Science.gov

Sample records for high cholesterolfructose-fed rats

  1. Stress-reactive rats (high-avoidance female rats) have a shorter lifespan than stress-nonreactive rats (low-avoidance female rats)

    PubMed Central

    Ohta, Ryo; Kumagai, Fumiaki; Marumo, Hideki; Usumi, Kenji; Saito, Yoshiaki; Kuwagata, Makiko

    2015-01-01

    Although Hatano high-avoidance and low-avoidance rats (HAA and LAA, respectively) have been selectively bred for good versus poor avoidance learning, HAA rats are known to be more reactive to stress than LAA rats. In this study, HAA and LAA female rats were compared during reproductive aging by observing estrous cycles from 8 to 11 months of age. Furthermore, these rats were allowed to live out their natural lifespans, that is, until 24 months of age, in order to compare their survival and to clarify the relationship between reproductive aging and tumor development. At eight months of age, 2 of 35 HAA rats and 20 of 35 LAA rats had abnormal estrous cycles. The median lifespan of the HAA rats (673 days) was shorter than that of the LAA rats (733 days). The incidence of pituitary neoplasia was higher in the HAA rats than in the LAA rats. These results suggest that HAA female rats (i.e., stress-reactive rats) have a shorter lifespan than LAA female rats (i.e., stress-nonreactive rats) and develop pituitary neoplasia, which was one of the causal factors in their accelerated mortality. However, the onset of an age-matched abnormal cycle did not correspond with their lifespan. PMID:27182111

  2. Genetic influence on brain catecholamines: high brain norepinephrine in salt-sensitive rats

    SciTech Connect

    Iwai, J; Friedman, R; Tassinari, L

    1980-01-01

    Rats genetically sensitive to salt-induced hypertension evinced higher levels of plasma norepinephrine and epinephrine than rats genetically resistant to hypertension. The hypertension-sensitive rats showed higher hypothalamic norepinephrine and lower epinephrine than resistant rats. In response to a high salt diet, brain stem norepinephrine increased in sensitive rats while resistant rats exhibited a decrease on the same diet.

  3. High alcohol intake in female Sardinian alcohol-preferring rats.

    PubMed

    Loi, Barbara; Colombo, Giancarlo; Maccioni, Paola; Carai, Mauro A M; Franconi, Flavia; Gessa, Gian Luigi

    2014-06-01

    Sardinian alcohol-preferring (sP) rats have been selectively bred for high alcohol preference and consumption. When exposed to the standard, home cage 2-bottle "alcohol (10%, v/v) vs. water" choice regimen with continuous access, male sP rats consume daily approximately 6 g/kg alcohol. Conversely, when exposed to the intermittent (once every other day) access to 2 bottles containing alcohol (20%, v/v) and water, respectively, male sP rats display marked increases in daily alcohol intake and signs of alcohol intoxication and "behavioral" dependence. The present study was designed to assess alcohol intake in female sP rats exposed, under the 2-bottle choice regimen, to (a) 10% (v/v) alcohol with continuous access (CA10%), (b) 10% (v/v) alcohol with intermittent access (IA10%), (c) 20% (v/v) alcohol with continuous access (CA20%), and (d) 20% (v/v) alcohol with intermittent access (IA20%). Male sP rats (exposed to CA10% and IA20% conditions) were included for comparison. Over 20 daily drinking sessions, daily alcohol intake in female CA10% and IA20% rats averaged 7.0 and 9.6 g/kg, respectively. The rank of alcohol intake was IA20% > IA10% = CA20% > CA10%. Conversely, daily alcohol intake in male CA10% and IA20% rats averaged 6.0 and 8.2 g/kg, respectively. Comparison of female and male rats yielded the following rank of alcohol intake: female IA20% > male IA20% > female CA10% ≥ male CA10%. An additional experiment found that alcohol drinking during the first hour of the drinking session produced mean blood alcohol levels of 35-40 mg% and 85-100 mg% in the CA10% and IA20% rats, respectively. These results (a) extend to female sP rats previous data demonstrating the capacity of the IA20% condition to markedly escalate alcohol drinking, and (b) demonstrate that female sP rats consume more alcohol than male sP rats. This sex difference is more evident under the IA20% condition, suggesting that female sP rats are highly sensitive to the promoting effect

  4. High prevalence of rat hepatitis E virus in wild rats in China.

    PubMed

    Li, Wei; Guan, Dawei; Su, Juan; Takeda, Naokazu; Wakita, Takaji; Li, Tian-Cheng; Ke, Chang Wen

    2013-08-30

    Serum samples from a total of 713 wild rats captured in Zhanjiang city in China from December 2011 to September 2012 were investigated for the prevalence of rat hepatitis E virus (HEV) by exploring rat HEV-specific antibodies and RNA. By an ELISA based on recombinant rat HEV-like particles (HEV-LPs), 23.3% (166/713) of the rats were positive for anti-HEV IgG, and 8.3% (59/713) were positive for anti-HEV IgM. The IgG-positive rates in Rattus norvegicus, Bandicota indica, Rattus flavipectus, Rattus rattoides losea, and Rattus rattus hainanus, were 27.8% (64/230), 23.0% (40/174), 19.9% (34/171), 21.5% (26/121), and 11.8% (2/17), while the IgM-positive rates were 8.3% (19/230), 6.9% (12/174), 8.2% (14/171), 10.7% (13/121), and 5.9% (1/17), respectively. The IgG-positive rate of the rats captured in rural areas, 24.1% (84/348), was higher than that in the central area of Zhanjiang city, 15.1% (32/212). The highest IgG-positive rates, as high as 45.3% (39/86), were detected in wild rats trapped in the garbage dump. Twelve of the 59 IgM-positive serum samples were positive for HEV RNA, which was detected in all of the wild rat species except R. rattus hainanus. A phylogenetic analysis of the partial genome of rat HEV ORF1 indicated that all of the 12 HEV strains belong to rat HEV, and no other genotype HEV were detected. The rat HEV from Zhangjiang city could be classified into three separated clusters, suggesting that the infection due to rat HEV with a variety of genome entities occurs extensively among wild rats in China.

  5. Resveratrol improves high-fructose-induced vascular dysfunction in rats.

    PubMed

    Develi-Is, Seval; Ozen, Gulsev; Bekpinar, Seldag; Topal, Gokce; Unlucerci, Yesim; Dogan, B Sonmez Uydes; Uysal, Mujdat

    2014-12-01

    High levels of fructose in the diet results in metabolic abnormalities and vascular disorders. In this study, the effect of resveratrol (RES) on vascular relaxation and contraction responses was examined in the aorta of high-fructose (HFr)-fed rats. mRNA expressions of aortic sirtuin 1 (SIRT1), GLUT5, and aldolase B were also investigated. Rats were given fructose (30%) and (or) RES (50 mg · L(-1)) in their drinking water for 8 weeks. In the HFr-fed rats, plasma levels of arginine and the ratio of arginine:asymmetric dimethylarginine (ADMA) decreased, whereas leptin levels increased. Decreased relaxation and increased contractile responses were detected in aortic rings. However, the aortic expressions of SIRT1, GLUT5, and aldolase B remained unchanged. RES treatment restored HFr-induced vascular dysfunction without improvements in insulin resistance. Treatment of HFr-fed rats with RES increased plasma levels of arginine and the L-arginine:ADMA ratio, and decreased plasma levels of leptin. RES increased SIRT1 expression, but decreased the expression of GLUT5 and aldolase B in aortas from HFr-fed rats. These results suggest that RES contributes to the restoration of HFr-induced vascular dysfunction in rats, at least in part, by up-regulation of SIRT 1 and down-regulation of GLUT5 and aldolase B in the aorta. Moreover, RES may have a positive influence on vasculature by partly restoring the plasma arginine:ADMA ratio and leptin levels.

  6. Liver regeneration in rats administered high levels of carbohydrates.

    PubMed

    Gershbein, L L

    1976-01-01

    Partially hepatectomized male rats were administered high levels of carbohydrates by drinker, in a casein-cellulose synthetic medium and in a commercial meal over a period of 10 days after surgery and the amount of liver regenerating or the increment ascertained; representative hepatic glycogen changes were also followed. Of the carbohydrate solutions, 5% levulose, 5% levulose+5% glucose and 10% sucrose increased the extent of liver regeneration as was also the case with the synthetic diet suplemented with 30 and 60% glucose, 30 and 60% levulose, 30% levulose+30% glucose, 30% each of galactose and the arabinoglactan, Stractan and 60% each of sucrose, honey and unsulphured molasses. The liver increments and glycogen contents were in the control range for animals fed the synthetic diet containing 30% each of lactose, sorbitol, corn starch and raffinose pentahydrate, 5% ascorbic acid and 15% L-arabinose but the liver glycogen was depressed with 30% xylose, a diet which was poorly tolerated; 15% mannitol caused a decrease inthe increment. The incorporation of several sugars into the commercial rat meal, including xylose (11%), raffinose (15%), L-arabinose (8%), D-arabinose (5%), L-sorbose (17%), galactosamine (0.20%) and galactono-gamma-lactone (10%), led to little change over the control increments. In intact rats fed the synthetic diet containing 30% each of glucose, lactose, galactose, sucrose and levulose for an interval of 10 days, the wet and dry liver--body weight ratios were significantly elevated only with the last two sugars but liver glycogen was increased in each instance.

  7. Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats

    PubMed Central

    AlSharari, Shakir D.; Al-Rejaie, Salim S.; Abuohashish, Hatem M.; Ahmed, Mohamed M.; Hafez, Mohamed M.

    2016-01-01

    Background and Objective. High-cholesterol diet (HCD) intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p) which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β), Mothers Against Decapentaplegic Homolog 2 (Smad-2), Mothers Against Decapentaplegic Homolog 4 (Smad-4), Bcl-2-binding component 3 (Bbc3), caspase-3, P53 and Interleukin-6 (IL-6) and decrease in the expression levels of Cyclin depended kinase inhibitor (P21) and Interleukin-3 (IL-3) in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity. PMID:27239252

  8. Lean rats gained more body weight from a high-fructooligosaccharide diet.

    PubMed

    Li, Shaoting; Yingyi, Gu; Chen, Long; Lijuan, Gao; Ou, Shiyi; Peng, Xichun

    2015-07-01

    Fructooligosaccharides (FOS) are believed to be beneficial to the host growth and its gut health. This article is intended to investigate the different influences of a high-fructooligosaccharide (FOS) diet on the growth and gut microbiota of lean and obese rats. Diet-induced lean and obese rats were fed a high-FOS diet for 8 weeks. Rats' body weight (BW) and feed intake were recorded weekly, and their gut microbiota was analyzed by 16S rDNA sequencing. The results showed that the lean rats gained more BW than the obese ones from the high-FOS diet. In the meanwhile, the gut microbiota in both lean and obese rats was altered by this diet. The abundance of Bacteroidetes was increased significantly (P < 0.05) in the lean rats, while no significant alteration in Firmicutes was observed in all rats after the consumption of a high-FOS diet. In conclusion, this study first reported that the lean rats gained more body weight from a high-FOS diet than the obese ones, and the increase of Bacteroidetes might help rats harvest more energy from the high-FOS diet.

  9. Cocaine-induced c-Fos expression in rats selectively bred for high or low saccharin intake and in rats selected for high or low impulsivity.

    PubMed

    Regier, Paul S; Carroll, Marilyn E; Meisel, Robert L

    2012-08-01

    Sweet preference and impulsivity are predictors of cocaine self-administration; however, no research has been conducted to investigate neuronal activation in key brain reward areas after first time exposure to cocaine in rats that differ in their propensity for cocaine-seeking and -taking behavior. In this study we used rats that had been selectively bred for high vs. low saccharin intake and rats selected for high vs. low impulsivity for food. The goal of this study was to investigate whether there are differences of c-Fos reactivity between high and low phenotypes and determine whether these differences are similar between the two animal models. A group of rats was bred for high or low saccharin intake. Another group of rats was selected as high or low impulsive based on performance in a delay-discounting task. Subsequently, rats were given an acute injection of cocaine or saline and then c-Fos expression was observed and analyzed in several brain regions. The low reward-seeking phenotypes showed higher cocaine-induced c-Fos expression in several of these regions. Low saccharin preferring rats showed higher cocaine-induced c-Fos expression in the nucleus accumbens shell, and low impulsive rats showed higher cocaine-induced c-Fos expression in the orbitofrontal cortex and cingulate gyrus 1 area. In addition, both low impulsive and low saccharin rats had higher cocaine-induced c-Fos in the dorsal medial and dorsal lateral caudate putamen. The results indicate that individual differences in neuronal reactivity exist prior to chronic exposure to drugs of abuse. Furthermore, similar differences between the two animal models may be indicative of a common mechanism underlying vulnerability to drugs of abuse.

  10. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  11. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  12. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  13. Rat full term amniotic fluid harbors highly potent stem cells.

    PubMed

    Mun-Fun, Hoo; Ferdaos, Nurfarhana; Hamzah, Siti Nurusaadah; Ridzuan, Noridzzaida; Hisham, Nurul Afiqah; Abdullah, Syahril; Ramasamy, Rajesh; Cheah, Pike See; Thilakavathy, Karrupiah; Yazid, Mohd Nazri; Nordin, Norshariza

    2015-10-01

    Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.

  14. Male Roman high and low avoidance rats show different patterns of copulatory behaviour: comparison with Sprague Dawley rats.

    PubMed

    Sanna, Fabrizio; Corda, Maria Giuseppa; Melis, Maria Rosaria; Piludu, Maria Antonietta; Giorgi, Osvaldo; Argiolas, Antonio

    2014-03-29

    Roman high- (RHA) and low-avoidance (RLA) rats, selectively bred for, respectively, rapid vs. extremely poor acquisition of avoidant behaviour in the shuttle-box, display different coping strategies when exposed to aversive environmental conditions: RLA rats are reactive copers and show hyperemotional behaviour characterized by hypomotility and freezing, while RHA rats show a proactive coping behaviour aimed at gaining control over the stressor. RHA rats also display a robust sensation/novelty seeking profile, high baseline levels of impulsivity, and marked preference for, and intake of, natural and drug rewards. This study shows that the Roman lines also differ in sexual behaviour, a main source of natural reward. Thus, male RHA rats engaged in copulatory activity with a receptive female showing more mounts, intromissions and ejaculations in the first copulation test as compared with their RLA counterparts and Sprague Dawley rats used as an external reference strain. Such differences decreased only partially in subsequent copulation tests, with RHA rats always showing higher levels of sexual motivation and performance than RLA rats. Accordingly, analysis of copulatory parameters of five copulation tests performed at 3-day intervals confirmed that the Roman lines display different patterns of copulatory activity that persist after stabilization of copulatory behaviour by sexual experience. Finally, the weight of the testes, epididymides and seminal vesicles increased to a similar extent in both Roman lines after sexual activity. These results are discussed in terms of the relative contribution of differences in brain neurotransmission (mainly dopamine) and neuroendocrine function to the different patterns of copulatory behaviour of the Roman lines.

  15. High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets.

    PubMed

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree

    2012-05-01

    Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.

  16. Effects of human low and high density lipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes

    SciTech Connect

    Brissette, L.; Nol, S.P.

    1986-05-25

    Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat /sup 125/I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific /sup 125/I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat /sup 125/I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.

  17. Trabecular bone volume and osteoprotegerin expression in uremic rats given high calcium.

    PubMed

    Rianthavorn, Pornpimol; Ettenger, Robert B; Salusky, Isidro B; Kuizon, Beatriz D

    2010-11-01

    Calcium (Ca)-containing phosphate binders have been recommended for the treatment of hyperphosphatemia in children with chronic kidney disease. To study the effects of high Ca levels on trabecular bone volume (BV) and osteoprotegerin (OPG) expression in uremic young rats, a model of marked overcorrection of secondary hyperparathyroidism was created by providing a diet of high Ca to 5/6 nephrectomized young rats (Nx-Ca) for 4 weeks. The results of chondrocyte proliferation and apoptosis, osteoclastic activity, OPG expression and BV were compared among intact rats given the control diet, intact rats given a high Ca diet and 5/6 nephrectomized rats given the control diet (Nx-Control) and the high Ca diet (Nx-Ca). Ionized Ca levels were higher and parathyroid hormone levels were lower in Nx-Ca rats than in the other groups. Final weight, final length and final tibial length of Nx-Ca rats were significantly less than those of the other groups, although the length gain did not differ among the groups. The hypertrophic zone width was markedly enlarged in Nx-Ca rats. Chondrocyte proliferation rates did not differ among the groups, whereas osteoclastic activity was decreased in Nx-Ca rats compared with the Nx-Control animals. The OPG expression and BV were increased in Nx-Ca rats compared with the Nx-Control rats. Increased BV should improve bone strength, whereas disturbance of osteoclastogenesis interferes with bone remodeling. Bone quality has yet to be determined in high Ca-fed uremic young rats.

  18. Chronic Psychological Stress Enhances Nociceptive Processing in the Urinary Bladder in High-Anxiety Rats

    PubMed Central

    Robbins, M.T.; DeBerry, J.; Ness, T.J.

    2007-01-01

    This study sought to determine whether acute and/or chronic psychological stress produce changes in urinary bladder nociception. Female Sprague-Dawley (SD; low/moderate anxiety) or Wistar-Kyoto (WK; high-anxiety) rats were exposed to either an acute (1 day) or a chronic (10 days) water avoidance stress paradigm or a sham stress paradigm. Paw withdrawal thresholds to mechanical and thermal stimuli and fecal pellet output, were quantified at baseline and after the final stress or sham stress exposure. Rats were then sedated, and visceromotor responses (VMRs) to urinary bladder distension (UBD) were recorded. While acute stress exposure did not significantly alter bladder nociceptive responses in either strain of rats, WK rats exposed to a chronic stress paradigm exhibited enhanced responses to UBD. These high-anxiety rats also exhibited somatic analgesia following acute, but not chronic, stress. Furthermore, WK rats had greater fecal pellet output than SD rats when stressed. Significant stress-induced changes in nociceptive responses to mechanical stimuli were observed in SD rats. That chronic psychological stress significantly enhanced bladder nociceptive responses only in high-anxiety rats provides further support for a critical role of genetics, stress and anxiety as exacerbating factors in painful urogenital disorders such as interstitial cystitis (IC). PMID:17521683

  19. Effect of high fat, fiber and caloric restriction on rat mammary tumorigenesis

    SciTech Connect

    Magrane, D.; Van Sant, J.; Butler, B.

    1986-03-05

    Female rats given 7,12-Dimethylbenz(a)anthracene (DMBA) were placed on diets of control fat (CF-4.5%) or high fat (HF-20%) with either control fiber (6%) or high fiber (FB-12%). A 60% reduction in the CF diet was used to study the effects of caloric restriction on tumorigenesis. Results showed that HF diets had a shorter latency period than CF rats. The respective average number of tumors per rat and tumor volume were 7.3 +/- 1.3 and 23694 mm/sup 2/ for rats on a HF diet and 5.1+/-1.1 and 9144 mm/sup 3/ for CF rats. Addition of high fiber to the diets reduced the tumor incidence from 95% to 70% in the CF group but did not reduce the incidence in HF group. Although tumor number was reduced to 3.7+/-1.5 in CF+FB rats, the tumor volumes were not reduced (8950 mm/sup 3/). Rats fed HF+FB did not have fewer tumors (7.0+/-1.1), but did show a 53% reduction in tumor load. The estrogen dependent enzyme glucose-6-phosphate dehydrogenase was not affected by dietary levels of fat, which suggests that the promotional effects of fat may not be through estrogen stimulation. None of the caloric restricted rats had tumors 12 weeks post-DMBA. These restricted rats all had significantly elevated levels of serum corticosterone.

  20. Lipoprotein receptors in copper-deficient rats: high density lipoprotein binding to liver membranes

    SciTech Connect

    Hassel, C.A.; Lei, K.Y.; Marchello, J.A.

    1986-03-05

    In copper-deficient rats, the observed hyperlipoproteinemia was mainly due to the elevation in high density lipoproteins (HDL). This study was designed to determine whether an impairment in the binding of HDL to liver membrane is responsible for the hyperlipoproteinemia. Sixty male Sprague-Dawley rats were randomly divided into 2 treatments, namely copper (Cu) deficient and adequate (less than 1 and 8 mg Cu/kg of diet). After 8 weeks, plasma, heart and liver tissues were obtained. Reduction in liver Cu content and elevation in heart to body weight ratio and plasma cholesterol confirmed that rats fed the test diet were Cu-deficient. Plasma HDL isolated from both Cu-deficient and control rats were iodinated and bound to liver membranes prepared from rats of each treatment. Binding of /sup 125/I-HDL was competitively inhibited by unlabelled rat HDL from both treatments, but not by human LDL. Scatchard analysis of specific binding data showed that maximal /sup 125/I-HDL binding (per mg membrane protein) to membranes prepared from Cu-deficient rats was not lower than controls. Furthermore, the amount of /sup 125/I-HDL from deficient rats specifically bound to liver membranes prepared from either treatment was not less than the amount of /sup 125/I-HDL from control rats bound to the same membranes. The data suggest that the hyperlipoproteinemia in Cu-deficient rats may not have resulted from a decrease in the number of hepatic HDL binding sites.

  1. Differential effects of social defeat in rats with high and low locomotor response to novelty

    PubMed Central

    Calvo, N; Cecchi, M; Kabbaj, M; Watson, SJ; Akil, H

    2011-01-01

    We compared the response to repeated social defeat in rats selected as high (HR) and low (LR) responders to novelty. In experiment 1, we investigated the behavioral and neuroendocrine effects of repeated social defeat in HR-LR rats. By the last defeat session, HR rats exhibited less passive-submissive behaviors than LR rats, and exhibited higher corticosterone secretion when recovering from defeat. Furthermore, in the foreced swim test, while HR defeated rats spent more time immobile than their undefeated controls, LR rats’ immobility was unaffected by defeat. In experiment 2, we compared the effects of repeated social defeat on body, adrenal, thymus and spleen weights in HR-LR rats; moreover, we compared the effects of repeated social defeat on stress related molecules’ gene expression in these two groups of rats. Our results show that HR rats exhibited a decrease in thymus weight after repeated social defeat that was not present in LRs. Analyses of in situ hybridization results found HR-LR differences in 5HT2a mRNA levels in the parietal cortex and 5HT1a mRNA levels in the dorsal raphe. Moreover, LR rats had higher glucocorticoid receptor (GR) mRNA expression than HR rats in the dentate gyrus, and repeated social defeat decreased this expression in LR rats to HR levels. Finally, hippocampal MR/GR ratio was reduced in HR rats only. Taken together, our results show a differential response to social defeat in HR-LR rats, and support the HR-LR model as a useful tool to investigate inter-individual differences in response to social stressors. PMID:21453756

  2. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-09-15

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating

  3. High mortality rates occur in copper deficient rats exposed to a normally nonlethal endotoxin treatment

    SciTech Connect

    DiSilvestro, R.; Joseph, E.; Yang, F.L. )

    1991-03-15

    Endotoxin hepatotoxicity is proposed to occur by processes which could be retarded by 3 copper enzymes: ceruloplasmin, Cu-Zn superoxide dismutase (SOD), and extracellular (EC) SOD. Weanling rats fed low copper for 40 days showed low activity levels of these enzymes, and a very high mortality rate 20 h after endotoxin injection. No rats fed adequate copper died from this treatment. In addition, serum transaminase activities, indicators of liver damage, were elevated by 3 h to a greater extent in the deficient rats than in the adequates. The high susceptibility to endotoxemia in the deficient rats was not associated with low hepatic glutathione, high liver malondialedhyde, nor restricted metallothionein induction 3 h after endotoxin injection. Endotoxin reduced serum EC SOD activities in adequate and deficient rats, but final values were lower in the latter. Studies on roles of specific copper enzymes in resistance to endotoxemia are currently underway.

  4. High-fat diet lowers the nutritional status indicators of pantothenic acid in weaning rats.

    PubMed

    Yoshida, Erina; Fukuwatari, Tsutomu; Ohtsubo, Masako; Shibata, Katsumi

    2010-01-01

    Weaning rats were fed a 5% or 30% fat diet containing limited calcium pantothenate for 28 d. The plasma, liver and adrenal pantothenic acid levels in the rats fed on the 30% fat diet were significantly lower than with the 5% fat diet. The results suggest that the high-fat diet affected pantothenic acid metabolism. PMID:20699566

  5. Evidence that high-sucrose diet reduces dentin formation and disturbs mineralization in rat molars.

    PubMed

    Hietala, E L; Larmas, M

    1995-12-01

    In addition to its caries-promoting effect, a high-sucrose diet reduces the apposition of mineralized dentin in young rats. This study was undertaken to test whether it has a similar effect on the width of the as-yet-uncalcified matrix, predentin. Female Wistar rats were weaned at the age of 3 weeks and fed for 7 weeks with either a high-sucrose diet, a non-cariogenic raw potato starch diet, or a non-cariogenic commercial powdered rat food (for reference). The sucrose diet induced the greatest number of caries lesions. Dentin formation was smaller and the predentin zone wider in rats fed a sucrose diet when compared with rats fed the reference diet. In rats fed a starch diet, dentin formation was smaller than in rats fed a reference diet, but no alterations in the areas of caries lesions or predentin width were observed. Widening of the predentin zone in rats fed a high-sucrose diet may reflect changes in odontoblast function, such as reduced matrix synthesis and possibly disturbed mineralization. Dentinal caries progression may thus be modulated by odontoblast function, not as much by matrix formation but rather by mineralization.

  6. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay

    2012-01-01

    Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770

  7. Lean rats gained more body weight than obese ones from a high-fibre diet.

    PubMed

    Li, Shaoting; Zhang, Cheng; Gu, Yingyi; Chen, Long; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2015-10-28

    There is controversy over previous findings that a high ratio of Firmicutes to Bacteriodetes helps obese animals harvest energy from the diet. To further investigate the relationship between microbial composition and energy harvest, microbial adaptation to diet and time should be considered. In this study, lean and obese rats were successfully induced with low-fat and high-fat diets. An 8-week high soyabean fibre (HSF)-containing diet was then fed to investigate the interaction between the diet and the rats' gut microbiota, as well as their influence on rats' growth. Rats' body weight (BW) was recorded weekly; their plasma lipids and their gut microbiota at week 11, 15 and 19 were analysed. After the consumption of the HSF diet, BW of lean rats increased significantly (P<0·05), but no significant alteration in BW was found in obese rats. The average content of plasma cholesterol was lowered and that of TAG was upgraded in both the groups when fed the HSF diet. There was no significant difference observed at each period between lean and obese rats. In the group of lean rats, the diversity of gut microbiota was elevated strongly (P<0·01), and bacteria from phylum Firmicutes and Bacteroidetes were both increased largely (P<0·01); however, the bacterial diversity and composition in obese rats were less altered after the HSF diet control. In conclusion, the increased Firmicutes and Bacteriodetes might relate to lean rats' higher BW gain; 'obese microbiota' could not help the hosts harvest more energy from the HSF diet. PMID:26316354

  8. Aspartame consumption in rats selectively bred for high versus low saccharin intake.

    PubMed

    De Francisco, J C; Dess, N K

    1998-11-15

    Whereas humans use aspartame as a sugar substitute, evidence to date from rats suggests that aspartame does not taste sweet or, more generally, hedonically positive to them. The present study provided a strong test of the appetitive properties of aspartame in rats by examining consumption of aspartame and, for comparison, several sugars by two lines of rats selectively bred for high (HiS) versus low (LoS) saccharin consumption. The HiS and LoS lines differed in consumption of fructose, glucose, sucrose, maltose, and saccharin solutions. Overall, the rats showed a weak but significant preference for aspartame. However, no line differences in aspartame consumption were observed. Thus, even among rats specifically bred on the basis of their responsiveness to sweet tastes, aspartame tastes minimally sweet or good.

  9. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats.

    PubMed

    Chaumontet, Catherine; Even, Patrick C; Schwarz, Jessica; Simonin-Foucault, Angélique; Piedcoq, Julien; Fromentin, Gilles; Azzout-Marniche, Dalila; Tomé, Daniel

    2015-10-28

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma β-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.

  10. Wistar rats with high versus low rearing activity differ in radial maze performance.

    PubMed

    Görisch, Jutta; Schwarting, Rainer K W

    2006-09-01

    Substantial work has shown that rats although identical in stock, sex, age, and housing conditions can differ considerably in terms of behavior and physiology. Such individual differences, which can be detected by specific behavioral screening tests, are rather stable, that is, they probably reflect a behavioral disposition or trait. Here, we asked whether and how such differences might affect performance in a task of spatial learning and memory, the radial maze. As in our previous work, we used the degree of rearing activity in a novel open field to assign male adult outbred Wistar rats into those with high versus low rearing activity (HRA/LRA rats). They were then tested in a plus-maze for possible differences in anxiety-related behavior. Finally, and most importantly, they were food deprived and underwent maze training using an 8-arm radial maze with four non-baited and four baited arms. One of these arms consistently contained a larger bait size than the other three. In the open field, HRA rats not only showed more rearing behavior, but also more locomotor activity than LRA rats. In the plus-maze, HRA rats again showed more locomotion, but did not differ in open arm time or percentage of open arm entries, that is, conventional measures of anxiety-related behavior. In the radial maze, HRA rats consistently needed less time to consume all pellets than LRA rats, which was due to faster locomotion on the arms and less time spent at the food pits (especially in baited arms) of HRA rats. During the initial days of training, they were also more efficient in obtaining all food pellets available. Furthermore, HRA rats visited more arms and made relatively less reference memory errors than LRA rats. This allowed them to forage food quickly, but was paralleled by more working memory errors than in LRA rats. In general, working memory errors were more frequent in the arm with the large bait size, but there were no indications that HRA and LRA rats responded differently

  11. Beer promotes high levels of alcohol intake in adolescent and adult alcohol-preferring rats.

    PubMed

    Hargreaves, Garth A; Wang, Emyo Y J; Lawrence, Andrew J; McGregor, Iain S

    2011-08-01

    Previous studies suggest that high levels of alcohol consumption can be obtained in laboratory rats by using beer as a test solution. The present study extended these observations to examine the intake of beer and equivalent dilute ethanol solutions with an inbred line of alcohol-preferring P rats. In Experiment 1, male adolescent P rats and age-matched Wistar rats had access to either beer or equivalent ethanol solutions for 1h daily in a custom-built lickometer apparatus. In subsequent experiments, adolescent (Experiment 2) and adult (Experiment 3) male P rats were given continuous 24-h home cage access to beer or dilute ethanol solutions, with concomitant access to lab chow and water. In each experiment, the alcohol content of the beer and dilute ethanol solutions was gradually increased from 0.4, 1.4, 2.4, 3.4, 4.4, 5 to 10% EtOH (vol/vol). All three experiments showed a major augmentation of alcohol intake when rats were given beer compared with equivalent ethanol solutions. In Experiment 1, the overall intake of beer was higher in P rats compared with Wistar rats, but no strain difference was found during the 1-h sessions with plain ethanol consumption. Experiment 1 also showed that an alcohol deprivation effect was more readily obtained in rats with a history of consuming beer rather than plain ethanol solutions. In Experiments 2 and 3, voluntary beer intake in P rats represented ethanol intake of 10-15 g/kg/day, among the highest reported in any study with rats. This excessive consumption was most apparent in adolescent rats. Beer consumption markedly exceeded plain ethanol intake in these experiments except at the highest alcohol concentration (10%) tested. The advantage of using beer rather than dilute ethanol solutions in both selected and nonselected rat strains is therefore confirmed. Our findings encourage the use of beer with alcohol-preferring rats in future research that seeks to obtain high levels of alcohol self-administration.

  12. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    PubMed

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity.

  13. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    PubMed

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. PMID:26150317

  14. RAT J1953+1859: a dwarf nova discovered through high amplitude QPOs in quiescence

    NASA Astrophysics Data System (ADS)

    Ramsay, Gavin; Hakala, Pasi; Barclay, Thomas; Wheatley, Peter; Marshall, George; Lehto, Harry; Napiwotzki, Ralf; Nelemans, Gijs; Potter, Stephen; Todd, Ian

    2009-09-01

    We report the discovery of an accreting binary, RAT J1953+1859, made during the RApid Temporal Survey (RATS) on the Isaac Newton Telescope. It showed high amplitude (0.3 mag) quasi-periodic oscillations on a time-scale of ~20 min. Further observations made using the Nordic Optical Telescope showed it to be ~4 mag brighter than in the discovery images. These photometric observations, together with radial velocity data taken using the William Herschel Telescope, point to an orbital period of ~90 min. These data suggest that RAT J1953+1859 is a dwarf novae of the SU UMa type. What makes RAT J1953+1859 unusual is that it is the first such system to be discovered as a result of high amplitude QPOs during quiescence. This suggests that high-cadence wide-field surveys could be another means to discover cataclysmic variables as a result of their short period variability.

  15. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    PubMed

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly. PMID:27030628

  16. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    PubMed

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly.

  17. Preventing dyslipidemia by Chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment.

    PubMed

    Cherng, Jong-Yuh; Shih, Mei-Fen

    2005-05-13

    The effects of Chlorella pyrenoidosa on serum lipid profiles, after concomitant long-term treatment of high-fat diet (HFD) in rats and hamsters was studied. Wistar rats and Syrian hamsters were fed with or without various concentrations of Chlorella pyrenoidosa contained high-fat diet (CHFD) for 2, 4 and 8 weeks prior to assay of serum lipids. Fasting triglycerides, total cholesterol, and LDL cholesterol as well as HDL cholesterol levels in high-fat diet treated rats and hamster were determined. Results showed that triglycerides, total cholesterol and LDL cholesterol levels in HFD treated rats and hamsters were increased from the normal rodent diet (NRD) treated controls after 2, 4, and 8-week treatments. However, the presence of Chlorella pyrenoidosa in high-fat diets significantly decreased the levels of triglycerides, total cholesterol and LDL cholesterol with comparison to HFD group in rats and hamsters. The total cholesterol/HDL ratios, an indication of occurrence of coronary heart disease, were decreased in all CHFD treated grouped rats and hamsters which suggests administration of Chlorella pyrenoidosa could lower the occurring risk of heart diseases. In conclusion, Chlorella pyrenoidosa has the ability to prevent dyslipidemia in chronic high-fat fed animals and could be potential in use to prevent intestinal absorption of redundant lipid from our daily intake and subsequently to prevent hyperlipidemia as well as atherosclerosis. PMID:15850594

  18. Obesity in MENX Rats Is Accompanied by High Circulating Levels of Ghrelin and Improved Insulin Sensitivity.

    PubMed

    Wiedemann, Tobias; Bielohuby, Maximilian; Müller, Timo D; Bidlingmaier, Martin; Pellegata, Natalia S

    2016-02-01

    Ghrelin, the natural ligand of the growth hormone secretagogue receptor type 1a (GHS-R1a), is mainly secreted from the stomach and regulates food intake and energy homeostasis. p27 regulates cell cycle progression in many cell types. Here, we report that rats affected by the multiple endocrine neoplasia syndrome MENX, caused by a p27 mutation, develop pancreatic islet hyperplasia containing elevated numbers of ghrelin-producing ε-cells. The metabolic phenotype of MENX-affected rats featured high endogenous acylated and unacylated plasma ghrelin levels. Supporting increased ghrelin action, MENX rats show increased food intake, enhanced body fat mass, and elevated plasma levels of triglycerides and cholesterol. Ghrelin effect on food intake was confirmed by treating MENX rats with a GHS-R1a antagonist. At 7.5 months, MENX-affected rats show decreased mRNA levels of hypothalamic GHS-R1a, neuropeptide Y (NPY), and agouti-related protein (AgRP), suggesting that prolonged hyperghrelinemia may lead to decreased ghrelin efficacy. In line with ghrelin's proposed role in glucose metabolism, we find decreased glucose-stimulated insulin secretion in MENX rats, while insulin sensitivity is improved. In summary, we provide a novel nontransgenic rat model with high endogenous ghrelin plasma levels and, interestingly, improved glucose tolerance. This model might aid in identifying new therapeutic approaches for obesity and obesity-related diseases, including type 2 diabetes. PMID:26512025

  19. Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats.

    PubMed

    Rodriguez-Mateos, Ana; Ishisaka, Akari; Mawatari, Kazuaki; Vidal-Diez, Alberto; Spencer, Jeremy P E; Terao, Junji

    2013-05-28

    Growing evidence suggests that intake of flavonoid-containing foods may exert cardiovascular benefits in human subjects. We have investigated the effects of a 10-week blueberry (BB) supplementation on blood pressure (BP) and vascular reactivity in rats fed a high-fat/high-cholesterol diet, known to induce endothelial dysfunction. Rats were randomly assigned to follow a control chow diet, a chow diet supplemented with 2 % (w/w) BB, a high-fat diet (10 % lard; 0·5 % cholesterol) or the high fat plus BB for 10 weeks. Rats supplemented with BB showed significant reductions in systolic BP (SBP) of 11 and 14 %, at weeks 8 and 10, respectively, relative to rats fed the control chow diet (week 8 SBP: 107·5 (SEM 4·7) v. 122·2 (SEM 2·1) mmHg, P= 0·018; week 10 SBP: 115·0 (SEM 3·1) v. 132·7 (SEM 1·5) mmHg, P< 0·0001). Furthermore, SBP was reduced by 14 % in rats fed with the high fat plus 2 % BB diet at week 10, compared to those on the high-fat diet only (SBP: 118·2 (SEM 3·6) v. 139·5 (SEM 4·5) mmHg, P< 0·0001). Aortas harvested from BB-fed animals exhibited significantly reduced contractile responses (to L-phenylephrine) compared to those fed the control chow or high-fat diets. Furthermore, in rats fed with high fat supplemented with BB, aorta relaxation was significantly greater in response to acetylcholine compared to animals fed with the fat diet. These data suggest that BB consumption can lower BP and improve endothelial dysfunction induced by a high fat, high cholesterol containing diet. PMID:23046999

  20. Green tea attenuates cardiovascular remodelling and metabolic symptoms in high carbohydrate-fed rats.

    PubMed

    Rickman, Celestine; Iyer, Abishek; Chan, Vincent; Brown, Lindsay

    2010-12-01

    Excess carbohydrate in the diet may initiate a chronic state of oxidative stress exacerbating the clinical and biochemical symptoms of diet-induced type 2 diabetes, especially glucose intolerance, lipid abnormalities and cardiovascular complications. This study has tested whether green tea, rich in antioxidants, improves both cardiovascular symptoms and glucose intolerance and also reduces oxidative stress in rats fed a high carbohydrate diet. Male 8 week old Wistar rats were fed a diet including fructose and condensed milk (each 40%) for 16 weeks (112 days); control rats were fed corn starch. Green tea-containing food was started from day 1 for the prevention protocol and from day 56 for the reversal protocol. High carbohydrate diet-fed rats showed glucose intolerance, hypertension, mild left ventricular hypertrophy, approximate doubling of cardiac interstitial and perivascular collagen deposition, increased passive diastolic stiffness and increased plasma malondialdehyde concentrations. Administration of green tea to high carbohydrate diet-fed rats prevented and reversed glucose intolerance and the increased systolic blood pressure, left ventricular wet weight, interstitial collagen and passive diastolic stiffness. Plasma malondialdehyde concentrations were also normalized. In summary, treatment with green tea both prevented and reversed the cardiovascular remodelling and metabolic changes seen in high carbohydrate-fed rats suggesting a chronic state of oxidative stress plays a key role in the symptom initiation and progression. Further, green tea may be a useful complementary therapy in diet-induced type 2 diabetes.

  1. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    PubMed Central

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  2. Brain acetylcholinesterase activity in Wistar and August rats with low and high motor activity (a cytochemical study).

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2014-08-01

    Acetylcholinesterase activity was quantitatively evaluated by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampus CA3 field) of August and Wistar rats demonstrating high and low motor activity in the open field test. In August rats, acetylcholinesterase activity in the analyzed brain structures prevailed in animals with high motor activity in comparison with rats with low motor activity. In Wistar rats, the differences between the animals demonstrating high and low motor activity were less pronounced, but varied depending on the experimental series of studies. Comparisons of August rats with low motor activity and Wistar rats with high motor activity (maximum difference of motor function in these animals) revealed significant excess of acetylcholinesterase activity in layer III of the sensorimotor cortex in August rats and no differences in other brain structures of the examined animals.

  3. Cardiovascular effects of high-fructose intake in rats with nitric oxide deficiency.

    PubMed

    Zemančíková, Anna; Török, Jozef

    2014-09-01

    The aim of this study was to evaluate the involvement of nitric oxide (NO) system damage in the deleterious effects of high-fructose intake in rats. Fructose was administered as 10% solution in drinking water to twelve-week-old male Wistar rats for the period of 8 weeks. Blood pressure was measured by tail-cuff plethysmography. After sacrificing the rats at the end of the treatment, relative weights of heart and liver and biochemical parameters in blood plasma were determined. Reactivity of isolated conduit arteries was measured using a force-displacement transducer for recording isometric tension. Fructose drinking rats had increased blood pressure and impaired acetylcholine-induced relaxation of the thoracic aorta in comparison with control rats drinking just tap water. Relative liver weight and plasma concentrations of glucose and triglycerides were also elevated after fructose administration. In a further group of Wistar rats, inhibition of NO production by administration of N(G)-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg/day) was performed throughout fructose intake. L-NAME treatment itself induces increase in blood pressure and relative heart weight as well as impairment in arterial relaxation and contractility. However, in these rats, fructose administration did not cause further elevation of blood pressure and other abnormalities observed in rats receiving fructose without L-NAME. Our results showed that in the state of NO deficiency (induced by L-NAME administration) fructose does not induce cardiovascular and metabolic alterations which develop in rats with a functional NO system. This indicates that impairment of the NO system may participate in many of the adverse effects induced by high-fructose intake.

  4. Chronic administration of iron and copper potentiates adipogenic effect of high fat diet in Wistar rats.

    PubMed

    Tinkov, Alexey A; Polyakova, Valentina S; Nikonorov, Alexandr A

    2013-06-01

    The primary objective of this research project is explore a possible adipogenic effect of iron and/or copper in albino Wistar rats kept on standard (STD) and high-fat (HFD) diets. The female Wistar rats in the study were divided into eight experimental groups (n = 6). Rats maintained on STD and HFD received 3 mg/l FeSO₄∙7H₂O, 4.88 mg/l CuSO₄ and a combination of 1.5 mg/l FeSO₄∙7H₂O and 2.44 mg/l CuSO₄ with drinking water. Control groups were kept on STD and HFD and received pure water without metal salts. Consumption of iron and copper in the groups of rats maintained on an STD did not produce a significant increase in weight, adipose tissue content or body mass index. However, the adipocyte size and infiltration were increased in the adipose tissue of STD-fed rats receiving a mixture of iron and copper with drinking water. The rats fed iron and copper and, especially, their combination on a HFD background had a significantly higher weight gain, adipose tissue content, morphometric parameters values and adipocyte size compared to STD- and HFD-fed controls. Iron and copper consumption produced their accumulation in the rats' adipose tissue. Moreover, the studied metals reduced adipose tissue concentration of chromium and vanadium. The lipoprotein profile and serum oxidative stress biomarkers were affected in the rats receiving the metals and STD. Hyperglycemia was observed in the rats receiving the studied metals on HFD-background. Based on the analysis of the test subjects, the study suggests that iron and copper administration, especially combined, may potentiate adipogenic effect of HFD.

  5. Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour.

    PubMed

    Roberts, Michael D; Toedebusch, Ryan G; Wells, Kevin D; Company, Joseph M; Brown, Jacob D; Cruthirds, Clayton L; Heese, Alexander J; Zhu, Conan; Rottinghaus, George E; Childs, Thomas E; Booth, Frank W

    2014-05-15

    We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVR(non-run) and HVR(non-run)), as well as in rats after 6 days of voluntary wheel running (LVR(run) and HVR(run)). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that 'cell cycle'-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9-10 LVR(non-run) rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P < 0.001) and fewer immature (Dcx-positive) neurons (P < 0.001) than their G9-10 HVR counterparts. However, voluntary running wheel access in our G9-10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats.

  6. Suppressive Effect of High Hydrogen Generating High Amylose Cornstarch on Subacute Hepatic Ischemia-reperfusion Injury in Rats

    PubMed Central

    TANABE, Hiroki; SASAKI, Yumi; YAMAMOTO, Tatsuro; KIRIYAMA, Shuhachi; NISHIMURA, Naomichi

    2012-01-01

    We examined whether feeding high hydrogen generating resistant starch could suppress subacute hepatic ischemia-reperfusion injury. Rats were fed a control diet with or without 20% high amylose cornstarch (HAS) supplementation for 14 days. On day 12, rats were subject to ischemia-reperfusion treatment. Portal hydrogen concentration was higher in the HAS group compared with the control group. Increased plasma alanine and aspartate aminotransferase activities due to ischemia-reperfusion treatment tended to decrease, and a significant reduction was observed by HAS feeding when compared with the control group. In conclusion, HAS, which enhances hydrogen generation in the hindgut, alleviated subacute hepatic ischemia-reperfusion injury. PMID:24936356

  7. Coronary blood flow in rats native to simulated high altitude and in rats exposed to it later in life.

    PubMed

    Turek, Z; Turek-Maischeider, M; Claessens, R A; Ringnalda, B E; Kreuzer, F

    1975-03-22

    In rats exposed to a simulated high altitude of 3500 m for their whole prenatal and postnatal life a severe cardiac hypertrophy develops. In rats born and first staying 5 weeks at sea level and then being exposed to simulated high altitude, only a unilateral right cardiac hypertrophy occurs. In both groups nutritional coronary blood flow was estimated in left ventricle, right ventricle, and septum and was compared with control animals of similar age. Coronary blood flow was measured at hypoxia in all groups. At first cardiac output was determined by the Fick principle, then 86Rb was applied and the animals were killed after 55 sec. Activity of 86Rb was measured in both cardiac ventricles and septum and the fractional uptake was calculated. According to Sapirstein (1956, 1958) the distribution of 86-RB follows the distribution of cardiac output and from both these data the nutritional blood flow to the parts of the heart may be estimated. Cardiac output was similar in rats exposed to simulated high altitude later in life ('newcomers') and in control animals, but it was significantly lower in rats born in the low pressure chamber ('natives'). Fractions of cardiac output supplying cardiac ventricles and septum in rats from both hypoxic groups were significantly higher than in control animals. In the 'natives' they were significantly higher than in the 'newcomers'. The fractions of cardiac output in both 'newcomers' and 'natives' remained significantly higher than those of the control animals, also when calculated per gram of heart tissue. Nutritional coronary blood flow (in ml/min) was higher in both ventricles and septum of the 'newcomers' and in the right ventricle of the 'natives', and lower in the septum of the 'natives', when compared with control animals. Coronary blood flow per gram of heart tissue (in ml/min.g) was significantly higher in all cardiac parts of the 'newcomers', but it was about the same in all cardiac parts of the 'natives' when compared with

  8. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet.

    PubMed

    Bourgoin, Frédéric; Bachelard, Hélène; Badeau, Mylène; Mélançon, Sébastien; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2008-09-01

    This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.

  9. Highly sensitive LC-MS/MS method for determination of galantamine in rat plasma: application to pharmacokinetic studies in rats.

    PubMed

    Suresh, P S; Mullangi, Ramesh; Sukumaran, Sathesh Kumar

    2014-12-01

    A rapid and highly sensitive assay method has been developed and validated for the estimation of galantamine (GLM) in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive-ion mode. The assay procedure involves a simple liquid-liquid extraction of GLM and phenacetin (internal standard, IS) from rat plasma using acetonitrile. Chromatographic separation was achieved with 0.2% formic acid:acetonitrile (50:50, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 288.10 → 213.10 for GLM and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.12 ng/mL and linearity was observed from 0.12 to 525 ng/mL. The intra- and inter-day precision were in the ranges of 4.73-11.7 and 5.83-8.64%, respectively. This novel method has been applied to a pharmacokinetic study in rats.

  10. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Chung

    2010-10-01

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r2) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm-1 at 30 MHz to 0.47 Nepers mm-1 at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a

  11. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats.

    PubMed

    Sadeghipour, Alireza; Eidi, Maryam; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia. PMID:25295067

  12. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    PubMed Central

    Sadeghipour, Alireza; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia. PMID:25295067

  13. Dimethyl dimethoxy biphenyl dicarboxylate attenuates hepatic and metabolic alterations in high fructose-fed rats.

    PubMed

    Morsy, Mohamed A; Ibrahim, Mohamed A; Abd-Elghany, Manal I

    2016-01-01

    High fructose consumption is currently linked to metabolic disorders including insulin resistance and dyslipidemia as well as hepatic steatosis. Dimethyl dimethoxy biphenyl dicarboxylate (DDB) is a hepatoprotectant with antioxidant and anti-inflammatory properties. The aim of this study therefore is to evaluate the effect of DDB on high fructose-induced metabolic disturbances and hepatic steatosis in a rat model. Male Wistar rats were allocated into three groups: control, fructose-fed (10% in drinking water and 10% in diet), and fructose-fed DDB (300 mg/kg, orally)-treated groups. Rats were fed a high-fructose diet for 6 weeks, while DDB was administered for an additional 2 weeks. High-fructose consumption elevated serum glucose and insulin levels and impaired oral glucose tolerance test, revealing insulin resistance. It also increased serum triglycerides and alanine aminotransferase as well as visceral fat content and decreased serum high-density lipoprotein. Additionally, histopathological examination revealed that high fructose intake induced hepatic steatosis. These alterations were associated with increased serum uric acid as well as hepatic content of malondialdehyde and nitric oxide (NO) in addition to overexpression of inducible NO synthase (iNOS). DDB administration significantly ameliorated the high fructose-induced hepatic and metabolic alterations. In conclusion, DDB ameliorates high fructose-induced metabolic disorders and hepatic steatosis in rats. Such protection is, at least in part, due to the inhibition of lipid peroxidation, decrease in iNOS overexpression, and reduction of elevated uric acid.

  14. Nonalcoholic Steatohepatitis Induced by a High-Fat Diet Promotes Diethylnitrosamine Initiated Early Hepatocarcinogenesis in Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that patients with nonalcoholic steatohepatitis (NASH) have a high risk for liver cancer. However, it is unknown whether high-fat diet induced NASH promotes chemical carcinogen-initiated hepatocarcinogenesis. In the present study, Sprague-Dawley rats were injected with a low d...

  15. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine initiated early hepatocarcinogenesis in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that patients with nonalcoholic steatohepatitis (NASH) are at a high risk for liver cancer. However, it is unknown whether high-fat diet induced NASH promotes hepatocarcinogenesis. In the present study, Sprague-Dawley rats were injected with a low dose of hepatic carcinogen die...

  16. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    PubMed

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease.

  17. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    PubMed

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease. PMID:27343935

  18. Quantitation of rat lacrimal secretion: a novel sandwich ELISA with high sensitivity.

    PubMed

    Sanghi, S; Kumar, R; Walton, S; Laurie, G W

    2000-05-01

    Modulation of lacrimal acinar cell tear secretion may involve multiple factors acting both in subtle and pronounced ways. Functional screens of recombinant protein products arising from gene array technologies, or protein fractions derived from lacrimal conditioned media or extracellular matrix, will require a highly sensitive assay capable of monitoring tear protein secretion by small replicate cultures. To improve significantly on current methods, a rat- and mouse-specific sandwich ELISA was developed. For this purpose, chickens and rabbits were immunized with serum-free secretion media from carbachol and VIP-stimulated rat lacrimal acinar cell cultures. Immune sera were characterized by ELISA, Western blotting and immunohistochemistry, and subsequently optimized for use in a sandwich ELISA. Both antisera detected a wide range of different rat tear proteins, and immunostained only the secretory granule-rich juxtalumenal region in sections of rat lacrimal gland. Chicken, but not rabbit, antiserum cross-reacted with rabbit and human tears. In sandwich ELISA, capture with purified chicken immunoglobulin fraction and detection with rabbit antiserum detected as little as 1 ng ml-1 tear protein in 10,000-fold diluted rat secretion medium--a level of sensitivity 8000 times greater than the rat tear peroxidase assay. Such specificity and sensitivity greatly reduce the quantity of media needed for assay, and makes feasible functional screens for scarce factors that may influence lacrimal secretory processes, and in turn possibly play a role in human lacrimal insufficiency syndromes.

  19. High-Moisture Diet for Laboratory Rats: Nutrient Analysis, Growth, and Organ Weights

    NASA Technical Reports Server (NTRS)

    Battles, August H.; Knapka, Joseph T.; Lewis, Laura; Lang, Marie T.; Gruendel, Douglas J.

    1991-01-01

    A diet (KSC-25) to be sterilized by irradiation was formulated to contain 66% moisture and to provide the required nutrients for growing rats. Analyses of the irradiated dry diet provided data to evaluate its nutrient content. The diet was evaluated for its ability to supply all nutrients, including water, required by immature rats. Sixteen Sprague-Dawley rats were fed the high-moisture diet with or without access to a water bottle. Rats (n = 16) fed an irradiated purified diet in a meal form with access to a water bottle were the control animals. Feed efficiency, food and water consumption, and growth rate data were collected during the 28-day study. Organ weights were collected on day 28. The test diet met or exceeded the National Research Council (NRC) estimated nutritional requirements for immature laboratory rats. The 66% moisture KSC-25 diet provided all nutrients, including water, required by weanling male Sprague-Dawley rats for growth equivalent to the established purified diet.

  20. Psychogenetically selected (Roman high- and low-avoidance) rats differ in 24-hour sleep organization.

    PubMed

    Steimer, T; Python, A; Driscoll, P; de Saint Hilaire, Z

    1999-06-01

    A comparison of sleep organization in Roman high-(RHA/Verh) and low-(RLA/Verh) avoidance rats, which differ in the way they respond to environmental stimuli and in several neuroendocrine and neurochemical parameters, was carried out. EEG-sleep recordings were obtained from adult males over 12:12 light-dark periods to determine how these two psychogenetically selected rat lines might also differ in their sleep-wake cycle. There was no significant difference in total sleep time between the two lines. However, the (hypoemotional) RHA/Verh rats showed an overall increase (percentage of total sleep) in paradoxical sleep (PS) duration, with a concomitant decrease in slow-wave sleep (SWS). During the dark phase, RHA/Verh rats showed a shorter PS latency and a larger number of PS episodes. Hourly sleep scoring also revealed a more discontinuous pattern (total sleep and PS vs. SWS) during the dark phase in RHA/Verh rats. In relation to recognized neurochemical and neuroendocrine differences between them, these rat lines may prove useful in investigations of the neurobiological mechanisms underlying sleep regulation. PMID:10452334

  1. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. PMID:26773867

  2. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition.

  3. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet.

    PubMed

    Senaphan, Ketmanee; Kukongviriyapan, Upa; Sangartit, Weerapon; Pakdeechote, Poungrat; Pannangpetch, Patchareewan; Prachaney, Parichat; Greenwald, Stephen E; Kukongviriyapan, Veerapol

    2015-08-01

    Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms. PMID:26247970

  4. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet.

    PubMed

    Senaphan, Ketmanee; Kukongviriyapan, Upa; Sangartit, Weerapon; Pakdeechote, Poungrat; Pannangpetch, Patchareewan; Prachaney, Parichat; Greenwald, Stephen E; Kukongviriyapan, Veerapol

    2015-08-04

    Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.

  5. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet

    PubMed Central

    Senaphan, Ketmanee; Kukongviriyapan, Upa; Sangartit, Weerapon; Pakdeechote, Poungrat; Pannangpetch, Patchareewan; Prachaney, Parichat; Greenwald, Stephen E.; Kukongviriyapan, Veerapol

    2015-01-01

    Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms. PMID:26247970

  6. Effects of high frequency noise on female rat's multi-organ histology.

    PubMed

    Xue, Laijun; Zhang, Dajun; Wang, Ting; Shou, Xi

    2014-01-01

    To investigate the pathological damage of high-frequency stable noise exposure on the brain, heart, liver, and spleen of female rat's. Controlled animal intervention study. Twenty female Sprague-Dawley rats were randomly divided into experimental and control groups with 10 rats in each group. Rats in the experimental group were exposed to continuous high-frequency stable noise for 2 weeks (3 h/day)followed by the pathological damages in the rat's brain, heart, liver, and spleen were compared with those of the control group. After 2 weeks' continuous exposure to high-frequency stable noise, compared with the control group, the most prominent histopathologic changes in the brain tissue structures of the experimental group included loose disorder, hyperemia, edema, blood vessels expand, glial cell hyperplasia, mild atypia in some areas (hyperchromatic nuclei, irregular karyotype), and no degeneration and necrosis. There were dilatation and congestion of central vein, hepatic sinus, and interlobular veins of liver tissue. The structure of hepatic lobule was destroyed by inflammatory cell infiltration, as well as lymphoid nodule formation. There was hyperemia in spleen, but the structure was clear. There was extravasated blood, and the splenic sinuses were highly expanded by a blood clot. Hyperplasias of the lymphoid of white pulp were also active. There was dilation and congestion in myocardial interstitial vascular, and there was mild degeneration and hyperemia in myocardial cells. No hemorrhage and myocardial necrosis were observed. High-frequency stable noise can cause pathological damage in brain, liver, spleen, and heart tissues of female rat at a various degree.

