17. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    PubMed Central

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  18. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst

    PubMed Central

    2016-01-01

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni–Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources.

  19. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst

    PubMed Central

    2016-01-01

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni–Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources. PMID:27610415

  20. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst.

    PubMed

    Dai, Lei; Qin, Qing; Zhao, Xiaojing; Xu, Chaofa; Hu, Chengyi; Mo, Shiguang; Wang, Yu Olivia; Lin, Shuichao; Tang, Zichao; Zheng, Nanfeng

    2016-08-24

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni-Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources. PMID:27610415

  1. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  2. Lifelong ethanol consumption and brain regional GABAA receptor subunit mRNA expression in alcohol-preferring rats.

    PubMed

    Sarviharju, Maija; Hyytiä, Petri; Hervonen, Antti; Jaatinen, Pia; Kiianmaa, Kalervo; Korpi, Esa R

    2006-11-01

    Brain regional gamma-aminobutyric acid type A (GABAA) receptor subunit mRNA expression was studied in ethanol-preferring AA (Alko, Alcohol) rats after moderate ethanol drinking for up to 2 years of age. In situ hybridization with oligonucleotide probes specific for 13 different subunits was used with coronal cryostat sections of the brains. Selective alterations were observed by ethanol exposure and/or aging in signals for several subunits. Most interestingly, the putative highly ethanol-sensitive alpha4 and beta3 subunit mRNAs were significantly decreased in several brain regions. The age-related alterations in alpha4 subunit expression were parallel to those caused by lifelong ethanol drinking, whereas aging had no significant effect on beta3 subunit expression. The results suggest that prolonged ethanol consumption leading to blood concentrations of about 10 mM may downregulate the mRNA expression of selected GABAA receptor subunits and that aging might have partly similar effects.

  3. High Blood Cholesterol: What You Need to Know

    MedlinePlus

    ... keep cholesterol from building up in the arteries Triglycerides--another form of fat in your blood If ... help to lower your risk for heart disease. Triglycerides can also raise heart disease risk. Levels that ...

  4. Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol.

    PubMed

    Watanabe, Takashi; Srichuwong, Sathaporn; Arakane, Mitsuhiro; Tamiya, Seiji; Yoshinaga, Masaru; Watanabe, Itsuki; Yamamoto, Mami; Ando, Akira; Tokuyasu, Ken; Nakamura, Toshihide

    2010-12-01

    Highly concentrated bioethanol production requires less volume in fermentation tanks and conserves distillery energy. We screened osmotolerant yeasts from a collection of 1699 yeast strains at our institute and found that three strains, NFRI3062, NFRI3213, and NFRI3225, were candidates for use in bioethanol production. All of these strains belonged to Saccharomyces cerevisiae. NFRI3062 produced 15.0% (w/v) of ethanol from YPD medium containing 35% glucose cultivated at 30 degrees C for 60 h, while S. cerevisiae NBRC0224, which has previously been reported suitable for ethanol production, only produced 13.0% (w/v). The thermotolerances of NFRI3213 and NFRI3225 were also superior to those of NBRC0224 and NFRI3062. We also demonstrated the simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash and sweet-potato mash. NFRI3225 produced ethanol from potato mash at the fastest rate and in the highest volume (13.7% (w/v)) among the tested strains. The maximum productivity and ethanol yields were 9.1g/L/h and 92.3%, respectively. Although the potato mash was not sterilized, bacterial contamination was not observed. This may have been due to the growth inhibition of bacteria by the rapid glucose consumption and ethanol production of NFRI3225 during the VHG-SSF process.

  5. Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol.

    PubMed

    Watanabe, Takashi; Srichuwong, Sathaporn; Arakane, Mitsuhiro; Tamiya, Seiji; Yoshinaga, Masaru; Watanabe, Itsuki; Yamamoto, Mami; Ando, Akira; Tokuyasu, Ken; Nakamura, Toshihide

    2010-12-01

    Highly concentrated bioethanol production requires less volume in fermentation tanks and conserves distillery energy. We screened osmotolerant yeasts from a collection of 1699 yeast strains at our institute and found that three strains, NFRI3062, NFRI3213, and NFRI3225, were candidates for use in bioethanol production. All of these strains belonged to Saccharomyces cerevisiae. NFRI3062 produced 15.0% (w/v) of ethanol from YPD medium containing 35% glucose cultivated at 30 degrees C for 60 h, while S. cerevisiae NBRC0224, which has previously been reported suitable for ethanol production, only produced 13.0% (w/v). The thermotolerances of NFRI3213 and NFRI3225 were also superior to those of NBRC0224 and NFRI3062. We also demonstrated the simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash and sweet-potato mash. NFRI3225 produced ethanol from potato mash at the fastest rate and in the highest volume (13.7% (w/v)) among the tested strains. The maximum productivity and ethanol yields were 9.1g/L/h and 92.3%, respectively. Although the potato mash was not sterilized, bacterial contamination was not observed. This may have been due to the growth inhibition of bacteria by the rapid glucose consumption and ethanol production of NFRI3225 during the VHG-SSF process. PMID:20705456

  6. Dynamic evaluation and control of blood clotting using a microfluidic platform for high-throughput diagnostics

    NASA Astrophysics Data System (ADS)

    Combariza, Miguel E.; Yu, Xinghuo; Nesbitt, Warwick; Tovar-Lopez, Francisco; Rabus, Dominik G.; Mitchell, Arnan

    2015-12-01

    Microfluidic technology has the potential to revolutionise blood-clotting diagnostics by incorporating key physiological blood flow conditions like shear rate. In this paper we present a customised dynamic microfluidic system, which evaluates the blood clotting response to multiple conditions of shear rate on a single microchannel. The system can achieve high-throughput testing through use of an advanced fluid control system, which provides with rapid and precise regulation of the blood flow conditions in the platform. We present experimental results that demonstrate the potential of this platform to develop into a high-throughput, low-cost, blood-clotting diagnostics device.

  7. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    PubMed

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling.

  8. One-pot hydrothermal synthesis of heterostructured ZnO/ZnS nanorod arrays with high ethanol-sensing properties.

    PubMed

    Gao, Peng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Wang, Xiaona; Zhang, Guoli

    2012-04-10

    ZnO/ZnS heterostructured nanorod arrays with uniform diameter and length were synthesized from zinc substrates in a one-pot procedure by using a simple hydrothermal method. Structural characterization by HRTEM indicated that the heterostructured nanorods were composed of parallel segments of wurtzite-type ZnO and zinc-blende ZnS, with a distinct interface along the axial direction, which revealed the epitaxial relationship, ZnO (1010) and ZnS (111). The as-prepared ZnO/ZnS nanorods showed only two green emissions at around 523 nm and 576 nm. We also found that the nanorods exhibited high sensitivity to ethanol at relatively low temperatures, owing to their smaller size and structure.

  9. Effect of thymoquinone on ethanol and high fat diet induced chronic pancreatitis--a dose response study in rats.

    PubMed

    Suguna, Periyanayagam; Geetha, Arumugam; Aruna, Ravikumar; Siva, Ganesan Vijaiyan

    2013-04-01

    A significant increase in serum lipase, amylase, capase-1 and myeloperoxidase activities, oxidative stress index (OSI), IL-1beta and IL-18 was observed in rats receiving ethanol (EtOH) and high fat diet (HFD). Thymoquinone (TQ) supplementation along with EtOH and HFD significantly decreased the levels of serum lipase, amylase, capase-1, myeloperoxidase, OSI and maintained the antioxidant status when compared to untreated EtOH and HFD fed rats. Among the 4 doses, 100 mg of TQ/kg body weight was found to provide optimum protective effect on pancreas against EtOH and HFD induced abnormal changes. Histological observations added more evidence for the anti-inflammatory effect of TQ.

  10. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse.

    PubMed

    Carnicella, Sebastien; Ron, Dorit; Barak, Segev

    2014-05-01

    One of the major challenges in preclinical studies of alcohol abuse and dependence remains the development of paradigms that will elicit high ethanol intake and mimic the progressive transition from low or moderate social drinking to excessive alcohol consumption. Exposure of outbred rats to repeated cycles of free-choice ethanol intake and withdrawal with the use of intermittent access to 20% ethanol in a 2-bottle choice procedure (IA2BC) has been shown to induce a gradual escalation of voluntary ethanol intake and preference, eventually reaching ethanol consumption levels of 5-6 g/kg/24 h, and inducing pharmacologically relevant blood ethanol concentrations (BECs). This procedure has recently been gaining popularity due to its simplicity, high validity, and reliable outcomes. Here we review experimental and methodological data related to IA2BC, and discuss the usefulness and advantages of this procedure as a valuable pre-training method for initiating operant ethanol self-administration of high ethanol intake, as well as conditioned place preference (CPP). Despite some limitations, we provide evidence that IA2BC and related operant procedures provide the possibility to operationalize multiple aspects of alcohol abuse and addiction in a rat model, including transition from social-like drinking to excessive alcohol consumption, binge drinking, alcohol seeking, relapse, and neuroadaptations related to excessive alcohol intake. Hence, IA2BC appears to be a useful and relevant procedure for preclinical evaluation of potential therapeutic approaches against alcohol abuse disorders.

  11. Ethanol labeling: detection of early fluid absorption in endometrial resection.

    PubMed

    Duffy, S; Cruise, M; Reilly, C; Reid, P C; Sharp, F

    1992-02-01

    A study is presented of ethanol labeling of irrigation fluid in endometrial resection. The introduction of ethanol labeling and intraoperative breath ethanol analysis provided an inexpensive and potentially useful means of detecting early fluid absorption during uterine surgery. The breath ethanol analyzer used was a hand-held meter; the irrigant solution was 5% dextrose with 1% ethanol. Simultaneous breath and venous samples were taken from women undergoing endometrial resection. An increase in breath ethanol was positively correlated with fluid absorption, blood ethanol, and serum glucose. This technique may prove valuable in preventing fluid overload during endometrial resection.

  12. Longitudinal Assessment of High Blood Pressure in Children with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Schwimmer, Jeffrey B.; Zepeda, Anne; Newton, Kimberly P.; Xanthakos, Stavra A.; Behling, Cynthia; Hallinan, Erin K.; Donithan, Michele; Tonascia, James

    2014-01-01

    Objective Nonalcoholic fatty liver disease (NAFLD) affects 9.6% of children and may put these children at elevated risk of high blood pressure and subsequent cardiovascular morbidity and mortality. Therefore, we sought to determine the prevalence of and risk factors for high blood pressure in children with NAFLD. Methods Cohort study performed by the NIDDK NASH Clinical Research Network. There were 484 children with NAFLD ages 2 to 17 at enrollment; 382 children were assessed both at enrollment and 48 weeks afterwards. The main outcomes were high blood pressure at baseline and persistent high blood pressure at both baseline and 48 weeks. Results Prevalence of high blood pressure at baseline was 35.8% and prevalence of persistent high blood pressure was 21.4%. Children with high blood pressure were significantly more likely to have worse steatosis than children without high blood pressure (mild 19.8% vs. 34.2%, moderate 35.0% vs. 30.7%, severe 45.2% vs. 35.1%; P = 0.003). Higher body mass index, low-density lipoprotein, and uric acid were independent risk factors for high blood pressure (Odds Ratios: 1.10 per kg/m2, 1.09 per 10 mg/dL, 1.25 per mg/dL, respectively). Compared to boys, girls with NAFLD were significantly more likely to have persistent high blood pressure (28.4% vs.18.9%; P = 0.05). Conclusions In conclusion, NAFLD is a common clinical problem that places children at substantial risk for high blood pressure, which may often go undiagnosed. Thus blood pressure evaluation, control, and monitoring should be an integral component of the clinical management of children with NAFLD. PMID:25419656

  13. Endogenous ethanol 'auto-brewery syndrome' as a drunk-driving defence challenge.

    PubMed

    Logan, B K; Jones, A W

    2000-07-01

    The concentration of ethanol in blood, breath or urine constitutes important evidence for prosecuting drunk drivers. For various reasons, the reliability of the results of forensic alcohol analysis are often challenged by the defence. One such argument for acquittal concerns the notion that alcohol could be produced naturally in the body, hence the term 'auto-brewery' syndrome. Although yeasts such as Candida albicans readily produce ethanol in-vitro, whether this happens to any measurable extent in healthy ambulatory subjects is an open question. Over the years, many determinations of endogenous ethanol have been made, and in a few rare instances (Japanese subjects with very serious yeast infections) an abnormally high ethanol concentration (> 80 mg/dl) has been reported. In these atypical individuals, endogenous ethanol appeared to have been produced after they had eaten carbohydrate-rich foods. A particular genetic polymorphism resulting in reduced activity of enzymes involved in hepatic metabolism of ethanol and a negligible first-pass metabolism might explain ethnic differences in rates of endogenous ethanol production and clearance. Other reports of finding abnormally high concentrations of ethanol in body fluids from ostensibly healthy subjects suffer from deficiencies in study design and lack suitable control experiments or used non-specific analytical methods. With reliable gas chromatographic methods of analysis, the concentrations of endogenous ethanol in peripheral venous blood of healthy individuals, as well as those suffering from various metabolic disorders (diabetes, hepatitis, cirrhosis) ranged from 0-0.08 mg/dl. These concentrations are far too low to have any forensic or medical significance. The notion that a motorist's state of intoxication was caused by endogenously produced ethanol lacks merit.

  14. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  15. The human blood DNA methylome displays a highly distinctive profile compared with other somatic tissues.

    PubMed

    Lowe, Robert; Slodkowicz, Greg; Goldman, Nick; Rakyan, Vardhman K

    2015-01-01

    In mammals, DNA methylation profiles vary substantially between tissues. Recent genome-scale studies report that blood displays a highly distinctive methylomic profile from other somatic tissues. In this study, we sought to understand why blood DNA methylation state is so different to the one found in other tissues. We found that whole blood contains approximately twice as many tissue-specific differentially methylated positions (tDMPs) than any other somatic tissue examined. Furthermore, a large subset of blood tDMPs showed much lower levels of methylation than tDMPs for other tissues. Surprisingly, these regions of low methylation in blood show no difference regarding genomic location, genomic content, evolutionary rates, or histone marks when compared to other tDMPs. Our results reveal why blood displays a distinctive methylation profile relative to other somatic tissues. In the future, it will be important to study how these blood specific tDMPs are mechanistically involved in blood-specific functions.

  16. Construction and analysis of high-ethanol-producing fusants with co-fermentation ability through protoplast fusion and double labeling technology.

    PubMed

    Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang

    2014-01-01

    Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g-1, which compares with 0.240 g g-1 (W5) and 0.353 g g-1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively. PMID:25268957

  17. [Ethanol pharmacokinetics in narcotic action and endogenous ethanol in female rats].

    PubMed

    Andronova, L M; Ushakova, M M; Kudriavtsev, R V; Barkov, N K

    1982-12-01

    Experiments were made on female rats to demonstrate a positive correlation between the time of ethanol anesthesia in estrus and diestrus and (1) subsequent preference of ethanol to water (r = 0.68) and (2) ethanol consumption dosage (r = 0.72). In the same rats (during estrus and diestrus), the endogenous level and blood concentrations of ethanol were measured 30 minutes after administering the anesthetic dose (4.5 g/kg) and during the animal's "egress" from anesthesia. The low level of endogenous ethanol and rapid decrease of the blood ethanol concentration upon administering the anesthetic dose during estrus were characteristic of those female rats which, under the conditions of free choice, preferred ethanol to water and consumed it in large doses.

  18. A Mixture of Ethanol Extracts of Persimmon Leaf and Citrus junos Sieb Improves Blood Coagulation Parameters and Ameliorates Lipid Metabolism Disturbances Caused by Diet-Induced Obesity in C57BL/6J Mice.

