Sample records for high cold cloud

  1. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  2. Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign

    DOE PAGES

    Feng, Zhe; Hagos, Samson; Rowe, Angela K.; ...

    2015-04-03

    This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated andmore » intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.« less

  3. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers

    NASA Astrophysics Data System (ADS)

    Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro

    2018-04-01

    Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.

  4. THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. II. THE ROLE OF THERMAL CONDUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüggen, Marcus; Scannapieco, Evan

    2016-05-01

    We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. Wemore » provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.« less

  5. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  6. Hurricane Irma's Cloud Structure as Seen by NASA's AIRS

    NASA Image and Video Library

    2017-09-08

    The large-scale structure of clouds in and around Hurricane Irma is seen in this animation and still image created with data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The clouds are typical of tropical areas both nearby and away from tropical cyclones. Observations were taken at 1 p.m. EDT (5 p.m. UTC) on Tuesday, Sept. 5, 2017, as Irma approached the Caribbean islands and was just becoming a powerful Category 5 storm. Each cylinder represents a volume of cloud detected by AIRS. The oval cylinder ends represent a region viewed by AIRS, with the oval sizes adjusted to reflect the proportion of clouds filling the area viewed. The largest ovals are about 30 miles (45 kilometers) across. The height of the cylinders indicates the cloud thickness, with thickest clouds reaching down to the surface. The vertical scale is exaggerated 15 times. Colors represent temperatures at the tops of the clouds. The perspective views the storm diagonally from above with an initial view toward the north-northwest, with the perspective rotating clockwise for a full circle. The area depicted is about 1,000 miles by 800 miles across (1,600 by 1,300 kilometers). At the start of the loop, North America is seen at the top of the image, and coastal Venezuela at the lower right. In the initial perspective, cirrus clouds (thin and blue), associated with flow outward from the top of the hurricane, overlie warmer (pink and red) shallow clouds. About five seconds into the loop, the deep clouds in the middle of Irma are easily seen. The most dangerous parts of Irma are within the region of high and cold (blue), thick clouds surrounding the central eye. The clouds are cold because they are carried to high, cold altitudes by vigorous thunderstorms within the hurricane. The eye itself is nearly cloud free, but the few clouds within it are low and warm. As the perspective shift toward the south-southeast around seven seconds into the loop, another storm system well north of Irma can be seen. It contains high, thick clouds, with more cirrus carried outward over shallow clouds. At about nine seconds, more outflow from Irma is seen, with high, thin clouds over shallow clouds once again apparent. Shortly afterward when the view is toward the southwest, yet more deep clouds and their outflowing cirrus clouds are apparent. This image depicts many of the clouds typical of the tropics even when cyclones are not present: high, cold thunderstorms pushing cirrus clouds over nearby regions containing many warm, shallow clouds. The animation also shows the structure typical of tropical cyclones around the world: very strong thunderstorms lifting clouds into cold parts of the atmosphere, with strong outflow at upper levels carrying cirrus clouds away from the storm center, and the storm organized symmetrically around a central eye. https://photojournal.jpl.nasa.gov/catalog/PIA21950

  7. Characterizing the structure of an unusually cold high latitude cloud

    NASA Astrophysics Data System (ADS)

    Veneziani, Marcella; Paladini, Roberta; Noriega-Crespo, Alberto; Carey, Sean; Tibbs, Christopher; Flagey, Nicolas; Piacentini, Francesco

    2012-10-01

    Recently the BOOMERanG 2003 experiment, with an angular resolution of 10', has detected an unusually cold cloud (T = 9 K) located at high Galactic latitudes and with an area of 0.25 deg^2. The low temperature of this object has been confirmed by a follow-up in the with Herschel which measured T = 15.3 in the range 100-500micron and with a resolution 20 times higher than BOOMERanG. Despite the cold temperature of the cloud, the measured extinction (Av=0.15 mag) seems to indicate a fairly low amount of shielding material which could justify the dust cooling. Surprisingly, while the dust content in the cloud is well constrained by a substantial amount of data, no - or very little information - is available for its gas counterpart. Therefore, we request 5hrs of 21-cm spectral line observations with the Parkes telescopes. The observations will allow us to accurately estimate the cloud HI column density, as well as to derive information about its kinematics.

  8. Cold Episodes, Their Precursors and Teleconnections in the Central Peruvian Andes (1958-2009)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2014-12-01

    The Mantaro valley (MV) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during the austral summer (January-March), which strongly damage crops. However, little is known about the causes and impacts of such cold episodes in the MV. The main goal of this study is thus to characterize cold episodes in the MV and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MV daily minimum temperature for the period 1958-2009 from Huayao station, located within the MV was used. We defined a cold episode as the period when daily minimum temperature drops below the 10-percentile for at least one day. Several gridded reanalysis and satellite products were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events for same period. Cold episodes in the MV are associated with positive OLR anomalies, which extend over much of the central Andes, indicating reduced convective cloud cover during these extremes, but also affirm the large-scale nature of these events. At the same time, northeastern Brazil (NEB) registers negative OLR anomalies, strong convective activity and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. Further, it is associated with a weakening of the Bolivian High - Nordeste Low (BH-NL) system at upper levels, but also influenced by a low-level migratory high-pressure center develops at 30°S, 50°W; propagating from mid- to low latitudes as part of an extratropical Rossby wave train. In conclusion, cold episodes in the MV appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection. The reduced cloud cover in turn results from a robust large-scale pattern of westerly wind anomalies over central Peruvian Andes, inhibiting moisture influx, convective activity and hence cloud formation. At the same time NEB registers strong convective activity and enhanced cloud cover. This dipole is caused by a weakening of BH-NL system at upper levels, which is associated with a low-level migratory high-pressure center, propagating from mid- to low latitudes as part of an extratropical Rossby wave train.

  9. Global Average Brightness Temperature for April 2003

    NASA Image and Video Library

    2003-06-02

    This image shows average temperatures in April, 2003, observed by AIRS at an infrared wavelength that senses either the Earth's surface or any intervening cloud. Similar to a photograph of the planet taken with the camera shutter held open for a month, stationary features are captured while those obscured by moving clouds are blurred. Many continental features stand out boldly, such as our planet's vast deserts, and India, now at the end of its long, clear dry season. Also obvious are the high, cold Tibetan plateau to the north of India, and the mountains of North America. The band of yellow encircling the planet's equator is the Intertropical Convergence Zone (ITCZ), a region of persistent thunderstorms and associated high, cold clouds. The ITCZ merges with the monsoon systems of Africa and South America. Higher latitudes are increasingly obscured by clouds, though some features like the Great Lakes, the British Isles and Korea are apparent. The highest latitudes of Europe and Eurasia are completely obscured by clouds, while Antarctica stands out cold and clear at the bottom of the image. http://photojournal.jpl.nasa.gov/catalog/PIA00427

  10. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  11. STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials

    DTIC Science & Technology

    2016-11-02

    STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of

  12. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  13. Implications of Observed High Supersaturation for TTL Cloud Formation and Dehydration

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2004-01-01

    In situ measurements of water vapor concentration made during the CRYSTAL-FACE and Pre-AVE missions indicate higher than expected supersaturations in both clear and cloudy air near the cold tropical tropopause: (1) steady-state ice supersaturations of 20-30% were measured within cirrus at T < 200 K; (2) supersaturations exceeding 100% (near water saturation) were observed under cloud-free conditions near 187 K. The in-cloud measurements challenge the conventional belief that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. The high clear-sky supersaturations imply that thresholds for ice nucleation due to homogeneous freezing of aerosols (or any other mechanism) are much higher than those inferred from laboratory measurements. We will use simulations of Tropical Tropopause Layer (TTL) transport and cloud formation throughout the tropics to show that these effects have important implications for TTL cloud frequency and freeze-drying of air crossing the tropical tropopause cold trap.

  14. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AOD<0.4), becoming saturated at AOD of 0.5, followed by an increase in CDR with aerosol. In contrast, there is no such boomerang shape found for (aerosol-cloud) separated cases. We categorize dataset into warm-season and cold-season subsets to figure out how the boomerang shape varies with season. For moderate aerosol loading (AOD<0.4), the effect on the droplet size for the "Mixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm season. It is likely associated with an increase in the emission of light absorbing aerosol like smoke (black carbon), mainly caused by coal-fired heating during the cold season in China. As expected, the sensitivity of CDR to AOD is much weaker for "Separated" cases, irrespective of warm or cold seasons, indicating no real aerosol indirect effect occurring in this case. In contrast, for heavy aerosol loading (AOD>0.4), an increasing CDR with AOD can be seen in "Mixed" scenario during the warm season. Conversely, a closer look at the responses of CDR during the cold season shows that CDR decreases with AOD, although the strength is not much large. Therefore, we argue that cloud droplet size decreases with aerosol loading during cold season, irrespective of moderate or heavy atmospheric pollution. Finally, we discuss the possible factors that may influence the aerosol indirect effects on warm clouds investigated here. For instance, aerosol-cloud interaction conundrum might be affected by aerosol humidification, which is the case for MODIS AOD during warm seasons. But this issue can be partly overcome by categorizing dataset into warm-season and cold-season subsets, representing different ambient humidity condition in the atmosphere. The different boomerang shapes observed during various seasons, particularly after transition zone due to droplet saturation effect, have great implications for climate forcing by aerosol in eastern China.

  15. Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; Riviere, E. D.

    2007-01-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K.

  16. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.

    2007-03-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.

  17. Cold Water Vapor in the Barnard 5 Molecular Cloud

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  18. Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.

  19. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  20. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds

    NASA Astrophysics Data System (ADS)

    Borys, Randolph D.; Lowenthal, Douglas H.; Mitchell, David L.

    A study was conducted to examine the relationships among air pollutant loadings, cloud microphysics, and snowfall rates in cold mountain clouds. It was hypothesized that variations in pollutant loadings would be reflected in shifts in the cloud droplet size distribution. A field program was conducted at Storm Peak Laboratory (SPL) at an elevation of 3210 m MSL in northwestern Colorado. Cold precipitating clouds were sampled during January, 1995. Cloud water was collected and analyzed for major ion and trace element chemistry. Cloud droplet concentrations and size were measured continuously using a PMS FSSP-100. The results indicate a direct relationship between clear-air equivalent (CAE) sulfate concentrations in cloud water and cloud droplet concentrations, an indirect relationship between droplet number and droplet size, a direct relationship between droplet size and snowfall rate, and an indirect relationship between CAE sulfate concentration and snowfall rate.

  1. On the Global Character of Overlap Between Low and High Clouds

    NASA Technical Reports Server (NTRS)

    Yuan, Tianle; Oreopoulos, Lazaros

    2013-01-01

    The global character of overlap between low and high clouds is examined using active satellite sensors. Low-cloud fraction has a strong land-ocean contrast with oceanic values double those over land. Major low-cloud regimes include not only the eastern ocean boundary stratocumulus and shallow cumulus but also those associated with cold air outbreaks downwind of wintertime continents and land stratus over particular geographic areas. Globally, about 30% of low clouds are overlapped by high clouds. The overlap rate exhibits strong spatial variability ranging from higher than 90% in the tropics to less than 5% in subsidence areas and is anticorrelated with subsidence rate and low-cloud fraction. The zonal mean of vertical separation between cloud layers is never smaller than 5 km and its zonal variation closely follows that of tropopause height, implying a tight connection with tropopause dynamics. Possible impacts of cloud overlap on low clouds are discussed.

  2. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  3. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    NASA Astrophysics Data System (ADS)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; Donner, Leo; Golaz, Jean-Christophe; Seman, Charles

    2017-12-01

    We define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, and high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. We find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.

  4. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE PAGES

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; ...

    2017-11-16

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  5. Estimating optically-thin cirrus cloud induced cold bias on infrared radiometric satellite sea surface temperature retrieval in the tropics

    NASA Astrophysics Data System (ADS)

    Marquis, Jared Wayne

    Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.

  6. Evaluation of WRF physical parameterizations against ARM/ASR Observations in the post-cold-frontal region to improve low-level clouds representation in CAM5

    NASA Astrophysics Data System (ADS)

    Lamraoui, F.; Booth, J. F.; Naud, C. M.

    2017-12-01

    The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.

  7. Coupling of Clouds and Moisture Transport in Extratropical Cyclonic Systems and the Associated Atmospheric Heating (Q1) and Moisture Sink (Q2)

    NASA Astrophysics Data System (ADS)

    Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.