  7. Fibrinogen-thrombin collagen patch reinforcement of high-risk colonic anastomoses in rats

    PubMed Central

    Suárez-Grau, Juan Manuel; Bernardos García, Carlos; Cepeda Franco, Carmen; Mendez García, Cristina; García Ruiz, Salud; Docobo Durantez, Fernando; Morales-Conde, Salvador; Padillo Ruiz, Javier

    2016-01-01

    AIM To evaluate the effectiveness of human fibrinogen-thrombin collagen patch (TachoSil®) in the reinforcement of high-risk colon anastomoses. METHODS A quasi-experimental study was conducted in Wistar rats (n = 56) that all underwent high-risk anastomoses (anastomosis with only two sutures) after colectomies. The rats were divided into two randomized groups: Control group (24 rats) and treatment group (24 rats). In the treatment group, high-risk anastomosis was reinforced with TachoSil® (a piece of TachoSil® was applied over this high-risk anastomosis, covering the gap). Leak incidence, overall survival, intra-abdominal adhesions, and histologic healing of anastomoses were analyzed. Survivors were divided into two subgroups and euthanized at 15 and 30 d after intervention in order to analyze the adhesions and histologic changes. RESULTS Overall survival was 71.4% and 57.14% in the TachoSil® group and control group, respectively (P = 0.29); four rats died from other causes and six rats in the treatment group and 10 in the control group experienced colonic leakage (P > 0.05). The intra-abdominal adhesion score was similar in both groups, with no differences between subgroups. We found non-significant differences in the healing process according to the histologic score used in both groups (P = 0.066). CONCLUSION In our study, the use of TachoSil® was associated with a non-statistically significant reduction in the rate of leakage in high-risk anastomoses. TachoSil® has been shown to be a safe product because it does not affect the histologic healing process or increase intra-abdominal adhesions. PMID:27721926

  8. Effect of prolonged use of high dose of tibolone on the vagina of ovariectomized rats

    PubMed Central

    Henriques, Helene Nara; de Carvalho, Ana Carolina Bergmann; Filho, Porphirio José Soares; Pantaleão, José Augusto Soares; Guzmán-Silva, Maria Angélica

    2011-01-01

    The aim of this study was evaluate the effect of prolonged use of high dose of tibolone on the vagina of ovariectomized rats. Bilateral ovariectomy was performed on 14 rats weighing 250 g. Thirty days later, vaginal smears were collected verifying the menopause status by anoestrus cytology. Rats were divided randomly into groups: experimental rats (n = 9) received 1 mg tibolone/day orally and control rats (n = 6) received placebo (carboxymethylcellulose). After 150 days, all rats were sedated and euthanized by cervical displacement. The vagina was removed, fixed in 10% buffered formalin, sampled and processed for paraffin embedding. Histological sections were stained with haematoxylin and eosin, picrosirius red, periodic acid Schiff (PAS) and PAS-diastase, and Weigert's resorcin–fuchsin. Cell proliferation was analysed by immunohistochemistry to detect Ki67. Histomorphometric analyses were performed for epithelial thickness, per cent area of collagen fibres and blood vessels, mast cells and Ki67-positive nuclei per mm of basal membrane. Means and standard error of means were calculated, and data were compared using the Mann–Whitney test, with significance level at P < 0.05. In the vagina, epithelial thickness, number of Ki67-positive nuclei per mm of basal membrane, number of vessels and number of mast cells were significantly higher in the tibolone group when compared with the control group. Furthermore, the content of glycogen and glycoproteins in the vaginal epithelium was modified by tibolone. Tibolone administered in high dose and for a long period has a trophic effect, reversing vaginal atrophy, and has no dysplastic or neoplastic effect in the vagina of ovariectomized rats. PMID:21518049

  9. A three generation reproduction study with Sprague-Dawley rats consuming high-amylose transgenic rice.

    PubMed

    Zhou, Xing Hua; Dong, Ying; Zhao, Yan Sheng; Xiao, Xiang; Wang, Yun; He, Yuan Qing; Liu, Qiao Quan

    2014-12-01

    The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related.

  10. High doses of pseudoephedrine hydrochloride accelerate onset of CNS oxygen toxicity seizures in unanesthetized rats.

    PubMed

    Pilla, R; Held, H E; Landon, C S; Dean, J B

    2013-08-29

    Pseudoephedrine (PSE) salts (hydrochloride and sulfate) are commonly used as nasal and paranasal decongestants by scuba divers. Anecdotal reports from the Divers Alert Network suggest that taking PSE prior to diving while breathing pure O₂ increases the risk for CNS oxygen toxicity (CNS-OT), which manifests as seizures. We hypothesized that high doses of PSE reduce the latency time to seizure (LS) in unanesthetized rats breathing 5 atmospheres absolute (ATA) of hyperbaric oxygen. Sixty-three male rats were implanted with radio-transmitters that recorded electroencephalogram activity and body temperature. After ≥7-day recovery, and 2 h before "diving", each rat was administered either saline solution (control) or PSE hydrochloride intragastrically at the following doses (mg PSE/kg): 0, 40, 80, 100, 120, 160, and 320. Rats breathed pure O₂ and were dived to 5ATA until the onset of behavioral seizures coincident with neurological seizures. LS was the time elapsed between reaching 5ATA and exhibiting seizures. We observed a significant dose-dependent decrease in the LS at doses of 100-320 mg/kg, whereas no significant differences in LS from control value were observed at doses ≤80 mg/kg. Our findings showed that high doses of PSE accelerate the onset of CNS-OT seizures in unanesthetized rats breathing 5ATA of poikilocapnic hyperoxia. Extrapolating our findings to humans, we conclude that the recommended daily dose of PSE should not be abused prior to diving with oxygen-enriched gas mixes or pure O₂.

  11. Effects on Bacterial Translocation of High-Fat Enteral Nutrition in Bile Duct Ligated Rats

    PubMed Central

    Elipek, Tufan; Utkan, Nihat Zafer

    2012-01-01

    Objective: Bacterial Translocation (BT) from the gastrointestinal system is at the center of current sepsis theories. In patients with obstructive jaundice, the absence of intraluminal bile flow causes some alterations and mucosal damage in the gut. In the present study, it was aimed to investigate the effects on BT of high-fat enteral nutrition in bile duct ligated rats. Material and Methods: In this study, a total of 28 healthy Spraque-Dawley rats, weighing 230–300 gr, were grouped into four as sham group, control group, high-fat enteral nutrition group and low-fat enteral nutrition group. The rats in all the groups were sacrificed on the seventh postoperative day The values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total and direct bilirubin were measured for biochemical evaluation. Also, samples were taken from the blood, lung, liver, spleen and mesenteric lymph nodes for microbiological evaluation. The results were calculated as CFU/gr and evaluated statistically. Results: In all bile duct ligated rats, all findings of obstructive jaundice were observed clinically (in postoperatively third day) and in the laboratory. It was determined that the lymphatic system is an essential pathway for BT, as reported by similar studies. However, it was observed in this study that the high-fat enteral nutrition may be not severely effective in reducing BT in bile duct ligated rats. The results were supported by statistical analyses. Conclusion: It was observed that high-fat enteral nutrition has no meaningful effects on reducing BT in bile duct ligated rats. PMID:25207019

  12. Warsaw high-preferring (WHP) and Warsaw low-preferring (WLP) lines of rats selectively bred for high and low voluntary ethanol intake: preliminary phenotypic characterization.

    PubMed

    Dyr, Wanda; Kostowski, Wojciech

    2008-05-01

    The Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) lines were bred from Wistar foundation stock to obtain lines of rats that differ in their preference for ethanol solutions. The WHP line has met several major criteria for an animal model of alcoholism. The WHP rats voluntarily drink excessive amounts of ethanol while the WLP rats consume negligible amounts of ethanol. The WHP rats attain physiologically active blood ethanol concentrations with chronic free-choice drinking. They also develop subtle but visible signs of physical dependence (the withdrawal signs). The patterns of ethanol consumption in WHP and WLP lines are stable in time and independent of the manner of access to ethanol solutions. Notably, when exposed to the increasing ethanol concentrations WHP rats gradually increased total ethanol intake whereas the WLP rats consumed invariably very low amounts of ethanol. Furthermore, the WHP rats show an increased responsiveness to the stimulatory effects of low dose of ethanol.

  13. Pressor recovery after acute stress is impaired in high fructose-fed Lean Zucker rats.

    PubMed

    Thompson, Jennifer A; D'Angelo, Gerard; Mintz, James D; Fulton, David J; Stepp, David W

    2016-06-01

    Insulin resistance is a powerful predictor of cardiovascular disease; however, the mechanistic link remains unclear. This study aims to determine if early cardiovascular changes associated with short-term fructose feeding in the absence of obesity manifest as abnormal blood pressure control. Metabolic dysfunction was induced in Lean Zucker rats by short-term high-fructose feeding. Rats were implanted with telemetry devices for the measurement of mean arterial blood pressure (MAP) and subjected to air jet stress at 5 and 8 weeks after feeding. Additional animals were catheterized under anesthesia for the determination of MAP and blood flow responses in the hind limb and mesenteric vascular beds to intravenous injection of isoproterenol (0.001-0.5 μm), a β-adrenergic agonist. Metabolic dysfunction in high-fructose rats was not accompanied by changes in 24-h MAP Yet, animals fed a high-fructose diet for 8 weeks exhibited a marked impairment in blood pressure recovery after air-jet stress. Dose-dependent decreases in MAP and peripheral blood flow in response to isoproterenol treatment were significantly attenuated in high-fructose rats. These data suggest that impaired blood pressure recovery to acute mental stress precedes the onset of hypertension in the early stages of insulin resistance. Further, blunted responses to isoproterenol implicate β2-adrenergic sensitivity as a possible mechanism responsible for altered blood pressure control after short-term high-fructose feeding.

  14. Effects of Dietary Different Doses of Copper and High Fructose Feeding on Rat Fecal Metabolome.

    PubMed

    Wei, Xiaoli; Song, Ming; Yin, Xinmin; Schuschke, Dale A; Koo, Imhoi; McClain, Craig J; Zhang, Xiang

    2015-09-01

    The gut microbiota plays a critical role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Increased fructose consumption and inadequate copper intake are two critical risk factors in the development of NAFLD. To gain insight into the role of gut microbiota, fecal metabolites, obtained from rats exposed to different dietary levels of copper with and without high fructose intake for 4 weeks, were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF MS). In parallel, liver tissues were assessed by histology and triglyceride assay. Our data showed that high fructose feeding led to obvious hepatic steatosis in both marginal copper deficient rats and copper supplementation rats. Among the 38 metabolites detected with significant abundance alteration between groups, short chain fatty acids were markedly decreased with excessive fructose intake irrespective of copper levels. C15:0 and C17:0 long chain fatty acids, produced only by bacteria, were increased by either high copper level or high fructose intake. In addition, increased fecal urea and malic acid paralleled the increased hepatic fat accumulation. Collectively, GC × GC-TOF MS analysis of rat fecal samples revealed distinct fecal metabolome profiles associated with the dietary high fructose and copper level, with some metabolites possibly serving as potential noninvasive biomarkers of fructose induced-NAFLD.

  15. High trait impulsivity predicts food addiction-like behavior in the rat.

    PubMed

    Velázquez-Sánchez, Clara; Ferragud, Antonio; Moore, Catherine F; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2014-09-01

    Impulsivity is a behavioral trait frequently seen not only in drug-addicted individuals but also in individuals who pathologically overeat. However, whether impulsivity predates the development of uncontrollable feeding is unknown. In this study, we hypothesized that a high impulsivity trait precedes and confers vulnerability for food addiction-like behavior. For this purpose, we trained ad libitum-fed male Wistar rats in a differential reinforcement of low rates of responding (DRL) task to select Low- and High-impulsive rats. Then, we allowed Low- and High-impulsive rats to self-administer a highly palatable diet (Palatable group) or a regular chow diet (Chow group) in 1-h daily sessions, under fixed ratio (FR) 1, FR3, FR5, and under a progressive ratio (PR) schedules of reinforcement. In addition, we tested the compulsiveness for food in Low- and High-impulsive rats by measuring the food eaten in the aversive, open compartment of a light/dark conflict test. Finally, we measured the expression of the transcription factor ΔFosB in the shell and the core of the nucleus accumbens, which is a marker for neuroadaptive changes following addictive drug exposure. The data we obtained demonstrate that impulsivity is a trait that predicts the development of food addiction-like behaviors, including: (i) excessive intake, (ii) heightened motivation for food, and (iii) compulsive-like eating, when rats are given access to highly palatable food. In addition, we show that the food addiction phenotype in high impulsive subjects is characterized by an increased expression of the transcription factor ΔFosB in the nucleus accumbens shell. These results reveal that impulsivity confers an increased propensity to develop uncontrollable overeating of palatable food. PMID:24776685

  16. High trait impulsivity predicts food addiction-like behavior in the rat.

    PubMed

    Velázquez-Sánchez, Clara; Ferragud, Antonio; Moore, Catherine F; Everitt, Barry J; Sabino, Valentina; Cottone, Pietro

    2014-09-01

    Impulsivity is a behavioral trait frequently seen not only in drug-addicted individuals but also in individuals who pathologically overeat. However, whether impulsivity predates the development of uncontrollable feeding is unknown. In this study, we hypothesized that a high impulsivity trait precedes and confers vulnerability for food addiction-like behavior. For this purpose, we trained ad libitum-fed male Wistar rats in a differential reinforcement of low rates of responding (DRL) task to select Low- and High-impulsive rats. Then, we allowed Low- and High-impulsive rats to self-administer a highly palatable diet (Palatable group) or a regular chow diet (Chow group) in 1-h daily sessions, under fixed ratio (FR) 1, FR3, FR5, and under a progressive ratio (PR) schedules of reinforcement. In addition, we tested the compulsiveness for food in Low- and High-impulsive rats by measuring the food eaten in the aversive, open compartment of a light/dark conflict test. Finally, we measured the expression of the transcription factor ΔFosB in the shell and the core of the nucleus accumbens, which is a marker for neuroadaptive changes following addictive drug exposure. The data we obtained demonstrate that impulsivity is a trait that predicts the development of food addiction-like behaviors, including: (i) excessive intake, (ii) heightened motivation for food, and (iii) compulsive-like eating, when rats are given access to highly palatable food. In addition, we show that the food addiction phenotype in high impulsive subjects is characterized by an increased expression of the transcription factor ΔFosB in the nucleus accumbens shell. These results reveal that impulsivity confers an increased propensity to develop uncontrollable overeating of palatable food.

  17. NEONATAL LOW- AND HIGH-DOSE EXPOSURE TO ESTRADIOL BENZOATE IN THE MALE RAT: I. EFFECTS ON THE PROSTATE GLAND

    EPA Science Inventory

    Neonatal Low- And High-Dose Exposure To Estradiol Benzoate In The Male Rat: 1. Effects On The Prostate Gland. Oliver Putz, Christian B. Schwartz, Steve Kim, Gerald A. LeBlanc Ralph L. Cooper, Gail S. Prins

    ABSTRACT
    Brief exposure of rats to high doses of natural estro...

  18. Intermittent High-Dose Ethanol Exposure Increases Ethanol Preference in Rats

    PubMed Central

    Peris, Joanna; Rhodes, Nathaniel; McCullough, Brian; Aramini, Richard; Zharikova, Alevtina

    2015-01-01

    Objective: Alcohol use disorders have both high social and economic costs and are among the leading causes of preventable death in the United States. Understanding the factors that contribute to escalation of alcohol intake is important in developing effective treatments for this problem. This study further characterizes the effects of limited intermittent exposure to high levels of alcohol on the preference for alcohol consumption over other incentives. Method: Fourteen male, Sprague-Dawley rats were trained to consume ethanol in a gelatin vehicle. They were then given free access to both ethanol gelatin and plain gelatin during daily choice periods interspersed with nonchoice periods (only plain gelatin access). After baseline ethanol preference was established, half of the rats were given eight injections of 3 g/kg ethanol during nonchoice periods (spread out over about 2 months), and the other half received saline injections. Ethanol preference was measured during subsequent choice periods. Results: Intermittent ethanol injections increased ethanol preference from 21% (SEM = 2.3%) of their total gelatin consumption during the first choice period to 46.8% (SEM = 3.4%) during the third choice period. The saline-treated rats had no significant change in ethanol preference. In addition, the ethanol-treated rats exhibited higher ethanol intake than saline-treated rats when ethanol gelatin was the only choice available. Conclusions: The results indicate that intermittent exposure to sedative doses of ethanol leads to an increased ethanol preference in rats. This suggests that occasional high-dose alcohol exposure could be an important contributor to the development of enhanced ethanol intake, which may affect the incidence of chronic alcoholism. PMID:25486406

  19. High intrinsic aerobic capacity and pomegranate juice are protective against macrophage atherogenecity: studies in high- vs. low-capacity runner (HCR vs. LCR) rats.

    PubMed

    Rosenblat, Mira; Volkova, Nina; Abassi, Zaid; Britton, Steven L; Koch, Lauren G; Aviram, Michael

    2015-10-01

    We studied the rat model system of high- vs. low-capacity runner (HCR vs. LCR) rats to question the atherogenic properties (oxidative stress, triglycerides and cholesterol metabolism) in the rat macrophages, serum, liver and heart. Half of the LCR or HCR rats consumed pomegranate juice (PJ; 15 μmol of gallic acid equivalents/rat/day) for 3 weeks and were compared to placebo-treated rats. At the end of the study blood samples, peritoneal macrophages (RPM), livers, and hearts were harvested from the rats. RPM harvested from HCR vs. LCR demonstrated reduced cellular oxidation (21%), increased paraoxonase 2 activity (28%) and decreased triglycerides mass (44%). Macrophage uptake rates of fluorescein-isothiocyanate-labeled low-density lipoprotein (LDL) or oxidized LDL were significantly lower, by 37% or by 18%, respectively, in HCR vs. LCR RPM. PJ consumption significantly decreased all the above atherogenic parameters with more substantial beneficial effects observed in the LCR vs. the HCR rats (~80% vs. ~40% improvement, respectively). Similar hypo-triglyceridemic pattern was noted in serum from HCR vs. LCR. In contrast to the above results, liver oxidation and triglycerides mass were both minimally increased in HCR vs. LCR rats by 31% and 28%, respectively. In the heart, lipid content was very low, and interestingly, an absence of any significant oxidative stress, along with modest triglyceride accumulation, was observed. We conclude that HCR vs. LCR rats demonstrate reduced atherogenicity, mostly in their macrophages. PJ exerts a further improvement, mostly in macrophages from LCR rats.

  20. NEUROBEHAVIORAL EFFECTS OF CHRONIC DIETARY AND REPEATED HIGH-LEVEL SPIKE EXPOSURE TO CHLORPYRIFOS IN RATS.

    EPA Science Inventory

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult rats were maintained on a chlorpyrifos-containing diet to p...

  1. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  2. NEUROBEHAVIORAL EFFECTS OF CHRONIC DIETARY AND REPEATED HIGH-LEVEL SPIKE EXPOSURE TO CHLORPYRIFOS IN RATS.

    EPA Science Inventory

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult Long-Evans male rats were maintained at 350g body weight by...

  3. Differential organization of male copulatory patterns in high- and low-yawning-frequency sublines versus outbred Sprague-Dawley rats.

    PubMed

    Eguibar, Jose R; Cortes, Carmen; Toriz, Cesar G; Romero-Carbente, Jose C; González-Flores, Oscar; Fernández-Guasti, Alonso

    2016-01-01

    The temporal organization of masculine sexual behavior in rats is highly stereotyped; involving a sequence of mounts, intromissions and ejaculations. Sexual behavior has been described in exogamic and genetically manipulated rodent species. In this work, we compare the male sexual behavior of outbred Sprague-Dawley (SD) to those of rats inbred for high (HY)- and low (LY)- spontaneous yawning frequency. In the first experiment, the percentage of inexperienced rats' ejaculatory behavior is significantly lower in the HY and LY respect to Sprague-Dawley rats. The latency to ejaculate for inexperienced HY was shorter than the LY and SD rats. In the second experiment, we examined the differences between inbred sublines and Sprague-Dawley rats once the subjects had become sexually experienced after four copulatory sessions. HY rats still have slower proportion of ejaculators respect to LY and SD rats. Additionally, postejaculatory latencies were longer for HY rats, with longer intercopulatory intervals and higher number of copulatory bouts that delayed ejaculation. Both sublines show lower copulatory efficiency respect to SD rats. In conclusion, both sublines show alterations in the temporal organization of sexual motor pattern that are due at least partially to strong inbreeding process to select them.

  4. Betaine supplementation protects against high-fructose-induced renal injury in rats.

    PubMed

    Fan, Chen-Yu; Wang, Ming-Xing; Ge, Chen-Xu; Wang, Xing; Li, Jian-Mei; Kong, Ling-Dong

    2014-03-01

    High fructose intake causes metabolic syndrome, being an increased risk of chronic kidney disease development in humans and animals. In this study, we examined the influence of betaine on high-fructose-induced renal damage involving renal inflammation, insulin resistance and lipid accumulation in rats and explored its possible mechanisms. Betaine was found to improve high-fructose-induced metabolic syndrome including hyperuricemia, dyslipidemia and insulin resistance in rats with systemic inflammation. Betaine also showed a protection against renal dysfunction and tubular injury with its restoration of the increased glucose transporter 9 and renal-specific transporter in renal brush bolder membrane and the decreased organic anion transporter 1 and adenosine-triphosphate-binding cassette transporter 2 in the renal cortex in this model. These protective effects were relevant to the anti-inflammatory action by inhibiting the production of inflammatory cytokines including interleukin (IL)-1β, IL-18, IL-6 and tumor necrosis factor-α in renal tissue of high-fructose-fed rat, being more likely to suppress renal NOD-like receptor superfamily, pyrin domain containing 3 inflammasome activation than nuclear factor κB activation. Subsequently, betaine with anti-inflammation ameliorated insulin signaling impairment by reducing the up-regulation of suppressor of cytokine signaling 3 and lipid accumulation partly by regulating peroxisome proliferator-activated receptor α/palmityltransferase 1/carnitine/organic cation transporter 2 pathway in kidney of high-fructose-fed rats. These results indicate that the inflammatory inhibition plays a pivotal role in betaine's improvement of high-fructose-induced renal injury with insulin resistance and lipid accumulation in rats.

  5. FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats.

    PubMed

    He, Jian-Li; Zhao, Miao; Xia, Jing-Jun; Guan, Jian; Liu, Yang; Wang, Lu-Qi; Song, Dong-Xue; Qu, Mei-Yu; Zuo, Meng; Wen, Xin; Yu, Xue; Huo, Rong; Pan, Zhen-Wei; Ban, Tao; Zhang, Yan; Zhu, Jiu-Xin; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2016-01-01

    Fibroblast growth factor-21 (FGF21) is closely related to various metabolic and cardiovascular disorders. However, the direct targets and mechanisms linking FGF21 to blood pressure control and hypertension are still elusive. Here we demonstrated a novel regulatory function of FGF21 in the baroreflex afferent pathway (the nucleus tractus solitarii, NTS; nodose ganglion, NG). As the critical co-receptor of FGF21, β-klotho (klb) significantly expressed on the NTS and NG. Furthermore, we evaluated the beneficial effects of chronic intraperitoneal infusion of recombinant human FGF21 (rhFGF21) on the dysregulated systolic blood pressure, cardiac parameters, baroreflex sensitivity (BRS) and hyperinsulinemia in the high fructose-drinking (HFD) rats. The BRS up-regulation is associated with Akt-eNOS-NO signaling activation in the NTS and NG induced by acute intravenous rhFGF21 administration in HFD and control rats. Moreover, the expressions of FGF21 receptors were aberrantly down-regulated in HFD rats. In addition, the up-regulated peroxisome proliferator-activated receptor-γ and -α (PPAR-γ/-α) in the NTS and NG in HFD rats were markedly reversed by chronic rhFGF21 infusion. Our study extends the work of the FGF21 actions on the neurocontrol of blood pressure regulations through baroreflex afferent pathway in HFD rats. PMID:27387420

  6. FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats

    PubMed Central

    He, Jian-Li; Zhao, Miao; Xia, Jing-Jun; Guan, Jian; Liu, Yang; Wang, Lu-Qi; Song, Dong-Xue; Qu, Mei-Yu; Zuo, Meng; Wen, Xin; Yu, Xue; Huo, Rong; Pan, Zhen-Wei; Ban, Tao; Zhang, Yan; Zhu, Jiu-Xin; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2016-01-01

    Fibroblast growth factor-21 (FGF21) is closely related to various metabolic and cardiovascular disorders. However, the direct targets and mechanisms linking FGF21 to blood pressure control and hypertension are still elusive. Here we demonstrated a novel regulatory function of FGF21 in the baroreflex afferent pathway (the nucleus tractus solitarii, NTS; nodose ganglion, NG). As the critical co-receptor of FGF21, β-klotho (klb) significantly expressed on the NTS and NG. Furthermore, we evaluated the beneficial effects of chronic intraperitoneal infusion of recombinant human FGF21 (rhFGF21) on the dysregulated systolic blood pressure, cardiac parameters, baroreflex sensitivity (BRS) and hyperinsulinemia in the high fructose-drinking (HFD) rats. The BRS up-regulation is associated with Akt-eNOS-NO signaling activation in the NTS and NG induced by acute intravenous rhFGF21 administration in HFD and control rats. Moreover, the expressions of FGF21 receptors were aberrantly down-regulated in HFD rats. In addition, the up-regulated peroxisome proliferator-activated receptor-γ and -α (PPAR-γ/-α) in the NTS and NG in HFD rats were markedly reversed by chronic rhFGF21 infusion. Our study extends the work of the FGF21 actions on the neurocontrol of blood pressure regulations through baroreflex afferent pathway in HFD rats. PMID:27387420

  7. The influence of high iron diet on rat lung manganese absorption

    SciTech Connect

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne . E-mail: wessling@hsph.harvard.edu

    2006-01-15

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased {approx}2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, {sup 54}Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. {sup 54}Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected {sup 54}Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration.

  8. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Xue, Bai; Nie, Jing; Wang, Xi; DuBois, Debra C; Jusko, William J; Almon, Richard R

    2015-01-01

    Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet from weaning to 20 weeks of age. This comparison included a wide array of physiological measurements along with gene expression profiling of abdominal adipose tissue using Affymetrix gene array chips. Animals of both strains fed a high fat diet or a normal diet were sacrificed at 4, 8, 12, 16, and 20 weeks for this comparison. The microarray analysis revealed that the two strains developed different adaptations to increased dietary fat. WKY rats decrease fatty acid synthesis and lipogenic processes whereas GK rats increase lipid elimination. However, on both diets the major differences between the two strains remained essentially the same. Specifically relative to the WKY strain, the GK strain showed lipoatrophy, chronic inflammation, and insulin resistance. PMID:26309393

  9. A high-protein, high-fat, carbohydrate-free diet reduces energy intake, hepatic lipogenesis, and adiposity in rats.

    PubMed

    Pichon, Lisa; Huneau, Jean-François; Fromentin, Gilles; Tomé, Daniel

    2006-05-01

    The aim of this work was to determine the effects in rats of ingesting 1 of 3 diets with normal or high protein concentrations and various carbohydrate:lipid ratios on weight gain, body composition, and the development and metabolism of white adipose tissue (WAT). For this purpose, male Wistar rats were fed for 20 or 42 d a high-carbohydrate, low-fat, normal-protein diet (76, 10, and 14% of energy as carbohydrate, lipid, and protein, respectively, carbohydrate:lipid ratio (C/L) = 7.6), a normal-carbohydrate, low-fat, high-protein diet (35, 10, and 55% of energy as carbohydrate, lipid, and protein respectively, C:L = 3.5), or a carbohydrate-free, high-fat, high-protein diet (45 and 55% of energy as fat and protein, respectively, C:L = 0). Growth, food intake, body composition, WAT cellularity, and several markers of lipogenesis including fatty acid synthase and lipoprotein lipase activities were measured in adipose tissue and liver. Lowering the C:L ratio reduced the development of WAT, weight gain, body fat mass, and adipocyte size, and in rats fed the carbohydrate-free diet (C:L = 0), the total number of adipocytes in subcutaneous WAT. These reductions in adipose tissue development with decreases in the C:L ratio of the diet seemed to be due primarily to reduced hepatic lipogenesis.

  10. Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density

    PubMed Central

    Lac, Gerard; Cavalie, Helian; Ebal, Edmond; Michaux, Odile

    2008-01-01

    In this study, we investigated some bone parameters (bone mineral content, bone mineral density, skeleton area) in growing rats fed with a high fat diet. Correlations between bone and body composition parameters are reported. Two groups of Wistar male rats (35 days old, body mass 80 ± 6 g) were used. Water and food were given "ad libitum" during 10 weeks. Sixteen rats (L) were given a lipid enriched diet and were compared to 16 rats (S) fed with a standard diet. Body composition and bone parameters were assessed using DXA. Results indicated that L rats had lower body mass, lean body mass; fat mass was not different between the two groups. Bone mineral content, bone mineral density, skeleton area of L rats were lower compared with S rats. Significant correlations were noted between body composition, adiponectin and bone parameters. High fat diet intake during the growing period has deleterious effects on bone parameters in rats. This study confirms in growing rats that a high fat diet is pathogenic, including bone metabolism. PMID:18442361

  11. The alcohol-preferring (P) and high-alcohol-drinking (HAD) rats--animal models of alcoholism.

    PubMed

    McBride, William J; Rodd, Zachary A; Bell, Richard L; Lumeng, Lawrence; Li, Ting-Kai

    2014-05-01

    The objective of this article is to review the literature on the utility of using the selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats in studies examining high alcohol drinking in adults and adolescents, craving-like behavior, and the co-abuse of alcohol with other drugs. The P line of rats meets all of the originally proposed criteria for a suitable animal model of alcoholism. In addition, the P rat exhibits high alcohol-seeking behavior, demonstrates an alcohol deprivation effect (ADE) under relapse drinking conditions, consumes amounts of ethanol during adolescence equivalent to those consumed in adulthood, and co-abuses ethanol and nicotine. The P line also exhibits excessive binge-like alcohol drinking, attaining blood alcohol concentrations (BACs) of 200 mg% on a daily basis. The HAD replicate lines of rats have not been as extensively studied as the P rats. The HAD1,2 rats satisfy several of the criteria for an animal model of alcoholism, e.g., these rats will voluntarily consume ethanol in a free-choice situation to produce BACs between 50 and 200 mg%. The HAD1,2 rats also exhibit an ADE under repeated relapse conditions, and will demonstrate similar levels of ethanol intake during adolescence as seen in adults. Overall, the P and HAD1,2 rats have characteristics attributed to an early onset alcoholic, and can be used to study various aspects of alcohol use disorders.

  12. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  13. High fat diet promotes achievement of peak bone mass in young rats

    SciTech Connect

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  14. Hypolipidemic and antioxidant effects of curcumin and capsaicin in high-fat-fed rats.

    PubMed

    Manjunatha, H; Srinivasan, K

    2007-06-01

    The beneficial hypolipidemic and antioxidant influences of the dietary spice compounds curcumin and capsaicin were evaluated. Curcumin, capsaicin, or their combination were included in the diet of high-(30%)-fat-fed rats for 8 weeks. Dietary high-fat-induced hypertriglyceridemia was countered by dietary curcumin, capsaicin, or their combination by 12%-20%. Curcumin, capsaicin, and their combination also produced a slight decrease in serum total cholesterol in these animals. Serum alpha-tocopherol content was increased by dietary curcumin, capsaicin, and their combination in high-fat-fed rats. Serum total thiol content in high-fat-fed animals and serum ascorbic acid in normal animals was elevated by the combination of curcumin and capsaicin. Hepatic glutathione was increased by curcumin, capsaicin, or their combination in normal animals. Hepatic glutathione and alpha-tocopherol were increased, whereas lipid peroxide level was reduced by dietary curcumin and combination of curcumin and capsaicin in high-fat-fed animals. Serum glutathione peroxidase and glutathione transferase in high-fat-fed rats were generally higher as a result of dietary curcumin, capsaicin, and the combination of curcumin and capsaicin. Hepatic glutathione reductase and glutathione peroxidase were significantly elevated by dietary spice principles in high-fat-fed animals. The additive effect of the 2 bioactive compounds was generally not evident with respect to hypolipidemic or antioxidant potential. However, the effectiveness of the combination was higher in a few instances.

  15. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    PubMed

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  16. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    PubMed

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  17. Limited effect of testosterone treatment for erectile dysfunction caused by high-estrogen levels in rats.

    PubMed

    Kataoka, T; Hotta, Y; Ohno, M; Maeda, Y; Kimura, K

    2013-01-01

    Some studies suggest that high-estrogen levels lead to erectile dysfunction (ED); high-estrogen levels are known to decrease testosterone levels. However, no study has examined whether testosterone replacement can improve the ED induced by high-estrogen levels. We investigated the effects of testosterone on ED caused by high-estrogen levels in rats. Rats were distributed in the following groups: (1) control (vehicle for 2 weeks), (2) the estrogen-treated group (ES; estradiol (3 μg kg(-1) day(-1)) for 2 weeks), and (3) the estrogen- and testosterone-treated group (ES+TE; estradiol (3 μg kg(-1) day(-1)) and testosterone (3 mg kg(-1) day(-1)) for 2 weeks). We measured smooth muscle function via isometric tension and erectile function by measuring the intracavernosal pressure on cavernous nerve stimulation. In the ES group, the contraction of the corpus cavernosum smooth muscle increased in response to noradrenalin, and its relaxation decreased in response to the nitric oxide donor, sodium nitroprusside. Further, the erectile function was significantly decreased. In the ES+TE group, neither smooth muscle function nor erectile function was significantly improved. In conclusion, a high-estrogen milieu affected erectile function in rats, and testosterone treatment did not improve the ED caused by high-estrogen levels.

  18. Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats.

    PubMed

    Gasco, M; Rubio, J; Chung, A; Villegas, L; Gonzales, G F

    2003-12-01

    The present study was designed to determine the effect of exposure to high altitude on spermatogenesis using transillumination technique and sperm count in male rats. In addition, the effect of oral intubation for intragastric administration of vehicle on testicular parameters in adult male rats in a schedule of 42 days was assessed. Male rats were exposed to Cerro de Pasco (Peru) at 4340 m for 3, 7, 14, 21, 28, 35 and 42 days resulting in a modification of the pattern of the seminiferous tubule stages. At day 3, stages I, IV-V, VI, VII and IX-XI were relatively shorter at high altitude than at sea level. At day 7, stages VIII, IX-XI, XII and XIII-XIV were reduced. At day 14, stages VII, VIII and IX-XI were reduced. At day 21 and 28, stages VIII, XII and XIII-XIV were significantly increased at high altitude. At day 35 an increase in stage XIII-XIV was observed. At day 42, stages II-III, IX-XI and XII were significantly increased at high altitude. Epididymal sperm count was significantly reduced at day 7 of exposure to high altitude and maintained low levels with respect to sea level up to 42 days. In conclusion, high altitude exposure affects spermatogenesis, particularly onset of mitosis and spermiation. This in turn affects epididymal sperm count.

  19. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet- induced obese rats.

    PubMed

    Mnafgui, Kais; Derbali, Amal; Sayadi, Sami; Gharsallah, Neji; Elfeki, Abdelfattah; Allouche, Noureddine

    2015-07-01

    Obesity is a chronic metabolic disorder that is associated with numerous diseases including hyperlipidemia, diabetes mellitus, hypertension, atherosclerosis, cardiovascular disease, and cancer. Cinnamic acid is a phytochemical compound having many biological effects and could be considered for the management of obesity. This study is aimed to assess the possible anti-obesity and cardioprotective properties of cinnamic acid (CA) in high fat diet-fed rats (HFD). Male Wistar rats were divided into 4 groups. They received normal diet, HFD diet, HFD supplemented with fluvastatin (2 mg/kg/day) or cinnamic acid (30 mg/kg/day) for 7 weeks. The results showed an increase in body weight of HFD rats by ~27 % as compared to control group. Moreover, serum lipase activity underwent a significant rise by 103 % which led to an increase in the levels of total cholesterol (T-Ch), triglycerides (TG), LDL-cholesterol in serum of untreated HFD-fed rats. Furthermore, the concentration of leptin and angiotensin-converting enzyme (ACE) activity exhibited remarkable increases in serum of HFD-fed rats as compared to controls. Whereas, the administration of CA to HFD-fed rats improved the body weight gain and serum lipid profile and reverted back near to normal the activities of lipase and ACE. In addition, the echocardiography evidenced that CA is able to protect the aorta and aortic arch and avoided vasoconstriction by increasing their diameters and improved liver steatosis and kidney indices of toxicity. Overall, these results suggest that cinnamic acid exerts anti-obesity and antihypertensive effects through inhibition of lipid digestive enzymes and ACE.

  20. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    PubMed

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  1. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  2. High-impact exercise in rats prior to and during suspension can prevent bone loss.

    PubMed

    Yanagihara, G R; Paiva, A G; Gasparini, G A; Macedo, A P; Frighetto, P D; Volpon, J B; Shimano, A C

    2016-03-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension. PMID:26840705

  3. Yogurt protects against growth retardation in weanling rats fed diets high in phytic acid.

    PubMed

    Gaetke, Lisa M; McClain, Craig J; Toleman, C Jean; Stuart, Mary A

    2010-02-01

    The purpose of this study was to determine the effects of adding yogurt to animal diets that were high in phytic acid (PA) and adequate in zinc (38 microg Zn/g). The PA:Zn molar ratio was 60:1. Zinc status was determined by documenting growth and measuring the zinc concentration in bone (tibia) and plasma. For 25 days, six groups (n=6) of Sprague-Dawley weanling rats were fed one of six AIN-76 diets. Half of the diets contained PA. Four of the diets contained yogurt with either active or heat-treated (inactive) cultures added at 25% of the diet. The diets were as follows: (a) AIN, (b) AIN with active yogurt, (c) AIN and inactive yogurt, (d) AIN with PA, (e) AIN with PA plus active yogurt and (f) AIN with PA plus inactive yogurt. Body weight, weight gain and zinc concentration in bone and plasma were measured, and food efficiency ratio was calculated. Rats fed diets with PA and yogurt had normal growth compared to the control group. Growth retardation was evident in the group fed the diet with PA and no yogurt. This group had significantly lower body weight compared to all other groups (P<.05). Rats fed diets with PA, with or without yogurt, had significantly lower zinc concentration in bone and plasma (P<.05). Adding yogurt to diets high in PA resulted in normal growth in weanling rats; however, zinc concentration in bone and plasma was still suboptimal.

  4. High-impact exercise in rats prior to and during suspension can prevent bone loss

    PubMed Central

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P.; Frighetto, P.D.; Volpon, J.B.; Shimano, A.C.

    2016-01-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension. PMID:26840705

  5. High affinity binding of (/sup 3/H)cocaine to rat liver microsomes

    SciTech Connect

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    )/sup 3/H)cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in (/sup 3/H)cocaine binding. On the other hand, chronic administration of cocaine reduced (/sup 3/H)cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of (/sup 3/H)cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced (/sup 3/H)cocaine binding to liver with a different rank order of potency than their displacement of (/sup 3/H)cocaine binding to striatum. This high affinity (/sup 3/H)cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  6. Rats bred for high alcohol drinking are more sensitive to delayed and probabilistic outcomes

    PubMed Central

    Wilhelm, Clare J.; Mitchell, Suzanne H.

    2009-01-01

    Alcoholics and heavy drinkers score higher on measures of impulsivity than nonalcoholics and light drinkers. This may be due to factors that predate drug exposure (e.g., genetics). This study examined the role of genetics by comparing impulsivity measures in ethanol naïve rats selectively bred based on their high (HAD) or low (LAD) consumption of ethanol. Replicates 1 and 2 of the HAD and LAD rats, developed by the University of Indiana Alcohol Research Center, completed two different discounting tasks. Delay discounting examines sensitivity to rewards that are delayed in time and is commonly used to assess “choice” impulsivity. Probability discounting examines sensitivity to the uncertain delivery of rewards and has been used to assess risk taking and risk assessment. HAD rats discounted delayed and probabilistic rewards more steeply than LAD rats. Discount rates associated with probabilistic and delayed rewards were weakly correlated, while bias was strongly correlated with discount rate in both delay and probability discounting. The results suggest that selective breeding for high alcohol consumption selects for animals that are more sensitive to delayed and probabilistic outcomes. Sensitivity to delayed or probabilistic outcomes may be predictive of future drinking in genetically-predisposed individuals. PMID:18518928

  7. Spent turmeric reduces fat mass in rats fed a high-fat diet.

    PubMed

    Han, Kyu-Ho; Lee, Chang-Hyun; Kinoshita, Mikio; Oh, Chan-Ho; Shimada, Ken-ichiro; Fukushima, Michihiro

    2016-04-01

    Indigestible carbohydrates may improve obesity. Spent turmeric contains high levels of dietary fibre and resistant starch (RS), which have fermentation potential in vitro. We hypothesised that indigestible carbohydrates in spent turmeric might prevent obesity development. In the first study, rats were administered 10% turmeric powder (TP) or spent turmeric powder (STP) in a high-fat (HF) diet for 28 d. In the second study, rats were fed 10% STP in a HF diet with or without antibiotics for 15 d. In the third study, rats were treated with a STP-containing suspension. In study 1, the TP and STP diet increased the caecal short-chain fatty acid (SCFA) content compared to that of a control diet. The lower energy intake in the TP and STP group was strongly related to the decrease in visceral fat weight. In study 2, after caecal fermentation suppression with antibiotics, STP treatment decreased the visceral fat mass. In study 3, the plasma glucose levels and incremental area under the curve (AUC) after ingestion of a STP-containing suspension were lower than those after ingestion of suspension alone. These findings suggest the reduction of carbohydrate absorption during the gastrointestinal passage after TP and STP treatment. Our data indicate that the reduced obesity development in rats fed a HF diet may be attributed to the low metabolisable energy density of carbohydrates in the spent turmeric, independent of SCFA-mediated factors.

  8. High-impact exercise in rats prior to and during suspension can prevent bone loss.

    PubMed

    Yanagihara, G R; Paiva, A G; Gasparini, G A; Macedo, A P; Frighetto, P D; Volpon, J B; Shimano, A C

    2016-03-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.

  9. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    PubMed

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2016-09-01

    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring. PMID:27385731

  10. Nonthermal effects of lifelong high-frequency electromagnetic field exposure on social memory performance in rats.

    PubMed

    Schneider, Janine; Stangassinger, Manfred

    2014-10-01

    We are today surrounded almost constantly by high-frequency electromagnetic fields (EMFs) from mobile communications base stations. To date, however, there has been little concern regarding nonthermal effects of EMFs on cognition. In the present study, male and female rats were subjected to continuous far-field exposure to a frequency of 900-MHz (Global System for Mobile Communications [GSM]) or 1.966-GHz (Universal Mobile Telecommunications System [UMTS]) at 0.4 W/kg. Memory performance of adult EMF-exposed and sham-exposed female rats (at 6 months of age) and male rats (at 3 and 6 months of age) was tested using a social discrimination procedure. For this procedure, a target juvenile male was introduced to the subject's home cage for 4 min (Trial 1). After 30 min, the same target animal and a novel juvenile male were simultaneously presented to the subject for 4 min (Trial 2). Differences in sniffing duration to the familiar and novel target rats during Trial 2 were used to assess memory performance. EMF-exposed females exhibited no differences in sniffing duration compared with controls. In contrast, the sniffing durations of EMF-exposed males at 3 months of age were significantly affected. At 6 months of age, GSM-, but not UMTS-, exposed male adults showed a memory performance deficit. These findings provide new insight into the nonthermal effects of long-term high-frequency EMF exposure on memory.

  11. Plasma 24,25-dihydroxyvitamin D concentration of Dahl salt-sensitive rats decreases during high salt intake

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Tewolde, Teclemicael K.; Forte, Camille; Wang, Min; Bayorh, Mohamed A.; Emmett, Nerimiah L.; White, Jolanda; Griffin, Keri

    2002-01-01

    Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.

  12. High salt-diet reduces SLC14A1 gene expression in the choroid plexus of Dahl salt sensitive rats.

    PubMed

    Guo, Lirong; Meng, Jie; Xuan, Chengluan; Ge, Jingyan; Sun, Wenzhu; O'Rourke, Stephen T; Sun, Chengwen

    2015-05-29

    Elevated Na(+) concentration ([Na(+)]) in the cerebrospinal fluid (CSF) contributes to the development of salt-sensitive hypertension. CSF is formed by the choroid plexus (CP) in cerebral ventricles, and [Na(+)] in CSF is controlled by transporters in CP. Here, we examined the effect of high salt diet on the expression of urea transporters (UTs) in the CP of Dahl S vs Dahl R rats using real time PCR. High salt intake (8%, for 2 weeks) did not alter the mRNA levels of UT-A (encoded by SLC14A2 gene) in the CP of either Dahl S or Dahl R rats. In contrast, the mRNA levels of UT-B (encoded by SLC14A1 gene) were significantly reduced in the CP of Dahl S rats on high salt diet as compared with Dahl R rats or Dahl S rats on normal salt diet. Reduced UT-B expression was associated with increased [Na(+)] in the CSF and elevated mean arterial pressure (MAP) in Dahl S rats treated with high salt diet, as measured by radiotelemetry. High salt diet-induced reduction in UT-B protein expression in the CP of Dahl S rats was confirmed by Western blot. Immunohistochemistry using UT-B specific antibodies demonstrated that UT-B protein was expressed on the epithelial cells in the CP. These data indicate that high salt diet induces elevations in CSF [Na(+)] and in MAP, both of which are associated with reduced UT-B expression in the CP of Dahl S rats, as compared with Dahl R rats. The results suggest that altered UT-B expression in the CP may contribute to an imbalance of water and electrolytes in the CSF of Dahl S rats on high salt diet, thereby leading to alterations in MAP.

  13. Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats.

    PubMed

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-12-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14-18 months of age) and 14 young adult (2.5-6.5 months of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  14. Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats.

    PubMed

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-12-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14-18 months of age) and 14 young adult (2.5-6.5 months of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes.

  15. High-Moisture Diet for Laboratory Rats: Complete Blood Counts, Serum Biochemical Values, and Intestinal Enzyme Activity

    NASA Technical Reports Server (NTRS)

    Battles, August H.; Knapka, Joseph T.; Stevens, Bruce R.; Lewis, Laura; Lang, Marie T.; Gruendel, Douglas J.

    1991-01-01

    Rats were fed an irradiated high-moisture diet (KSC-25) with or without access to a water bottle. Physiologic values were compared between these two groups and a group of rats fed a purified diet. Hematologic and serum biochemical values, urine specific gravity, and intestinal enzyme activities were determined from samples collected from the three groups of rats. Sprague Dawley rats (n=32) fed the irradiated high-moisture diet with or without a water bottle were the test animals. Rats (n=16) fed an irradiated purified diet and water provided via a water bottle were the control group. The purified diet formulation, modified AIN-76A, is a commonly used purified diet for laboratory rodents. All rats remained alert and healthy throughout the study. A comparison of the physiologic values of rats in this study with reported normal values indicated that all of the rats in the study were in good health. Significant differences (P less than 0.05) of the physiologic values from each rat group are reported.

  16. Early and sustained exposure to high-sucrose diet triggers hippocampal ER stress in young rats.

    PubMed

    Pinto, Bruno Araújo Serra; Melo, Thamys Marinho; Flister, Karla Frida Torres; França, Lucas Martins; Kajihara, Daniela; Tanaka, Leonardo Yuji; Laurindo, Francisco Rafael Martins; Paes, Antonio Marcus de Andrade

    2016-08-01

    Early-life environmental insults have been shown to promote long-term development of chronic non-communicable diseases, including metabolic disturbances and mental illnesses. As such, premature consumption of high-sugar foods has been associated to early onset of detrimental outcomes, whereas underlying mechanisms are still poorly understood. In the present study, we sought to investigate whether early and sustained exposure to high-sucrose diet promotes metabolic disturbances that ultimately might anticipate neurological injuries. At postnatal day 21, weaned male rats started to be fed a standard chow (10 % sucrose, CTR) or a high-sucrose diet (25 % sucrose, HSD) for 9 weeks prior to euthanasia at postnatal day 90. HSD did not alter weight gain and feed efficiency between groups, but increased visceral, non-visceral and brown adipose tissue accumulation. HSD rats demonstrated elevated blood glucose levels in both fasting and fed states, which were associated to impaired glucose tolerance. Peripheral insulin sensitivity did not change, whereas hepatic insulin resistance was supported by increased serum triglyceride levels, as well as higher TyG index values. Assessment of hippocampal gene expression showed endoplasmic reticulum (ER) stress pathways were activated in HSD rats, as compared to CTR. HSD rats had overexpression of unfolded protein response sensors, PERK and ATF6; ER chaperone, PDIA2 and apoptosis-related genes, CHOP and Caspase 3; but decreased expression of chaperone GRP78. Finally, HSD rats demonstrated impaired neuromuscular function and anxious behavior, but preserved cognitive parameters. In conclusion, our data indicate that early exposure to HSD promote metabolic disturbances, which disrupt hippocampus homeostasis and might precociously affect its neurobehavioral functions. PMID:27154727

  17. Effects of high-intensity swimming training on the bones of ovariectomized rats

    PubMed Central

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-01-01

    [Purpose] This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. [Methods] Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. [Results] Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. [Conclusion] This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength. PMID:27757386

  18. Phototherapy improves wound healing in rats subjected to high-fat diet.

    PubMed

    Leite, Saulo Nani; Leite, Marcel Nani; Caetano, Guilherme Ferreira; Ovidio, Paula Payão; Jordão Júnior, Alceu Afonso; Frade, Marco Andrey C

    2015-07-01

    This study aimed to compare the phototherapy effects on wound healing in rats submitted to normal and high-fat diets. Thirty-six rats received normal lipidic diet (NL) and 36 high lipidic (HL) diet for 45 days. The nutritional status was measured by body mass, blood glucose, total cholesterol, and triglycerides levels. Four experimental groups were performed according light (L) therapy applied "on" or "off" (660 nm, 100 mW, 70 J/cm(2), 2 J) on 1.5-mm-punched dorsum skin wounds as NLL+, NLL-, HLL+, and HLL-. The wound healing rate (WHR) and oxidative stress markers were analyzed on 2nd, 7th, and 14th days. Despite no difference among body mass, the HL rats presented higher blood glucose, total cholesterol, and triglycerides levels than NL rats. Respectively, on the 2nd and 14th days, the HLL+ group presented the highest WHRs (0.38 ± 0.16/0.97 ± 0.02) among all groups, while the HLL- (-0.002 ± 0.12/0.81 ± 12.1) the lowest WHRs. Hydroxyproline level was lower in HLL- (6.41 ± 1.09 μg/mg) than HLL+ (7.71 ± 0.61 μg/mg) and also NLL+ (9.33 ± 0.84 μg/mg). HLL+ presented oxidative stress markers similar to normal control group (NLL-) during follow up and highest antioxidant defense on 7th day. The results showed phototherapy accelerated the cutaneous wound healing by modulating oxidative stress in rats with metabolic disorders under a high-fat diet.

  19. Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Genetically Prone to High Anxiety

    PubMed Central

    Cohen, Joshua L.; Glover, Matthew E.; Pugh, Phyllis C.; Fant, Andrew D.; Simmons, Rebecca K.; Akil, Huda; Kerman, Ilan A.; Clinton, Sarah M.

    2015-01-01

    The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high vs. low behavioral response to novelty and found that high reactive (bHR) rats display greater risk-taking, impulsivity, and aggression relative to low reactive (bLR) rats, which show high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior on bLR offspring’s brain development and emotional behavior. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine effects on: 1) developmental gene expression in the hippocampus and amygdala; and 2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain’s developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. PMID:25791846

  20. Influence of low and high doses of fluoride on tooth germ development in rats.

    PubMed

    Maciejewska, I; Adamowicz-Klepalska, B

    2000-01-01

    The influence of fluoride on tooth germ development, especially mineralised tissue, is well documented in numerous dental publications, but there are few reports concerning the influence of fluoride on enamel organ and dental papilla cells. The aim of the study was to assess histologically the development of tooth germs of 20-day-old rat foetuses whose mothers drank water without fluoride or with low (10 mg) and high (110 mg) contents of natrium fluoride, starting from the 12th day of the pregnancy. The fluoride contained in drinking water in low as well as high concentration accelerated the development of enamel organ and dental papilla structures in rat foetuses. The acceleration was proportional to the content of fluoride in drinking water. No disturbances caused by high concentration of natrium fluoride were observed.

  1. N-Acetylneuraminic acid attenuates hypercoagulation on high fat diet-induced hyperlipidemic rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Wong, WaiTeng; Abdullah, Maizaton Atmadini; Ideris, Aini; Ismail, Norsharina

    2015-01-01

    Background and objective N-Acetylneuraminic acid (Neu5Ac), a type of sialic acid, has close links with cholesterol metabolism and is often used as a biomarker in evaluating the risk of cardiovascular diseases. However, most studies on the health implications of Neu5Ac have focused on its effects on the nervous system, while its effects on cardiovascular risk factors have largely been unreported. Thus, the effects of Neu5Ac on coagulation status in high fat diet (HFD)-induced hyperlipidemic rats were evaluated in this study. Methods Sprague Dawley male rats were divided into five different groups and fed with HFD alone, HFD low-dose Neu5Ac, HFD high-dose Neu5Ac, HFD simvastatin (10 mg/kg day), and normal pellet alone. Food was given ad libitum while body weight of rats was measured weekly. After 12 weeks of intervention, rats were sacrificed and serum and tissue samples were collected for biochemistry and gene expression analysis, respectively. Results The results showed that Neu5Ac could improve lipid metabolism and hyperlipidemia-associated coagulation. Neu5Ac exerted comparable or sometimes better physiological effects than simvastatin, at biochemical and gene expression levels. Conclusions The data indicated that Neu5Ac prevented HFD-induced hyperlipidemia and associated hypercoagulation in rats through regulation of lipid-related and coagulation-related genes and, by extension, induced metabolite and protein changes. The implications of the present findings are that Neu5Ac may be used to prevent coagulation-related cardiovascular events in hyperlipidemic conditions. These findings are worth studying further. PMID:26642300

  2. High dietary protein regimens provide significant protection from mercury nephrotoxicity in rats

    SciTech Connect

    Andrews, P.M.; Chung, E.M. )

    1990-09-01

    The effects of high protein dietary regimens prior to the administration of inorganic mercury were investigated. Male Sprague-Dawley rats were pair-fed on purified test diets containing either normal (20%) or high (60%) concentrations of protein. Mercury was administered as a single intravenous injection of mercuric chloride (1 mg/kg). All rats maintained on normal dietary protein prior to and following mercury injection exhibited severe kidney dysfunction, extensive necrosis of both second (S2) and third (S3) segments of the kidney proximal tubules, and 100% mortality. In contrast, rats maintained on high dietary protein for 48 hr or longer just prior to mercury injection and returned to normal dietary protein immediately following mercury administration all survived and exhibited normal serum creatinine and BUN values within 4 days following mercury administration. The kidneys of this latter group took up significantly less radiolabeled mercury during the first 12 hr following mercury injection, and exhibited relatively little damage to the second segments (S2) of the proximal tubules. The third segments (S3) of the proximal tubules, however, exhibited the same degree of necrosis as that observed in the control group. Maintaining rats on high dietary protein regimens for shorter periods of time prior to mercury infusion (i.e., 12 or 24 hr) also dramatically reduced subsequent acute renal failure and improved survival, although not to the extent noted following 48 hr or longer on these diets. These observations suggested that high dietary protein regimens may protect from mercury nephrotoxicity by reducing mercury uptake to the second segments (S2) of the proximal tubules during the initial period of exposure to intravenously administered mercury.

  3. Hypolipidemic effect of dihydroisoquinoline oxaziridine in high-fat diet-fed rats.

    PubMed

    Aydi, Rihab; Gara, Amel Ben; Chaaben, Rim; Saad, Hajer Ben; Fki, Lotfi; ElFeki, Abdelfattah; Belghith, Hafedh; Belghith, Karima; Kammoun, Majed

    2016-08-01

    Obesity is a serious health problem that increases the risk of many complications, including diabetes and cardiovascular disease. This study aims to evaluate, for the first time, the effects of oxaziridine 3 on lipoprotein lipase activity in the serum of rats fed with a high-fat diet (HFD) on body weight, lipid profile and liver-kidney functions. The administration of oxaziridine 3 to HFD-rats lowered body weight and inhibited the lipase activity of obese rats leading to notable decrease of T-Ch, TGs and LDL-Ch levels accompanied with an increase in HDL-Ch concentration in serum. Moreover, the findings of this study revealed that oxaziridine 3 helped to protect liver tissue from the appearance of fatty cysts. Additionally, oxaziridine 3 administration to HFD-rats induces antioxidant activity proven by the increase of superoxide dismutase (SOD) and catalase (CAT) activities and the decrease in Thiobarbituric acid reactive substances (TBARS) levels. It also induces the protection of liver-kidney functions confirmed by a decrease in the levels of toxicity parameters in blood. PMID:27470409

  4. Sasa borealis Stem Extract Attenuates Hepatic Steatosis in High-Fat Diet-induced Obese Rats

    PubMed Central

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-01-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  5. Sasa borealis stem extract attenuates hepatic steatosis in high-fat diet-induced obese rats.

    PubMed

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-06-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  6. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats

    PubMed Central

    Li, Jing; Zuo, Wanhong; Fu, Rao; Xie, Guiqin; Kaur, Amandeep; Bekker, Alex

    2016-01-01

    Background: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. Methods: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. Results: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. Conclusions: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics. PMID:27234303

  7. Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Nakanishi, Yosuke; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2013-01-01

    We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.

  8. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p<0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.

  9. High-frequency ultrasound imaging to evaluate liver fibrosis progression in rats and yi guan jian herbal therapeutic effects.