    PubMed

    Kim, Ae Hyang; Kim, Hye Jin; Ryu, Ri; Han, Hye Jin; Han, Young Ji; Lee, Mi-Kyung; Choi, Myung-Sook; Park, Yong Bok

    2016-02-01

    This study investigated the effects of a flavonoid-rich ethanol extract of persimmon leaf (PL), an ethanol extract of Citrus junos Sieb (CJS), and a PL-CJS mixture (MPC) on mice fed a highfat diet (HFD). We sought to elucidate the mechanisms of biological activity of these substances using measurements of blood coagulation indices and lipid metabolism parameters. C57BL/6J mice were fed a HFD with PL (0.5% (w/w)), CJS (0.1% (w/w)), or MPC (PL 0.5%, CJS 0.1% (w/w)) for 10 weeks. In comparison with data obtained for mice in the untreated HFD group, consumption of MPC remarkably prolonged the activated partial thromboplastin time (aPTT) and prothrombin time (PT), whereas exposure to PL prolonged aPTT only. Lower levels of plasma total cholesterol, hepatic cholesterol, and erythrocyte thiobarbituric acid-reactive substances, hepatic HMG-CoA reductase, and decreased SREBP-1c gene expression were observed in mice that received PL and MPC supplements compared with the respective values detected in the untreated HFD animals. Our results indicate that PL and MPC may have beneficial effects on blood circulation and lipid metabolism in obese mice. PMID:26699754

  19. Simplified Enzymatic Upgrading of High-Acid Rice Bran Oil Using Ethanol as a Novel Acyl Acceptor.

    PubMed

    Li, Daoming; Wang, Weifei; Durrani, Rabia; Li, Xingxing; Yang, Bo; Wang, Yonghua

    2016-09-01

    One of the major challenges in the upgrading of high-acid rice bran oil (RBO) is to efficiently reduce the amount of free fatty acids. Here we report a novel method for upgrading high-acid RBO using ethanol as a novel acyl acceptor in combination with a highly selective lipase from Malassezia globosa (SMG1-F278N). This process enabled an unprecedented deacidification efficiency of up to 99.80% in a short time (6 h); the immobilized SMG1-F278N used in deacidification exhibited excellent operational stability and could be used for at least 10 consecutive batches without detectable loss in activity. Scale-up was performed under optimized conditions to verify the applicability of this process, and low-acid (0.08%) RBO with a high level of γ-oryzanol (27.8 g/kg) and γ-oryzanol accumulation fold (1.5) was obtained after molecular distillation at lower temperature (120 °C). Overall, we report a simplified and efficient procedure for the production of edible RBO from high-acid RBO. PMID:27571030

  20. Comparation of Hypolipidemic and Antioxidant Effects of Aqueous and Ethanol Extracts of Crataegus pinnatifida Fruit in High-Fat Emulsion-Induced Hyperlipidemia Rats

    PubMed Central

    Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Ren, Gang

    2016-01-01

    Background: Hawthorn (Crataegus pinnatifida) is a Chinese medicinal plant traditionally used in the treatment of hyperlipidemia. Recently, studies indicated free radical scavenging was one of the major pathways to alleviate hyperlipidemia. Moreover, hawthorn fruit is a rich source of phenols, which quench free radical and attenuate hyperlipidemia. However, the phenols vary with processing methods, especially solvent type. Objective: Our aim was to compare hypolipidemic and antioxidant effects of aqueous and ethanol extracts of hawthorn fruit in hyperlipidemia rats. Materials and Methods: After a 4-week treatment of high-fat emulsion, lipid profile levels and antioxidant levels of two extracts were determined using commercial analysis. Total phenols content in the extract of hawthorn fruit was determined colorimetrically by the Folin–Ciocalteu method. Results: Both ethanol and aqueous extracts of hawthorn fruit possessed hypolipidemic and antioxidant activities. Simultaneously, stronger activities were observed in ethanol extract. Besides, total phenols content in ethanol extract from the same quality of hawthorn fruit was 3.9 times more than that in aqueous extract. Conclusion: The obvious difference of hypolipidemic and antioxidant effects between ethanol extract and aqueous extract of hawthorn fruit was probably due to the presence of total phenols content, under the influence of extraction solvent. SUMMARY Ethanol extract of hawthorn fruit exhibited more favorable hypolipidemic and antioxidant effects than aqueous extract. The higher effects could be due to the higher content of total phenols that varies with extraction solvent. Abbreviations used: TC: Total cholesterol, TG: Triglyceride, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, GSH-Px: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, CAT: Catalase, NO: Nitric oxide, NOS: Nitric oxide synthase, SR-BI: Scavenger receptor Class B Type I PMID

  1. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    PubMed

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  2. Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

    NASA Astrophysics Data System (ADS)

    Georgieva, Tania I.; Hou, Xiaoru; Hilstrøm, Troels; Ahring, Birgitte K.

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

  3. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis.

  4. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis. PMID:27262537

  5. High Blood Pressure in Adolescents of Curitiba: Prevalence and Associated Factors

    PubMed Central

    Bozza, Rodrigo; de Campos, Wagner; Barbosa Filho, Valter Cordeiro; Stabelini Neto, Antonio; da Silva, Michael Pereira; Maziero, Renato Silva Barbosa

    2016-01-01

    Background Arterial hypertension is a major public health problem and has increased considerably in young individuals in past years. Thus, identifying factors associated with this condition is important to guide intervention strategies in this population. Objective To determine high blood pressure prevalence and its associated factors in adolescents. Methods A random sample of 1,242 students enrolled in public schools of the city of Curitiba (PR) was selected. Self-administered questionnaires provided family history of hypertension, daily energy expenditure, smoking habit, daily fat intake, and socioeconomic status. Waist circumference was measured following standardized procedures, and blood pressure was measured with appropriate cuffs in 2 consecutive days to confirm high blood pressure. Relative frequency and confidence interval (95%CI) indicated high blood pressure prevalence. Bivariate and multivariate analyses assessed the association of risk factors with high blood pressure. Results The high blood pressure prevalence was 18.2% (95%CI 15.2-21.6). Individuals whose both parents had hypertension [odds ratio (OR), 2.22; 95%CI 1.28-3.85] and those with high waist circumference (OR, 2.1; 95%CI 1.34-3.28) had higher chances to develop high blood pressure. Conclusion Positive family history of hypertension and high waist circumference were associated with high blood pressure in adolescents. These factors are important to guide future interventions in this population. PMID:27058256

  6. Exposure of rats to a high but not low dose of ethanol during early postnatal life increases the rate of loss of optic nerve axons and decreases the rate of myelination

    PubMed Central

    HARRIS, SIMON J.; WILCE, PETER; BEDI, KULDIP S.

    2000-01-01

    Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4–9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged ∼ 171 mg/dl and in the ETHD animals ∼ 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection of ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of ∼ 145000–165000 axons in MRC, SC and ETLD animals. About 4% of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75000 optic nerve axons (P < 0.05) of which about 2.8% were myelinated. By 30 d of age there was a total of between 75000–90000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (∼ 77%) than in the other groups (about 98%). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9. PMID:11117631

  7. Ethanol-metabolizing pathways in deermice. Estimation of flux calculated from isotope effects

    SciTech Connect

    Alderman, J.; Takagi, T.; Lieber, C.S.

    1987-06-05

    The apparent deuterium isotope effects on Vmax/Km (D(V/K) of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH) were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels.

  8. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    PubMed

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-01

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs. PMID:26863505

  9. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.

    PubMed

    Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E

    2015-05-22

    We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme  gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. PMID:25677100

  10. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs.

    PubMed

    Li, Jian; Kim, In H

    2014-06-01

    A total of 105 growing pigs (24.91 ± 1.06 kg) were used in a 6-week trial to investigate the effects of including Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract (SPE) in the diet on growth performance, digestibility, blood profiles, fecal microbiota and fecal noxious gas emissions. Pigs were randomly allocated to one of three dietary treatments (seven pens/treatment, five pigs/pen) according to initial body weight and sex (two gilts and three barrows). Treatments consisted of a corn soybean meal basal diet supplemented with 0, 0.05 or 0.10% SPE. There was a significant linear improvement (P < 0.05) in average daily gain, gain/feed, the apparent total tract digestibility of dry matter, nitrogen, and gross energy, blood lymphocyte percentage, immunoglobulin G concentration, fecal Escherichia coli and Lactobacillus counts as well as fecal NH3 and H2 S emissions associated with the inclusion of SPE in the diet. Average daily feed intake, red blood cells and white blood cells concentration were not significantly (P > 0.05) affected by SPE supplementation in the diets. In conclusion, results indicate that dietary SPE supplementation can improve growth performance, digestibility and fecal microbiota, and decrease fecal gas emissions in growing pigs.

  11. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence.

    PubMed

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute

    2016-04-01

    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1-1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera.

  12. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence

    PubMed Central

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute

    2016-01-01

    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1–1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera. PMID:27082955

  13. The origin of high activity but low CO(2) selectivity on binary PtSn in the direct ethanol fuel cell.

    PubMed

    Jin, Jia-Mei; Sheng, Tian; Lin, Xiao; Kavanagh, Richard; Hamer, Philip; Hu, Peijun; Hardacre, Christopher; Martinez-Bonastre, Alex; Sharman, Jonathan; Thompsett, David; Lin, Wen-Feng

    2014-05-28

    The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 °C and 60 °C, using variable temperature electrochemical in situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 °C to 60 °C facilitates both ethanol dissociation to CO(a) and then further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found upon modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in situ FTIR and DFT study provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts. PMID:24722871

  14. Precision blood-leak detector with high long-time stability

    NASA Astrophysics Data System (ADS)

    Georgiadis, Christos; Kleuver, Wolfram

    1999-11-01

    With this publication a precision blood-leak-detector is presented. The blood-leak-detector is used for recognition of fractures in the dialyzer of a kidney-machine. It has to detect safely a blood flow of ml/min to exclude any risk for the patient. A lot of systems exist for blood-leak-detection. All of them use the same principle. They detect the light absorption in the dialyze fluid. The actual used detectors are inferior to the new developed sensor in resolution and long-time stability. Regular test of the existing systems and high failure rates are responsible for the high maintenance.

  15. High Blood Cholesterol Q&A Dr. Michael Lauer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Feature: High Cholesterol High Blood Cholesterol Q&A with Dr. Michael Lauer Past Issues / ... heavier and older, what does recent research on cholesterol and heart health tell us that Americans need ...

  16. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing.

    PubMed

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-05-01

    The aim of this study is to develop a scheme of cell recycle batch fermentation (CRBF) of high-solid lignocellulosic materials. Two-phase separation consisting of rough removal of lignocellulosic residues by low-speed centrifugation and solid-liquid separation enabled effective collection of Saccharomyces cerevisiae cells with decreased lignin and ash. Five consecutive batch fermentation of 200 g/L rice straw hydrothermally pretreated led to an average ethanol titer of 34.5 g/L. Moreover, the display of cellulases on the recombinant yeast cell surface increased ethanol titer to 42.2 g/L. After, five-cycle fermentation, only 3.3 g/L sugar was retained in the fermentation medium, because cellulase displayed on the cell surface hydrolyzed cellulose that was not hydrolyzed by commercial cellulases or free secreted cellulases. Fermentation ability of the recombinant strain was successfully kept during a five-cycle repeated batch fermentation with 86.3% of theoretical yield based on starting biomass.

  17. High-efficiency carbohydrate fermentation to ethanol at temperatures above 40/sup 0/C by Kluyveromyces marxianus var. marxianus isolated from sugar mills

    SciTech Connect

    Anderson, P.J.; NcNeil, K.; Watson, K.

    1986-06-01

    A number of yeast strains, isolated from sugar can mills and identified as strains of Kluyveromyces marxianus var. marxianus, were examined for their ability to ferment glucose and cane syrup to ethanol at high temperatures. Several strains were capable of rapid fermentation at temperatures up to 47/sup 0/C. At 43/sup 0/C, >6% (wt/vol) ethanol was produced after 12 to 14 h of fermentation, concurrent with retention of high cell viability (>80%). Although the type strain (CBS 712) of K. marxianus var. marxianus produced up to 6% (wt/vol) ethanol at 43/sup 0/C, cell viability was low, 30 to 50%, and the fermentation time was 24 to 30 h. On the basis of currently available strains, the authors suggest that it may be possible by genetic engineering to construct yeasts capable of fermenting carbohydrates at temperatures close to 50/sup 0/C to produce 10 to 15% (wt/vol) ethanol in 12 to 18 h with retention of cell viability.

  18. Influence of ethanol on circulation in surface-induced hypothermia and subsequent rewarming.

    PubMed

    Lauri, T; Timisjärvi, J; Saukko, P

    1996-01-01

    Hypothermia and ethanol are often closely linked and in hypothermic accidents ethanol is often a contributing factor. To study the effects of ethanol on the circulation in hypothermic conditions, cardiac catheterization was carried out on 18 anaesthetized beagle dogs. They were divided into two groups. One gram of ethanol/kg of b.wt. diluted in saline was infused into the vena cava superior within 30 min to seven dogs. The dogs were then cooled between ice bags until the blood temperature in the ascending aorta was 25 degrees C and they were then rewarmed. The control group of 11 dogs was cooled and rewarmed without ethanol infusion. The heart rate first increased when cooling down to 33 degrees C and decreased thereafter in the control group. In the ethanol group heart rate increased during the ethanol infusion and remained high when cooling down to 33 degrees C and decreased thereafter. Heart rate was higher in the ethanol group throughout the experiments, and during rewarming the difference was significant. In the control group cardiac output first increased until a body temperature of 33 degrees C was achieved but then decreased. In the ethanol group cardiac output started to decrease after ethanol infusion. During rewarming there was a significantly higher cardiac output in the ethanol group, probably due to the higher heart rate. In the cardiac cycle the systolic period prolonged significantly (p < 0.001) in both groups when the body temperature decreased from 37 degrees C to 25 degrees C whereas the diastolic period remained quite stable. The contraction phase was also affected by the cooling. The changes in contraction force cannot be seen in dP/dt alone because dP/dt values first increased significantly when cooling from 37 degrees C to 33 degrees C but then decreased. Ejection fraction, systolic period, and the systemic vascular resistance increased despite the reduction of the dP/dt and thus we conclude that the contraction force is augmented in

  19. Anaerobic digestion of corn ethanol thin stillage in batch and by high-rate down-flow fixed film reactors.

    PubMed

    Wilkinson, A; Kennedy, K J

    2012-01-01

    Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.

  20. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  1. Blurred vision and high blood pressure in a young woman.

    PubMed Central

    Flanagan, D. E.; Cole, C.; Crick, M. D.; Kerr, D.

    1998-01-01

    A 41-year-old woman presented with a short history of blurred vision. She had a 6-year history of refractory hypertension which had been treated with a variety of drug regimens. She was found to have bilateral branch retinal vein occlusion. Retinal vein occlusion is a recognised complication of hypertension but simultaneous involvement of both eyes is extremely rare. Following this episode, blood pressure control has improved without change in drug therapy, suggesting that treatment compliance may partly explain the previous difficulties. Images Figure PMID:10211361

  2. Fermentation of an aqueous sugar solution to produce ethanol

    SciTech Connect

    Miller, F.D.; Muller, W.C.

    1980-12-30

    An apparatus for the continuous production of ethanol from fermentable sugar solutions is described. A series of stirred fermentation vessels is used, each successive vessel containing more ethanol and less sugar. At least 2 strains of yeast are used, one producing ethanol at a high rate in a high sugar concentration, and the other strain producing ethanol at high rate in a relatively high ethanol concentration and a relatively low sugar concentration. A diagram of the apparatus is given.

  3. Zymomonas ethanol fermentations

    SciTech Connect

    Rogers, P.L.; Goodman, A.E.; Heyes, R.E.

    1984-09-01

    Studies on various industrial raw materials indicate that a Zymomonas process has its greatest commercial potential in fermenting starch-based substrates. High yields, productivities and ethanol concentrations can be achieved. Genetic manipulation is now being used to extend the substrate range to lactose and other carbohydrates. 31 references.

  4. Operant self-administration models for testing the neuropharmacological basis of ethanol consumption in rats.

    PubMed

    June, Harry L; Gilpin, Nicholas W

    2010-04-01

    Operant self-administration procedures are used to assess the neural basis of ethanol-seeking behavior under a wide range of experimental conditions. In general, rats do not spontaneously self-administer ethanol in pharmacologically meaningful amounts. This unit provides a step-by-step guide for training rats to self-administer quantities of ethanol that produce moderate to high blood-alcohol content. Different protocols are used for rats that are genetically heterogeneous versus rats that are selectively bred for high alcohol preference. Also, these protocols have different sets of advantages and disadvantages in terms of the ability to control for caloric intake and taste of solutions in operant testing. Basic self-administration protocols can also be altered to focus on different aspects of the motivational properties of ethanol (for example, those related to dependence). This unit provides multiple protocols that lead to alcohol intake in rats, which can be pharmacologically probed relative to a variety of control conditions.

  5. Effects of growth, diving history, and high altitude on blood oxygen capacity in harbor seals

    NASA Technical Reports Server (NTRS)

    Kodama, A. M.; Elsner, R.; Pace, N.

    1977-01-01

    Blood volume and body composition for diving and nondiving harbor seals were measured at six-week intervals during a 10-month period of captitivity. Whole body hematocrit, red cell volume per kg of lean body mass, and total circulating hemoglobin per kg lean body mass were significantly higher in the diving group, but relatively large blood volumes expressed in terms of body weight (11-12%) were found in both groups. A pair of harbor seals exposed to high altitude for about three months registered significant increases in red cell volume, blood hemoglobin levels, and blood volume expressed in terms of body weight; results of alveolar gas analyses indicate that hyperventilation also occurred. These typical mammalian responses to hypoxia suggest that the harbor seal's large blood volume and high hemoglobin content are an expression of phylogenetic control, and that in spite of its adaptability to apnea during its diving life, the animal cannot be considered preacclimatized to high altitude.

  6. Development of xylose-fermenting yeasts for ethanol production at high acetic acid concentrations

    SciTech Connect

    Mohandas, D.V.; Whelan, D.R.; Panchal, C.J.

    1995-12-31

    Mutants resistant to comparatively high levels of acetic acid were isolated from the xylose-fermenting yeasts Candida shehatae and Pichia Stipitis by adapting these cultures to increasing concentrations of acetic acid grown in shake-flask cultures. These mutants were tested for their ability to ferment xylose in presence of high acetic acid concentrations, in acid hydrolysates of wood, and in hardwood spent sulfite liquor, and compared with their wild-type counterparts and between themselves. The P. stipitis mutant exhibited faster fermentation times, better tolerance to acid hydrolysates, and tolerance to lower pH.