    2017-12-01

    Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.

  8. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  9. Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Barron, Diana

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.

  10. MODIS Views Variations in Cloud Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS image, centered over the Great Lakes region in North America, shows a variety of cloud types. The clouds at the top of the image, colored pink, are cold, high-level snow and ice clouds, while the neon green clouds are lower-level water clouds. Because different cloud types reflect and emit radiant energy differently, scientists can use MODIS' unique data set to measure the sizes of cloud particles and distinguish between water, snow, and ice clouds. This scene was acquired on Feb. 24, 2000, and is a red, green, blue composite of bands 1, 6, and 31 (0.66, 1.6, and 11.0 microns, respectively). Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  11. Observed microphysical structure of nimbostratus in northeast cold vortex over China

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Lei, Hengchi

    2014-06-01

    Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a northeast cold vortex in Jilin Province over China on 20 June 2005 to study cloud structure and ice particle spectra. The microphysical structure of the nimbostratus was elucidated by King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2D images provide detailed information on crystal habits. A thick layer of supercooled cloud is observed and Hallett-Mossop ice multiplication process is used to explain very high ice particle concentrations in the temperature region between - 3 °C and - 6 °C. From near cloud top to melting layer, ice crystals shape in the form of columns, needles, aggregations and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Ice particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (N0) and slope (λ) parameters of an exponential size distribution was well characterized by a power law.

  12. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  13. Chamaeleon's Cold Cloud Cores

    NASA Astrophysics Data System (ADS)

    Hotzel, Stephan; Lemke, Dietrich; Krause, Oliver; Stickel, Manfred; Toth, L. Viktor

    ISOPHOT Serendipity Survey (ISOSS) observations of the nearby interstellar medium towards Chamaeleon have revealed a number of cold cloud cores. Far-infrared colours have been studied using ISOSS and IRAS data. 10 very cold cores with colour temperatures Tdust 13 K have been found in an 11° × 8° sized region. Comparing the FIR data with radio measurements, all of the very cold cores have high gas column densities, N(H2) > 1021 cm-2, and 7 out of 10 have low gas temperatures as indicated by Tex(C18O) ~~ 8 K.Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London.

  14. View of cold water eddies in Falkland Current off southern Argentina

    NASA Image and Video Library

    1973-12-14

    SL4-137-3608 (14 Dec. 1973) --- A view of cold water eddies in the Falkland Current off the South Atlantic coast of southern Argentina as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton with the Falkland Current. Over the ocean, the cold water eddies are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over eddies because energy form the atmosphere is absorbed by the cold ocean water. On the downwind side of the eddies, cumulus clouds tend to form as the cold moist air flows over the warmer water. Similar cloud and eddy features have been observed by the Skylab 4 crewmen in the Yucatan Current off Yucatan Peninsula and in some parts of the South Pacific. Studies are underway by Dr. George Maul, NOAA, and Dr. Robert Stevenson, ONR, to determine the significance of the cold water eddies to ocean dynamics. Photo credit: NASA

  15. Meteorological Modeling of Wintertime Cold Air Pool Stagnation Episodes in the Uintah and Salt Lake Basins

    NASA Astrophysics Data System (ADS)

    Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.

    2014-12-01

    High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.

  16. The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2015-06-01

    To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin-Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.

  17. Using Satellite Observations to Infer the Relationship Between Cold Pools and Subsequent Convection Development

    NASA Technical Reports Server (NTRS)

    Elsaesser, Gregory

    2015-01-01

    Cold pools are increasingly being recognized as important players in the evolution of both shallow and deep convection; hence, the incorporation of cold pool processes into a number of recently developed convective parameterizations. Unfortunately, observations serving to inform cold pool parameterization development are limited to select field programs and limited radar domains. However, a number of recent studies have noted that cold pools are often associated with arcs-lines of shallow clouds traversing 10 100 km in visible satellite imagery. Boundary layer thermodynamic perturbations are plausible at such scales, coincident with such mesoscale features. Atmospheric signatures of features at these spatial scales are potentially observable from satellites. In this presentation, we discuss recent work that uses multi-sensor, high-resolution satellite products for observing mesoscale wind vector fluctuations and boundary layer temperature depressions attributed to cold pools produced by antecedent convection. The relationship to subsequent convection as well as convective system longevity is discussed. As improvements in satellite technology occur and efforts to reduce noise in high-resolution orbital products progress, satellite pixel level (10 km) thermodynamic and dynamic (e.g. mesoscale convergence) parameters can increasingly serve as useful benchmarks for constraining convective parameterization development, including for regimes where organized convection contributes substantially to the cloud and rainfall climatology.

  18. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  19. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  20. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  1. Deep convective clouds at the tropopause

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Desouza-Machado, S. G.

    2010-07-01

    Data from the Advanced Infrared Sounder (AIRS) on the EOS Aqua spacecraft identify thousands of cloud tops colder than 225 K, loosely referred to as Deep Convective Clouds (DCC). Many of these cloud tops have "inverted" spectra, i.e. areas of strong water vapor, CO2 and ozone opacity, normally seen in absorption, are now seen in emission. We refer to these inverted spectra as DCCi. They are found in about 0.4% of all spectra from the tropical oceans excluding the Western Tropical Pacific (WTP), 1.1% in the WTP. The cold clouds are the anvils capping thunderstorms and consist of optically thick cirrus ice clouds. The precipitation rate associated with DCCi suggests that imbedded in these clouds, protruding above them, and not spatially resolved by the AIRS 15 km FOV, are even colder bubbles, where strong convection pushes clouds to within 5 hPa of the pressure level of the tropopause cold point. Associated with DCCi is a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and AMSU channels with weighting function peaking between 40 and 2 hPa, without the need for a formal temperature retrieval. The bulge is not resolved by the analysis in numerical weather prediction models. The locally cold cloud tops relative to the analysis give the appearance (in the sense of an "illusion") of clouds overshooting the tropopause and penetrating into the stratosphere. Based on a simple model of optically thick cirrus clouds, the spectral inversions seen in the AIRS data do not require these clouds to penetrate into the stratosphere. However, the contents of the cold bulge may be left in the lower stratosphere as soon as the strong convection subsides. The heavy precipitation and the distortion of the temperature structure near the tropopause indicate that DCCi are associated with intense storms. Significant long-term trends in the statistical properties of DCCi could be interesting indicators of climate change.

  2. Tropical Storm Ernesto over Cuba

    NASA Image and Video Library

    2006-08-28

    This infrared image shows Tropical Storm Ernesto over Cuba, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in August, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00510

  3. Typhoon Ioke in the Western Pacific

    NASA Image and Video Library

    2006-08-29

    This infrared image shows Typhoon Ioke in the Western Pacific, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in August, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00511

  4. Hurricane Ileana in the Eastern Pacific

    NASA Image and Video Library

    2006-08-22

    This is an infrared image of Hurricane Ileana in the Eastern Pacific, from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 22, 2006. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). http://photojournal.jpl.nasa.gov/catalog/PIA00509

  5. Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Winker, David M.; Garnier, Anne; Lawson, R. Paul; Heymsfield, Andrew J.; Mo, Qixu; Schoeberl, Mark R.; Woods, Sarah; Lance, Sara; Young, Stuart A.; hide

    2014-01-01

    How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE.

  6. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, I.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.

  7. Planck 2015 results: XXVIII. The Planck Catalogue of Galactic cold clumps

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    Here, we present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combinedmore » with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.« less

  8. A Satellite View of a Back-door Cold Front

    NASA Image and Video Library

    2014-05-29

    A "backdoor cold front" is bringing April temperatures to the U.S. northeast and Mid-Atlantic today, May 29. The backdoor cold front brings relief to the Mid-Atlantic after temperatures in Washington, D.C. hit 92F on Tuesday, May 27 and 88F on Wednesday, May 28 at Reagan National Airport, according to the National Weather Service (NWS). NWS forecasters expect the high temperature for May 29 to only reach 60F in the District of Columbia. NOAA's GOES-East satellite captured a view of the clouds associated with the backdoor cold front that stretch from southern Illinois to North Carolina. The National Weather Service forecast expects the backdoor cold front to bring showers to the Midwest, Northeast, and Mid-Atlantic today, May 29. According to the National Oceanic and Atmospheric Administration, a backdoor cold front is a cold front moving south or southwest along the Atlantic seaboard and Great Lakes; these are especially common during the spring months. This visible image was taken by NOAA's GOES-East satellite on May 29 at 12:30 UTC (8:30 a.m. EDT). The image was created at NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. In addition to the backdoor cold front clouds, the GOES-East image shows clouds circling around a low pressure area located in eastern Texas. That low pressure area is expected to bring rain from Texas eastward over the southeastern U.S. According to NOAA's National Weather Service, the slow-moving low pressure area in the Deep South "will bring heavy showers and thunderstorms from Louisiana to Alabama through Thursday. This area is already saturated from previous rainfall, so flash flooding will be possible." Image: NASA/NOAA GOES Project Caption: NASA Goddard/Rob Gutro

  9. Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery

    NASA Astrophysics Data System (ADS)

    Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.

    2007-04-01

    This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.

  10. Global Average Brightness Temperature for April 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    This image shows average temperatures in April, 2003, observed by AIRS at an infrared wavelength that senses either the Earth's surface or any intervening cloud. Similar to a photograph of the planet taken with the camera shutter held open for a month, stationary features are captured while those obscured by moving clouds are blurred. Many continental features stand out boldly, such as our planet's vast deserts, and India, now at the end of its long, clear dry season. Also obvious are the high, cold Tibetan plateau to the north of India, and the mountains of North America. The band of yellow encircling the planet's equator is the Intertropical Convergence Zone (ITCZ), a region of persistent thunderstorms and associated high, cold clouds. The ITCZ merges with the monsoon systems of Africa and South America. Higher latitudes are increasingly obscured by clouds, though some features like the Great Lakes, the British Isles and Korea are apparent. The highest latitudes of Europe and Eurasia are completely obscured by clouds, while Antarctica stands out cold and clear at the bottom of the image.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  11. Observations of SO in dark and molecular clouds

    NASA Technical Reports Server (NTRS)

    Rydbeck, O. E. H.; Hjalmarson, A.; Rydbeck, G.; Ellder, J.; Kollberg, E.; Irvine, W. M.

    1980-01-01

    The 1(0)-0(1) transition of SO at 30 GHz has been observed in several sources, including the first detection of sulfur monoxide in cold dark clouds without apparent internal energy sources. The SO transition appears to be an excellent tracer of structure in dark clouds, and the data support suggestions that self-absorption is important in determining emission profiles in such regions for large line-strength transitions. Column densities estimated from a comparison of the results for the two isotopic species indicate a high fractional abundance of SO in dark clouds.

  12. Chemical abundances in cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Kaifu, Norio; Ohishi, Masatoshi

    1991-01-01

    Current tabulations are presented of the entire range of known interstellar molecules, giving attention to that subset which has been identified in the cold, dark interstellar clouds out of which the sun has been suggested to have formed. The molecular abundances of two such clouds, Taurus Molecular Cloud 1 and Lynd's 134N, exhibit prepossessing chemical differences despite considerable physical similarities. This discrepancy may be accounted for by the two clouds' differing evolutionary stages. Two novel classes of interstellar molecules are noted: sulfur-terminated carbon chains and silicon-terminated ones.

  13. Surfing Jupiter

    NASA Image and Video Library

    2017-05-25

    Waves of clouds at 37.8 degrees latitude dominate this three-dimensional Jovian cloudscape, courtesy of NASA's Juno spacecraft. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image. The small bright high clouds are about 16 miles (25 kilometers) across and in some areas appear to form "squall lines" (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly composed of water and/or ammonia ice. https://photojournal.jpl.nasa.gov/catalog/PIA21646

  14. PAHs molecules and heating of the interstellar gas

    NASA Technical Reports Server (NTRS)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  15. Cold episodes in the Peruvian Central Andes: Composites, Types, and their Impacts over South America (1958-2014)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Roundy, P. E.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2015-12-01

    The Mantaro basin (MB) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during austral summer (January-March), that strongly damage crops. However, little is known about the causes and impacts of such cold episodes. The main goal of this study is thus to characterize cold episodes in the MB and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MB daily minimum temperature (Tmin) for the period 1958-2014 from Huayao station, located within the MB was used. A cold episode is defined when daily minimum temperature drops below its 10-percentile for at least one day. Additionally, to study the sensitivity between physical mechanisms associated with cold episodes and temperature, cold episodes are classified in three groups: Weak cold episodes (7.5 ≤ Tmin ≤ 10 percentile), strong cold episodes (Tmin ≤ 2.5 percentile), but excluding the 9 coldest events (Tmin ≤ 0 ͦ C), henceforth referred to as extraordinary cold episodes. Several gridded reanalysis were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events. Weak and strong cold episodes in the MB are mainly associated with a weakening of the Bolivian High-Nordeste Low system by tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the development of cloud cover (e.g., positive OLR anomalies over MB). The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below 10-percentile. Simultaneously, northeastern Brazil (NEB) registers negative OLR anomalies, strong convection and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. By contrast, extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. On interannual timescales, El Niño may limit the occurrence of all types of cold episodes in the MB through enhanced tropical tropospheric background warming.