    PubMed

    Chen, Wei; Chen, Jiun-Yu; Tung, Yu-Tang; Chen, Hsiao-Ling; Kuo, Chia-Wen; Chuang, Chia-Hui; Chong, Kowit-Yu; Mao, Frank Chiahung; Chen, Chuan-Mu

    2013-01-01

    The animals used in liver fibrosis studies must usually be sacrificed. Ultrasound has been demonstrated to have the ability to diagnose hepatic fibrosis and cirrhosis in experimental small-animal models. However, few studies have used high-frequency ultrasound (HFU, 40 MHz) to monitor changes in the rat liver and other hollow organs longitudinally. In this study, liver fibrosis was induced by administering dimethylnitrosamine (DMN) in SD rats, aged 8 weeks, for three consecutive days per week for up to 4 weeks. A Chinese herbal medicine Yi Guan Jian (YGJ) was orally administered (1.8 g/kg daily) to DMN-induced liver fibrosis rats for 2 weeks. Compared with the normal control rats, rats treated with DMN for either 2 weeks or 4 weeks had significantly lower body weights, liver indexes and elevation of hydroxyproline, GOT, and GPT contents. YGJ herbal treatment remarkably prevented rats from DMN-induced liver fibrosis. The HFU scoring results among the normal controls, 2-week DMN-treated rats, 4-week DMN-treated rats, and combined 2-week YGJ therapy with 4-week DMN-treated rats also reached statistical significance. Thus, HFU is an accurate tool for the longitudinal analysis of liver fibrosis progression in small-animal models, and the YGJ may be useful in reversing the development of hepatic fibrosis. PMID:24250714

  10. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats

    PubMed Central

    Hao, Lei; Lu, Xiaoling; Sun, Min; Li, Kai; Shen, Lingmin; Wu, Tao

    2015-01-01

    Background L-Arabinose is a non-caloric sugar, which could affect glucose and lipid metabolism and suppress obesity. However, few reports have described the effect of L-arabinose in metabolic syndrome, a combination of medical disorders that increase the risk of diabetes and cardiovascular disease. Objective This study was conducted to explore the effects of L-arabinose in rats with metabolic syndrome induced by a high-carbohydrate, high-fat (HCHF) diet. Methods After the rat model for metabolic syndrome was successfully established, L-arabinose was administrated by oral gavage for 6 weeks. The biochemical index and histological analysis were measured, and the expression levels of genes related to fatty acid metabolism were analyzed using real-time PCR. Results Following treatment with L-arabinose, metabolic syndrome rats had an obvious reduction in body weight, systolic blood pressure, diastolic blood pressure, fasting blood glucose, triglycerides, total cholesterol, serum insulin, TNF-α, and leptin. Further study showed that treatment with L-arabinose significantly increased the expression of mRNA for hepatic CPT-1α and PDK4, but the expression of mRNA for hepatic ACCα was reduced. Conclusions This work suggests that L-arabinose could lower body weight, Lee's index, and visceral index and improve dyslipidemia, insulin resistance, inflammation, and viscera function, which indicate that it might be a promising candidate for therapies combating metabolic syndrome. PMID:26652604

  11. Effects of high fat diet on fecal contents of bile acids in rats.

    PubMed

    Sato, Y; Furihata, C; Matsushima, T

    1987-11-01

    The effects of dietary oils and fats used in Japan on the fecal contents of bile acids in rats were studied. F344/Du Crj female rats (8 weeks old) were fed on diet containing 20% corn oil, rape seed oil, sesame oil, soybean oil, lard, or tallow as high oil or fat diets or on 0.2% linoleic acid diet as a low fatty acid diet for 4 weeks, and then their feces were collected. Bile acids in the feces were partially purified and analyzed by high-performance liquid chromatography. Analyses showed that lard or tallow in the diet resulted in significant increases in the contents of bile acids in the feces, whereas sesame oil in the diet resulted in significant decreases in their contents. PMID:3121554

  12. Antihypertensive Effect of Radix Paeoniae Alba in Spontaneously Hypertensive Rats and Excessive Alcohol Intake and High Fat Diet Induced Hypertensive Rats

    PubMed Central

    Su-Hong, Chen; Qi, Chen; Bo, Li; Jian-Li, Gao; Jie, Su; Gui-Yuan, Lv

    2015-01-01

    Radix Paeoniae Alba (Baishao, RPA) has long been used in traditional Chinese medicine formulation to treat hypertension by repression the hyperfunction of liver. However, whether the RPA itself has the antihypertensive effect or not is seldom studied. This study was to evaluate the protective effect of RPA on hypertensive rats. Alcohol in conjunction with a high fat diet- (ACHFD-) induced hypertensive rats and spontaneously hypertensive rats (SHR) was constantly received either RPA extract (25 or 75 mg/kg) or captopril (15 mg/kg) all along the experiments. As a result, RPA extract (75 mg/kg) could significantly reduce systolic blood pressure of both ACHFD-induced hypertensive rats and SHR after 9-week or 4-week treatment. In ACHFD-induced hypertensive rats, the blood pressure was significantly increased and the lipid profiles in serum including triglyceride, total cholesterol, LDL-cholesterol, and HDL-cholesterol were significantly deteriorated. Also, hepatic damage was manifested by a significant increase in alanine transaminase (ALT) and aspartate transaminase (AST) in serum. The RPA extract significantly reversed these parameters, which revealed that it could alleviate the liver damage of rats. In SHR, our result suggested that the antihypertensive active of RPA extract may be related to its effect on regulating serum nitric oxide (NO) and endothelin (ET) levels. PMID:25784949

  13. Differential prepuberal handling modifies behaviour and excitatory amino acids in the forebrain of the Naples High-Excitability rats.

    PubMed

    Ruocco, L A; Gironi Carnevale, U A; Sica, A; Arra, C; Topo, E; Di Giovanni, M; D'Aniello, A; Sadile, A G

    2009-03-01

    Naples High-Excitability (NHE) rats model the mesocortical variant of Attention-Deficit Hyperactivity Disorder (ADHD). Recently, a high level of excitatory amino acids (EAA) has been found in the forebrain of NHE rats. The aim of this study was to verify the effect of postnatal stimulation in prepuberal rats on forebrain EAA. Thus, prepuberal NHE and Naples Random Bred (NRB) control rats were daily handled (PS) or they were left undisturbed throughout (NO-PS). One hour after the last stimulation, PS and NO-PS rats were exposed to a spatial novelty in a Làt-maze and one day later to a non-reinforced Olton maze. In both tests the horizontal (HA) and vertical (frequency - VA and duration of rearing - RD) components of behaviour indexed activity and non-selective attention (NSA). Moreover, in the Olton maze the position of the number of arms visited before first repetition (FE) and to criterion (NVTC), indexed selective spatial attention (SSA). Amino acids were detected by HPLC in prefrontal cortex (PFC), striatum (STR), hippocampus (HPC) and hypothalamus (HYP). Results indicate that (i) in the Làt-maze, only for HA, NO-PS NHE rats were more active than PS, (ii) in the Olton maze NO-PS rats of both lines showed shorter rearing durations than PS, (iii) EAA level was higher in NHE than in NRB rats and (iv) NO-PS vs. PS treatment increased level of EAA across the forebrain in both rat lines. In contrast in NHE NO-PS rats L-glutamate (L-Glu) decreased in HYP and L-aspartate (L-Asp) decreased in HPC. In conclusion, postnatal stimulation in prepuberal rats significantly affects forebrain excitatory amino acids and behaviour in NHE line. Thus EAA are modulated by genetic determinants and environmental (epigenetic) factors.

  14. Place conditioning with ethanol in rats bred for high (UChB) and low (UChA) voluntary alcohol drinking.

    PubMed

    Quintanilla, María Elena; Tampier, Lutske

    2011-12-01

    The main goal of this study was to investigate the ability of an ethanol dose (1g/kg) administered intraperitoneally to induce conditioned place preference (CPP) and/or conditioned place aversion (CPA) in two lines of rats selectively bred for their high (UChB) or low (UChA) voluntary ethanol intake. It was found that five pairings with ethanol induced CPA in ethanol-naïve rats of both lines, but the magnitude of avoidance was lower in the UChB relative to the UChA rats, indicating that ethanol was less aversive to naïve rats bred for high alcohol drinking. After 2 months of high voluntary ethanol drinking (~6-7g/kg/day), in free choice between 10% ethanol and water, ethanol produced CPP in UChB rats, reflecting that ethanol had become rewarding to these rats. By contrast, the low voluntary ethanol intake (<1g/kg/day) displayed by UChA rats preexposed for 2 months in free choice did not change ethanol-induced CPA. However, preexposure of UChA rats to forced ethanol drinking (~5.7g/kg/day) and the later inhibition of ethanol-derived acetaldehyde by 4-methylpyrazole (10mg/kg intraperitoneal), an inhibitor of the enzyme alcohol dehydrogenase, not only increased their voluntary ethanol intake in free choice, but also had a facilitating effect on the development of CPP. Taken together, these results show that the expression of the reinforcing effects of ethanol required a period of voluntary ethanol intake in UChB rats, whereas in UChA rats, both prior exposure to forced ethanol drinking and reduction of high blood ethanol-derived acetaldehyde were required.

  15. Ultrastructural changes in the parenchymal liver cells of rats treated with high doses of rifampicin.

    PubMed Central

    Piriou, A.; Maissiat, R.; Jacqueson, A.; Warnet, J. M.; Claude, J. R.

    1987-01-01

    Ultrastructural study of hepatic parenchyma was carried out in female Wistar rats after they had received high doses (400 mg X kg-1) of rifampicin for 1, 2, 4, 6 and 8 days. Morphological changes in the endoplasmic reticulum, Golgi apparatus and mitochondria were observed as early as day 1 of intoxication. These changes corroborate the biochemical data available regarding RFP-induced fatty liver. Images Fig. 1 Fig. 2 Fig. 3 & 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:3580280

  16. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    PubMed

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  17. The effect of ''living high-training low'' on physical performance in rats

    NASA Astrophysics Data System (ADS)

    Miyazaki, S.; Sakai, A.

    In this research, we hypothesized that, in rats, adaptation to high altitude (2500 m) plus training at low altitude (610 m), ''living high-training low'', improves physical performance at low altitude more than living and training at low altitude (610 m). Rats were divided into four groups: (1) living at low altitude (LL, n=12), (2) living and training at low altitude (LLTL, n=13), (3) living at high altitude (LH, n=12), (4) living at high altitude and training at low altitude (LHTL, n=13). The program for living at high altitude involved raising rats under hypobaric hypoxia (equivalent to 2500 m), and the training program consisted of running on a tread-mill at low altitude. All groups were raised at each altitude and trained to run at 35 m/min for 40 min/day, 6 days/week for 6 weeks. During this program, we measured heart rates both at rest and during exercise, and performed running-time trials. The mean heart rate during exercise was lower in groups with training than in groups without training, and the groups receiving training could run longer than the untrained groups. The LHTL group especially showed the lowest mean heart rate during exercise and the longest running time among all groups. After 6 weeks of the training program, all rats had a catheter implanted into the carotid artery, and the mean systemic arterial pressure was continuously measured during treadmill running. The rate of increase of this pressure as the running intensity increased was lower in groups with training than in groups without training, especially in the LHTL group. Finally, we anesthetized all the rats and extracted both the right and left ventricles, and the triceps surae and liver. Training increased the weight of the left ventricle, triceps surae, and liver. The increase in weight of the left ventricle and triceps surae was higher in the LHTL group than in the LLTL group in particular. It appeared that living high- training low may be an effective strategy to improve performance

  18. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  19. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  20. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  1. Secoisolariciresinol diglucoside in high-fat diet and streptozotocin-induced diabetic nephropathy in rats: a possible renoprotective effect.

    PubMed

    Sherif, Iman O

    2014-12-01

    Due to substantial morbidity and high complication rate of diabetes mellitus, which is considered as the third killer in the world, a search for the effective blockade of the progression of diabetic nephropathy (DN) remains a therapeutic challenge. Alternative antidiabetic drugs from natural plants are highly demanded nowadays. The aim of this study was to investigate the renoprotective effect of secoisolariciresinol diglucoside (SDG) on DN induced in rats. Diabetes was induced in male Sprague-Dawley rats by a high-fat diet (HFD) and an intraperitoneal 35 mg/kg streptozotocin (STZ) injection. Rats were divided into four groups: normal control rats, diabetic control rats, diabetic rats treated with SDG at 10 mg/kg/day for 4 weeks, and diabetic rats treated with SDG at 20 mg/kg/day for 4 weeks. At the end of the treatment, blood and renal tissue samples were collected for biochemical examination. The results revealed that SDG treatment significantly increased insulin level and decreased blood glucose, fructosamine, creatinine, and blood urea nitrogen levels in diabetic rats. Also, SDG significantly increased renal reduced glutathione, superoxide dismutase and decreased malondialdehyde and nitric oxide levels. In addition, SDG downregulated the renal nuclear factor kappa-B (NF-κB), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) and upregulated renal survivin and B-cell lymphoma-2 (Bcl-2) expressions when compared with untreated diabetic control rats. This study demonstrated, for the first time, the renoprotective effects of SDG in HFD/STZ-induced DN in rats through correction of hyperglycemia; attenuation of oxidative/nitrosative stress markers; downregulation of renal expressions of inflammatory markers NF-κB, TNF-α, and iNOS; along with upregulation of renal expressions of antiapoptotic markers survivin and Bcl-2.

  2. Cool-Water Immersion and High-Voltage Electric Stimulation Curb Edema Formation in Rats.

    PubMed

    Dolan, Michael G.; Mychaskiw, Anna M.; Mendel, Frank C.

    2003-09-01

    OBJECTIVE: Although cryotherapy and high-voltage electric stimulation, both alone and in combination, are commonly applied to curb acute edema, little evidence from randomized controlled studies supports these procedures. Our purpose was to examine the effects of cool-water immersion (CWI) at 12.8 degrees C (55 degrees F), cathodal high-voltage pulsed current (CHVPC) at 120 pulses per second and 90% of visible motor threshold, and the combination of CWI and CHVPC (CWI + CHVPC) on edema formation after impact injury to the hind limbs of rats. DESIGN AND SETTING: Both feet of 34 rats were traumatized after hind-limb volumes were determined. Animals were randomly assigned to 1 of 3 groups: CWI (n = 10), CHVPC (n = 10), or CWI + CHVPC (n = 14). One randomly selected hind limb of each rat was exposed to four 30-minute treatments, interspersed with four 30-minute rest periods beginning immediately after posttraumatic limb volumes were determined. Contralateral limbs served as controls. Limbs remained dependent during all treatments, rest periods, and volumetric measurements. SUBJECTS: We used 34 anesthetized Zucker Lean rats in this study. MEASUREMENTS: We measured limb volumes immediately before and after trauma and after each of 4 treatment and rest periods. RESULTS: Volumes of treated limbs of all 3 experimental groups were smaller (P <.05) than those of untreated limbs. No treatment was more effective than another. CONCLUSIONS: Cool-water immersion, cathodal high-voltage electric stimulation, and simultaneous application of these treatments were effective in curbing edema after blunt injury. Combining CWI and CHVPC was not more effective than either CWI or CHVPC alone.

  3. Differential hippocampal neuron density between inbred Roman high- (low anxious) and low-avoidance (high anxious) rats.

    PubMed

    Garcia-Falgueras, A; Castillo-Ruiz, M M; Put, T; Tobeña, A; Fernández-Teruel, A

    2012-07-26

    The inbred Roman low- (RLA-I) and high-avoidance (RHA-I) rats used in this study were initially selected and bred for extremely poor vs. rapid acquisition of active two-way avoidance behavior in the shuttle box. As a result of the selection for divergent avoidance acquisition, clear behavioral differences have been found between RHA and RLA rats in a variety of tasks related to anxiety and conflict. In rats of these two strains/lines previous brain studies have been performed, specifically in the striatum, the mesencephalic dopaminergic areas and the prefrontal cortex, as these brain areas are the classical ones for their critical role in sensitization and may play a role in the well-characterized anxiety response. In this study we analyzed, in RHA and RLA groups (N=5 each), the density of NeuN neurons counterstained with toluidine blue in the cingulate cortex (subdivision 1) and the hippocampus (CA1, CA2 and CA3). A statistical difference was found in the density of neurons of CA1 and CA2 (p=0.047 in both) and in the total density of the hippocampus (p=0.009). Contrary to our expectations, significant strain differences for the density of neurons in the cingulate cortex were not found. The relationship between those differences in the hippocampus and the between-strain differences in anxiety and in learning processes depending on anxiety are discussed. PMID:22698586

  4. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    PubMed

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. PMID:25766070

  5. High aggression in rats is associated with elevated stress, anxiety-like behavior, and altered catecholamine content in the brain.

    PubMed

    Patki, Gaurav; Atrooz, Fatin; Alkadhi, Isam; Solanki, Naimesh; Salim, Samina

    2015-01-01

    The social defeat paradigm involves aggressive encounters between Long-Evans (L-E) (resident) and Sprague-Dawley (S-D) (intruder) rats. Successful application of chronic social defeat stress in S-D rats is dependent upon selection of highly aggressive L-E rats. Half of the L-E rats screened for aggression did not meet the criterion for aggression (L-E rats performing a defeat, characterized by the intruder surrendering or acquiring a supine position for at least 3s). The observation of the differences in the level of aggression between age and weight matched L-E rats was quite compelling which led us to the present study. Herein, we measured behavioral differences between aggressor and non-aggressor L-E rats. We analyzed their anxiety-like behavior using open-field and elevated plus maze tests. We also measured aggression/violence-like behavior using two tests. In one, time taken to defeat the intruder S-D rat was recorded. In the second test, time taken to attack a novel object was compared between the two groups. We observed a significant increase in anxiety-like behavior in aggressor rats when compared to the non-aggressive group. Furthermore, time taken to defeat the intruder rat and to attack a novel object was significantly lower in aggressive L-E rats. Biochemical data suggests that heightened anxiety-like behavior and aggression is associated with increased plasma levels of corticosterones and elevated oxidative stress. Significant alterations in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) were observed within the hippocampus, amygdala, and the prefrontal cortex, suggesting potential involvement of dopaminergic and noradrenergic systems in regulation of aggressive behaviors.

  6. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    PubMed

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed.

  7. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    SciTech Connect

    Ni, Qian; Shao, Yuan; Wang, Ying Zhen; Jing, Yu Hong; Zhang, You Cheng

    2014-04-04

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  8. Anti-hyperlipidemic activity of spider brake (Pteris multifida) with rats fed a high cholesterol diet.

    PubMed

    Wang, Tzu-Ching; Lin, Chun-Ching; Lee, Hou-I; Yang, Clinton; Yang, Chi-Ching

    2010-02-01

    This study evaluates the possible potency of the anti-hyperlipidemic effect of spider brake [(Pteris multifida Poiret (Pteridaceae)]. We investigated this by feeding the hyperlipidemic Sprague-Dawley rats, caused by a high cholesterol diet, with lyophilized powder of spider brake (LSB) and compared the result with the rats fed with beta-sitosterol. The results indicated that the administration of lyophilized powder of spider brake (LSB) lowered the hyperlipidemic level on rats. The relative weights of the liver, adipose tissue, and relative adipose tissue of 10% substitutions of LSB group (LSB-10) showed a significant decrease (P < 0.05) by 6%, 15.9%, and 14.3% in contrast to the untreated counterparts (control), respectively. A significantly lower (P < 0.05) plasma TG, low density lipoprotein cholesterol, low density lipoprotein cholesterol/high density lipoprotein cholesterol ratio, liver CH, and TG contents were also observed in LSB-10 compared to the untreated counterparts (by 36.8%, 21%, 18.7%, 10.2% and 14.3% reduction, respectively). Simultaneously, the wet fecal weight, dry fecal weight, nitrogen compounds, excretion of neutral steroids, and bile acids significantly (P < 0.05) increased by 9.6%, 10.6%, 23.7%, 9.7%, and 3.4% respectively. The results showed that LSB could cause not only a reduction in CH and TG, but also could increase the excretion of lipids and metabolic by-products via the intestinal tract.

  9. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats

    PubMed Central

    Shi, Bin; Feng, Zhi-Qiang; Li, Wen-Bing; Zhang, Hong-Yi

    2015-01-01

    AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats. METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue. RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation. CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats. PMID:26074692

  10. Plant Proteins Differently Affect Body Fat Reduction in High-fat Fed Rats.

    PubMed

    Kim, Joohee; Lee, Hyo Jung; Kim, Ji Yeon; Kim, Mi Kyung; Kwon, Oran

    2012-09-01

    This study examined the effects of corn gluten (CG), wheat gluten (WG), and soybean protein isolate (SPI), as well as their hydrolysates, on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=70) were fed a high-fat diet (40% of the calories were fat) for 4 weeks. Rats were then randomly divided into seven groups and were fed isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate (CGH group), intact WG (WG group), WG hydrolysate (WGH group), intact SPI (SPI group), and SPI hydrolysate (SPIH group). Body weight gain, adipose tissue weights, lipid profiles in plasma and liver; and hepatic activities of carnitine palmitoyl transferase, fatty acid synthase (FAS), malic enzyme, and glucose-6-phosphate dehydrogenase were assessed. The CGH group showed significant weight reduction compared with the other groups. Epididymal fat pad and plasma triglycerides in the CGH group were the lowest and were significantly different than those in the control group. FAS activity in the CGH group was significantly lower than that in the other groups. In conclusion, the CGH diet of these experimental animals demonstrated a weight-reducing effect by lowering the adipose tissue weight and by affecting the activities of hepatic lipogenic enzymes.

  11. Patterns of Phrenic Nerve Discharge after Complete High Cervical Spinal Cord Injury in the Decerebrate Rat.

    PubMed

    Ghali, Michael George Zaki; Marchenko, Vitaliy

    2016-06-15

    Studies conducted since the second half of the 19th century have revealed spontaneous as well as pharmacologically induced phasic/rhythmic discharge in spinal respiratory motor outputs of cats, dogs, rabbits, and neonatal rats following high cervical transection (Tx). The extent to which these various studies validate the existence of a true spinal respiratory rhythm generator remains debated. In this set of studies, we seek to characterize patterns of spontaneous phasic/rhythmic, asphyxia-induced, and pharmacologically induced activity occurring in phrenic nerve (PhN) discharge after complete high cervical (C1-C2) spinal cord transection. Experiments were performed on 20 unanesthetized decerebrate Sprague-Dawley adult male rats. Patterns of spontaneous activity after spinalization included tonic, phasic, slow oscillatory, and long-lasting tonic discharges. Topical application of antagonists of GABAA and glycine receptors to C1- and C2- spinal segments induced left-right synchronized phasic decrementing activity in PhN discharge that was abolished by an additional C2Tx. Asphyxia elicited increases in tonic activity and left-right synchronized gasp-like bursts in PhN discharge, demonstrating the presence of spinal circuits that may underlie a spinal gasping-like mechanism. We conclude that intrinsic slow oscillators and a phasic burst/rhythm generator exist in the spinal cord of the adult rat. If present in humans, this mechanism may be exploited to recover respiratory function in patients sustaining severe spinal cord injury. PMID:26239508

  12. Sodium hydrosulfide alleviates pulmonary artery collagen remodeling in rats with high pulmonary blood flow.

    PubMed

    Li, Xiaohui; Du, Junbao; Jin, Hongfang; Geng, Bin; Tang, Chaoshu

    2008-11-01

    This study aimed to explore the effect of sodium hydrosulfide (NaHS) on pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Thirty-two Sprague-Dawley rats were randomly divided into a sham group, shunt group, sham + NaHS (an H2S donor) group, and shunt + NaHS group. After 11 weeks of shunting, mean pulmonary artery pressure (MPAP), relative median area (RMA) of pulmonary arteries, H2S concentration in lung tissues, plasma endothelin-1 (ET-1) levels, and ET-1 mRNA in lung tissues were investigated. Collagen I and collagen III were evaluated by immunohistochemistry. Hydroxyproline assay and Sirius-red staining were performed. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and connective tissue growth factor (CTGF) were evaluated by immunohistochemistry. After 11 weeks of shunting, rats showed a significant pulmonary hypertension and pulmonary artery collagen remodeling in association with a decrease in lung tissue H2S content. After NaHS treatment for 11 weeks, lung tissue H(2)S content was increased, whereas MPAP was attenuated and RMA was reduced. Meanwhile, pulmonary artery collagen I and collagen III protein expressions of intra-acinar pulmonary arteries were inhibited, but MMP-13/TIMP-1 ratio was augmented with a decreased plasma ET-1 content and lung tissue ET-1mRNA and CTGF expressions. The downregulation of H(2)S is involved in the development of pulmonary artery collagen remodeling induced by high pulmonary blood flow.

  13. Hypolipidemic effects of HVC1 in a high cholesterol diet-induced rat model of hyperlipidemia

    PubMed Central

    Kim, Chae-Yun; Chung, Kyung-Sook; Cheon, Se-Yun; Lee, Kyungjin; Ham, Inhye; Choi, Ho-Young; Cho, Yong Baik; Cho, Byoung-Heon; Mok, So Youn; An, Hyo-Jin

    2016-01-01

    HVC1, a novel formation containing four herbs, was developed and its hypolipidemic effects in rats with high cholesterol diet (HCD)-induced hyperlipidemia were investigated. The rats were given a HCD for 8 weeks. The HVC1-treated groups were orally administered HVC1 at doses of 10, 50 or 250 mg/kg, respectively, and the simvastatin group was treated at a dose of 10 mg/kg. The normal diet and HCD control groups were administered with physiological saline. Oral administration of HVC1 (10, 50 or 250 mg/kg) significantly reduced the body weight of rats with hyperlipidemia and regulated the total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol levels in the serum. In addition, tissue analysis revealed that lipid accumulation in the liver and aorta was reduced by HVC1 administration. Furthermore, HVC1 significantly reduced the mRNA expression of peroxisome proliferator-activated receptor-γ, 3-hydroxy-3-methylglutaryl-CoA reductase and low-density lipoprotein receptor, as well as the protein level of 5′ adenosine monophosphate-activated protein kinase in the liver. The results clearly demonstrate that HVC1 has a potent hypolipidemic effect, and suggest that HVC1 should be evaluated as a potential treatment for hyperlipidemia. PMID:27510839

  14. Curcumin Attenuates Oxidative Stress and Activation of Redox-Sensitive Kinases in High Fructose- and High-Fat-Fed Male Wistar Rats.

    PubMed

    Maithili Karpaga Selvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2015-01-01

    The present study was carried out to investigate the effects of curcumin on oxidative stress and redox-sensitive kinases in high fructose- and high-fat-fed rats. Sixty rats were randomly divided into six groups with ten animals each. Rats were fed with a standard rodent diet, high fructose diet (60%), and high-fat diet (30%). Curcumin was administered to control, high fructose and high fat diet groups for ten weeks. At the end of the study, body weight and blood glucose levels were measured. The antioxidant enzymes GSH (reduced glutathione), GPx (glutathione peroxidase), and catalase activities were estimated in the blood. MDA, TAS, and TOS were estimated in the plasma, liver, and kidney. Curcumin treatment decreased body weight and blood glucose levels in the rats fed with fructose and high-fat diet. Antioxidant enzymes and plasma TAS were significantly improved by curcumin treatment in high fructose-fed rats, whereas in high-fat-fed rats, there was an increase only in the GPx activity. Curcumin significantly attenuated the elevation of plasma MDA and TOS in both diet groups. Hepatic MDA and TOS were found to be decreased upon curcumin supplementation in both diet groups, whereas a decrease in the renal MDA levels was observed only in fructose-treated rats, not in fat-fed rats. Curcumin treatment elevated liver TAS in rats fed only with the fructose-rich diet. Curcumin showed a significant decrease in the oxidative stress index (OSI) in plasma, liver, and kidney tissues in both diet groups. ERK phosphorylation was significantly decreased in both diet groups by curcumin treatment. Similarly, curcumin reduced the phosphorylation of p38 MAPK only in the high fructose-fed rats, not in the high-fat-fed rats. No significant changes were found in JNK phosphorylation in both diet groups. Thus, curcumin may be effective in the management of diet-induced oxidative stress and could be explored as a therapeutic adjuvant against complications associated with obesity and

  15. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats.

    PubMed

    Allam, Farida; Dao, An T; Chugh, Gaurav; Bohat, Ritu; Jafri, Faizan; Patki, Gaurav; Mowrey, Christopher; Asghar, Mohammad; Alkadhi, Karim A; Salim, Samina

    2013-06-01

    We examined whether or not grape powder treatment ameliorates oxidative stress-induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using L-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder-treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder-treated (GP+BSO; injected with BSO and provided with grape powder-treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P < 0.05). Grape powder attenuated BSO-induced anxiety-like behavior in GP+BSO rats. BSO rats made significantly more errors in both short- and long-term memory tests compared with C or GP rats (P < 0.05), which was prevented in GP+BSO rats. Systolic and diastolic blood pressure was significantly greater in BSO rats compared with C or GP rats (P < 0.05), whereas grape powder prevented high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P < 0.05), whereas levels of glyoxalase-1 (GLO-1), glutathione reductase-1 (GSR-1), calcium/calmodulin-dependent protein kinase type IV (CAMK-IV), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) were significantly less (P < 0.05) in BSO but not in GP+BSO rats compared with C or GP rats. We suggest that by regulating brain ERK-1/2, GLO-1, GSR-1, CAMK-IV, CREB, and BDNF levels, grape powder prevents oxidative stress-induced anxiety, memory impairment, and hypertension in rats. PMID:23596160

  16. High fat diet and body weight have different effects on cannabinoid CB1 receptor expression in rat nodose ganglia

    PubMed Central

    Cluny, N.L.; Baraboi, E.D.; Mackie, K; Burdyga, G.; Richard, D.; Dockray, G.J.; Sharkey, K.A.

    2013-01-01

    Energy balance is regulated, in part, by orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB)1 receptor expression in the nodose ganglia in obesity has been reported. Whether altered body weight or a high fat diet modifies independent or additive changes in CB1 expression is unknown. We investigated the expression of CB1 and orexin 1 receptor (OX-1R) in nodose ganglia of rats fed ad libitum or food deprived (24h), maintained on low or high fat diets (HFD), with differing body weights. Male Wistar rats were fed chow or HFD (diet-induced obese: DIO or diet-resistant: DR) or were body weight matched to the DR group but fed chow (wmDR). CB1 and OX-1R immunoreactivity were investigated and CB1 mRNA density was determined using in situ hybridization. CB1 immunoreactivity was measured in fasted rats after sulfated cholecystokinin octapeptide (CCK8s) administration. In chow rats, fasting did not modify the level of CB1 mRNA. More CB1 immunoreactive cells were measured in fed DIO, DR and wmDR rats than chow rats; levels increased after fasting in chow and wmDR rats but not in DIO or DR rats. In HFD fasted rats CCK8s did not reduce CB1 immunoreactivity. OX-1R immunoreactivity was modified by fasting only in DR rats. These data suggest that body weight contributes to the proportion of neurons expressing CB1 immunoreactivity in the nodose ganglion, while HFD blunts fasting-induced increases, and CCK-induced suppression of, CB1-immunoreactivity. PMID:24145047

  17. Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity

    PubMed Central

    Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D.; Padilla, Jaume; Scroggins, Rebecca J.; Welly, Rebecca; Britton, Steven L.; Koch, Lauren G.; Vieira-Potter, Victoria J.; Swanson, Kelly S.

    2015-01-01

    The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts

  18. Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity.

    PubMed

    Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D; Padilla, Jaume; Scroggins, Rebecca J; Welly, Rebecca; Britton, Steven L; Koch, Lauren G; Vieira-Potter, Victoria J; Swanson, Kelly S

    2015-01-01

    The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27 wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11 wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts

  19. Differential body weight and feeding responses to high-fat diets in rats and mice lacking cholecystokinin 1 receptors.

    PubMed

    Bi, Sheng; Chen, Jie; Behles, R Ryan; Hyun, Jayson; Kopin, Alan S; Moran, Timothy H

    2007-07-01

    Prior data demonstrated differential roles for cholecystokinin (CCK)1 receptors in maintaining energy balance in rats and mice. CCK1 receptor deficiency results in hyperphagia and obesity of Otsuka Long-Evans Tokushima Fatty (OLETF) rats but not in mice. To ascertain the role of CCK1 receptors in high-fat-diet (HFD)-induced obesity, we compared alterations in food intake, body weight, fat mass, plasma glucose, and leptin levels, and patterns of hypothalamic gene expression in OLETF rats and mice lacking CCK1 receptors in response to a 10-wk exposure to HFD. Compared with Long-Evans Tokushima Otsuka (LETO) control rats, OLETF rats on HFD had sustained overconsumption over the 10-wk period. High fat feeding resulted in greater increases in body weight and plasma leptin levels in OLETF than in LETO rats. In situ hybridization determinations revealed that, while HFD reduced neuropeptide Y (NPY) mRNA expression in both the arcuate nucleus (Arc) and the dorsomedial hypothalamus (DMH) of LETO rats, HFD resulted in decreased NPY expression in the Arc but not in the DMH of OLETF rats. In contrast to these results in OLETF rats, HFD increased food intake and induced obesity to an equal degree in both wild-type and CCK1 receptor(-/-) mice. NPY gene expression was decreased in the Arc in response to HFD, but was not detectable in the DMH in both wild-type and CCK1 receptor(-/-) mice. Together, these data provide further evidence for differential roles of CCK1 receptors in the controls of food intake and body weight in rats and mice.

  20. High fat diet exacerbates vascular endothelial dysfunction in rats exposed to continuous hypobaric hypoxia.

    PubMed

    Zhao, Yan-Xia; Tang, Feng; Ga, Qin; Wuren, Tana; Wang, Ya-Ping; Rondina, Matthew T; Ge, Ri-Li

    2015-02-13

    Independently, a high fat diet and hypoxia are associated with vascular endothelial dysfunction (VED) and often occur concurrently in patients. Nevertheless, the effects of a high fat diet on vascular endothelial function combined with hypoxia, a situation occurring with increasing frequency in many parts of the world, remain largely unknown. We investigated the effects of a high fat diet on vascular endothelial function in rats exposed to continuous hypoxia for 4 weeks. Seventy two male Sprague-Dawley rats were randomly divided into 3 groups: a hypoxia group fed regular chow, a combined hypoxia and high fat diet (HFD) group, and for comparison, rats maintained in normoxia, regular chow conditions were set as baseline (BL) group. The experimental data of BL group were obtained at beginning of hypoxia given in the other groups. Continuous hypoxia was induced in a hypobaric chamber maintained at an altitude of 5000 m. Compared to hypoxic conditions alone, hypoxia plus a HFD prevented adaptive changes in plasma nitric oxide (NOx) levels and caused earlier and more severe changes in aortic endothelial structures. Functionally, hypoxia plus a HFD resulted in impaired endothelium-dependent vasorelaxation responses to acetylcholine and altered the bioavailability of the nitric oxide synthase (NOS) substrate L-Arginine. At the molecular level, hypoxia plus a HFD blunted increases in endothelial NOS (eNOS) mRNA and protein in aortic endothelial tissue. Taken together, our findings demonstrate that in the setting of hypoxia, a high fat diet leads to earlier and more severe VED than hypoxia alone. These data have important implications for populations residing at high-altitude, as dietary patterns shift towards increased fat intake. PMID:25603049

  1. Apoptosis induced by a low-carbohydrate and high-protein diet in rat livers

    PubMed Central

    Monteiro, Maria Emília L; Xavier, Analucia R; Oliveira, Felipe L; Filho, Porphirio JS; Azeredo, Vilma B

    2016-01-01

    AIM: To determine whether high-protein, high-fat, and low-carbohydrate diets can cause lesions in rat livers. METHODS: We randomly divided 20 female Wistar rats into a control diet group and an experimental diet group. Animals in the control group received an AIN-93M diet, and animals in the experimental group received an Atkins-based diet (59.46% protein, 31.77% fat, and 8.77% carbohydrate). After 8 wk, the rats were anesthetized and exsanguinated for transaminases analysis, and their livers were removed for flow cytometry, immunohistochemistry, and light microscopy studies. We expressed the data as mean ± standard deviation (SD) assuming unpaired and parametric data; we analyzed differences using the Student’s t-test. Statistical significance was set at P < 0.05. RESULTS: We found that plasma alanine aminotransferase and aspartate aminotransferase levels were significantly higher in the experimental group than in the control group. According to flow cytometry, the percentages of nonviable cells were 11.67% ± 1.12% for early apoptosis, 12.07% ± 1.11% for late apoptosis, and 7.11% ± 0.44% for non-apoptotic death in the experimental diet group and 3.73% ± 0.50% for early apoptosis, 5.67% ± 0.72% for late apoptosis, and 3.82% ± 0.28% for non-apoptotic death in the control diet group. The mean percentage of early apoptosis was higher in the experimental diet group than in the control diet group. Immunohistochemistry for autophagy was negative in both groups. Sinusoidal dilation around the central vein and small hepatocytes was only observed in the experimental diet group, and fibrosis was not identified by hematoxylin-eosin or Trichrome Masson staining in either group. CONCLUSION: Eight weeks of an experimental diet resulted in cellular and histopathological lesions in rat livers. Apoptosis was our principal finding; elevated plasma transaminases demonstrate hepatic lesions. PMID:27298559

  2. [Fundamental study on effect of high-mineral drinking water for osteogenesis in calciprivia ovariectomized rats].

    PubMed

    Ogata, Fumihiko; Nagai, Noriaki; Ito, Yoshimasa; Kawasaki, Naohito

    2014-01-01

    Since osteoporosis is a major public health problem in Japan, it is important to clarify the effect of high-mineral drinking water consumption on osteogenesis. Therefore, in this study, we investigated the relationship between high-mineral drinking water consumption and osteogenesis in ovariectomized rats that received a low-calcium diet and purified water (PW group) or a low-calcium diet and high-mineral drinking water (CR group). High-mineral drinking water affected the rats' body weight. After 3 months, the bone density of the CR group was higher than that of the PW group (p<0.05). Furthermore, the CR group showed a decrease in the amount of calcium in the bones after 3 months. These results suggest that high-mineral drinking water contributes to the maintenance of bone density and not to the amount of calcium in bone. On the other hand, serum alkaline phosphatase levels in the PW group at 3 months were higher than those in the CR group, which indicates that the blood concentration of calcium in the CR group was maintained. Moreover, the amount of magnesium in the bones and the blood concentration of magnesium in the CR group after 3 months were higher than the corresponding values in the PW group. These results suggest that consumption of high-mineral drinking water could be beneficial for osteogenesis (i.e., for maintaining bone quantity).

  3. Effect of nicotine on antioxidant defence mechanisms in rats fed a high-fat diet.

    PubMed

    Ashakumary, L; Vijayammal, P L

    1996-03-01

    Nicotine, a major component of cigarette smoke, plays an important role in the development of cardiovascular disease and lung cancer in smokers. Lipid peroxidation is a process associated with the pathogenesis of atherosclerosis and the level of lipid peroxides is increased in smokers. In rats fed a high-fat diet, the tissue concentration of lipid peroxides was found to be increased. On nicotine administration along with a high-fat diet an additive effect was observed in lipid peroxidation and free radical scavengers. The activities of scavenging enzymes superoxide dismutase, catalase and glutathione reductase were found to be decreased, while the glutathione concentration and activity of glutathione peroxidase were enhanced. PMID:8849484

  4. High-phosphorus diet maximizes and low-dose calcitriol attenuates skeletal muscle changes in long-term uremic rats.

    PubMed

    Acevedo, Luz M; López, Ignacio; Peralta-Ramírez, Alan; Pineda, Carmen; Chamizo, Verónica E; Rodríguez, Mariano; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2016-05-01

    Although disorders of mineral metabolism and skeletal muscle are common in chronic kidney disease (CKD), their potential relationship remains unexplored. Elevations in plasma phosphate, parathyroid hormone, and fibroblastic growth factor 23 together with decreased calcitriol levels are common features of CKD. High-phosphate intake is a major contributor to progression of CKD. This study was primarily aimed to determine the influence of high-phosphate intake on muscle and to investigate whether calcitriol supplementation counteracts negative skeletal muscle changes associated with long-term uremia. Proportions and metabolic and morphological features of myosin-based muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of uremic rats (5/6 nephrectomy, Nx) and compared with sham-operated (So) controls. Three groups of Nx rats received either a standard diet (0.6% phosphorus, Nx-Sd), or a high-phosphorus diet (0.9% phosphorus, Nx-Pho), or a high-phosphorus diet plus calcitriol (10 ng/kg 3 day/wk ip, Nx-Pho + Cal) for 12 wk. Two groups of So rats received either a standard diet or a high-phosphorus diet (So-Pho) over the same period. A multivariate analysis encompassing all fiber-type characteristics indicated that Nx-Pho + Cal rats displayed skeletal muscle phenotypes intermediate between Nx-Pho and So-Pho rats and that uremia-induced skeletal muscle changes were of greater magnitude in Nx-Pho than in Nx-Sd rats. In uremic rats, treatment with calcitriol preserved fiber-type composition, cross-sectional size, myonuclear domain size, oxidative capacity, and capillarity of muscle fibers. These data demonstrate that a high-phosphorus diet potentiates and low-dose calcitriol attenuates adverse skeletal muscle changes in long-term uremic rats.

  5. High-phosphorus diet maximizes and low-dose calcitriol attenuates skeletal muscle changes in long-term uremic rats.

    PubMed

    Acevedo, Luz M; López, Ignacio; Peralta-Ramírez, Alan; Pineda, Carmen; Chamizo, Verónica E; Rodríguez, Mariano; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2016-05-01

    Although disorders of mineral metabolism and skeletal muscle are common in chronic kidney disease (CKD), their potential relationship remains unexplored. Elevations in plasma phosphate, parathyroid hormone, and fibroblastic growth factor 23 together with decreased calcitriol levels are common features of CKD. High-phosphate intake is a major contributor to progression of CKD. This study was primarily aimed to determine the influence of high-phosphate intake on muscle and to investigate whether calcitriol supplementation counteracts negative skeletal muscle changes associated with long-term uremia. Proportions and metabolic and morphological features of myosin-based muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of uremic rats (5/6 nephrectomy, Nx) and compared with sham-operated (So) controls. Three groups of Nx rats received either a standard diet (0.6% phosphorus, Nx-Sd), or a high-phosphorus diet (0.9% phosphorus, Nx-Pho), or a high-phosphorus diet plus calcitriol (10 ng/kg 3 day/wk ip, Nx-Pho + Cal) for 12 wk. Two groups of So rats received either a standard diet or a high-phosphorus diet (So-Pho) over the same period. A multivariate analysis encompassing all fiber-type characteristics indicated that Nx-Pho + Cal rats displayed skeletal muscle phenotypes intermediate between Nx-Pho and So-Pho rats and that uremia-induced skeletal muscle changes were of greater magnitude in Nx-Pho than in Nx-Sd rats. In uremic rats, treatment with calcitriol preserved fiber-type composition, cross-sectional size, myonuclear domain size, oxidative capacity, and capillarity of muscle fibers. These data demonstrate that a high-phosphorus diet potentiates and low-dose calcitriol attenuates adverse skeletal muscle changes in long-term uremic rats. PMID:26869708

  6. Rats Prone to Obesity Under a High-Carbohydrate Diet have Increased Post-Meal CCK mRNA Expression and Characteristics of Rats Fed a High-Glycemic Index Diet

    PubMed Central

    Chaumontet, Catherine; Azzout-Marniche, Dalila; Blais, Anne; Chalvon-Dermersay, Tristan; Nadkarni, Nachiket A.; Piedcoq, Julien; Fromentin, Gilles; Tomé, Daniel; Even, Patrick C.

    2015-01-01

    We previously reported that rats prone to obesity exhibit an exaggerated increase in glucose oxidation and an exaggerated decline in lipid oxidation under a low-fat high-carbohydrate (LF/HC) diet. The aim of the present study was to investigate the mechanisms involved in these metabolic dysregulations. After a 1-week adaptation to laboratory conditions, 48 male Wistar rats were fed a LF/HC diet for 3 weeks. During weeks 2 and 3, glucose tolerance tests (GTT), insulin tolerance tests (ITT), and meal tolerance tests (MTT) were performed to evaluate blood glucose, plasma, and insulin. Glucose and lipid oxidation were also assayed during the GTT. At the end of the study, body composition was measured in all the rats, and they were classified as carbohydrate resistant (CR) or carbohydrate sensitive (CS) according to their adiposity. Before sacrifice, 24 of the 48 rats received a calibrated LF/HC meal. Liver, muscle, and intestine tissue samples were taken to measure mRNA expression of key genes involved in glucose, lipid, and protein metabolism. ITT, GTT, and MTT showed that CS rats were neither insulin resistant nor glucose intolerant, but mRNA expression of cholecystokinin (CCK) in the duodenum was higher and that of CPT1, PPARα, and PGC1α in liver were lower than in CR rats. From these results, we make the hypothesis that in CS rats, CCK increased pancreatic secretion, which may favor a quicker absorption of carbohydrates and consequently induces an enhanced inhibition of lipid oxidation in the liver, leading to a progressive accumulation of fat preferentially in visceral deposits. Such a mechanism may explain why CS rats share many characteristics observed in rats fed a high-glycemic index diet. PMID:26217667

  7. Ameliorating effect of Allium Sativum on high-fat diet induced fatty liver in albino rats

    PubMed Central

    Qamar, Aisha; Usmani, Ambreen; Waqar, Humera; Siddiqui, Asma; Kumar, Hemant

    2016-01-01

    Objective: To assess the hepatoprotective effect provided by fresh garlic on fatty liver induced by high-fat diet. Methods: This experimental study was carried out at BMSI, JPMC from October to November 2008. Thirty adult albino rats, 200-240 gram weight, were divided into three groups. Group A received control diet, Group B received high-fat diet (20 mg butter/100 gm diet) and Group C received high-fat diet with fresh garlic (20 mg butter with 6 gm fresh garlic/100 gm diet). The groups were further divided on the basis of duration of treatment, four weeks and eight weeks respectively. The rats were sacrificed, liver removed, weighed and relative liver weight calculated. Hepatic tissue was processed and tissue slides stained with haematoxylin and eosin. Results: There was significant increase in relative liver weight in group B animals as compared to the control animals, which decreased significantly in group C. Haematoxylin and eosin stained sections revealed ballooned hepatocytes having vesicular appearance with pyknotic nuclei in high-fat group which were preserved to a great extent in group C animals. Conclusion: This study has shown that use of fresh garlic along with high-fat diet prevents its damaging effects on liver to a great extent. PMID:27182249

  8. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats.

    PubMed

    Cox-York, Kimberly A; Sheflin, Amy M; Foster, Michelle T; Gentile, Christopher L; Kahl, Amber; Koch, Lauren G; Britton, Steven L; Weir, Tiffany L

    2015-08-01

    The increased risk for cardiometabolic disease with the onset of menopause is widely studied and likely precipitated by the decline in endogenous estradiol (E2), yet the precise mechanisms are unknown. The gut microbiome is involved in estrogen metabolism and has been linked to metabolic disease, suggesting its potential involvement in the postmenopausal phenotype. Furthermore, menopause-associated risk factors, as well as gut ecology, are altered with exercise. Therefore, we studied microbial changes in an ovariectomized (OVX vs. Sham) rat model of high (HCR) and low (LCR) intrinsic aerobic capacity (n = 8-10/group) in relation to changes in body weight/composition, glucose tolerance, and liver triglycerides (TG). Nine weeks after OVX, HCR rats were moderately protected against regional adipose tissue gain and liver TG accumulation (P < 0.05 for both). Microbial diversity and number of the Bacteroidetes phylum were significantly increased in LCR with OVX, but unchanged in HCR OVX relative to Sham. Plasma short-chain fatty acids (SCFA), produced by bacteria in the gut and recognized as metabolic signaling molecules, were significantly greater in HCR Sham relative to LCR Sham rats (P = 0.05) and were decreased with OVX in both groups. These results suggest that increased aerobic capacity may be protective against menopause-associated cardiometabolic risk and that gut ecology, and production of signaling molecules such as SCFA, may contribute to the mediation. PMID:26265751

  9. Anesthetic and pathological changes following high doses of ketamine and xylazine in Sprague Dawley rats

    PubMed Central

    GIROUX, Marie-Chantal; HÉLIE, Pierre; BURNS, Patrick; VACHON, Pascal

    2015-01-01

    The main objective of this study was to compare the effects of ketamine and xylazine in aging rats when coadministered intraperitoneally at high anesthetic doses. Three groups (n=6 rats/group) consisting of rats at 3, 6 and 12 months of age were used. During anesthesia, animals were monitored for heart rate, respiratory frequency, blood oxygen saturation, and rectal temperature. The corneal and paw withdrawal reflex were also examined during anesthesia. During anesthesia, withdrawal and corneal reflexes were absent for progressively longer durations with increasing age. Significant decreases in cardiac and respiratory frequency and, blood oxygen saturation occurred for the 6- and 12-month-old animals. Respiratory frequency and blood oxygen saturation returned to normal at the end of the anesthesia; however, the significant decrease in cardiac frequency persisted in the 6- and 12-month-old animals. Rectal temperature was decreased significantly only in the 3-month-old animals. Pulmonary edema and effusion occurred in 50% of the 12-month-old animals. In conclusion, if ketamine-xylazine are used for anesthesia, the doses should be optimized for the age of the subjects prior to initiation of the research project. PMID:25818316

  10. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  11. Blackcurrant Suppresses Metabolic Syndrome Induced by High-Fructose Diet in Rats

    PubMed Central

    Park, Ji Hun; Kho, Min Chul; Kim, Hye Yoom; Ahn, You Mee; Lee, Yun Jung; Kang, Dae Gill; Lee, Ho Sub

    2015-01-01

    Increased fructose ingestion has been linked to obesity, hyperglycemia, dyslipidemia, and hypertension associated with metabolic syndrome. Blackcurrant (Ribes nigrum; BC) is a horticultural crop in Europe. To induce metabolic syndrome, Sprague-Dawley rats were fed 60% high-fructose diet. Treatment with BC (100 or 300 mg/kg/day for 8 weeks) significantly suppressed increased liver weight, epididymal fat weight, C-reactive protein (CRP), total bilirubin, leptin, and insulin in rats with induced metabolic syndrome. BC markedly prevented increased adipocyte size and hepatic triglyceride accumulation in rats with induced metabolic syndrome. BC suppressed oral glucose tolerance and protein expression of insulin receptor substrate-1 (IRS-1) and phosphorylated AMP-activated protein kinase (p-AMPK) in muscle. BC significantly suppressed plasma total cholesterol, triglyceride, and LDL content. BC suppressed endothelial dysfunction by inducing downregulation of endothelin-1 and adhesion molecules in the aorta. Vascular relaxation of thoracic aortic rings by sodium nitroprusside and acetylcholine was improved by BC. The present study provides evidence of the potential protective effect of BC against metabolic syndrome by demonstrating improvements in dyslipidemia, hypertension, insulin resistance, and obesity in vivo. PMID:26504474

  12. Developing high-frequency ultrasound tomography for testicular tumor imaging in rats: An in vitro study

    SciTech Connect

    Huang, Chih-Chung; Chen, Wei-Tsen

    2014-01-15

    Purpose: This paper describes a feasibility study for developing a 35-MHz high-frequency ultrasound computed-tomography (HFUCT) system for imaging rat testicles. Methods: The performances of two kinds of HFUCT-attenuation and sound-speed UCT-based on transmission and pulse-echo modes were investigated in this study. Experiments were carried out using phantoms and actual rat testiclesin vitro. HFUCT images were reconstructed using a filtered backprojection algorithm. Results: The phantom experimental results indicated that all types of HFUCT can determine the dimensions of a plastic cylinder with a diameter of 500μm. Compared to sound-speed HFUCT, attenuation HFUCT exhibited a better performance in recognizing a tiny sclerosed region in a gelatin phantom. Therefore, the in vitro testicular experiments were performed using attenuation HFUCT based on transmission and pulse-echo modes. The experimentally measured attenuation coefficient and sound speed for healthy rat testicles were 2.92 ± 0.25 dB/mm and 1537 ± 25 m/s, respectively. Conclusions: A homogeneous texture was evident for healthy testicles using both modes. An artificial sclerosed tumor could also be clearly observed using two- and three-dimensional attenuation HFUCT in both modes. However, an object artifact was apparent in pulse-echo mode because of ultrasound beam refraction. All of the obtained experimental results indicate the potential of using HFUCT as a novel tool for monitoring the preclinical responses of testicular tumors in small animals.

  13. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  14. Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets.

    PubMed

    Zhang, Jiali; Liu, Jingna; Li, Ling; Xia, Wenshui

    2008-06-01

    The hypolipidemic mechanism of chitosan was investigated in male Sprague-Dawley rats. Animals were divided into 5 groups (n = 8): a normal fat control group, a high-fat control group (HF), a positive control group (CR), and 2 chitosan groups (CIS1 and CIS2). Chitosan was fed at the beginning (CIS1) and after 2 weeks (CIS2). A commercial diet with 5% (wt/wt) cellulose (HF), cholestyramine (CR), or chitosan (CIS1, CIS2) was fed for 6 weeks. Chitosan did not affect food intake but decreased body weight gain and significantly increased fecal fat and cholesterol excretion, reduced the lipid level in plasma and liver, increased liver hepatic and lipoprotein lipase activities compared with HF (P < .05), and tended to relieve the degenerated fatty liver tissue. No significant differences in all measurements were found between the CIS1 and CIS2 groups although the CIS1 rats exhibited lower lipid levels compared to those in the CIS2 group. The results suggest that chitosan reduced the absorption of dietary fat and cholesterol in vivo and could effectively improve hypercholesterolemia in rats.

  15. Taste preferences in rat lines selected for low and high alcohol consumption.

    PubMed

    Sinclair, J D; Kampov-Polevoy, A; Stewart, R; Li, T K

    1992-01-01

    Alcohol-avoiding (ANA), alcohol-preferring (AA), and control Wistar rats were tested sequentially for their initial preferences for single concentration solutions of quinine, saccharin, salt, and citric acid, and then for an ascending series of saccharin concentrations. A similar study was subsequently conducted with the alcohol-nonpreferring (NP) and alcohol-preferring (P) rat lines. Both lines developed for low alcohol consumption drank much less saccharin than their respective lines developed for high alcohol intake when tested with the single concentration and with the ascending series. The ANAs also generally drank less of the bitter, salty, and sour solutions than the AAs or Wistars but little difference was found between the NPs and Ps with the other tastes. The curve relating saccharin consumption to concentration reached a maximum at about the same concentrations for AAs, Wistars, NPs, and Ps but for the ANAs, was shifted to the left. The results support a close relationship between the genetic factors influencing alcohol and saccharin intake in both line pairs. This relationship is probably not caused by saccharin tasting like alcohol to a rat, because other results indicate that the NPs do not have more negative reactions initially to the taste of alcohol, but it might be related to similar mechanisms mediating the reinforcement from sweet tastes and from systemic alcohol. PMID:1599627

  16. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats

    PubMed Central

    Cox-York, Kimberly A; Sheflin, Amy M; Foster, Michelle T; Gentile, Christopher L; Kahl, Amber; Koch, Lauren G; Britton, Steven L; Weir, Tiffany L

    2015-01-01

    The increased risk for cardiometabolic disease with the onset of menopause is widely studied and likely precipitated by the decline in endogenous estradiol (E2), yet the precise mechanisms are unknown. The gut microbiome is involved in estrogen metabolism and has been linked to metabolic disease, suggesting its potential involvement in the postmenopausal phenotype. Furthermore, menopause-associated risk factors, as well as gut ecology, are altered with exercise. Therefore, we studied microbial changes in an ovariectomized (OVX vs. Sham) rat model of high (HCR) and low (LCR) intrinsic aerobic capacity (n = 8–10/group) in relation to changes in body weight/composition, glucose tolerance, and liver triglycerides (TG). Nine weeks after OVX, HCR rats were moderately protected against regional adipose tissue gain and liver TG accumulation (P < 0.05 for both). Microbial diversity and number of the Bacteroidetes phylum were significantly increased in LCR with OVX, but unchanged in HCR OVX relative to Sham. Plasma short-chain fatty acids (SCFA), produced by bacteria in the gut and recognized as metabolic signaling molecules, were significantly greater in HCR Sham relative to LCR Sham rats (P = 0.05) and were decreased with OVX in both groups. These results suggest that increased aerobic capacity may be protective against menopause-associated cardiometabolic risk and that gut ecology, and production of signaling molecules such as SCFA, may contribute to the mediation. PMID:26265751

  17. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats

    PubMed Central

    Tang, Jianbo; Xi, Lei; Zhou, Junli; Huang, Hua; Zhang, Tao; Carney, Paul R; Jiang, Huabei

    2015-01-01

    We present a noninvasive method of photoacoustic tomography (PAT) for imaging cerebral hemodynamics in awake-moving rats. The wearable PAT (wPAT) system has a size of 15 mm in height and 33 mm in diameter, and a weight of ~8 g (excluding cabling). The wPAT achieved an imaging rate of 3.33 frames/s with a lateral resolution of 243 μm. Animal experiments were designed to show wPAT feasibility for imaging cerebral hemodynamics on awake-moving animals. Results showed that the cerebral oxy-hemoglobin and deoxy-hemoglobin changed significantly in response to hyperoxia; and, after the injection of pentylenetetrazol (PTZ), cerebral blood volume changed faster over time and larger in amplitude for rats in awake-moving state compared with rats under anesthesia. By providing a light-weight, high-resolution technology for in vivo monitoring of cerebral hemodynamics in awake-behaving animals, it will be possible to develop a comprehensive understanding on how activity alters hemodynamics in normal and diseased states. PMID:26082016

  18. ATP metabolism in rat liver chronically treated with ethanol and high fat

    SciTech Connect

    Miyamoto, K.; French, S.W.

    1986-03-01

    Five pairs of Wistar male rats weighing about 350 g were continuously infused with a liquid diet in which 25-35% of total calories was derived from fat, plus ethanol or isocaloric dextrose through gastrostomy cannulas for 3 wks to 3.5 mos. Mean ethanol intake was 12.9 +/- 0.7 g/kg B.W. (55% of total calories). High blood alcohol levels (BAL, 342 +/- 151 mg/dl) were maintained. The liver showed severe steatosis (4+) in all the ethanol-fed rats (ER). Two had mild focal mononuclear cell infiltration, one had mild fibrosis and one had spotty necrosis. Mild steatosis (1+) was seen in 4 out of 5 pair-fed control rats (CR). Serum ALT was significantly higher in ER (129 +/- 44 U) compared with Cr (59 +/- 30 U) or rats fed chow ad lib (NR) (48 +/- 26 U). Biopsied liver tissue was used to measure the concentration of adenine nucleotides by HPLC (6 pairs). There was a significant decrease of ATP in ER (1.7 +/- 0.3 ..mu..mol/g liver) as compared to CR (2.5 +/- 0.5 ..mu..mol/g) or NR (2.8 +/- 0.2 ..mu..mol/g, n = 6). There was no significant change in the ADP or AMP content, however. The total adenylate pool of the liver was also significantly reduced in ER when compared to that of CR or NR (3.2 +/- 0.4, 4.0 +/- 0.5 and 4.3 +/- 0.2 ..mu..mol/g liver, respectively). Adeynlate energy charge (E.C.) of the ER livers (0.71 +/- 0.05) was significantly reduced compared to NR (0.77 +/- 0.02) but not with CR (0.75 +/- 0.06). The results indicate that ethanol decreases the level of ATP as well as the biological mechanism to compensate for the lowered level.