  7. Combining the effects of process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax

    PubMed Central

    2014-01-01

    The impact of pH coupled to process design for the conversion of the energy crop Arundo donax to ethanol was assessed in the present study under industrially relevant solids loadings. Two main process strategies were investigated, i.e. the traditional simultaneous saccharification and co-fermentation (SSCF) and a HYBRID design, where a long high temperature enzymatic hydrolysis step was carried out prior to continued low temperature SSCF, keeping the same total reaction time. Since acetic acid was identified as the major inhibitor in the slurry, the scenarios were investigated under different fermentation pH in order to alleviate the inhibitory effect on, in particular, xylose conversion. The results show that, regardless of fermentation pH, a higher glucan conversion could be achieved with the HYBRID approach compared to SSCF. Furthermore, it was found that increasing the pH from 5.0 to 5.5 for the fermentation phase had a large positive effect on xylose consumption for both process designs, although the SSCF design was more favored. With the high sugar concentrations available at the start of fermentation during the HYBRID design, the ethanol yield was reduced in favor of cell growth and glycerol production. This finding was confirmed in shake flask fermentations where an increase in pH enhanced both glucose and xylose consumption, but also cell growth and cell yield with the overall effect being a reduced ethanol yield. In conclusion this resulted in similar overall ethanol yields at the different pH values for the HYBRID design, despite the improved xylose uptake, whereas a significant increase in overall ethanol yield was found with the SSCF design. PMID:24949274

  8. Stabilization of Homeostasis in Rats during Cold Exposure with Ethanol.

    PubMed

    Kolosova, O N; Kershengolts, B M

    2016-01-01

    The role of ethanol metabolism system in adaptation of laboratory animals to cold temperatures was shown. Cold stress (1-2°C) modeled in male Wistar rats over 7 weeks significantly modulated endogenous ethanol metabolism and led to reorganization of many physiological systems, which resulted in activation of metabolic processes. Under these conditions, endogenous ethanol was utilized as the most easily and fast metabolized energy substrate, due to which its blood concentration decreased and was replenished at the expense of exogenous ethanol. Normalization of blood ethanol concentration led to better adaptation to cold.

  9. High Performance Nanocatalysts Supported on Micro/Nano Carbon Structures Using Ethanol Immersion Pretreatment for Micro DMFCs

    NASA Astrophysics Data System (ADS)

    Lin, Liang-You; Wu, Yi-Shiuan; Chang, Chaun; Tseng, Fan-Gang

    2013-12-01

    In this paper, highly dense platinum (Pt) nanocatalysts were successfully deposited on the hydrophilically-treated nano/micro carbon supports with an ethanol (EtOH) immersion pretreatment and an acidic treatment for the performance improvement of methanol oxidation reaction (MOR). In order to thoroughly immerse the three-dimensional, interwoven structures of the carbon cloth fibers with a 6 M sulfuric acid surface modification, which increasing more oxygen-containing functional groups on the surfaces of the carbon supports, the EtOH immersion pretreatment of the carbon supports was utilized prior to the sulfuric acid treatment. Subsequently, Pt catalysts were reduced on the modified carbon supports by a homemade open-loop reduction system (OLRS) [1] For comparisons, carbon cloth (CC) and carbon nanotube on CC (CNT/CC) supports were employed with and without EtOH immersion pretreatments before Pt catalyst reduction. In the cyclic voltammetry (CV) curves, the electrosorption charges of hydrogen ion (QH) and the peak current density (IP) of the fabricated Pt/CC and Pt/CNT/CC electrodes with the EtOH immersion pretreatments can efficiently be enhanced due to more active Pt sites for electrocatalytic reactions.

  10. Regulation of lipid disorders by ethanol extracts from Zingiber zerumbet in high-fat diet-induced rats.

    PubMed

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2012-05-01

    The aim of this study was to investigate the antihyperlipidaemic effects of the ethanol extract of Zingiber zerumbet (L) Smith (EEZZ). After being fed a high-fat diet (HFD) for 2weeks, rats were dosed orally with EEZZ (100, 200 or 300mg/kg) or fenofibrate (100mg/kg) once daily for 8weeks. EEZZ (300mg/kg/day) produced effects similar to fenofibrate in reducing body weight gain, visceral fat-pad weights and plasma lipid levels. EEZZ caused reductions in hepatic triglyceride and cholesterol content, and lowered hepatic lipid droplet accumulation and the size of epididymal adipocytes. HFD-induced reductions in the hepatic proteins of peroxisome proliferator-activated receptor (PPAR) α, acyl-CoA oxidase (ACO) and cytochrome P450 isoform 4A1 (CYP4A1) were reversed by EEZZ. These results suggest that EEZZ reduced the accumulation of visceral fat and improved hyperlipidaemia in HFD-fed rats by increasing fatty acid oxidation, an effect which is likely to be mediated via up-regulation of hepatic PPARα.

  11. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method.

    PubMed

    Peng, Shengfeng; Zou, Liqiang; Liu, Wei; Gan, Lu; Liu, Weilin; Liang, Ruihong; Liu, Chengmei; Niu, Jing; Cao, Yanlin; Liu, Zhen; Chen, Xing

    2015-01-01

    Eugenol is a major phenolic component with diverse biological activities. However, it is difficult to formulate into an aqueous solution due to poor water solubility, and this limits its application. In the present study, eugenol nanoliposomes (EN) were prepared by combining the ethanol injection method with the dynamic high-pressure microfluidization method. Good physicochemical characterizations of EN were obtained. The successful encapsulation of eugenol in nanoliposomes was confirmed by Fourier transform infrared spectroscopy. A good storage stability of EN was confirmed by its low variation of average particle diameter and encapsulation efficiency after 8 weeks of storage. No oil drops were found in EN after 8 weeks of storage at 4°C and at room temperature, which suggested that the poor water solubility of eugenol was overcome by nanoliposome encapsulation. Compared with that of eugenol solution, a relatively good sustained release property was observed in EN. The antibacterial activity of EN against four common foodborne pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes) was evaluated in both Luria broth and milk medium.

  12. Viola mandshurica ethanolic extract prevents high-fat-diet-induced obesity in mice by activating AMP-activated protein kinase.

    PubMed

    Sung, Yoon-Young; Kim, Dong-Seon; Kim, Ho Kyoung

    2014-07-01

    Viola mandshurica W. Becker has been used as an expectorant, diuretic, and anti-inflammatory agent. We evaluated the effects of V. mandshurica ethanol extract (VME) on high-fat-diet (HFD)-induced obesity in mice. HPLC analysis showed that the VME contained 11.95 ± 0.37 mg/g esculetin and 0.13 ± 0.01 mg/g scopoletin. Orally administered VME decreased the body weight, adipose tissue mass, adipocyte size, and triglyceride and leptin serum concentrations. In contrast, VME increased serum adiponectin concentrations and adiponectin expression levels in epididymal adipose tissues. VME also significantly reversed the HFD-induced elevation of the mRNA and protein levels of lipogenic genes such as peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty-acid synthase, and adipocyte protein 2. Moreover, VME reversed the HFD-induced inhibition of AMP-activated protein kinase (AMPK) and acetyl-coA carboxylase phosphorylation in epididymal adipose tissues. Furthermore, treatment of VME and esculetin in 3T3-L1 cells inhibited adipocyte differentiation and fat accumulation. These results suggest that VME exerts anti-obesity effects in HFD-induced obese mice by activating AMPK and suppressing PPARγ expression in adipose tissues.

  13. The Antiobesity Effect of Polygonum aviculare L. Ethanol Extract in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Sung, Yoon-Young; Yoon, Taesook; Yang, Won-Kyung; Kim, Seung Ju; Kim, Dong-Seon; Kim, Ho Kyoung

    2013-01-01

    The antiobesity effects of a P. aviculare ethanol extract (PAE) in high-fat diet- (HFD-) induced obese mice were investigated. The mice were fed an HFD or an HFD supplemented with PAE (400 mg/kg/day) for 6.5 weeks. The increased body weights, adipose tissue weight, and adipocyte area as well as serum total triglyceride, leptin, and malondialdehyde concentrations were decreased in PAE-treated HFD-induced obese mice relative to the same measurements in untreated obese mice. Furthermore, PAE significantly suppressed the elevated mRNA expression levels of sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, fatty acid synthase, and adipocyte protein 2 in the white adipose tissue of obese mice. In addition, PAE treatment of 3T3-L1 cells inhibited adipocyte differentiation and fat accumulation in a dose-dependent manner. These results suggest that PAE exerts antiobesity effects in HFD-induced obese mice through the suppression of lipogenesis in adipose tissue and increased antioxidant activity. PMID:23431342

  14. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain

    PubMed Central

    Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.

    2016-01-01

    High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193

  15. Feasibility of producing ethanol from food waste.

    PubMed

    Kim, Jae Hyung; Lee, Jun Cheol; Pak, Daewon

    2011-01-01

    Food waste generated in Korea is rich in carbohydrate as high as 65% of total solids. Using the food waste, the feasibility of ethanol production was investigated in a lab-scale fermentor. Pretreatment with hydrolyzing enzymes including carbohydrase, glucoamylase, cellulase and protease were tested for hydrolysis of food waste. The carbohydrase was able to hydrolyze and produce glucose with a glucose yield of 0.63 g glucose/g total solid. Enzymatic hydrolysis and ethanol fermentation by using carbohydrase and Saccharomyces cerevisiae were conducted in the batch mode. For separated hydrolysis and fermentation (SHF), ethanol concentration reached at the level corresponding to an ethanol yield of 0.43 g ethanol/g total solids. For simultaneous saccharification and fermentation (SSF), the ethanol yield was 0.31 g ethanol/g total solids. During the continuous operation of SHF, the volumetric ethanol production rate was 1.18 g/lh with an ethanol yield of 0.3g ethanol/g total solids. For SSF process, the volumetric ethanol production rate was 0.8 g/lh with an ethanol yield of 0.2g ethanol/g total solids. PMID:21596551

  16. Locally-brewed Nigerian lager beers and high blood pressure

    SciTech Connect

    Adeniyi, F.A.A.

    1986-01-01

    Volunteers who consumed 88g alcohol/day (= 2.48L of lager beer) had elevated levels of systolic and mean arterial Blood Pressure. The association between consumption of locally brewed Nigerian lager beer with arterial hypertension was independent of age and weight. The true mechanism for the development of hypertension in these alcohol-users is at present not clear. All brands of lager beer investigated contain as much as five times the sodium content of potable water. It is desirable to evaluate the consequences of ingesting such quantities of sodium in lager beers. The effect of alcohol on other monovalent and divalent cations may shed some light onto the true mechanism for the pathogenesis of alcohol-induced hypertension. 15 references, 3 tables.

  17. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    PubMed

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  18. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    PubMed

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  19. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    PubMed Central

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  20. Is there a different dietetic pattern depending on self-knowledge of high blood pressure?

    PubMed

    Tormo, M J; Navarro, C; Chirlaque, M D; Barber, X

    2000-01-01

    This cross-sectional study describes the dietary pattern seen at recruitment in a large Spanish cohort comprising 41,451 people (aged 30-69 years) according to high blood-pressure status. We provide information on adjusted mean daily intake of foods and nutrients, by means of a dietary history, from those people self-reported as having high blood pressure as well as from those self-reported as normotensive but having, after actual blood-pressure measurement, systolic or diastolic blood pressures of > or = 160/95 mmHg. Although with small differences in mean intake people who self-reported high blood pressure have a higher consumption of potatoes, vegetables, vitamin C and E; furthermore, men reported an increased intake of fruit, meat, fish, proteins, dietary fibre, beta-carotene and alcohol, and women tended to consume less alcohol, lipids and cholesterol but more proteins, carbohydrates and dietary fibre. Almost no differences are found in fatty acid intake. This pattern is reversed among those self-reported as normotensive but with high blood pressure after actual measurement. We conclude that in this large prospective cohort, awareness or not of having high blood pressure at recruitment is associated with a differential dietary pattern.

  1. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    SciTech Connect

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  2. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    PubMed

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  3. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    PubMed Central

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; Stewart, C. Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  4. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    PubMed

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  5. Evaluation Of Hemolysis Models Using A High Fidelity Blood Model

    NASA Astrophysics Data System (ADS)

    Ezzeldin, Hussein; de Tullio, Marco; Solares, Santiago; Balaras, Elias

    2012-11-01

    Red blood cell (RBC) hemolysis is a critical concern in the design of heart assisted devices, such as prosthetic heart valves (PHVs). To date a few analytical and numerical models have been proposed to relate either hydrodynamic stresses or RBC strains, resulting from the external hydrodynamic loading, to the expected degree of hemolysis as a function of time. Such models are based on either ``lumped'' descriptions of fluid stresses or an abstract analytical-numerical representation of the RBC relying on simple geometrical assumptions. We introduce two new approaches based on an existing coarse grained (CG) RBC structural model, which is utilized to explore the physics underlying each hemolysis model whereby applying a set of devised computational experiments. Then, all the models are subjected to pathlines calculated for a realistic PHVs to predict the level of RBC trauma. Our results highlight the strengths and weaknesses of each approach and identify the key gaps that should be addressed in the development of new models. Finally, a two-layer CG model, coupling the spectrin network and the lipid bilayer, which provides invaluable information pertaining to RBC local strains and hence hemolysis. We acknowledge the support of NSF OCI-0904920 and CMMI-0841840 grants. Computing time was provided by XSEDE.

  6. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells.

    PubMed

    Hassen, Diab; El-Safty, Sherif A; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed A; Sakai, Masaru

    2016-04-14

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  7. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-04-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  8. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats.

    PubMed

    Kelm, Detlev H; Simon, Ralph; Kuhlow, Doreen; Voigt, Christian C; Ristow, Michael

    2011-12-01

    High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l(-1) blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators.

  9. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats

    PubMed Central

    Kelm, Detlev H.; Simon, Ralph; Kuhlow, Doreen; Voigt, Christian C.; Ristow, Michael

    2011-01-01

    High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l−1 blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators. PMID:21490011

  10. Alleviation of weight-gain in mice by an ethanolic extract from Rubus coreanus under conditions of a high-fat diet and exercise.

    PubMed

    Chung, Changsik; You, Yanghee; Yoon, Ho-Geun; Kim, Kyungmi; Lee, Yoo-Hyun; Lee, Jeongmin; Chung, Jin Woong; Chung, Hyunjung; Yang, Soojin; Jun, Woojin

    2013-01-01

    The administration of an ethanolic extract (RCE) from Rubus coreanus significantly reduced the body weight and epididymal fat tissue of mice under conditions of a high-fat diet (HFD) and exercise. The mice also displayed enhanced muscular carnitine palmitoyltransferase 1 (CPT1) expression and increased superoxide dismutase and glutathione levels. These results suggest that RCE exerted an anti-obesity effect by up-regulating CPT1 and elevating the level of antioxidants. PMID:24096653

  11. Assessing blood brain barrier dynamics or identifying or measuring selected substances, including ethanol or toxins, in a subject by analyzing Raman spectrum signals

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2008-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier.Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam at a selected wavelength (e.g., at a wavelength of about 400 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  12. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Chung

    2010-10-01

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r2) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm-1 at 30 MHz to 0.47 Nepers mm-1 at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a

  13. Decreased sensitivity to the hypnotic effects of ethanol early in ontogeny.

    PubMed

    Silveri, M M; Spear, L P

    1998-05-01

    Sensitivity to the hypnotic effects of ethanol was examined in Sprague-Dawley male and female rats at 16, 26, 36, 46, 56, or 96 days postnatally. Following administration of 3.5, 4.0, 4.5, or 5.0 g/kg of a 17% v/v ethanol solution, sleep times were recorded and blood alcohol levels (BALs) and brain alcohol levels (BrALs) were measured upon awakening. In addition to examining ethanol sleep time during ontogeny, data were used to estimate acute tolerance (indexed by the slope of the linear regressions of waking BALs and BrALs as a function of dose) and initial brain sensitivity to ethanol (indexed by calculating the y-intercept from the linear regression of BrALs as a function of sleep time). The results showed a marked increase in sensitivity to ethanol hypnosis during ontogeny, with young animals exhibiting shorter ethanol-induced sleep times and high waking BALs and BrALs. This ontogenetic increase in ethanol sensitivity was associated with a developmental decline in acute tolerance, with acute tolerance being most pronounced at postnatal day (P) 16 and evident only up to P36. Initial sensitivity conversely increased with age, with P16 pups showing lower initial brain sensitivity to ethanol than at all other ages. Gender differences emerged in adulthood, with males sleeping significantly longer than females at P56 and P96. These findings suggest that the marked insensitivity of young animals to the hypnotic effects of ethanol is related to both pronounced acute tolerance, as well as reduced initial brain sensitivity to ethanol early in life. PMID:9622449

  14. Low brain histamine content affects ethanol-induced motor impairment.

    PubMed

    Lintunen, Minnamaija; Raatesalmi, Kristiina; Sallmen, Tina; Anichtchik, Oleg; Karlstedt, Kaj; Kaslin, Jan; Kiianmaa, Kalervo; Korpi, Esa R; Panula, Pertti

    2002-02-01

    The effect of ethanol on motor performance in humans is well established but how neural mechanisms are affected by ethanol action remains largely unknown. To investigate whether the brain histaminergic system is important in it, we used a genetic model consisting of rat lines selectively outbred for differential ethanol sensitivity. Ethanol-sensitive rats had lower levels of brain histamine and lower densities of histamine-immunoreactive fibers than ethanol-insensitive rats, although both rat lines showed no changes in histamine synthesizing neurons. Lowering the high brain histamine content of the ethanol-insensitive rats with alpha-fluoromethylhistidine before ethanol administration increased their ethanol sensitivity in a behavioral motor function test. Higher H3 receptor ligand binding and histamine-induced G-protein activation was detected in several brain regions of ethanol-naive ethanol-sensitive rats. Brain histamine levels and possibly signaling via H3 receptors may thus correlate with genetic differences in ethanol-induced motor impairment.