  16. Tropical Depression 6 Florence in the Atlantic

    NASA Image and Video Library

    2006-09-03

    This infrared image shows Tropical Depression 6 Florence in the Atlantic, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in September, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00512

  17. OT1_mputman_1: ASCII: All Sky observations of Galactic CII

    NASA Astrophysics Data System (ADS)

    Putman, M.

    2010-07-01

    The Milky Way and other galaxies require a significant source of ongoing star formation fuel to explain their star formation histories. A new ubiquitous population of discrete, cold clouds have recently been discovered at the disk-halo interface of our Galaxy that could potentially provide this source of fuel. We propose to observe a small sample of these disk-halo clouds with HIFI to determine if the level of [CII] emission detected suggests they represent the cooling of warm clouds at the interface between the star forming disk and halo. These cooling clouds are predicted by simulations of warm clouds moving into the disk-halo interface region. We target 5 clouds in this proposal for which we have high resolution HI maps and can observe the densest core of the cloud. The results of our observations will also be used to interpret the surprisingly high detections of [CII] for low HI column density clouds in the Galactic Plane by the GOT C+ Key Program by extending the clouds probed to high latitude environments.

  18. Local time variations of the middle atmosphere of Venus: Solar-related structures

    NASA Astrophysics Data System (ADS)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  19. Lightning data study in conjunction with geostationary satellite data

    NASA Technical Reports Server (NTRS)

    Auvine, Brian; Martin, David W.

    1987-01-01

    During the summer of 1985, cloud-to-ground stroke lightning were collected. Thirty minute samples of lightning were compared with GOES IR fractional cold cloud coverage computed for three temperature thresholds (213, 243, and 273 K) twice daily (morning and evening). It was found that satellite measurements of cold cloud have a relationship to the flashrate and, in a more limited way, to the polarity and numbers of return strokes. Results varied little by location. Lightning, especially positive strokes, was found to be correlated with fractional cloud coverage, especially for clouds at or below 213 K. Other data and correlations are discussed.

  20. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  1. Modulations of aerosol impacts on cloud microphysics induced by the warm Kuroshio Current under the East Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Koike, M.; Asano, N.; Nakamura, H.; Sakai, S.; Nagao, T. M.; Nakajima, T. Y.

    2016-10-01

    In our previous aircraft observations, the possible influence of high sea surface temperature (SST) along the Kuroshio Current on aerosol-cloud interactions over the western North Pacific was revealed. The cloud droplet number concentration (Nc) was found to increase with decreasing near-surface static stability (NSS), which was evaluated locally as the difference between the SST and surface air temperature (SAT). To explore the spatial and temporal extent to which this warm SST influence can be operative, the present study analyzed Nc values estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements. The comparison of the local Nc values between the high and low SST - SAT days revealed a marked increase in Nc (up to a factor of 1.8) along the Kuroshio Current in the southern East China Sea, where particularly high SST - SAT values (up to 8 K) were observed in winter under monsoonal cold air outflows from the Asian Continent. This cold airflow destabilizes the atmospheric boundary layer, which leads to enhanced updraft velocities within the well-developed mixed layer and thus greater Nc. The monsoonal northwesterlies also bring a large amount of anthropogenic aerosols from the Asian continent that increase Nc in the first place. These results suggest that the same modulations of cloud microphysics can occur over other warm western boundary currents, including the Gulf Stream, under polluted cool continental airflows. Possibilities of influencing the cloud liquid water path are also discussed.

  2. Eastern U.S. Infrared, Enhancement 4 - NOAA GOES Geostationary Satellite

    Science.gov Websites

    Enhancement 4 Eastern U.S. Infrared Enhancements IR Enhancement 1 Eastern U.S. Infrared Enhancement 1 IR Enhancement 2 Eastern U.S. Infrared Enhancement 2 IR Enhancement 3 Eastern U.S. Infrared Enhancement 3 IR large amount of water vapor. » Enhancement types In an infrared (IR) image cold clouds are high clouds

  3. Conceptualizing the self organization of cloud cells, cold pools and soil moisture

    NASA Astrophysics Data System (ADS)

    Henneberg, O.; Härter, J. O. M.

    2017-12-01

    Convective-type cloud is the cause of extreme, short-duration precipitation, challenging weather forecasting and climate modeling. Such extremes are ultimately tied to the uneven redistribution of water in the course of convective self organization and possibly the interaction between clouds [1]. Over land, moisture is organized through: cloud cells, cold pools, and the land surface. Each of these generally capture and release moisture at different rates, e.g. cold pools form quickly but dissipate slowly. Such distinct timescales have implications for the emergent dynamics.Incorporating such distinct time scales, we here present a conceptual model for the spatio-temporal self organization within the diurnal cycle of convection and describe the possible role of soil moisture memory in serving as a predisposition for extremes.We bolster our findings by high resolution, large eddy simulations: Sensible and latent heat fluxes, which are determined by the soil moisture content, can influence the stability of the atmosphere. The onset of initial precipitation is affected by such heat release, which in turn is modified by previous precipitation. Starting from static heat sources, we quantify how their spatial distribution affects the self organization and thus onset, duration and strength of precipitation events in an idealized model setup. Furthermore, an extended model setup with inhomogeneous, self organized distributions of latent and sensible heat fluxes is used to contrast how emergent soil moisture patterns impact on the selforganization structure of convection. Our findings may have implications for the role of land use changes regarding the development of extreme convective precipitation.Reference[1] Moseley et al. (2016) "Intensification of convective extremes driven by cloud-cloud interaction", Nature Geosc. , 9, 748-752

  4. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  5. Newly detected molecules in dense interstellar clouds

    NASA Astrophysics Data System (ADS)

    Irvine, William M.; Avery, L. W.; Friberg, P.; Matthews, H. E.; Ziurys, L. M.

    Several new interstellar molecules have been identified including C2S, C3S, C5H, C6H and (probably) HC2CHO in the cold, dark cloud TMC-1; and the discovery of the first interstellar phosphorus-containing molecule, PN, in the Orion "plateau" source. Further results include the observations of 13C3H2 and C3HD, and the first detection of HCOOH (formic acid) in a cold cloud.

  6. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  7. Calibrating the HISA temperature: Measuring the temperature of the Riegel-Crutcher cloud

    NASA Astrophysics Data System (ADS)

    Dénes, H.; McClure-Griffiths, N. M.; Dickey, J. M.; Dawson, J. R.; Murray, C. E.

    2018-06-01

    H I self absorption (HISA) clouds are clumps of cold neutral hydrogen (H I) visible in front of warm background gas, which makes them ideal places to study the properties of the cold atomic component of the interstellar medium (ISM). The Riegel-Crutcher (R-C) cloud is the most striking HISA feature in the Galaxy. It is one of the closest HISA clouds to us and is located in the direction of the Galactic Centre, which provides a bright background. High-resolution interferometric measurements have revealed the filamentary structure of this cloud, however it is difficult to accurately determine the temperature and the density of the gas without optical depth measurements. In this paper we present new H I absorption observations with the Australia Telescope Compact Array (ATCA) against 46 continuum sources behind the Riegel-Crutcher cloud to directly measure the optical depth of the cloud. We decompose the complex H I absorption spectra into Gaussian components using an automated machine learning algorithm. We find 300 Gaussian components, from which 67 are associated with the R-C cloud (0 < vLSR < 10 km s-1, FWHM <10 km s-1). Combining the new H I absorption data with H I emission data from previous surveys we calculate the spin temperature and find it to be between 20 and 80 K. Our measurements uncover a temperature gradient across the cloud with spin temperatures decreasing towards positive Galactic latitudes. We also find three new OH absorption lines associated with the cloud, which support the presence of molecular gas.

  8. Hydrodynamic simulations of mechanical stellar feedback in a molecular cloud formed by thermal instability

    NASA Astrophysics Data System (ADS)

    Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.

    2017-09-01

    We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.

  9. Using In Situ Observations and Satellite Retrievals to Constrain Large-Eddy Simulations and Single-Column Simulations: Implications for Boundary-Layer Cloud Parameterization in the NASA GISS GCM

    NASA Astrophysics Data System (ADS)

    Remillard, J.

    2015-12-01

    Two low-cloud periods from the CAP-MBL deployment of the ARM Mobile Facility at the Azores are selected through a cluster analysis of ISCCP cloud property matrices, so as to represent two low-cloud weather states that the GISS GCM severely underpredicts not only in that region but also globally. The two cases represent (1) shallow cumulus clouds occurring in a cold-air outbreak behind a cold front, and (2) stratocumulus clouds occurring when the region was dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) and single-column model (SCM) simulations. The LES captures the major differences in horizontal structure between the two low-cloud fields, but there are unconstrained uncertainties in cloud microphysics and challenges in reproducing W-band Doppler radar moments. The SCM run on the vertical grid used for CMIP-5 runs of the GCM does a poor job of representing the shallow cumulus case and is unable to maintain an overcast deck in the stratocumulus case, providing some clues regarding problems with low-cloud representation in the GCM. SCM sensitivity tests with a finer vertical grid in the boundary layer show substantial improvement in the representation of cloud amount for both cases. GCM simulations with CMIP-5 versus finer vertical gridding in the boundary layer are compared with observations. The adoption of a two-moment cloud microphysics scheme in the GCM is also tested in this framework. The methodology followed in this study, with the process-based examination of different time and space scales in both models and observations, represents a prototype for GCM cloud parameterization improvements.

  10. Cold Atomic Hydrogen, Narrow Self-Absorption, and the Age of Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2006-01-01

    This viewgraph presentation reviews the history, and current work on HI and its importance in star formation. Through many observations of HI Narrow Self Absorption (HINSA) the conclusions are drawn and presented. Local molecular clouds have HI well-mixed with molecular constituents This HI is cold, quiescent, and must be well-shielded from the UV radiation field The density and fractional abundance (wrt H2) of the cold HI are close to steady state values The time required to convert these starless clouds from purely HI initial state to observed present composition is a few to ten million years This timescale is a lower limit - if dense clouds being swept up from lower density regions by shocks, the time to accumulate material to get A(sub v) is approximately 1 and provide required shielding may be comparable or longer

  11. Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; Marsch, Eckart; Tu, Chuan-Yi; Schwenn, Rainer

    2010-05-01

    This work presents in situ solar wind observations of three magnetic clouds (MCs) that contain cold high-density material when Helios 2 was located at 0.3 AU on 9 May 1979, 0.5 AU on 30 March 1976, and 0.7 AU on 24 December 1978. In the cold high-density regions embedded in the interplanetary coronal mass ejections we find (1) that the number density of protons is higher than in other regions inside the magnetic cloud, (2) the possible existence of He+, (3) that the thermal velocity distribution functions are more isotropic and appear to be colder than in the other regions of the MC, and the proton temperature is lower than that of the ambient plasma, and (4) that the associated magnetic field configuration can for all three MC events be identified as a flux rope. This cold high-density region is located at the polarity inversion line in the center of the bipolar structure of the MC magnetic field (consistent with previous solar observation work that found that a prominence lies over the neutral line of the related bipolar solar magnetic field). Specifically, for the first magnetic cloud event on 8 May 1979, a coronal mass ejection (CME) was related to an eruptive prominence previously reported as a result of the observation of Solwind (P78-1). Therefore, we identify the cold and dense region in the MC as the prominence material. It is the first time that prominence ejecta were identified by both the plasma and magnetic field features inside 1 AU, and it is also the first time that the thermal ion velocity distribution functions were used to investigate the microstate of the prominence material. Moreover, from our three cases, we also found that this material tended to fall behind the magnetic cloud and become smaller as it propagated farther away from the Sun, which confirms speculations in previous work. Overall, our in situ observations are consistent with three-part CME models.