  19. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    PubMed

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. PMID:23872130

  20. Gossypol ameliorates liver fibrosis in diabetic rats induced by high-fat diet and streptozocin.

    PubMed

    Chen, Guorong; Wang, Rongrong; Chen, Hanbin; Wu, Liang; Ge, Ren-Shan; Wang, Yili

    2016-03-15

    11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitors have been shown to treat type 2 diabetes (T2D). Since gossypol is an 11β-HSD1 inhibitor, the objective of the present study was to treat T2D and T2D-related liver fibrosis in rat model using low-dose gossypol. T2D was induced by feeding with high fat diet plus injection of streptozocin (30mg/kg). Diabetic rats were treated with either vehicle control or racemic gossypol with a dose of 15mg/kg/day for 4weeks followed by 15mg/kg/week for additional 8weeks. Blood glucose, cholesterol, LDL, and triglycerides were measured. Messenger mRNA levels of glucocorticoid receptor (Nr3c1), phosphoenolpyruvate carboxykinase (Pck1), glucose-6-phosphatase (G6pc), collagen I (Col1a1), collagen III (Col3a1), fibronectin (Fn1), tissue inhibitor of metalloproteinase 1 (Timp1), and 2 (Timp2) were measured. T2D rats had higher serum glucose, cholesterol, LDL, and triglyceride levels compared to control. Liver Nr3c1, Col1a1, Col3a1, Fn1, Timp1, and Timp2 were increased in T2D rats. T2D liver showed significant fibrosis with the increases of α-smooth muscle actin and fibronectin. After gossypol treatment, serum glucose level was lowered by 64%. Liver fibrosis was significantly ameliorated. Nr3c1, Col1a1, Col3a1, Fn1, Timp1, Timp2, Pck1 as well as G6pc levels were significantly reduced. In conclusion, low dose gossypol is effective for the treatment of T2D and T2D-related fibrosis. PMID:26883980

  1. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    PubMed

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances.

  2. Enhanced induction of thyroid cell MHC class II antigen expression in rats highly responsive to thyroglobulin.

    PubMed

    Lahat, N; Hirose, W; Davies, T F

    1989-04-01

    Initial experiments demonstrated that the degree of autoantibody and proliferative T cell responses to syngeneic rat thyroglobulin differed markedly between Buffalo (high responder) and Fisher (low responder) rats after classical immunization schedules. While varying immune responsiveness may be due to qualitative and quantitative T and B cell differences, the role of thyroid cell MHC class II antigens may be pivotal to the onset of autoimmune thyroiditis in such animal models. We, therefore, examined the induction of MHC class II antigens in thyroid monolayers derived from Buffalo and Fisher rats treated with methimazole (0.1% in their water) for 4 weeks to induce mild thyroid hyperplasia. After thyroidectomy, thyroid cell monolayers were prepared and exposed to recombinant rat gamma-interferon (gamma IF; 10-1000 U/ml) for 1-7 days in the presence and absence of TSH (1 mU/ml). Both Buffalo and Fisher thyroid monolayers responded to gamma IF with MHC class II antigen expression when assessed by laser flow cytometry using MRC OX-6 monoclonal anti-RT1.B. In both types of culture, TSH enhanced MHC class II antigen expression in the presence of gamma IF to the same degree. However, there was a consistently earlier and greater degree of MHC class II antigen expression in Buffalo thyroid monolayers compared to Fisher monolayers, a phenomenon not explicable on the basis of fibroblast contamination as assessed by cytokeratin staining. These data demonstrate that end-organ sensitivity to MHC class II antigen expression may be important in the pathogenesis of autoimmune thyroid disease.

  3. High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats.

    PubMed

    Moreira, José B N; Bechara, Luiz R G; Bozi, Luiz H M; Jannig, Paulo R; Monteiro, Alex W A; Dourado, Paulo M; Wisløff, Ulrik; Brum, Patricia C

    2013-04-01

    Poor skeletal muscle performance was shown to strongly predict mortality and long-term prognosis in a variety of diseases, including heart failure (HF). Despite the known benefits of aerobic exercise training (AET) in improving the skeletal muscle phenotype in HF, the optimal exercise intensity to elicit maximal outcomes is still under debate. Therefore, the aim of the present study was to compare the effects of high-intensity AET with those of a moderate-intensity protocol on skeletal muscle of infarcted rats. Wistar rats underwent myocardial infarction (MI) or sham surgery. MI groups were submitted either to an untrained (MI-UNT); moderate-intensity (MI-CMT, 60% Vo(2)(max)); or matched volume, high-intensity AET (MI-HIT, intervals at 85% Vo(2)(max)) protocol. High-intensity AET (HIT) was superior to moderate-intensity AET (CMT) in improving aerobic capacity, assessed by treadmill running tests. Cardiac contractile function, measured by echocardiography, was equally improved by both AET protocols. CMT and HIT prevented the MI-induced decay of skeletal muscle citrate synthase and hexokinase maximal activities, and increased glycogen content, without significant differences between protocols. Similar improvements in skeletal muscle redox balance and deactivation of the ubiquitin-proteasome system were also observed after CMT and HIT. Such intracellular findings were accompanied by prevented skeletal muscle atrophy in both MI-CMT and MI-HIT groups, whereas no major differences were observed between protocols. Taken together, our data suggest that despite superior effects of HIT in improving functional capacity, skeletal muscle adaptations were remarkably similar among protocols, leading to the conclusion that skeletal myopathy in infarcted rats was equally prevented by either moderate-intensity or high-intensity AET.

  4. Impact of ovariectomy, high fat diet, and lifestyle modifications on oxidative/antioxidative status in the rat liver

    PubMed Central

    Vuković, Rosemary; Blažetić, Senka; Oršolić, Ivana; Heffer, Marija; Vari, Sandor G.; Gajdoš, Martin; Krivošíková, Zora; Kramárová, Patrícia; Kebis, Anton; Has-Schön, Elizabeta

    2014-01-01

    Aim To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. Methods The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. Results High fat diet significantly increased TBARS content in the liver compared to standard diet (P = 0.032, P = 0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P < 0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P = 0.026, P = 0.009), while in ovariectomized group CAT activity was increased (P = 0.018) in rats that received cereal selenized onion biscuits. Conclusion Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status. PMID:24891280

  5. Consumption of diets high in prebiotic fiber or protein during growth influences the response to a high fat and sucrose diet in adulthood in rats

    PubMed Central

    2010-01-01

    Background Early dietary exposure can influence susceptibility to obesity and type 2 diabetes later in life. We examined the lasting effects of a high protein or high prebiotic fiber weaning diet when followed by a high energy diet in adulthood. Methods At birth, litters of Wistar rats were culled to 10 pups. At 21 d pups were weaned onto control (C), high prebiotic fiber (HF) or high protein (HP) diet. Rats consumed the experimental diets until 14 wk when they were switched to a high fat/sucrose (HFHS) diet for 6 wk. Body composition and energy intake were measured and an oral glucose tolerance test (OGTT) performed. Blood was analyzed for satiety hormones and tissues collected for real-time PCR. Results Weight gain was attenuated in male rats fed HF from 12 wk until study completion. In females there were early reductions in body weight that moderated until the final two wk of HFHS diet wherein HF females weighed less than HP. Final body weight was significantly higher following the high fat challenge in male and female rats that consumed HP diet from weaning compared to HF. Lean mass was higher and fat mass lower with HF compared to HP and compared to C in males. Energy intake was highest in HP rats, particularly at the start of HFHS feeding. Plasma glucose was higher in HP rats compared to HF during an OGTT. Plasma amylin was higher in HF females compared to C and glucagon-like peptide-1 (GLP-1) was higher in HF rats during the OGTT. Leptin was higher in HP rats during the OGTT. HF upregulated GLUT 5 mRNA expression in the intestine and downregulated hepatic hydroxymethylglutaryl coenzyme A reductase. Male rats fed HP had higher hepatic triglyceride content than C or HF. Conclusion These data suggest that while a long-term diet high in protein predisposes to an obese phenotype when rats are given a high energy diet in adulthood, consumption of a high fiber diet during growth may provide some protection. PMID:20920272

  6. Fish oil decreases hepatic lipogenic genes in rats fasted and refed on a high fructose diet.

    PubMed

    de Castro, Gabriela S; Cardoso, João Felipe R; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-03-01

    Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG) concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3) fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO) improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed) period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α) gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP), fatty acid synthase (FAS) and microsomal triglyceride transfer protein (MTTP). Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet.

  7. Behavioral effects and CRF expression in brain structures of high- and low-anxiety rats after chronic restraint stress.

    PubMed

    Wisłowska-Stanek, Aleksandra; Lehner, Małgorzata; Skórzewska, Anna; Krząścik, Paweł; Płaźnik, Adam

    2016-09-01

    The aim of our study was to investigate the influence of chronic restraint stress (5 weeks, 3h/day) on behavior and central corticotropin-releasing factor (CRF) expression in rats selected for high (HR) and low anxiety (LR). The conditioned freezing response was used as a discriminating variable. Moreover, we assessed the influence of acute restraint on CRF expression in the brain in HR and LR rats. We found that chronic restraint induced symptoms of anhedonia (decreased consumption of 1% sucrose solution) in HR rats. In addition, HR restraint rats showed an increased learned helplessness behavior (immobility time in the Porsolt test) as well as neophobia in the open field test vs. LR restraint and HR control rats. These behavioral changes were accompanied by a decreased expression of CRF in the paraventricular nucleus of the hypothalamus (pPVN) and the dentate gyrus of the hippocampus (DG) compared to the HR control and LR restraint rat groups, respectively. The acute restraint condition increased the expression of CRF in the pPVN of HR rats compared to the HR control group, and enhanced the expression of CRF in the CA1 area and DG of LR restraint animals compared to the HR restraint and LR control rats, respectively. The present results indicate that chronic restraint stress in high anxiety rats attenuated CRF expression in the pPVN and DG, which was probably due to detrimental actions on the hippocampus-hypothalamus-pituitary-adrenal gland feedback mechanism, thus modulating the stress response and inducing anhedonia and depressive-like symptoms. PMID:27150225

  8. High Hydrostatic Pressure Extract of Red Ginseng Attenuates Inflammation in Rats with High-fat Diet Induced Obesity

    PubMed Central

    Jung, Sunyoon; Lee, Mak-Soon; Shin, Yoonjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2015-01-01

    Chronic low-grade inflammation is associated with obesity. This study investigated effect of high hydrostatic pressure extract of red ginseng (HRG) on inflammation in rats with high-fat (HF) diet induced obesity. Male, Sprague-Dawley rats (80~110 g) were randomly divided into two groups, and fed a 45% HF diet (HF) and a 45% HF diet containing 1.5% HRG (HF+HRG) for 14 weeks. At the end of the experiment, the serum leptin level was reduced by the HRG supplementation. The mRNA expression of genes related to adipogenesis including peroxisome proliferator-activated receptor-gamma and adipocyte protein 2 was down-regulated in the white adipose tissue (WAT). The mRNA levels of major inflammatory cytokines such as tumor necrosis factor-α, monocyte chemoattractant protein 1, and interleukin-6 were remarkably down-regulated by the HRG in WAT. These results suggest that HRG might be beneficial in ameliorating the inflammation-associated health complications by suppressing adipogenic and pro-inflammatory gene expression. PMID:26770912

  9. Behavioral effects on rats of motion within a high static magnetic field.

    PubMed

    Houpt, Thomas A; Carella, Lee; Gonzalez, Dani; Janowitz, Ilana; Mueller, Anthony; Mueller, Kathleen; Neth, Bryan; Smith, James C

    2011-03-01

    Some human subjects report vestibular disturbances such as vertigo, apparent motion, and nausea around or within high strength MRI systems operating at 4 T to 9.4 T. These vestibular effects have been ascribed to the consequences of movement through the high magnetic field. We have previously found that exposure to magnetic fields above 7 T suppresses rearing, causes locomotor circling, and induces conditioned taste aversion (CTA) in rodents. The present experiments were designed to test the effects on rats of motion through the magnetic field of the 14.1 T superconducting magnet. In Experiment 1, we compared the effects of multiple rapid insertions and removals from the center of the magnet to the effects of continuous exposure. Repeated traversal of the magnetic field gradient with only momentary exposure to 14.1 T was sufficient to suppress rearing and induce a significant CTA. Repeated insertion and removal from the magnet, however, did not have a greater effect than a single 30-min exposure on either acute locomotor behavior or CTA acquisition. Prolonged exposure was required to induce locomotor circling. In the second series of experiments, we controlled the rate of insertion and removal by means of an electric motor. Locomotor circling appeared to be dependent on the speed of insertion and removal, but the suppression of rearing and the acquisition of CTA were independent of speed of insertion and removal. In Experiment 3, we inserted rats into the center of the magnet and then rotated them about their rostral-caudal axis during a 30-min 14.1 T exposure. Rotation within the magnet did not modulate the behavioral effects of exposure. We conclude that, in rats, movement through the steep gradient of a high magnetic field has some behavioral effects, but sustained exposure to the homogenous center of the field is required for the full behavioral consequences. PMID:21118699

  10. Ketoprofen and antinociception in hypo-oestrogenic Wistar rats fed on a high sucrose diet.

    PubMed

    Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; García-Martínez, Betzabeth Anali; López-Muñoz, Francisco Javier

    2016-10-01

    Non-steroidal anti-inflammatory drugs such as ketoprofen are the most commonly used analgesics for the treatment of pain. However, no studies have evaluated the analgesic response to ketoprofen in conditions of obesity. The aim of this study was to analyse the time course of nociceptive pain in Wistar rats with and without hypo-oestrogenism on a high sucrose diet and to compare the antinociceptive response using ketoprofen. Hypo-oestrogenic and naïve rats received a hyper caloric diet (30% sucrose) or water ad libitum for 17 weeks, the thermal nociception ("plantar test" method) and body weight were tested during this period. A biphasic response was observed: thermal latency decreased in the 4th week (hyperalgesia), while from 12th to 17th week, thermal latency increased (hypoalgesia) in hypo-oestrogenic rats fed with high sucrose diet compared with the hypo-oestrogenic control group. At 4th and 17th weeks, different doses of ketoprofen (1.8-100mg/kg p.o.), were evaluated in all groups. The administration of ketoprofen at 4th and 17th weeks showed dose-dependent effects in the all groups; however, a greater pharmacological efficacy was observed in the 4th week in the hypo-oestrogenic animals that received sucrose. Nevertheless, in all the groups significantly diminish the antinociceptive effects in the 17th week. Our data showed that nociception was altered in the hypo-oestrogenic animals that were fed sucrose (hyperalgesia and hypoalgesia). Ketoprofen showed a dose-dependent antinociceptive effect at both time points. However, hypo-oestrogenism plus high-sucrose diet modifies the antinociceptive effect of ketoprofen.

  11. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    PubMed

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.

  12. High-anxiety rats are less sensitive to the rewarding affects of amphetamine on 50kHz USV.

    PubMed

    Lehner, Małgorzata H; Taracha, Ewa; Kaniuga, Ewelina; Wisłowska-Stanek, Aleksandra; Wróbel, Jacek; Sobolewska, Alicja; Turzyńska, Danuta; Skórzewska, Anna; Płaźnik, Adam

    2014-12-15

    This study assessed behaviour, as measured by 50kHz calls related to positive affect, in rats with different fear conditioned response strengths: low-anxiety rats (LR) and high-anxiety rats (HR), after amphetamine injection in a two-injection protocol (TIPS). The results showed that the first dose of amphetamine evoked similar behavioural effects in frequency-modulated (FM) 50kHz calls in the LR and HR groups. The second injection of amphetamine resulted in stronger FM 50kHz calls in LR compared with HR rats. The biochemical data ('ex vivo' analysis) showed that the LR rats had increased basal levels of dopamine in the amygdala, and increased homovanilic acid (HVA), dopamine's main metabolite, in the amygdala and prefrontal cortex compared with HR rats. The 'in vivo' analysis (microdialysis study) showed that the LR rats had increased HVA concentrations in the basolateral amygdala in response to an aversively conditioned context. Research has suggested that differences in dopaminergic system activity in the amygdala and prefrontal cortex may be one of the biological factors that underlie individual differences in response to fear stimuli, which may also affect the rewarding effects of amphetamine.

  13. Impact of food supplementation and methionine on high densities of cotton rats: Support of the amino-acid-quality hypothesis?

    USGS Publications Warehouse

    Webb, R.E.; Leslie, David M.; Lochmiller, R.L.; Masters, R.E.

    2005-01-01

    Considerable research supports the tenet that quantity and quality of food limit vertebrate populations. We evaluated predictions that increased availabilities of food and the essential amino acid methionine were related to population limitation of the hispid cotton rat (Sigmodon hispidus). Effects of supplemental food and methionine on density, survival, and reproductive parameters of wild cotton rats were assessed in north-central Oklahoma in 1998-1999. Twelve enclosed groups of 16 adult cotton rats each (8 male, 8 female) were randomly assigned to either no supplementation (control), supplementation with a mixed ration that had methionine at slightly below maintenance levels (0.20%), or a methionine-enhanced mixed ration (1.20%). In general, densities of cotton rats were twice as high and were sustained longer with dietary supplementation, and methionine-supplemented populations maintained the highest densities. Treatment effects on survival depended on time of year, with higher survival in supplemented enclosures in October and November. Per capita recruitment was highest with methionine-enhanced food. Treatment effects on proportions of overall and female cotton rats in reproductive condition depended on sampling date, but males were most reproductively active with methionine supplementation. Methionine supplementation resulted in an earlier and longer reproductive season. Density-dependent and density-independent factors no doubt interplay to determine population dynamics of cotton rats, but our results suggest that methionine plays a role in the population dynamics of wild cotton rats, apparently by enhancing overall density, recruitment, and reproductive activity of males.

  14. Cocaine withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake

    PubMed Central

    Radke, Anna K.; Zlebnik, Natalie E.; Carroll, Marilyn E.

    2014-01-01

    Cocaine use results in anhedonia during withdrawal, but it is not clear how this emotional state interacts with an individual's vulnerability for addiction. Rats selectively bred for high (HiS) or low (LoS) saccharin intake are a well-established model of drug abuse vulnerability, with HiS rats being more likely to consume sweets and drugs of abuse such as cocaine and heroin (Carroll et al. 2002) than LoS rats. This study examined whether the motivational consequences of cocaine withdrawal are differentially expressed in HiS and LoS rats. HiS and LoS rats were trained to respond for a sucrose reward on a progressive ratio (PR) schedule of reinforcement and breakpoints were measured during and after chronic, continuous exposure to cocaine (30 mg/kg/day). Cocaine, but not saline, treatment resulted in lower breakpoints for sucrose during withdrawal in LoS rats only. These results suggest anhedonia during withdrawal is more pronounced in the less vulnerable LoS rats. Fewer motivational deficits during withdrawal may contribute to drug vulnerability in the HiS line. PMID:25482327

  15. Cocaine withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake.

    PubMed

    Radke, Anna K; Zlebnik, Natalie E; Carroll, Marilyn E

    2015-02-01

    Cocaine use results in anhedonia during withdrawal, but it is not clear how this emotional state interacts with an individual's vulnerability for addiction. Rats selectively bred for high (HiS) or low (LoS) saccharin intake are a well-established model of drug abuse vulnerability, with HiS rats being more likely to consume sweets and drugs of abuse such as cocaine and heroin (Carroll et al., 2002) than LoS rats. This study examined whether the motivational consequences of cocaine withdrawal are differentially expressed in HiS and LoS rats. HiS and LoS rats were trained to respond for a sucrose reward on a progressive ratio (PR) schedule of reinforcement and breakpoints were measured during and after chronic, continuous exposure to cocaine (30 mg/kg/day). Cocaine, but not saline, treatment resulted in lower breakpoints for sucrose during withdrawal in LoS rats only. These results suggest anhedonia during withdrawal is more pronounced in the less vulnerable LoS rats. Fewer motivational deficits during withdrawal may contribute to greater drug vulnerability in the HiS line.

  16. High affinity ( sup 3 H)glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    SciTech Connect

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D. )

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea (3H) glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of (3H) glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer (3H)glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of (3H)glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats.

  17. 1'-acetoxychavicol acetate inhibits adipogenesis in 3T3-L1 adipocytes and in high fat-fed rats.

    PubMed

    Ohnishi, Rie; Matsui-Yuasa, Isao; Deguchi, Yohei; Yaku, Keisuke; Tabuchi, Masaki; Munakata, Hiroshi; Akahoshi, Yasumitsu; Kojima-Yuasa, Akiko

    2012-01-01

    Alpinia galanga and Languas galanga, which are plants belonging to the ginger family, are frequently used for cooking, especially in Thai and Indonesian cuisine. The compound 1'-acetoxychavicol acetate (ACA), which is naturally obtained from the rhizomes and seeds of these gingers, has antioxidant and anti-inflammatory properties. We investigated the anti-obesity effects of ACA in 3T3-L1 adipocytes and in high fat diet (HFD)-induced rat models of obesity. ACA caused a significant decrease in the activity of GPDH in 3T3-L1 adipocytes without eliciting cell cytotoxicity, and it inhibited cellular lipid accumulation through the down-regulation of transcription factors such as PPARγ and C/EBPα. ACA also induced a dose-dependent phosphorylation of AMP-activated protein kinase (AMPK). In the animal model, rats fed an HFD containing 0.05% ACA gained less weight than rats fed an HFD alone. The visceral fat mass in rats fed an HFD containing 0.05% ACA tended to be lower than that in rats fed an HFD alone. Furthermore, a histological examination of livers from rats fed an HFD showed steatohepatitis. However, rats fed an HFD containing 0.05% ACA showed no histopathological changes in the liver tissue. Our results show that ACA exerts anti-obesity activities both in vitro and in vivo and suggests that ACA may have a novel preventive activity against obesity and possibly other metabolic diseases.

  18. Operant ethanol-reinforced behavior in P, NP, HAD, and LAD rats bred for high versus low ethanol preference.

    PubMed

    Ritz, M C; Garcia, J M; Protz, D; George, F R

    1994-12-01

    These studies examined the reinforcing effects of ethanol in rats selectively bred for high versus low ethanol drinking in a two-bottle choice preference task, namely the Preferring (P), Non-Preferring (NP), High Alcohol Drinking (HAD), and Low Alcohol Drinking (LAD) rats. The results substantiate findings suggesting that genetic factors are significant in determining whether ethanol will come to serve as a reinforcer. P rats exhibited high levels of responding for ethanol compared with the water vehicle, NP and HAD rats exhibited more moderate levels of responding for ethanol, and the behavior of LAD rats suggested that ethanol served only inconsistently as a reinforcer for these rats. Overall, the results suggest the existence of distinct, biologically influenced components of ethanol drinking behavior. Preference appears to measure an inherent facilitative factor allowing animals to initiate ethanol drinking. The operant chamber paradigm appears to measure factors related to whether and to what extent ethanol will serve as a positive reinforcer following conditioned exposure to the drug. Although preferring animals generally find ethanol reinforcing there seems to be little quantitative relationship between degree of preference and whether ethanol will serve as a reinforcer. Lack of preference does not seem to be predictive of lack of reinforcement. Thus, it appears that preference for ethanol and reinforcement from ethanol are somewhat overlapping, but distinct factors that contribute to ethanol drinking. These results suggest the existence of multiple components of behavior mediated by multiple mechanisms that contribute to ethanol drinking. PMID:7695037

  19. Serial Measurements of Splanchnic Vein Diameters in Rats Using High-Frequency Ultrasound

    PubMed Central

    Seitz, Bridget M.; Krieger-Burke, Teresa; Fink, Gregory D.; Watts, Stephanie W.

    2016-01-01

    The purpose of this study was to investigate serial ultrasound imaging in rats as a fully non-invasive method to (1) quantify the diameters of splanchnic veins in real time as an indirect surrogate for the capacitance function of those veins, and (2) assess the effects of drugs on venous dimensions. A 21 MHz probe was used on anesthetized male Sprague–Dawley rats to collect images containing the portal vein (PV), superior mesenteric vein (SMV), abdominal inferior vena cava (IVC), and splenic vein (SpV; used as a landmark in timed studies) and the abdominal aorta (AA). Stable landmarks were established that allowed reproducible quantification of cross-sectional diameters within an animal. The average diameters of vessels measured every 5 min over 45 min remained within 0.75 ± 0.15% (PV), 0.2 ± 0.09% (SMV), 0.5 ± 0.12% (IVC), and 0.38 ± 0.06% (AA) of baseline (PV: 2.0 ± 0.12 mm; SMV: 1.7 ± 0.04 mm; IVC: 3.2 ± 0.1 mm; AA: 2.3 ± 0.14 mm). The maximal effects of the vasodilator sodium nitroprusside (SNP; 2 mg/kg, i.v. bolus) on venous diameters were determined 5 min post SNP bolus; the diameters of all noted veins were significantly increased by SNP, while mean arterial pressure (MAP) decreased 29 ± 4 mmHg. By contrast, administration of the venoconstrictor sarafotoxin (S6c; 5 ng/kg, i.v. bolus) significantly decreased PV and SpV, but not IVC, SMV, or AA, diameters 5 min post S6c bolus; MAP increased by 6 ± 2 mmHg. In order to determine if resting splanchnic vein diameters were stable over much longer periods of time, vessel diameters were measured every 2 weeks for 8 weeks. Measurements were found to be highly reproducible within animals over this time period. Finally, to evaluate the utility of vein imaging in a chronic condition, images were acquired from 4-week deoxycorticosterone acetate salt (DOCA-salt) hypertensive and normotensive (SHAM) control rats. All vessel diameters increased from baseline while MAP increased (67 ± 4 mmHg) in DOCA-salt rats

  20. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  1. Nature of elevated rat intestinal carbohydrase activities after high-carbohydrate diet feeding

    SciTech Connect

    Tsuboi, K.K.; Kwong, L.K.; Yamada, K.; Sunshine, P.; Koldovsky, O.

    1985-10-01

    Adult rats that were maintained on a low-carbohydrate intake showed rapid increase in the activities of sucrase, maltase, and lactase along the length of the small intestine when they were fed a high-starch diet. In the present study, the authors have identified these activity increases, and showed that they reflect proportional accumulations in enzyme-protein of sucrase-isomaltase, maltase-glucoamylase, and neutral lactase. It was determined that each of these enzymes exists in adult rat intestine in single immunoreactive form and accounts as a group for all sucrase, cellobiase, and most maltase and lactase activities. Dietary change from low to high carbohydrate (starch) resulted in an increase in (TH)leucine accumulation in each of the enzymes, without a change in the amount of label accumulation in total intestinal proteins. The increase in label accumulation in the brush-border carbohydrase pools was matched generally by proportional elevation in the pool concentrations of sucrase-isomaltase and lactase but not maltase. These studies suggest that the elevation of intestinal carbohydrase concentrations induced by high-carbohydrate feeding may involve selective stimulation of their synthesis.

  2. Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress.

    PubMed

    Vijayakumar, R S; Surya, D; Nalini, N

    2004-01-01

    The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.

  3. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    PubMed

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences.

  4. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    PubMed

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences. PMID:26669710

  5. Dopamine agonist-induced penile erection and yawning: a comparative study in outbred Roman high- and low-avoidance rats.

    PubMed

    Sanna, Fabrizio; Corda, Maria Giuseppa; Melis, Maria Rosaria; Piludu, Maria Antonietta; Löber, Stefan; Hübner, Harald; Gmeiner, Peter; Argiolas, Antonio; Giorgi, Osvaldo

    2013-08-01

    The effects on penile erection and yawning of subcutaneous (SC) injections of the mixed dopamine D1/D2-like agonist apomorphine (0.02-0.2 mg/kg) were studied in outbred Roman high- (RHA) and low-avoidance (RLA) male rats, two lines selectively bred for their respectively rapid versus poor acquisition of the active avoidance response in the shuttle-box, and compared with the effects observed in male Sprague-Dawley (SD) rats. Apomorphine dose-response curves were bell-shaped in all rat lines/strains. Notably, more penile erections and yawns were recorded mainly in the ascending part of these curves (e.g., apomorphine 0.02-0.08 mg/kg) in both RLA and RHA rats compared to SD rats, with RLA rats showing the higher response (especially for yawning) with respect to RHA rats. Similar results were found with PD-168,077 (0.02-0.2 mg/kg SC), a D4 receptor agonist, which induced penile erection but not yawning. In all rat lines/strains, apomorphine responses were markedly reduced by the D2 antagonist L-741,626, but not by the D3 antagonist, SB277011A, whereas the D4 antagonists L-745,870 and FAUC213 elicited a partial, yet statistically significant, inhibitory effect. In contrast, the pro-erectile effect of PD-168,077 was completely abolished by L-745,870 and FAUC213, as expected. The present study confirms and extends previously reported differences in dopamine transmission between RLA and RHA rats and between the SD strain and the Roman lines. Moreover, it confirms previous studies supporting the view that dopamine receptors of the D2 subtype play a predominant role in the pro-yawning and pro-erectile effect of apomorphine, and that the selective stimulation of D4 receptors induces penile erection.

  6. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  7. Inhibitory effect of high protein intake on nephrocalcinogenesis in female rats.

    PubMed

    Sterck, J G; Ritskes-Hoitinga, J; Beynen, A C

    1992-03-01

    Increased intakes of protein have been shown to reduce kidney calcification (nephrocalcinosis) in female rats. Two questions were addressed in the present study. First, can protein-induced inhibition of nephrocalcinosis be demonstrated when the diets used are balanced for calcium, magnesium and phosphorus in the added protein? Second, can the protein effect be explained by the frequently observed magnesiuria after giving high-protein diets? Nephrocalcinosis was induced in female rats by giving purified diets containing 151 g casein/kg and either an increased concentration of P (6 v. 2 g/kg) or a decreased concentration of Mg (0.1 v. 0.4 g/kg). To these diets 151 g ovalbumin/kg was added at the expense of glucose, and the diets were balanced for Ca, Mg and P in ovalbumin. The diets were given for 29 d. In rats fed on the diet containing 151 g protein/kg, an increased intake of P or a decreased intake of Mg caused nephrocalcinosis as measured chemically by analysis of kidney Ca as well as histologically by scoring kidney sections stained according to Von Kossa's method. The addition of ovalbumin to the diet prevented the induction of nephrocalcinosis. High P intake and low Mg intake with the low-protein diets induced enhanced loss of albumin in urine, suggesting that nephrocalcinosis caused kidney damage. Increased protein intake with a non-calcinogenic diet also caused increased albumin excretion in urine. Irrespective of the composition of the background diet, increased protein intake caused increased urinary excretion of Mg. When all dietary groups were considered, differences in nephrocalcinosis and urinary Mg output were not proportionally related.

  8. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats

    PubMed Central

    2014-01-01

    Background The fruit of Hylocereus polyrhizus, also known as red pitaya, and buah naga in Malay, is one of the tropical fruits of the cactus family, Cactaceae. Red pitaya has been shown to protect aorta from oxidative damage and improve lipid profiles in hypercholesterolemic rats probably due to phytochemicals content including phenolics and flavonoids. The aim of this study was to investigate the changes in cardiac stiffness, hepatic and renal function in high-carbohydrate, high-fat diet-induced obese rats following supplementation of red pitaya juice. Methods Total 48 male Wistar rats were divided into 4 groups: corn-starch group (CS), corn-starch + red pitaya juice group (CRP), high-carbohydrate, high fat group (HCHF) and high-carbohydrate, high fat + red pitaya juice (HRP). The intervention with 5% red pitaya juice was started for 8 weeks after 8 weeks initiation of the diet. Heart function was determined ex vivo with Langendorff hearts while plasma liver enzymes, uric acid and urea were measured using commercial kits. Total fat mass was determined with Dual-energy X-ray absorptiometry (DXA) scan. Glucose uptake was measured with Oral Glucose Tolerance Test (OGTT). Liver and cardiac structures were defined by histology. Results Supplementation of red pitaya juice for 8 weeks increased energy intake and abdominal circumference but no change in body fat and lean mass respectively. Also, there were a trend of uric acid and glucose normalization for HRP as compared to H-fed rats. Red pitaya juice treatment reduced ALP and ALT but caused significant increment in AST. Diastolic stiffness of the heart was reduced after supplementation of red pitaya juice in corn starch fed rats. However, the reduction was not significant in HRP rats in comparison with H rats. Conclusion The present study concluded that red pitaya juice may serve as a complimentary therapy for attenuating some signs of metabolic syndrome. PMID:24919841

  9. Iron excess disturbs metabolic status and relative gonad mass in rats on high fat, fructose, and salt diets.

    PubMed

    Suliburska, Joanna; Bogdański, Paweł; Szulińska, Monika

    2013-02-01

    The aim of this study was to assess the metabolic and physiological changes in rats fed a diet high in fat, fructose, and salt, and with excess iron level. Mineral status was also estimated. Wistar rats were assigned to groups fed either a standard control diet (C) or a diet high in fat, fructose, and salt. The noncontrol diets contained either normal (M) or high level (MFe) of iron. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The kidneys and gonads were collected, and blood samples were taken. Serum levels of insulin, nitric oxide, and iron were measured. The iron, zinc, copper, and calcium concentrations of tissues were determined. It was found that the M diet led to a significant increase in the relative kidney mass of the rats compared with the control group. Among the rats fed the M diet, markedly higher serum level of iron and lower levels of zinc and copper were observed in tissues, while significantly higher calcium levels were found in the gonads. The MFe diet resulted in decreased obesity index, insulin level, and nitric oxide serum concentration in the rats, when compared with both the M and C diets. The high iron level in the modified diet increased the relative mass of the gonads. The excess iron level in the diet disturbed the zinc, copper, and calcium status of tissues. The decrease in insulin and nitric oxide in rats fed the diet high in iron, fat, fructose, and salt was associated with disorders of zinc, copper, and calcium status, as well as with an increase in the relative mass of the gonads.

  10. Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats.

    PubMed

    Shin, Hea Soon; Park, Shin Young; Lee, Do Kyung; Kim, Sun Ae; An, Hyang Mi; Kim, Jung Rae; Kim, Mi Jin; Cha, Min Gyeong; Lee, Si Won; Kim, Kyung Joo; Lee, Kang Oh; Ha, Nam Joo

    2010-09-01

    We have previously reported that live Bifidobacterium longum SPM1207, a strain isolated from healthy adult Koreans, significantly reduced serum cholesterol in broth and rat. We here examined the effect of oral administration of sonication-killed B. longum SPM1207 on serum cholesterol in rats in order to investigate whether this killed strain could be utilized as a potent probiotics for human and animals. Dietary treatments consisted of 3 treatment groups of 24 rats each randomly assigned to either normal diet, high cholesterol diet and saline (HCS), or high cholesterol diet and sonication-killed B. longum SPM1207 (HCKB) for 3 weeks. Although HDL-cholesterol levels in the serum were not significantly (p > 0.05) different between HCKB rats and HCS rats, total and LDL-cholesterol levels in the serum were significantly (p < 0.05) less increased in HCKB (total: 177.71 mg/dL, LDL-: 60.50 mg/dL) rats when compared to HCS (total: 237.17 mg/dL, LDL-: 71.50 mg/dL) rats. AI was significantly (p < 0.05) lower in HCKB (4.95 mg/dL) rats when compared to HCS (9.22 mg/dL) rats. Body weight increase and relative liver weight were significantly (p < 0.05) lower in HCKB rats when compared to HCS rats. Over the time, high cholesterol diet caused dry feces accompanied by decreased fecal water content (66.00 to 61.94%) but sonication-killed B. longum SPM1207 administration increased fecal water content (71.58 to 74.25%). The results in the current study provide evidence that the sonication-killed cells of B. logum SPM1207 isolated from healthy adult Koreans have a greater potential to be used as a cholesterol-lowering agent. Furthermore, the current study suggest that this killed specific strain may play role in part in blocking the body weight increase and relieving or eliminating constipation.

  11. Probing the anti-hyperlipidemic efficacy of the allspice (Pimenta officinalis Lindl.) in rats fed with high fat diet.

    PubMed

    Shyamala, M P; Paramundayil, Julie J; Venukumar, M R; Latha, M S

    2005-01-01

    In this study, the anti-hyperlipidemic effect of aqueous extract of Pimenta officinalis (APO) was investigated in experimental rats fed with high fat diet (HFD). Hyperlipidemia in experimental rats was evidenced by a significant enhancement in the level of glycerol, triglycerides and phopholipids in serum, and also in liver and kidney tissues. HFD caused oxidative stress in these animals as shown by marked increment in the levels of thiobarbituric acid reactive substances (TBARS) and diene conjugates (CD), and a distinct diminution in reduced glutathione (GSH) content in liver and kidneys. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) showed reduced activity in hyperlipidemic rats. All these biochemical parameters showed reliable signs of retrieving towards near-normalcy in APO-administered HFD fed rats. This study unveiled the anti-hyperlipidemic as well as antioxidant activity of APO.

  12. Human and rat mast cell high-affinity immunoglobulin E receptors: Characterization of putative. alpha. -chain gene products

    SciTech Connect

    Shimizu, Akira; Benfey, P.N.; Leder, P. ); Tepler, I. Brigham and Women's Hospital, Boston, MA ); Berenstein, E.H.; Siraganian, R.P. )

    1988-03-01

    The authors have cloned and determined the entire nucleotide sequence of cDNAs corresponding to the putative {alpha} subunits of the human and rat mast cell high-affinity IgE receptors. Both human and rat cDNAs encode an NH{sub 2}-terminal signal peptide, two immunoglobulin-like extracellular domains (encoded by discrete exons), a hydrophobic transmembrane region, and a positively charged cytoplasmic tail. The human and rat {alpha} subunits share an overall homology with one another and the immunoglobulin gene family, suggesting that they arose from a common ancestral gene and continue to share structural homology with their ligands. In addition, the rat gene is transcribed into at least three distinct forms, each of which yields a somewhat different coding sequence.

  13. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats

    PubMed Central

    Sampathkumar, M. T.; Kasetti, R. B.; Nabi, S. A.; Sudarshan, P. Renuka; Swapna, S.; Apparao, C.

    2011-01-01

    Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD). Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt) was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition), Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases. PMID:21966168

  14. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats.

    PubMed

    Sampathkumar, M T; Kasetti, R B; Nabi, S A; Sudarshan, P Renuka; Swapna, S; Apparao, C

    2011-07-01

    Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD). Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt) was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition), Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases.

  15. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats.

    PubMed

    Sampathkumar, M T; Kasetti, R B; Nabi, S A; Sudarshan, P Renuka; Swapna, S; Apparao, C

    2011-07-01

    Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD). Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt) was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition), Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases. PMID:21966168

  16. Positive correlation between serum taurine and adiponectin levels in high-fat diet-induced obesity rats.

    PubMed

    You, Jeong Soon; Zhao, Xu; Kim, Sung Hoon; Chang, Kyung Ja

    2013-01-01

    The purpose of this study was to investigate the relationship between serum taurine level and serum adiponectin or leptin levels in high-fat diet-induced obesity rats. Five-week-old male Sprague-Dawley rats were randomly divided into three groups for a period of 8 weeks (normal diet, N group; high-fat diet, HF group; high-fat diet + taurine, HFT group). Taurine was supplemented by dissolving in feed water (3% w/v), and the same amount of distilled water was orally administrated to N and HF groups. In serum, adiponectin level was higher in HFT group compared to HF group. The serum taurine level was negatively correlated with serum total cholesterol (TC) level and positively correlated with serum adiponectin level. These results suggest that dietary taurine supplementation has beneficial effects on total cholesterol and adiponectin levels in high-fat diet-induced obesity rats.

  17. Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain.

    PubMed

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove; Kroenke, Christopher D; Nyengaard, Jens R; Hansen, Brian; Jespersen, Sune Nørhøj

    2016-09-01

    This data article describes a large, high resolution diffusion MRI data set from fixed rat brain acquired at high field strength. The rat brain samples consist of 21 adult rat brain hemispheres from animals exposed to chronic mild stress (anhedonic and resilient) and controls. Histology from amygdala of the same brain hemispheres is also included with three different stains: DiI and Hoechst stained microscopic images (confocal microscopy) and ALDH1L1 antibody based immunohistochemistry. These stains may be used to evaluate neurite density (DiI), nuclear density (Hoechst) and astrocytic density (ALDH1L1). This combination of high field diffusion data and high resolution images from microscopy enables comparison of microstructural parameters derived from diffusion MRI to histological microstructure. The data provided here is used in the article (Jespersen, 2016) [1]. PMID:27508246

  18. Brown (BAT) and white (WAT) adipose tissue in high-fat junk food (HFJF) and chow-fed rats with dorsomedial hypothalamic lesions (DMNL rats).

    PubMed

    Bernardis, L L; Bellinger, L L

    1991-05-15

    Male weanling rats received dorsomedial hypothalamic nucleus lesions (DMNL) or sham operations and were fed for 173 postoperative days a high-fat diet and given a 32% sucrose solution as drinking fluid. This was supplemented with chocolate chip cookies, potato chips and marshmallows. Other DMNL and sham-operated controls were fed lab chow instead of the above high-fat junk food diet (HFJF) and given tap water instead of 32% sucrose solution. All animals were killed on postoperative day 174. Caloric intake per 100 g body weight was similar in all groups; however, the HFJF fed control and DMNL rats had significantly elevated carcass fat. Since HFJF-DMNL rats were not nearly as obese as the HFJF control animals, it appears that the DMNL offered some protection against the HFJF-diet-produced obesity. When their smaller body size is considered. DMN lesions had no effect on brown adipose tissue (BAT) mass in chow-fed or HFJF fed rats, whereas BAT size was significantly enlarged in HFJF-fed control animals. This suggests but does not prove that HFJF-fed controls, but not DMNL rats, may be using dietary-induced thermogenesis (DIT) to attenuate their obesity. We hypothesize that the HFJF-fed DMNL may not be enhancing DIT as reflected in normal BAT size, because they had not attained a degree of fatness to activate this system, or the DMN lesions impaired its activation. Both HFJF-fed groups showed reduced linear growth compared to their counterparts. The reason for stunting is uncertain, but may be related to their low plasma insulin concentrations.

  19. QRFP in female rats: effects on high fat food intake and hypothalamic gene expression across the estrous cycle.

    PubMed

    Primeaux, Stefany D

    2011-06-01

    Pyroglutamylated arginine-phenylalanineamide peptide (QRFP) is a neuropeptide involved in feeding behavior. Central administration of QRFP selectively increases the intake of a high fat diet in male rats. QRFP administration also stimulates the hypothalamic-pituitary-gonadal axis via gonadotrophin-releasing hormone in male and female rats. Prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus which are abundant in neurotransmitters, neuropeptides and receptor systems important for food intake regulation and reproductive behaviors. The current experiments were conducted to investigate the effects of centrally administered QRFP-26 on the intake of a high fat diet (HFD, 60%kcal from fat) in female rats and to investigate alterations in hypothalamic prepro-QRFP and its receptors, GPR130a and GPR103b, mRNA levels over the estrous cycle. In Experiment 1, female rats were administered QRFP-26 (intracerebroventricular; 0.3nmol, 0.5nmol, 1.0nmol) in rats consuming either a HFD or a low fat diet. All doses of QRFP-26 selectively increased the intake of the HFD in female rats. These data suggest that QRFP-26 regulates the intake of energy dense foods in female rats, which is similar to previous findings in male rats. In Experiment 2, hypothalamic levels of prepro-QRFP mRNA and its receptors were assessed during diestrus, proestrus, or estrus. The level of prepro-QRFP mRNA in the ventromedial/arcuate nucleus (VMH/ARC) of the hypothalamus was increased during proestrus, which suggests that endogenous estrogen levels regulate QRFP expression in the VMH/ARC. These data suggest that QRFP may play a role in coordinating feeding behaviors with reproductive function when energy demand is increased.

  20. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity.

    PubMed

    Tweedie, Constance; Romestaing, Caroline; Burelle, Yan; Safdar, Adeel; Tarnopolsky, Mark A; Seadon, Scott; Britton, Steven L; Koch, Lauren G; Hepple, Russell T

    2011-03-01

    Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress. PMID:21148474

  1. High-resolution time-lapse tomography of rat vertebrae during compressive loading: deformation response analysis

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kytýř, D.; Zlámal, P.; Kumpová, I.; Doktor, T.; Koudelka, P.; Jiroušek, O.

    2014-05-01

    This paper is focused on investigation of mechanical properties of rat vertebrae during compressive loading in the longitudinal direction of rat's spine. High-resolution time-lapse micro-tomography was used as a tool to create models of the inner structure and deformed shape in pre-defined deformation steps. First, peripheral areas of vertebra specimen were embedded in polymethyl methacrylate to obtain proper boundary conditions of contact between specimen and loading plattens. Experimental loading device designed for application in X-ray setups was utilized to compress the vertebrae in several deformation steps. High-resolution micro-tomography scanning was carried out at each deformation step. Specimen was irradiated in tomography device equipped with microfocus X-ray tube with 5μm focal spot size and large area flat panel detector. Spatial resolution of reconstructed three-dimensional images was approximately 10μm. Digital volume correlation algorithm was utilized in order to assess displacements in the microstructure in every loading increment. Finite element model of vertebra was created from volumetric data reconstructed from tomography of the undeformed specimen. Simulated compressive test of the developed finite element model was performed in order to compare stiffness and displacements obtained by digital volume correlation and finite element simulation.

  2. Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats.

    PubMed

    Narayanankutty, Arunaksharan; Mukesh, Reshma K; Ayoob, Shabna K; Ramavarma, Smitha K; Suseela, Indu M; Manalil, Jeksy J; Kuzhivelil, Balu T; Raghavamenon, Achuthan C

    2016-01-01

    Virgin Coconut Oil (VCO), extracted from fresh coconut kernel possess similar fatty acid composition to that of Copra Oil (CO), a product of dried kernel. Although CO forms the predominant dietary constituent in south India, VCO is being promoted for healthy life due to its constituent antioxidant molecules. High fructose containing CO is an established model for insulin resistance and steatohepatitis in rodents. In this study, replacement of CO with VCO in high fructose diet markedly improved the glucose metabolism and dyslipidemia. The animals fed VCO diet had only 17 % increase in blood glucose level compared to CO fed animals (46 %). Increased level of GSH and antioxidant enzyme activities in VCO fed rats indicate improved hepatic redox status. Reduced lipid peroxidation and carbonyl adducts in VCO fed rats well corroborate with the histopathological findings that hepatic damage and steatosis were comparatively reduced than the CO fed animals. These results suggest that VCO could be an efficient nutraceutical in preventing the development of diet induced insulin resistance and associated complications possibly through its antioxidant efficacy.

  3. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats.

    PubMed

    Yao, Xiaoming; Lin, Zi; Jiang, Cuihua; Gao, Meng; Wang, Qingqing; Yao, Nan; Ma, Yonglan; Li, Yue; Fang, Shengzuo; Shang, Xulan; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2015-08-01

    Cyclocarya paliurus (CP; qing qian liu), which is used as an herbal tea in China, has been confirmed to have therapeutic effects on hyperlipidemia and obesity, and therefore it is widely consumed to prevent metabolic diseases such as hyperlipidemia and diabetes. In this study, we investigated the preventive effects of CP on obesity and hyperlipidemia, as well as the underlying mechanisms involved in intestinal secretion of apolipoprotein (apo) B48. Sprague-Dawley rats were fed a high-fat diet (HFD) and with or without various concentrations of an ethanol extract of CP (CPE; 2, 4, or 8 g·(kg body mass)(-1)) administered by gavage for 8 weeks. From the results we see that CPE dose-dependently blocked increases in body mass, and decreased food utilization as well as visceral fat mass. Decreased serum levels of total cholesterol, triglycerides, and low density lipoprotein cholesterol, and elevated levels of high density lipoprotein cholesterol, as well as lowered levels of total cholesterol and triglycerides in the liver were also noticed in CPE-treated rats. Magnetic resonance images indicated that the abnormal fat storage induced by the HFD was obviously suppressed by CPE. In addition, ELISA analysis showed reduced fasting serum apoB48 in the CPE treatment groups. Based on the above results, CPE shows a promising preventive effect on obesity and hyperlipidemia, partially through suppressing intestinal apoB48 overproduction.

  4. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats.

    PubMed

    Yao, Xiaoming; Lin, Zi; Jiang, Cuihua; Gao, Meng; Wang, Qingqing; Yao, Nan; Ma, Yonglan; Li, Yue; Fang, Shengzuo; Shang, Xulan; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2015-08-01

    Cyclocarya paliurus (CP; qing qian liu), which is used as an herbal tea in China, has been confirmed to have therapeutic effects on hyperlipidemia and obesity, and therefore it is widely consumed to prevent metabolic diseases such as hyperlipidemia and diabetes. In this study, we investigated the preventive effects of CP on obesity and hyperlipidemia, as well as the underlying mechanisms involved in intestinal secretion of apolipoprotein (apo) B48. Sprague-Dawley rats were fed a high-fat diet (HFD) and with or without various concentrations of an ethanol extract of CP (CPE; 2, 4, or 8 g·(kg body mass)(-1)) administered by gavage for 8 weeks. From the results we see that CPE dose-dependently blocked increases in body mass, and decreased food utilization as well as visceral fat mass. Decreased serum levels of total cholesterol, triglycerides, and low density lipoprotein cholesterol, and elevated levels of high density lipoprotein cholesterol, as well as lowered levels of total cholesterol and triglycerides in the liver were also noticed in CPE-treated rats. Magnetic resonance images indicated that the abnormal fat storage induced by the HFD was obviously suppressed by CPE. In addition, ELISA analysis showed reduced fasting serum apoB48 in the CPE treatment groups. Based on the above results, CPE shows a promising preventive effect on obesity and hyperlipidemia, partially through suppressing intestinal apoB48 overproduction. PMID:26203820

  5. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    PubMed Central

    Lee, Hyun-Ho; Paudel, Keshav Raj; Jeong, Jieun; Wi, An-Jin; Park, Whoa-Shig; Kim, Dong-Wook

    2016-01-01

    Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg−1·day−1 (CJF 100, 400, and 800, resp.). Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL), accompanied by an increase in serum high-density lipoprotein (HDL). Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO) staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia. PMID:27340422

  6. Effects of high and low 17β-estradiol doses on focal cerebral ischemia in rats

    PubMed Central

    Ingberg, Edvin; Theodorsson, Elvar; Theodorsson, Annette; Ström, Jakob O.

    2016-01-01

    The majority of the numerous animal studies of the effects of estrogens on cerebral ischemia have reported neuroprotective results, but a few have shown increased damage. Differences in hormone administration methods, resulting in highly different 17β-estradiol levels, may explain the discrepancies in previously reported effects. The objective of the present study was to test the hypothesis that it is the delivered dose per se, and not the route and method of administration, that determines the effect, and that high doses are damaging while lower doses are protective. One hundred and twenty ovariectomized female Wistar rats (n = 40 per group) were randomized into three groups, subcutaneously administered different doses of 17β-estradiol and subjected to transient middle cerebral artery occlusion. The modified sticky tape test was performed after 24 h and the rats were subsequently sacrificed for infarct size measurements. In contrast to our hypothesis, a significant negative correlation between 17β-estradiol dose and infarct size was found (p = 0.018). Thus, no support was found for the hypothesis that 17β-estradiol can be both neuroprotective and neurotoxic merely depending on dose. In fact, on the contrary, the findings indicate that the higher the dose of 17β-estradiol, the smaller the infarct. PMID:26839007

  7. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats.

    PubMed

    Lee, Hyun-Ho; Paudel, Keshav Raj; Jeong, Jieun; Wi, An-Jin; Park, Whoa-Shig; Kim, Dong-Wook; Oak, Min-Ho

    2016-01-01

    Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg(-1)·day(-1) (CJF 100, 400, and 800, resp.). Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL), accompanied by an increase in serum high-density lipoprotein (HDL). Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO) staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia. PMID:27340422

  8. Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats.

    PubMed

    Narayanankutty, Arunaksharan; Mukesh, Reshma K; Ayoob, Shabna K; Ramavarma, Smitha K; Suseela, Indu M; Manalil, Jeksy J; Kuzhivelil, Balu T; Raghavamenon, Achuthan C

    2016-01-01

    Virgin Coconut Oil (VCO), extracted from fresh coconut kernel possess similar fatty acid composition to that of Copra Oil (CO), a product of dried kernel. Although CO forms the predominant dietary constituent in south India, VCO is being promoted for healthy life due to its constituent antioxidant molecules. High fructose containing CO is an established model for insulin resistance and steatohepatitis in rodents. In this study, replacement of CO with VCO in high fructose diet markedly improved the glucose metabolism and dyslipidemia. The animals fed VCO diet had only 17 % increase in blood glucose level compared to CO fed animals (46 %). Increased level of GSH and antioxidant enzyme activities in VCO fed rats indicate improved hepatic redox status. Reduced lipid peroxidation and carbonyl adducts in VCO fed rats well corroborate with the histopathological findings that hepatic damage and steatosis were comparatively reduced than the CO fed animals. These results suggest that VCO could be an efficient nutraceutical in preventing the development of diet induced insulin resistance and associated complications possibly through its antioxidant efficacy. PMID:26788013

  9. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    PubMed

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-01

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (P<0.001), working memory (P<0.01), and object recognition memory (P<0.01), decreased the dendritic spine density (P<0.001), damaged pyramidal neurons in the CA1 subfield (P<0.001) compared with the CD group. However, lycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (P<0.001). Thus, this study indicated that lycopene helps to protect HFD induced cognitive dysfunction. PMID:27177726

  10. Resveratrol Improved Flow-Mediated Outward Arterial Remodeling in Ovariectomized Rats with Hypertrophic Effect at High Dose

    PubMed Central

    Petit, Marie; Guihot, Anne-Laure; Grimaud, Linda; Vessieres, Emilie; Toutain, Bertrand; Menet, Marie-Claude; Nivet-Antoine, Valérie; Arnal, Jean-François; Loufrani, Laurent; Procaccio, Vincent; Henrion, Daniel

    2016-01-01

    Objectives Chronic increases in blood flow in resistance arteries induce outward remodeling associated with increased wall thickness and endothelium-mediated dilatation. This remodeling is essential for collateral arteries growth following occlusion of a large artery. As estrogens have a major role in this remodeling, we hypothesized that resveratrol, described as possessing phytoestrogen properties, could improve remodeling in ovariectomized rats. Methods Blood flow was increased in vivo in mesenteric arteries after ligation of adjacent arteries in 3-month old ovariectomized rats treated with resveratrol (5 or 37.5 mg/kg per day: RESV5 or RESV37.5) or vehicle. After 2 weeks arterial structure and function were measured in vitro in high flow (HF) and normal flow (NF) arteries isolated from each rat. Results Arterial diameter was greater in HF than in NF arteries in ovariectomized rats treated with RESV5 or RESV37.5, not in vehicle-treated rats. In mice lacking estrogen receptor alpha diameter was equivalent in HF and NF arteries whereas in mice treated with RESV5 diameter was greater in HF than in NF vessels. A compensatory increase in wall thickness and a greater phenylephrine-mediated contraction were observed in HF arteries. This was more pronounced in HF arteries from RESV37.5-treated rats. ERK1/2 phosphorylation, involved in hypertrophy and contraction, were higher in RESV37.5-treated rats than in RESV5- and vehicle-treated rats. Endothelium-dependent relaxation was greater in HF than in NF arteries in RESV5-treated rats only. In HF arteries from RESV37.5-treated rats relaxation was increased by superoxide reduction and markers of oxidative stress (p67phox, GP91phox) were higher than in the 2 other groups. Conclusion Resveratrol improved flow-mediated outward remodeling in ovariectomized rats thus providing a potential therapeutic tool in menopause-associated ischemic disorders. This effect seems independent of the estrogen receptor alpha. Nevertheless

  11. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats.

    PubMed

    Abu, Mohd Nazri; Samat, Suhana; Kamarapani, Norathirah; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani; Hassan, Hamzah Fansuri

    2015-01-01

    The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet. PMID:25821506

  12. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    PubMed Central

    Kamarapani, Norathirah; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani; Hassan, Hamzah Fansuri

    2015-01-01

    The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet. PMID:25821506

  13. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue.

    PubMed

    Cui, BoKang; Liu, Su; Lin, XiaoJun; Wang, Jun; Li, ShuHong; Wang, QiBo; Li, ShengPing

    2011-11-01

    This study evaluated the protective effects of aqueous extract of Lycium barbarum (LBAE) and ethanol extract of Lycium barbarum (LBEE) on blood lipid levels, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities and liver tissue antioxidant enzyme activities in rats fed a high fat diet (HF). The rats were randomly divided into seven groups of ten rats each and fed a different diet for eight weeks as follows: One group (NC group) was fed a standard diet, one group was fed a high-fat diet (HF group), one group was fed a high-fat diet and orally fed with 20 mg/kg b.w. simvastatin (HF + simvastatin group), and the other group was fed the high fat diet and orally fed with 50 mg/kg b.w. or 100 mg/kg b.w. LBAE (HF + LBAE), or 50 mg/kg b.w. or 100 mg/kg b.w. LBEE (HF + LBEE), respectively. After eight weeks, the HF diet caused deleterious metabolic effects. Rats fed the HF diet alone showed increased hepatocellular enzyme activities in plasma, a significant decline in antioxidant enzyme activities, and elevated liver lipid peroxidation indices. LBAE and LBEE administration significantly reduced liver damage and oxidative changes, and brought back the antioxidants and lipids towards normal levels. These data suggest that these antioxidants protect against toxicity parameters in HF rats.

  14. High-fat feeding reduces endothelium-dependent vasodilation in rats: differential mechanisms for saturated and unsaturated fatty acids?

    PubMed

    Song, Guang-Yao; Gao, Yu; Di, Yu-Wei; Pan, Li-Li; Zhou, Yu; Ye, Ji-Ming

    2006-08-01

    1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.

  15. Protective Effects of Tamarillo (Cyphomandra betacea) Extract against High Fat Diet Induced Obesity in Sprague-Dawley Rats

    PubMed Central

    Abdul Kadir, Noor Atiqah Aizan; Rahmat, Asmah; Jaafar, Hawa Z. E.

    2015-01-01

    This study aims to investigate the protective effect of Cyphomandra betacea in adult male Sprague-Dawley rats fed with high fat diet. Rats were fed on either normal chow or high fat diet for 10 weeks for obesity induction phase and subsequently received C. betacea extract at low dose (150 mg kg−1), medium dose (200 mg kg−1), or high dose (300 mg kg−1) or placebo via oral gavages for another 7 weeks for treatment phase. Treatment of obese rats with C. betacea extracts led to a significant decrease in total cholesterol and significant increase in HDL-C (p < 0.05). Also there was a trend of positive reduction in blood glucose, triglyceride, and LDL-C with positive reduction of body weight detected in medium and high dosage of C. betacea extract. Interestingly, C. betacea treated rats showed positive improvement of superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity along with a significant increase of total antioxidant status (TAS) (p < 0.05). Further, rats treated with C. betacea show significantly lower in TNF-α and IL-6 activities (p < 0.05). This study demonstrates the potential use of Cyphomandra betacea extract for weight maintenance and complimentary therapy to suppress some obesity complication signs. PMID:26171246

  16. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    PubMed

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.