  15. Comparison of ethanol and other drugs of abuse concentrations in whole blood stored in venoject glass and plastic and venosafe plastic evacuated tubes.

    PubMed

    Karinen, Ritva; Oiestad, Elisabeth Leere; Andresen, Wenche; Wethe, Grete; Smith-Kielland, Anne; Christophersen, Asbjørg

    2010-09-01

    The aim of this study was to evaluate the stability of blood concentrations of a variety of illegal and medicinal drugs that are important for forensic analyses when spiked and stored in Vacutainer or Venosafe evacuated plastic collection tubes compared to Vacutainer evacuated glass tubes. Tubes were filled with spiked whole blood and analyzed after storage for one week at ambient temperature and at -20 degrees C, respectively. Freeze-and-thaw stability was included in the study. No significant difference between storage in glass or plastic tubes was noted for any compound investigated.

  16. Profound effects of burn and ethanol on proinflammatory cytokines of the reproductive axis in the male mouse.

    PubMed

    Emanuele, Nicholas V; LaPaglia, Nancy; Kovacs, Elizabeth J; Gamelli, Richard L; Emanuele, Mary Ann

    2008-01-01

    Thermal injury is often associated with previous ethanol exposure, and close to 50% of patients admitted to a burn unit have a potentially high blood ethanol level. Cellular mechanisms by which ethanol and/or burn affect the hypothalamic-pituitary-gonadal (HPG) axis are not entirely understood. However, it is known that the proinflammatory cytokines, tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 influence negatively on the endocrine functions of the HPG. We report a time course study (6, 12, 24, and 48 hours) of the effects of ethanol, burn, or the combination of burn/ethanol on proinflammatory cytokines of the hypothalamus, pituitary and testes of male C57Bl/6 mice. We found that there were highly significant increases in each of these cytokines caused by ethanol, burn, and burn/ethanol compared with sham/vehicle (P < .001). This was true in hypothalamus, pituitary, and testes. Because these cytokines generally reduce reproductive function, it may be that proinflammatory cytokines of HPG axis mediate the deleterious effects of burn and/or ethanol on mammalian reproduction.

  17. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    PubMed

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool.

  18. EFFECTS OF CARBOXYLIC ACIDS ON LIQUID-PHASE ADSORPTION OF ETHANOL AND WATER BY HIGH-SILICA ZSM-5

    EPA Science Inventory

    Adsorption isotherms were measured for each compound adsorbed on commercially available ZSM-5 (Si/Al = 140) powder from binary and ternary liquid mixtures of ethanol, carboxylic acids, and water at room temperature. The amounts adsorbed were measured using a recently developed t...

  19. High Level Ethanol from Sugar Cane Molasses by a New Thermotolerant Saccharomyces cerevisiae Strain in Industrial Scale.

    PubMed

    Fadel, M; Keera, Abeer A; Mouafi, Foukia E; Kahil, Tarek

    2013-01-01

    A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved.

  20. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    DOE PAGES

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanolmore » (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less

  1. Ethanol production in the Southern High Plains of Texas: Impacts on the economy and scarce water resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of new biorefineries in an effort to increase energy security in the United States has generated positive impacts by creating jobs and generating economic output. However, communities and local and state leaders are concerned about whether ethanol production is an effective use o...

  2. High Level Ethanol from Sugar Cane Molasses by a New Thermotolerant Saccharomyces cerevisiae Strain in Industrial Scale

    PubMed Central

    Fadel, M.; Keera, Abeer A.; Mouafi, Foukia E.; Kahil, Tarek

    2013-01-01

    A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m3, and 12 m3 fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m3 working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 108/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m3 working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved. PMID:24363937

  3. Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose employing Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuo...

  4. [Effects of high intensity focused ultrasound with SonoVue on blood vessels pathological examinations].

    PubMed

    Qin, Yan; Bai, Jin; Li, Faqi; Wang, Zhibiao

    2010-12-01

    The injury of tumor blood vessels will break up the nutrition supply for the tumor. In this paper, we investigated the effects exerted by high intensity focused ultrasound (HIFU) combined with ultrasound microbubble agent on blood vessels. Ultrasound diagnosis was used to find the goat hepatic blood vessels each being approximately 3mm in diameter. HIFU was focused on the blood vessels. The acoustic power was 250W; HIFU irradiating Mode was line scan (the length of the line: 10 mm; speed: 3 mm/s; irradiating time: 30s). In the experimental group, 0.03 ml/kg SonoVue was injected into the goat before HIFU irradiation,while normal saline was given to the control group. The goats were killed at 24h after HIFU irradiation, then goat liver tissues and blood vessels of target area were taken out. HE staining and Victoria's blue and Ponceau's staining of tissue section showed that the endothelial cells of blood vessels dropped off and became necrosed, and the continuity of blood vessels was interrupted. HIFU combined with SonoVue will damage large blood vessels on HIFU focus, but there is no evident discrepancy between the group with SonoVue and the group without SonoVue.

  5. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  6. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  7. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  8. Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1983-09-01

    Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost savings of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided.

  9. Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1983-09-01

    Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost savings of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided. (Refs. 46).

  10. Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent.

    PubMed

    Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F

    2005-01-01

    Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers.

  11. Sorghum to Ethanol Research

    SciTech Connect

    Dahlberg, Jeffrey A.; Wolfrum, Edward J.

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  12. Sorghum to Ethanol Research

    SciTech Connect

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  13. Blood pressure

    MedlinePlus Videos and Cool Tools

    ... called diastole. Normal blood pressure is considered to be a systolic blood pressure of 115 millimeters of ... pressure reading of 140 over 90, he would be evaluated for having high blood pressure. If left ...

  14. Effects of High-Intensity Blood Flow Restriction Exercise on Muscle Fatigue

    PubMed Central

    Neto, Gabriel R.; Santos, Heleodório H.; Sousa, Juliana B. C.; Júnior, Adenilson T. A.; Araújo, Joamira P.; Aniceto, Rodrigo R.; Sousa, Maria S. C.

    2014-01-01

    Strength training combined with blood flow restriction (BFR) have been used to improve the levels of muscle adaptation. The aim of this paper was to investigate the acute effect of high intensity squats with and without blood flow restriction on muscular fatigue levels. Twelve athletes (aged 25.95 ± 0.84 years) were randomized into two groups: without Blood Flow Restriction (NFR, n = 6) and With Blood Flow Restriction (WFR, n = 6) that performed a series of free weight squats with 80% 1-RM until concentric failure. The strength of the quadriceps extensors was assessed in a maximum voluntary isometric contraction integrated to signals from the surface electromyogram. The average frequency showed significant reductions in the WFR group for the vastus lateralis and vastus medialis muscles, and intergroup only for the vastus medialis. In conclusion, a set of squats at high intensity with BFR could compromise muscle strength immediately after exercise, however, differences were not significant between groups. PMID:25114743

  15. Managing your blood sugar

    MedlinePlus

    Hyperglycemia - control; Hypoglycemia - control; Diabetes - blood sugar control; Blood glucose - managing ... Know how to: Recognize and treat low blood sugar (hypoglycemia) Recognize and treat high blood sugar (hyperglycemia) ...

  16. Extract of okra lowers blood glucose and serum lipids in high-fat diet-induced obese C57BL/6 mice.

    PubMed

    Fan, Shengjie; Zhang, Yu; Sun, Qinhu; Yu, Lijing; Li, Mingxia; Zheng, Bin; Wu, Ximin; Yang, Baican; Li, Yiming; Huang, Cheng

    2014-07-01

    Okra is an important tropical vegetable and source of dietary medicine. Here, we assayed the effects of an ethanol extract of okra (EO) and its major flavonoids isoquercitrin and quercetin 3-O-gentiobioside on metabolic disorders in high-fat diet-induced obese mouse. We found that treatment with EO, isoquercitrin and quercetin 3-O-gentiobioside reduced blood glucose and serum insulin levels and improved glucose tolerance in obese mice. Meanwhile, serum triglyceride levels and liver morphology in the mice were significantly ameliorated by EO and isoquercitrin treatment. Total cholesterol levels in isoquercitrin and quercetin 3-O-gentiobioside treated mice were also reduced. We also found that EO inhibited the expression of nuclear receptor transcription factor PPARγ, which is an important regulator of lipid and glucose homeostasis. Furthermore, we determined that EO and quercetin 3-O-gentiobioside have antioxidant activity in vitro. Our results indicate that okra may serve as a dietary therapy for hyperglycemia and hypertriglyceridemia.

  17. Complexity analysis of placental blood flow in normal and high-risk pregnancies.

    PubMed

    Joern, H; Kahn, N; Baumann, M; Rath, W; Schmid-Schoenbein, H

    2002-01-01

    Various strategems of complexity analysis of microvascular blood flow were carried out in several fields of medicine in the past, as such as angiology, ophthalmology and neurology. The introduction of colour-angio-mode, a special form of colour coded Doppler sonography, now makes possible to perform complexity analysis of the placental blood displacement even in the absence of information about hydrodynamic details such as directionality, velocity profile and number of displaced blood cells. Algorithms were developed which allows to extract information concerning the time averaged power of phonon-erythrocytes collision events (from the square of the frequencies of back scattered ultrasound recorded during 166 ms) in 20,000 to 40,000 regions of interest. The obtained values are being displayed as false coloured pixels on a video-screen, we succeeded to obtain quantitative data about displacement rates.In cross-sectional and longitudinal studies we generated typical diagrams displaying the "occurrence rate" of various powers of displacement over time. By this mode of display contour plots can be generated, showing a large amount of low intensity pixels and a small amount of high intensity pixels representing the parenchymatous blood flow inside the placenta. As was to be expected, interdependencies between the placental blood flow and the maternal and fetal heart rates as well as the maternal breathing can be found. While there was only limited influence of maternal and fetal heart rate on the placental blood flow, maternal breathing showed striking influence. Surprisingly, during expiration the power of placental blood movement was decreased, and there was a marked increase during inspiration. In cases of severe intrauterine growth retardation, colour pixel intensities were seen to transiently vanish during end-expiration. The power of placental blood displacement was marked increased subsequent to reducing maternal hematocrit during hemodilution therapy by infusion

  18. True color blood flow imaging using a high-speed laser photography system

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi

    2012-10-01

    Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.

  19. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. PMID:26851453

  20. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.

    PubMed

    Xiang, Nan; Ni, Zhonghua

    2015-12-01

    Herein, we explored the blood cell focusing and plasma isolation using a spiral inertial microfluidic device. First, the flow-rate and concentration effects on the migration dynamics of blood cells were systematically investigated to uncover the focusing mechanisms and steric crowding effects of cells in Dean-coupled inertial flows. A novel phenomenon that the focusing status of discoid red blood cells (RBCs) changes according to the channel height was discovered. These experimental data may provide valuable insights for the high-throughput processing of blood samples using inertial microfluidics. On the basis of the improved understandings on blood cell focusing, efficient isolation of plasma from whole blood with a 20-fold dilution was achieved at a throughput up to 700 μl/min. The purity of the isolated blood plasma was close to 100 %, and the plasma yield was calculated to be 38.5 %. As compared with previously-reported devices, our spiral inertial microfluidic device provides a balanced overall performance, and has overriding advantages in terms of processing throughput and operating efficiency.

  1. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.

    PubMed

    Xiang, Nan; Ni, Zhonghua

    2015-12-01

    Herein, we explored the blood cell focusing and plasma isolation using a spiral inertial microfluidic device. First, the flow-rate and concentration effects on the migration dynamics of blood cells were systematically investigated to uncover the focusing mechanisms and steric crowding effects of cells in Dean-coupled inertial flows. A novel phenomenon that the focusing status of discoid red blood cells (RBCs) changes according to the channel height was discovered. These experimental data may provide valuable insights for the high-throughput processing of blood samples using inertial microfluidics. On the basis of the improved understandings on blood cell focusing, efficient isolation of plasma from whole blood with a 20-fold dilution was achieved at a throughput up to 700 μl/min. The purity of the isolated blood plasma was close to 100 %, and the plasma yield was calculated to be 38.5 %. As compared with previously-reported devices, our spiral inertial microfluidic device provides a balanced overall performance, and has overriding advantages in terms of processing throughput and operating efficiency. PMID:26553099

  2. High-yield nanosized (Si)AlPO-41 using ethanol polarity equalization and co-templating synthesis approach.

    PubMed

    Majano, Gerardo; Raltchev, Kolio; Vicente, Aurelie; Mintova, Svetlana

    2015-03-19

    Control of the crystallite dimensions of the microporous aluminophosphate AlPO-41 (AFO-type framework structure), and the Si-containing analogue SAPO-41, was attained down to the nanometer scale under stable hydrothermal conditions. The combined application of a tetraalkylammonium co-template (tetrapentylammonium hydroxide) along with an amine structure directing agent (n-dipropylamine) stabilized through the use of ethanol in the initial suspension enables a crystallization medium, which remains homogeneous throughout the entire synthesis. As a direct consequence of the optimized homogeneity of the suspension, the AFO-type microporous nanocrystals (AlPO-41 and SAPO-41) with a size in the range of 30-500 nm with yields surpassing 50% are obtained. The feasibility to obtain nanosized AlPO-41 and SAPO-41 crystals using ethanol as a polarity equalizing agent, resulting in a scalable hydrothermal synthesis from non-colloidal starting mixtures without the use of other assisting methods, is presented.

  3. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  4. HSP-4 endoplasmic reticulum (ER) stress pathway is not activated in a C. elegans model of ethanol intoxication and withdrawal.

    PubMed

    Ient, Ben; Edwards, Richard; Mould, Richard; Hannah, Matthew; Holden-Dye, Lindy; O'Connor, Vincent

    2012-12-01

    Acute and chronic exposure of Caenorhabditis elegans to concentrations of ethanol in the range 250-350 mM elicits distinct behaviours. Previous genetic analysis highlights specific neurobiological substrates for these effects. However, ethanol may also elicit cellular stress responses which may contribute to the repertoire of ethanol-induced behaviours. Here, we have studied the effect of ethanol on an important arm of the cellular stress pathways, which emanates from the endoplasmic reticulum (ER) in response to several conditions including heat shock and chemical or genetic perturbations that lead to protein misfolding. HSP-4 is a heat shock protein and homologue of mammalian BiP. It is a pivotal upstream component of the ER stress response. Therefore, we used a C. elegans heat shock protein mutant, hsp-4, and a strain carrying a transcriptional reporter, Phsp-4::gfp, to test the role of the ER following chronic ethanol conditioning. We found no evidence for an overt ER response during acute or prolonged exposure to concentrations of ethanol that lead to defined ethanol-induced behaviours. Furthermore, whilst hsp-4 was strongly induced by tunicamycin, pre-exposure of C. elegans to low doses of tunicamycin followed by ethanol was not sufficient to induce an additive ER stress response. Behavioural analysis of an hsp-4 mutant indicated no difference compared to wild type in susceptibility to ethanol intoxication and withdrawal. There is a clear precedent for a significance of ER stress pathways particularly in clinical conditions associated with toxic or pathological effects of high doses of alcohol consumption. The concentrations of ethanol used in this C. elegans study equate to the highest blood alcohol levels measured in patients with chronic alcohol dependency. Taken together, these observations imply that the classic ER stress pathway in C. elegans is relatively refractory to induction by ethanol.