  12. The response of the Seasat and Magsat infrared horizon scanners to cold clouds

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Phenneger, M.

    1980-01-01

    Cold clouds over the Earth are shown to be the principal cause of pitch and roll measurement noise in flight data from the infrared horizon scanners onboard Seasat and Magsat. The observed effects of clouds on the fixed threshold horizon detection logic of the Magsat scanner and on the variable threshold detection logic of the Seasat scanner are discussed. National Oceanic and Atmospheric Administration (NOAA) Earth photographs marked with the scanner ground trace clearly confirm the relationship between measurement errors and Earth clouds. A one to one correspondence can be seen between excursion in the pitch and roll data and cloud crossings. The characteristics of the cloud-induced noise are discussed, and the response of the satellite control systems to the cloud errors is described. Changes to the horizon scanner designs that would reduce the effects of clouds are noted.

  13. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  14. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  15. IOCCG Report Number 16, 2015 Ocean Colour Remote Sensing in Polar Seas . Chapter 2; The Polar Environment: Sun, Clouds, and Ice

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)

    2015-01-01

    The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.

  16. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  17. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  18. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in many systems, such as hot galactic haloes, groups and clusters. In this mode, the black hole can quickly react to the state of the entire host galaxy, leading to efficient self-regulated AGN feedback and the symbiotic Magorrian relation. Chaotic accretion can generate high-velocity clouds, likely leading to strong variations in the AGN luminosity, and the deflection or mass-loading of jets. During phases of overheating, the hot mode becomes the single channel of accretion, though strongly suppressed by turbulence. High-resolution data could determine the current mode of accretion: assuming quiescent feedback, the cold mode results in a quasi-flat-temperature core as opposed to the cuspy profile of the hot mode.

  19. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate fractionation from a pure marine source, indicating a link between inversion strength and moistening of the lower troposphere from the outflow of shallow convection. This approach can be applied in other settings and the results can be used to test parameterizations in climate models.

  20. The Effects of Ram Pressure on the Cold Clouds in the Centers of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Ruszkowski, Mateusz; Tremblay, Grant

    2018-02-01

    We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of 100–400 km s‑1, which is much lower than expected if they fall from a few tens of kiloparsecs ballistically. If the intracluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually “fluffier” because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the active galactic nucleus wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset, combined with line-of-sight velocity measurements, can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.

  1. Effects of Stratospheric Lapse Rate on Thunderstorm Cloud-Top Structure in a Three-Dimensional Numerical Simulation. Part I: Some Basic Results of Comparative Experiments.

    NASA Astrophysics Data System (ADS)

    Schlesinger, Robert E.

    1988-05-01

    An anelastic three-dimensional model is used to investigate the effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared mature isolated midlatitude thunderstorms. Three comparative experiments are performed, differing only with respect to the stratospheric stability. The assumed stratospheric lapse rate is 0 K km1 (isothermal) in the first experiment, 3 K km1 in the second, and 3 K km1 (inversion) in the third.Kinematic storm structure is very similar in all three cases, especially in the troposphere. A strong quasi-steady updraft evolves splitting into a dominant cyclonic overshooting right-mover and a weaker anticyclonic left-mover that does not reach the tropopause. Strongest downdrafts occur at low to middle levels between the updrafts, and in the lower stratosphere a few kilometers upshear and downshear of the tapering updraft summit.Each storm shows a cloud-top thermal couplet, relatively cold near and upshear of the summit, and with a `close-in' warm region downshear. Both cold and warm regions become warmer, with significant morphological changes and a lowering of the cloud summit, as stratospheric stability is increased, though the temperature spread is not greatly affected.The coldest and highest cloud-top points are nearly colocated in the absence of a stratospheric inversion, but the coldest point is offset well upshear of the summit when an inversion is present. The cold region as a whole in each case shows at least a transient `V' shape, with the arms pointing downshear, although this shape is persistent only with the inversion.In the experiment with a 3 K km1 stratospheric lapse rate (weakest stability), the warm region is small and separates into two spots with secondary cold spots downshear of them. The warm region becomes larger, and remains single, as stratospheric stability increase. In each run, the warm regions are not accompanied by corresponding cloud-top height minima except very briefly.The cold cloud-top points are near or slightly downwind of relative vertical velocity maxima, usually positive, while the warm points are imbedded in subsidence downwind of the principal cloud-top downdraft core. The storm-relative cloud-top horizontal wind fields are consistent with the `V' shape of the cold region, showing strong diffluent flow directed downshear along the flanks from an upshear stagnation zone.

  2. An L Band Spectrum of the Coldest Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; Beiler, Samuel A.; Miles, Brittany E.; Lupu, Roxana; Freedman, Richard S.; Fortney, Jonathan J.; Geballe, Thomas R.; Bjoraker, Gordon L.

    2018-05-01

    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. presented a spectrum of WISE 0855 from 4.5–5.1 μm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in the L band, from 3.4–4.14 μm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. The James Webb Space Telescope will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.

  3. THERMAL PRESSURES IN THE INTERSTELLAR MEDIUM OF THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, Daniel E.; York, Donald G.; Lauroesch, James T.

    2016-04-20

    We discuss the thermal pressures ( n {sub H} T ) in predominantly cold, neutral interstellar gas in the Magellanic Clouds, derived from analyses of the fine-structure excitation of neutral carbon, as seen in high-resolution Hubble Space Telescope /Space Telescope Imaging Spectrograph spectra of seven diverse sight lines in the LMC and SMC. Detailed fits to the line profiles of the absorption from C i, C i*, and C i** yield consistent column densities for the three to six C i multiplets detected in each sight line. In the LMC and SMC, N (C i{sub tot}) is consistent with Galacticmore » trends versus N (Na i) and N (CH), but is slightly lower versus N (K i) and N (H{sub 2}). As for N (Na i) and N (K i), N (C i{sub tot}) is generally significantly lower, for a given N (H{sub tot}), in the LMC and (especially) in the SMC, compared to the local Galactic relationship. For the LMC and SMC components with well-determined column densities for C i, C i*, and C i**, the derived thermal pressures are typically factors of a few higher than the values found for most cold, neutral clouds in the Galactic ISM. Such differences are consistent with the predictions of models for clouds in systems (like the LMC and SMC) that are characterized by lower metallicities, lower dust-to-gas ratios, and enhanced radiation fields—where higher pressures are required for stable cold, neutral clouds. The pressures may be further enhanced by energetic activity (e.g., due to stellar winds, star formation, and/or supernova remnants) in several of the regions probed by these sight lines. Comparisons are made with the C i observed in some quasar absorption-line systems.« less

  4. Chemistry and Evolution of Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.

    2003-01-01

    In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.

  5. A cloud collision model for water maser excitation.

    PubMed

    Tarter, J C; Welch, W J

    1986-06-01

    High-velocity collisions between small, dense, neutral clouds or between a dense cloud and a dense shell can provide the energy source required to excite H2O maser emission. The radiative precursor from the surface of the collisional shock front rapidly diffuses through the cloud, heating the dust grains but leaving the H2 molecules cool. Transient maser emission occurs as the conditions for the Goldreich and Kwan "hot-dust cold-gas" maser pump scheme are realized locally within the cloud. In time the local maser action quenches due to the heating of the H2 molecules by collisions against the grains. Although this model cannot explain the very long-lived steady maser features, it is quite successful in explaining a number of the observed properties of the high-velocity features in such sources as Orion, W51, and W49. In particular, it provides a natural explanation for the rapid time variations, the narrow line widths, juxtaposition of high- and low-velocity features, and the short lifetimes which are frequently observed for the so-called high-velocity maser "bullets" thought to be accelerated by strong stellar winds.

  6. Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds show ratios consistent with the value of 3 expected in thermodynamic equilibrium in the high-temperature limit. However, two clouds with large column densities exhibit a ratio that is significantly below 3. This may argue that the history of water molecules includes a cold phase, either when the molecules were formed on cold grains in the well-shielded, low-temperature regions of the clouds, or when they later become at least partially thermalized with the cold gas (~25 K) in those regions; evidently, they have not yet fully thermalized with the warmer (~50 K) translucent portions of the clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. 16-year Climatology of Cirrus cloud properties using ground-based Lidar over Gadanki (13.45˚N, 79.18˚E)

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Raghunath, Karnam; Jayaraman, Achuthan; Venkat Ratnam, Madineni; Gadhavi, Harish

    Cirrus clouds are ubiquitous high level cold clouds predominantly consisting of ice-crystals. With their highest coverage over the tropics, these are one of the most vital and complex components of Tropical Tropopause Layer (TTL) due to their strong radiative feedback and dehydration in upper troposphere and lower stratosphere (UTLS) regions. The continuous changes in their coverage, position, thickness, and ice-crystal size and shape distributions bring uncertainties in the estimates of cirrus cloud radiative forcing. Long-term changes in the distribution of aerosols and water vapour in the TTL can influence cirrus properties. This necessitates long-term studies of tropical cirrus clouds, which are only few. The present study provides 16-year climatology of physical and optical properties of cirrus clouds observed using a ground-based Lidar located at Gadanki (13.45(°) N, 79.18(°) ˚E and 375 m amsl) in south-India. In general, cirrus clouds occurred for about 44% of the total Lidar observation time. Owing to the increased convective activities, the occurrence of cirrus clouds during the southwest-monsoon season is highest while it is lowest during the winter. Altitude distribution of cirrus clouds reveals that the peak occurrence was about 25% at 14.5 km. The most probable base and top height of cirrus clouds are 14 and 15.5 km, respectively. This is also reflected in the bulk extinction coefficient profile (at 532 nm) of cirrus clouds. These results are compared with the CALIPSO observations. Most of the time cirrus clouds are located within the TTL bounded by convective outflow level and cold-point tropopause. Cirrus clouds are thick during the monsoon season as compared to that during winter. An inverse relation between the thickness of cirrus clouds and TTL thickness is found. The occurrence of cirrus clouds at an altitude close to the tropopause (16 km) showed an increase of 8.4% in the last 16 years. Base and top heights of cirrus clouds also showed increase of 0.41 km and 0.56 km, respectively. These results are discussed in relation with the recent increase in the tropical tropopause altitude.

  8. CO2 Condensation Models for Mars

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R.

    2004-01-01

    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khajenabi, Fazeleh, E-mail: f.khajenabi@gu.ac.ir

    We investigate the orbital motion of cold clouds in the broad-line region of active galactic nuclei subject to the gravity of a black hole, a force due to a non-isotropic central source, and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. The orbit of a cloud decays because of the drag force, but the typical timescale of clouds falling onto the central black hole is shorter compared to the linear drag case. This timescale is calculated when a cloud moves through a static or rotating intercloud. Wemore » show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system, and since cold clouds present in most of the broad-line regions, we suggest that mechanisms for the continuous creation of the clouds must operate in these systems.« less

  10. The mixing of particle clouds plunging into water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelini, S.; Theofanous, T.G.; Yuen, W.W.

    This work addresses certain fundamental aspects of the premixing phase of steam explosions, At issue are the multifield interaction aspects under highly transient, multidimensional conditions, and in presence of strong phase changes. They are addressed in an experiment (the MAGICO-2000) involving well-characterized particle clouds mixing with water, and detailed measurements on both external and internal characteristics of the mixing zone. Both cold and hot (up to 1500{degrees}C) particle clouds are considered in conjunction with saturated and subcooled water pools. The PMALPHA code is used as an aid in interpreting the experimental results, and the exercise reveals good predictive capabilities formore » it.« less

  11. Mature Thunderstorm Cloud-Top Structure and Dynamics: A Three-Dimensional Numerical Simulation Study.

    NASA Astrophysics Data System (ADS)

    Schlesinger, Robert E.