  17. Fast and delayed locomotor response to acute high-dose nicotine administration in adult male rats.

    PubMed

    Jandová, K; Marešová, D; Pokorný, J

    2013-01-01

    The aim of the present study was to compare the immediate and delayed locomotor response to high-dose nicotine (NIC) administration in rats. The vertical and horizontal activity of behavior in adult male rats exposed to 1 mg/kg NIC or saline (SAL) were tested in a Laboras apparatus for one hour after drug application. Animals were then returned to their cages and housed for another seven days. After this period all animals were placed in Laboras again and their behavioral pattern was retested for another period of one hour (delayed response). Horizontal activity: immediately after nicotine administration animal were less mobile (first 2-minutes interval), when compared with controls. The immobilization effect of nicotine disappeared within 4 minutes and during whole first 10-minutes interval time spent by locomotion did not differ from controls. Locomotion activity of animals treated with nicotine increased robustly in following 10 minutes and remained significantly higher in 2nd, 3rd and 5th 10-minutes interval. Vertical activity: Rearing frequency was significantly lowered by NIC administration in first two minutes of the experiment and the same was found when the duration of rearing was analyzed. Lower rearing intensity of NIC treated animals disappeared in 4 minutes and was finally higher during whole test session as compared with controls. When duration of rearing was analyzed it was significantly longer in NIC treated animals. In majority of observed behavioral aspects there were no differences between NIC treated rats and controls seven days after NIC or SAL treatment. Our results reflect effect of NIC and we conclude that NIC significantly influences behavior of experimental animals.

  18. Effects of High-Butterfat Diet on Embryo Implantation in Female Rats Exposed to Bisphenol A.

    PubMed

    Martinez, Alan M; Cheong, Ana; Ying, Jun; Xue, Jingchuan; Kannan, Kurunthachalam; Leung, Yuet-Kin; Thomas, Michael A; Ho, Shuk-Mei

    2015-12-01

    Bisphenol A (BPA) is an endocrine disruptor associated with poor pregnancy outcomes in human and rodents. The effects of butterfat diets on embryo implantation and whether it modifies BPA's actions are currently unknown. We aimed to determine the effects of butterfat diet on embryo implantation success in female rats exposed to an environmentally relevant dose of BPA. Female Sprague-Dawley rats were exposed to dietary butterfat (10% or 39% kcal/kg body weight [BW]) in the presence or absence of BPA (250 μg/kg BW) or ethinylestradiol (0.1 μg/kg BW) shortly before and during pregnancy to assess embryo implantation potentials by preimplantation development and transport, in vitro blastulation, outgrowth, and implantation. On gestational day (GD) 4.5, rats treated with BPA alone had higher serum total BPA level (2.3-3.7 ng/ml). They had more late-stage preimplantation embryos, whereas those receiving high butterfat (HBF) diet had the most advanced-stage embryos; dams cotreated with HBF and BPA had the most number of advanced embryos. BPA markedly delayed embryo transport to the uterus, but neither amount of butterfat had modifying effects. An in vitro implantation assay showed HBF doubled the outgrowth area, with BPA having no effect. In vivo, BPA reduced the number of implanted embryos on GD8, and cotreatment with HBF eliminated this adverse effect. HBF diet overall resulted in more and larger GD8 embryos. This study reveals the implantation disruptive effects of maternal exposure to an environmentally relevant dose of BPA and identifies HBF diet as a modifier of BPA in promoting early embryonic health.

  19. Voluntary exercise improves metabolic profile in high-fat fed glucocorticoid-treated rats

    PubMed Central

    Beaudry, Jacqueline L.; Dunford, Emily C.; Leclair, Erwan; Mandel, Erin R.; Peckett, Ashley J.; Haas, Tara L.

    2015-01-01

    Diabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic β-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old). Animals were acclimatized to running wheels for 2 wk, then given a HFD, either wax (placebo) or CORT pellets, and split into 4 groups: placebo-sedentary (SED) or -EX and CORT-SED or -EX. After 2 wk of running combined with treatment, CORT-EX animals had reduced visceral adiposity, and increased skeletal muscle type IIb/x fiber area, oxidative capacity, capillary-to-fiber ratio and insulin sensitivity compared with CORT-SED animals (all P < 0.05). Although CORT-EX animals still had fasting hyperglycemia, these values were significantly improved compared with CORT-SED animals (14.3 ± 1.6 vs. 18.8 ± 0.9 mM). In addition, acute in vivo insulin response to an oral glucose challenge was enhanced ∼2-fold in CORT-EX vs. CORT-SED (P < 0.05) which was further demonstrated ex vivo in isolated islets. We conclude that voluntary wheel running in rats improves, but does not fully normalize, the metabolic profile and skeletal muscle composition of animals administered CORT and HFD. PMID:25792713

  20. Voluntary exercise improves metabolic profile in high-fat fed glucocorticoid-treated rats.

    PubMed

    Beaudry, Jacqueline L; Dunford, Emily C; Leclair, Erwan; Mandel, Erin R; Peckett, Ashley J; Haas, Tara L; Riddell, Michael C

    2015-06-01

    Diabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic β-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old). Animals were acclimatized to running wheels for 2 wk, then given a HFD, either wax (placebo) or CORT pellets, and split into 4 groups: placebo-sedentary (SED) or -EX and CORT-SED or -EX. After 2 wk of running combined with treatment, CORT-EX animals had reduced visceral adiposity, and increased skeletal muscle type IIb/x fiber area, oxidative capacity, capillary-to-fiber ratio and insulin sensitivity compared with CORT-SED animals (all P < 0.05). Although CORT-EX animals still had fasting hyperglycemia, these values were significantly improved compared with CORT-SED animals (14.3 ± 1.6 vs. 18.8 ± 0.9 mM). In addition, acute in vivo insulin response to an oral glucose challenge was enhanced ∼2-fold in CORT-EX vs. CORT-SED (P < 0.05) which was further demonstrated ex vivo in isolated islets. We conclude that voluntary wheel running in rats improves, but does not fully normalize, the metabolic profile and skeletal muscle composition of animals administered CORT and HFD.

  1. Antidiabetic activity of 3-hydroxyflavone analogues in high fructose fed insulin resistant rats

    PubMed Central

    Nayak, Yogendra; Venkatachalam, H.; Daroji, Vijay Kumar; Mathew, Geetha; Jayashree, B.S.; Unnikrishnan, M.K.

    2014-01-01

    Synthetic 3-hydroxyflavone analogues (JY-1, JY-2, JY-3, JY-4), were tested for antidiabetic activity in high-fructose-diet-fed (66 %, for 6 weeks) insulin-resistant Wistar rats (FD-fed rats). The fasting blood glucose, insulin, creatinine and AGEs were decreased to near normal upon treatment with test compounds. Insulin resistance markers such as HOMA-IR, K-ITT, plasma triglycerides, lipids, endogenous antioxidant defense and glycogen were restored in FD-fed rats after treatment with 3-hydroxyflavones. It is known that insulin resistance is partly because of oxidative stress and hence antioxidant activity was determined. They exhibited significant in vitro DPPH and ABTS radical scavenging activity (IC50: 10.66-66.63 µM). Test compounds inhibited ROS and NO production in RAW 264.7 cells (IC50: 10.39–42.63 µM) and they were found as potent as quercetin. Further, the test compounds inhibited lipid peroxidation at low concentrations (IC50: 99.61-217.47 µM). All test compounds at concentrations 100-200 µM protected calf thymus DNA-damage by Fenton reaction. In addition, test compounds inhibited protein glycation in different in vitro antiglycation assays. JY-2 showed maximum potency in all the stages of glycation which was comparable to the standard quercetin and aminoguanidine. Test compounds also enhanced the glucose uptake by L6 myotubes at an EC50 much lower than that of quercetin. Thus the synthetic 3-hydroxyflavones were found to have good antidiabetic activity by pleotropic and multimodal suppression of insulin resistance and enhancement of glucose uptake by skeletal muscles. These compounds are non-toxic at the doses tested. Further, the combined antioxidant and antiglycation activities of these molecules have complementary benefits in management of diabetes. PMID:26417321

  2. Phenotypic and molecular differences between rats selectively bred to voluntarily run high vs. low nightly distances.

    PubMed

    Roberts, Michael D; Brown, Jacob D; Company, Joseph M; Oberle, Lauren P; Heese, Alexander J; Toedebusch, Ryan G; Wells, Kevin D; Cruthirds, Clayton L; Knouse, John A; Ferreira, J Andries; Childs, Thomas E; Brown, Marybeth; Booth, Frank W

    2013-06-01

    The purpose of the present study was to partially phenotype male and female rats from generations 8-10 (G8-G10) that had been selectively bred to possess low (LVR) vs. high voluntary running (HVR) behavior. Over the first 6 days with wheels, 34-day-old G8 male and female LVRs ran shorter distances (P < 0.001), spent less time running (P < 0.001), and ran slower (P < 0.001) than their G8 male and female HVR counterparts, respectively. HVR and LVR lines consumed similar amounts of standard chow with or without wheels. No inherent difference existed in PGC-1α mRNA in the plantaris and soleus muscles of LVR and HVR nonrunners, although G8 LVR rats inherently possessed less NADH-positive superficial plantaris fibers compared with G8 HVR rats. While day 28 body mass tended to be greater in both sexes of G9-G10 LVR nonrunners vs. G9-G10 HVR nonrunners (P = 0.06), body fat percentage was similar between lines. G9-G10 HVRs had fat mass loss after 6 days of running compared with their prerunning values, while LVR did not lose or gain fat mass during the 6-day voluntary running period. RNA deep sequencing efforts in the nucleus accumbens showed only eight transcripts to be >1.5-fold differentially expressed between lines in HVR and LVR nonrunners. Interestingly, HVRs presented less Oprd1 mRNA, which ties in to potential differences in dopaminergic signaling between lines. This unique animal model provides further evidence as to how exercise may be mechanistically regulated.

  3. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude /3,800 m/.

    NASA Technical Reports Server (NTRS)

    Cipriano, L. F.; Pace, N.

    1973-01-01

    Liver tissue obtained from adult rats exposed to 3800 m altitude for intervals ranging from 1.5 hr to 63 days was examined by enzymatic analysis. During the first 3 hr of exposure, an immediate decrease in rephosphorylation of high-energy phosphates led to reduced glycogenesis and eventual pileup of AMP, pyruvate, fructose 1,6-diphosphate, glucose 6-phosphate, and glucose. This was accompanied by a reduction of pentose phosphate pathway activity. After 3 to 6 hr, a secondary adjustment of substrate concentrations occurred along with the apparent facilitation of phosphofructokinase. This secondary adjustment appears to increase anaerobic production of ATP and represents a significant intracellular contribution to the acclimatization process at high altitude.

  4. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet.

    PubMed

    Salaj, Rastislav; Stofilová, Jana; Soltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter; Bomba, Alojz

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance.

  5. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet.

    PubMed

    La Favor, Justin D; Anderson, Ethan J; Hickner, Robert C; Wingard, Christopher J

    2013-03-01

    synthase uncoupling is a key mechanism in diet-induced ED. La Favor JD, Anderson EJ, Hickner RC, and Wingard CJ. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet. J Sex Med 2013;10:694-703.

  6. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    EPA Science Inventory

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  7. Mycophenolate mofetil prevents high-fat diet-induced hypertension and renal glomerular injury in Dahl SS rats.

    PubMed

    Spradley, Frank T; De Miguel, Carmen; Hobbs, Janet; Pollock, David M; Pollock, Jennifer S

    2013-11-01

    We designed experiments to test the hypothesis that Dahl salt-sensitive (SS) rats are sensitive to high-fat diet (HFD)-induced hypertension and renal injury via an inflammatory mechanism. Twelve-week-old Dahl SS rats were maintained on a normal diet (ND; 14% fat), HFD (59% fat), or HFD supplemented with the lymphocyte immunosuppressive agent, mycophenolate mofetil (HFD + MMF; 30 mg/kg/day orally in diet), for a period of 4 weeks. Mean arterial pressure (MAP), metabolic parameters, T lymphocyte (CD3(+)) localization, and renal structural damage were assessed during the studies. Four weeks of HFD significantly elevated MAP and visceral adiposity without changing circulating levels of lipids or adipokines. Immunohistochemical analysis demonstrated that SS rats on HFD had significantly greater numbers of CD3(+) cells in renal glomerular and medullary areas compared to ND SS rats. Additionally, HFD led to increased glomerular injury, but did not alter renal medullary injury. Chronic MMF treatment in HFD-fed Dahl SS rats reduced MAP, visceral adiposity, infiltration of CD3(+) cells in the glomerulus, as well as glomerular injury. However, MMF treatment did not alter HFD-induced infiltration of CD3(+) cells in the renal medulla. In conclusion, Dahl SS rats are sensitized to HFD-induced hypertension and renal glomerular injury via infiltration of T lymphocytes.

  8. (-)-Epicatechin reduces blood pressure increase in high-fructose-fed rats: effects on the determinants of nitric oxide bioavailability.

    PubMed

    Litterio, Maria C; Vazquez Prieto, Marcela A; Adamo, Ana M; Elesgaray, Rosana; Oteiza, Patricia I; Galleano, Monica; Fraga, Cesar G

    2015-07-01

    This work investigated the blood pressure (BP)-lowering effect of the flavanol (-)-epicatechin in a model of metabolic syndrome. Rats were fed a regular chow diet without (Control) or with 10% (w/v) fructose in the drinking water (high fructose, HF) for 8 weeks. A subgroup of the HF-fed rats was supplemented with (-)-epicatechin 20 mg/kg body weight (HF-EC). Dietary (-)-epicatechin reverted the increase in BP caused by the fructose treatment. In aorta, superoxide anion production and the expression of the NADPH oxidase (NOX) subunits p47(phox) and p22(phox) were enhanced in the HF-fed rats. The increase was prevented by (-)-epicatechin. Similar profile was observed for NOX4 expression. The activity of aorta nitric oxide synthase (NOS) was increased in the HF group and was even higher in the HF-EC rats. These effects were paralleled by increased endothelial NOS phosphorylation at the activation site Ser1177. Among the more relevant mitogen-activated protein kinase pathways in vascular tissue, c-Jun-N-terminal kinase was shown to be activated in the aorta of the HF-fed rats, and (-)-epicatechin supplementation mitigated this activation. Thus, the results suggest that dietary (-)-epicatechin supplementation prevented hypertension in HF-fed rats, decreasing superoxide anion production and elevating NOS activity, favoring an increase in NO bioavailability. PMID:25943039

  9. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    PubMed Central

    de Oliveira, Luciano Fonseca Lemos; Mejia, Jorge; de Carvalho, Eduardo Elias Vieira; Lataro, Renata Maria; Frassetto, Sarita Nasbine; Fazan, Rubens; Salgado, Hélio Cesar; Galvis-Alonso, Orfa Yineth; Simões, Marcus Vinícius

    2013-01-01

    Background Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. Objective To determine the accuracy of this system for quantification of myocardial infarct area in rats. Methods Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. Results The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. Conclusion The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents. PMID:23917507

  10. High Fat Diet and Inflammation – Modulation of Haptoglobin Level in Rat Brain

    PubMed Central

    Spagnuolo, Maria Stefania; Mollica, Maria Pina; Maresca, Bernardetta; Cavaliere, Gina; Cefaliello, Carolina; Trinchese, Giovanna; Scudiero, Rosaria; Crispino, Marianna; Cigliano, Luisa

    2015-01-01

    Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt) is an acute phase protein, which acts as antioxidant by binding free haemoglobin (Hb), thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aβ) uptake by astrocyte, and limiting Aβ toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks) high-fat diet (HFD) influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr). Hpt concentration was lower (p < 0.001) in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p < 0.01), inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p < 0.01) or 24 weeks (p < 0.001) compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p = 0.04) and 24 weeks groups (p = 0.01), and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p < 0.001) Hpt secretion in the extracellular compartment. We hypothesize that the HFD

  11. Biotransformation of ethanol to ethyl glucuronide in a rat model after a single high oral dosage.

    PubMed

    Wright, Trista H; Ferslew, Kenneth E

    2012-03-01

    Ethyl glucuronide (EtG) is a minor ethanol metabolite that confirms the absorption and metabolism of ethanol after oral or dermal exposure. Human data suggest that maximum blood EtG (BEtG) concentrations are reached between 3.5 and 5.5h after ethanol administration. This study was undertaken to determine if the Sprague-Dawley (SD) rat biotransforms ethanol to EtG after a single high oral dose of ethanol. SD rats (male, n=6) were gavaged with a single ethanol dose (4 g/kg), and urine was collected for 3 h in metabolic cages, followed by euthanization and collection of heart blood. Blood and urine were analyzed for ethanol and EtG by gas chromatography and enzyme immunoassay. Blood and urine ethanol concentrations were 195±23 and 218±19 mg/dL, whereas BEtG and urine EtG (UEtG) concentrations were 1,363±98 ng equivalents/mL and 210±0.29 mg equivalents/dL (X ± standard error of the mean [S.E.M.]). Sixty-six male SD rats were gavaged ethanol (4 g/kg) and placed in metabolic cages to determine the extent and duration of ethanol to EtG biotransformation and urinary excretion. Blood and urine were collected up to 24 h after administration for ethanol and EtG analysis. Maximum blood ethanol, urine ethanol, and UEtG were reached within 4 h, whereas maximum BEtG was reached 6 h after administration. Maximum concentrations were blood ethanol, 213±20 mg/dL; urine ethanol, 308±34 mg/dL; BEtG, 2,683±145 ng equivalents/mL; UEtG, 1.2±0.06 mg equivalents/mL (X±S.E.M.). Areas under the concentration-time curve were blood ethanol, 1,578 h*mg/dL; urine ethanol, 3,096 h*mg/dL; BEtG, 18,284 h*ng equivalents/mL; and UEtG, 850 h*mg equivalents/dL. Blood ethanol and BEtG levels were reduced to below limits of detection (LODs) within 12 and 18 h after ethanol administration. Urine ethanols were below LOD at 18 h, but UEtG was still detectable at 24h after administration. Our data prove that the SD rat biotransforms ethanol to EtG and excretes both in the urine and suggest that it

  12. Biotransformation of ethanol to ethyl glucuronide in a rat model after a single high oral dosage.

    PubMed

    Wright, Trista H; Ferslew, Kenneth E

    2012-03-01

    Ethyl glucuronide (EtG) is a minor ethanol metabolite that confirms the absorption and metabolism of ethanol after oral or dermal exposure. Human data suggest that maximum blood EtG (BEtG) concentrations are reached between 3.5 and 5.5h after ethanol administration. This study was undertaken to determine if the Sprague-Dawley (SD) rat biotransforms ethanol to EtG after a single high oral dose of ethanol. SD rats (male, n=6) were gavaged with a single ethanol dose (4 g/kg), and urine was collected for 3 h in metabolic cages, followed by euthanization and collection of heart blood. Blood and urine were analyzed for ethanol and EtG by gas chromatography and enzyme immunoassay. Blood and urine ethanol concentrations were 195±23 and 218±19 mg/dL, whereas BEtG and urine EtG (UEtG) concentrations were 1,363±98 ng equivalents/mL and 210±0.29 mg equivalents/dL (X ± standard error of the mean [S.E.M.]). Sixty-six male SD rats were gavaged ethanol (4 g/kg) and placed in metabolic cages to determine the extent and duration of ethanol to EtG biotransformation and urinary excretion. Blood and urine were collected up to 24 h after administration for ethanol and EtG analysis. Maximum blood ethanol, urine ethanol, and UEtG were reached within 4 h, whereas maximum BEtG was reached 6 h after administration. Maximum concentrations were blood ethanol, 213±20 mg/dL; urine ethanol, 308±34 mg/dL; BEtG, 2,683±145 ng equivalents/mL; UEtG, 1.2±0.06 mg equivalents/mL (X±S.E.M.). Areas under the concentration-time curve were blood ethanol, 1,578 h*mg/dL; urine ethanol, 3,096 h*mg/dL; BEtG, 18,284 h*ng equivalents/mL; and UEtG, 850 h*mg equivalents/dL. Blood ethanol and BEtG levels were reduced to below limits of detection (LODs) within 12 and 18 h after ethanol administration. Urine ethanols were below LOD at 18 h, but UEtG was still detectable at 24h after administration. Our data prove that the SD rat biotransforms ethanol to EtG and excretes both in the urine and suggest that it

  13. Haloperidol and rimonabant increase delay discounting in rats fed high-fat and standard-chow diets.

    PubMed

    Boomhower, Steven R; Rasmussen, Erin B

    2014-12-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for 3 months. Then, operant sessions began in which rats (n=9 standard chow; n=10 high-fat) chose between one sucrose pellet delivered immediately versus three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered intraperitoneally before some choice sessions under both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve values. Rats in the high-fat diet condition showed increased sensitivity to haloperidol compared with chow-fed controls; haloperidol increased discounting in both dietary groups in the sucrose condition, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking dopamine-2 and cannabinoid-1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task.

  14. High dietary cholesterol masks type 2 diabetes-induced osteopenia and changes in bone microstructure in rats.

    PubMed

    Lapmanee, Sarawut; Charoenphandhu, Narattaphol; Aeimlapa, Ratchaneevan; Suntornsaratoon, Panan; Wongdee, Kannikar; Tiyasatkulkovit, Wacharaporn; Kengkoom, Kanchana; Chaimongkolnukul, Khuanjit; Seriwatanachai, Dutmanee; Krishnamra, Nateetip

    2014-10-01

    Type 2 diabetes mellitus (T2DM) often occurs concurrently with high blood cholesterol or dyslipidemia. Although T2DM has been hypothesized to impair bone microstructure, several investigations showed that, when compared to age-matched healthy individuals, T2DM patients had normal or relatively high bone mineral density (BMD). Since cholesterol and lipids profoundly affect the function of osteoblasts and osteoclasts, it might be cholesterol that obscured the changes in BMD and bone microstructure in T2DM. The present study, therefore, aimed to determine bone elongation, epiphyseal histology, and bone microstructure in non-obese T2DM Goto-Kakizaki rats treated with normal (GK-ND) and high cholesterol diet. We found that volumetric BMD was lower in GK-ND rats than the age-matched wild-type controls. In histomorphometric study of tibial metaphysis, T2DM evidently suppressed osteoblast function as indicated by decreases in osteoblast surface, mineral apposition rate, and bone formation rate in GK-ND rats. Meanwhile, the osteoclast surface and eroded surface were increased in GK-ND rats, thus suggesting an activation of bone resorption. T2DM also impaired bone elongation, presumably by retaining the chondrogenic precursor cells in the epiphyseal resting zone. Interestingly, several bone changes in GK rats (e.g., increased osteoclast surface) disappeared after high cholesterol treatment as compared to wild-type rats fed high cholesterol diet. In conclusion, high cholesterol diet was capable of masking the T2DM-induced osteopenia and changes in several histomorphometric parameters that indicated bone microstructural defect. Cholesterol thus explained, in part, why a decrease in BMD was not observed in T2DM, and hence delayed diagnosis of the T2DM-associated bone disease.

  15. Growth performance and muscle oxidation in rats fed increasing amounts of high-tannin sorghum.

    PubMed

    Larraín, R E; Richards, M P; Schaefer, D M; Ji, L L; Reed, J D

    2007-12-01

    Oxidative processes deteriorate the quality of meat products. High tannin sorghums (HTS) contain flavonoid oligomers known as proanthocyanidins or condensed tannins. These compounds act as anti-oxidants in vitro, but their effectiveness in vivo remains unclear. We tested the hypothesis that moderate amounts of dietary HTS could reduce markers of oxidation on muscle of rats without having detrimental effects in growth. We used 2 groups of 38 male Sprague Dawley rats at 5 and 13 wk of age each. Each age group was fed 4 diets in a completely randomized design. The younger group was fed the experimental diets for 10 wk (10W); whereas the older group was fed for 2 wk (2W). The diets were modified from the NIH-07 diet and contained HTS and corn at ratios of 0:50 (S0, control), 20:30 (S20), 35:15 (S35), and 50:0 (S50) as a percentage of the diet. Growth and the efficiency of gain were assessed periodically measuring BW, ADFI, ADG, and G:F. Oxidation in muscle was measured in fresh tissue and after 6 d of aerobic-refrigerated storage. Muscles evaluated were LM and soleus (SM). Fresh liver was also evaluated. Thiobarbituric acid-reactive substances (TBARS) and carbonyl content were used as markers of lipid and protein oxidation, respectively. No differences in BW, ADFI, ADG, and G:F were observed in 2W rats. Greater (P < 0.05) ADFI and ADG were observed in 10W-S35 group between d 1 and 7 and greater BW (P = 0.049) was observed in group 10W-S35 at d 70 compared with 10W-S0. No differences were observed between S0 and any HTS diet in G:F in 10W and 2W rats. No differences in TBARS or carbonyls were observed in liver. No differences in TBARS were observed in fresh and aged LM and SM. When LM samples were aged for 6 d, decreased carbonyl contents (P < 0.01) were observed in 10W-S35 and 10W-S50 diets compared with 10W-S0. Reductions in carbonyls were also observed in aged SM between 2W-S50 and 2W-S0 (P = 0.013). We concluded that inclusion of 35% HTS in the diet increased intake

  16. Growth performance and muscle oxidation in rats fed increasing amounts of high-tannin sorghum.

    PubMed

    Larraín, R E; Richards, M P; Schaefer, D M; Ji, L L; Reed, J D

    2007-12-01

    Oxidative processes deteriorate the quality of meat products. High tannin sorghums (HTS) contain flavonoid oligomers known as proanthocyanidins or condensed tannins. These compounds act as anti-oxidants in vitro, but their effectiveness in vivo remains unclear. We tested the hypothesis that moderate amounts of dietary HTS could reduce markers of oxidation on muscle of rats without having detrimental effects in growth. We used 2 groups of 38 male Sprague Dawley rats at 5 and 13 wk of age each. Each age group was fed 4 diets in a completely randomized design. The younger group was fed the experimental diets for 10 wk (10W); whereas the older group was fed for 2 wk (2W). The diets were modified from the NIH-07 diet and contained HTS and corn at ratios of 0:50 (S0, control), 20:30 (S20), 35:15 (S35), and 50:0 (S50) as a percentage of the diet. Growth and the efficiency of gain were assessed periodically measuring BW, ADFI, ADG, and G:F. Oxidation in muscle was measured in fresh tissue and after 6 d of aerobic-refrigerated storage. Muscles evaluated were LM and soleus (SM). Fresh liver was also evaluated. Thiobarbituric acid-reactive substances (TBARS) and carbonyl content were used as markers of lipid and protein oxidation, respectively. No differences in BW, ADFI, ADG, and G:F were observed in 2W rats. Greater (P < 0.05) ADFI and ADG were observed in 10W-S35 group between d 1 and 7 and greater BW (P = 0.049) was observed in group 10W-S35 at d 70 compared with 10W-S0. No differences were observed between S0 and any HTS diet in G:F in 10W and 2W rats. No differences in TBARS or carbonyls were observed in liver. No differences in TBARS were observed in fresh and aged LM and SM. When LM samples were aged for 6 d, decreased carbonyl contents (P < 0.01) were observed in 10W-S35 and 10W-S50 diets compared with 10W-S0. Reductions in carbonyls were also observed in aged SM between 2W-S50 and 2W-S0 (P = 0.013). We concluded that inclusion of 35% HTS in the diet increased intake

  17. Antidiabetic and antihyperlipidemic activities of a novel polyherbal formulation in high fat diet/streptozotocin induced diabetic rat model

    PubMed Central

    Subhasree, N.; Kamella, Ananthkumar; Kaliappan, Ilango; Agrawal, Aruna; Dubey, Govind Prasad

    2015-01-01

    Objective: To investigate the antidiabetic and antihyperlipidemic activities of polyherbal formulation (PHF) containing hydroalcoholic extracts of four plants namely Salacia oblonga, Salacia roxbhurgii, Garcinia indica and Lagerstroemia parviflora in streptozotocin (STZ)-induced diabetic rats by administering oral doses (200 and 400 mg/kg body weight). Materials and Methods: Animals were divided into diabetic and nondiabetic groups. Rats were fed with a high-fat diet (HFD) and induced with a single low dose of STZ (35 mg/kg) i.p. Diabetic rats were treated with formulation (200 and 400 mg/kg) and metformin 250 mg/kg. Blood glucose levels were measured using blood glucose test strips with ACCU CHEK glucometer. Lipid profile and gluconeogenic enzymes were determined in normal and STZ-induced diabetic rats after oral administration of the PHF for 28 days. Histopathological changes in diabetic rat organs (pancreas, liver, and kidney) were also observed after PHF treatment. Results: Treatment of diabetic rats with PHF and metformin decreased plasma glucose and lipid profile levels. Blood glucose level showed significant reduction after 28 days of treatment with formulation at 200 and 400 mg/kg and in metformin. Formulation treated rats showed significant (P < 0.001) decrease in the activities of gluconeogenic enzymes. Histological examination of various organ tissues of normal control, diabetic control, and drug-treated rats revealed significant results. Treatment with PHF reverses the most blood and tissue changes toward the normal level. Conclusion: These findings suggested the antihyperglycemic and antihyperlipidemic properties of the PHF and thus help in preventing future complications of diabetes. PMID:26600639

  18. Association between oxidative stress and contextual fear conditioning in Carioca high- and low-conditioned freezing rats.

    PubMed

    Hassan, Waseem; Gomes, Vitor de Castro; Pinton, Simone; Batista Teixeira da Rocha, Joao; Landeira-Fernandez, J

    2013-05-28

    We recently reported two novel breeding lines of rats known as Carioca high-and low-conditioned freezing (CHF and CLF), based on defensive freezing responses to contextual cues previously associated with electric footshock. The anxiety-like profile of these animals from the 7th generation was tested in the elevated plus maze. The results indicated that CHF animals presented a significantly more "anxious" phenotype compared with CLF animals. Animals from the 12th generation were used to evaluate the oxidative stress status of the cortex, hippocampus, and cerebellum. Reactive oxidative species (ROS) were evaluated using 2,7-dichlorofluorescin diacetate (DCFH-DA; a sensor of reactive oxygen species [ROS]), and the levels of malondialdehyde (MDA), an early marker of lipid peroxidation, were assessed. The results indicated that free radical concentrations and MDA levels were significantly higher in all three brain structures in CHF rats compared with CLF rats. Our data also showed that the hippocampus had the highest reactive species and MDA concentrations compared with the cortex and cerebellum in CHF rats. Animals from the 16th generation were used to evaluate the antioxidant enzyme activity of catalase (CAT) and glutathione peroxidase (GPx) within these three brain structures. The results indicated that CAT activity was lower in the cortex and hippocampus in CHF rats compared with CLF rats. No significant difference was observed in the cerebellum. The enzymatic activity of GPx was significantly decreased in all three structures in CHF rats compared with CLF rats. The hippocampus exhibited the highest GPx activity compared with the other two brain structures. These findings suggest the involvement of a redox system in these two bidirectional lines, and the hippocampus might be one of the prime brain structures involved in this state of oxidative stress imbalance.

  19. Effects of high-sucrose feeding on insulin resistance and hemodynamic responses to insulin in spontaneously hypertensive rats.

    PubMed

    Mélançon, Sébastien; Bachelard, Hélène; Badeau, Mylène; Bourgoin, Frédéric; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2006-06-01

    This study was designed to investigate the effects of a sucrose diet on vascular and metabolic actions of insulin in spontaneously hypertensive rats (SHR). Male SHR were randomized to receive a sucrose or regular chow diet for 4 wk. Age-matched, chow-fed Wistar-Kyoto (WKY) rats were used as normotensive control. In a first series of experiments, the three groups of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and blood flows. Insulin sensitivity was assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine glucose transport activity in isolated muscles and to determine endothelial nitric oxide synthase (eNOS) protein expression in muscles and endothelin content in vascular tissues. Sucrose feeding was shown to markedly enhance the pressor response to insulin and its hindquarter vasoconstrictor effect when compared with chow-fed SHR. A reduction in eNOS protein content in muscle, but no change in vascular endothelin-1 protein, was noted in sucrose-fed SHR when compared with WKY rats, but these changes were not different from those noted in chow-fed SHR. Similar reductions in insulin-stimulated glucose transport were observed in soleus muscles from both groups of SHR when compared with WKY rats. In extensor digitorum longus muscles, a significant reduction in insulin-stimulated glucose transport was only seen in sucrose-fed rats when compared with the other two groups. Environmental factors, that is, high intake of simple sugars, could possibly potentiate the genetic predisposition in SHR to endothelial dysfunction and insulin resistance.

  20. Genetics of alcoholism: simultaneous presentation of a chocolate drink diminishes alcohol preference in high drinking HAD rats.

    PubMed

    Lankford, M F; Myers, R D

    1994-10-01

    Through selective crossbreeding of the N/Nih heterogeneous stock of rats, two genetic lines of rats have been developed that are categorized by their preference for ethyl alcohol as high alcohol drinking (HAD) and low alcohol drinking (LAD) animals. Corresponding to other strains of rat bred for alcohol selection or rejection, they were subdivided on the basis of their intake of a solution of 10% alcohol vs. water. The present experiments were designed to determine whether the HAD-1 and LAD-1 lines are similar to the P and NP rats in their profile of alcohol consumption. Five successive three-bottle preference tests for alcohol drinking in the presence of water were undertaken in both HAD (n = 9) and LAD (n = 10) rats as follows: 10% alcohol for 5 days; 3-30% concentrations of alcohol increased over 11 days; the maximally preferred concentration of alcohol for 5 days; this maximally preferred concentration of alcohol plus either chocolate Slender for 5 days, or an aspartame solution for 5 days. The intake of alcohol of the LAD rats during the 10% test was 0.4 g/kg/day, whereas during the 3-30% test, the maximum intake was 1.7 g/kg/day; their maximally preferred concentrations ranged between 7% and 9% alcohol. In contrast, the intake of 10% alcohol of the HAD rats was 6.5 g/kg/day, whereas during the 3-30% test the mean daily intake was 6.6 g/kg/day; the maximally preferred solutions of the HAD rats ranged between 13 to 20%, with the mean maximum intake of 10.57 g/kg/day reached at the 20% concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Association between oxidative stress and contextual fear conditioning in Carioca high- and low-conditioned freezing rats.

    PubMed

    Hassan, Waseem; Gomes, Vitor de Castro; Pinton, Simone; Batista Teixeira da Rocha, Joao; Landeira-Fernandez, J

    2013-05-28

    We recently reported two novel breeding lines of rats known as Carioca high-and low-conditioned freezing (CHF and CLF), based on defensive freezing responses to contextual cues previously associated with electric footshock. The anxiety-like profile of these animals from the 7th generation was tested in the elevated plus maze. The results indicated that CHF animals presented a significantly more "anxious" phenotype compared with CLF animals. Animals from the 12th generation were used to evaluate the oxidative stress status of the cortex, hippocampus, and cerebellum. Reactive oxidative species (ROS) were evaluated using 2,7-dichlorofluorescin diacetate (DCFH-DA; a sensor of reactive oxygen species [ROS]), and the levels of malondialdehyde (MDA), an early marker of lipid peroxidation, were assessed. The results indicated that free radical concentrations and MDA levels were significantly higher in all three brain structures in CHF rats compared with CLF rats. Our data also showed that the hippocampus had the highest reactive species and MDA concentrations compared with the cortex and cerebellum in CHF rats. Animals from the 16th generation were used to evaluate the antioxidant enzyme activity of catalase (CAT) and glutathione peroxidase (GPx) within these three brain structures. The results indicated that CAT activity was lower in the cortex and hippocampus in CHF rats compared with CLF rats. No significant difference was observed in the cerebellum. The enzymatic activity of GPx was significantly decreased in all three structures in CHF rats compared with CLF rats. The hippocampus exhibited the highest GPx activity compared with the other two brain structures. These findings suggest the involvement of a redox system in these two bidirectional lines, and the hippocampus might be one of the prime brain structures involved in this state of oxidative stress imbalance. PMID:23566816

  2. Effect of potato on acid-base and mineral homeostasis in rats fed a high-sodium chloride diet.

    PubMed

    Narcy, Agnès; Robert, Laetitia; Mazur, Andrzej; Demigné, Christian; Rémésy, Christian

    2006-05-01

    Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits which may lead to acid-base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on acid-base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0.5 %) or a high (2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5.5 to 7.3) parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62 % of the daily absorbed mineral in rats fed the high-salt WS diet compared with 5 and 28 % in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to 56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing citrate excretion and ameliorating Ca and Mg balance.

  3. Effect of exercise and caloric restriction on DMBA induced mammary tumorigenesis and plasma lipids in rats fed high fat diets

    SciTech Connect

    Magrane, D. )

    1991-03-15

    Female Sprague-Dawley rats were given a single 10 mg dose of 7, 12-Dimethylbenz(a)anthracene (DMBA) and grouped as follows: (1) low fat-sedentary (LF-SED), (2) low fat-exercised (LF-EX), (3) high fat-sedentary (HF-SED), (4) high fat-exercised (HF-EX), (5) high fat-caloric restricted (HF-RES). Diets were isocaloric and contained 3.9% (LF) and 19.4% (HF) of corn oil. Group 5 was fed a 25% caloric restricted diet but with 24.6% fat content to equalize fat intake to HF-SED. After 12 weeks of diet or treadmill exercise, tumor data and plasma lipid profiles were determined. Results show that rats on HF-EX had more total tumors, % of tumors and tumors per tumor bearing rat than rats on HF-SED. The effect of exercise was also evident in LF-EX rats, when compared to LF-SED. Average tumor size and tumor volumes were not affected. The HF-RES group showed reduced tumor profiles compared to HF-SED. HDL, LDL, triglycerides and total cholesterol were unaffected by HF or LF diets or exercise. These data suggest that tumorigenesis is increased by moderate and constant exercise.

  4. High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney.

    PubMed

    De Miguel, Carmen; Lund, Hayley; Mattson, David L

    2011-02-01

    The present study evaluated the influence and mechanism of action of dietary protein intake in Dahl SS hypertension and renal disease. Rats were fed isocaloric diets with low (6%), normal (18%), or high (30%) amounts of protein and 0.4% NaCl from 5 to 12 weeks of age; the NaCl content of the diets was then increased to 4.0% NaCl from 12 to 15 weeks of age. Rats fed the high-protein diet developed the highest mean arterial blood pressure and urine albumin-to-creatinine ratio when fed the 4.0% NaCl diet (153 ± 7 mm Hg and 8.0 ± 2.4, respectively) compared to rats fed normal protein (132 ± 3 mm Hg, 1.2 ± 0.3) or low-protein (132 ± 6 mm Hg, 0.3 ± 0.1) diets. Significantly greater numbers of infiltrating T lymphocytes were observed in kidneys of SS rats fed the high-protein diet (18.9 ± 3 × 10⁵ cells) than in rats fed the low-protein diet (9.1 ± 3 × 10⁵ cells). Furthermore, treatment of SS rats fed the high-protein diet with the immunosuppressant agent mycophenolate mofetil (20 mg/kg per day, ip) significantly reduced the number of infiltrating T cells in the kidneys (from 18.9 ± 2.7 to 10.6 ± 2.0 × 10⁵ cells) while decreasing blood pressure (from 133 ± 3 to 113 ± 4 mm Hg) and the albumin/creatinine ratio (from 10.9 ± 2.3 to 5.4 ± 1.2). These results demonstrate that restriction of protein intake protects the Dahl SS rats from hypertension and kidney disease and indicates that infiltrating immune cells play a pathological role in Dahl SS rats fed a high-protein diet. Moreover, the results show that hypertension in Dahl SS rats is sensitive to both NaCl and protein intake.

  5. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Hou, Zhiping

    2015-01-01

    Edible bird’s nest (EBN) is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD-) induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipoprotein (oxLDL), adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count) were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. PMID:26251574

  6. Alaska pollack protein prevents the accumulation of visceral fat in rats fed a high fat diet.

    PubMed

    Oishi, Yoshie; Dohmoto, Nobuhiko

    2009-04-01

    In the first study (Study 1), 4-wk-old Sprague-Dawley (SD) rats were fed high fat diets containing casein, Alaska pollack, yellowfin tuna, or chicken as the protein source for 28 d. The purpose of this study was to compare the effect of Alaska pollack protein with other animal proteins (casein, yellowfin tuna, and chicken) on the prevention of visceral fat accumulation. We found that Alaska pollack protein was a more potent inhibitor of visceral fat accumulation than the other proteins (p<0.05). In the second study (Study 2), we determined the quantity of Alaska pollack protein needed to have an effect. To test this, 4-wk-old SD rats were fed diets containing different percentages of Alaska pollack proteins (0, 3, 10, 30 or 100%) to replace casein as the protein source for 28 d. The diets with 30 or 100% Alaska pollack protein as the protein source prevented visceral fat accumulation and elevated plasma adiponectin levels. Based on these findings, an inhibitory effect on the accumulation of visceral fats can be achieved by consuming a diet in which 30% or more of the total protein content comes from Alaska pollack. PMID:19436142

  7. Leucine supplementation improves leptin sensitivity in high-fat diet fed rats

    PubMed Central

    Yuan, Xue-Wei; Han, Shu-Fen; Zhang, Jian-Wei; Xu, Jia-Ying; Qin, Li-Qiang

    2015-01-01

    Background Several studies have reported the favorable effect of leucine supplementation on insulin resistance or insulin sensitivity. However, whether or not leucine supplementation improves leptin sensitivity remains unclear. Design Forty-eight male Sprague-Dawley rats were fed with either a high-fat diet (HFD) or HFD supplemented with 1.5, 3.0, and 4.5% leucine for 16 weeks. At the end of the experiment, serum leptin level was measured by ELISA, and leptin receptor (ObR) in the hypothalamus was examined by immunohistochemistry. The protein expressions of ObR and leptin-signaling pathway in adipose tissues were detected by western blot. Results No significant differences in body weight and food/energy intake existed among the four groups. Serum leptin levels were significantly lower, and ObR expression in the hypothalamus and adipose tissues was significantly higher in the three leucine groups than in the control group. These phenomena suggested that leptin sensitivity was improved in the leucine groups. Furthermore, the expressions of JAK2 and STAT3 (activated by ObR) were significantly higher, and that of SOCS3 (inhibits leptin signaling) was significantly lower in the three leucine groups than in the control group. Conclusions Leucine supplementation improves leptin sensitivity in rats on HFD likely by promoting leptin signaling. PMID:26115673

  8. Edible bird's nest attenuates procoagulation effects of high-fat diet in rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Hou, Zhiping

    2015-01-01

    Edible bird's nest (EBN) is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD-) induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipoprotein (oxLDL), adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count) were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. PMID:26251574

  9. High Morphologic Plasticity of Microglia/Macrophages Following Experimental Intracerebral Hemorrhage in Rats

    PubMed Central

    Yang, Shu-Sheng; Lin, Li; Liu, Yue; Wang, Jie; Chu, Jiang; Zhang, Teng; Ning, Lin-Na; Shi, Yan; Fang, Ying-Yan; Zeng, Peng; Wang, Jian-Zhi; Qiu, Ming-Yi; Tian, Qing

    2016-01-01

    As current efforts have limited effects on the clinical outcome of intracerebral hemorrhage (ICH), the mechanisms including microglia/macrophages that involved inflammation need further investigation. Here, 0.4 units of collagenase VII were injected into the left caudate putamen (CPu) to duplicate ICH rat models. In the brains of ICH rats, microglia/macrophages, the nearest cells to the hemorrhagic center, were observed as ameboid and Prussian-blue positive. Furthermore, the ameboid microglia/macrophages were differentiation (CD) 68 and interleukin-1β (IL-1β) positive, and neither CD206 nor chitinase3-like 3 (Ym1) positive, suggesting their strong abilities of phagocytosis and secretion of IL-1β. According to the distance to the hemorrhagic center, we selected four areas—I, II, III, and IV—to analyze the morphology of microglia/macrophages. The processes decreased successively from region I to region IV. Microglia/macrophages in region IV had no processes. The processes in region I were radially distributed, however, they showed obvious directivity towards the hemorrhagic center in regions II and III. Region III had the largest density of compactly arrayed microglia/macrophages. All these in vivo results present the high morphologic plasticity of microglia/macrophages and their functions in the pathogenesis of ICHs. PMID:27455236

  10. High voltage pulsed current stimulation of the sciatic nerve in rats: analysis by the SFI

    PubMed Central

    Leoni, Anita Sofia Leite; Mazzer, Nilton; Guirro, Rinaldo Roberto de Jesus; Jatte, Fernanda Guadallini; Chereguini, Paulo Augusto Costa; Monte-Raso, Vanessa Vilela

    2012-01-01

    Objective To analyze the efficiency of high voltage pulsed current (HVPC) with early application in three different sites, in the regeneration of the sciatic nerve in rats submitted to crush injury, the sciatic functional index (SFI) was used to assess the functional recovery. Methods After crushing of the nerve, 57 animals were submitted to cathodal HVPC at frequency of 50Hz and voltage of 100V, 20 minutes per day, 5 days per week. The rats were divided into five groups: control group; ganglion group; ganglion + muscle group; muscle group; and sham group. The SFI was determined weekly for seven weeks, from the preoperative period to the 6th postoperative week. Results Compared with the control group, the results showed a significantly better performance of group 2 for the first 3 weeks; group 3 showed significantly better performance in the third week; and group 4 showed a significantly negative performance during the 4th and 6th weeks. Conclusion Early application of HVPC had a positive effect in the treatment of the spinal cord region and the sciatic nerve root ganglion with a dispersive electrode on the contralateral lumbar region or on the gastrocnemius. However, HVPC had a negative effect in the treatment with an active electrode on the gastrocnemius and a dispersive electrode on the contralateral thigh. Level of evidence II, Prospective comparative study. PMID:24453588

  11. High Morphologic Plasticity of Microglia/Macrophages Following Experimental Intracerebral Hemorrhage in Rats.

    PubMed

    Yang, Shu-Sheng; Lin, Li; Liu, Yue; Wang, Jie; Chu, Jiang; Zhang, Teng; Ning, Lin-Na; Shi, Yan; Fang, Ying-Yan; Zeng, Peng; Wang, Jian-Zhi; Qiu, Ming-Yi; Tian, Qing

    2016-01-01

    As current efforts have limited effects on the clinical outcome of intracerebral hemorrhage (ICH), the mechanisms including microglia/macrophages that involved inflammation need further investigation. Here, 0.4 units of collagenase VII were injected into the left caudate putamen (CPu) to duplicate ICH rat models. In the brains of ICH rats, microglia/macrophages, the nearest cells to the hemorrhagic center, were observed as ameboid and Prussian-blue positive. Furthermore, the ameboid microglia/macrophages were differentiation (CD) 68 and interleukin-1β (IL-1β) positive, and neither CD206 nor chitinase3-like 3 (Ym1) positive, suggesting their strong abilities of phagocytosis and secretion of IL-1β. According to the distance to the hemorrhagic center, we selected four areas-I, II, III, and IV-to analyze the morphology of microglia/macrophages. The processes decreased successively from region I to region IV. Microglia/macrophages in region IV had no processes. The processes in region I were radially distributed, however, they showed obvious directivity towards the hemorrhagic center in regions II and III. Region III had the largest density of compactly arrayed microglia/macrophages. All these in vivo results present the high morphologic plasticity of microglia/macrophages and their functions in the pathogenesis of ICHs. PMID:27455236

  12. Rats' preferences for high fructose corn syrup vs. sucrose and sugar mixtures.

    PubMed

    Ackroff, Karen; Sclafani, Anthony

    2011-03-28

    High fructose corn syrup (HFCS) has replaced sucrose in many food products, which has prompted research comparing these two sweeteners in rodents. The present study examined the relative palatability of HFCS and sucrose for rats, offering 11% carbohydrate solutions to match the content of common beverages for human consumption. The animals initially preferred HFCS to sucrose but after separate experience with each solution they switched to sucrose preference. Approximating the composition of HFCS with a mixture of fructose and glucose (55:45) yielded a solution that was less attractive than sucrose or HFCS. However, HFCS contains a small amount of glucose polymers, which are very attractive to rats. A 55:42:3 mixture of fructose, glucose and glucose polymers (Polycose) was equally preferred to HFCS and was treated similarly to HFCS in comparisons vs. sucrose. Post-oral effects of sucrose, which is 50% fructose and 50% glucose, may be responsible for the shift in preference with experience. This shift, and the relatively small magnitude of differences in preference for HFCS and sucrose, suggest that palatability factors probably do not contribute to any possible difference in weight gain responses to these sweeteners.

  13. The effect of high dose oral manganese exposure on copper, iron and zinc levels in rats.

    PubMed

    Mercadante, Courtney J; Herrera, Carolina; Pettiglio, Michael A; Foster, Melanie L; Johnson, Laura C; Dorman, David C; Bartnikas, Thomas B

    2016-06-01

    Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood. We previously reported that gavage manganese exposure in rats resulted in higher tissue manganese concentrations when compared with equivalent dietary or drinking water manganese exposures. In this study, we performed follow-up evaluations to determine whether oral manganese exposure perturbs iron, copper, or zinc tissue concentrations. Rats were exposed to a control diet with 10 ppm manganese or dietary, drinking water, or gavage exposure to approximately 11.1 mg manganese/kg body weight/day for 7 or 61 exposure days. While manganese exposure affected levels of all metals, particularly in the frontal cortex and liver, copper levels were most prominently affected. This result suggests an under-appreciated effect of manganese exposure on copper homeostasis which may contribute to our understanding of the pathophysiology of manganese toxicity. PMID:26988220

  14. Angelica acutiloba root attenuates insulin resistance induced by high-fructose diet in rats.

    PubMed

    Liu, I-Min; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Chia Ju

    2011-09-01

    Angelica acutiloba root (Japanese Dong Quai), used for treatment of gynecological disorders, is currently cultivated in Taiwan. The present study evaluated the preventative effect of Angelica acutiloba root (Japanese Dong Quai) on the induction of insulin resistance. Insulin resistance was induced in rats by feeding a high fructose diet for 6 weeks. Thereafter, the rats were maintained on the same diet and treated with oral A. acutiloba root extract or pioglitazone once daily for 8 weeks. At the end of treatment, the degree of basal insulin resistance was measured by homeostasis model assessment (HOMA-IR). Insulin sensitivity was calculated using the composite whole body insulin sensitivity index (ISIcomp). Protein expression was evaluated by immunoblotting. A. acutiloba (300 mg/kg/day) displayed similar characteristics to pioglitazone (20 mg/kg/day) in reducing HOMA-IR and elevating ISIcomp. Elevated glycosylated hemoglobin levels and hyperinsulinemia were ameliorated by A. acutiloba treatment without hepatotoxic or nephrotoxic effects. A. acutiloba treatment improved dyslipidemia, induced lipoprotein lipase activity and enhanced hepatic glycogen accumulation. Further, A. acutiloba treatment enhanced the action of insulin on muscle glucose transporter subtype 4 translocation and attenuated hepatic phosphoenolpyruvate carboxykinase expression. The findings suggest that A. acutiloba may be an effective ethnomedicine for improving insulin sensitivity.

  15. Local glutamate release in the rat ventral lateral thalamus evoked by high-frequency stimulation

    NASA Astrophysics Data System (ADS)

    Agnesi, Filippo; Blaha, Charles D.; Lin, Jessica; Lee, Kendall H.

    2010-04-01

    Thalamic deep brain stimulation (DBS) is proven therapy for essential tremor, Parkinson's disease and Tourette's syndrome. We tested the hypothesis that high-frequency electrical stimulation results in local thalamic glutamate release. Enzyme-linked glutamate amperometric biosensors were implanted in anesthetized rat thalamus adjacent to the stimulating electrode. Electrical stimulation was delivered to investigate the effect of frequency, pulse width, voltage-controlled or current-controlled stimulation, and charge balancing. Monophasic electrical stimulation-induced glutamate release was linearly dependent on stimulation frequency, intensity and pulse width. Prolonged stimulation evoked glutamate release to a plateau that subsequently decayed back to baseline after stimulation. Glutamate release was less pronounced with voltage-controlled stimulation and not present with charge balanced current-controlled stimulation. Using fixed potential amperometry in combination with a glutamate bioprobe and adjacent microstimulating electrode, the present study has shown that monophasic current-controlled stimulation of the thalamus in the anesthetized rat evoked linear increases in local extracellular glutamate concentrations that were dependent on stimulation duration, frequency, intensity and pulse width. However, the efficacy of monophasic voltage-controlled stimulation, in terms of evoking glutamate release in the thalamus, was substantially lower compared to monophasic current-controlled stimulation and entirely absent with biphasic (charge balanced) current-controlled stimulation. It remains to be determined whether similar glutamate release occurs with human DBS electrodes and similar charge balanced stimulation. As such, the present results indicate the importance of evaluating local neurotransmitter dynamics in studying the mechanism of action of DBS.

  16. Effect of proximal versus distal 50% enterectomy on nutritional parameters in rats preconditioned with a high-fat diet or regular chow

    PubMed Central

    Yanala, Ujwal R.; Reidelberger, Roger D.; Thompson, Jon S.; Shostrom, Valerie K.; Carlson, Mark A.

    2015-01-01

    Obesity may protect against the nutritional consequences of short bowel syndrome. We hypothesized that rats preconditioned with an obesogenic diet would have better outcomes after surgical induction of short bowel syndrome compared to rats on regular chow. Rats were fed a high-fat diet or regular rat chow for six months, and then underwent 50% proximal, 50% distal, or sham enterectomy. Food intake, weight, and body composition were monitored before and for 4 weeks after surgery. The high-fat diet consistently produced obesity (>25% body fat). All procedures induced weight loss, but there was no discernable difference between resection vs. sham resection. Rats on the high-fat diet had a greater post-resection loss of body fat compared to rats on chow (36 vs. 26 g, respectively). There was a nonsignificant trend of less lean mass loss in the former compared to the latter rats (16 vs. 33 g, respectively). Enterectomy moderated serum ghrelin, GIP, PPY, insulin, and leptin. Intestinal adaptation was not different between obese vs. non-obese rats. Rats preconditioned with the high-fat diet may have had better retention of lean body mass after a surgical procedure compared to rats on chow. The effect of 50% enterectomy was less than expected. PMID:26612764

  17. Effect of dietary palm oil and its fractions on rat plasma and high density lipoprotein lipids.

    PubMed

    Sundram, K; Khor, H T; Ong, A S

    1990-04-01

    Male Sprague Dawley rats were fed semipurified diets containing 20% fat for 15 weeks. The dietary fats were corn oil, soybean oil, palm oil, palm olein and palm stearin. No differences in the body and organ weights of rats fed the various diets were evident. Plasma cholesterol levels of rats fed soybean oil were significantly lower than those of rats fed corn oil, palm oil, palm olein or palm stearin. Significant differences between the plasma cholesterol content of rats fed corn oil and rats fed the three palm oils were not evident. HDL cholesterol was raised in rats fed the three palm oil diets compared to the rats fed either corn oil or soybean oil. The cholesterol-phospholipid molar ratio of rat platelets was not influenced by the dietary fat type. The formation of 6-keto-PGF1 alpha was significantly enhanced in palm oil-fed rats compared to all other dietary treatments. Fatty acid compositional changes in the plasma cholesterol esters and plasma triglycerides were diet regulated with significant differences between rats fed the polyunsaturated corn and soybean oil compared to the three palm oils.

  18. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats.

    PubMed

    da Rocha, Guilherme L; Crisp, Alex H; de Oliveira, Maria R M; da Silva, Carlos A; Silva, Jadson O; Duarte, Ana C G O; Sene-Fiorese, Marcela; Verlengia, Rozangela

    2016-01-01

    This study aimed to investigate the effects of interval and continuous training on the body mass gain and adiposity levels of rats fed a high-fat diet. Forty-eight male Sprague-Dawley rats were randomly divided into two groups, standard diet and high-fat diet, and received their respective diets for a period of four weeks without exercise stimuli. After this period, the animals were randomly divided into six groups (n = 8): control standard diet (CS), control high-fat diet (CH), continuous training standard diet (CTS), continuous training high-fat diet (CTH), interval training standard diet (ITS), and interval training high-fat diet (ITH). The interval and continuous training consisted of a swimming exercise performed over eight weeks. CH rats had greater body mass gain, sum of adipose tissues mass, and lower serum high density lipoprotein values than CS. The trained groups showed lower values of feed intake, caloric intake, body mass gain, and adiposity levels compared with the CH group. No significant differences were observed between the trained groups (CTS versus ITS and CTH versus ITH) on body mass gains and adiposity levels. In conclusion, both training methodologies were shown to be effective in controlling body mass gain and adiposity levels in high-fat diet fed rats. PMID:26904718

  19. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats

    PubMed Central

    da Rocha, Guilherme L.; Crisp, Alex H.; de Oliveira, Maria R. M.; da Silva, Carlos A.; Silva, Jadson O.; Duarte, Ana C. G. O.; Sene-Fiorese, Marcela; Verlengia, Rozangela

    2016-01-01

    This study aimed to investigate the effects of interval and continuous training on the body mass gain and adiposity levels of rats fed a high-fat diet. Forty-eight male Sprague-Dawley rats were randomly divided into two groups, standard diet and high-fat diet, and received their respective diets for a period of four weeks without exercise stimuli. After this period, the animals were randomly divided into six groups (n = 8): control standard diet (CS), control high-fat diet (CH), continuous training standard diet (CTS), continuous training high-fat diet (CTH), interval training standard diet (ITS), and interval training high-fat diet (ITH). The interval and continuous training consisted of a swimming exercise performed over eight weeks. CH rats had greater body mass gain, sum of adipose tissues mass, and lower serum high density lipoprotein values than CS. The trained groups showed lower values of feed intake, caloric intake, body mass gain, and adiposity levels compared with the CH group. No significant differences were observed between the trained groups (CTS versus ITS and CTH versus ITH) on body mass gains and adiposity levels. In conclusion, both training methodologies were shown to be effective in controlling body mass gain and adiposity levels in high-fat diet fed rats. PMID:26904718

  20. A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats.

    PubMed

    Ueno, M; Bezerra, R M; Silva, M S; Tavares, D Q; Carvalho, C R; Saad, M J

    2000-12-01

    Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-(1/2)) in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days) induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05). There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 +/- 4% (P<0.05) in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-(1/2)) phosphorylation, to 83 +/- 5% (P<0.05) in liver and to 77 +/- 4% (P<0.05) in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.