  5. Chronic ethanol tolerance as a result of free-choice drinking in alcohol-preferring rats of the WHP line.

    PubMed

    Dyr, Wanda; Taracha, Ewa

    2012-01-01

    The development of tolerance to alcohol with chronic consumption is an important criterion for an animal model of alcoholism and may be an important component of the genetic predisposition to alcoholism. The aim of this study was to determine whether the selectively bred Warsaw High Preferring (WHP) line of alcohol-preferring rats would develop behavioral and metabolic tolerance during the free-choice drinking of ethanol. Chronic tolerance to ethanol-induced sedation was tested. The loss of righting reflex (LRR) paradigm was used to record sleep duration in WHP rats. Ethanol (EtOH)-naive WHP rats received a single intraperitoneal (i.p.) injection of 5.0 g ethanol/kg body weight (b.w.), and sleep duration was measured. Subsequently, rats had access to a 10% ethanol solution under a free-choice condition with water and food for 12 weeks. After 12 weeks of the free-choice intake of ethanol, the rats received another single i.p. injection of 5.0 g ethanol/kg b.w., and sleep duration was reassessed. The blood alcohol content (BAC) for each rat was determined after an i.p. injection of 5 g/kg of ethanol in naive rats and again after chronic alcohol drinking at the time of recovery of the righting reflex (RR). The results showed that the mean ethanol intake was 9.14 g/kg/24 h, and both sleep duration and BAC were decreased after chronic ethanol intake. In conclusion, WHP rats exposed to alcohol by free-choice drinking across 12 weeks exhibited increased alcohol elimination rates. Studies have demonstrated that WHP rats after chronic free-choice drinking (12 weeks) of alcohol develop metabolic tolerance. Behavioral tolerance to ethanol was demonstrated by reduced sleep duration, but this decrease in sleep duration was not significant.

  6. High Level Ethanol from Sugar Cane Molasses by a New Thermotolerant Saccharomyces cerevisiae Strain in Industrial Scale.

    PubMed

    Fadel, M; Keera, Abeer A; Mouafi, Foukia E; Kahil, Tarek

    2013-01-01

    A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved. PMID:24363937

  7. Rotational reorientation dynamics at high pressures: rhodamine 6G in ethanol from 1 bar to 6 kbar

    SciTech Connect

    Philips, L.A.; Webb, S.P.; Yeh, S.W.; Clark, J.H.

    1985-01-03

    Picosecond, time-resolved fluorescence depolarization spectroscopy has been used to measure the rotational reorientation time (tau/sub or/) of electronically excited rhodamine 6G. When the dependence of tau/sub or/ on solvent viscosity for a series of linear alcohols is compared with that for ethanol as a function of pressure over the range from 1 bar to 6 kbar, substantially different rotational reorientation dynamics are found for identical macroscopic viscosities. 31 references, 2 figures, 2 tables.

  8. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    PubMed

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  9. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    PubMed

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  10. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  11. Specific alcoholic beverage and blood pressure in a middle-aged Japanese population: the High-risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) Study.

    PubMed

    Okamura, T; Tanaka, T; Yoshita, K; Chiba, N; Takebayashi, T; Kikuchi, Y; Tamaki, J; Tamura, U; Minai, J; Kadowaki, T; Miura, K; Nakagawa, H; Tanihara, S; Okayama, A; Ueshima, H

    2004-01-01

    The purpose of this study was to clarify the effects of popular Japanese alcoholic beverages on blood pressure. We performed a cross-sectional study on 4335 Japanese male workers using baseline data from an intervention study. We defined six groups according to the type of alcoholic beverage that provided two-thirds of the subject's total alcohol consumption: beer, sake (rice wine), shochu (traditional Japanese spirits), whiskey, wine and others. The partial regression coefficients of daily alcohol intake (1 drink=11.5 g of ethanol) to systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 0.87(P<0.001, standard error (s.e.)=0.09) and 0.77(P<0.001, s.e.=0.06), respectively. A comparison among the types of alcoholic beverages mainly consumed revealed significant differences in SBP and DBP. Both SBP and DBP were highest in the shochu group. However, an analysis of covariance adjusting for total alcohol consumption resulted in the disappearance of these differences. Although after adjustment for total alcohol consumption, the shochu group exhibited a significant positive association with 'high-normal blood pressure or greater' (odds ratio 1.43, 95% confidence interval 1.06-1.95) compared with the beer group, this significant relation disappeared after adjusting for the body mass index (BMI), urinary sodium and potassium excretion. The pressor effect, per se, of popular Japanese alcoholic beverages on blood pressure may not be different among the types of alcoholic beverages after adjusting for other lifestyle factors. PMID:14688805

  12. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients

    PubMed Central

    2012-01-01

    Introduction The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. Methods This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. Results A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). Conclusions High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control. PMID:22494810

  13. A simple and highly sensitive spectrophotometric method for the determination of cyanide in equine blood.

    PubMed

    Hughes, Charlie; Lehner, Fritz; Dirikolu, Levent; Harkins, Dan; Boyles, Jeff; McDowell, Karen; Tobin, Thomas; Crutchfield, James; Sebastian, Manu; Harrison, Lenn; Baskin, Stephen I

    2003-01-01

    An epidemiological association among black cherry trees (Prunus serotina), eastern tent caterpillars (Malacosoma americana), and the spring 2001 episode of mare reproductive loss syndrome in central Kentucky focused attention on the potential role of environmental cyanogens in the causes of this syndrome. To evaluate the role of cyanide (CN (-)) in this syndrome, a simple, rapid, and highly sensitive method for determination of low parts per billion concentrations of CN (-) in equine blood and other biological fluids was developed. The analytical method is an adaptation of methods commonly in use and involves the evolution and trapping of gaseous hydrogen cyanide followed by spectrophotometric determination by autoanalyzer. The limit of quantitation of this method is 2 ng/mL in equine blood, and the standard curve shows a linear relationship between CN (-) concentration and absorbance (r >. 99). The method throughput is high, up to 100 samples per day. Normal blood CN (-) concentrations in horses at pasture in Kentucky in October 2001 ranged from 3-18 ng/mL, whereas hay-fed horses showed blood CN (-) levels of 2-7 ng/mL in January 2002. Blood samples from a small number of cattle at pasture showed broadly similar blood CN (-) concentrations. Intravenous administration of sodium cyanide and oral administration of mandelonitrile and amygdalin yielded readily detectable increases in blood CN (-) concentrations. This method is sufficiently sensitive and specific to allow the determination of normal blood CN (-) levels in horses, as well as the seasonal and pasture-dependent variations. The method should also be suitable for investigation of the toxicokinetics and disposition of subacutely toxic doses of CN (-) and its precursor cyanogens in the horse as well as in other species. PMID:20021191

  14. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    PubMed

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations.

  15. Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow.

    PubMed

    Huang, Chih-Chung

    2009-08-01

    It was shown previously that ultrasonic scattering from whole blood varies during the flow cycle under pulsatile flow both in vitro and in vivo. It has been postulated that the cyclic variations of the backscattering signal are associated with red blood cell (RBC) aggregation in flowing whole blood. To obtain a better understanding of the relationship between blood backscattering and RBC aggregation behavior for pulsatile flowing blood, the present study used high-frequency ultrasound to characterize blood properties. The backscattering signals from both whole blood and an RBC suspension at different peak flow velocities (from 10 to 30 cm/s) and hematocrits (20% and 40%) under pulsatile flow (stroke rate of 20 beats/min) were measured with 3 single-element transducers at frequencies of 10, 35, and 50 MHz in a mock flow loop. To avoid the frequency response problem of a Doppler flowmeter, the integrated backscatter (IB) and flow velocity as functions of time were calculated directly using RF signals from flowing blood. The experimental results showed that cyclic variations of the IB curve were clearly observed at a low flow velocity and a hematocrit of 40% when using 50 MHz ultrasound, and that these variations became weaker as the peak flow velocity increased. However, these cyclic variations were detected only at 10 cm/s when using 10 MHz ultrasound. These results demonstrate that a high flow velocity can stop the formation of rouleaux and that a high hematocrit can promote RBC aggregation to produce cyclic variations of the backscattering signal under pulsatile flow. In addition, slight cyclic variations of the IB curve for an RBC suspension were observed at 35 and 50 MHz. Furthermore, the peak of the IB curve from whole blood led the peak of the velocity waveform when using high-frequency ultrasound, which could be explained by the assumption that a rapid flow can promote RBC aggregation under pulsatile flow. Together, the experimental results showed that the

  16. Xylose fermentation to ethanol

    SciTech Connect

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  17. High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.

    PubMed

    Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias

    2014-12-01

    The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles.

  18. Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice

    PubMed Central

    Vitzthum, Helga; Seniuk, Anika; Schulte, Laura Helene; Müller, Maxie Luise; Hetz, Hannah; Ehmke, Heimo

    2014-01-01

    A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased. PMID:24396058

  19. Blood Pressure Quiz

    MedlinePlus

    ... page please turn Javascript on. Feature: High Blood Pressure Blood Pressure Quiz Past Issues / Fall 2011 Table of Contents ... About High Blood Pressure / Treatment: Types of Blood Pressure Medications / Blood Pressure Quiz Fall 2011 Issue: Volume 6 Number ...

  20. A high-carbohydrate diet lowered blood pressure in healthy Chinese male adolescents.

    PubMed

    Zhu, Xingchun; Lin, Jia; Song, Yongyan; Liu, Hui; Zhang, Rongrong; Fan, Mei; Li, Yuanhao; Tian, Rong; Fang, Dingzhi

    2014-04-01

    Different diets consumed by individuals of different ethnicities, gender, and age may cause changes in blood pressure. The current study sought to investigate changes in blood pressures after consumption of a high-carbohydrate (high-CHO) diet by healthy Chinese adolescents. As a population, the Chinese consume a diet with a high carbohydrate content and they have a low incidence of hypertension and coronary artery disease. Dietary data were collected using a 3-day diet diary. Subjects were 672 high school students who were divided into a high-CHO diet group (≥ 55% carbohydrates) and a non-high-CHO diet group (< 55% carbohydrates, < 40% fats). Plasma glucose levels, heart rate, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured. Body mass index (BMI), waist-to-hip ratio (WHR), pulse pressure (PP), and mean arterial pressure (MAP) were calculated. Results indicated that males had a higher BMI, glucose level, SBP, DBP, PP, and MAP than females. When diet was taken into account, males in the non-high-CHO diet group had a higher SBP and PP than females. Males in the high-CHO diet group had a higher glucose level than females. Males in the high-CHO diet group had a lower SBP (p = 0.004) and PP (p = 0.002) than males in the non-high-CHO diet group and females in the high-CHO diet group had a lower glucose level (p = 0.003) than females in the non-high-CHO diet group. After adjusting for age, BMI, WHR, heart rate, the total daily energy intake, and the intake of vitamin C, calcium, sodium, potassium and magnesium, significant differences in SBP and PP were noted in males. These results indicate that male adolescents consuming a high-CHO diet had a lower SBP and PP than males consuming a non-high-CHO diet.

  1. The effect of chronic erythrocytic polycythemia and high altitude upon plasma and blood volumes.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Comparison of two kinds of physiological chronic erythrocytic polycythemias in order to differentiate the specific effect of erythrocytic polycythemia from the general effects of high altitude upon the plasma volume. The two kinds were produced hormonally in female chickens, at sea level, or by protracted high-altitude exposures. It appears that the vascular system of the body may account for an increase in red blood cell mass either by reduction in plasma volume, or by no change in plasma volume, resulting in differential changes in total blood volumes.

  2. Extraction of high quality genomic DNA from microsamples of human blood.

    PubMed

    Ma, H W; Cheng, J; Caddy, B

    1994-01-01

    A simple and efficient method for extracting human genomic DNA from microsamples of blood has been developed. This method used sodium perchlorate, chloroform, polymerised silica gel and a dumbbell-shape tube, instead of proteinase K and phenol. The entire process took less than two hours, and high molecular weight DNA, in high yield and purity, was obtained from a few microlitres of human blood. DNA prepared in this way can be easily digested with restriction endonucleases and has been employed for DNA profiling and the polymerase chain reaction.

  3. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    PubMed

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive

  4. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    PubMed

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive

  5. Record And Analysis Of High-Speed Photomicrography On Rheology Of Red Blood Cells In Vivo

    NASA Astrophysics Data System (ADS)

    Jian, Zhang; Yuju, Lin; Jizong, Wu; Qiang, Wang; Guishan, Li; Ni, Liang

    1989-06-01

    Microcirculation is the basic functional unit of blood circulation in human body. The oxygen needed and the carbon dioxide discharged in human body were accomplished in the case of flow and deformation of red blood cells (RBC) in capillaries. The rheology of RBC performs an important function for maintaining normal blood irrigation and nutritional metabolism. Obviously, for blood irrigation, dynamic mechanism of RBC, blood cell microrheology, law of mivrocirculation and cause of disease, it has very important significance to study quantitatively the rheology of RBC in the capillaries of live animal. In recent years, Tianjin University, cooperating with the Institute of Hematology, used the method of high speed photomicrography to record the flow states of RBC in the capillaries of the hamster cheek pouch and the frog web. Some systems were assembled through the study of luminous energy transmission, illumination system and optical match. These systems included the microhigh-speed camera system, the microhighspeed video recorder system and the microhighspeed camera system combining with an image enhancement tube. Some useful results were obtained by the photography of the flow states of RBC, film analysis and data processing. These results provided the beneficial data for the dynamic mechanism that RBC were deformed by the different blood flow field.

  6. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru.

    PubMed

    Burroughs Peña, Melissa; Romero, Karina M; Velazquez, Eric J; Davila-Roman, Victor G; Gilman, Robert H; Wise, Robert A; Miranda, J Jaime; Checkley, William

    2015-05-01

    Household air pollution from biomass fuel use affects 3 billion people worldwide; however, few studies have examined the relationship between biomass fuel use and blood pressure. We sought to determine if daily biomass fuel use was associated with elevated blood pressure in high altitude Peru and if this relationship was affected by lung function. We analyzed baseline information from a population-based cohort study of adults aged ≥ 35 years in Puno, Peru. Daily biomass fuel use was self-reported. We used multivariable regression models to examine the relationship between daily exposure to biomass fuel smoke and blood pressure outcomes. Interactions with sex and quartiles of forced vital capacity were conducted to evaluate for effect modification. Data from 1004 individuals (mean age, 55.3 years; 51.7% women) were included. We found an association between biomass fuel use with both prehypertension (adjusted relative risk ratio, 5.0; 95% confidence interval, 2.6-9.9) and hypertension (adjusted relative risk ratio, 3.5; 95% confidence interval, 1.7-7.0). Biomass fuel users had a higher systolic blood pressure (7.0 mm Hg; 95% confidence interval, 4.4-9.6) and a higher diastolic blood pressure (5.9 mm Hg; 95% confidence interval, 4.2-7.6) when compared with nonusers. We did not find interaction effects between daily biomass fuel use and sex or percent predicted forced vital capacity for either systolic blood pressure or diastolic blood pressure. Biomass fuel use was associated with a higher likelihood of having hypertension and higher blood pressure in Peru. Reducing exposure to household air pollution from biomass fuel use represents an opportunity for cardiovascular prevention.

  7. Mesoporous Silica Nanoparticle-Stabilized and Manganese-Modified Rhodium Nanoparticles as Catalysts for Highly Selective Synthesis of Ethanol and Acetaldehyde from Syngas

    SciTech Connect

    Huang, Yulin; Deng, Weihua; Guo, Enruo; Chung, Po-Wen; Chen, Senniang; Trewyn, Brian; Brown, Robert; Lin, Victor

    2012-03-30

    Well-defined and monodispersed rhodium nanoparticles as small as approximately 2 nm were encapsulated in situ and stabilized in a mesoporous silica nanoparticle (MSN) framework during the synthesis of the mesoporous material. Although both the activity and selectivity of MSN-encapsulated rhodium nanoparticles in CO hydrogenation could be improved by the addition of manganese oxide as expected, the carbon selectivity for C2 oxygenates (including ethanol and acetaldehyde) was unprecedentedly high at 74.5 % with a very small amount of methanol produced if rhodium nanoparticles were modified by manganese oxide with very close interaction.

  8. SOCIAL CONSEQUENCES OF ETHANOL: IMPACT OF AGE, STRESS AND PRIOR HISTORY OF ETHANOL EXPOSURE

    PubMed Central

    Varlinskaya, Elena I.; Spear, Linda P.

    2014-01-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  9. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  10. Alcohol-induced insulin resistance in liver: Potential roles in regulation of ADH expression; ethanol clearance and alcohol liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using total enteral nutrition (TEN), we demonstrated that low carbohydrate, high alcohol-containing diets (10-12 g/kg/dO produced alcoholic liver disease (ALD) in adult male Sprague-Dawley rats (300 g). Intragastric infusion of this diet generates regular pulses of blood ethanol concentrations (BEC...

  11. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.

    PubMed

    Meir, Jessica U; Milsom, William K

    2013-06-15

    The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb-O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood-gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood-O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood-O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH.

  12. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue.