    1984-05-01

    An anelastic three-dimensional model is used to investigate the effects of vertical wind shear regime on cloud-top structure and internal properties of mature isolated midlatitude thunderstorms. Four comparative experiments, designated A through D, are performed with varying shear profiles in otherwise identical initializations. Cases A-C assume strong shear, differing only in the veering of the low-level hodograph: moderate in A, strong in B and none in C. Weak shear, everywhere 40% as great as in C, is assumed in case D.The strong-shear cases A-C show moderately vigorous quasi-steady mature updrafts with strong midlevel mesovortex couplets, and marked anvil elongation along the net vertical shear vector. Differences are modest, especially at cloud top, though with low-level hodograph curvature the updraft is enhanced and skewed toward the cyclonic right flank. The weak-shear case D shows a weaker and less persistent mature updraft than A-C, along with weaker midlevel rotation and a much more newly circular anvil.In the strong-shear experiments, the cloud top considerably resembles geostationary satellite observations of tornadic storms (Negri, 1982), even though the model storm interiors lack the significant low-level mesocyclone and very strong concentrated updraft typical of observed tornadic storms. Both model and observations show a persistent cloud-top temperature pattern featuring a cold area slightly upshear of the cloud summit, with a warm area downshear in the absence of a local height minimum, though in the model the thermal couplet is smaller-scale with lower amplitude and lacks the well-developed `V' shape seen in the observations. The thermal couplet is also present with weak shear, but is only about half as strong, largely due to a much weaker cold area.Several dynamic features of the cloud-top thermal couplet are revealed by backward and forward parcel trajectory analyses for Case B: 1) The cold and warm areas at cloud top result from ascent and descent, respectively, of stratospheric air from upshear. 2) Only slightly below cloud top, shallow downward extensions of the warm and cold areas consist of air that originates from downshear in the lower troposphere, traverses' the updraft core and overshoots the tropopause. 3) Strong turbulent mixing between these contrasting airflow branches takes place astride the cloud top. 4) Parcels intercepting the cold region subside subsequently into the warm region. 5) The perturbation vertical pressure gradient force is an important factor in the trajectories.

  12. Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.

    2015-08-01

    Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed in the context of the gas-grain interaction in dark clouds and its relation to the chemistry of the earliest phases of low-mass star formation.

  13. Climate Change on Mars: Cloud Greenhouse Effects in the Recent Past

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Kahre, Melinda A.; Hollingsorth, Jeffery L.

    2014-11-01

    The large variations in Mars’ orbit parameters are known to be significant drivers of climate change. We present results from an updated version of the Ames GCM that shows at times of high obliquity it is possible that water ice clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold water ice clouds form, reduce the outgoing long wave radiation, and cause surface temperatures to rise to maintain global energy balance. Since Mars spends much of its time at high obliquity, these results suggest that Mars undergoes even more significant climate change due to orbital variations than previously thought.

  14. Identifying Meteorological Controls on Open and Closed Mesoscale Cellular Convection as Associated with Marine Cold Air Outbreaks

    NASA Astrophysics Data System (ADS)

    McCoy, Isabel; Wood, Robert; Fletcher, Jennifer

    Marine low clouds are key influencers of the climate and contribute significantly to uncertainty in model climate sensitivity due to their small scale and complex processes. Many low clouds occur in large-scale cellular patterns, known as open and closed mesoscale cellular convection (MCC), which have significantly different radiative and microphysical properties. Investigating MCC development and meteorological controls will improve our understanding of their impacts on the climate. We conducted an examination of time-varying meteorological conditions associated with satellite-determined open and closed MCC. The spatial and temporal patterns of MCC clouds were compared with key meteorological control variables calculated from ERA-Interim Reanalysis to highlight dependencies and major differences. This illustrated the influence of environmental stability and surface forcing as well as the role of marine cold air outbreaks (MCAO, the movement of cold air from polar-regions across warmer waters) in MCC cloud formation. Such outbreaks are important to open MCC development and may also influence the transition from open to closed MCC. Our results may lead to improvements in the parameterization of cloudiness and advance the simulation of marine low clouds. National Science Foundation Graduate Research Fellowship Grant (DGE-1256082).

  15. Global Measurements of Optically Thin Cirrus Clouds Using CALIOP

    NASA Astrophysics Data System (ADS)

    Ryan, R. A.; Avery, M. A.; Vaughan, M.

    2017-12-01

    Optically thin cirrus clouds, defined here as cold clouds consisting of randomly oriented ice crystals and having optical depths (τ) less than 0.3, are difficult to measure accurately. Thin cirrus clouds have been shown to have a net warming effect on the globe but, because passive instruments are not sensitive to optically thin clouds, the occurrence frequency of thin cirrus is greatly underestimated in historical passive sensor cloud climatology. One major strength of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is its ability to detect these thin cirrus clouds, thus filling an important missing piece in the historical data record. This poster examines multiple years of CALIOP Level 2 data, focusing on those CALIOP retrievals identified as being optically thin (τ < 0.3), having a cold centroid temperature (TC < -40°C), and consisting solely of randomly oriented ice crystals. Using this definition, thin cirrus are identified and counted globally within each season. By examining the spatial, and seasonal distributions of these thin clouds we hope to gain a better understanding of how thin cirrus affect the atmosphere. Understanding when and where these clouds form and persist in the global atmosphere is the topic and focus of the presented poster.

  16. Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.

    PubMed

    Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong

    2018-02-28

    The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.

  17. A Robust Multi-Scale Modeling System for the Study of Cloud and Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    During the past decade, numerical weather and global non-hydrostatic models have started using more complex microphysical schemes originally developed for high resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. These microphysical schemes affect the dynamic through the release of latent heat (buoyancy loading and pressure gradient) the radiation through the cloud coverage (vertical distribution of cloud species), and surface processes through rainfall (both amount and intensity). Recently, several major improvements of ice microphysical processes (or schemes) have been developed for cloud-resolving model (Goddard Cumulus Ensemble, GCE, model) and regional scale (Weather Research and Forecast, WRF) model. These improvements include an improved 3-ICE (cloud ice, snow and graupel) scheme (Lang et al. 2010); a 4-ICE (cloud ice, snow, graupel and hail) scheme and a spectral bin microphysics scheme and two different two-moment microphysics schemes. The performance of these schemes has been evaluated by using observational data from TRMM and other major field campaigns. In this talk, we will present the high-resolution (1 km) GeE and WRF model simulations and compared the simulated model results with observation from recent field campaigns [i.e., midlatitude continental spring season (MC3E; 2010), high latitude cold-season (C3VP, 2007; GCPEx, 2012), and tropical oceanic (TWP-ICE, 2006)].

  18. Open-cell cloud formation over the Bahamas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Hurricane Karl's Structure and Some Thoughts for 2014 Strategy

    NASA Technical Reports Server (NTRS)

    Cecil, Dan; Leppert, Ken, II

    2014-01-01

    Karl has interesting data, but far below the standards we should be able to achieve in HS3. We need to fly AV-1 over hurricanes in 2014. Most of the cold cloud shield in the inner core of hurricanes should be safe for AV-1 to fly. Significant convection occupies a small region, but we sometimes unnecessarily apply the 5000-ft separation rule to the entire cold cloud shield.

  20. Laboratory simulation of photoionized plasma among astronomical compact objects

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Yamamoto, Norimasa; Wang, Feilu; Salzmann, David; Li, Yutong; Rhee, Yong-Joo; Nishimura, Hiroaki; Takabe, Hideaki; Mima, Kunioki

    2008-11-01

    X-ray line emission with several-keV of photon energy was observed from photoionized accreting clouds, for example CYGNUS X-3 and VELA X-1, those are exposed by hard x-ray continuum from the compact objects, such as neutron stars, black holes, or white dwarfs, although accreting clouds are thermally cold. The x-ray continuum-induced line emission gives a good insight to the accreting clouds. We will present a novel laboratory simulation of the photoionized plasma under well-characterized conditions by using high-power laser facility. Blackbody radiator with 500-eV of temperature, as a miniature of a hot compact object, was created.Silicon (Si) plasma with 30-eV of electron temperature was produced in the vicinity of the 0.5-keV blackbody radiator. Line emissions of lithium- and helium-like Si ions was clearly observed around 2-keV of photon-energy from the thermally cold Si plasma, this result is hardly interpreted without consideration of the photoionization. Atomic kinetics code reveals importance of inner-shell ionization directly caused by incoming hard x-rays.

  1. The occurrence of ice production in slightly supercooled Arctic stratiform clouds as observed by ground-based remote sensors at the ARM NSA site

    NASA Astrophysics Data System (ADS)

    Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor

    2017-03-01

    Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.

  2. Thin cirrus clouds - Seasonal distribution over oceans deduced from Nimbus-4 IRIS

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Fraser, R. S.; Dalu, G.; Wu, Man-Li C.; Curran, R. J.

    1988-01-01

    Spectral differences in the extinction of the 10.8- and 12.6-micron bands of the IR window region, due to optically thin clouds, were found in the measurements made by both an airborne broadband IR radiometer and the IR interferometer spectrometer (IRIS) aboard the Nimbus-4 satellite; the extinction at 12.6 microns was significantly larger than that at 10.8 microns; both water and ice particles in the clouds can account for such spectral difference in extinction. Multiple scattering radiative transfer calculations of IRIS data revealed this spectral feature about 100 to 20 km away from the high-altitude cold clouds; it is assumed that this feature is related to the spreading of cirrus clouds. Based on this assumption, mean seasonal maps of the distribution of thin cirrus clouds over the oceans were deduced from the IRIS data. The maps show that such clouds are often present over the convectively active areas, such as ITCZ, SPCZ, and the Bay of Bengal during the summer monsoon.

  3. Galactic cold cores. IV. Cold submillimetre sources: catalogue and statistical analysis

    NASA Astrophysics Data System (ADS)

    Montillaud, J.; Juvela, M.; Rivera-Ingraham, A.; Malinen, J.; Pelkonen, V.-M.; Ristorcelli, I.; Montier, L.; Marshall, D. J.; Marton, G.; Pagani, L.; Toth, L. V.; Zahorecz, S.; Ysard, N.; McGehee, P.; Paladini, R.; Falgarone, E.; Bernard, J.-P.; Motte, F.; Zavagno, A.; Doi, Y.

    2015-12-01

    Context. For the project Galactic cold cores, Herschel photometric observations were carried out as a follow-up of cold regions of interstellar clouds previously identified with the Planck satellite. The aim of the project is to derive the physical properties of the population of cold sources and to study its connection to ongoing and future star formation. Aims: We build a catalogue of cold sources within the clouds in 116 fields observed with the Herschel PACS and SPIRE instruments. We wish to determine the general physical characteristics of the cold sources and to examine the correlations with their host cloud properties. Methods: From Herschel data, we computed colour temperature and column density maps of the fields. We estimated the distance to the target clouds and provide both uncertainties and reliability flags for the distances. The getsources multiwavelength source extraction algorithm was employed to build a catalogue of several thousand cold sources. Mid-infrared data were used, along with colour and position criteria, to separate starless and protostellar sources. We also propose another classification method based on submillimetre temperature profiles. We analysed the statistical distributions of the physical properties of the source samples. Results: We provide a catalogue of ~4000 cold sources within or near star forming clouds, most of which are located either in nearby molecular complexes (≲1 kpc) or in star forming regions of the nearby galactic arms (~2 kpc). About 70% of the sources have a size compatible with an individual core, and 35% of those sources are likely to be gravitationally bound. Significant statistical differences in physical properties are found between starless and protostellar sources, in column density versus dust temperature, mass versus size, and mass versus dust temperature diagrams. The core mass functions are very similar to those previously reported for other regions. On statistical grounds we find that gravitationally bound sources have higher background column densities (median Nbg(H2) ~ 5 × 1021 cm-2) than unbound sources (median Nbg(H2) ~ 3 × 1021 cm-2). These values of Nbg(H2) are higher for higher dust temperatures of the external layers of the parent cloud. However, only in a few cases do we find clear Nbg(H2) thresholds for the presence of cores. The dust temperatures of cloud external layers show clear variations with galactic location, as may the source temperatures. Conclusions: Our data support a more complex view of star formation than in the simple idea of a column density threshold. They show a clear influence of the surrounding UV-visible radiation on how cores distribute in their host clouds with possible variations on the Galactic scale. Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A92

  4. NARVAL North - Remote Sensing of Postfrontal Convective Clouds and Precipitation over the North Atlantic with the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Klepp, Christian; Ament, Felix; Bakan, Stephan; Crewell, Susanne; Hagen, Martin; Hirsch, Lutz; Jansen, Friedhelm; Konow, Heike; Mech, Mario; Pfeilsticker, Klaus; Schäfler, Andreas; Stevens, Bjorn

    2014-05-01

    The new German research aircraft HALO (High Altitude and Long Range Research Aircraft) became recently available for measurement flights in atmospheric research. It's capacity of measuring from a high altitude vertical profiles of all components of atmospheric water - like vapor, liquid and ice, in both cloud and precipitation forms, as well as the aerosol particles upon which cloud droplets form - makes it a unique research platform. The aircraft, equipped with advanced radiometers, radar and lidar technology, the HALO Microwave Package (HAMP), is an initiative by German climate and environmental research institutions and is operated by the German Aerospace Center (DLR). One of the first major missions to exploit the capabilities of HALO was conducted for the NARVAL project (Next-generation Aircraft Remote-Sensing for Validation Studies) during January 2014. After studying subtropical clouds one month before in the first NARVAL phase, the interest of NARVAL North focused on the study of cold air convection and precipitation in the form of rain and snow. Based at Keflavik airport (Iceland), several flights were conducted to examine the specific small-scale precipitation structures behind the backsides of cold fronts over the North Atlantic. This should help to narrow the gap in the understanding of substantial differences between satellite observations and model calculations in such situations. First data analysis of these measurements indicate promising results. The poster will describe the HALO instrument packages as well as the collected observations during the campaign and will present preliminary scientific findings.