  1. Functional evaluation of rat hearts transplanted after preservation in a high-pressure gaseous mixture of carbon monoxide and oxygen

    PubMed Central

    Hatayama, Naoyuki; Inubushi, Masayuki; Naito, Munekazu; Hirai, Shuichi; Jin, Yong-Nan; Tsuji, Atsushi B.; Seki, Kunihiro; Itoh, Masahiro; Saga, Tsuneo; Li, Xiao-Kang

    2016-01-01

    We recently succeeded in resuscitating an extracted rat heart following 24–48 hours of preservation in a high-pressure gaseous mixture of carbon monoxide (CO) and oxygen (O2). This study aimed to examine the function of rat hearts transplanted after being preserved in the high-pressure CO and O2 gas mixture. The hearts of donor rats were preserved in a chamber filled with CO and O2 under high pressure for 24 h (CO24h) or 48 h at 4 °C. For the positive control (PC) group, hearts immediately extracted from donor rats were used for transplantation. The preserved hearts were transplanted into recipient rats by heterotopic cervical heart transplantation. CO toxicity does not affect the grafts or the recipients. Light microscopy and [18F]-fluorodeoxyglucose positron emission tomography revealed that there were no significant differences in the size of the myocardial infarction or apoptosis of myocardial cells in post-transplant hearts between the PC and CO24h groups. Furthermore, at 100 days after the transplantation, the heart rate, weight and histological staining of the post-transplanted hearts did not differ significantly between the PC and CO24h groups. These results indicate that the function of rat hearts is well preserved after 24 hours of high-pressure preservation in a CO and O2 gas mixture. Therefore, high-pressure preservation in a gas mixture can be a useful method for organ preservation. PMID:27562456

  2. Early urinary biomarkers for renal tubular damage in spontaneously hypertensive rats on a high salt intake.

    PubMed

    Hosohata, Keiko; Yoshioka, Daisuke; Tanaka, Akira; Ando, Hitoshi; Fujimura, Akio

    2016-01-01

    A high salt intake exacerbates hypertension and accelerates renal tubular damage in hypertensive patients. However, data concerning early biomarkers for renal tubular change induced by a high salt intake are limited. The objective of this study was to clarify the time course of new biomarkers for renal tubular damage during high salt intake in spontaneously hypertensive rats (SHR). Male SHR received a regular or high-salt diet from 9 to 17 weeks of age. At 10 weeks of age, a high salt intake caused renal tubular damage, which was further exacerbated at 17 weeks of age. Although albuminuria was detected in salt-loaded SHR at 14 weeks of age, urinary excretion of vanin-1 and neutrophil gelatinase-associated lipocalin (NGAL) was elevated in these animals from 10-17 weeks of age. However, kidney injury molecule-1 (Kim-1) was elevated at 15 weeks of age in salt-loaded SHR. These results suggest that urinary vanin-1 and NGAL are potentially early biomarkers for renal tubular damage in SHR under a high salt intake.

  3. Effect of Morinda citrifolia (Noni) Fruit Juice on High Fat Diet Induced Dyslipidemia in Rats

    PubMed Central

    Shoeb, Ahsan; Alwar, M.C.; Gokul, P.

    2016-01-01

    Introduction The medicinal value of Morinda citrifolia L. (commonly known as Noni) has been explored in ancient folk remedies with a wide range of therapeutic utility, including antibacterial, antiviral, antifungal, antitumour, analgesic, hypotensive, anti-inflammatory and immune enhancing effects. Aim The present study was designed to evaluate the effects of Noni fruit juice on serum lipid profile in high fat diet induced murine model of dyslipidemia. Materials and Methods Hyperlipidemia was induced by feeding a cholesterol rich high fat diet for 45 days in wistar albino rats of either sex (n=8). Noni fruit juice administered at 50mg/kg/day and 100mg/kg/day, per oral, was compared with the standard drug Atorvastatin (10mg/kg/day, oral) fed for the latter 30 days. The blood samples were then sent for complete blood lipid profile, after 30 days of treatment. The data presented as mean ± SEM was analyzed using one-way ANOVA followed by Tukey’s post-hoc test. The p <0.05 was considered as statistically significant. Results The Noni fruit juice treated group showed a significant decrease in the total cholesterol, triglycerides and very low density lipoprotein - Cholesterol at both the doses when compared to the disease control (p<0.05). However, the decrease in the TC (102.75±9.79 mg/dL) and LDL-C (47.87±7.47 mg/dL) levels observed with the noni fruit juice at the 50mg/kg dose employed, failed to show a statistical significance when compared to atorvastatin. Conclusion The present study provides evidence for the hypolipidemic activity of Noni fruit juice in high fat diet induced hyperlipidemia in rats. PMID:27190827

  4. Photovoltaic restoration of sight with high visual acuity in rats with retinal degeneration

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Goetz, G.; Lorach, H.; Mandel, Y.; Smith, R.; Boinagrov, D.; Lei, X.; Kamins, T.; Harris, J.; Mathieson, K.; Sher, A.

    2015-03-01

    Patients with retinal degeneration lose sight due to gradual demise of photoreceptors. Electrical stimulation of the surviving retinal neurons provides an alternative route for delivery of visual information. Subretinal photovoltaic arrays with 70μm pixels were used to convert pulsed near-IR light (880-915nm) into pulsed current to stimulate the nearby inner retinal neurons. Network-mediated responses of the retinal ganglion cells (RGCs) could be modulated by pulse width (1-20ms) and peak irradiance (0.5-10 mW/mm2). Similarly to normal vision, retinal response to prosthetic stimulation exhibited flicker fusion at high frequencies, adaptation to static images, and non-linear spatial summation. Spatial resolution was assessed in-vitro and in-vivo using alternating gratings with variable stripe width, projected with rapidly pulsed illumination (20-40Hz). In-vitro, average size of the electrical receptive fields in normal retina was 248+/-59μm - similar to their visible light RF size: 249+/-44μm. RGCs responded to grating stripes down to 67μm using photovoltaic stimulation in degenerate rat retina, and 28μm with visible light in normal retina. In-vivo, visual acuity in normally-sighted controls was 29+/-5μm/stripe, vs. 63+/-4μm/stripe in rats with subretinal photovoltaic arrays, corresponding to 20/250 acuity in human eye. With the enhanced acuity provided by eye movements and perceptual learning in human patients, visual acuity might exceed the 20/200 threshold of legal blindness. Ease of implantation and tiling of these wireless arrays to cover a large visual field, combined with their high resolution opens the door to highly functional restoration of sight.

  5. Melatonin effect on rat body weight regulation in response to high-fat diet at middle age.

    PubMed

    Puchalski, Stephaney S; Green, Jill N; Rasmussen, Dennis D

    2003-07-01

    We previously demonstrated that daily melatonin administration to middle-aged rats to restore youthful plasma melatonin levels also decreased body weight, visceral fat, plasma leptin, and plasma insulin to more youthful levels, without detectable changes in consumption of chow diet. We now evaluate: (a) whether melatonin alters consumption of a more precisely quantifiable liquid diet similar in high-fat content to the typical American diet; (b) differences between melatonin-induced endocrine responses in the fasted vs fed state; and (c) time course of these responses. Ten-month-old male Sprague- Dawley rats received liquid diet containing either 0.2 micro g/mL melatonin (MELATONIN) or vehicle (CONTROL) (n = 14/treatment); the diet was available throughout each night, but was removed for the final 10 h of each daytime. MELATONIN rats gained 4% body weight during the first 2 wk and then stabilized, whereas CONTROL rats continued to gain for an additional week, achieving 8% gain (p < 0.05 vs MELATONIN). During the first 3 wk, afternoon tail-blood leptin, but not insulin, levels decreased in melatonin-treated rats (p < 0.05 vs CONTROL). After 8 wk, half of the rats were killed at the midpoint of the dark period (NIGHT; fed) and half at the end of the light period (DAYTIME; fasted). NIGHT but not DAYTIME plasma leptin levels were decreased in MELATONIN rats, whereas DAYTIME but not NIGHT plasma insulin levels were decreased (p < 0.05 vs CONTROL). Melatonin treatment did not alter cumulative food consumption. Thus, melatonin decreased weight gain in response to high-fat diet, decreased plasma leptin levels within 3 wk-before decreasing plasma insulin-and exerted these metabolic effects independent of total food consumption.

  6. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    PubMed

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease.

  7. White adipose tissue re-growth after partial lipectomy in high fat diet induced obese wistar rats.

    PubMed

    Bueno, Allain Amador; Habitante, Carlos Alexandre; Oyama, Lila Missae; Estadella, Débora; Ribeiro, Eliane Beraldi; Oller do Nascimento, Cláudia Maria

    2011-01-01

    The effects of partial removal of epididymal (EPI) and retroperitoneal (RET) adipose tissues (partial lipectomy) on the triacylglycerol deposition of high fat diet induced obese rats were analyzed, aiming to challenge the hypothesized body fat regulatory system. Male 28-day-old wistar rats received a diet enriched with peanuts, milk chocolate and sweet biscuits during the experimental period. At the 90th day of life, rats were submitted to either lipectomy (L) or sham surgery. After 7 or 30 days, RET, EPI, liver, brown adipose tissue (BAT), blood and carcass were obtained and analyzed. Seven days following surgery, liver lipogenesis rate and EPI relative weight were increased in L. After 30 days, L, RET and EPI presented increased lipogenesis, lipolysis and percentage of small area adipocytes. L rats also presented increased liver malic enzyme activity, BAT lipogenesis, and triacylglycerol and corticosterone serum levels. The partial removal of visceral fat pads affected the metabolism of high fat diet obese rats, which leads to excised tissue re-growth and possibly compensatory growth of non-excised depots at a later time.

  8. Effect of concurrent saccharin intake on ethanol consumption by high-alcohol-drinking (UChB) rats.

    PubMed

    Tampier, Lutske; Quintanilla, Maria Elena

    2009-07-01

    This study examined the effect of concurrent presentation of a highly palatable saccharin solution on ethanol consumption during the acquisition or maintenance of ethanol drinking by high-alcohol-drinking (UChB) rats. Rats were exposed to ethanol (10% v/v) and water under a home cage, two-bottle, free-choice regimen with unlimited access for 24 hours/day. After 7 days (acquisition) of ethanol exposure, a third bottle containing saccharin (0.2% w/v) was concomitantly offered for an additional seven consecutive days, and the same process was repeated after 3 months (maintenance) of ethanol exposure. We found that concurrent saccharin intake significantly reduced ethanol intake by UChB rats after 7 days of ethanol exposure indicating that preference for sweet taste tends to override the preference for ethanol. However, the concurrent saccharin presentation to rats after 3 months of stable ethanol consumption did not reduce ethanol intake, whereas their saccharin consumption reached polydipsic-like values. These results support the notion that in UChB rats, a time-dependent sensitization to the rewarding effects of ethanol is developed that may account for the increases in ethanol volition seen following chronic ethanol intake.

  9. Potential fat-lowering and prebiotic effects of enzymatically treated okara in high-cholesterol-fed Wistar rats.

    PubMed

    Villanueva-Suárez, María-José; Pérez-Cózar, María-Luisa; Mateos-Aparicio, Inmaculada; Redondo-Cuenca, Araceli

    2016-11-01

    This study evaluates the effect of the lipid profile on serum, liver and faeces, and the potential prebiotic effect of diets supplemented with enzymatically treated okara (okara(ET)) in high-cholesterol fed Wistar rats. Triglyceride levels were significantly reduced in the serum (p < 0.01) and liver (p < 0.01) of okara(ET) treated rats. Total lipids, triglycerides and bile acids were significantly higher (p < 0.001) in the faeces of rats fed the okara(ET) diet. The pH of faecal contents from treated okara(ET) rats was lower (p < 0.001), probably due to the significantly higher (p < 0.001) production of short-chain fatty acids (SCFA). Okara(ET), therefore, reduced triglycerides in serum and liver, and increased the excretion of total lipids, triglycerides and bile acids, improving the lipid profile in rats fed with high-cholesterol diets. Okara(ET) fibre can improve intestinal transit by increasing faecal bulk. The decreased pH and increased SCFA production indicated that okara(ET) fibre fermentation occurred, suggesting a potential prebiotic effect.

  10. Cocaine-, caffeine-, and stress-evoked cocaine reinstatement in high vs. low impulsive rats: Treatment with allopregnanolone

    PubMed Central

    Regier, Paul S.; Claxton, Alexander B.; Zlebnik, Natalie E.; Carroll, Marilyn E.

    2014-01-01

    Background Previous research indicates that individual differences in traits such as impulsivity, avidity for sweets, and novelty reactivity are predictors of several aspects of drug addiction. Specifically, rats that rank high on these behavioral measures are more likely than their low drug-seeking counterparts to exhibit several characteristics of drug-seeking behavior. In contrast, initial work suggests that the low drug-seeking animals are more reactive to negative events (e.g., punishment and anxiogenic stimuli). The goal of this study was to compare high and low impulsive rats on reinstatement of cocaine-seeking behavior elicited by cocaine (COC) and by negative stimuli such as the stress-inducing agent yohimbine (YOH) or a high dose of caffeine (CAFF). An additional goal was to determine whether treatment with allopregnanolone (ALLO) would reduce reinstatement (or relapse) of cocaine-seeking behavior under these priming conditions. Methods Female rats were selected as high (HiI) or low (LoI) impulsive using a delay-discounting task. After selection, they were allowed to self-administer cocaine for 12 days. Cocaine was then replaced with saline, and rats extinguished lever responding over 16 days. Subsequently, rats were pretreated with either vehicle control or ALLO, and cocaine seeking was reinstated by injections of COC, CAFF, or YOH. Results While there were no phenotype differences in maintenance and extinction of cocaine self-administration or reinstatement under control treatment conditions, ALLO attenuated COC- and CAFF-primed reinstatement in LoI but not HiI rats. Conclusions Overall, the present findings suggest that individual differences in impulsive behavior may influence efficacy of interventions aimed to reduce drug-seeking behavior. PMID:25073834

  11. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  12. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    PubMed Central

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism. PMID:26301251

  13. Evaluation of basal membrane antibody (immunoglobulin G) formation after high-energy shockwave application in rats.

    PubMed

    Sarica, K; Türkölmez, K; Koşar, A; Alçiğir, G; Ozdiler, E; Göğüş, O

    1998-12-01

    To evaluate the immune pathologic effects of high-energy shockwave (HESW) application on glomerular and tubular basal membrane antibody (IgG) formation, an experimental study on rats has been performed. Following application of different numbers of shockwaves (100-200-500), the presence of antibody was examined with the direct immunofluorescent technique 2 weeks and 3 months postprocedure. Whereas specimens examined after 2 weeks showed antibody formation in only one animal (500 HESWs), being located in the tubular tissues, all treated kidneys demonstrated various degrees of antibody formation in both tubular and glomerular tissues after 3 months. Antibody formation had a close relation to the number of HESWs applied and the time of examination after shockwave application. Apart from the well-defined functional and morphologic side effects of shockwave therapy, the possibility of immunologic alterations after this form of therapy has to be evaluated thoroughly in both clinical and experimental studies.

  14. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats.

    PubMed

    Sasidharan, Suja Rani; Joseph, Joshua Allan; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Madhavan, Chandrasekharan Nair Ariyattu; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms.

  15. High pressure liquid chromatography of zearalenone and zearalenols in rat urine and liver.

    PubMed

    James, L J; McGirr, L G; Smith, T K

    1982-01-01

    A high pressure liquid chromatographic technique with internal standardization has been developed for determining zearalenone and metabolites in rat urine and liver. Following extraction with methylene chloride and solvent partition, samples are cleaned up by applying the extract to a Sephadex LH-20 column and eluting with a mixture of benzene-methanol (85 + 15). Compounds were resolved on 2 Part-isil-10 columns (25 cm x 4.6 mm id) in series with a mobile phase of isooctane-chloroform-methanol (35 + 25 + 3), and detected at 280 nm. The internal standard was 6'alpha-acetoxyzearalane. Limits of detection were about 2.0 ng for zearalenone and 5.0 ng for zearalenols (6'-hydroxyzearalane). Zearalenone and zearalenols were excreted mainly in free form with relatively little glucuronide conjugation. Metabolism of zearalenone to free zearalenol was minor compared with formation of bound forms.

  16. Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats.

    PubMed

    Kojima, Ryosuke; Takakura, Hideo; Kamiya, Mako; Kobayashi, Eiji; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Hanaoka, Kenjiro; Nagano, Tetsuo; Urano, Yasuteru

    2015-12-01

    A sensitive bioluminogenic probe for highly reactive oxygen species (hROS), SO3 H-APL, was developed based on the concept of dual control of bioluminescence emission by means of bioluminescent enzyme-induced electron transfer (BioLeT) and modulation of cell-membrane permeability. This probe enables non-invasive visualization of physiologically relevant amounts of hROS generated deep inside the body of living rats for the first time. It is expected to serve as a practical analytical tool for investigating a wide range of biological functions of hROS in vivo. The design concept should be applicable to other in vivo bioluminogenic probes. PMID:26474404

  17. [Changes in the rat liver after exposure to high doses of bromex].

    PubMed

    Krustev, L; Kaloianova-Simeonova, F

    1982-01-01

    Experiments were carried out with male albino rats treated with the phosphorous-organic compound--bromex. The pesticide was perorally administered to one of the experimental groups--a single dose of 1/2 LD50. The same quantity bromex was administered to the other experimental group after a previous 20-day treatment with the same preparation but with a dose of 1/20 LD50. The changes, not particularly well manifested, progressing the organelles of the liver cells were followed up. The changes were established (in mitochondria, endoplasmatic reticulum, lysozoymes and some other organelles) to be better manifested in the group under a single effect of bromex. In this case they are interpreted as manifestation of one initial alterative process. In the group with the 20-day low doses, followed up by one high dose, the changes were gradual, lighter and considered a manifestation of a sort of adaptation or a form of subcellular liver regeneration. PMID:7178067

  18. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products. PMID:20387744

  19. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products.

  20. Studies on organ weights in naproxen treated rats after intermittent exposure to simulated high altitude

    NASA Astrophysics Data System (ADS)

    Saha, R. C.; Biswas, H. M.

    1990-06-01

    Rats were exposed intermittently for 8h per day over 6 days at simulated high altitude of 20 000 feet. One group of altitude-exposed animals was treated with naproxen, a prostaglandin inhibiting drug. Significant reduction in body weight gain was observed in both altitude-exposed and drug-treated altitude-exposed animals compared to the control group. Right and left ventricular weights and weights of the adrenal glands were increased significantly in altitude-exposed and altitude-exposed drug-treated animals. The weight of the spleen was increased significantly in altitude-exposed animals whereas no such increase of splenic weight was observed in drug-treated altitude-exposed group of animals. On the other hand, the weight of the liver was decreased significantly in both cases. In drug-treated altitude-exposed animals, the unaltered splenic weight was thought to be due to inhibition of the erythropoietic activity.

  1. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats.

    PubMed

    Sasidharan, Suja Rani; Joseph, Joshua Allan; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Madhavan, Chandrasekharan Nair Ariyattu; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms. PMID:24688399

  2. Ameliorative Potential of Tamarindus indica on High Fat Diet Induced Nonalcoholic Fatty Liver Disease in Rats

    PubMed Central

    Sasidharan, Suja Rani; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Ariyattu Madhavan, Chandrasekharan Nair; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms. PMID:24688399

  3. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    PubMed

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p < 0.01) and slower cardiac conduction (p = 0.04) compared with the CTL group. LIT and HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p < 0.05). LIT had significant improvements in insulin sensitivity and cardiac conduction compared with the CTL and SED groups whilst HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p < 0.05). LIT and HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health. PMID:27523646

  4. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    PubMed

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p < 0.01) and slower cardiac conduction (p = 0.04) compared with the CTL group. LIT and HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p < 0.05). LIT had significant improvements in insulin sensitivity and cardiac conduction compared with the CTL and SED groups whilst HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p < 0.05). LIT and HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.

  5. Behavioral profile and dorsal hippocampal cells in carioca high-conditioned freezing rats.

    PubMed

    Dias, Gisele Pereira; Bevilaqua, Mário Cesar do Nascimento; Silveira, Anna Claudia Domingos; Landeira-Fernandez, Jesus; Gardino, Patrícia Franca

    2009-12-28

    Selection for contextual fear conditioning is an important behavioral paradigm for studying the role of genetic variables and their interaction with the surrounding environment in the etiology and development of anxiety disorders. Recently, a new line of animals selectively bred for high levels of freezing in response to contextual cues previously associated with footshock was developed from a Wistar population. The purpose of the present study was to evaluate the emotional and cognitive aspects of this new line of animals, which has been named Carioca High-Freezing (CHF). For the characterization of anxious behavior, CHF and control animals were tested in the elevated plus-maze (EPM) and the social interaction test. CHF animals were significantly more anxious than control rats in terms of both the number of entries into EPM open arms and the percentage of time spent in these arms. The time spent in social interaction behavior was also significantly decreased. No statistical differences were found in locomotor activity, as measured by both the number of entries into the closed arms of the EPM and the number of crossings into the social interaction test arena. No differences between CHF and control groups were found in the depression forced swimming test, suggesting that the anxiety trait selected in the CHF line did not interact with affective disorders traits such as those for depression. Cognitive aspects of the CHF rats were evaluated in the object recognition task. Results from this test indicated no difference between the two groups. The present study also encompassed histological analysis of the dorsal hippocampus from CHF and control animals. Results revealed an absence of qualitative and quantitative differences between these two groups of animals in cells located in the dentate gyrus, CA1, and CA3 areas. Therefore, future studies are required to further investigate the possible neural mechanisms involved in the origin and development of the anxious

  6. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats.

    PubMed

    Harrell, Constance S; Burgado, Jillybeth; Kelly, Sean D; Johnson, Zachary P; Neigh, Gretchen N

    2015-12-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats.

  7. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats.

    PubMed

    Harrell, Constance S; Burgado, Jillybeth; Kelly, Sean D; Johnson, Zachary P; Neigh, Gretchen N

    2015-12-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  8. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome.

  9. A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2.

    PubMed

    de França, Suélem A; dos Santos, Maísa P; Przygodda, Franciele; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Magalhães, Diego A; Bezerra, Kalinne S; Colodel, Edson M; Flouris, Andreas D; Andrade, Cláudia M B; Kawashita, Nair H

    2016-03-01

    The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6%-protein; 74%-carbohydrate) or control (C; 17%-protein; 63%-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w(-1) min(-1)). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student's t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60% in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40% increase in the levels of p38-MAPK and a 30% decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.

  10. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  11. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats

    PubMed Central

    Whidden, Melissa A.; Basgut, Bilgen; Kirichenko, Nataliya; Erdos, Benedek; Tümer, Nihal

    2016-01-01

    [Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli. PMID:27508155

  12. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  13. A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

    PubMed Central

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals. PMID:22685607

  14. NEUROBEHAVIORAL EVALUATION OF RATS EXPOSED TO CHLORPYRIFOS VIA CHRONIC DIETARY AND REPEATED HIGH-LEVEL SPIKE EXPOSURE.

    EPA Science Inventory

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos (CPF), and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult Long-Evans male rats were maintained at 350g body wei...

  15. Anti-Obese Effect of Glucosamine and Chitosan Oligosaccharide in High-Fat Diet-Induced Obese Rats

    PubMed Central

    Huang, Lanlan; Chen, Jian; Cao, Peiqiu; Pan, Haitao; Ding, Chen; Xiao, Tiancun; Zhang, Pengfei; Guo, Jiao; Su, Zhengquan

    2015-01-01

    Objective: This study is to evaluate the anti-obese effects of glucosamine (GLC) and chitosan oligosaccharide (COS) on high-fat diet-induced obese rats. Methods: The rats were randomly divided into twelve groups: a normal diet group (NF), a high-fat diet group (HF), Orlistat group, GLC high-, middle-, and low-dose groups (GLC-H, GLC-M, GLC-L), COS1 (COS, number-average molecular weight ≤1000) high-, middle-, and low-dose groups (COS1-H, COS1-M, COS1-L), and COS2 (COS, number-average molecular weight ≤3000) high-, middle-, and low-dose groups (COS2-H, COS2-M, COS2-L). All groups received oral treatment by gavage once daily for a period of six weeks. Results: Rats fed with COS1 gained the least weight among all the groups (P < 0.01), and these rats lost more weight than those treated with Orlistat. In addition to the COS2-H and Orlistat groups, the serum total cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced in all treatment groups compared to the HF group (P < 0.01). The various doses of GLC, COS1 and COS2 reduced the expression levels of PPARγ and LXRα mRNA in the white adipose tissue. Conclusions: The results above demonstrated that GLC, COS1, and COS2 improved dyslipidemia and prevented body weight gains by inhibiting the adipocyte differentiation in obese rats induced by a high-fat diet. Thus, these agents may potentially be used to treat obesity. PMID:25942093

  16. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes

    PubMed Central

    Aberare, Ogbevire L.; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O.; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-01-01

    Background: Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. Aim: The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Materials and Methods: Twenty-five Wister albino rats (of both sexes) were used for this study between the 4th of August and 7th of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Result: Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. Conclusion: These results showed that frequent exposure to petrol fumes may be highly

  17. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats.

    PubMed

    Thanos, Panayotis K; Cho, Jacob; Kim, Ronald; Michaelides, Michael; Primeaux, Stefany; Bray, George; Wang, Gene-Jack; Volkow, Nora D

    2011-02-01

    Dopamine (DA) and DA D₂ receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  18. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  19. Quantitative determination of dopamine in single rat pheochromocytoma cells by microchip electrophoresis with only one high-voltage power supply.

    PubMed

    Sha, Cuicui; Fan, Yuejuan; Cheng, Jieke; Cheng, Han

    2015-07-01

    We developed a method for the direct identification of dopamine in single cultured rat pheochromocytoma cells by capillary electrophoresis using an end-channel carbon fiber nanoelectrode amperometric detector. The operation mode was designed to achieve single-cell injection and lysis in microfluidic chip electrophoresis with only one high-voltage power supply. The separation and detection conditions were optimized. Four catecholamines were baseline-separated and determined with this system, and the cell density and liquid height of the reservoirs were accommodated for single cell loading, docking and analysis. The microchip capillary electrophoresis system was successfully applied to determine dopamine in single cultured rat pheochromocytoma cells. PMID:25893961

  20. GpIIb/IIIa+ subpopulation of rat megakaryocyte progenitor cells exhibits high responsiveness to human thrombopoietin.

    PubMed

    Kato, T; Horie, K; Hagiwara, T; Maeda, E; Tsumura, H; Ohashi, H; Miyazaki, H

    1996-08-01

    The recently cloned factor thrombopoietin (TPO) has been shown to exhibit megakaryocyte colony-stimulating activity in vitro. In this investigation, to further evaluate the action of TPO on megakaryocyte progenitor cells (colony-forming units-megakaryocyte [CFU-MK]), GpIIb/IIIa+ and GpIIb/IIIa- populations of CFU-MK were prepared from rat bone marrow cells based on their reactivity with P55 antibody, a monoclonal antibody against rat GpIIb/IIIa, and their responsiveness to recombinant human TPO (rhTPO) and recombinant rat interleukin-3 (rrIL-3) was examined using a megakaryocyte colony-forming assay (Meg-CSA). rhTPO supported only megakaryocyte colony growth from both fractions in a dose-dependent fashion. The mean colony size observed with the GpIIb/IIIa+ population was smaller than that seen with the GpIIb/IIIa- population. With the optimal concentration of either rhTPO or rrIL-3, similar numbers of megakaryocyte colonies were formed from the GpIIb/IIIa+ population previously shown to be highly enriched for CFU-MK. In contrast, the maximum number of megakaryocyte colonies from the GpIIb/IIIa- population stimulated by rhTPO was only 24.2% of that achieved with rrIL-3. Morphologic analysis of rhTPO-promoted megakaryocyte colonies from the GpIIb/IIIa+ population showed that the average colony size was smaller but that the mean diameter of individual megakaryocytes was larger than in megakaryocyte colonies promoted with rrIL-3. rhTPO plus rrIL-3, each at suboptimal concentrations, had an additive effect on proliferation of CFU-MK in the GpIIb/IIIa+ fraction, whereas rhTPO plus murine IL-6 or murine granulocyte-macrophage colony-stimulating factor (mG-M-CSF) modestly but significantly reduced megakaryocyte colony growth. These results indicate that TPO preferentially acts on GpIIb/IIIa+ late CFU-MK with lower proliferative capacity and interacts with some other cytokines in CFU-MK development. PMID:8765496

  1. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet

    PubMed Central

    2011-01-01

    Background The hypocholesterolemic effects of lactic acid bacteria (LAB) have now become an area of great interest and controversy for many scientists. In this study, we evaluated the effects of Lactobacillus plantarum 9-41-A and Lactobacillus fermentum M1-16 on body weight, lipid metabolism and intestinal microflora of rats fed a high-cholesterol diet. Methods Forty rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The LAB-treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum 9-41-A or Lactobacillus fermentum M1-16. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat pad weights, serum and liver cholesterol and lipid levels, and fecal cholesterol and bile acid concentrations were measured. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high-cholesterol diet but without LAB supplementation, serum total cholesterol, low-density lipoprotein cholesterol and triglycerides levels were significantly decreased in LAB-treated rats (p < 0.05), with no significant change in high-density lipoprotein cholesterol levels. Hepatic cholesterol and triglyceride levels and liver lipid deposition were significantly decreased in the LAB-treated groups (p < 0.05). Accordingly, both fecal cholesterol and bile acids levels were significantly increased after LAB administration (p < 0.05). Intestinal Lactobacillus and Bifidobacterium colonies were increased while Escherichia coli colonies were decreased in the LAB-treated groups. Fecal water content was higher in the LAB-treated groups. Compared with rats fed a high-cholesterol diet, administration of Lactobacillus plantarum 9-41-A resulted in decreases in the body weight gain, liver and fat pad weight, and adipocytes size (p < 0.05). Conclusions This study suggests that LAB supplementation has hypocholesterolemic effects in rats fed a high-cholesterol diet. The

  2. A high-fructose diet induces hippocampal insulin resistance and exacerbates memory deficits in male Sprague-Dawley rats.

    PubMed

    Wu, Hui-Wen; Ren, Lai-Feng; Zhou, Xing; Han, De-Wu

    2015-10-01

    The purpose of this study was to investigate the effects of a long-term high-fructose diet on the insulin-signaling pathway of the hippocampus. Sprague-Dawley rats were fed either on a control (0% fructose solution) or high-fructose diet (10% fructose solution). Food intake and body mass were measured regularly. Eight months later, peripheral insulin sensitivity, the activity of the hippocampal insulin pathway, and memory tasks were assessed. Compared to the control group, the high fructose group exhibited more weight gain, peripheral insulin resistance, metabolic disorders, and memory impairments. In addition, insulin signaling in the hippocampus was attenuated in the high fructose group. These results suggested that a high-fructose diet induced peripheral insulin resistance and an abnormal insulin-signaling pathway in the hippocampus which exacerbated memory deficits in the rats.

  3. Effect of intermittent hypoxia on the reproduction of rats exposed to high altitude in the Chilean Altiplano.

    PubMed

    Cikutovic, Marcos; Fuentes, Nelson; Bustos-Obregón, Eduardo

    2009-01-01

    Environmental parameters such as the large day-night temperature differences, high light radiation, and low humidity may have a synergistic effect with low oxygen pressure. To evaluate the effects of the exposure to intermittent chronic hypobaric hypoxia (ICHH) in nature on rat reproduction, a group of rats was alternately moved to a location at 3400 meters over sea level (moml) for 7 days and returned the subsequent week to sea level; this procedure was repeated six times. Hematological and reproductive parameters were measured and analyzed. At the end of the experimental protocol, hematocrit and hemoglobin concentrations were significantly greater in the ICHH group compared to the control group (Nx) (p < 0.05). The diameter of the seminiferous tubule and the height of the spermatogenic epithelium in ICHH rats presented a significant decrease in relation to Nx rats (p < 0.05). Consequently, the number of epididymal spermatozoa in the experimental animals decreased compared to normal rats, with no evidence of recovery after 84 days. The offspring of the different matings between normal and hypoxic animals decreased proportionally to hypoxia exposure. The low oxygen and the changes in testicular temperature homeostasis would provide a novel local mechanism to explain the decrease in sperm cell production and the reduced number of puppies born. The alterations of the reproductive parameters of the hypoxic female, plus testicular injuries and diminished sperm in males, result in a significant decrease in the reproductive activity of the animals.

  4. Effect of chronic stress on behavior and cerebral oxidative metabolism in rats with high or low positive affect.

    PubMed

    Mällo, T; Matrov, D; Kõiv, K; Harro, J

    2009-12-15

    The 50 kHz ultrasonic vocalizations (USVs) in rats have been associated with positive affect and rewarding experience. We have previously reported that stable inter-individual differences exist in the expression of these USVs (chirps). We have examined the effect of four weeks of chronic variable stress on cerebral oxidative metabolism, and depression and anxiety related behavior in male and female high (HC) and low (LC) chirping rats. Significant differences in regional oxidative metabolic activity as measured by cytochrome c oxidase (COX) histochemistry were found between male and female rats: Females had lower oxidative metabolism in several brainstem areas such as dorsal and median raphe and pontine nucleus, some cortical areas, and reward-related forebrain regions such as striatum and nucleus accumbens, but higher oxidative metabolism in amygdala and related limbic regions. Chronic stress increased oxidative metabolism in several depression-related brain regions in male but not female LC-rats such as amygdala, hippocampus and anterior thalamus. No systematic behavioral effect of stress was evident in females. In LC males, stress elicited increased levels of 22-kHz USVs, earlier and more stable reduction of weight gain, persistently lower sucrose intake and preference, and higher levels of immobility in the forced swimming test. These behavioral changes, accompanied by increased oxidative metabolism in limbic brain regions, indicate greater vulnerability to stress of male LC-rats, and suggest that in males low inherent positive affectivity predisposes to anxiety and affective disorders.

  5. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats

    PubMed Central

    2013-01-01

    Background The metabolic syndrome (MS) is characterized by variable coexistence of metabolic and pathophysiological alterations which are important risk factors for developing of type II diabetes and/or cardiovascular diseases. Increased of MS patients in worldwide has stimulated the development of experimental models. However, it is still challenging to find an dietetic model that most closely approximates human MS and, in addition, is not yet fully established the effect of different diets of MS in lipid metabolism in rats of different ages. The aim of this study was to evaluate the effect of different diets of MS in lipid metabolism and ectopic fat deposition and define the most appropriate diet for inducing the characteristic disturbances of the human MS in rats of different ages. Methods Young (4 weeks old) and adult rats (12 weeks old) were given a high-fat (FAT) or high-fructose diet (FRU) for 13 weeks and biochemical, physiological, histological and biometric parameters were evaluated. Results In young rats, the FAT diet induced increased mean blood pressure (MAP) and heart rate (HR), body weight after 6 to 10 weeks, and in the 13th week, increased the liver, mesenteric, retroperitoneal and epididymal fat weights, fasting glucose, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and reduced HDL cholesterol; and also induced non-alcoholic fatty liver disease (NAFLD) and renal inflammatory infiltrates. In adult rats, the FRU diet induced transient elevations of MAP and HR in the 6th week, and, at 13 weeks, increased fasting glucose, triglycerides, total cholesterol, AST and ALT; increased liver, kidneys and retroperitoneal fat weights; and induced macrovesicular and microvesicular NAFLD, the presence of fat cells in the kidney, glomerular sclerosis, and liver and kidney inflammation. Additionally, the FAT and FRU diets induced, respectively, increases in liver glycogen in adults and young rats. Conclusions Our data show that FRU diet

  6. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats

    PubMed Central

    LIANG, YONG-QIANG; QI, MENG-CHUN; XU, JIANG; XU, JUAN; LIU, HUA-WEI; DONG, WEI; LI, JIN-YUAN; HU, MIN

    2014-01-01

    Osteoporosis deteriorates jaw bone quality and may compromise early implant osseointegration and early implant loading. The influence of low-magnitude, high-frequency (LMHF) vibration on peri-implant bone healing and implant integration in osteoporotic bones remains poorly understood. LMHF loading via whole-body vibration (WBV) for 8 weeks has previously been demonstrated to significantly enhance bone-to-implant contact, peri-implant bone fraction and implant mechanical properties in osteoporotic rats. In the present study, LMHF loading by WBV was performed in osteoporotic rats, with a loading duration of 4 weeks during the early stages of bone healing. The results indicated that 4-week LMHF loading by WBV partly reversed the negative effects of osteoporosis and accelerated early peri-implant osseointegration in ovariectomized rats. PMID:25270245

  7. Prolonged stimulation of corticosterone secretion by corticotropin-releasing hormone in rats exhibiting high preference for dietary fat

    USGS Publications Warehouse

    Herminghuysen, D.; Plaisance, K.; Pace, R. M.; Prasad, C.

    1998-01-01

    Through the secretion of corticosterone, the hypothalamo-pituitary-adrenal (HPA) axis is thought to play an important role in the regulation of caloric intake and dietary fat preference. In an earlier study, we demonstrated a positive correlation between urinary corticosterone output and dietary fat preference. Furthermore, dietary fat preference was augmented following chronic but not acute hypercorticosteronemia produced by exogenous corticosterone administration. These observations led us to explore whether the HPA axis of rats exhibiting high preference for fat may have exaggerated sensitivity to corticotropin-releasing hormone (CRH). The results of these studies show a delayed and blunted but more prolonged corticosterone response to CRH in the fat-preferring rats compared with that of the carbohydrate-preferring rats.

  8. High prevalence of Rickettsia typhi and Bartonella species in rats and fleas, Kisangani, Democratic Republic of the Congo.

    PubMed

    Laudisoit, Anne; Falay, Dadi; Amundala, Nicaise; Akaibe, Dudu; de Bellocq, Joëlle Goüy; Van Houtte, Natalie; Breno, Matteo; Verheyen, Erik; Wilschut, Liesbeth; Parola, Philippe; Raoult, Didier; Socolovschi, Cristina

    2014-03-01

    The prevalence and identity of Rickettsia and Bartonella in urban rat and flea populations were evaluated in Kisangani, Democratic Republic of the Congo (DRC) by molecular tools. An overall prevalence of 17% Bartonella species and 13% Rickettsia typhi, the agent of murine typhus, was found in the cosmopolitan rat species, Rattus rattus and Rattus norvegicus that were infested by a majority of Xenopsylla cheopis fleas. Bartonella queenslandensis, Bartonella elizabethae, and three Bartonella genotypes were identified by sequencing in rat specimens, mostly in R. rattus. Rickettsia typhi was detected in 72% of X. cheopis pools, the main vector and reservoir of this zoonotic pathogen. Co-infections were observed in rodents, suggesting a common mammalian host shared by R. typhi and Bartonella spp. Thus, both infections are endemic in DRC and the medical staffs need to be aware knowing the high prevalence of impoverished populations or immunocompromised inhabitants in this area.

  9. High Prevalence of Rickettsia typhi and Bartonella Species in Rats and Fleas, Kisangani, Democratic Republic of the Congo

    PubMed Central

    Laudisoit, Anne; Falay, Dadi; Amundala, Nicaise; Akaibe, Dudu; de Bellocq, Joëlle Goüy; Van Houtte, Natalie; Breno, Matteo; Verheyen, Erik; Wilschut, Liesbeth; Parola, Philippe; Raoult, Didier; Socolovschi, Cristina

    2014-01-01

    The prevalence and identity of Rickettsia and Bartonella in urban rat and flea populations were evaluated in Kisangani, Democratic Republic of the Congo (DRC) by molecular tools. An overall prevalence of 17% Bartonella species and 13% Rickettsia typhi, the agent of murine typhus, was found in the cosmopolitan rat species, Rattus rattus and Rattus norvegicus that were infested by a majority of Xenopsylla cheopis fleas. Bartonella queenslandensis, Bartonella elizabethae, and three Bartonella genotypes were identified by sequencing in rat specimens, mostly in R. rattus. Rickettsia typhi was detected in 72% of X. cheopis pools, the main vector and reservoir of this zoonotic pathogen. Co-infections were observed in rodents, suggesting a common mammalian host shared by R. typhi and Bartonella spp. Thus, both infections are endemic in DRC and the medical staffs need to be aware knowing the high prevalence of impoverished populations or immunocompromised inhabitants in this area. PMID:24445202

  10. Distribution of High-Conductance Calcium-Activated Potassium Channels in Rat Vestibular Epithelia

    PubMed Central

    Schweizer, Felix E.; Savin, David; Luu, Cindy; Sultemeier, David R.; Hoffman, Larry F.

    2011-01-01

    Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development. PMID:19731297

  11. Comparative effects of Aliskiren and Telmisartan in high fructose diet-induced metabolic syndrome in rats.

    PubMed

    Rabie, Esraa M; Heeba, Gehan H; Abouzied, Mekky M; Khalifa, Mohamed M A

    2015-08-01

    Fructose is a commonly used sweetener associated with diets that increase the prevalence of metabolic syndrome (MS). Inhibition of the renin-angiotensin system (RAS) has been consistently demonstrated to reduce MS. However, there has been no direct comparison among different pharmacological modes of inhibiting the RAS concerning their effects on MS. This study investigated the effect of aliskiren, a direct renin inhibitor, versus telmisartan, an angiotensin II-receptor blocker, in the treatment of fructose-induced MS in rats. MS was induced by high fructose (FRC) diet feeding for 12 weeks. Oral administrations of telmisartan (TEL, 5 mg/kg), aliskiren (ALS, 30 mg/kg) or vehicle were started in the last 4 weeks. Results showed that administration of either TEL or ALS with FRC diet equally ameliorated the metabolic parameters (glucose level, oral glucose tolerance test, insulin resistance and serum lipids profile), systolic blood pressure and oxidative stress markers (malondialdehyde, nitric oxide, reduced glutathione levels and catalase activity). Additionally, the effects of TEL and ALS were associated with a decrease in body composition index and attenuation of liver index, serum liver enzyme activities and hepatic expressions of inflammatory and fibrotic markers (tumor necrosis factor-α, nuclear factor kappa-B and transforming growth factor-β) with a significant increase in hepatic glucose transporter-2 and peroxisome proliferator-activated receptors-alpha and gamma expressions. The results suggested that, at indicated dosage, ALS has ameliorative effect equal to that of TEL against FRC-induced metabolic and hepatic disorders; implying that drugs which inhibit the RAS, by different mode of inhibition, profoundly affect fructose-induced MS in rats.

  12. High virulence in hamsters of four dominant Leptospira serovars isolated from rats in the Philippines.

    PubMed

    Villanueva, Sharon Y A M; Saito, Mitsumasa; Tsutsumi, Yutaka; Segawa, Takaya; Baterna, Rubelia A; Chakraborty, Antara; Asoh, Tatsuma; Miyahara, Satoshi; Yanagihara, Yasutake; Cavinta, Lolita L; Gloriani, Nina G; Yoshida, Shin-ichi

    2014-02-01

    Leptospirosis is caused by pathogenic species of Leptospira. The aim of this study was to determine and characterize the pathogenicity of four dominant Leptospira isolates prevailing among rats in the Philippines. The isolates were Leptospira interrogans serovar Manilae strain K64, L. interrogans serovar Losbanos strain K37, L. interrogans serovar Ratnapura strain K5 and Leptospira borgpetersenii serovar Javanica strain K6. Pathogenicities were studied using hamsters, which reproduce severe human leptospirosis. The minimum lethal doses were 10(0) ( = 1) leptospires for K64, K37 and K5, and 10(1) leptospires for K6. Weight loss amongst the Leptospira-infected hamsters was observed from 1 day before death (K64-, K37- and K5-infected hamsters) to as much as 1 week before death for K6-infected hamsters. Similar and varied gross and microscopic lesions were observed amongst infected hamsters, even for strains belonging to the same species (i.e. L. interrogans). The most significant and common histopathological findings were congestion of the glomerulus, disarrangement of hepatic cords and erythrophagocytosis. Other findings were foamy splenic macrophages for K6, severe petechial pulmonary haemorrhage for K64, and hematuria and severe pulmonary congestion for K37. Immunostaining and culture revealed the presence of leptospires in different organs of the infected hamsters. Based on these results, Leptospira isolates from rats in the Philippines were shown to be highly virulent, causing pulmonary haemorrhage, severe hepato-renal damage and death in hamsters even at lower doses. The present findings on experimental leptospirosis support clinical data showing that patients with severe manifestations of leptospirosis, such as pulmonary haemorrhage, are increasing in the Philippines. These findings may serve as a basis to strengthen the early diagnosis and treatment of human leptospirosis.

  13. Determination of puerarin in rat plasma using PEGylated magnetic carbon nanotubes by high performance liquid chromatography.

    PubMed

    Yu, Panfeng; Wang, Qi; Ma, Hongwei; Wu, Ji; Shen, Shun

    2014-05-15

    This paper described a novel application of PEGylated magnetic carbon nanotubes as solid-phase extraction nanosorbents for the determination of puerarin in rat plasma by high performance liquid chromatography (HPLC). A solvothermal method was employed for the synthesis of monodisperse magnetites anchored onto multi-walled carbon nanotubes (MWCNTs@Fe3O4). In order to enhance the water solubility of MWCNTs@Fe3O4 that ensured sufficient contact between nanosorbents and analytes in the sampling procedure, the obtained nanomaterials were further noncovalently functionalized using a phospholipids-polyethylene glycol (DSPE-PEG). The PEGylated MWCNTs@Fe3O4 nanomaterials had an extremely large surface area and exhibit a strong interaction capability for puerarin with π-π stacking interactions. The captured puerarin/nanosorbents were easily isolated from the plasma by placing a magnet, and desorbed by acetonitrile. The experimental variables affecting the extraction efficiency were investigated. The calibration curve of puerarin was linear from 0.01 to 20 μg/ml, and the limit of detection was 0.005 μg/ml. The precisions ranged from 2.7% to 3.5% for within-day measurement, and for between-day variation was in the range of 3.1-5.9%. The method recoveries were acquired from 95.2% to 98.0%. Moreover, the analytical performance obtained by PEGylated magnetic MWCNTs was also compared with that of magnetic MWCNTs. All results showed that our proposed method was an excellent alternative for the analysis of puerarin in rat plasma.

  14. [Rapid determination of propranolol enantiomers in rat plasma by column-switching-high performance liquid chromatography].

    PubMed

    Wu, Xiaoyu; Wang, Rong; Xie, Hua; Wang, Jianfeng; Jia, Zhengping; Zhang, Qiang; Wang, Xianhua

    2011-12-01

    A high performance liquid chromatographic (HPLC) method with column-switching was developed and validated for rapid determination of two propranolol enantiomers in rat plasma. The column of restricted-access media was used as a pre-treatment column and a Chiralcel OD-RH was used as analytical column. The plasma samples were injected directly into the pretreatment column to remove plasma protein and endogenous constituents as well as to retent the propranolol enantiomers in the column using the mobile phase of borate buffer (pH 8.5)-methanol (95:5, v/v) at the flow rate of 1.0 mL/min. Then the propranolol enantiomers were transferred to the Chiralcel OD-RH column using the mobile phase of isopropanol-ethanol-0.2 mmol/L borate buffer (pH 8.5) (30: 30: 40, v/v/v) at a flow rate of 0.8 mL/min by column-switching technology. The column-switching time was 3.0 min, the used wavelength was 293 nm and the column temperature was set at 25 degrees C. The calibration curve showed excellent linear relationship (r = 0.999 5) in the concentration range from 25 mg/L to 500 mg/L for propranolol enantiomers in plasma. The intra-day and inter-day assay precisions and accuracies were well and the relative standard deviations (RSDs) were less than 5%. The average recoveries (n = 6) of the two enantiomers at 3 spiked levels were from 97.89% to 101.56%. All the values of the method validation were within the generally accepted criteria for biological sample analysis. The results show that the method is convenient, quick, sensitive and accurate. The method was successfully applied in the determination of propranolol enantiomers in rat blood pharmacokinetics study.

  15. Negative inotropic actions of nitric oxide require high doses in rat cardiac muscle.

    PubMed

    Wyeth, R P; Temma, K; Seifen, E; Kennedy, R H

    1996-08-01

    Initial experiments were designed to determine if vasoactive concentrations of nitric oxide (NO) alter contractility in rat heart. Contractile function was monitored in left atrial and papillary muscles (30 degrees C; paced at 0.5 Hz) during cumulative addition of 3-morpholino-sydnonimine-HCl(SIN-1), an agent that releases NO. At concentrations between 10(-7) and 10(-4) M (NO concentrations of approximately 10(-8)- 3 x 10(-7) M), SIN-1 did not affect contractility in either tissue. Similarly, 10(-4) M SIN-1 did not alter the positive inotropic responses to isoproterenol or increasing extracellular [Ca+2] ([Ca+2]o). To obtain higher concentrations of NO, additional studies were conducted using authentic NO. NO-saturated stock solutions and a corresponding control solvent were adjusted to pH 1.6 with HCl. Dose-dependent effects of NO were examined by adding aliquots of the stock solutions (or control solvent) to the bathing solution. At final concentrations of 1 x 10(-5)- 5 x 10(-4) M, NO produced transient, concentration-dependent decreases in contractility that were paralleled by reductions in buffer pH. Control solvent elicited similar reductions in pHo and transient decreases in contractility; however, the negative inotropic action elicited by the NO-containing solution was approximately 20% greater than that observed in control conditions. These data demonstrate that only high concentrations of NO depress contractility in isolated rat cardiac muscle, and suggest that this effect is mediated by both acidosis and a pHo-independent mechanism.

  16. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    PubMed

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-01

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine. PMID:23025476

  17. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    PubMed Central

    Venkateshan, Suganya; Subramaniyan, Vetriselvan; Chinnasamy, Velmurugan; Chandiran, Sarath

    2016-01-01

    Objective: Dietary changes play major risk roles in oxidative stress and cardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action. Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group) and fed with a standard diet (control), high-fat diet (HFD), high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight and oxidative stress and elevated levels of plasma lipid profile in rats. Results: Oral administration of methanolic extract of H. indicus (200 mg/kg) offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (p<0.001 in the aorta, heart and liver), superoxide dismutase (p<0.001 in the aorta, heart and liver), and glutathione peroxidase (p<0.001 in the aorta, heart and liver). Hyperlipidemia condition assessed in terms of body weight, total cholesterol, free cholesterol, ester cholesterol, phospholipids, triglycerides, and atherogenic index and the results showed significant differences between HFD and non-HFD fed rats (p<0.001). High-fat diet treated rats showed changes in hepatic tissue architecture such as micro and macrovascular steatosis, increased fatty infiltration, and inflammation. Conclusion: The present study revealed that the methanolic extract of H. indicus protects against oxidative stress, hyperlipidemia and liver damage. PMID:27761421

  18. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  19. Prevention of high fructose-induced metabolic syndrome in male wistar rats by aqueous extract of Tamarindus indica seed.

    PubMed

    Shahraki, Mohammd Reza; Harati, Mehdi; Shahraki, Ahamd Reza

    2011-01-01

    Tamarindus indica is used as a traditional treatment for diabetes. To elucidate whether Tamarindus indica seed aqueous extract (TSE) ameliorates metabolic syndrome in hyperinsulinemic rats, we evaluated serum insulin, dehydroepiandrosterone sulfate (DHEAS), triglyceride (TG), total cholesterol (TC), very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL), and glucose levels in fructose-fed rats. Animals were divided into three groups; control (C) receiving tap water, fructose-fed (F) and TSE-treated fructose-fed rats (F-T) both receiving tap water supplemented with 10% (w/v) fructose. Water was prepared every day for a period of 8 weeks for all three groups. F-T rats were fed with TSE via gavage feeding at the dose of 20 mg/0.5 ml distilled water/100 g body weight per day. Fasting serum glucose levels of three groups were comparable. TSE treatment prevented the increase in fasting serum insulin, TG, TC, VLDL, and LDL in the F-T group (P<0.01) when comparing with the F group. Fructose feeding led to a decrease in fasting serum DHEAS, and HDL levels in the F group (P<0.01) compared with the control. TSE treatment prevented the decrease in fasting serum DHEAS, and HDL levels in the F-T group (P<0.01) while these results were not seen in control rats. It is indicated that the hyperinsulinemia in fructose-fed insulin resistant rats are associated with low levels of DHEAS, and HDL; and high levels of TC, VLDL, LDL, and TG. TSE supplementation probably ameliorates metabolic syndrome due to the improved insulin action.

  20. Maternal green tea extract supplementation to rats fed a high-fat diet ameliorates insulin resistance in adult male offspring.

    PubMed

    Li, Shiying; Tse, Iris M Y; Li, Edmund T S

    2012-12-01

    Maternal overnutrition is associated with increased risk of metabolic disorders in the offspring. This study tested the hypothesis that maternal green tea (GT) supplementation can alleviate metabolic derangements in high-fat-diet-fed rats born of obese dams. Female Sprague-Dawley rats were fed low-fat (LF, 7%), high-fat (HF, 30%) or HF diet containing 0.75% or 1.0% GT extract (GT1, GT2) prior to conception and throughout gestation and lactation. Both doses of GT significantly improved metabolic parameters of HF-fed lactating dams (P<.05). Birth weight and litter size of offspring from HF dams were similar, but GT supplementation led to lighter pups on day 21 (P<.05). The weaned male pups received HF, GT1 or GT2 diet (dam/pup diet groups: LF/HF, HF/HF, HF/GT1, HF/GT2, GT1/HF and GT2/HF). At week 13, they had similar weight but insulin resistance index (IRI), serum nonesterified fatty acid (NEFA) and liver triglyceride of rats born to GT dams were 57%, 23% and 26% lower, accompanied by improved gene/protein expressions related to lipid and glucose metabolism, compared with the HF/HF rats (P<.05). Although HF/GT1 and HF/GT2 rats had lower serum NEFA, their insulin and IRI were comparable to HF/HF rats. This study shows that metabolic derangements induced by an overnourished mother could be offset by supplementing GT to the maternal diet and that this approach is more effective than giving GT to offspring since weaning. Hence, adverse effects of developmental programming are reversible, at least in part, by supplementing bioactive food component(s) to the mother's diet.

  1. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Will, Matthew J; Booth, Frank W

    2015-10-01

    The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling.

  2. Effect of troglitazone on vascular and glucose metabolic actions of insulin in high-sucrose-fed rats.

    PubMed

    Santuré, Marta; Pitre, Maryse; Nadeau, André; Bachelard, Hélène

    2003-08-01

    In rats, diets high in simple sugar induce insulin resistance and alter vascular reactivity. The present study was designed to evaluate the effects of 5 weeks treatment with troglitazone on insulin sensitivity, regional hemodynamics, and vascular responses to insulin in chow-fed and high-sucrose-fed rats. Male rats were randomly divided in 4 groups to receive a regular chow diet in the absence (group 1) or presence of troglitazone (0.2% in food; group 2), or a sucrose-enriched diet in the absence (group 3) or presence of troglitazone (group 4) for 5 weeks. The rats were instrumented with Doppler flow probes and intravascular catheters to determine blood pressure, heart rate, and regional blood flows. Insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp technique. Glucose transport activity was examined in isolated muscles. Sucrose feeding was found to induce insulin resistance and to impair the insulin-mediated skeletal muscle vasodilation. Treatment with troglitazone was found to increase whole-body insulin sensitivity in sucrose- and chow-fed rats, but had no effect on skeletal muscle glucose transport activity measured in isolated muscles from both dietary groups. Changes in regional hemodynamics were observed in both dietary cohorts treated with troglitazone, and the hindquarter vasoconstrictor response to insulin noted in sucrose-fed rats was abolished by the treatment. The vascular effects of troglitazone, and its insulin-related attenuating effects on contractile tone, could have contributed, in part, to improve insulin action on peripheral glucose disposal, presumably by improving blood flow distribution and glucose delivery.

  3. Prevention of high fructose-induced metabolic syndrome in male wistar rats by aqueous extract of Tamarindus indica seed.

    PubMed

    Shahraki, Mohammd Reza; Harati, Mehdi; Shahraki, Ahamd Reza

    2011-01-01

    Tamarindus indica is used as a traditional treatment for diabetes. To elucidate whether Tamarindus indica seed aqueous extract (TSE) ameliorates metabolic syndrome in hyperinsulinemic rats, we evaluated serum insulin, dehydroepiandrosterone sulfate (DHEAS), triglyceride (TG), total cholesterol (TC), very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL), and glucose levels in fructose-fed rats. Animals were divided into three groups; control (C) receiving tap water, fructose-fed (F) and TSE-treated fructose-fed rats (F-T) both receiving tap water supplemented with 10% (w/v) fructose. Water was prepared every day for a period of 8 weeks for all three groups. F-T rats were fed with TSE via gavage feeding at the dose of 20 mg/0.5 ml distilled water/100 g body weight per day. Fasting serum glucose levels of three groups were comparable. TSE treatment prevented the increase in fasting serum insulin, TG, TC, VLDL, and LDL in the F-T group (P<0.01) when comparing with the F group. Fructose feeding led to a decrease in fasting serum DHEAS, and HDL levels in the F group (P<0.01) compared with the control. TSE treatment prevented the decrease in fasting serum DHEAS, and HDL levels in the F-T group (P<0.01) while these results were not seen in control rats. It is indicated that the hyperinsulinemia in fructose-fed insulin resistant rats are associated with low levels of DHEAS, and HDL; and high levels of TC, VLDL, LDL, and TG. TSE supplementation probably ameliorates metabolic syndrome due to the improved insulin action. PMID:21713743

  4. High affinity binding of (/sup 3/H)neurotensin of rat uterus

    SciTech Connect

    Pettibone, D.J.; Totaro, J.A.