    PubMed

    Gu, Hanqi; Zhang, Jian; Bao, Jie

    2015-09-01

    Corncob residue as the lignocellulosic biomass accumulated phenolic compounds generated from xylitol production industry. For utilization of this biomass, Zymomonas mobilis ZM4 was tested as the ethanol fermenting strain and presented a better performance of cell growth (2.8 × 10(8)  CFU/mL) and ethanol fermentability (54.42 g/L) in the simultaneous saccharification and fermentation (SSF) than the typical robust strain Saccharomyces cerevisiae DQ1 (cell growth of 2.9 × 10(7)  CFU/mL, ethanol titer of 48.6 g/L). The physiological response of Z. mobilis ZM4 to the twelve typical phenolic compounds derived from lignocellulose was assayed and compared with that of S. cerevisiae DQ1. Z. mobilis ZM4 showed nearly the same tolerance to the phenolic aldehydes with S. cerevisiae DQ1, but the stronger tolerance to the phenolic acids existing in corncob residue (2-furoic acid, p-hydroxybenzoic acid, p-coumaric acid, vanillic acid, ferulic acid, and syringic acid). The tolerance mechanism of Z. mobilis was investigated in terms of inhibitor degradation, cell morphology and membrane permeability under the stress of phenolics using GC-MS, scanning and transmission electron microscopies (SEM and TEM), as well as fluorescent probes. The results reveal that Z. mobilis ZM4 has the capability for in situ detoxification of phenolic aldehydes, and the lipopolysaccharide aggregation on the cell outer membrane of Z. mobilis ZM4 provided the permeable barrier to the attack of phenolic acids.

  13. Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity.

    PubMed

    Demarest, K; Koyner, J; McCaughran, J; Cipp, L; Hitzemann, R

    2001-01-01

    Differential sensitivity to the stimulant effects of ethanol on locomotor activity is determined in part by genetic differences. Among inbred strains of mice, moderate doses of ethanol (1-2 g/kg) stimulate locomotor activity in some strains, e.g., the DBA/2J (D2), but only mildly affect activity in other strains, e.g., C57BL/6J (B6) (Crabbe et al., 1982, 1983; Crabbe, 1986; Dudek and Phillips, 1990; Dudek et al., 1991; Dudek and Tritto, 1994). Quantitative trait loci (QTL) for the acute ethanol (1.5 g/kg) locomotor response has been identified in the BXD recombinant inbred (RI) series (N = 25 strains), a C57BL/6J x DBA/2J (B6D2) F2 intercross (N = 1800), and heterogeneous stock (HS) mice (N = 550). QTLs detected (p < .01) in the RI series were found on chromosomes 1, 2, and 6 and these QTLs were expressed in a time-dependent fashion. The QTLs on chromosomes 1 and 2 were confirmed in the F2 intercross at p < 10(-7) or better. HS mice from G32 to G35 were used to fine-map the chromosome 2 QTL. Compared to the consensus map, the genetic map in the HS animals was expanded 10- to 15-fold. Over the region flanked by D2Mit94 to D2Mit304, three separate QTLs were detected in the HS animals. The data obtained confirm the usefulness of HS mice for the fine-mapping of QTLs to a resolution of 2 cM or less.

  14. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extremely thermophilic, high ethanol-yielding bacterium isolated from household waste.

    PubMed

    Tomás, Ana Faria; Karakashev, Dimitar; Angelidaki, Irini

    2013-07-01

    An extremely thermophilic, xylanolytic, spore-forming and strictly anaerobic bacterium, strain DTU01(T), was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter of approximately 0.5 µm. Optimal growth occurred at 70 °C and pH 7, with a maximum growth rate of 0.1 h(-1). DNA G+C content was 34.2 mol%. Strain DTU01(T) could ferment arabinose, cellobiose, fructose, galactose, glucose, lactose, mannitol, mannose, melibiose, pectin, starch, sucrose, xylan, yeast extract and xylose, but not cellulose, Avicel, inositol, inulin, glycerol, rhamnose, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol ethanol per mol xylose was achieved when sulfite was added to the cultivation medium. Thiosulfate, but not sulfate, nitrate or nitrite, could be used as electron acceptor. On the basis of 16S rRNA gene sequence similarity, strain DTU01(T) was shown to be closely related to Thermoanaerobacter mathranii A3(T), Thermoanaerobacter italicus Ab9(T) and Thermoanaerobacter thermocopriae JT3-3(T), with 98-99 % similarity. Despite this, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance and isolation site) allow for the proposal of strain DTU01(T) as a representative of a novel species within the genus Thermoanaerobacter, for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed, with the type strain DTU01(T) ( = DSM 25963(T) = KCTC 4529(T) = VKM B-2752(T) = CECT 8142(T)).

  15. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue.

    PubMed

    Gu, Hanqi; Zhang, Jian; Bao, Jie

    2015-09-01

    Corncob residue as the lignocellulosic biomass accumulated phenolic compounds generated from xylitol production industry. For utilization of this biomass, Zymomonas mobilis ZM4 was tested as the ethanol fermenting strain and presented a better performance of cell growth (2.8 × 10(8)  CFU/mL) and ethanol fermentability (54.42 g/L) in the simultaneous saccharification and fermentation (SSF) than the typical robust strain Saccharomyces cerevisiae DQ1 (cell growth of 2.9 × 10(7)  CFU/mL, ethanol titer of 48.6 g/L). The physiological response of Z. mobilis ZM4 to the twelve typical phenolic compounds derived from lignocellulose was assayed and compared with that of S. cerevisiae DQ1. Z. mobilis ZM4 showed nearly the same tolerance to the phenolic aldehydes with S. cerevisiae DQ1, but the stronger tolerance to the phenolic acids existing in corncob residue (2-furoic acid, p-hydroxybenzoic acid, p-coumaric acid, vanillic acid, ferulic acid, and syringic acid). The tolerance mechanism of Z. mobilis was investigated in terms of inhibitor degradation, cell morphology and membrane permeability under the stress of phenolics using GC-MS, scanning and transmission electron microscopies (SEM and TEM), as well as fluorescent probes. The results reveal that Z. mobilis ZM4 has the capability for in situ detoxification of phenolic aldehydes, and the lipopolysaccharide aggregation on the cell outer membrane of Z. mobilis ZM4 provided the permeable barrier to the attack of phenolic acids. PMID:25851269

  16. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans.

    PubMed

    Erzurum, S C; Ghosh, S; Janocha, A J; Xu, W; Bauer, S; Bryan, N S; Tejero, J; Hemann, C; Hille, R; Stuehr, D J; Feelisch, M; Beall, C M

    2007-11-01

    The low barometric pressure at high altitude causes lower arterial oxygen content among Tibetan highlanders, who maintain normal levels of oxygen use as indicated by basal and maximal oxygen consumption levels that are consistent with sea level predictions. This study tested the hypothesis that Tibetans resident at 4,200 m offset physiological hypoxia and achieve normal oxygen delivery by means of higher blood flow enabled by higher levels of bioactive forms of NO, the main endothelial factor regulating blood flow and vascular resistance. The natural experimental study design compared Tibetans at 4,200 m and U.S. residents at 206 m. Eighty-eight Tibetan and 50 U.S. resident volunteers (18-56 years of age, healthy, nonsmoking, nonhypertensive, not pregnant, with normal pulmonary function) participated. Forearm blood flow, an indicator of systemic blood flow, was measured noninvasively by using plethysmography at rest, after breathing supplemental oxygen, and after exercise. The Tibetans had more than double the forearm blood flow of low-altitude residents, resulting in greater than sea level oxygen delivery to tissues. In comparison to sea level controls, Tibetans had >10-fold-higher circulating concentrations of bioactive NO products, including plasma and red blood cell nitrate and nitroso proteins and plasma nitrite, but lower concentrations of iron nitrosyl complexes (HbFeIINO) in red blood cells. This suggests that NO production is increased and that metabolic pathways controlling formation of NO products are regulated differently among Tibetans. These findings shift attention from the traditional focus on pulmonary and hematological systems to vascular factors contributing to adaptation to high-altitude hypoxia. PMID:17971439

  17. High-yield nanosized (Si)AlPO-41 using ethanol polarity equalization and co-templating synthesis approach

    NASA Astrophysics Data System (ADS)

    Majano, Gerardo; Raltchev, Kolio; Vicente, Aurelie; Mintova, Svetlana

    2015-03-01

    Control of the crystallite dimensions of the microporous aluminophosphate AlPO-41 (AFO-type framework structure), and the Si-containing analogue SAPO-41, was attained down to the nanometer scale under stable hydrothermal conditions. The combined application of a tetraalkylammonium co-template (tetrapentylammonium hydroxide) along with an amine structure directing agent (n-dipropylamine) stabilized through the use of ethanol in the initial suspension enables a crystallization medium, which remains homogeneous throughout the entire synthesis. As a direct consequence of the optimized homogeneity of the suspension, the AFO-type microporous nanocrystals (AlPO-41 and SAPO-41) with a size in the range of 30-500 nm with yields surpassing 50% are obtained. The feasibility to obtain nanosized AlPO-41 and SAPO-41 crystals using ethanol as a polarity equalizing agent, resulting in a scalable hydrothermal synthesis from non-colloidal starting mixtures without the use of other assisting methods, is presented.Control of the crystallite dimensions of the microporous aluminophosphate AlPO-41 (AFO-type framework structure), and the Si-containing analogue SAPO-41, was attained down to the nanometer scale under stable hydrothermal conditions. The combined application of a tetraalkylammonium co-template (tetrapentylammonium hydroxide) along with an amine structure directing agent (n-dipropylamine) stabilized through the use of ethanol in the initial suspension enables a crystallization medium, which remains homogeneous throughout the entire synthesis. As a direct consequence of the optimized homogeneity of the suspension, the AFO-type microporous nanocrystals (AlPO-41 and SAPO-41) with a size in the range of 30-500 nm with yields surpassing 50% are obtained. The feasibility to obtain nanosized AlPO-41 and SAPO-41 crystals using ethanol as a polarity equalizing agent, resulting in a scalable hydrothermal synthesis from non-colloidal starting mixtures without the use of other assisting

  18. High throughput imaging of blood smears using white light diffraction phase microscopy

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Bhaduri, Basanta; Han, Kevin; Luo, Zelun; Tangella, Krishnarao; Popescu, Gabriel

    2015-03-01

    While automated blood cell counters have made great progress in detecting abnormalities in blood, the lack of specificity for a particular disease, limited information on single cell morphology and intrinsic uncertainly due to high throughput in these instruments often necessitates detailed inspection in the form of a peripheral blood smear. Such tests are relatively time consuming and frequently rely on medical professionals tally counting specific cell types. These assays rely on the contrast generated by chemical stains, with the signal intensity strongly related to staining and preparation techniques, frustrating machine learning algorithms that require consistent quantities to denote the features in question. Instead we opt to use quantitative phase imaging, understanding that the resulting image is entirely due to the structure (intrinsic contrast) rather than the complex interplay of stain and sample. We present here our first steps to automate peripheral blood smear scanning, in particular a method to generate the quantitative phase image of an entire blood smear at high throughput using white light diffraction phase microscopy (wDPM), a single shot and common path interferometric imaging technique.

  19. High Blood Cholesterol in Adults. Report of the Expert Panel on Detection, Evaluation, and Treatment.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This report offers a patient-based approach to lowering blood cholesterol levels which seeks to identify individuals at high risk who will benefit from intensive intervention efforts. The goal is to establish criteria that define the candidates for medical intervention and to provide guidelines on how to detect, set goals for, treat, and monitor…

  20. High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells.

    PubMed

    Cheng, Chang-Hong; Yang, Fang-Fang; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li; Tan, Jia-Wen; Chen, Xiao-Yan

    2015-10-01

    Water temperature is an important environmental factor in aquaculture farming that affects the survival and growth of organisms. The change in culture water temperature may not only modify various chemical and biological processes but also affect the status of fish populations. In previous studies, high temperature induced apoptosis and oxidative stress. However, the precise mechanism and the pathways that are activated in fish are still unclear. In the present study, we investigated the effects of high temperature (34°C) on the induction of apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. The data showed that high temperature exposure increased oxygen species (ROS), cytoplasmic free-Ca(2+) concentration and cell apoptosis. To test the apoptotic pathway, the expression pattern of some key apoptotic related genes including P53, Bax, caspase 9 and caspase 3 were examined. The results showed that acute high temperature stress induced up-regulation of these genes, suggesting that the p53-Bax pathway and the caspase-dependent apoptotic pathway could be involved in apoptosis induced by high temperature stress. Furthermore, the gene expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the blood cells were induced by high temperature stress. Taken together, our results showed that high temperature-induced oxidative stress may cause pufferfish blood cells apoptosis, and cooperatively activated p53-Bax and caspase-dependent apoptotic pathway.

  1. High prevalence of hepatitis E virus antibodies among blood donors in Southern Brazil.

    PubMed

    Passos-Castilho, Ana Maria; de Sena, Anne; Geraldo, Alexandre; Spada, Celso; Granato, Celso F H

    2016-02-01

    Brazil has been classified as moderately endemic for hepatitis E virus (HEV) infection. However, data on the seroprevalence of HEV in this region are limited. This study evaluated the prevalence of past or present HEV infection among blood donors in the metropolitan area of Itajai Valley, Southern Brazil, a region of predominant German heritage, where cultural habits result in a high consumption of pork. Serum samples from 300 blood donors were tested in December 2014 using serological and molecular methods. Anti-HEV IgG antibodies were detected in 30 (10%) subjects, and categorized age groups revealed an age-dependent increase of HEV seroprevalence. Only one subject had anti-HEV IgM, whereas none tested positive for HEV-RNA. The present data demonstrate a higher seroprevalence of anti-HEV IgG in blood donors than previously reported in Brazil.

  2. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells.

    PubMed

    Hassen, Diab; El-Safty, Sherif A; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed A; Sakai, Masaru

    2016-01-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes. PMID:27075551

  3. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    PubMed Central

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-01-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes. PMID:27075551

  4. Effect of Ethanol on Fluoroquinolone Efficacy in a Rat Model of Pneumococcal Pneumonia

    PubMed Central

    Olsen, Keith M.; Gentry-Nielsen, Martha; Yue, Mei; Snitily, Mary U.; Preheim, Laurel C.

    2006-01-01

    This investigation compared the effect of ethanol on fluoroquinolone antibiotic efficacy and pharmacodynamics in an ethanol-fed rat model of pneumococcal pneumonia. Male Sprague-Dawley rats received a liquid diet containing 36% of total calories as ethanol. Paired controls (pair-fed controls) were fed a liquid diet without ethanol or received rat chow. Diets began 7 days before and continued for 10 days after transtracheal infections with 10 times the 50% lethal dose of type 3 Streptococcus pneumoniae. Beginning 18 h after infection, the rats received once daily subcutaneous phosphate-buffered saline, levofloxacin, moxifloxacin, or trovafloxacin at 50 or 100 mg/kg of body weight. White blood cell counts were determined, blood samples were collected for culture, and mortality was recorded. Additional rats were killed on day 5 for pharmacodynamic studies and quantitative cultures of bronchoalveolar lavage fluid. Bacteremia occurred by day 3 in 20 of 22 untreated rats. All 22 untreated rats died by day 9. Moxifloxacin treatment was effective in all diet groups at both the 50- and 100-mg/kg doses. In contrast, 50-mg/kg doses of levofloxacin and trovafloxacin improved survival in ethanol-fed rats but were ineffective in chow-fed rats. High-dose trovafloxacin at 100 mg/kg was associated with increased mortality in pair-fed rats. The free-fraction area under the concentration-time curve/MIC ratio exceeded 50 with all antibiotics in the ethanol group but dropped below 30 with levofloxacin and trovafloxacin in the pair- and chow-fed rats, with higher mortality. Achievement of adequate antibiotic-free fraction area under the concentration-time curve/MIC ratios helps overcome ethanol-induced immune defects induced in experimental pneumococcal pneumonia. PMID:16377688

  5. Hearing Impairment and High Blood Pressure among Bus Drivers in Puducherry

    PubMed Central

    Balaji, Rajeshwar; John, Nitin Ashok; Venkatappa, Umadevi Sajja

    2016-01-01

    Introduction Noise Induced Hearing Loss (NIHL), a major heath concern due to constant exposure to loud noise is on the rising trend in today’s world. The bus drivers are more vulnerable to the auditory and non-auditory ill effects of noise pollution. Aim The aim of this study was to assess and compare the hearing level, blood pressure and peak expiratory flow rate of bus drivers and individuals employed in office jobs. Materials and Methods Fifty male bus drivers aged 30-50 years and fifty males of the same group employed in office jobs were recruited as the test and control groups respectively. The hearing level of the individuals in both the groups was assessed using the Hearing Deterioration Index (HDI). The lung function and cardiovascular status of the study participants were assessed by measuring their Peak Expiratory Flow Rate (PEFR) and Blood Pressure (BP) respectively. The mean HDI, PEFR and BP values of both the groups were compared using the unpaired t-test and the extent of correlation between HDI, service years, exposure level, systolic blood pressure (SBP) and diastolic blood pressure (DBP) was determined using Pearson correlation coefficient test. Results HDI, SBP and DBP were significantly higher among the bus drivers when compared to the controls. However, there was no significant difference in the PEFR values between the test and the control groups. There was a highly significant positive correlation between HDI and service years and exposure level. Similarly, there was a significant positive correlation between exposure level and systolic and diastolic blood pressure. Conclusion Prolonged exposure to high intensity of sound results in deterioration of hearing capacity and increase in blood pressure among the bus drivers. PMID:27042452

  6. Detailed chemical kinetic model for ethanol oxidation

    SciTech Connect

    Marinov, N.