  5. Parameterization of cloud glaciation by atmospheric dust

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Cvetkovic, Bojan; Madonna, Fabio; Pejanovic, Goran; Petkovic, Slavko

    2016-04-01

    The exponential growth of research interest on ice nucleation (IN) is motivated, inter alias, by needs to improve generally unsatisfactory representation of cold cloud formation in atmospheric models, and therefore to increase the accuracy of weather and climate predictions, including better forecasting of precipitation. Research shows that mineral dust significantly contributes to cloud ice nucleation. Samples of residual particles in cloud ice crystals collected by aircraft measurements performed in the upper tropopause of regions distant from desert sources indicate that dust particles dominate over other known ice nuclei such as soot and biological particles. In the nucleation process, dust chemical aging had minor effects. The observational evidence on IN processes has substantially improved over the last decade and clearly shows that there is a significant correlation between IN concentrations and the concentrations of coarser aerosol at a given temperature and moisture. Most recently, due to recognition of the dominant role of dust as ice nuclei, parameterizations for immersion and deposition icing specifically due to dust have been developed. Based on these achievements, we have developed a real-time forecasting coupled atmosphere-dust modelling system capable to operationally predict occurrence of cold clouds generated by dust. We have been thoroughly validated model simulations against available remote sensing observations. We have used the CNR-IMAA Potenza lidar and cloud radar observations to explore the model capability to represent vertical features of the cloud and aerosol vertical profiles. We also utilized the MSG-SEVIRI and MODIS satellite data to examine the accuracy of the simulated horizontal distribution of cold clouds. Based on the obtained encouraging verification scores, operational experimental prediction of ice clouds nucleated by dust has been introduced in the Serbian Hydrometeorological Service as a public available product.

  6. Dust in a compact, cold, high-velocity cloud: A new approach to removing foreground emission

    NASA Astrophysics Data System (ADS)

    Lenz, D.; Flöer, L.; Kerp, J.

    2016-02-01

    Context. Because isolated high-velocity clouds (HVCs) are found at great distances from the Galactic radiation field and because they have subsolar metallicities, there have been no detections of dust in these structures. A key problem in this search is the removal of foreground dust emission. Aims: Using the Effelsberg-Bonn H I Survey and the Planck far-infrared data, we investigate a bright, cold, and clumpy HVC. This cloud apparently undergoes an interaction with the ambient medium and thus has great potential to form dust. Methods: To remove the local foreground dust emission we used a regularised, generalised linear model and we show the advantages of this approach with respect to other methods. To estimate the dust emissivity of the HVC, we set up a simple Bayesian model with mildly informative priors to perform the line fit instead of an ordinary linear least-squares approach. Results: We find that the foreground can be modelled accurately and robustly with our approach and is limited mostly by the cosmic infrared background. Despite this improvement, we did not detect any significant dust emission from this promising HVC. The 3σ-equivalent upper limit to the dust emissivity is an order of magnitude below the typical values for the Galactic interstellar medium.

  7. Two-Photon Excitation of Launched Cold Atoms in Flight

    NASA Astrophysics Data System (ADS)

    Goodsell, Anne; Gonzalez, Rene; Alejandro, Eduardo; Erwin, Emma

    2017-04-01

    We demonstrate two-photon bi-chromatic excitation of cold rubidium atoms in flight, using the pathway 5S1 / 2 -> 5P3 / 2 -> 5D5 / 2 with two resonant photons. In our experiment, atoms are laser-cooled in a magneto-optical trap and launched upward in discrete clouds with a controllable vertical speed of 7.1 +/-0.6 m/s and a velocity spread that is less than 10% of the launch speed. Outside the cooling beams, as high as 14 mm above the original center of the trap, the launched cold atoms are illuminated simultaneously by spatially-localized horizontal excitation beams at 780 nm (5S1 / 2 -> 5P3 / 2) and 776 nm (5P3 / 2 -> 5D5 / 2). We monitor transmission of the 780-nm beam over a range of intensities of 780-nm and 776-nm light. As the center of the moving cloud passes the excitation beams, we observe as much as 97.9 +/-1.2% transmission when the rate of two-photon absorption is high and the 5S1 / 2 and 5P3 / 2 states are depopulated, compared to 87.6 +/-0.9% transmission if only the 780-nm beam is present. This demonstrates two-photon excitation of a launched cold-atom source with controllable launch velocity and narrow velocity spread, as a foundation for three-photon excitation to Rydberg states. Research supported by Middlebury College Bicentennial Fund, Palen Fund, and Gladstone Award.

  8. Convectively-driven cold layer and its influences on moisture in the UTLS

    NASA Astrophysics Data System (ADS)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  9. Formation of the southern Bay of Bengal cold pool

    NASA Astrophysics Data System (ADS)

    Das, Umasankar; Vinayachandran, P. N.; Behara, Ambica

    2016-09-01

    A pool of relatively cooler water, called here as the southern Bay of Bengal cold pool, exists around Sri Lanka and southern tip of India during the summer monsoon. This cold pool is enveloped by the larger Indian Ocean warm pool and is believed to affect the intraseasonal variations of summer monsoon rainfall. In this study, we have investigated the mechanisms responsible for the formation of the cold pool using a combination of both satellite data sets and a general circulation model of the Indian Ocean. Sea surface temperature (SST) within the cold pool, after the steady increase during the February-April period, decreases first during a pre-monsoon spell in April and then with the monsoon onset during May. The onset cooling is stronger (~1.8°C) than the pre-monsoon cooling (~0.8°C) and culminates in the formation of the cold pool. Analysis of the model temperature equation shows that SST decrease during both events is primarily due to a decrease in incoming solar radiation and an increase in latent heat loss. These changes in the net heat flux are brought about by the arrival of cloud bands above the cold pool during both periods. During the pre-monsoon period, a cloud band originates in the western equatorial Indian Ocean and subsequently arrives above the cold pool. Similarly, during the monsoon onset, a band of clouds originating in the eastern equatorial Indian Ocean comes over the cold pool region. A lead-lag correlation calculation between daily SST and rainfall anomalies suggest that cooling in SST occurs in response to rainfall events with a lag of 5 days. These sequence of events occur every year with certain amount of interannual variability.

  10. A new interstellar molecule - Tricarbon monoxide

    NASA Technical Reports Server (NTRS)

    Matthews, H. E.; Irvine, W. M.; Friberg, P.; Brown, R. D.; Godfrey, P. D.

    1984-01-01

    The C3O molecule, whose pure rotational spectrum has only recently been studied in the laboratory, has been detected in the cold, dark interstellar Taurus Molecular Cloud 1. Since C3O is the first interstelar carbon chain molecule to contain oxygen, its existence places an important new constraint on chemical schemes for cold interstellar clouds. The abundance of C3O can be understood in terms of purely gas-phase ion-molecule chemistry.

  11. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.

    PubMed

    Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T

    2015-09-02

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.

  12. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  13. Tropical Depression Debbie in the Atlantic

    NASA Image and Video Library

    2006-08-22

    These images show Tropical Depression Debbie in the Atlantic, from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 22, 2006. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). At the time the data were taken from which these images were made the eye had not yet opened but the storm is now well organized. The location of the future eye appears as a circle at 275 K brightness temperature in the microwave image just to the SE of the Azores. http://photojournal.jpl.nasa.gov/catalog/PIA00508

  14. A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations

    PubMed Central

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2018-01-01

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics. PMID:29744257

  15. A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations.

    PubMed

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2016-10-16

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Niño. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.

  16. A Lagrangian Analysis of Cold Cloud Clusters and Their Life Cycles With Satellite Observations

    NASA Technical Reports Server (NTRS)

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2016-01-01

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Nino. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.

  17. Meteorological Drivers of Cold Temperatures in the Western Pacific TTL

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Ueyama, Rei; Jensen, Eric J.

    2017-01-01

    During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies.

  18. Simulation of whistler waves excited in the presence of a cold plasma cloud - Implications for the CRRES mission. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Schriver, D.; Ashour-Abdalla, M.

    1991-01-01

    A one-dimensional electromagnetic particle simulation model is constructed to study the excitation of whistler waves in the presence of a cold plasma cloud for conditions representative of those after the release of lithium in the inner plasma sheet during the Combined Release and Radiation Effect Satellite mission. The results indicate that a standing-wave pattern with discrete wave frequencies is formed within the cloud. The magnetic wave amplitude inside the cloud, which is limited by quasi-linear diffusion, is of the order of several nanoteslas. Assuming a magnetospheric loss cone of 5 deg, the observed pitch angle diffusion produced by the whistler waves is sufficient to put the electrons on strong diffusion.

  19. Recent observations of organic molecules in nearby cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Ohishi, M.; Morimoto, M.; Kaifu, N.; Friberg, P.

    1985-01-01

    Recent investigations of the organic chemistry of relatively nearby cold, dark interstellar clouds are reported. Specifically, the presence of interstellar tricarbon monoxide (C3O) in Taurus Molecular Cloud 1 (TMC-1) is confirmed. The first detection in such regions of acetaldehyde (CH3CHO), the most complex oxygen-containing organic molecule yet found in dark clouds is reported, as well as the first astronomical detection of several molecular rotational transitions, including the J = 18-17 and 14-13 transitions of cyanodiacetylene (HC5N), the 1(01)-0(00) transition of acetaldehyde, and the J = 5-4 transition of C3O. A significant upper limit is set on the abundance of cyanocarbene (HCCN) as a result of the first reported interstellar search for this molecule.

  20. Structure formation in a colliding flow: The Herschel view of the Draco nebula

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, M.-A.; Salomé, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.

    2017-03-01

    Context. The Draco nebula is a high Galactic latitude interstellar cloud observed at velocities corresponding to the intermediate velocity cloud regime. This nebula shows unusually strong CO emission and remarkably high-contrast small-scale structures for such a diffuse high Galactic latitude cloud. The 21 cm emission of the Draco nebula reveals that it is likely to have been formed by the collision of a cloud entering the disk of the Milky Way. Such physical conditions are ideal to study the formation of cold and dense gas in colliding flows of diffuse and warm gas. Aims: The objective of this study is to better understand the process of structure formation in a colliding flow and to describe the effects of matter entering the disk on the interstellar medium. Methods: We conducted Herschel-SPIRE observations of the Draco nebula. The clumpfind algorithm was used to identify and characterize the small-scale structures of the cloud. Results: The high-resolution SPIRE map reveals the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor (RT) instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity. This allowed us to estimate the dissipation scale of the warm neutral medium (0.1 pc), which was found to be compatible with that expected if ambipolar diffusion were the main mechanism of turbulent energy dissipation. The statistical properties of the small-scale structures identified with clumpfind are found to be typical of that seen in molecular clouds and hydrodynamical turbulence in general. The density of the gas has a log-normal distribution with an average value of 103 cm-3. The typical size of the structures is 0.1-0.2 pc, but this estimate is limited by the resolution of the observations. The mass of these structures ranges from 0.2 to 20 M⊙ and the distribution of the more massive structures follows a power-law dN/ dlog (M) M-1.4. We identify a mass-size relation with the same exponent as that found in molecular clouds (M L2.3). On the other hand, we found that only 15% of the mass of the cloud is in gravitationally bound structures. Conclusions: We conclude that the collision of diffuse gas from the Galactic halo with the diffuse interstellar medium of the outer layer of the disk is an efficient mechanism for producing dense structures. The increase of pressure induced by the collision is strong enough to trigger the formation of cold neutral medium out of the warm gas. It is likely that ambipolar diffusion is the mechanism dominating the turbulent energy dissipation. In that case the cold structures are a few times larger than the energy dissipation scale. The dense structures of Draco are the result of the interplay between magnetohydrodynamical turbulence and thermal instability as self-gravity is not dominating the dynamics. Interestingly they have properties typical of those found in more classical molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced Herschel data (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A109

  1. North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.; Iacobellis, Sam F.

    2005-01-01

    This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.