    1987-11-01

    (/sup 3/H)Neurotensin (NT) was found to bind specifically and with high affinity to crude membranes prepared from rat uterus. Scatchard analysis of saturation binding studies indicated that (/sup 3/H)NT apparently binds to two sites (high affinity Kd 0.5 nM; low affinity Kd 9 nM) with the density of high affinity sites (41 fmoles/mg prot.) being about one-third that of the low affinity sites (100 fmoles/mg prot.). In competition studies, NT and various fragments inhibited (/sup 3/H)NT binding with the following potencies (approximately IC50): NT 8-13 (0.4 nM), NT 1-13 (4 nM), NT 9-13 (130 nM), NT 1-11, NT 1-8 (greater than 100 microM). Quantitatively similar results were obtained using brain tissue. These findings raise the possibility of a role for NT in uterine function.

  5. Injectable, High Density Collagen Gels for Annulus Fibrosus Repair: An In Vitro Rat Tail Model

    PubMed Central

    Borde, Brandon; Grunert, Peter; Härtl, Roger; Bonassar, Lawrence J.

    2014-01-01

    A herniated intervertebral disc often causes back pain when disc tissue is displaced through a damaged annulus fibrosus. Currently the only methods available for annulus fibrosus repair involve mechanical closure of defect, which does little to address biological healing in the damaged tissue. Collagen hydrogels are injectable and have been used to repair annulus defects in vivo. In this study, high-density collagen hydrogels at 5, 10 and 15 mg/ml were used to repair defects made to intact rat caudal intervertebral discs in vitro. A group of gels at 15 mg/ml were also crosslinked with riboflavin at 0.03 mM, 0.07 mM or 0.10 mM . These crosslinked, high-density collagen gels maintained presence in the defect under loading and contributed positively to the mechanical response of damaged discs. Discs exhibited increases to 95% of undamaged effective equilibrium and instantaneous moduli as well as up to four fold decreases in effective hydraulic permeability from the damaged discs. These data suggest that high density collagen gels may be effective at restoring mechanical function of injured discs as well as potential vehicles for delivery of biological agents such as cells or growth factors that may aid in the repair of the annulus fibrosus. PMID:25504661

  6. High-affinity transport of L-glutamine by a plasma membrane preparation from rat brain.

    PubMed

    Roon, R J; Shofner, S A; Koerner, J F

    1989-10-01

    Plasma membrane vesicles prepared from rat brain contain a saturable, high-affinity transport system for L-glutamine that exhibits the following characteristics: (1) The rate of L-glutamine transport is linear up to 200 micrograms/mL membrane protein. (2) Transport of [3H]-L-glutamine is linear with time for at least 10 min, is significantly reduced by lowering the assay temperature to 4 degrees C, and is essentially abolished by the addition of excess unlabeled L-glutamine. (3) The transport rate is optimal in the range of pH 7.4-8.2. (4) The system exhibits a Km for L-glutamine of approximately 1.7 microM and a Vmax of approximately 46 pmol/(min.mg of protein). (5) The system is not highly dependent upon the addition of monovalent or divalent cations. (6) Inhibitor studies reveal that the amino acid amides exhibit the highest affinity for the system and that there is a high specificity for the L-isomers.

  7. Effects of ethanol on body temperature of rats at high ambient pressure.

    PubMed

    Berge, O G; Garcia-Cabrera, I

    1991-05-01

    Separately, ethanol and high ambient pressure cause hypothermia in laboratory animals. However, ethanol and high pressure have mutually antagonistic effects on several biological functions and the present experiments investigate their combined action on body temperature. Rats given saline, 1.5 g/kg ethanol or 3.5 g/kg ethanol were exposed to 1 bar air at 25-26 degrees C, 1 bar helium-oxygen at 30-31 degrees C, or 48 bar helium-oxygen at 33.5-34.5 degrees C. Ambient, colonic and tail-skin temperatures were monitored for 60 min. There were no significant differences in mean ambient or tail-skin temperatures between groups belonging to the same ambient condition. Colonic temperatures under the 1 bar conditions were 1.5-2 degrees C lower in the 3.5 g/kg ethanol group than in the saline and 1.5 g/kg ethanol groups, while no significant differences were observed between the groups at 48 bar. Comparisons of the colonic temperatures at the end of the observation period, i.e., 60 min after administration of ethanol, demonstrated that their values at 48 bar were significantly lower than at 1 bar after saline, significantly higher after 3.5 g/kg ethanol and identical across conditions in the 1.5 g/kg groups. The results suggest that high ambient pressure may counteract rather than potentiate the hypothermic effect of ethanol.

  8. Hypocholesterolemic effect of daily fisetin supplementation in high fat fed Sprague-Dawley rats.

    PubMed

    Shin, Min-Jeong; Cho, Yoonsu; Moon, Jiyoung; Jeon, Hyun Ju; Lee, Seung-Min; Chung, Ji Hyung

    2013-07-01

    We aimed to test whether fisetin could modulate cholesterol homeostasis in rats with diet-induced hypercholesterolemia, and further investigated the underlying mechanisms by which fisetin exerts its cholesterol lowering effect. Blood lipid profile, hepatic cholesterol content, as well as gene expressions in cholesterol metabolism were examined. Elevated levels of total cholesterol and LDL-cholesterol, along with hepatic cholesterol content in a high fat group were found to be significantly reduced by fisetin. The high fat diet significantly decreased hepatic mRNA levels of LDLR, SREBP2, HMGCR and PCSK9 in comparison to the control diet, however, fisetin did not further elicit any changes in mRNA levels of the same genes. The high fat diet dramatically increased the transcript levels of CYP7A1, which was subsequently reversed by the fisetin. In HepG2 cells, fisetin was found to increase the levels of a nuclear form of SREBP2 and LDLR. In conclusion, fisetin supplementation displayed hypocholesterolemic effects by modulating the expression of genes associated with cholesterol and bile acid metabolism.

  9. Salvianolic acid A protects against vascular endothelial dysfunction in high-fat diet fed and streptozotocin-induced diabetic rats.

    PubMed

    Yang, Xiu-Ying; Qiang, Gui-Fen; Zhang, Li; Zhu, Xiao-Ming; Wang, Shou-Bao; Sun, Lan; Yang, Hai-Guang; Du, Guan-Hua

    2011-10-01

    Salvianolic acid A (SalA) is one of the main active ingredients of Salvia miltiorrhizae. The objective of this study was to evaluate the effect of SalA on the diabetic vascular endothelial dysfunction (VED). The rats were given a high-fat and high-sucrose diet for 1 month followed by intraperitoneal injection of streptozotocin (30 mg/kg). The diabetic rats were treated with SalA (1 mg/kg, 90% purity) orally for 10 weeks after modeling, and were given a high-fat diet. Contractile and relaxant responses of aorta rings as well as the serum indications were measured. Our results indicated that SalA treatment decreased the level of serum Von Willebrand factor and ameliorated acetylcholine-induced relaxation and KCl-induced contraction in aorta rings of the diabetic rats. SalA treatment also reduced the serum malondialdehyde, the content of aortic advanced glycation end products (AGEs), and the nitric oxide synthase (NOS) activity as well as the expression of endothelial NOS protein in the rat aorta. Exposure of EA.hy926 cells to AGEs decreased the cell viability and changed the cell morphology, whereas SalA had protective effect on AGEs-induced cellular vitality. Our data suggested that SalA could protect against vascular VED in diabetes, which might attribute to its suppressive effect on oxidative stress and AGEs-induced endothelial dysfunction. PMID:21972802

  10. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    PubMed Central

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  11. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    PubMed

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  12. High-fat diet offsets the long-lasting effects of running-wheel access on food intake and body weight in OLETF rats.

    PubMed

    Chao, Pei-Ting; Terrillion, Chantelle E; Moran, Timothy H; Bi, Sheng

    2011-06-01

    We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats.

  13. Genetics of alcoholism: rapid development of a new high-ethanol-preferring (HEP) strain of female and male rats.

    PubMed

    Myers, R D; Robinson, D E; West, M W; Biggs, T A; McMillen, B A

    1998-11-01

    A genetically based animal model of alcoholism has been developed in a relatively short period of 3 years. The new strain is characterized by an intense preference for ethanol over water as well as unique behavioral, neurochemical and other attributes. This new strain, termed high-ethanol-preferring (HEP) rats, was derived initially from selective cross-breeding of a variant strain of female Harlan Sprague-Dawley (SD) rats with the outbred Wistar line of male ethanol-preferring (P) rats. In this study, drinking patterns of both genders were obtained over 10 days by presenting water and ethanol in concentrations ranging from 3% to 30%. To expedite the development of the new strain, only three to five female and male rats served as breeders, which were chosen from all litters on the basis of their maximum g/kg intake integrated with proportion of ethanol to total fluid values. Profiles of intake of preferred concentrations of ethanol were obtained over 24 h of unlimited access as well as during 2-h intervals of limited access to ethanol. Levels of blood ethanol were measured in both female and male HEP animals during bouts of ethanol drinking in the limited access paradigm. By the sixth generation of HEP rats, ethanol consumption of the females often exceeded that of any other rat genetically bred to drink ethanol (e.g., at a concentration of 15.7%, 10.3 g/kg per day). Seven additional characteristics are notable: 1) the HEP rats prefer ethanol in the presence of a nutritious chocolate drink or nonnutrient sweetened solution (aspartame); 2) high levels of blood ethanol are associated with their drinking; 3) females drink significantly greater g/kg amounts of ethanol than HEP males and prefer a higher percent concentration of ethanol; 4) the drinking of ethanol by the female HEP animals does not fluctuate during the estrous cycle; 5) neurochemical assays show differential profiles of 5-HT, dopamine, and their metabolites in different regions of the brain; 6) measures

  14. Involvement of purinergic P2X4 receptors in alcohol intake of high-alcohol-drinking (HAD) rats

    PubMed Central

    Franklin, Kelle M.; Hauser, Sheketha R.; Lasek, Amy W.; Bell, Richard L.; McBride, William J.

    2015-01-01

    Background The P2X4 receptor is thought to be involved in regulating alcohol-consuming behaviors and ethanol (EtOH) has been reported to inhibit P2X4 receptors. Ivermectin is an anti-parasitic agent that acts as a positive allosteric modulator of the P2X4 receptor. The current study examined the effects of systemically- and centrally-administered ivermectin on alcohol drinking of replicate lines of high-alcohol-drinking (HAD-1/HAD-2) rats, and the effects of lentiviral-delivered short-hairpin RNAs (shRNAs) targeting P2rx4 on EtOH intake of female HAD2 rats. Method For the 1st experiment, adult male HAD-1 & HAD-2 rats were given 24-hr free-choice access to 15% EtOH vs. water. Dose-response effects of ivermectin (1.5 to 7.5 mg/kg i.p.) on EtOH intake were determined; the effects of ivermectin were then examined for 2% w/v sucrose intake over 5 consecutive days. In the 2nd experiment, female HAD-2 rats were trained to consume 15% EtOH under 2-hr limited access conditions, and dose-response effects of intracerebroventricular (ICV) administration of ivermectin (0.5 to 2.0 μg) were determined over 5 consecutive days. The 3rd experiment determined the effects of microinfusion of a lentivirus expressing P2rx4 shRNAs into the posterior ventral tegmental area (VTA) on 24-hr EtOH free-choice drinking of female HAD-2 rats. Results The highest i.p. dose of ivermectin reduced alcohol drinking (30-45%) in both rat lines, but did not alter sucrose intake. HAD-2 rats appeared to be more sensitive than HAD1 rats to the effects of ivermectin. ICV administration of ivermectin reduced 2-hr limited access intake (∼35%) of female HAD-2 rats; knockdown of P2rx4 expression in the posterior VTA reduced 24-hr free choice EtOH intake (∼20%). Conclusion Overall, the results of the current study support a role for P2X4 receptors within the mesolimbic system in mediating alcohol drinking behavior. PMID:26334550

  15. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  16. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    PubMed

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  17. Fibrinogen and thrombin concentrations are critical for fibrin glue adherence in rat high-risk colon anastomoses

    PubMed Central

    Buen, Eliseo Portilla-de; Orozco-Mosqueda, Abel; Leal-Cortés, Caridad; Vázquez-Camacho, Gonzalo; Fuentes-Orozco, Clotilde; Alvarez-Villaseñor, Andrea Socorro; Macías-Amezcua, Michel Dassaejv; González-Ojeda, Alejandro

    2014-01-01

    OBJECTIVE: Fibrin glues have not been consistently successful in preventing the dehiscence of high-risk colonic anastomoses. Fibrinogen and thrombin concentrations in glues determine their ability to function as sealants, healers, and/or adhesives. The objective of the current study was to compare the effects of different concentrations of fibrinogen and thrombin on bursting pressure, leaks, dehiscence, and morphology of high-risk ischemic colonic anastomoses using fibrin glue in rats. METHODS: Colonic anastomoses in adult female Sprague-Dawley rats (weight, 250-350 g) treated with fibrin glue containing different concentrations of fibrinogen and thrombin were evaluated at post-operative day 5. The interventions were low-risk (normal) or high-risk (ischemic) end-to-end colonic anastomoses using polypropylene sutures and topical application of fibrinogen at high (120 mg/mL) or low (40 mg/mL) concentrations and thrombin at high (1000 IU/mL) or low (500 IU/mL) concentrations. RESULTS: Ischemia alone, anastomosis alone, or both together reduced the bursting pressure. Glues containing a low fibrinogen concentration improved this parameter in all cases. High thrombin in combination with low fibrinogen also improved adherence exclusively in low-risk anastomoses. No differences were detected with respect to macroscopic parameters, histopathology, or hydroxyproline content at 5 days post-anastomosis. CONCLUSIONS: Fibrin glue with a low fibrinogen content normalizes the bursting pressure of high-risk ischemic left-colon anastomoses in rats at day 5 after surgery. PMID:24714834

  18. Laughing Rats? Playful Tickling Arouses High-Frequency Ultrasonic Chirping in Young Rodents

    ERIC Educational Resources Information Center

    Panksepp, Jaak; Burgdorf, Jeffrey

    2010-01-01

    In this reprint of a seminal article, once considered quite controversial, the authors discuss their radical claim that rats laugh. Even more provocative, the authors found that this rat-joy sound, especially evident during play, could be amplified dramatically by what they formally call heterospecific (cross-species) handplay (tickling). The…

  19. A RAT MODEL OF HEART FAILURE INDUCED BY ISOPROTERENOL AND A HIGH SALT DIET

    EPA Science Inventory

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4wk) isoproterenol (ISO) infusion in Spontaneously Hypertensive Heart Failure (SHHF) rats caused cardiac injury with minimal hypertrophy. O...

  20. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Ward, Leigh C; Waanders, Jennifer; Brown, Lindsay

    2012-06-15

    Age-related physiological changes develop at the same time as the increase in metabolic syndrome in humans after young adulthood. There is a paucity of data in models mimicking chronic diet-induced changes in human middle age and interventions to reverse these changes. This study measured the changes during chronic consumption of a high-carbohydrate (as cornstarch), low-fat (C) diet and a high-carbohydrate (as fructose and sucrose), high-fat (H) diet in rats for 32 wk. C diet feeding induced changes without metabolic syndrome, such as disproportionate increases in total body lean and fat mass, reduced bone mineral content, cardiovascular remodeling with increased systolic blood pressure, left ventricular and arterial stiffness, and increased plasma markers of liver injury. H diet feeding induced visceral adiposity with reduced lean mass, increased lipid infiltration in the skeletal muscle, impaired glucose and insulin tolerance, cardiovascular remodeling, hepatic steatosis, and increased infiltration of inflammatory cells in the heart and the liver. Chia seed supplementation for 24 wk attenuated most structural and functional modifications induced by age or H diet, including increased whole body lean mass and lipid redistribution from the abdominal area, and normalized the chronic low-grade inflammation induced by H diet feeding; these effects may be mediated by increased metabolism of anti-inflammatory n-3 fatty acids from chia seed. These results suggest that chronic H diet feeding for 32 wk mimics the diet-induced cardiovascular and metabolic changes in middle age and that chia seed may serve as an alternative dietary strategy in the management of these changes.

  1. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    PubMed

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.

  2. A high-affinity estrogen-binding protein in rat placental trophoblast.

    PubMed

    McCormack, S A; Glasser, S R

    1976-09-01

    A high-affinity, low-capacity estradiol-binding molecule (RE) has been demonstrated in the basal zone trophoblast (BZT) of the pregnant rat. On day 11 of pregnancy (day 0 = first sperm-positive day) RE is present in BZT cytosol, where it has a ka of 1.2 X 10(6)M-1 sec-1, t1/2 = 12.7 min, at 20 C. The Kd, under similar conditions, consists of 2 components, 1.3 X 10(-4) sec-1, t1/2 = 90 min, and 5.9 X 10(-5) sec-1, t1/2 = 196 min. When one uses the faster component, the equilibrium constant, Kd, obtained from kd/ka is 1.1 X 10(-10)M, in close agreement with that obtained from Scatchard analysis of specific estradiol (E2) binding at 20 C. On day 11 there were approximately 12,000 sites/cell in BZT cytosol. Scatchard analysis of nuclear RE on day 11 indicated a Kd of 1.85 X 10(-10)M and approximately 21,000 sites/nucleus, but, in day 15 BZT, nuclear RE was undetectable. Neither cytosol nor nuclei prepared from placental labyrinthine zone (LZT) tissue (fetal placenta) showed evidence of high-affinity, low-capacity E2 binding. Sucrose density gradient analysis on 5-20% linear gradients showed the cytosol RE to be approximately 4S whether in high or low-salt conditions. When measured against binding by 3H-labeled estradiol (*E2), the cytosol BTZ RE was competed for strongly (80-90%) by estrone, estriol, diethylstilbestrol, and estradiol-17alpha at 200 times excess. Nafoxidine-HCl, also at 200X excess, competed to approximately 50%. Corticosterone, progesterone, testosterone, dehydroepiandrosterone, and pregnenolone did not compete. The hormone specificity of nuclear BZT RE was similar to that of the comparable cytosol RE with the exception that nafoxidine did not compete. This was probably due to differences in kinetics, nafoxidine requiring a longer time to reach equilibrium than the other estrogens. The size of the nuclear RE by sucrose density gradient analysis was approximately 2S by KCl extraction (which was inefficient) or 4S by trypsin extraction. We conclude that

  3. Highly H+-sensitive neurons in the caudal ventrolateral medulla of the rat

    PubMed Central

    Ribas-Salgueiro, J L; Gaytán, S P; Crego, R; Pásaro, R; Ribas, J

    2003-01-01

    The ventral surface of the caudal ventrolateral medulla (cVLM) has been shown to generate intense respiratory responses after surface acid-base stimulation. With respect to their chemosensitive characteristics, cVLM neurons have been less studied than other rostral-most regions of the brainstem. The purpose of these experiments was to determine the bioelectric responses of cVLM neurons to acidic stimuli and to determine their chemosensitive properties. Using extracellular and microiontophoretic techniques, we recorded electrical activities from 117 neurons in an area close to the ventral surface of the cVLM in anaesthetised rats. All neurons were tested for their sensitivity to H+. The fluorescent probe BCECF was used to measure extracellular pH changes produced by the microiontophoretic injection of H+ in brainstem slices. This procedure provided an estimation of the local changes in pH produced by microiontophoretic H+ application in the anaesthetised rat. Neurons coupled to the respiratory cycle, R (n = 51), were not responsive to direct stimulation with H+. Sixty-six neurons that did respond to H+ stimulation were uncoupled from respiration, and identified as NR neurons. These neurons presented distinct ranges of H+ sensitivity. The neuronal sensitivity to H+ was mainly assessed by the slope of the stimulus-response curve, where the steeper the slope, the higher the H+ sensitivity. On this basis, NR neurons were classed as being either weakly or highly sensitive to H+. NR neurons with a high H+ sensitivity (n = 12) showed an average value of 34.17 ± 7.44 spikes s−1 (100 nC)−1 (mean ± s.d.) for maximal slope and an EC50 of 126.76 ± 33 nC. Suprathreshold H+ stimulation of highly sensitive NR neurons elicited bursting pattern responses coupled to the respiratory cycle. The bursting responses, which were synchronised with the inspiratory phase and the early expiratory phase of the respiratory cycle, lasted for several seconds before returning to the steady

  4. A Root-Based Combination Supplement Containing Pueraria lobata and Rehmannia glutinosa and Exercise Preserve Bone Mass in Ovariectomized Rats Fed a High-Fat Diet.

    PubMed

    Ok, Hyang Mok; Gebreamanuel, Meron Regu; Oh, Sang A; Jeon, Hyejin; Lee, Won Jun; Kwon, Oran

    2015-12-01

    The aim of this study was to evaluate the effects of a supplement containing Pueraria lobata/Rehmannia glutinosa (PR) root extracts on bone turnover in ovariectomized (OVX) rats (a model for postmenopausal osteoporosis). Female Sprague-Dawley rats (8 weeks old) were randomized into eight groups: sham-operated rats with low-fat control diet + vehicle, OVX rats with low-fat control diet + vehicle, OVX rats with high-fat diet (HFD) + vehicle, OVX rats with HFD + vehicle + exercise, OVX rats with HFD + PR (400 mg/kg body weight/day p.o.), OVX rats with HFD + PR + exercise, OVX rats with HFD + 17β-estradiol (0.5 mg/kg body weight/day p.o.), OVX rats with HFD + 17β-estradiol + exercise. Bone microarchitecture, bone turnover markers (e.g., plasma alkaline phosphatase and osteocalcin), expressions of osteogenic and resorptive gene markers in the bone were measured. Eight weeks of PR and/or aerobic exercise improved cortical microarchitecture of the femur and decreased markers of bone turnover and expression of skeletal osteoclastogenic genes in the femur. PR supplementation combined with exercise preserved bone loss induced by estrogen deficiency and should be investigated further as an alternative to hormone replacement therapy for preventing osteoporosis in postmenopausal women. PMID:26319677

  5. A Root-Based Combination Supplement Containing Pueraria lobata and Rehmannia glutinosa and Exercise Preserve Bone Mass in Ovariectomized Rats Fed a High-Fat Diet.

    PubMed

    Ok, Hyang Mok; Gebreamanuel, Meron Regu; Oh, Sang A; Jeon, Hyejin; Lee, Won Jun; Kwon, Oran

    2015-12-01

    The aim of this study was to evaluate the effects of a supplement containing Pueraria lobata/Rehmannia glutinosa (PR) root extracts on bone turnover in ovariectomized (OVX) rats (a model for postmenopausal osteoporosis). Female Sprague-Dawley rats (8 weeks old) were randomized into eight groups: sham-operated rats with low-fat control diet + vehicle, OVX rats with low-fat control diet + vehicle, OVX rats with high-fat diet (HFD) + vehicle, OVX rats with HFD + vehicle + exercise, OVX rats with HFD + PR (400 mg/kg body weight/day p.o.), OVX rats with HFD + PR + exercise, OVX rats with HFD + 17β-estradiol (0.5 mg/kg body weight/day p.o.), OVX rats with HFD + 17β-estradiol + exercise. Bone microarchitecture, bone turnover markers (e.g., plasma alkaline phosphatase and osteocalcin), expressions of osteogenic and resorptive gene markers in the bone were measured. Eight weeks of PR and/or aerobic exercise improved cortical microarchitecture of the femur and decreased markers of bone turnover and expression of skeletal osteoclastogenic genes in the femur. PR supplementation combined with exercise preserved bone loss induced by estrogen deficiency and should be investigated further as an alternative to hormone replacement therapy for preventing osteoporosis in postmenopausal women.

  6. Body and organ weights of rats exposed to carbon monoxide at high altitude.

    PubMed

    McGrath, J J

    1988-01-01

    Although chronic exposure to carbon monoxide (CO) or high altitude produces pronounced cardiovascular changes in humans as well as animals, there is little information on the effects elicited by these stressors combined. Theoretical considerations, as well as data from acute studies, suggest that CO inhaled at high altitude may be more detrimental than CO inhaled at low altitude. The purpose of these studies was to construct a system in which CO and altitude could be controlled precisely, and to investigate the effects of continuous exposure to CO and high altitude on body weights and hematocrit ratios, as well as heart, spleen, adrenals, kidneys, and pituitary weights. Male, laboratory rats were exposed for 6 wk in steel barometric chambers to (1) 100 ppm CO, (2) 15,000 ft simulated high altitude (SHA), and (3) CO at SHA. Altitude was simulated by a system of gate valves and a vacuum pump, and measured by an altimeter. CO, from high-pressure cylinders, was introduced into the air supplying each chamber through a mass flow controller and measured by a nondispersive infrared (NDIR) analyzer. Although SHA had no affect on left ventricle plus septum (LV + S), adrenal, spleen, or kidney weights, SHA decreased body weights, and increased hematocrit ratios, as well as right ventricle (RV), total heart (HT), and pituitary weights. CO had no affect on body weights, RV, HT, adrenal, spleen, or kidney weights, but CO increased hematocrit ratios and LV + S weights. There was no significant interaction between SHA and CO on any parameter except kidney weight. These results indicate that, in general, the effects produced by 15,000 ft SHA are not intensified by exposure to 100 ppm CO. PMID:3351978

  7. Changes in the acinar activity patterns of phosphoenolpyruvate carboxykinase in livers of male and female rats upon feeding a high protein and a high fat diet.

    PubMed

    Wimmer, M; Luttringer, C; Colombi, M

    1990-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) activity was investigated in relation to its localization within the liver acinus of male and female rats after feeding either a high protein diet (77%) or a high fat diet (52%). Both diets led to sex-dependent changes in activity and acinar distribution patterns. In male rats high protein diet provoked a shift in the acinar activity pattern towards the perivenous parts of the acinus without increase in average activity. Yet in the livers of females the activity was increased in all parts of the acinus, but to a greater extent in the perivenous parts of the acinus. Feeding a high fat diet increased PEPCK activity in males and to an even greater extent in females. In both sexes the increase was greater in the perivenous zone when compared to the changes within the periportal zone. The results are discussed in relation to changes in the concentrations of glucoregulatory hormones.

  8. Regulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in the rat.

    PubMed Central

    Bräu, L; Ferreira, L D; Nikolovski, S; Raja, G; Palmer, T N; Fournier, P A

    1997-01-01

    The aim of this study was to determine the role of the phosphorylation state of glycogen synthase and glycogen phosphorylase in the regulation of muscle glycogen repletion in fasted animals recovering from high-intensity exercise. Groups of rats were swum to exhaustion and allowed to recover for up to 120 min without access to food. Swimming to exhaustion caused substantial glycogen breakdown and lactate accumulation in the red, white and mixed gastrocnemius muscles, whereas the glycogen content in the soleus muscle remained stable. During the first 40 min of recovery, significant repletion of glycogen occurred in all muscles examined except the soleus muscle. At the onset of recovery, the activity ratios and fractional velocities of glycogen synthase in the red, white and mixed gastrocnemius muscles were higher than basal, but returned to pre-exercise levels within 20 min after exercise. In contrast, after exercise the activity ratios of glycogen phosphorylase in the same muscles were lower than basal, and increased to pre-exercise levels within 20 min. This pattern of changes in glycogen synthase and phosphorylase activities, never reported before, suggests that the integrated regulation of the phosphorylation state of both glycogen synthase and phosphorylase might be involved in the control of glycogen deposition after high-intensity exercise. PMID:9078277

  9. Reversibility of electrophysiological changes induced by chronic high-altitude hypoxia in adult rat heart.

    PubMed

    Chouabe, C; Amsellem, J; Espinosa, L; Ribaux, P; Blaineau, S; Mégas, P; Bonvallet, R

    2002-04-01

    Recent studies indicate that regression of left ventricular hypertrophy normalizes membrane ionic current abnormalities. This work was designed to determine whether regression of right ventricular hypertrophy induced by permanent high-altitude exposure (4,500 m, 20 days) in adult rats also normalizes changes of ventricular myocyte electrophysiology. According to the current data, prolonged action potential, decreased transient outward current density, and increased inward sodium/calcium exchange current density normalized 20 days after the end of altitude exposure, whereas right ventricular hypertrophy evidenced by both the right ventricular weight-to-heart weight ratio and the right ventricular free wall thickness measurement normalized 40 days after the end of altitude exposure. This morphological normalization occurred at both the level of muscular tissue, as shown by the decrease toward control values of some myocyte parameters (perimeter, capacitance, and width), and the level of the interstitial collagenous connective tissue. In the chronic high-altitude hypoxia model, the regression of right ventricular hypertrophy would not be a prerequisite for normalization of ventricular electrophysiological abnormalities. PMID:11893582

  10. Piperine potentiates the hypocholesterolemic effect of curcumin in rats fed on a high fat diet.

    PubMed

    Tu, Yaosheng; Sun, Dongmei; Zeng, Xiaohui; Yao, Nan; Huang, Xuejun; Huang, Dane; Chen, Yuxing

    2014-07-01

    It has previously been demonstrated that curcumin possesses a hypocholesterolemic effect and potentiates numerous pharmacological effects of curcumin, however, the mechanisms underlying this hypocholesterolemic effect and the interaction between curcumin and piperine remain to be elucidated. In the present study, male Sprague-Dawley rats were fed on a high-fat diet (HFD) to establish a hyperlipidemia (HLP) model. Co-administration of curcumin plus piperine was found to decrease the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol in the serum and liver, as well as increase the levels of fecal TC, TG and total bile acid, compared with administration of curcumin alone. Curcumin plus piperine also markedly increased the levels of high-density lipoprotein cholesterol. Furthermore, compared with administration of curcumin alone, administration of curcumin plus piperine resulted in a significant upregulation of the activity and gene expression of apolipoprotein AI (ApoAI), lecithin cholesterol acyltransferase (LCAT), cholesterol 7α-hydroxylase (CYP7A1) and low-density lipoprotein receptor (LDLR). In conclusion, these results indicated that co-administration of curcumin plus piperine potentiates the hypocholesterolemic effects of curcumin by increasing the activity and gene expression of ApoAI, CYP7A1, LCAT and LDLR, providing a promising combination for the treatment of HLP.

  11. High-frequency sound field and bubble formation in a rat decompression model.

    PubMed

    Shupak, Avi; Arieli, Yehuda; Bitterman, Haim; Brod, Vera; Arieli, Ran; Rosenhause, Giora

    2002-05-01

    High-frequency sound might cause bubble enlargement by rectified diffusion. The purpose of the present study was to investigate gas bubble formation in the immersed diving animal during exposure to high-frequency sound. Anaesthetised rats were subjected to a simulated diving profile while immersed inside a hyperbaric chamber. An acoustic beacon (pinger) was placed ventral to the animal's abdomen, transmitting at an intensity of 208.9 dB re 1 micro Pa and a frequency of 37 kHz. Six groups of eight animals were included in the study as in Table 1, breathing air (n = 4) or Nitrox 72/28 (n = 2), at a depth of 0 m, 30 m or 40 m. Immediately after decompression, the intestinal mesenterium was imaged, and frames were acquired digitally. The number of bubbles and their radii were analysed and compared among the groups. The mean bubble density for group 1 was 1.35 +/- 0.18 bubbles/mm(2), significantly higher when compared with the other groups (p < 0.0001). The average bubble radius for groups 1 and 2 was similar (12.57 +/- 4.1 and 10.63 +/- 1.8 microm, respectively), but significantly larger than in the other groups (p < 0.0002). The percentage of bubbles with a radius greater than 50 microm was significantly higher in group 1 (p < 0.0001). The results suggest that commercially available underwater pingers might enhance bubble growth during deep air diving.

  12. Piperine potentiates the hypocholesterolemic effect of curcumin in rats fed on a high fat diet.

    PubMed

    Tu, Yaosheng; Sun, Dongmei; Zeng, Xiaohui; Yao, Nan; Huang, Xuejun; Huang, Dane; Chen, Yuxing

    2014-07-01

    It has previously been demonstrated that curcumin possesses a hypocholesterolemic effect and potentiates numerous pharmacological effects of curcumin, however, the mechanisms underlying this hypocholesterolemic effect and the interaction between curcumin and piperine remain to be elucidated. In the present study, male Sprague-Dawley rats were fed on a high-fat diet (HFD) to establish a hyperlipidemia (HLP) model. Co-administration of curcumin plus piperine was found to decrease the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol in the serum and liver, as well as increase the levels of fecal TC, TG and total bile acid, compared with administration of curcumin alone. Curcumin plus piperine also markedly increased the levels of high-density lipoprotein cholesterol. Furthermore, compared with administration of curcumin alone, administration of curcumin plus piperine resulted in a significant upregulation of the activity and gene expression of apolipoprotein AI (ApoAI), lecithin cholesterol acyltransferase (LCAT), cholesterol 7α-hydroxylase (CYP7A1) and low-density lipoprotein receptor (LDLR). In conclusion, these results indicated that co-administration of curcumin plus piperine potentiates the hypocholesterolemic effects of curcumin by increasing the activity and gene expression of ApoAI, CYP7A1, LCAT and LDLR, providing a promising combination for the treatment of HLP. PMID:24944632

  13. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase

    PubMed Central

    Galton, Valerie Anne; Martinez, Elena; Hernandez, Arturo; St. Germain, Emily A.; Bates, Joanne M.; St. Germain, Donald L.

    1999-01-01

    Although thyroid hormones are critically important for the coordination of morphogenic processes in the fetus and neonate, premature exposure of the embryo to levels of the hormones present in the adult is detrimental and can result in growth retardation, malformations, and even death. We report here that the pregnant rat uterus expresses extremely high levels of the type 3 iodothyronine deiodinase (D3), which inactivates thyroxine and 3,3′,5-triiodothyronine by 5-deiodination. Both D3 mRNA and activity were present at the implantation site as early as gestational day 9 (E9), when expression was localized using in situ hybridization to uterine mesometrial and antimesometrial decidual tissue. At later stages of gestation, uterine D3 activity remained very high, and the levels exceeded those observed in the placenta and in fetal tissues. After days E12 and E13, as decidual tissues regressed, D3 expression became localized to the epithelial cells lining the recanalized uterine lumen that surrounds the fetal cavity. These findings strongly suggest that the pregnant uterus, in addition to the placenta, plays a critical role in determining the level of exposure of the fetus to maternal thyroid hormones. J. Clin. Invest. 103:979–987 (1999). PMID:10194470

  14. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    SciTech Connect

    Brown, C.M.; Layman, D.K.

    1988-11-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of UC-labeled chylomicron-triglyceride ( UC-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from UC-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of UC-CM-TG from plasma and the half-lives of UC-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides.

  15. Acute induction of uncoupling protein 1 by citrulline in cultured explants of white adipose tissue from lean and high-fat-diet-fed rats

    PubMed Central

    Joffin, Nolwenn; Jaubert, Anne-Marie; Bamba, Jessica; Barouki, Robert; Noirez, Philippe; Forest, Claude

    2015-01-01

    A diet enriched with citrulline (CIT) reduces white adipose tissue (WAT) mass. We recently showed that CIT stimulated β-oxidation in rat WAT explants from young (2–4 months) but not old (25 months) rats. Here we show that both in old rats and high-fat-diet-fed young rats, uncoupling protein one (UCP1) mRNA and protein expressions were weaker than those in young control rats. Selectively in WAT from young rats, a 24h CIT treatment up-regulated expressions of UCP1, peroxisome proliferator-activated receptor-α (PPARα), PPARγ-coactivator-1-α and mitochondrial-transcription-factor-A whereas it down-regulated PPARγ2 gene expression, whatever the diet. These results suggest that CIT induces a new metabolic status in WAT, with increased β-oxidation and uncoupling of respiratory chain, resulting in energy expenditure that favors fat mass reduction. PMID:26167416

  16. Range Measurement and a Habitat Suitability Map for the Norway Rat in a Highly Developed Urban Environment.

    PubMed

    Oyedele, Dauda Taofik; Sah, Shahrul Anuar Mohd; Kairuddinand, Liyana; Wan Ibrahim, Wan Mohd Muhiyuddin

    2015-12-01

    Studies of habitat suitability (HS) are essential when animals' habitats have been altered or when animals migrate to a habitat different from their natural habitat. This study assessed HS and used an integrated geographic information system in the assessment of Rattus norvegicus in a highly developed urban environment. Using data from the Campbell market and the police quarters of George Town, Malaysia, home range (through the use of 100% Minimum Convex Polygon [MCP], 95% MCP and 95% Harmonic Mean [HM]) was estimated. Home range for male rats at Campbell market reached an asymptote, with a slight increase, at 96 radio fixes (home range = 133.52 m(2); core area = 29.39 m(2)). Female rats reached an asymptote at 62 radio fixes (home range = 13.38 m(2); core area = 9.17 m(2)). At Campbell market, male rats emerged at 1900 hours every day, whereas females emerged at 2000 hours; at police quarters, the most common time of emergence for males was 2000 hours and for females was 2200. Raster charts of R. norvegicus showed that rat hot spots can be grouped into 4 zones (market, shop houses, settlement and general places). The standardised raster chart isolated the market as the major rallying points of the rats (hot spots) by producing the highest rats frequencies of 255. All of the habitat suitability thresholds, including the built-up points, skip bins, water source and nature of the site explored in this study, produced a structural pattern (monotonic increase or decrease) of habitat suitability.

  17. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus.

  18. Preserved dichotomy but highly irregular and burst discharge in the basal ganglia in alert dystonic rats at rest.

    PubMed

    Kumbhare, Deepak; Chaniary, Kunal D; Baron, Mark S

    2015-10-22

    Despite its prevalence, the underlying pathophysiology of dystonia remains poorly understood. Using our novel tri-component classification algorithm, extracellular neuronal activity in the globus pallidus (GP), STN, and the entopeduncular nucleus (EP) was characterized in 34 normal and 25 jaundiced dystonic Gunn rats with their heads restrained while at rest. In normal rats, neurons in each nucleus were similarly characterized by two physiologically distinct types: regular tonic with moderate discharge frequencies (mean rates in GP, STN and EP ranging from 35-41 spikes/s) or irregular at slower frequencies (17-20 spikes/s), with a paucity of burst activity. In dystonic rats, these nuclei were also characterized by two distinct principal neuronal patterns. However, in marked difference, in the dystonic rats, neurons were primarily slow and highly irregular (12-15 spikes/s) or burst predominant (14-17 spikes/s), with maintained modest differences between nuclei. In GP and EP, with increasing severity of dystonia, burstiness was moderately further increased, irregularity mildly further increased, and discharge rates mildly further reduced. In contrast, these features did not appreciably change in STN with worsening dystonia. Findings of a lack of bursting in GP, STN and EP in normal rats in an alert resting state and prominent bursting in dystonic Gunn rats suggest that cortical or other external drive is normally required for bursting in these nuclei and that spontaneous bursting, as seen in dystonia and Parkinson's disease, is reflective of an underlying pathophysiological state. Moreover, the extent of burstiness appears to most closely correlate with the severity of the dystonia.

  19. A modified method using TRIzol reagent and liquid nitrogen produces high-quality RNA from rat pancreas.

    PubMed

    Li, Dongmin; Ren, Wuchao; Wang, Xuan; Wang, Feimiao; Gao, Yu; Ning, Qilan; Han, Yan; Song, Tianbao; Lu, Shemin

    2009-08-01

    To establish an economical and reproducible method for the high-quality RNA extraction from pancreas, we isolated total RNA from rat pancreas with TRIzol reagent and liquid nitrogen. In the initial stage, we optimized three influential factors, the way to homogenize pancreas, the time to collect the pancreatic tissue from animals, and the weight of the pancreatic tissue in 1 ml of TRIzol reagent. The RNA quality was determined by detecting total RNA content and its absorbance at 260/280 nm wavelength, visualizing RNA in non-denatured agarose gel and performing RT-PCR of pancreas-specific genes. The A (260)/A (280) ratio of the total RNA extracted by grinding 20-30 mg of rat pancreatic tissue removed from the rats in liquid nitrogen within 1 min and then immersed in 1 ml of the TRIzol Reagent was 1.75-1.89, and the ratio of 28S/18S ribosomal RNA bands was more than 1.8. Furthermore, full length of Pdx1 open-reading frame was amplified with RNA extracted from the grinding group rather than from the conventional group. The RT-PCR products of pancreas-specific genes from both exocrine and endocrine parts of pancreas were successfully derived from the extracted RNA. The results suggested that we successfully provided an economical, fast, and reproducible method to obtain the high-quality and intact RNA from rat pancreas with TRIzol Reagent and liquid nitrogen.

  20. High Folic Acid Intake during Pregnancy Lowers Body Weight and Reduces Femoral Area and Strength in Female Rat Offspring

    PubMed Central

    Huot, Pedro S. P.; Dodington, David W.; Mollard, Rebecca C.; Reza-López, Sandra A.; Sánchez-Hernández, Diana; Cho, Clara E.; Kuk, Justin; Ward, Wendy E.; Anderson, G. Harvey

    2013-01-01

    Rats fed gestational diets high in multivitamin or folate produce offspring of altered phenotypes. We hypothesized that female rat offspring born to dams fed a gestational diet high in folic acid (HFol) have compromised bone health and that feeding the offspring the same HFol diet attenuates these effects. Pregnant rats were fed diets with either recommended folic acid (RFol) or 10-fold higher folic acid (HFol) amounts. Female offspring were weaned to either the RFol or HFol diet for 17 weeks. HFol maternal diet resulted in lower offspring body weights (6%, P = 0.03) and, after adjusting for body weight and femoral length, smaller femoral area (2%, P = 0.03), compared to control diet. After adjustments, HFol pup diet resulted in lower mineral content (7%, P = 0.01) and density (4%, P = 0.002) of lumbar vertebra 4 without differences in strength. An interaction between folate content of the dam and pup diets revealed that a mismatch resulted in lower femoral peak load strength (P = 0.01) and stiffness (P = 0.002). However, the match in folate content failed to prevent lower weight gain. In conclusion, HFol diets fed to rat dams and their offspring affect area and strength of femurs and mineral quantity but not strength of lumbar vertebrae in the offspring. PMID:23781391

  1. Low protein-high carbohydrate diet induces alterations in the serum thyronine-binding proteins in the rat.

    PubMed

    Young, R A; Braverman, L E; Rajatanavin, R

    1982-05-01

    The serum T3 concentration was increased in 8-week-old lean Zucker rats fed a low protein-high carbohydrate diet for 2 weeks. This increase was secondary to the generation of a binding protein migrating in the postalbumin zone in polyacrylamide gel electrophoresis employing 125I-labeled T3 and is termed rat thyronine-binding globulin. The presence of this T3-binding protein in serum resulted in a marked decrease in the percent free T3 assessed by equilibrium dialysis and a normal free T3 concentration. An increase in the binding of T4 in the postalbumin zone was also observed, but no changes in the dialyzable fraction of T4 or the total and free T4 concentrations occurred. In contrast to these findings in lean Zucker rats fed the low protein-high carbohydrate diet, no change in the pattern of 125I-labeled T3 and T4 binding, the dialyzable fraction of T3 or T4, or total and free T3 or T4 concentrations were observed in the obese Zucker rats fed this diet. The present findings suggest that diet-induced alterations in thyroid hormone-binding proteins must be considered in the interpretation of data which involve alterations in total thyroid hormone concentrations in serum and their role in affecting tissue metabolism.

  2. Chronic Administration of High Doses of Nandrolone Decanoate on the Pituitary-Gonadal Axis in Male Rats

    PubMed Central

    Shahraki, Mohammad Reza; Mirshekari, Hamideh; Shahraki, Ahmad Reza

    2015-01-01

    Background: Anabolic-androgenic steroids (AAS) are abused by athletes. Objectives: The present study was designed to evaluate chronic administration of high doses of nandrolone decanoate (ND) on the pituitary-gonadal axis and hematological parameters in normal male rats. Materials and Methods: Thirty Wistar-Albino male rats were divided assigned to control (C), placebo (P) and test (T) groups (n = 10). Group T received 15 mg/kg intramuscular (IM) ND for eight weeks. Group P received the same volume of peanut oil, but group C did not receive any agent during the trial period. At the end, animals were anesthetized, killed and blood samples collected from cervical vessels. Serum follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were determined by sensitive rat gonadotropins kit, using ELISA methods. Serum testosterone and hematological parameters were measured by ordinary laboratory methods. Obtained data was analyzed using SPSS 17 by ANOVA and Tukey statistical tests. Results were expressed as Mean ± SD. Statistical difference considered significantly by P < 0.05. Results: Serum testosterone, LH, FSH, weight gain, food and water intake in group T were significantly decreased compared to other groups (P < 0.05). In addition erythrocyte, leucocytes, hemoglobin and hematocrit in group T were significantly increased compared to those of other groups (P < 0.05). Conclusions: Chronic administration of high doses of ND can alter serum FSH, LH and testosterone and hematological parameters in male rats. PMID:26495259

  3. Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity

    PubMed Central

    2011-01-01

    Background Long-term weight reduction remains elusive for many obese individuals. Resistant starch (RS) and exercise may be useful for weight maintenance. The effects of RS, with or without exercise, on weight regain was examined during relapse to obesity on a high carbohydrate, high fat (HC/HF) diet. Methods Obesity-prone rats were fed ad libitum for 16 weeks then weight reduced on a low fat diet to induce a 17% body weight loss (weight reduced rats). Weight reduced rats were maintained on an energy-restricted low fat diet for 18 weeks, with or without a daily bout of treadmill exercise. Rats were then allowed free access to HC/HF diet containing low (0.3%) or high (5.9%) levels of RS. Weight regain, energy balance, body composition, adipocyte cellularity, and fuel utilization were monitored as rats relapsed to obesity and surpassed their original, obese weight. Results Both RS and exercise independently attenuated weight regain by reducing the energy gap between the drive to eat and suppressed energy requirements. Exercise attenuated the deposition of lean mass during relapse, whereas its combination with RS sustained lean mass accrual as body weight returned. Early in relapse, RS lowered insulin levels and reduced the deposition of fat in subcutaneous adipose tissue. Exercise cessation at five weeks of relapse led to increased weight gain, body fat, subcutaneous adipocytes, and decreased lean mass; all detrimental consequences to overall metabolic health. Conclusions These data are the first to show the complimentary effects of dietary RS and regular exercise in countering the metabolic drive to regain weight following weight loss and suggest that exercise cessation, in the context of relapse on a HC/HF diet, may have dire metabolic consequences. PMID:21736742

  4. Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior.

    PubMed

    McCoy, C R; Golf, S R; Melendez-Ferro, M; Perez-Costas, E; Glover, M E; Jackson, N L; Stringfellow, S A; Pugh, P C; Fant, A D; Clinton, S M

    2016-06-01

    Individual differences in human temperament can increase the risk of psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of cytochrome C oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in the HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051

  5. High sodium intake during postnatal phases induces an increase in arterial blood pressure in adult rats.

    PubMed

    Moreira, M C S; da Silva, E F; Silveira, L L; de Paiva, Y B; de Castro, C H; Freiria-Oliveira, A H; Rosa, D A; Ferreira, P M; Xavier, C H; Colombari, E; Pedrino, Gustavo R

    2014-12-28

    Epigenetic studies suggest that diseases that develop in adulthood are related to certain conditions to which the individual is exposed during the initial stages of life. Experimental evidence has demonstrated that offspring born to mothers maintained on high-Na diets during pregnancy have higher mean arterial pressure (MAP) in adulthood. Although these studies have demonstrated the importance of prenatal phases to hypertension development, no evidence regarding the role of high Na intake during postnatal phases in the development of this pathology has been reported. Therefore, in the present study, the effects of Na overload during childhood on induced water and Na intakes and on cardiovascular parameters in adulthood were evaluated. Experiments were carried out in two groups of 21-d-old rats: experimental group, maintained on hypertonic saline (0.3 m-NaCl) solution and food for 60 d, and control group, maintained on tap water and food. Later, both groups were given water and food for 15 d (recovery period). After the recovery period, chronic cannulation of the right femoral artery was performed in unanaesthetised rats to record baseline MAP and heart rate (HR). The experimental group was found to have increased basal MAP (98.6 (sem 2.6) v. 118.3 (sem 2.7) mmHg, P< 0.05) and HR (365.4 (sem 12.2) v. 398.2 (sem 7.5) beats per min, P< 0.05). There was a decrease in the baroreflex index in the experimental group when compared with that in the control group. A water and Na intake test was performed using furosemide. Na depletion was found to induce an increase in Na intake in both the control and experimental groups (12.1 (sem 0.6) ml and 7.8 (sem 1.1), respectively, P< 0.05); however, this increase was of lower magnitude in the experimental group. These results demonstrate that postnatal Na overload alters behavioural and cardiovascular regulation in adulthood.

  6. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study.

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2016-06-01

    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  7. Early Life Stress Induced by Limited Nesting Material Produces Metabolic Resilience in Response to a High-Fat and High-Sugar Diet in Male Rats

    PubMed Central

    Maniam, Jayanthi; Antoniadis, Christopher P.; Wang, Kristy W.; Morris, Margaret J.

    2015-01-01

    Environmental conditions experienced in early life can profoundly influence long-term metabolic health, but the additive impact of poor nutrition is poorly understood. Here, we tested the hypothesis that early life stress (ELS) induced by limited nesting material (LN) combined with high-fat and high-sugar diet (HFHS) post-weaning would worsen diet-related metabolic risk. Sprague-Dawley male rats were exposed to LN, postnatal days 2–9, and at weaning (3 weeks), siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, and LN-HFHS, n = 11–15/group). Glucose and insulin tolerance were tested and rats were killed at 13 weeks. LN rats weighed less at weaning but were not different to control at 13 weeks; HFHS diet led to similar increases in body weight. LN-chow rats had improved glucose and insulin tolerance relative to Con-Chow, whereas LN-HFHS improved insulin sensitivity versus Con-HFHS, associated with increased peroxisome proliferator-activated receptor gamma co-activator-1-alpha (Pgc-1α) mRNA in muscle. No effect of LN on plasma or liver triglycerides was observed, and hepatic gluconeogenic regulatory genes were unaltered. In summary, this study demonstrates that ELS induced by LN conferred some metabolic protection against insulin and/or glucose intolerance in a diet-dependent manner during adulthood. PMID:26441828

  8. Effects of tempol on endothelial and vascular dysfunctions and insulin resistance induced by a high-fat high-sucrose diet in the rat.

    PubMed

    Bourgoin, Frédéric; Bachelard, Hélène; Badeau, Mylène; Larivière, Richard; Nadeau, André; Pitre, Maryse

    2013-07-01

    We investigated the effects of treatment with tempol (an antioxidant) on vascular and metabolic dysfunction induced by a high-fat high-sucrose (HFHS) diet. Rats were randomized to receive an HFHS or chow diet with or without tempol treatment (1.5 mmol·(kg body mass)(-1)·day(-1)) for 4 weeks. Blood pressure, heart rate, and blood flow were measured in the rats by using intravascular catheters and Doppler flow probes. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic-hyperinsulinemic clamp. In-vitro studies were performed to evaluate vascular reactivity and endothelial and inducible nitric oxide synthase (eNOS; iNOS) expression in vascular and muscle tissues. Endothelin, nitrotyrosine, and NAD(P)H oxidase expressions were determined in vascular tissues, and glucose transport activity and glucose transporter 4 (GLUT4) expression were examined in muscles. Tempol treatment was found to prevent alterations in insulin sensitivity, glucose transport activity, GLUT4 expression, and vascular reactivity, and to prevent increases in plasma insulin, blood pressure, and heart rate noted in the untreated HFHS-fed rats. These were associated with increased levels of eNOS expression in vascular and muscle tissues, but reductions in nitrotyrosine, endothelin, NAD(P)H oxidase, and iNOS expressions. Therefore, oxidative stress induced by a relatively short-term HFHS diet could contribute to the early development of vascular and metabolic abnormalities in rats.

  9. Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats.

    PubMed

    Matanjun, Patricia; Mohamed, Suhaila; Muhammad, Kharidah; Mustapha, Noordin Mohamed

    2010-08-01

    This study was designed to investigate the comparative in vivo cardiovascular protective effects of red, green, and brown tropical seaweeds, namely, Kappaphycus alvarezii (or Eucheuma cottonii), Caulerpa lentillifera, and Sargassum polycystum, in rats fed on high-cholesterol/high-fat (HCF) diets. Male Sprague-Dawley rats (weighing 260-300 g) on the HCF diet had significantly increased body weight, plasma total cholesterol (TC), plasma low-density lipoprotein cholesterol (LDL-C), plasma triglycerides (TG), lipid peroxidation, and erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase levels after 16 weeks. Supplementing 5% seaweeds to HCF diet significantly reduced plasma TC (-11.4% to -18.5%), LDL-C (-22% to -49.3%), and TG (-33.7% to -36.1%) levels and significantly increased HDL-C levels (16.3-55%). Among the seaweeds, S. polycystum showed the best anti-obesity and blood GSH-Px properties, K. alvarezii showed the best antihyperlipemic and in vivo antioxidation effects, and C. lentillifera was most effective at reducing plasma TC. All seaweeds significantly reduced body weight gain, erythrocyte GSH-Px, and plasma lipid peroxidation of HCF diet rats towards the values of normal rats. PMID:20482284

  10. Inhibitory effects of eucalyptus and banaba leaf extracts on nonalcoholic steatohepatitis induced by a high-fructose/high-glucose diet in rats.

    PubMed

    Takahashi, Yoshihisa; Sugimoto, Keiichiro; Soejima, Yurie; Kumagai, Arisa; Koeda, Tatsuki; Shojo, Aiko; Nakagawa, Kazuya; Harada, Naoki; Yamaji, Ryoichi; Inui, Hiroshi; Yamanouchi, Toshikazu; Fukusato, Toshio

    2015-01-01

    Nonalcoholic steatohepatitis (NASH) is a liver disease associated with metabolic syndrome. The aim of this work was to examine whether eucalyptus (Eucalyptus globulus) leaf extract (ELE) and banaba (Lagerstroemia speciosa L.) leaf extract (BLE) inhibited NASH induced by excessive ingestion of fructose in rats. Wistar rats were divided into four groups according to four distinct diets: starch diet (ST), high-fructose/high-glucose diet (FG), FG diet supplemented with ELE, or FG diet supplemented with BLE. All rats were killed after 5 weeks of treatment. Serum alanine aminotransferase and total cholesterol levels were significantly lower in the BLE group than in the FG group. Liver histopathology, including steatosis, lipogranulomas, and perisinusoidal fibrosis, was significantly attenuated in the ELE and BLE groups compared with the FG group. Levels of 2-thiobarbituric acid reactive substances (TBARS), which reflect oxidative injury to the liver, were significantly suppressed by ELE and BLE. Western blotting analysis indicated that interleukin-6 expression levels were significantly lower in the ELE and BLE groups than in the FG group. These results suggest that ELE and BLE reduced lipogenesis, oxidative stress, and inflammatory cytokine expression and thus inhibited NASH induced by excessive ingestion of fructose in rats.

  11. Relatively high motivation for context-evoked reward produces the magnitude effect in rats.

    PubMed

    Yuki, Shoko; Okanoya, Kazuo

    2014-09-01

    Using a concurrent-chain schedule, we demonstrated the effect of absolute reinforcement (i.e., the magnitude effect) on choice behavior in rats. In general, animals' simultaneous choices conform to a relative reinforcement ratio between alternatives. However, studies in pigeons and rats have found that on a concurrent-chain schedule, the overall reinforcement ratio, or absolute amount, also influences choice. The effect of reinforcement amount has also been studied in inter-temporal choice situations, and this effect has been referred to as the magnitude effect. The magnitude effect has been observed in humans under various conditions, but little research has assessed it in animals (e.g., pigeons and rats). The present study confirmed the effect of reinforcement amount in rats during simultaneous and inter-temporal choice situations. We used a concurrent-chain procedure to examine the cause of the magnitude effect during inter-temporal choice. Our results suggest that rats can use differences in reinforcement amount as a contextual cue during choice, and the direction of the magnitude effect in rats might be similar to humans when using the present procedure. Furthermore, our results indicate that the magnitude effect was caused by the initial-link effect when the reinforcement amount was relatively small, while a loss aversion tendency was observed when the reinforcement amount changed within a session. The emergence of the initial-link effect and loss aversion suggests that rats make choices through cognitive processes predicted by prospect theory. PMID:25064376

  12. Relatively high motivation for context-evoked reward produces the magnitude effect in rats.

    PubMed

    Yuki, Shoko; Okanoya, Kazuo

    2014-09-01

    Using a concurrent-chain schedule, we demonstrated the effect of absolute reinforcement (i.e., the magnitude effect) on choice behavior in rats. In general, animals' simultaneous choices conform to a relative reinforcement ratio between alternatives. However, studies in pigeons and rats have found that on a concurrent-chain schedule, the overall reinforcement ratio, or absolute amount, also influences choice. The effect of reinforcement amount has also been studied in inter-temporal choice situations, and this effect has been referred to as the magnitude effect. The magnitude effect has been observed in humans under various conditions, but little research has assessed it in animals (e.g., pigeons and rats). The present study confirmed the effect of reinforcement amount in rats during simultaneous and inter-temporal choice situations. We used a concurrent-chain procedure to examine the cause of the magnitude effect during inter-temporal choice. Our results suggest that rats can use differences in reinforcement amount as a contextual cue during choice, and the direction of the magnitude effect in rats might be similar to humans when using the present procedure. Furthermore, our results indicate that the magnitude effect was caused by the initial-link effect when the reinforcement amount was relatively small, while a loss aversion tendency was observed when the reinforcement amount changed within a session. The emergence of the initial-link effect and loss aversion suggests that rats make choices through cognitive processes predicted by prospect theory.

  13. Sympathoinhibitory and depressor responses to long-term infusion of nifedipine in spontaneously hypertensive rats on high-salt diet.