    1997-04-01

    A detailed chemical kinetic model for ethanol oxidation has been developed and validated against a variety of experimental data sets. Laminar flame speed data obtained from a constant volume bomb, ignition delay data behind reflected shock waves, and ethanol oxidation product profiles from a turbulent flow reactor were used in this study. Very good agreement was found in modeling the data sets obtained from the three different experimental systems. The computational modeling results show that high temperature ethanol oxidation exhibits strong sensitivity to the fall-off kinetics of ethanol decomposition, branching ratio selection for c2h5oh+oh=products, and reactions involving the hydroperoxyl (HO2) radical.

  7. Effect of ethanol on serum electrolytes and osmolality

    SciTech Connect

    Mahboob, T.; Haleem, M.A.

    1988-01-01

    Rats and rabbits were injected ethanol 2 g/kg intraperitoneally. One hour after injection blood was analyzed for serum electrolytes and osmolality. Administration of ethanol caused decrease in serum sodium, potassium, calcium, chloride, magnesium, phosphorus and glucose in rabbits. Further studies of intraperitoneal administration of ethanol in rats showed decrease in concentration of sodium, potassium, calcium, chloride, magnesium, phosphorus and glucose. Administration of ethanol caused an increase in serum osmolality in both rabbits and rats. It is concluded that ethanol ingestion is probably the commonest cause of the hyperosmolar state. Although the osmotic and sedative effects of ethanol are pharmacologically unrelated, the presence of ethanol should be considered in comatose patients whom the measured plasma osmolality appreciably exceeds that predicted on the basis of plasma glucose, urea and electrolytes concentration.

  8. Endogenous ethanol--its metabolic, behavioral and biomedical significance.

    PubMed

    Ostrovsky YuM

    1986-01-01

    Ethanol is constantly formed endogenously from acetaldehyde, and level of the former can be measured in both human beings and animals. Acetaldehyde can be generated in situ from the metabolism of pyruvate, threonine, deoxyribose-5-phosphate, phosphoethanolamine, alanine and presumably from other substrates. The levels of blood and tissue endogenous ethanol change as a function of various physiologic and experimental conditions such as starvation, aging, stress, cooling, adrenalectomy, etc. and are regulated by many exogenous compounds such as antimetabolites, derivatives of amino acids, lithium salts, disulfiram, cyanamide, etc. Under free choice alcohol selection situations, the levels of endogenous ethanol in rat blood and alcohol preference by the animals are negatively correlated. Similar negative correlations have been found between the levels of blood endogenous ethanol and the frequency of delirium in alcoholic patients undergoing alcohol withdrawal. Endogenous ethanol and acetaldehyde can therefore be regarded as compounds which fulfil substrate, regulatory and modulator functions.

  9. Ethanol toxicokinetics resulting from inhalation exposure in human volunteers and toxicokinetic modeling.

    PubMed

    Dumas-Campagna, Josée; Tardif, Robert; Charest-Tardif, Ginette; Haddad, Sami

    2014-02-01

    Uncertainty exists regarding the validity of a previously developed physiologically-based pharmacokinetic model (PBPK) for inhaled ethanol in humans to predict the blood levels of ethanol (BLE) at low level exposures (<1000 ppm). Thus, the objective of this study is to document the BLE resulting from low levels exposures in order to refine/validate this PBPK model. Human volunteers were exposed to ethanol vapors during 4 h at 5 different concentrations (125-1000 ppm), at rest, in an inhalation chamber. Blood and exhaled air were sampled. Also, the impact of light exercise (50 W) on the BLE was investigated. There is a linear relationship between the ethanol concentrations in inhaled air and (i) BLE (women: r²= 0.98/men: r²= 0.99), as well as (ii) ethanol concentrations in the exhaled air at end of exposure period (men: r²= 0.99/women: r²= 0.99). Furthermore, the exercise resulted in a net and significant increase of BLE (2-3 fold). Overall, the original model predictions overestimated the BLE for all low exposures performed in this study. To properly simulate the toxicokinetic data, the model was refined by adding a description of an extra-hepatic biotransformation of high affinity and low capacity in the richly perfused tissues compartment. This is based on the observation that total clearance observed at low exposure levels was much greater than liver blood flow. The results of this study will facilitate the refinement of the risk assessment associated with chronic inhalation of low levels of ethanol in the general population and especially among workers. PMID:24495244

  10. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    SciTech Connect

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH.

  11. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  12. Acute effects of ethanol on pattern reversal and flash-evoked potentials in rats and the relationship to body temperature.

    PubMed

    Boyes, W K; Hetzler, B E; Dyer, R S

    1993-01-01

    The effects of acute ethanol treatment on flash and pattern reversal visual evoked potentials (FEPs and PREPs, respectively) were examined in three experiments using Long-Evans rats. The relationships of evoked potential parameters with blood ethanol concentration and body temperature were examined. In Experiment 1, rats were treated i.p. with vehicle or 0.5, 1.0 or 2.0 g ethanol/kg body weight, and tested 30 min later. The 2.0 g/kg group had prolonged latencies of PREP peaks, no changes in PREP peak-to-peak amplitudes, and lower body temperatures than saline-treated controls. The peak latency shifts were significantly correlated with both blood ethanol concentration and body temperature, and were of a magnitude to be expected from similar changes in body temperature alone. Experiment 2 measured both PREPs and paired-flash FEPs in rats 30 min after injection of either 0, 0.5 or 2.0 g/kg ethanol. PREP changes were found following treatment with the high dose which were similar to those of Experiment 1. Some FEP peak latencies were prolonged and peak-to-peak amplitudes were reduced by both doses of ethanol, despite the fact that body temperatures were reduced at only the high dose. At 2.0 g/kg ethanol, the FEP changes in latency, but not amplitude, were in accordance with what would be expected from body temperature changes alone. The third study attempted to investigate the role of reduced body temperature in producing the visual evoked potential changes by testing at room temperatures of 22 or 30 degrees C. Contrary to expectations, the rats receiving 2 g/kg ethanol were approx. 1 degree C cooler than controls at both room temperatures. Evoked potential latencies were greater in ethanol-treated rats than controls at both room temperatures. There were no significant effects of ethanol on FEP amplitudes. Overall, the effects of low doses of ethanol were independent of temperature changes, but the effects of higher doses of ethanol (2.0 g/kg) could not be

  13. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    PubMed

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  14. Postmortem ethanol in the setting of ethanol-containing automotive fuel.

    PubMed

    Garber, Mitchell A; Canfield, Dennis V; Lewis, Russell J; Simmons, Samuel D; Radisch, Deborah L

    2013-03-01

    The pilot of a light aircraft that crashed after a loss of power was found to have ethanol in the vitreous and the blood, but almost none in the urine. The globes of the eyes were intact, and the body was refrigerated after recovery until the autopsy was performed the following morning. The pilot was described as a "nondrinker," and additional specialized toxicology testing results were inconsistent with ethanol ingestion. The pilot's body was extensively exposed to fuel during the prolonged extraction. Investigation determined that the aircraft had been fueled with gasoline that contained 10% ethanol. Although exposure to automotive fuel has not been previously described as a source of ethanol in postmortem specimens, it may represent a source for the ethanol detected during postmortem toxicology testing in this case, and this finding may be relevant to other cases with similar exposure.

  15. [Pharmacokinetics, metabolism, and analytical methods of ethanol].

    PubMed

    Goullé, J-P; Guerbet, M

    2015-09-01

    Alcohol is a licit substance whose significant consumption is responsible for a major public health problem. Every year, a large number of deaths are related to its consumption. It is also involved in various accidents, on the road, at work, as well as during acts of violence. Ethanol absorption and its fate are detailed. It is mainly absorbed in the small intestine. It accompanies the movements of the water, so it diffuses in all the tissues uniformly with the exception of bones and fat. The major route of ethanol detoxification is located into the liver. Detoxification is a saturable two-step oxidation. During the first stage ethanol is oxidized into acetaldehyde, under the action of alcohol dehydrogenase. During the second stage acetaldehyde is oxidized into acetate. Genetic factors or some drugs are able to disturb the absorption and the metabolism of ethanol. The analytical methods for the quantification of alcohol in man include analysis in exhaled air and in blood. The screening and quantification of ethanol for road safety are performed in exhaled air. In hospitals, blood ethanol determination is routinely performed by enzymatic method, but the rule for forensic samples is gas chromatography.

  16. A Convenient Method for Measuring Blood Ascorbate Concentrations in Patients Receiving High-Dose Intravenous Ascorbate

    PubMed Central

    Ma, Yan; Sullivan, Garrett G; Schrick, Elizabeth; Choi, In-Young; He, Zhuoya; Lierman, JoAnn; Lee, Phil; Drisko, Jeanne A; Chen, Qi

    2013-01-01

    Objective A simple method of using fingerstick blood glucose monitors (FSBG) to estimate blood ascorbate values after high-dose intravenous (IV) ascorbate infusion is evaluated as a substitution for HPLC measurement. Methods In 33 participants, readings from FSBG were taken before and after IV ascorbate infusions at various time points, with the post-infusion FSBG readings subtracted by the baseline glucose readings. The results of the subtractions (AAFSBG) were correlated with ascorbate concentrations detected by HPLC (AAHPLC). Results A linear regression was found between ascorbate concentrations detected by the fingersitck method (AAFSBG) and by HPLC (AAHPLC). The linear correlations were identical in healthy subjects, diabetic subjects and cancer patients. ANOVA analysis obtained an AAFSBG/AAHPLC ratio of 0.90, with 90% confidence interval of (0.69, 1.20). The corrections of AAFSBG improved similarity to AAHPLC, but did not significantly differ from the un-corrected values. Conclusion The FSBG method can be used as an approximate estimation of high blood ascorbate concentration after IV ascorbate (>50 mg/dL, or 2.8 mM) without correction. However this measurement is not accurate in detecting lower or baseline blood ascorbate. It is also important to highlight that in regard to glucose monitoring, FSBG readings will be erroneously elevated following intravenous ascorbate use and insulin should not be administered to patients based on these readings. PMID:23885992

  17. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.

  18. Ethanol and drug findings in women consulting a Sexual Assault Center--associations with clinical characteristics and suspicions of drug-facilitated sexual assault.

    PubMed

    Hagemann, Cecilie T; Helland, Arne; Spigset, Olav; Espnes, Ketil A; Ormstad, Kari; Schei, Berit

    2013-08-01

    The purpose of the study was to describe toxicological findings among women seeking health care after sexual assault, and to assess the relationship with so-called proactive DFSA (drug facilitated sexual assault). We also explored associations between ethanol in blood/urine and background data, assault characteristics, and clinical findings. We conducted a retrospective, descriptive study of female patients ≥ 12 years of age consulting the Sexual Assault Center at St. Olavs University Hospital, Trondheim, Norway. They were examined between July 1, 2003 and December 31, 2010, and urine and/or blood were analyzed for ethanol and selected medicinal/recreational drugs. Among the 264 patients included, ethanol and/or drugs were detected in 155 (59%). Of the 50 patients (19%) testing positive for drugs other than ethanol, benzodiazepines/benzodiazepine-like drugs were found in 31, central stimulants in 14, cannabinoids in 13 and opioids in nine. None tested positive for gamma-hydroxybutyrate (GHB). In total, 57 patients (22%) suspected proactive DFSA, but only five had findings of sedative drugs that were not accounted for by self-reported voluntary intake. No cases could unequivocally be attributed to proactive DFSA. Among the 120 patients tested for ethanol within 12 h after the assault, 102 were positive. The median estimated blood alcohol concentration (BAC) at the time of assault was 1.87 g/L. Patients testing positive for ethanol more often reported a public place of assault and a stranger assailant. Higher estimated BAC at the time of assault was associated with higher frequency of suspecting proactive DFSA. Ethanol was the most prevalent toxicological finding in urine/blood from victims of sexual assault, and high ethanol concentrations were often detected. Among the patients suspecting proactive DFSA, very few had sedative drug findings not explained by voluntary intake. It seems like opportunistic DFSA, rather than proactive DFSA dominate among the sexually

  19. Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process.

    PubMed

    Mikulski, D; Kłosowski, G; Rolbiecka, A

    2014-10-01

    Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.

  20. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  1. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    PubMed

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. PMID:27151682

  2. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing.

    PubMed

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V; Reimer, Lisa; Siba, Peter; Walker, Edward D; Zimmerman, Peter A; Serre, David

    2016-03-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  3. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing

    PubMed Central

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V.; Reimer, Lisa; Siba, Peter; Walker, Edward D.; Zimmerman, Peter A.; Serre, David

    2016-01-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  4. High prevalence of hepatitis C infection among blood donors in northeastern Thailand.

    PubMed

    Songsivilai, S; Jinathongthai, S; Wongsena, W; Tiangpitayakorn, C; Dharakul, T

    1997-07-01

    Previous studies on the prevalence of hepatitis C virus (HCV) infection in Asian countries reported an average prevalence of less than 1.5%. In this study a combination of second- and third-generation enzyme immunoassays (EIAs), immunoblot analysis, and polymerase chain reaction was used to evaluate the prevalence of HCV infection in 3,255 volunteer blood donors in northeastern Thailand. Antibodies to HCV were detected in 6.5% of male blood donors and 0.9% of female blood donors, giving an overall prevalence of 5.6% in this population (gender-adjusted prevalence of 3.7%). The prevalence was higher in males than in females (P < 0.0001) and increased with age, reaching a peak at 31-40 years of age. More than 90% of the EIA-positive samples tested positive by immunoblot analysis, giving an estimated minimal prevalence of antibodies to HCV in the blood donors of 5.2%. Approximately 80% of the EIA-positive blood donors were viremic as determined by the presence of HCV RNA detected by the polymerase chain reaction, indicating that at least 4.5% of volunteer blood donors had detectable HCV RNA and were considered potentially infectious. The prevalence of HCV infection in this population was higher than that in previous reports for central and northern Thailand, while the prevalence of HBV infection was similar to that in other regions of the country. This study clearly demonstrated a very high prevalence of HCV infection in northeastern Thailand, especially in the male population.

  5. Impaired oxygen utilization. A new mechanism for the hepatotoxicity of ethanol in sub-human primates.

    PubMed Central

    Lieber, C S; Baraona, E; Hernández-Muñoz, R; Kubota, S; Sato, N; Kawano, S; Matsumura, T; Inatomi, N

    1989-01-01

    The role of oxygenation in the pathogenesis of alcoholic liver injury was investigated in six baboons fed alcohol chronically and in six pair-fed controls. All animals fed alcohol developed fatty liver with, in addition, fibrosis in three. No evidence for hypoxia was found, both in the basal state and after ethanol at moderate (30 mM) or high (55 mM) levels, as shown by unchanged or even increased hepatic venous partial pressure of O2 and O2 saturation of hemoglobin in the tissue. In controls, ethanol administration resulted in enhanced O2 consumption (offset by a commitant increase in splanchnic blood flow), whereas in alcohol fed animals, there was no increase. At the moderate ethanol dose, the flow-independent O2 extraction, measured by reflectance spectroscopy on the liver surface, tended to increase in control animals only, whereas a significant decrease was observed after the high ethanol dose in the alcohol-treated baboons. This was associated with a marked shift in the mitochondrial redox level in the alcohol-fed (but not in control) baboons, with striking rises in splanchnic output of glutamic dehydrogenase and acetaldehyde, reflecting mitochondrial injury. Increased acetaldehyde, in turn, may aggravate the mitochondrial damage and exacerbate defective O2 utilization. Thus impaired O2 consumption rather than lack of O2 supply characterizes liver injury produced by high ethanol levels in baboons fed alcohol chronically. Images PMID:2708529

  6. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  7. A study of ethanol tolerance in yeast.

    PubMed

    D'Amore, T; Panchal, C J; Russell, I; Stewart, G G

    1990-01-01

    The ethanol tolerance of yeast and other microorganisms has remained a controversial area despite the many years of study. The complex inhibition mechanism of ethanol and the lack of a universally accepted definition and method to measure ethanol tolerance have been prime reasons for the controversy. A number of factors such as plasma membrane composition, media composition, mode of substrate feeding, osmotic pressure, temperature, intracellular ethanol accumulation, and byproduct formation have been shown to influence the ethanol tolerance of yeast. Media composition was found to have a profound effect upon the ability of a yeast strain to ferment concentrated substrates (high osmotic pressure) and to ferment at higher temperatures. Supplementation with peptone-yeast extract, magnesium, or potassium salts has a significant and positive effect upon overall fermentation rates. An intracellular accumulation of ethanol was observed during the early stages of fermentation. As fermentation proceeds, the intracellular and extracellular ethanol concentrations become similar. In addition, increases in osmotic pressure are associated with increased intracellular accumulation of ethanol. However, it was observed that nutrient limitation, not increased intracellular accumulation of ethanol, is responsible to some extent for the decreases in growth and fermentation activity of yeast cells at higher osmotic pressure and temperature.

  8. Ethanol from sugar crops: a critical review

    SciTech Connect

    Lipinsky, E.S.; Allen, B.R.; Bose, A.; Kresovich, S.