  2. Thunderstorm intensity as determined from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1979-01-01

    Digital infrared data from SMS 2 obtained on May 6, 1975 are used to study thunderstorm vertical growth rates and cloud top structure in relation to the occurrence of severe weather (tornadoes, hail, and high wind) on the ground. All thunderstorms from South Dakota to Texas along a N-S oriented cold front were monitored for a 4 h period with 5 min interval data. Thunderstorm growth rate, as determined by the rate of blackbody temperature isotherm expansion and minimum cloud top temperature, are shown to be correlated with reports of severe weather on the ground.

  3. Physical properties of CO-dark molecular gas traced by C+

    NASA Astrophysics Data System (ADS)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by fDMG = 1.0-3.7 × 1020/NH. We divided the clouds into a high extinction group and low extinction group with the dividing threshold being total hydrogen column density NH of 5.0 × 1021 cm-2 (AV = 2.7 mag). The values of fDMG in the low extinction group (AV ≤ 2.7 mag) are consistent with the results of the time-dependent, chemical evolutionary model at the age of ~10 Myr. Our empirical relation cannot be explained by the chemical evolutionary model for clouds in the high extinction group (AV > 2.7 mag). Compared to clouds in the low extinction group (AV ≤ 2.7 mag), clouds in the high extinction group (AV > 2.7 mag) have comparable volume densities but excitation temperatures that are 1.5 times lower. Moreover, CO abundances in clouds of the high extinction group (AV > 2.7 mag) are 6.6 × 102 times smaller than the canonical value in the Milky Way. Conclusions: The molecular gas seems to be the dominate component in these clouds. The high percentage of DMG in clouds of the high extinction group (AV > 2.7 mag) may support the idea that molecular clouds are forming from pre-existing molecular gas, I.e., a cold gas with a high H2 content but that contains a little or no CO content.

  4. Identifying Meteorological Controls on Open and Closed Mesoscale Cellular Convection Associated with Marine Cold Air Outbreaks

    NASA Astrophysics Data System (ADS)

    McCoy, Isabel L.; Wood, Robert; Fletcher, Jennifer K.

    2017-11-01

    Mesoscale cellular convective (MCC) clouds occur in large-scale patterns over the ocean and have important radiative effects on the climate system. An examination of time-varying meteorological conditions associated with satellite-observed open and closed MCC clouds is conducted to illustrate the influence of large-scale meteorological conditions. Marine cold air outbreaks (MCAO) influence the development of open MCC clouds and the transition from closed to open MCC clouds. MCC neural network classifications on Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2008 are collocated with Clouds and the Earth's Radiant Energy System (CERES) data and ERA-Interim reanalysis to determine the radiative effects of MCC clouds and their thermodynamic environments. Closed MCC clouds are found to have much higher albedo on average than open MCC clouds for the same cloud fraction. Three meteorological control metrics are tested: sea-air temperature difference (ΔT), estimated inversion strength (EIS), and a MCAO index (M). These predictive metrics illustrate the importance of atmospheric surface forcing and static stability for open and closed MCC cloud formation. Predictive sigmoidal relations are found between M and MCC cloud frequency globally and regionally: negative for closed MCC cloud and positive for open MCC cloud. The open MCC cloud seasonal cycle is well correlated with M, while the seasonality of closed MCC clouds is well correlated with M in the midlatitudes and EIS in the tropics and subtropics. M is found to best distinguish open and closed MCC clouds on average over shorter time scales. The possibility of a MCC cloud feedback is discussed.

  5. A Method for Obtaining High Frequency, Global, IR-Based Convective Cloud Tops for Studies of the TTL

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Ueyama, Rei; Jensen, Eric; Schoeberl, Mark

    2017-01-01

    Models of varying complexity that simulate water vapor and clouds in the Tropical Tropopause Layer (TTL) show that including convection directly is essential to properly simulating the water vapor and cloud distribution. In boreal winter, for example, simulations without convection yield a water vapor distribution that is too uniform with longitude, as well as minimal cloud distributions. Two things are important for convective simulations. First, it is important to get the convective cloud top potential temperature correctly, since unrealistically high values (reaching above the cold point tropopause too frequently) will cause excessive hydration of the stratosphere. Second, one must capture the time variation as well, since hydration by convection depends on the local relative humidity (temperature), which has substantial variation on synoptic time scales in the TTL. This paper describes a method for obtaining high frequency (3-hourly) global convective cloud top distributions which can be used in trajectory models. The method uses rainfall thresholds, standard IR brightness temperatures, meteorological temperature analyses, and physically realistic and documented corrections IR brightness temperature corrections to derive cloud top altitudes and potential temperatures. The cloud top altitudes compare well with combined CLOUDSAT and CALIPSO data, both in time-averaged overall vertical and horizontal distributions and in individual cases (correlations of .65-.7). An important finding is that there is significant uncertainty (nearly .5 km) in evaluating the statistical distribution of convective cloud tops even using lidar. Deep convection whose tops are in regions of high relative humidity (such as much of the TTL), will cause clouds to form above the actual convection. It is often difficult to distinguish these clouds from the actual convective cloud due to the uncertainties of evaluating ice water content from lidar measurements. Comparison with models show that calculated cloud top altitudes are generally higher than those calculated by global analyses (e.g., MERRA). Interannual variability in the distribution of convective cloud top altitudes is also investigated.

  6. Advancing cloud lifecycle representation in numerical models using innovative analysis methods that bridge arm observations over a breadth of scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tselioudis, George

    2016-03-04

    From its location on the subtropics-midlatitude boundary, the Azores is influenced by both the subtropical high pressure and the midlatitude baroclinic storm regimes, and therefore experiences a wide range of cloud structures, from fair-weather scenes to stratocumulus sheets to deep convective systems. This project combined three types of data sets to study cloud variability in the Azores: a satellite analysis of cloud regimes, a reanalysis characterization of storminess, and a 19-month field campaign that occurred on Graciosa Island. Combined analysis of the three data sets provides a detailed picture of cloud variability and the respective dynamic influences, with emphasis onmore » low clouds that constitute a major uncertainty source in climate model simulations. The satellite cloud regime analysis shows that the Azores cloud distribution is similar to the mean global distribution and can therefore be used to evaluate cloud simulation in global models. Regime analysis of low clouds shows that stratocumulus decks occur under the influence of the Azores high-pressure system, while shallow cumulus clouds are sustained by cold-air outbreaks, as revealed by their preference for post-frontal environments and northwesterly flows. An evaluation of CMIP5 climate model cloud regimes over the Azores shows that all models severely underpredict shallow cumulus clouds, while most models also underpredict the occurrence of stratocumulus cloud decks. It is demonstrated that carefully selected case studies can be related through regime analysis to climatological cloud distributions, and a methodology is suggested utilizing process-resolving model simulations of individual cases to better understand cloud-dynamics interactions and attempt to explain and correct climate model cloud deficiencies.« less

  7. Raman lidar measurement of water vapor and ice clouds associated with Asian dust layer over Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Matsumura, Takatsugu

    2004-03-01

    The vertical distributions of particle extinction, backscattering, depolarization, and water vapor mixing ratio were measured using a Raman lidar over Tsukuba (36.1°N, 140.1°E), Japan, on 23-24 April 2001. Ice clouds associated with the Asian dust layer were observed at an altitude of ~6-9 km. The relative humidities in the cloud layer were close to the ice saturation values and the temperature at the top of the cloud layer was ~-35°C, suggesting that the Asian dust acted as ice nuclei at the high temperatures. The meteorological analysis suggested that the ice-saturated region was formed near the top of the dust layer where the moist air ascended in slantwise fashion above the cold-frontal zone associated with extratropical cyclone.

  8. Dark Murky Clouds in the Bright Milky Way

    NASA Image and Video Library

    2011-08-24

    This infrared image from NASA Wide-field Infrared Survey Explorer shows exceptionally cold, dense cloud cores seen in silhouette against the bright diffuse infrared glow of the plane of the Milky Way galaxy.

  9. The impact of low-level cloud over the eastern subtropical Pacific on the ``Double ITCZ'' in LASG FGCM-0

    NASA Astrophysics Data System (ADS)

    Dai, Fushan; Yu, Rucong; Zhang, Xuehong; Yu, Yongqiang; Li, Jianglong

    2003-05-01

    Like many other coupled models, the Flexible coupled General Circulation Model (FGCM-0) suffers from the spurious “Double ITCZ”. In order to understand the “Double ITCZ” in FGCM-0, this study first examines the low-level cloud cover and the bulk stability of the low troposphere over the eastern subtropical Pacific simulated by the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3), which is the atmosphere component model of FGCM-0. It is found that the bulk stability of the low troposphere simulated by CCM3 is very consistent with the one derived from the National Center for Environmental Prediction (NCEP) reanalysis, but the simulated low-level cloud cover is much less than that derived from the International Satellite Cloud Climatology Project (ISCCP) D2 data. Based on the regression equations between the low-level cloud cover from the ISCCP data and the bulk stability of the low troposphere derived from the NCEP reanalysis, the parameterization scheme of low-level cloud in CCM3 is modified and used in sensitivity experiments to examine the impact of low-level cloud over the eastern subtropical Pacific on the spurious “Double ITCZ” in FGCM-0. Results show that the modified scheme causes the simulated low-level cloud cover to be improved locally over the cold oceans. Increasing the low-level cloud cover off Peru not only significantly alleviates the SST warm biases in the southeastern tropical Pacific, but also causes the equatorial cold tongue to be strengthened and to extend further west. Increasing the low-level cloud fraction off California effectively reduces the SST warm biases in ITCZ north of the equator. In order to examine the feedback between the SST and low-level cloud cover off Peru, one additional sensitivity experiment is performed in which the SST over the cold ocean off Peru is restored. It shows that decreasing the SST results in similar impacts over the wide regions from the southeastern tropical Pacific northwestwards to the western/central equatorial Pacific as increasing the low-level cloud cover does.

  10. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  11. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  12. The formation and dust lifting processes associated with a large Saharan meso-scale convective system (MCS)

    NASA Astrophysics Data System (ADS)

    Roberts, Alex; Knippertz, Peter

    2013-04-01

    This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and forced dust high into the atmosphere. As well as the expected behaviour of a gravity current there also seems to be a complex relationship between the cold pool and diurnal variation in boundary layer structure. These include: (1) the production of nocturnal low-level jet in the area previously covered by the cold pool allowing for further dust uplift the following morning, (2) the development of a bore on the nocturnal boundary layer travelling ahead of the cold pool and capable of deflating dust further into the desert and (3) the production of bores on the nocturnal boundary layer by the collision of fronts formed through the collapse of the well mixed daytime boundary layer and nocturnal frontogenesis. It is hoped that this work will add to the understanding of the production of large Saharan MCSs and the processes that can influence their formation. Also it shows the complex dynamical interactions that occur within the Saharan boundary layer and how these might impact our understanding of dust uplift processes associated with the passage of MCSs.