    PubMed

    Huang, B S; Murzenok, P P; Leenen, F H

    2000-12-01

    Short-term (by hour) intracerebroventricular (i.c.v.) or i.v. infusion of nifedipine at low rates evokes parallel decreases in renal sympathetic nerve activity (RSNA) and blood pressure (BP) in spontaneously hypertensive rats (SHR). In the present study, effects of long-term administration of nifedipine on BP and control of sympathetic tone were examined in SHR on a high-salt (8%) diet. From 6 to 8 weeks of age, for 2 weeks concomitant with taking a high-salt diet, rats were also treated with subcutaneous infusion of nifedipine at 10, 50, or 100 microg/kg/h or vehicle solvent as control using osmotic minipumps. At the end of the 2-week treatment period, mean arterial pressure (MAP), heart rate (HR), and RSNA at rest and in response to air-jet stress, i.c.v. injection of the alpha-adrenoceptor agonist guanabenz (25 microg), and i.v. injection of the ganglionic blocker hexamethonium were recorded in conscious rats. In rats on nifedipine 50 or 100 microg/kg/h, resting MAP was significantly lower (136+/-4 or 130+/-4 vs. 145+/-2 mm Hg in control rats, p < 0.05 for both), the sympathoinhibitory and depressor responses to i.c.v. guanabenz were significantly decreased, and the absolute decreases in MAP in response to i.v. injection of hexamethonium were significantly smaller. Sympathoexcitatory and pressor responses to air-jet stress, however, were not affected by nifedipine. Infusion of nifedipine at the three rates for 2 weeks caused concentrations of plasma nifedipine in a dose-related manner. Nifedipine was not detected in tissues of rats treated with 10 microg/kg/h nifedipine but was present in brain and other tissues of rats treated with nifedipine at the two higher rates. Thus in SHR on high-salt intake long-term treatment with nifedipine at 50 or 100 microg/kg/h decreased resting BP and the sympathetic component in BP control. In addition to possible peripheral effects, long-term administration of nifedipine may also act centrally to decrease sympathetic activity

  14. Protective Effect of High Molecular Weight Protein Sub-fraction of Calotropis procera Latex in Monoarthritic Rats

    PubMed Central

    Chaudhary, Priyanka; Ramos, Marcio V.; Vasconcelos, Mirele da Silveira; Kumar, Vijay L.

    2016-01-01

    Background: Proteins present in the latex of Calotropis procera have been shown to produce anti-inflammatory effect and to afford protection in various disease models. Objectives: To determine the efficacy of high molecular weight protein sub-fraction (LPPI) of latex of C. procera in ameliorating joint inflammation and hyperalgesia in a preclinical model of arthritis. Materials and Methods: Monoarthritis was induced in rats by intra-articular injection of Freund's complete adjuvant (FCA) and the effect of two doses of LPPI (5 and 25 mg/kg) and diclofenac (5 mg/kg) was evaluated on joint swelling, stair climbing ability, motility, and dorsal flexion pain on day 3. The rats were sacrificed on day 3 to measure tissue levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). Evaluation of joint histology was also made. Results: Intra-articular injection of FCA produced joint swelling and difficulty in stair climbing ability, motility, and pain on flexion of the joint as revealed by scores obtained for these functional parameters. LPPI produced a dose-dependent decrease in joint swelling and improved joint functions. Arthritic rats also revealed altered oxidative homeostasis where joint tissue GSH levels were decreased and TBARS levels were increased as compared to normal rats. The levels of these oxidative stress markers were near normal in arthritic rats treated with LPPI. Moreover, treatment with LPPI also maintained the structural integrity of the joint. The protective effect of LPPI was comparable to the standard anti-inflammatory drug, diclofenac. Conclusion: The findings of the present study show that LPPI fraction comprising high molecular weight proteins could be used for the alleviation of arthritic symptoms. SUMMARY High molecular weight protein sub-fraction of latex of Calotropis procera (LPPI) reduced joint swelling and hyperalgesia in arthritic ratsLPPI produced a significant improvement in stair climbing ability and motility

  15. Efficacy of Garcinia Cambogia on Body Weight, Inflammation and Glucose Tolerance in High Fat Fed Male Wistar Rats

    PubMed Central

    Sripradha, Ramalingam

    2015-01-01

    Introduction: Obesity leads to derangements in lipid and glucose homeostasis resulting in various metabolic complications. Plants containing vital phytochemicals are known to posses anti obesity properties and have proved to exert beneficial effects in obesity. Objectives: The present study was aimed to investigate the effects of Garcinia Cambogia on body weight, glucose tolerance and inflammation in high fat diet fed male Wistar rats. Materials and Methods: Five month old male wistar rats (n=40) were divided into four groups. Two groups were fed with standard rodent diet and the remaining two with 30% high fat diet. One group in each of the two sets received the crude ethanolic extract of Garcinia Cambogia at a dose of 400mg/kg body weight/day for ten weeks. Body weight, intraperitoneal glucose tolerance test, leptin, tumour necrosis factor-α (TNF-α) and renal function (urea, creatinine, uric acid) were studied. Results: High fat diet fed rats showed increased body weight gain, glucose intolerance, elevated levels of plasma leptin and TNF-α. Supplementation of Garcinia Cambogia extract (GE) along with high fat diet significantly decreased body weight gain, glucose intolerance, plasma leptin and TNF-α level. No significant changes were observed in the renal function parameters in any of the groups. Conclusion: Supplementation of the Garcinia Cambogia extract with high fat diet reduced body weight gain, inflammation and glucose intolerance. PMID:25859449

  16. A high-cholesterol, n-3 polyunsaturated fatty acid diet causes different responses in rats and hamsters.

    PubMed

    Lin, Mei-Huei; Lu, Shao-Chun; Huang, Po-Chao; Liu, Young-Chau; Liu, Shyun-Yeu

    2005-01-01

    This study was designed to investigate the response to a high-cholesterol, n-3 polyunsaturated fatty acid (PUFA) or n-6 PUFA diet in rats and hamsters. Animals were fed n-3 or n-6 PUFA with a cholesterol-free diet, or with a diet enriched with cholesterol (0.5%, w/w) for 2 weeks. In rats and hamsters fed a cholesterol-free diet, plasma cholesterol, triglycerides and very-low-density lipoprotein (VLDL)-triglyceride levels in n-3 PUFA group were significantly lower than those in n-6 PUFA group. In contrast, when diets were supplemented with 0.5% cholesterol, the plasma cholesterol- and triglyceride-lowering effect of dietary n-3 PUFA disappeared. In hamsters fed with the atherogenic diet (0.5% dietary cholesterol) for 2 weeks, n-3 PUFA induced hypercholesterolemia more than n-6 PUFA, the increase being in the VLDL and low-density lipoprotein (LDL) fractions. Our data thus indicate that elevation of VLDL- and LDL-cholesterol in hamsters by n-3 PUFA, compared with n-6 PUFA, is dependent on 0.5% dietary cholesterol supplementation. In rats, on the other hand, dietary n-3 PUFA did not induce hypercholesterolemia more than n-6 PUFA when 0.5% cholesterol was supplemented. Although the effects of n-3 PUFA on plasma cholesterol, triglycerides and VLDL-triglycerides were similar in hamsters and rats, the interactive effects of n-3 PUFA and cholesterol on plasma and lipoprotein cholesterol levels differed in the two species. It was also found that plasma triglycerides, cholesterol and lipoprotein cholesterol levels in hamsters are higher than in rats in the presence and absence of dietary cholesterol. In addition, cholesterol feeding induces hypertriglyceridemia and hypercholesterolemia only in hamsters. Moreover, liver triglyceride concentrations increased in rats fed a cholesterol-rich diet and hepatic triglyceride levels of the n-3 PUFA-fed rats were significantly lower than those in the n-6 PUFA-fed rats in the presence and absence of dietary cholesterol. However

  17. Induction of renal 20-hydroxyeicosatetraenoic acid by clofibrate attenuates high-fat diet-induced hypertension in rats.

    PubMed

    Zhou, Yiqiang; Huang, Hui; Chang, Hsin-Hsin; Du, Juan; Wu, Jing Feng; Wang, Cong-Yi; Wang, Mong-Heng

    2006-04-01

    This study compared renal hemodynamics, the expression of CYP4A isoforms [the enzymes for 20-hydroxyeicosatetraenoic acid (20-HETE) production], and tubular sodium transporters in male rats fed a high-fat (HF) or control diet for 10 weeks. We also studied the effect of treatment with clofibrate, a CYP4A inducer, on sodium retention and renal function and on CYP4A expression in HF rats. HF rats had higher blood pressure (BP), renal plasma flow, and glomerular filtration rate (GFR), but no significant change in renal vascular resistance. Reverse transcription-polymerase chain reaction analysis showed that CYP4A1 and CYP4A8 expression was significantly decreased in the renal cortex of HF rats. Western blot analysis showed up-regulation of expression of the alpha-subunit of the epithelial sodium channel (alpha-ENaC), the beta-subunit of the epithelial sodium channel (beta-ENaC), sodium/hydrogen exchanger (NHE)-3, and the renal outer medulla K(+) channel (ROMK) in HF rats, whereas expression of the gamma-subunit of the epithelial sodium channel and the alpha1-subunit of Na(+)-K(+)-ATPase remained unchanged. Thus, HF treatment caused the reduction of renal CYP4A1 and CYP4A8 expression, whereas the increases in alpha-ENaC, beta-ENaC, NHE-3, and ROMK expression in renal tubules may have contributed sodium retention and hypertension in HF rats. Furthermore, clofibrate treatment (240 mg/kg/day) caused the decrease of BP and GFR and the attenuation of cumulative sodium balance in HF rats. The attenuation of sodium retention by clofibrate treatment is linked to decreased expression of NHE-3 in renal cortex. Clofibrate induction of CYP4A expression occurred in proximal tubules and in the thick ascending limb of the loop of Henle but not in renal microvessels. This induction correlated with the expression of peroxisome proliferator-activated receptor (PPARalpha) in renal tubules. Therefore, these results suggest that the effects of clofibrate on sodium retention and blood

  18. The effects of taurine on vigabatrin, high light intensity and mydriasis induced retinal toxicity in the pigmented rat.

    PubMed

    Rasmussen, Allan D; Truchot, Nathalie; Pickersgill, Nigel; Thale, Zia Irene; Rosolen, Serge G; Botteron, Catherine

    2015-01-01

    The overall purpose of this study was to establish a model that may be used for examining the effect of Vigabatrin-induced retinal toxicity in pigmented rats, and subsequently examine the possible effects of taurine on the retinal toxicity. In the first part of the study, pigmented Long Evans rats were subjected to combinations of induced mydriasis, low/high light intensities (40/2000 lx) and oral administration of near-MTD (Maximum Tolerated Dose) doses (200 mg/kg/day) of Vigabatrin for up to 6 weeks. The combination of mydriasis and high light intensity applied to Long Evans rats resulted in retinal damage that was increased by the administration of Vigabatrin. In the second part of the study Long Evans rats were subjected to combinations of induced mydriasis and high/low light intensity (40/2000 lx) while being orally administered low (30 mg/kg/day) or high (200 mg/kg/day) doses of Vigabatrin for up to 6 weeks. In addition, selected groups of animals were administered taurine via the drinking water (20 mg/ml), resulting in systemic taurine concentrations of approximately threefold the endogenous concentration. The combined results of the studies demonstrate that retinal damage can be induced in pigmented animals when combining mydriasis and high light intensity. Retinal damage was functionally evaluated by electroretinography (ERG), then confirmed by histopathology. While depending on mydriasis and high light intensity, administration of Vigabatrin increased the retinal toxicity and resulted in the formation of rosette-like structures in the retina in a dose-related manner. Administration of taurine did not alleviate the Vigabatrin-induced retinal toxicity, as demonstrated either functionally by ERG or morphologically, although systemic concentrations of 3-fold the endogenous levels were reached, and it was thus not possible to demonstrate a protective effect of taurine in these pigmented animals. PMID:25446799

  19. CENTRAL ADMINISTRATION OF THE RF-AMIDE PEPTIDES, QRFP-26 AND QRFP-43, INCREASES HIGH FAT FOOD INTAKE IN RATS

    PubMed Central

    Primeaux, Stefany D.; Blackmon, Christine; Barnes, Maria J.; Braymer, H. Douglas; Bray, George A.

    2008-01-01

    Pyrogultamylated arginine-phenylalanineamide peptide (QRFP) is strongly conserved across species and is a member of the family of RFamide-related peptides, with the motif Arg-Phe-NH2 at the C-terminal end. The precursor peptide for QRFP generates a 26-amino acid peptide (QRFP-26) and a 43-amino acid peptide (QRFP-43), both of which bind to the G protein-coupled receptor, GPR103. Recently, QRFP has been characterized in rats, mice and humans and has been reported to have orexigenic properties. In rodents, prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus, a region implicated in feeding behavior. Increased intake of a high fat diet contributes to increased weight gain and obesity. Therefore, the current experiments investigated the effects of QRFP administration in rats and the effects of a high fat diet on prepro-QRFP mRNA and GPR103 receptor mRNA levels. Intracerebroventricular administration of QRFP-26 (3.0nM, 5.0nM) and QRFP-43 (1.0nM, 3.0nM) dose-dependently increased 1h, 2h, and 4h cumulative intake of high fat (55% fat), but not low fat (10% fat) diet. In Experiment 2, hypothalamic prepro-QRFP mRNA levels and GPR103 receptor mRNA levels were measured in rats fed a high fat or a low fat diet for 21 days. Prepro-QRFP mRNA was significantly increased in the ventromedial nucleus/arcuate nucleus of the hypothalamus of rats fed a high fat diet compared to those fed a low fat diet, while GPR103 mRNA levels were unchanged. These findings suggest that QRFP is a regulator of dietary fat intake and is influenced by the intake of a high fat diet. PMID:18765262

  20. "Effects of recombinant human erythropoietin high mimicking abuse doses on oxidative stress processes in rats".

    PubMed

    Bianchi, Sara; Fusi, Jonathan; Franzoni, Ferdinando; Giovannini, Luca; Galetta, Fabio; Mannari, Claudio; Guidotti, Emanuele; Tocchini, Leonardo; Santoro, Gino

    2016-08-01

    Although many studies highlight how long-term moderate dose of Recombinant Human Erythropoietin (rHuEPO) treatments result in beneficial and antioxidants effects, few studies take into account the effects that short-term high doses of rHuEPO (mimicking abuse conditions) might have on the oxidative stress processes. Thus, the aim of this study was to investigate the in vivo antioxidant activity of rHuEPO, administered for a short time and at high doses to mimic its sports abuse as doping. Male Wistar healthy rats (n=36) were recruited for the study and were treated with three different concentrations of rHuEPO: 7.5, 15, 30μg/kg. Plasma concentrations of erythropoietin, 8-epi Prostaglandin F2α, plasma and urinary concentrations of NOx were evaluated with specific assay kit, while hematocrit levels were analyzed with an automated cell counter. Antioxidant activity of rHuEPO was assessed analyzing the possible variation of the plasma scavenger capacity against hydroxylic and peroxylic radicals by TOSC (Total Oxyradical Scavenging Capacity) assay. Statistical analyses showed higher hematocrit values, confirmed by a statistically significant increase of plasmatic EPO concentration. An increase in plasma scavenging capacity against peroxyl and hydroxyl radicals, in 8-isoprostane plasmatic concentrations and in plasmatic and urinary levels of NOX were also found in all the treated animals, though not always statistically significant. Our results confirm the literature data regarding the antioxidant action of erythropoietin administered at low doses and for short times, whereas they showed an opposite incremental oxidative stress action when erythropoietin is administered at high doses. PMID:27470373

  1. High-strain-rate brain injury model using submerged acute rat brain tissue slices.

    PubMed

    Sarntinoranont, Malisa; Lee, Sung J; Hong, Yu; King, Michael A; Subhash, Ghatu; Kwon, Jiwoon; Moore, David F

    2012-01-20

    Blast-induced traumatic brain injury (bTBI) has received increasing attention in recent years due to ongoing military operations in Iraq and Afghanistan. Sudden impacts or explosive blasts generate stress and pressure waves that propagate at high velocities and affect sensitive neurological tissues. The immediate soft tissue response to these stress waves is difficult to assess using current in vivo imaging technologies. However, these stress waves and resultant stretching and shearing of tissue within the nano- to microsecond time scale of blast and impact are likely to cause initial injury. To visualize the effects of stress wave loading, we have developed a new ex vivo model in which living tissue slices from rat brain, attached to a ballistic gelatin substrate, were subjected to high-strain-rate loads using a polymer split Hopkinson pressure bar (PSHPB) with real-time high-speed imaging. In this study, average peak fluid pressure within the test chamber reached a value of 1584±63.3 psi. Cavitation due to a trailing underpressure wave was also observed. Time-resolved images of tissue deformation were collected and large maximum eigenstrains (0.03-0.42), minimum eigenstrains (-0.33 to -0.03), maximum shear strains (0.09-0.45), and strain rates (8.4×10³/sec) were estimated using digital image correlation (DIC). Injury at 4 and 6 h was quantified using Fluoro-Jade C. Neuronal injury due to PSHPB testing was found to be significantly greater than injury associated with the tissue slice paradigm alone. While large pressures and strains were encountered for these tests, this system provides a controllable test environment to study injury to submerged brain slices over a range of strain rate, pressure, and strain loads. PMID:21970544

  2. Corticosterone administration in drinking water decreases high-fat diet intake but not preference in male rats.

    PubMed

    Boersma, Gretha J; Tamashiro, Kellie L; Moran, Timothy H; Liang, Nu-Chu

    2016-04-15

    One of the mechanisms through which regular exercise contributes to weight maintenance could be by reducing intake and preference for high-fat (HF) diets. Indeed, we previously demonstrated that wheel-running rats robustly reduced HF diet intake and preference. The reduced HF diet preference by wheel running can be so profound that the rats consumed only the chow diet and completely avoided the HF diet. Because previous research indicates that exercise activates the hypothalamic-pituitary-adrenal axis and increases circulating levels of corticosterone, this study tested the hypothesis that elevation of circulating corticosterone is involved in wheel running-induced reduction in HF diet preference in rats.Experiment 1 measured plasma corticosterone levels under sedentary and wheel-running conditions in the two-diet-choice (high-carbohydrate chow vs. HF) feeding regimen. The results revealed that plasma corticosterone is significantly increased and positively correlated with the levels of running in wheel-running rats with two-diet choice.Experiments 2 and 3 determined whether elevated corticosterone without wheel running is sufficient to reduce HF diet intake and preference. Corticosterone was elevated by adding it to the drinking water. Compared with controls, corticosterone-drinking rats had reduced HF diet intake and body weight, but the HF diet preference between groups did not differ. The results of this study support a role for elevated corticosterone on the reduced HF diet intake during wheel running. The elevation of corticosterone alone, however, is not sufficient to produce a robust reduction in HF diet preference.

  3. Effects of ID-alG™ on weight management and body fat mass in high-fat-fed rats.

    PubMed

    Terpend, Kathleen; Bisson, Jean-François; Le Gall, Claire; Linares, Elodie

    2012-05-01

    Seaweed extract of Ascophyllum nodosum, ID-alG™, was evaluated for its chronic effects on weight management in high-fat-fed Sprague-Dawley rats. ID-alG™ was orally administered daily during 9 weeks at doses of 40 and 400 mg/kg/day with fat-enriched diet (FED) in comparison with two control groups consuming standard diet (negative control) or FED (positive control) and orally treated with vehicle. Body weight, percentage of body fat mass and lipid parameters were measured. After 9 weeks, the oral administration of ID-alG™ at both doses decreased significantly the mean body weight gains (MBWG) of rats submitted to the FED in comparison to the positive control (-6.8% and -11.8%). ID-alG™ at both doses improved significantly the MBWG of rats and decreased significantly the percentage of body fat mass of rats (-9.8% and -19.0%), in comparison to the positive control. In the same way, the triglyceride blood level was also significantly improved for the dose of 400 mg/kg/day (-30.6% vs. +49.9% for the positive control); and the dose of 40 mg/kg/day just lead to a trend. Moreover, in both controls and ID-alG™-treated groups, total cholesterol, LDL and HDL blood levels were not modified. The seaweed extract of Ascophyllum nodosum, ID-alG™, demonstrated beneficial effects on weight management of rats submitted to a high-fat diet. PMID:22034228

  4. Corticosterone administration in drinking water decreases high-fat diet intake but not preference in male rats.

    PubMed

    Boersma, Gretha J; Tamashiro, Kellie L; Moran, Timothy H; Liang, Nu-Chu

    2016-04-15

    One of the mechanisms through which regular exercise contributes to weight maintenance could be by reducing intake and preference for high-fat (HF) diets. Indeed, we previously demonstrated that wheel-running rats robustly reduced HF diet intake and preference. The reduced HF diet preference by wheel running can be so profound that the rats consumed only the chow diet and completely avoided the HF diet. Because previous research indicates that exercise activates the hypothalamic-pituitary-adrenal axis and increases circulating levels of corticosterone, this study tested the hypothesis that elevation of circulating corticosterone is involved in wheel running-induced reduction in HF diet preference in rats.Experiment 1 measured plasma corticosterone levels under sedentary and wheel-running conditions in the two-diet-choice (high-carbohydrate chow vs. HF) feeding regimen. The results revealed that plasma corticosterone is significantly increased and positively correlated with the levels of running in wheel-running rats with two-diet choice.Experiments 2 and 3 determined whether elevated corticosterone without wheel running is sufficient to reduce HF diet intake and preference. Corticosterone was elevated by adding it to the drinking water. Compared with controls, corticosterone-drinking rats had reduced HF diet intake and body weight, but the HF diet preference between groups did not differ. The results of this study support a role for elevated corticosterone on the reduced HF diet intake during wheel running. The elevation of corticosterone alone, however, is not sufficient to produce a robust reduction in HF diet preference. PMID:26818055

  5. Behavioral consequences of exposure to a high fat diet during the post-weaning period in rats.

    PubMed

    Rabasa, Cristina; Winsa-Jörnulf, Julia; Vogel, Heike; Babaei, Carina S; Askevik, Kaisa; Dickson, Suzanne L

    2016-09-01

    We explored the impact of exposure to an obesogenic diet (High Fat-High Sucrose; HFS) during the post-weaning period on sweet preference and behaviors linked to reward and anxiety. All rats were fed chow. In addition a HFS-transient group had access to this diet for 10days from post-natal (PN) day 22 and a HFS-continuous group continued access until adult. Behavioral tests were conducted immediately after PN 32 (adolescence) or after PN 60 (adult) and included: the condition place preference (CPP) test for chocolate, sugar and saccharin preference (anhedonia), the elevated plus maze (anxiety-like behavior) and the locomotor response to quinpirole in the open field. Behavior was unaltered in adult rats in the HFS-transient group, suggesting that a short exposure to this obesogenic food does not induce long-term effects in food preferences, reward perception and value of palatable food, anxiety or locomotor activity. Nevertheless, rats that continued to have access to HFS ate less chocolate during CPP training and consumed less saccharin and sucrose when tested in adolescence, effects that were attenuated when these rats became adult. Moreover, behavioral effects linked to transient HFS exposure in adolescence were not sustained if the rats did not remain on that diet until adult. Collectively our data demonstrate that exposure to fat and sucrose in adolescence can induce immediate reward hypofunction after only 10days on the diet. Moreover, this effect is attenuated when the diet is extended until the adult period, and completely reversed when the HFS diet is removed. PMID:27487416

  6. Effects of a high-calcium diet on serum insulin-like growth factor-1 levels in magnesium-deficient rats.

    PubMed

    Matsuzaki, Hiroshi; Kajita, Yasutaka; Miwa, Misao

    2012-01-01

    In order to clarify the effects of a high-calcium (Ca) diet on bone formation in magnesium (Mg)-deficient rats, this study focused on the effects of a high-Ca diet on serum insulin-like growth factor-1 (IGF-1) levels. Male rats were randomized by weight into four groups, and fed one of four experimental diets containing two different Mg concentrations (0.05% (normal-Mg) or Mg-free (Mg-deficient)), and two different Ca concentrations (0.5% (normal-Ca) or 1.0% (high-Ca)) for 14 days. Serum concentrations of osteocalcin and IGF-1 were significantly lower in rats fed the Mg-deficient diet than in rats fed the normal-Mg diet. On the other hand, dietary Ca concentration had no significant influence on serum concentrations of osteocalcin and IGF-1. This study suggested that: 1) a high-Ca diet has no preventive effects on the decreased bone formation seen in Mg-deficient rats; and 2) a high-Ca diet does not enhance serum IGF-1 levels in Mg-deficient rats. Moreover, unchanged serum IGF-1 concentrations may contribute to the decreased bone formation seen in Mg-deficient rats receiving a high-Ca diet.

  7. Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia.

    PubMed

    Oliveras, Ignasi; Río-Álamos, Cristóbal; Cañete, Toni; Blázquez, Gloria; Martínez-Membrives, Esther; Giorgi, Osvaldo; Corda, Maria G; Tobeña, Adolf; Fernández-Teruel, Alberto

    2015-01-01

    Animal models of schizophrenia-relevant symptoms are increasingly important for progress in our understanding of the neurobiological basis of the disorder and for discovering novel and more specific treatments. Prepulse inhibition (PPI) and working memory, which are impaired in schizophrenic patients, are among the symptoms/processes modeled in those animal analogs. We have evaluated whether a genetically-selected rat model, the Roman high-avoidance inbred strain (RHA-I), displays PPI deficits as compared with its Roman low-avoidance (RLA-I) counterpart and the genetically heterogeneous NIH-HS rat stock. We have investigated whether PPI deficits predict spatial working memory impairments (in the Morris water maze; MWM) in these three rat types (Experiment 1), as well as in a separate sample of NIH-HS rats stratified according to their extreme (High, Medium, Low) PPI scores (Experiment 2). The results from Experiment 1 show that RHA-I rats display PPI and spatial working memory deficits compared to both RLA-I and NIH-HS rats. Likewise, in Experiment 2, "Low-PPI" NIH-HS rats present significantly impaired working memory with respect to "Medium-PPI" and "High-PPI" NIH-HS subgroups. Further support to these results comes from correlational, factorial, and multiple regression analyses, which reveal that PPI is positively associated with spatial working memory performance. Conversely, cued learning in the MWM was not associated with PPI. Thus, using genetically-selected and genetically heterogeneous rats, the present study shows, for the first time, that PPI is a positive predictor of performance in a spatial working memory task. These results may have translational value for schizophrenia symptom research in humans, as they suggest that either by psychogenetic selection or by focusing on extreme PPI scores from a genetically heterogeneous rat stock, it is possible to detect a useful (perhaps "at risk") phenotype to study cognitive anomalies linked to schizophrenia. PMID

  8. Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia

    PubMed Central

    Oliveras, Ignasi; Río-Álamos, Cristóbal; Cañete, Toni; Blázquez, Gloria; Martínez-Membrives, Esther; Giorgi, Osvaldo; Corda, Maria G.; Tobeña, Adolf; Fernández-Teruel, Alberto

    2015-01-01

    Animal models of schizophrenia-relevant symptoms are increasingly important for progress in our understanding of the neurobiological basis of the disorder and for discovering novel and more specific treatments. Prepulse inhibition (PPI) and working memory, which are impaired in schizophrenic patients, are among the symptoms/processes modeled in those animal analogs. We have evaluated whether a genetically-selected rat model, the Roman high-avoidance inbred strain (RHA-I), displays PPI deficits as compared with its Roman low-avoidance (RLA-I) counterpart and the genetically heterogeneous NIH-HS rat stock. We have investigated whether PPI deficits predict spatial working memory impairments (in the Morris water maze; MWM) in these three rat types (Experiment 1), as well as in a separate sample of NIH-HS rats stratified according to their extreme (High, Medium, Low) PPI scores (Experiment 2). The results from Experiment 1 show that RHA-I rats display PPI and spatial working memory deficits compared to both RLA-I and NIH-HS rats. Likewise, in Experiment 2, “Low-PPI” NIH-HS rats present significantly impaired working memory with respect to “Medium-PPI” and “High-PPI” NIH-HS subgroups. Further support to these results comes from correlational, factorial, and multiple regression analyses, which reveal that PPI is positively associated with spatial working memory performance. Conversely, cued learning in the MWM was not associated with PPI. Thus, using genetically-selected and genetically heterogeneous rats, the present study shows, for the first time, that PPI is a positive predictor of performance in a spatial working memory task. These results may have translational value for schizophrenia symptom research in humans, as they suggest that either by psychogenetic selection or by focusing on extreme PPI scores from a genetically heterogeneous rat stock, it is possible to detect a useful (perhaps “at risk”) phenotype to study cognitive anomalies linked to

  9. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    PubMed

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  10. Reduced anticipatory dopamine responses to food in rats exposed to high fat during early development.

    PubMed

    Naef, L; Moquin, L; Gratton, A; Walker, C-D

    2013-06-01

    We have previously demonstrated that exposure to high fat (HF) during early development alters the presynaptic regulation of mesolimbic dopamine (DA), and increases incentive motivation for HF food rewards. The goal of the present experiments was to examine the long-term consequences of early exposure to HF on anticipatory and consumatory nucleus accumbens (NAc) DA responses to HF food rewards. Mothers were maintained on a HF (30% fat) or control diet (CD; 5% fat) from gestation day 13 to postnatal day 22 when offspring from both diet groups were weaned and maintained on the CD until adulthood. In vivo NAc DA responses to food anticipation and consumption were measured in a Pavlovian conditioning paradigm using voltammetry in freely moving rats. HF-exposed offspring displayed reduced NAc DA responses to a tone previously paired with the delivery of HF food rewards. In an unconditioned protocol, consumatory NAc DA responses could be isolated, and were similar in HF and control offspring. These data demonstrate that exposure to HF through maternal diet during early development might program behavioral and functional responses associated with mesolimbic DA neurotransmission, thus leading to an increased HF feeding and obesity.

  11. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging.

    PubMed

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A B; Maguire, Mahon L; Whittington, Hannah J; Lygate, Craig A; Kohl, Peter; Schneider, Jürgen E

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  12. Characterization of a high affinity cocaine binding site in rat brain

    SciTech Connect

    Calligaro, D.; Eldefrawi, M.

    1986-03-05

    Binding of (/sup 3/H)cocaine to synaptic membranes from whole rat brain was reversible and saturable. Nonlinear regression analysis of binding isotherms indicated two binding affinities: one with k/sub d/ = 16 nM, B/sub max/ = 0.65 pmoles/mg protein and the other with K/sub d/ = 660 nM, B/sub max/ = 5.1 pmoles/mg protein. The high-affinity binding of (/sup 3/H)cocaine was sensitive to the actions of trypsin and chymotrypsin but not carboxypeptidase, and was eliminated by exposure of the membranes to 95/sup 0/C for 5 min. Specific binding at 2 nM was higher at pH 8.8 than at pH 7.0. Binding of (/sup 3/H)cocaine (15 nM) was inhibited by increasing concentrations of Na/sup +/ ions. Several cocaine analogues, neurotransmitter uptake inhibitors and local anesthetics displaced specific (/sup 3/H)cocaine binding at 2 nM with various potencies. The cocaine analogue (-)-norcocaine was the most potent (IC/sub 50/ = 10 nM), while the local anesthetic tetracaine was the least potent in inhibiting (/sup 3/H)cocaine binding. Several biogenic amine uptake inhibitors, including tricyclic antidepressants and phencyclidine, had IC/sub 50/ values below ..mu..M concentrations.

  13. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging

    PubMed Central

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A. B.; Maguire, Mahon L.; Whittington, Hannah J.; Lygate, Craig A.; Kohl, Peter; Schneider, Jürgen E.

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  14. Poria cocos inhibits high glucose-induced proliferation of rat mesangial cells.

    PubMed

    Yoon, Jung Joo; Lee, Yun Jung; Lee, So Min; Jin, Song Nan; Kang, Dae Gill; Lee, Ho Sub

    2013-01-01

    Mesangial cell proliferation is correlated with the progression of renal failure. The purpose of this study was to determine whether a water extract of Poria cocos Wolf (WPC), a well-known medicinal plant, regulates rat mesangial cell proliferation in the presence of high glucose (HG). HG significantly accelerated [(3)H]-thymidine incorporation, which was inhibited by WPC (1-50 μg/mL) in a dose-dependent manner. Cell migration and fibronectin mRNA expression data also supported the anti-proliferative effect of WPC. Western blot analysis revealed that pretreatment with WPC decreased the expression of cyclins and cyclin-dependent kinases (CDKs) and promoted the expression of p21(waf1/cip1) and p27(kip1). WPC also suppressed HG-induced p38 mitogen-activated protein kinase (p38 MAPK) and extracellular-signal-regulated kinase 1/2 (ERK 1/2) phosphorylation. Furthermore, WPC inhibited HG-induced production of dichlorofluorescein (DCF)-sensitive intracellular reactive oxygen species (ROS). In conclusion, HG promoted mesangial cell proliferation, and WPC inhibited this activity, at least in part, via induction of cell cycle arrest and activation of anti-oxidant properties. Taken together, these results suggest that P. cocos may be a potent regulator of HG-induced proliferation.

  15. In Vivo Lipid Regulation Mechanism of Polygoni Multiflori Radix in High-Fat Diet Fed Rats

    PubMed Central

    Lin, Pei; He, Yan Ran; Lu, Jian Mei; Li, Na; Wang, Wan Gen; Gu, Wen; Yu, Jie; Zhao, Rong Hua

    2014-01-01

    Mechanisms of the water extracts of Polygoni Multiflori Radix (PMR) and its processed products (PMRP) on liver lipid metabolism were observed in this paper. Aqueous extract of PMR and PMRP was given to nonalcoholic fatty liver model rats, respectively. PMR was better in reducing the contents of very low density lipoprotein (VLDL) than PMRP and the positive control groups. In the aspect of regulating TG, medium dose PMR reduced the activity of diacylglycerol acyltransferase (DGAT) to 1536 ± 47.69 pg/mL (P < 0.001) and promoted the expression of hepatic lipase (HL) to 23.59 ± 0.2758 U/mL (P < 0.05). HL promotion ability of medium dose PMR was similar with the simvastatin positive control. Both medium and high dose of PMR showed significant alterations in TC, which were related to the downregulation effects on hydroxyl methyl-glutaryl coenzyme A reductase (HMGCR) and upregulation effects on cholesterol 7-alpha-hydroxylase or cytochrome P450 7A (CYP7A). Quantitative relationships research indicated that the prominent effect on inhibiting the content of HMGCR (r = 0.756, P < 0.05) was strongly positive correlated with to the TC regulation effects. Effects of PMR on enhancing decomposition rate or reducing de novo synthesis rate of TG and TC were better than PMRP. PMID:24876874

  16. The effect of high-fat diet on rat's mood, feeding behavior and response to stress.

    PubMed

    Aslani, S; Vieira, N; Marques, F; Costa, P S; Sousa, N; Palha, J A

    2015-01-01

    An association between obesity and depression has been indicated in studies addressing common physical (metabolic) and psychological (anxiety, low self-esteem) outcomes. Of consideration in both obesity and depression are chronic mild stressors to which individuals are exposed to on a daily basis. However, the response to stress is remarkably variable depending on numerous factors, such as the physical health and the mental state at the time of exposure. Here a chronic mild stress (CMS) protocol was used to assess the effect of high-fat diet (HFD)-induced obesity on response to stress in a rat model. In addition to the development of metabolic complications, such as glucose intolerance, diet-induced obesity caused behavioral alterations. Specifically, animals fed on HFD displayed depressive- and anxious-like behaviors that were only present in the normal diet (ND) group upon exposure to CMS. Of notice, these mood impairments were not further aggravated when the HFD animals were exposed to CMS, which suggest a ceiling effect. Moreover, although there was a sudden drop of food consumption in the first 3 weeks of the CMS protocol in both ND and HFD groups, only the CMS-HFD displayed an overall noticeable decrease in total food intake during the 6 weeks of the CMS protocol. Altogether, the study suggests that HFD impacts on the response to CMS, which should be considered when addressing the consequences of obesity in behavior. PMID:26795748

  17. The effect of high-fat diet on rat's mood, feeding behavior and response to stress.

    PubMed

    Aslani, S; Vieira, N; Marques, F; Costa, P S; Sousa, N; Palha, J A

    2015-01-01

    An association between obesity and depression has been indicated in studies addressing common physical (metabolic) and psychological (anxiety, low self-esteem) outcomes. Of consideration in both obesity and depression are chronic mild stressors to which individuals are exposed to on a daily basis. However, the response to stress is remarkably variable depending on numerous factors, such as the physical health and the mental state at the time of exposure. Here a chronic mild stress (CMS) protocol was used to assess the effect of high-fat diet (HFD)-induced obesity on response to stress in a rat model. In addition to the development of metabolic complications, such as glucose intolerance, diet-induced obesity caused behavioral alterations. Specifically, animals fed on HFD displayed depressive- and anxious-like behaviors that were only present in the normal diet (ND) group upon exposure to CMS. Of notice, these mood impairments were not further aggravated when the HFD animals were exposed to CMS, which suggest a ceiling effect. Moreover, although there was a sudden drop of food consumption in the first 3 weeks of the CMS protocol in both ND and HFD groups, only the CMS-HFD displayed an overall noticeable decrease in total food intake during the 6 weeks of the CMS protocol. Altogether, the study suggests that HFD impacts on the response to CMS, which should be considered when addressing the consequences of obesity in behavior.

  18. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats

    PubMed Central

    She, Jun; Goolaerts, Arnaud; Shen, Jun; Bi, Jing; Tong, Lin; Gao, Lei; Song, Yuanlin; Bai, Chunxue

    2012-01-01

    High altitude pulmonary oedema (HAPE) severely affects non-acclimatized individuals and is characterized by alveolar flooding with protein- rich oedema as a consequence of blood-gas barrier disruption. Limited choice for prophylactic treatment warrants effective therapy against HAPE. Keratinocyte growth factor-2 (KGF-2) has shown efficiency in preventing alveolar epithelial cell DNA damages in vitro. In the current study, the effects of KGF-2 intratracheal instillation on mortality, lung liquid balance and lung histology were evaluated in our previously developed rat model of HAPE. We found that pre-treatment with KGF-2 (5 mg/kg) significantly decreased mortality, improved oxygenation and reduced lung wet-to-dry weight ratio by preventing alveolar-capillary barrier disruption demonstrated by histological examination and increasing alveolar fluid clearance up to 150%. In addition, KGF-2 significantly inhibited decrease of transendothelial permeability after exposure to hypoxia, accompanied by a 10-fold increase of Akt activity and inhibited apoptosis in human pulmonary microvascular endothelial cells, demonstrating attenuated endothelial apoptosis might contribute to reduction of endothelial permeability. These results showed the efficacy of KGF-2 on inhibition of endothelial cell apoptosis, preservation of alveolar-capillary barrier integrity and promotion of pulmonary oedema absorption in HAPE. Thus, KGF-2 may represent a potential drug candidate for the prevention of HAPE. PMID:22568566

  19. Identification of high-affinity calmodulin-binding proteins in rat liver

    SciTech Connect

    Hanley, R.M.; Dedman, J.R.; Shenolikar, S.

    1987-03-01

    The Ca/sup 2 +/-dependent binding of (/sup 125/I) calmodulin (CaM) to hepatic proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was utilized to identify CaM binding or acceptor proteins or CAPs. Two proteins of apparent molecular weight of 60,000 (CAP-60) and 45,000 (CAP-45) comprised > 80% of the Ca/sup 2 +/-dependent CaM binding in rat liver cytosol. CAP-60 and CAP-45 were partially purified by a variety of chromatographic steps, including affinity chromatography on CaM Sepharose. CAP-60 possessed a native molecular size of 400,000, indicating it to be the CaM-binding subunit of a larger oligomeric complex. In contrast, CAP-45 was monomeric as judged by gel filtration. Neither CAP-60 nor CAP-45 possessed chromatographic properties consistent with known CaM-dependent enzymes reported in the literature. Two-dimensional peptide mapping provided convincing evidence that CAP-60 and CAP-45 were unrelated to other well-characterized CAPs, namely Ca/sup 2 +/ (CaM)-dependent protein kinase II, calcineurin, or the CaM-dependent cyclic nucleotide phosphodiesterase. The relative abundance and high affinity for CaM could suggest that these novel target proteins, CAP-60 and CAP-45, represent a dominant pathway for CaM action in the mammalian liver.

  20. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides

    SciTech Connect

    Kessler, R.M.; Ansari, M.S.; de Paulis, T.; Schmidt, D.E.; Clanton, J.A.; Smith, H.E.; Manning, R.G.; Gillespie, D.; Ebert, M.H. )

    1991-08-01

    Five 125I-labeled substituted benzamides, which are close structural analogues of (S)-sulpiride, eticlopride, and isoremoxipride, were evaluated for their selective in vivo uptake into dopamine D2 receptor rich tissue of the rat brain. Iodopride (KD 0.88 nM), an iodine substituted benzamide structurally related to sulpiride, displayed a maximal striatum: cerebellar uptake ratio of 7.6. Demonstration of saturation of the receptor with (125I)iodopride in striatum required uptake in frontal cortex to be used, rather than cerebellar uptake, to define nonspecific binding. Two other ligands structurally related to eticlopride, iclopride (KD 0.23 nM) and itopride (KD 0.16 nM), displayed maximal striatal: cerebellar uptake ratios of 9.8 and 3.3, respectively. The most potent ligands, epidepride (KD 0.057 nM) and ioxipride (KD 0.070 nM) showed striatal:cerebellar uptake ratios of 234 and 65, respectively. The observed uptake ratios correlated poorly with the affinity constants for the dopamine D2 receptor alone, but were highly correlated (r = 0.92) with the product of the receptor dissociation constant (KD) and the apparent lipophilicity (kw), as determined by reverse-phase HPLC at pH 7.5. Total striatal uptake also appeared dependent on lipophilicity, with maximal uptake occurring for ligands having log kw 2.4-2.8.

  1. High hepcidin level accounts for the nigral iron accumulation in acute peripheral iron intoxication rats.

    PubMed

    Sun, Chao; Song, Ning; Xie, Anmu; Xie, Junxia; Jiang, Hong

    2012-08-01

    Hepcidin is considered to be a circulatory hormone and a major mechanism regulating iron homeostasis. Our previous publication revealed that acute iron intoxication induced iron deposit and dopaminergic neuron degeneration in the substantia nigra (SN) of a rat model. However, whether and how hepcidin functions in this nigral iron accumulation has not been elucidated. In the present study, we observed a decreased of FPN1 protein level in the SN triggered by peripheral iron overload within 4 h, which correlated with a high hepcidin level. To further investigate the role of intracellular hepcidin under iron overload circumstances, we assessed the expression of hepcidin mRNA and FPN1 protein in vitro. We observed that hepcidin mRNA level was up-regulated and FPN1 protein level was down-regulated in MES23.5 dopaminergic cells in a period of 4h incubation with iron. Both in pCMV-XL4-hepcidin transfected and hepcidin-treated cells, decreased FPN1 protein levels were observed. Our data provide direct evidence that the role for intracellular hepcidin generated in the SN is particularly relevant to restrict iron release by down-regulation FPN1 expression in this region, thus an important contributor to the abnormal iron deposit occurred at an early stage in conditions of peripheral iron intoxication. PMID:22659129

  2. High doses of caffeine reduce in vivo osteogenic activity in prepubertal rats.

    PubMed

    Shin, Jiwon; Choi, Yuri; Kim, Jisook; Yu, A-Ram; Shin, Ji-Soo; Choi, Yun-Young; Roh, Jaesook

    2015-07-01

    Caffeine adversely affects endochondral ossification during fetal skeletal growth, and results in increased incidence of delayed and abnormal fetal skeletal development. Chronic caffeine intake also decreases growth hormone secretion. Thus, it is conceivable that caffeine may disrupt bone growth during the peripubertal period. This study aimed to investigate the impact of high-caffeine consumption on bone growth throughout puberty. A total of 51 male rats (21 days old) were divided randomly into three groups: a control group and two groups fed caffeine via gavage with 120 and 180 mg kg(-1)  day(-1) for 4 weeks. After death, the final length and weight of leg bones were measured, and the tibia processed for histomorphometric analysis. Caffeine caused a significant decrease in body mass gain. This was accompanied with proportional decreases in lean body mass and body fat. In addition, bone mass and osteogenic activity in vivo were assessed using dual-energy X-ray absorptiometry and (18) F-NaF positron emission tomography. The results showed significant decreases of bone mass and in vivo osteogenic activity in the caffeine-fed groups. Rats fed with caffeine showed a significantly shorter and lighter tibia and femur and the vertebral column compared with controls. In addition, caffeine does not increase the width of the growth plates (GPs), it slows the rate at which the GP closes due to a slower rate of growth. These results demonstrated that caffeine altered osteogenic activity, leading to delayed peripubertal longitudinal bone growth and maturation. Given that osteogenic cells undergo dynamic changes in metabolic activity and that the pubertal growth spurt is mainly stimulated by growth hormone/insulin-like growth factor-1 and sex steroids during pubertal development, caffeine could suppress ossification by interfering with both physiological changes in hormonal secretion and osteogenic activity during this critical period. Further study will be needed to

  3. High doses of caffeine reduce in vivo osteogenic activity in prepubertal rats.

    PubMed

    Shin, Jiwon; Choi, Yuri; Kim, Jisook; Yu, A-Ram; Shin, Ji-Soo; Choi, Yun-Young; Roh, Jaesook

    2015-07-01

    Caffeine adversely affects endochondral ossification during fetal skeletal growth, and results in increased incidence of delayed and abnormal fetal skeletal development. Chronic caffeine intake also decreases growth hormone secretion. Thus, it is conceivable that caffeine may disrupt bone growth during the peripubertal period. This study aimed to investigate the impact of high-caffeine consumption on bone growth throughout puberty. A total of 51 male rats (21 days old) were divided randomly into three groups: a control group and two groups fed caffeine via gavage with 120 and 180 mg kg(-1)  day(-1) for 4 weeks. After death, the final length and weight of leg bones were measured, and the tibia processed for histomorphometric analysis. Caffeine caused a significant decrease in body mass gain. This was accompanied with proportional decreases in lean body mass and body fat. In addition, bone mass and osteogenic activity in vivo were assessed using dual-energy X-ray absorptiometry and (18) F-NaF positron emission tomography. The results showed significant decreases of bone mass and in vivo osteogenic activity in the caffeine-fed groups. Rats fed with caffeine showed a significantly shorter and lighter tibia and femur and the vertebral column compared with controls. In addition, caffeine does not increase the width of the growth plates (GPs), it slows the rate at which the GP closes due to a slower rate of growth. These results demonstrated that caffeine altered osteogenic activity, leading to delayed peripubertal longitudinal bone growth and maturation. Given that osteogenic cells undergo dynamic changes in metabolic activity and that the pubertal growth spurt is mainly stimulated by growth hormone/insulin-like growth factor-1 and sex steroids during pubertal development, caffeine could suppress ossification by interfering with both physiological changes in hormonal secretion and osteogenic activity during this critical period. Further study will be needed to

  4. Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

    PubMed Central

    Sun, Rui; Qiao, Xiangjin; Xu, Cuicui; Shang, Xiaoya; Niu, Weining; Chao, Yu

    2014-01-01

    The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia+vitamin E (250 mg/kg BW*d) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma (IFN-γ) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and IκBα, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha (HIF-1α and HIF-2α), Toll-like receptors (TLR4), P-IκBα and nuclear factor-κB p65(NF-κB P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-κB signaling pathway. PMID:25177163

  5. Evaluation of Giant African Pouched Rats for Detection of Pulmonary Tuberculosis in Patients from a High-Endemic Setting

    PubMed Central

    Reither, Klaus; Jugheli, Levan; Glass, Tracy R.; Sasamalo, Mohamed; Mhimbira, Francis A.; Weetjens, Bart J.; Cox, Christophe; Edwards, Timothy L.; Mulder, Christiaan; Beyene, Negussie W.; Mahoney, Amanda

    2015-01-01

    Background This study established evidence about the diagnostic performance of trained giant African pouched rats for detecting Mycobacterium tuberculosis in sputum of well-characterised patients with presumptive tuberculosis (TB) in a high-burden setting. Methods The TB detection rats were evaluated using sputum samples of patients with presumptive TB enrolled in two prospective cohort studies in Bagamoyo, Tanzania. The patients were characterised by sputum smear microscopy and culture, including subsequent antigen or molecular confirmation of Mycobacterium tuberculosis, and by clinical data at enrolment and for at least 5-months of follow-up to determine the reference standard. Seven trained giant African pouched rats were used for the detection of TB in the sputum samples after shipment to the APOPO project in Morogoro, Tanzania. Results Of 469 eligible patients, 109 (23.2%) were culture-positive for Mycobacterium tuberculosis and 128 (27.3%) were non-TB controls with sustained recovery after 5 months without anti-TB treatment. The HIV prevalence was 46%. The area under the receiver operating characteristic curve of the seven rats for the detection of culture-positive pulmonary tuberculosis was 0.72 (95% CI 0.66–0.78). An optimal threshold could be defined at ≥2 indications by rats in either sample with a corresponding sensitivity of 56.9% (95% CI 47.0–66.3), specificity of 80.5% (95% CI 72.5–86.9), positive and negative predictive value of 71.3% (95% CI 60.6–80.5) and 68.7% (95% CI 60.6–76.0), and an accuracy for TB diagnosis of 69.6%. The diagnostic performance was negatively influenced by low burden of bacilli, and independent of the HIV status. Conclusion Giant African pouched rats have potential for detection of tuberculosis in sputum samples. However, the diagnostic performance characteristics of TB detection rats do not currently meet the requirements for high-priority, rapid sputum-based TB diagnostics as defined by the World Health

  6. Effects of aqueous celery (Apium graveolens) extract on lipid parameters of rats fed a high fat diet.

    PubMed

    Tsi, D; Das, N P; Tan, B K

    1995-02-01

    The antihyperlipidemic property of aqueous celery extract was studied in rats. Two groups of Wistar rats were fed a high fat diet for eight weeks to induce hyperlipidemia. One group was supplemented with aqueous celery extract in the diet while the other group served as control. At the end of the experiment, a significant reduction was found in the serum total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) concentrations in the celery-treated rats. However, the concentration of hepatic TG was significantly higher in the celery-treated group than in the control group. Hepatic triacylglycerol lipase (HL) activity was found to be significantly lower in the celery-treated rats while the reverse was observed for the hepatic microsomal P450 content. Analysis of an ethereal extract of the aqueous extract of celery by thin layer chromatography (TLC) with two different solvent systems showed that the extract did not contain 3-n-butylphthalide (BuPh), a unique compound in celery that has previously been reported to have lipid-lowering action. Our study indicates that other active principle(s) could be responsible for the observed effects of aqueous celery extract on serum and hepatic lipid levels.

  7. Fructus xanthii improves lipid homeostasis in the epididymal adipose tissue of rats fed a high-fat diet.

    PubMed

    Li, Xiumin; Yang, Mingxing; Li, Zhipeng; Xue, Mei; Shangguan, Zhaoshui; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Yang, Shuyu; Li, Xuejun

    2016-01-01

    High fat diet (HFD)-induced obesity triggers common features of human metabolic syndrome in rats. Our previous study showed that Fructus xanthii (FX) attenuates HFD-induced hepatic steatosis. The present study was designed to investigate the effects of FX on lipid metabolism in epididymal fat (EF), and examine its underlying mechanisms. Aqueous extraction fractions of FX or vehicle were orally administered by gavage for 6 weeks to rats fed either a HFD or a normal chow diet (NCD). The levels of circulating free fatty acid (FFA) were determined in plasma, and the expression levels of lipid metabolism‑ and inflammation‑associated genes in the EF were measured using reverse transcription‑quantitative polymerase chain reaction analysis. The general morphology, size and number of adipocytes in the EF, and the levels of macrophage infiltration were evaluated using hematoxylin and eosin staining or immunohistochemical staining. FX decreased circulating levels of FFA, increased the expression levels of sterol‑regulatory‑element‑binding protein‑1c, FAS, acetyl coenzyme A carboxylase, diacylglycerol acyltransferase and lipoprotein lipase lipogenic genes in the EF. FX increased the numbers of adipocytes in the EF, and featured a shift towards smaller adipocyte size. Compared with the vehicle‑treated rats, positive staining of F4/80 was more dispersed in the FX‑treated rats, and the percentage of F4/80 positive cells was significantly decreased. FX attenuated HFD‑induced lipid dyshomeostasis in the epididymal adipose tissue.

  8. Apparent target size of rat brain benzodiazepine receptor, acetylcholinesterase, and pyruvate kinase is highly influenced by experimental conditions

    SciTech Connect

    Nielsen, M.; Braestrup, C.

    1988-08-25

    Radiation inactivation is a method to determine the apparent target size of molecules. In this report we examined whether radiation inactivation of various enzymes and brain receptors is influenced by the preparation of samples preceding irradiation. The apparent target sizes of endogenous acetylcholinesterase and pyruvate kinase from rat brain and from rabbit muscle and benzodiazepine receptor from rat brain were investigated in some detail. In addition the target sizes of alcohol dehydrogenase (from yeast and horse liver), beta-galactosidase (from Escherichia coli), lactate dehydrogenase (endogenous from rat brain), and 5-HT2 receptors, acetylcholine muscarine receptors, and (/sup 35/S) butyl bicyclophosphorothionate tertiary binding sites from rat brain were determined. The results show that apparent target sizes are highly influenced by the procedure applied for sample preparation before irradiation. The data indicate that irradiation of frozen whole tissue as opposed to lyophilized tissue or frozen tissue homogenates will estimate the smallest and most relevant functional target size of a receptor or an enzyme.

  9. Contact size does not affect high frequency oscillation detection in intracerebral EEG recordings in a rat epilepsy model

    PubMed Central

    Châtillon, Claude-Édouard; Zelmann, Rina; Bortel, Aleksandra; Avoli, Massimo; Gotman, Jean

    2013-01-01

    Objective High frequency oscillations (HFOs) have been implicated in ictogenesis and epileptogenesis. The effect of contact size (in the clinical range: 1–10 mm2) on HFO detection has not been determined. This study assesses the feasibility of HFO detection in a rat epilepsy model using macrocontacts and clinical amplifiers, and the effect of contact size on HFO detection within the macrocontact range. Methods Eight epileptic rats were implanted with intracerebral electrodes containing three adjacent contacts of different sizes (0.02, 0.05 and 0.09 mm2). HFOs were manually marked on 5 min interictal EEG segments. HFO rates and durations were compared between the different contacts. Results 10,966 ripples and 1475 fast ripples were identified in the recordings from 30 contacts. There were no significant differences in spike or HFO rates between the different contact sizes, nor was there a significant difference in HFO duration. Conclusions HFOs can be detected in a rat epilepsy model using macrocontacts. Within the studied range, size did not significantly influence HFO detection. Significance Using comparative anatomy of rat and human limbic structures, these findings suggest that reducing the size of macrocontacts (compared to those commercially available) would not improve HFO detection rates. PMID:21429792

  10. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    PubMed

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Acetylshikonin from Zicao Prevents Obesity in Rats on a High-Fat Diet by Inhibiting Lipid Accumulation and Inducing Lipolysis

    PubMed Central

    Zhu, Banghao

    2016-01-01

    Various drugs have been developed to treat obesity, but these have undesirable secondary effects, and an efficient but non-toxic anti-obesity drug from natural sources is desired. This study investigated the anti-obesity effects and mechanisms of action of acetylshikonin (AS)—which is used in traditional Chinese medicine—in rats on a high-fat diet (HFD). Rats were fed a normal diet or an HFD; the latter group was received no treatment or were treated with 100, 300, or 900 mg/kg AS extract by intragastric administration for 6 weeks. In addition, 3T3-L1 adipocytes were treated with AS and the effects on adipogenesis and lipolysis were evaluated by western blot analysis of adipogenic transcription factors and lipid-metabolizing enzyme levels and the phosphorylation status of protein kinase (PK) A and hormone-sensitive lipase (HSL). AS prevented HFD-induced obesity including reduction in body weight, white adipose tissue content, liver mass, and serum triglyceride and free fatty acid levels in rats. It also suppressed the expression of adipogenic differentiation transcription factors and decreased the expression of the adipocyte-specific proteins HSL and adipose triglyceride lipase (ATGL). Furthermore, AS treatment induced lipolysis, leading to the release of glycerol and increased in PKA and HSL phosphorylation. These findings demonstrate that AS has anti-obesity effects in a rat model and may be a safe treatment for obesity in humans. PMID:26771185

  12. D-psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Onishi, Kana; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2014-03-01

    We investigated the anti-obesity effects of D-psicose by increasing energy expenditure in rats pair-fed the high-sucrose diet (HSD). Wistar rats were divided into two dietary groups: HSD containing 5% cellulose (C) and 5% d-psicose (P). The C dietary group was further subdivided into two groups: rats fed the C diet ad libitum (C-AD) and pair-fed the C diet along with those in the P group (C-PF). Resting energy expenditure during darkness and lipoprotein lipase activity in the soleus muscle were significantly higher in the P group than in the C-PF group. Serum levels of glucose, leptin and adiponectin; glucose-6-phosphate dehydrogenase activities in the liver and perirenal adipose tissue; and body fat accumulation were all significantly lower in the P group than in the C-PF group. The anti-obesity effects of D-psicose could be induced not only by suppressing lipogenic enzyme activity but also by increasing EE in rats.

  13. Glucose intolerance induced by a high-fat/low-carbohydrate diet in rats effects of nonesterified fatty acids.

    PubMed

    Wang, Yuan; Miura, Yoshikazu; Kaneko, Takashi; Li, Jue; Qin, Li-Qiang; Wang, Pei-Yu; Matsui, Hisao; Sato, Akio

    2002-04-01

    We examined the time course of effects of a high-fat/low-carbohydrate (HF/LC) diet on the impairment of glucose tolerance in rats, clarified whether insulin secretion and sensitivity were impaired by the HF/LC diet, and investigated the relationship between the increased nonesterified fatty acids (NEFA) after HF/LC diet feeding and insulin secretion and sensitivity. We found that glucose tolerance and the postglucose-loading insulin secretion were impaired after 3 and 7 d on the HF/LC diet. The glucose intolerance was accompanied by a rise in the fasting plasma NEFA level. When stimulated with 15 mmol/L of glucose, the insulin secretion was impaired in pancreatic islets from rats fed the HF/LC diet. Rats fed the HF/LC diet showed insulin resistance in vivo. The glucose-stimulated insulin secretion was inhibited in the islets following 24-h culture with palmitic acid. The 24-h infusion of palmitic acid decreased whole-body insulin sensitivity. In summary, at least 3 d on a HF/LC diet is needed to induce glucose intolerance in rats, and the impairment may be induced by decreased insulin secretion and sensitivity, which is related to the increase in the plasma NEFA level. PMID:12108518

  14. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    PubMed

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27255442

  15. Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats.

    PubMed

    Reddy, B Raghunath; Maitra, Swati; Jhelum, Priya; Kumar, K Praveen; Bagul, Pankaj K; Kaur, Gagandeep; Banerjee, Sanjay K; Kumar, Arvind; Chakravarty, Sumana

    2016-09-01

    Hyperglycaemia in diabetes is either caused by reduced availability of insulin (type 1 diabetes, T1D) or insulin resistance to the cells (type 2 diabetes, T2D). In recent years, the prevalence of T2D has increased to an alarming proportion, encompassing 95 percent of the total diabetic burden, probably due to economy-driven changes in lif