    1981-01-01

    Due to the hardships resulting from rising oil prices and periodic production shortfalls, many developing countries, especially those with warm humid climates, have explored ethanol production from sugar crops. This critical review offers information on ethanol production for development planners. Two sugar crop-based ethanol systems, raw sugar facility retrofit and conventional juice extraction, are first examined. The agronomy of sugar crops (cane, beet, sorghum) is then described, as are the steps in crop processing (extraction, fermentation, distillation, stillage disposal). The costs of producing ethanol from a typical sugarcane processing plant and from a state-of-the-art molasses processing facility are presented, and the trade-offs between producing ethanol or raw sugar from sugarcane weighed. Finally, the properties of ethanol in automotive fuels are outlined, along with important storage, handling, and safety considerations. Three major problems are cited in ethanol production from sugar crops: adverse environmental effects (10 gallons of waste to 1 gallon of ethanol); the high cost of conventional milling equipment; and the loss of potential revenue from raw sugar sales. A future possibility of producing ethanol from fibrous residues (bagasse) is noted. Included are a 64-item bibliography (1936-1980) and 31 tables.

  9. Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype.

    PubMed

    Ford, Matthew M

    2014-05-01

    Schedule-induced polydipsia (SIP) is generated by subjecting a highly motivated animal to a sub-optimal rate of food reinforcement while also providing access to a fluid. SIP is one of several adjunctive (or displacement) behaviors that are expressed in an exaggerated form that is deemed 'excessive.' This feature makes SIP an attractive model for studying an excessive ethanol drinking phenotype in rodents. Multiple experimental variables are crucial for the full manifestation of adjunctive drinking, including the degree of food deprivation, the inter-pellet interval selected, and the size of the food reward offered. Although these variables were extensively studied and optimized for water polydipsia in rats, a similarly customized approach to ethanol SIP and application of the procedure in mice have largely been curtailed in favor of the default variable values historically used for water SIP in rats. Further, ethanol SIP also requires careful consideration of variables such as taste and ethanol concentration. Investigation of the stress axis and neurochemical systems such as dopamine and serotonin in mediating adjunctive drinking stemmed from two leading hypotheses regarding the underlying mechanisms of SIP generation: 1) SIP as a coping strategy to mitigate stress associated with the aversive environmental condition, and 2) SIP as a displacement of reward in a highly motivated animal. Ethanol SIP is a powerful model of excessive intake because it can generate an ethanol-dependent state and sustain frequent and intoxicating levels of blood ethanol with voluntary oral consumption. The required food deprivation and the loss of the excessive drinking phenotype following removal of the generator schedule are the two main limitations of the model. Future utility of ethanol SIP will be enhanced by more fully dissecting the underlying hormonal and neurochemical mechanisms and optimizing experimental variables for ethanol SIP on a per species and strain basis.

  10. Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype

    PubMed Central

    Ford, Matthew M.

    2014-01-01

    Schedule-induced polydipsia (SIP) is generated by subjecting a highly motivated animal to a sub-optimal rate of food reinforcement while also providing access to a fluid. SIP is one of several adjunctive (or displacement) behaviors that are expressed in an exaggerated form that is deemed ‘excessive’. This feature makes SIP an attractive model for studying an excessive ethanol drinking phenotype in rodents. Multiple experimental variables are crucial for the full manifestation of adjunctive drinking, including the degree of food deprivation, the inter-pellet interval selected, and the size of the food reward offered. Although these variables were extensively studied and optimized for water polydipsia in rats, a similarly customized approach to ethanol SIP and application of the procedure in mice have largely been curtailed in favor of the default variable values historically used for water SIP in rats. Further, ethanol SIP also requires careful consideration of variables such as taste and ethanol concentration. Investigation of the stress axis and neurochemical systems such as dopamine and serotonin in mediating adjunctive drinking stemmed from two leading hypotheses regarding the underlying mechanisms of SIP generation: 1) SIP as a coping strategy to mitigate stress associated with the aversive environmental condition, and 2) SIP as a displacement of reward in a highly motivated animal. Ethanol SIP is a powerful model of excessive intake because it can generate an ethanol-dependent state and sustain frequent and intoxicating levels of blood ethanol with voluntary oral consumption. The required food deprivation and the loss of the excessive drinking phenotype following removal of the generator schedule are the two main limitations of the model. Future utility of ethanol SIP will be enhanced by more fully dissecting the underlying hormonal and neurochemical mechanisms and optimizing experimental variables for ethanol SIP on a per species and strain basis. PMID

  11. Ethanolic Extract of Butea monosperma Leaves Elevate Blood Insulin Level in Type 2 Diabetic Rats, Stimulate Insulin Secretion in Isolated Rat Islets, and Enhance Hepatic Glycogen Formation

    PubMed Central

    Samad, Mehdi Bin; Kabir, Ashraf Ul; Ahmed, Arif; Jahan, Mohammad Rajib; Hannan, J. M. A.

    2014-01-01

    We measured a vast range of parameters, in an attempt to further elucidate previously claimed antihyperglycemic activity of Butea monosperma. Our study clearly negates the possibility of antidiabetic activity by inhibited gastrointestinal enzyme action or by reduced glucose absorption. Reduction of fasting and postprandial glucose level was reconfirmed (P < 0.05). Improved serum lipid profile via reduced low density lipoprotein (LDL), cholesterol, triglycerides (TG), and increased high density lipoprotein (HDL) was also reestablished (P < 0.05). Significant insulin secretagogue activity of B. monosperma was found in serum insulin assay of B. monosperma treated type 2 diabetic rats (P < 0.01). This was further ascertained by our study on insulin secretion on isolated rat islets (P < 0.05). Improved sensitivity of glucose was shown by the significant increase in hepatic glycogen deposition (P < 0.05). Hence, we concluded that antihyperglycemic activity of B. monosperma was mediated by enhanced insulin secretion and enhanced glycogen formation in the liver. PMID:24860609

  12. Benzyl alcohol increases voluntary ethanol drinking in rats.

    PubMed

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated.

  13. Determination of dopexamine hydrochloride in human blood by high-performance liquid chromatography with electrochemical detection.

    PubMed

    Baker, P R; Gardner, J J; Lockley, W J; Wilkinson, D

    1995-05-19

    A method is described for the determination of dopexamine hydrochloride at concentrations of 5 to 100 ng/ml in human blood using electrochemical detection. The method uses a Hypersil ODS column and a mobile phase containing heptane sulphonate, orthophosphoric acid, diisopropylamine and disodium EDTA. Blood samples are stabilised immediately after collection by the use of dipotassium EDTA and a high concentration of sodium metabisulphite. The sample preparation procedure consists of a simple de-proteinisation with perchloric acid. The method is accurate, with inter-assay accuracies ranging from 100 to 104%, and is free of interference by blood from different individuals. Known and potential metabolites of dopexamine hydrochloride and a wide range of drugs do not interfere with the method. The method is precise with inter-assay coefficients of variation of 10.6% at 5 ng/ml and of less than 4.2% at higher concentrations. Stabilised blood samples may be stored for over six months at -25 degrees C prior to analysis. PMID:7663701

  14. High Homocysteine and Blood Pressure Related to Poor Outcome of Acute Ischemia Stroke in Chinese Population

    PubMed Central

    Liu, Changjiang; Zhao, Liang; Zhou, Mo; Sun, Wenjie; Xu, Tan; Tong, Weijun

    2014-01-01

    Objectives To assess the association between plasma homocysteine (Hcy), blood pressure (BP) and poor outcome at hospital discharge among acute ischemic stroke patients, and if high Hcy increases the risk of poor outcome based on high BP status in a northern Chinese population. Methods Between June 1, 2009 and May 31, 2013, a total of 3695 acute ischemic stroke patients were recruited from three hospitals in northern Chinese cities. Demographic characteristics, lifestyle risk factors, medical history, and other clinical characteristics were recorded for all subjects. Poor outcome was defined as a discharge modified Rankin Scale (mRS) score ≥3 or death. The association between homocysteine concentration, admission blood pressure, and risk of poor outcome following acute ischemic stroke was analyzed by using multivariate non-conditional logistic regression models. Results Compared with those in the lowest quartile of Hcy concentration in a multivariate-adjusted model, those in the highest quartile of Hcy concentration had increased risk of poor outcome after acute ischemic stroke, (OR = 1.33, P<0.05). The dose-response relationship between Hcy concentration and risk of poor outcome was statistically significant (p-value for trend  = 0.027). High BP was significantly associated with poor outcome following acute ischemic stroke (adjusted OR = 1.44, 95%CI, 1.19–1.74). Compared with non-high BP with nhHcy, in a multivariate-adjusted model, the ORs (95% CI) of non-high BP with hHcy, high BP with nhHcy, and high BP with hHcy to poor outcome were 1.14 (0.85–1.53), 1.37 (1.03–1.84) and 1.70 (1.29–2.34), respectively. Conclusion The present study suggested that high plasma Hcy and blood pressure were independent risk factors for prognosis of acute ischemic stroke, and hHcy may further increase the risk of poor outcome among patients with high blood pressure. Additionally, the results indicate that high Hcy with high BP may cause increased susceptibility

  15. Hypertension`s lead connection: Does low-level exposure to lead cause high blood pressure?

    SciTech Connect

    Fackelmann, K.

    1996-06-15

    {open_quotes}Paying for the sins of the past.{close_quotes} is how researcher Howard Hu describes a proposed disease process in which lead stored for decades in the skeleton puts people at risk of high blood pressure. Previous research has linked this silvery white, poisonous metal to a host of ill effects in children, including learning disabilities, behavior problems, and brain damage. Now, Hu`s study indicates that past exposure may be causing today`s high blood pressure. If he`s right, the public health impact would be significant. {open_quotes}Tens of millions of Americans have been exposed over the years to lead,{close_quotes} says Philip J. Landrigan of Mount Sinai Medical Center in New York. {open_quotes}Adults today grew up at a time when we were still putting several hundred thousand tons of lead into gasoline each year.{close_quotes} Indeed, the men who developed high blood pressure during the recent study had in their bones lead concentrations, or lead burdens, that came from decades of everyday exposure. Such exposures resulted principally from breathing in fumes from leaded gasoline, drinking tap water from lead pipes or pipes soldered with lead, and inhaling or ingesting lead-laced paint dust or chips. This article goes on to discuss other studies and questions which still need to be answered.

  16. Effect of the high femoral osteotomy upon the vascularity and blood supply of the hip joint

    SciTech Connect

    Day, B.; Shim, S.S.; Leung, G.

    1984-05-01

    This investigation was done to study the effects of high femoral osteotomy upon the vascularity and blood supply of the hip and to further our knowledge of its physiologic basis. We have used established methods of study, including bone scans, microangiography, isotope clearance and perosseous venography, and based upon the results of these studies, we have reached certain conclusions. First, high femoral osteotomy increases the blood flow and vascularity in the hip joint, the femoral head and neck and the great trochanter. Second, bone scanning techniques using /sup 99m/Tc labeled diphosphonate have shown increased uptake in the femoral head and neck after high femoral osteotomy. The localization was done using a Digital Gamma III computer, and the activity on the osteotomy side at two weeks was 3.5 times as great as on the control side. By 16 weeks postoperatively, there was still two times as much activity on the osteotomy side. Third, microangiography showed increased vascularity both at the osteotomy site and in the femoral head and neck and the greater trochanter on that side. Such an increase in vascularity first became evident two weeks after osteotomy and persisted during the four month period studied. Fourth, the results of the /sup 99m/Tc diphosphonate clearance study showed a 25 per cent increase in femoral head blood flow on the operative side. Fifth, perosseous venography of the femoral head and neck showed a marked increase in venous drainage through the osteotomy site in the immediate postosteotomy stage.

  17. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure.

    PubMed

    Li, Zhengqiu; Ye, Lin; Zhao, Xiaowen; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2016-05-01

    Highly oriented poly (lactic acid) (PLA) with bionic microgrooves was fabricated through solid hot drawing technology for further improving the mechanical properties and blood biocompatibility of PLA. In order to enhance the melt strength and thus obtain high orientation degree, long chain branched PLA was prepared at first through a two-step ring-opening reaction during processing. Linear viscoelasticity combined with branch-on-branch model was used to predict probable compositions and chain topologies of the products, and it was found that the molecular weight of PLA increased and topological structures with star like chain with three arms and tree-like chain with two generations formed during reactive processing, and consequently draw ratio as high as1200% can be achieved during the subsequent hot stretching. With the increase of draw ratio, the tensile strength and orientation degree of PLA increased dramatically. Long chain branching and orientation could significantly enhance the blood compatibility of PLA by prolonging clotting time and decreasing platelet activation. Microgrooves can be observed on the surface of the oriented PLA which were similar to the intimal layer of blood vessel, and such bionic structure resulted from the formation of the oriented shish kebab-like crystals along the draw direction.

  18. High initial blood levels of tacrolimus in overweight renal transplant recipients.

    PubMed

    Rodrigo, E; de Cos, M A; Sánchez, B; Ruiz, J C; Piñera, C; Fernández-Fresnedo, G; Palomar, R; Pérez-Ceballos, M A; Cotorruelo, J G; Zubimendi, J A; de Francisco, A L M; Arias, M

    2005-04-01

    For the purpose of both efficacy and safety, exposure to tacrolimus and other immunosuppressive drugs must be monitored, since initial levels influence the development of acute rejection episodes, nephrotoxicity, and posttransplantation diabetes mellitus. The aim of this study was to identify risk factors for developing high initial tacrolimus blood levels. We analyzed clinical and biochemical parameters of 85 renal transplant recipients receiving tacrolimus-based immunosuppressive therapy by stratifying into subgroups of patients who displayed first tacrolimus concentrations higher and lower than 15 ng/mL. Patients with a first level of tacrolimus higher than 15 ng/mL were older (52 +/- 13 vs 40 +/- 12 years, P < .05) and had a larger body mass index (27 +/- 4 vs 23 +/- 3 kg/m2, P < .05) than patients with lower levels, despite receiving a lower weight-adjusted cumulative steroid dose (8.2 +/- 2.2 vs 9.3 +/- 2.5 mg/kg, P < .05). Upon logistic regression, age (RR 1.047, 95% CI 1.007 to 1.08, P = .021) and body mass index (RR 1.176, 95% CI 1.009 to 1.371, P = .036) remained significant risk factors for high initial blood levels of tacrolimus. As these subgroups of patients are most prone to develop posttransplantation glycemic disorders, attention must be paid to avoid high tacrolimus blood levels by diminishing initial tacrolimus doses or estimating them from ideal body weight.

  19. [Ultra high-dose chemotherapy with peripheral blood stem cell autotransplantation for refractory testicular cancer].

    PubMed

    Sugimoto, K; Nakagawa, S; Mikami, K; Watanabe, H; Sonoda, Y; Abe, T; Fujii, H

    1994-02-01

    This is a report of 45-year-old man with advanced nonseminomatous germ cell tumor (stage IIIB2: embryonal carcinoma, yolk sac tumor, seminoma), who had relapse after PVB (cisplatin, vinblastine, bleomycin) chemotherapy. Peripheral blood stem cells (PBSCs) were taken by two consecutive apheresis using a CS-3000 blood separator after high-dose chemotherapy of cytarabine and mitoxantrone. In total, 6.4 x 10(5)/kg of granulocytic cells (CFU-GM) was collected. He was treated with ultra high-dose chemotherapy consisting of carboplatin (800 mg/m2), etoposide (1,000 mg/m2) and cyclophosphamide (100 mg/kg) from day 1, followed by peripheral blood stem cell autotransplantation (PBSCT) on day 9. We transfused 2.4 x 10(5)/kg CFU-GM, which was enough number of stem cells for safe PBSCT. No serious side effects or complications were encountered. The patient achieved partial remission for more than two months. However, he died of respiratory dysfunction caused by metastatic lung cancer 5 months later. It was thought that ultra high-dose chemotherapy with PBSCT might be a new therapy for refractory testicular cancer.

  20. Risk factors for high levels of lead in blood of schoolchildren in Mexico City.

    PubMed

    Olaiz, G; Fortoul, T I; Rojas, R; Doyer, M; Palazuelos, E; Tapia, C R

    1996-01-01

    Risk factors associated with blood lead levels exceeding 15 microg/dl were analyzed in this report. This relatively high lead level was selected because, at the time the study commenced, it was considered to be a "safe" level. A total of 1583 schoolchildren were studied. The students were from (a) two areas in Mexico City (Tlalnepantla and Xalostoc) that have had historically high concentrations of lead in air, and (b) three areas (Pedregal, Iztalpalapa, and Centro) with less impressive air lead levels. Parents were presented with a questionnaire that solicited information about lead risk factors. A bivariate analysis and a multilogistic analysis were conducted to identify associations and to identify the model that most accurately explains the variability of the sample. High blood lead concentrations were found in children who lived in Xalostoc and Tlalnepantla (16.1 and 17.0 microg/dl, respectively), and the lowest concentration (i.e., 10 microg/dl) was found in children from Iztapalapa. The strongest association was with area of residence, followed by education level of parents, cooking of meals in glazed pottery, and chewing or sucking of yellow or other colored pencils. A child's area of residence is the most significant risk factor that must be accounted for when any study of lead and blood lead concentrations is undertaken. Follow-up in similar populations should assist greatly in the evaluation of the impact of governmental actions on public health.