  13. The Continuation of Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    2001-01-01

    The weather systems, cyclones, and anticyclones, along with air trajectories and cloud forms, are compared to past studies of the Arctic to assess compatibility of the four month study of the Arctic Cloud Experiment flights of the First ISCCP Regional Experiment (FIRE/ACE) with past climatologies. The frequency and movement of cyclones (lows) and anticyclones (highs) followed the general eastward and northeastward directions indicated by past studies. Most cyclones (lows) came from eastern Siberia and the Bering Sea to the south and moved north across the Bering Straight or Alaska into the Arctic Ocean. They generally weakened in central pressure as they moved poleward. Anticyclones (highs) were most common in the eastern Beaufort Sea near Canada in June and July as predicted from previous studies. However, many cyclones and anticyclones moved in westward directions which is rare in other latitudes. Erratic changes in shape and intensity on a daily basis also were observed. The National Center for Environmental Prediction (NCEP) analysis generally reflected the Surface Heat Budget in the Arctic (SHEBA) Ship World Meteorological Organization (WMO) observations which it used. However, NCEP temperatures were biased warm by 1.0 to 1.5 C in April and early May. In July when the surface temperature were at the freezing/thawing point, the NCEP analysis changed to a cold bias of -1.0 C. Dew points had smaller biases except for July where they were biased cold by -1.4 C. Wind speeds had a -2 m/s low bias for the six windiest days. Surface barometric pressures had consistently low biases from -1.2 to -2.8 hPa in all four months. Air parcel historical trajectories were mainly from the south or from local anticyclonic gyres in the Beaufort Sea. Most air came to the SHEBA Ship from the north Pacific Ocean or from Alaska and Canada and occasionally from eastern Siberia. Very few trajectories traced back across the pole to Europe and Central Asia. Cloud cover was high, as expected, from 69-86% of the time. Satellite data also indicate frequent stratus, altostratus, and cirrus clouds (occurring 61% of the time) above the expected boundary layer fog and Arctic stratus clouds.

  14. Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations

    NASA Astrophysics Data System (ADS)

    Adler, Bianca; Kalthoff, Norbert; Gantner, Leonhard

    2017-01-01

    We performed a high-resolution numerical simulation to study the development of extensive low-level clouds that frequently form over southern West Africa during the monsoon season. This study was made in preparation for a field campaign in 2016 within the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project and focuses on an area around the city of Savè in southern Benin. Nocturnal low-level clouds evolve a few hundred metres above the ground around the same level as a distinct low-level jet. Several processes are found to determine the spatio-temporal evolution of these clouds including (i) significant cooling of the nocturnal atmosphere caused by horizontal advection with the south-westerly monsoon flow during the first half of the night, (ii) vertical cold air advection due to gravity waves leading to clouds in the wave crests and (iii) enhanced convergence and upward motion upstream of existing clouds that trigger new clouds. The latter is caused by an upward shift of the low-level jet in cloudy areas leading to horizontal convergence in the lower part and to horizontal divergence in the upper part of the cloud layer. Although this single case study hardly allows for a generalisation of the processes found, the results added to the optimisation of the measurements strategy for the field campaign and the observations will be used to test the hypotheses for cloud formation resulting from this study.

  15. Instantaneous Linkages between Clouds and Large-Scale Meteorology over the Southern Ocean in Observations and a Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Casey J.; Hartmann, Dennis L.; Ma, Po-Lun

    Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the middle-troposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm- and cold-sector of cyclones. The observed relationships between clouds andmore » meteorology are compared to those in the Community Atmosphere Model version 5 (CAM5) using satellite simulators. Low-clouds simulated by CAM5 are too few, too bright, and contain too much ice, and low-clouds located in the cold-sector of cyclones are too sensitive to variations in the meteorology. The latter two biases are dramatically reduced when CAM5 is coupled with an updated boundary layer parameterization know as Cloud Layers Unified by Binormals (CLUBB). More generally, this study demonstrates that examining the instantaneous timescale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.« less

  16. Identification of prominence ejecta by the proton distribution function and magnetic fine structure in ICMEs in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Marsch, Eckart; Yao, Shuo; Tu, Chuanyi; Schwenn, Rainer

    This work presents in-situ solar wind observations of three magnetic clouds that contain certain cold high-density material, when Helios 2 was located at 0.3 AU, on 9 May 1979, 0.5 AU on 30 March 1976, and 0.7 AU on 24 December 1978, respectively. In the cold high-density regions embedded in the ICMEs we find that (1) the number density of protons is higher than in other regions inside the magnetic cloud (MC), (2)the possible existence of He+, (3) the thermal velocity distribution functions (VDFs) are more isotropic and appear to be colder than in the other regions of the MC, and the proton temperature is lower than that of the ambient plasma, (4) the associated magnetic field configuration can for all three MC events be identified as a flux rope. This cold high-density region is located at the polarity inversion line in the center of the bipolar structure of the MC magnetic field (consistent with previous work of solar observation that a prominence lies over the neutral line of the related bipolar solar magnetic field ). It is the first time that prominence ejecta are identified by both the plasma and magnetic field features inside 1 AU, and that thermal ion velocity distribution functions are used to investigate the microstate of the prominence material. Overall, our in situ observations are consistent with the three-part CME models.

  17. ETO cloud studies for FIRE 2, part 1

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1992-01-01

    This research program in support of Project FIRE (First ISCCP Regional Experiment) involved two efforts. The results of the first effort, which were in direct support of the Extended Time Observations (ETO) component, are described here. Over the period from June 1990 through May 1991, our remote sensing systems were applied to providing ground-truth cirrus cloud observations for a total of 71 NOAA polar orbiting satellite overpasses. (Chronological tables of this effort are provided.) The primary remote sensor was a dual-polarization ruby (0.694 microns wavelength) lidar, although mid-way through the program we added a number of radiometers to assess the surface radiation budget and cirrus cloud infrared emittance, and some supplemental observations from a Ka-band (8.6 mm) radar were also collected. These studies were conducted from the Facility for Atmospheric Remote Sensing (FARS) at 40 degrees 46 minutes 00 seconds north latitude and 111 degrees 49 minutes 38 seconds east longitude. We also investigated the unusual characteristics of a subset of ETO case studies involving cirrus that generated solar and lunar corona displays. As we reported recently (reprint attached), these cirrus were atypically high and cold in relation to our total midlatitude cloud sample, and were comprised of unexpectedly small ice crystals from 10 to 30 microns in dimension. This finding lends some credence to the so-called cirrus small particle radiative anomaly, but only for very cold (less than -60 C) cirrus clouds. In a supplement, we will describe the design and testing of a prototype cirrus cloud polar nephelometer, which we constructed as part of our second research effort, to allow scattering phase functions to be obtained in future in situ cirrus research.

  18. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  19. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  20. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| < 10^\\circ with an effective angular resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  1. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  2. Near-Resonant Imaging of Trapped Cold Atomic Samples

    PubMed Central

    You, L.; Lewenstein, Maciej

    1996-01-01

    We study the formation of diffraction patterns in the near-resonant imaging of trapped cold atomic samples. We show that the spatial imaging can provide detailed information on the trapped atomic clouds. PMID:27805110

  3. Skylab near-infrared observations of clouds indicating supercooled liquid water droplets

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Wu, M.-L. C.

    1982-01-01

    Orographically-induced lee-wave clouds were observed over New Mexico by a multichannel scanning radiometer on Skylab during December 1973. Channels centered at 0.83, 1.61 and 2.125 microns were used to determine the cloud optical thickness, thermodynamic phase and effective particle size. An additional channel centered at 11.4 microns was used to determine cloud-top temperature, which was corroborated through comparison with the stereographically determined cloud top altitudes and conventional temperature soundings. Analysis of the measured near-infrared reflection functions at 1.61 and 2.125 microns are most easily interpreted as indicating the presence of liquid-phase water droplets. This interpretation is not conclusive even after considerable effort to understand possible sources for misinterpretation. However, if accepted the resulting phase determination is considered anomalous due to the inferred cloud-top temperatures being in the -32 to -47 C range. Theory for the homogeneous nucleation of pure supercooled liquid water droplets predicts very short lifetimes for the liquid phase at these cold temperatures. A possible explanation for the observations is that the wave-clouds are composed of solution droplets. Impurities in the cloud droplets could decrease the homogeneous freezing rate for these droplets, permitting them to exist for a longer time in the liquid phase, at the cold temperatures found.

  4. A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.

    2015-01-01

    Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their amount relates to the stability of the boundary layer. This test uses Aqua cloud and vertical atmospheric profiles and when applied to the model output can help assess the accuracy of the convection, boundary layer and cloud scheme.

  5. Atomic References for Measuring Small Accelerations

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2009-01-01

    Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.

  6. H2, CO, and dust absorption through cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lacy, John H.; Sneden, Chris; Kim, Hwihyun; Jaffe, Daniel Thomas

    2017-06-01

    We have made observations with IGRINS on the Harlan J. Smith telescope at McDonald Observatory of near-infrared absorption by H2, CO, and dust toward stars behind molecular clouds, primarily the TMC. Prior to these observations, the abundance of H2 in molecular clouds, relative to the commonly used tracer CO, had only been measured toward a few embedded stars, which may be surrounded by atypical gas. The new observations provide a representative sample of these molecules in cold molecular gas. We find N(H2)/Av ~ 0.9e+21, N(CO)/Av ~ 1.6e+17, and H2/CO ~ 6000. The measured H2/CO ratio is consistent with that measured toward embedded stars in various molecular clouds, but half that derived from mm-wave observations of CO emission and star counts or other determinations of Av.

  7. APEX reveals glowing stellar nurseries

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Illustrating the power of submillimetre-wavelength astronomy, an APEX image reveals how an expanding bubble of ionised gas about ten light-years across is causing the surrounding material to collapse into dense clumps that are the birthplaces of new stars. Submillimetre light is the key to revealing some of the coldest material in the Universe, such as these cold, dense clouds. Glowing Stellar Nurseries ESO PR Photo 40/08 Glowing Stellar Nurseries The region, called RCW120, is about 4200 light years from Earth, towards the constellation of Scorpius. A hot, massive star in its centre is emitting huge amounts of ultraviolet radiation, which ionises the surrounding gas, stripping the electrons from hydrogen atoms and producing the characteristic red glow of so-called H-alpha emission. As this ionised region expands into space, the associated shock wave sweeps up a layer of the surrounding cold interstellar gas and cosmic dust. This layer becomes unstable and collapses under its own gravity into dense clumps, forming cold, dense clouds of hydrogen where new stars are born. However, as the clouds are still very cold, with temperatures of around -250˚ Celsius, their faint heat glow can only be seen at submillimetre wavelengths. Submillimetre light is therefore vital in studying the earliest stages of the birth and life of stars. The submillimetre-wavelength data were taken with the LABOCA camera on the 12-m Atacama Pathfinder Experiment (APEX) telescope, located on the 5000 m high plateau of Chajnantor in the Chilean Atacama desert. Thanks to LABOCA's high sensitivity, astronomers were able to detect clumps of cold gas four times fainter than previously possible. Since the brightness of the clumps is a measure of their mass, this also means that astronomers can now study the formation of less massive stars than they could before. The plateau of Chajnantor is also where ESO, together with international partners, is building a next generation submillimetre telescope, ALMA, the Atacama Large Millimeter/submillimeter Array. ALMA will use over sixty 12-m antennas, linked together over distances of more than 16 km, to form a single, giant telescope. APEX is a collaboration between the Max-Planck-Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. The telescope is based on a prototype antenna constructed for the ALMA project. Operation of APEX at Chajnantor is entrusted to ESO.

  8. Clumps of Cold Stuff Across the Sky

    NASA Image and Video Library

    2011-01-11

    This map illustrates the numerous star-forming clouds, called cold cores, that European Space Agency Planck observed throughout our Milky Way galaxy. Planck detected around 10,000 of these cores, thousands of which had never been seen before.

  9. The role of clouds in early Pliocene warmth

    NASA Astrophysics Data System (ADS)

    Burls, N.; Fedorov, A. V.

    2013-12-01

    The climate of the early Pliocene (4-5 million years ago) presents a challenging puzzle to climate scientists - although the Earth experienced atmospheric CO2 concentrations similar to the elevated levels seen today, many climate characteristics in both low to high latitudes were very different. In particular, a salient feature of the modern climate, the pronounced cold tongues on the eastern sides of the Pacific and Atlantic equatorial basins, were much weaker. At the same time the ocean meridional (equator-to-pole) temperature gradient was also reduced. However, state-of-the-art coupled general circulation models forced with elevated CO2 concentrations and reconstructed Pliocene boundary conditions fail to capture the full extent of warming in the equatorial cold tongues and high-latitude regions relative to present-day conditions, and hence the corresponding reduction in meridional and zonal sea surface temperature gradients suggested by paleoclimatic evidence (as reviewed by Fedorov et al., 2013, Nature 496). A number of physical processes unresolved or underestimated by these models have been proposed as a contributing factor or a potential driving force resulting in these differences. Amongst the proposed hypotheses is the idea that different cloud properties might be the key to the Pliocene puzzle. In this study we demonstrate how a modified spatial distribution in cloud albedo could have been responsible for sustaining Pliocene climate. In particular, we show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal gradients in sea surface temperature, an expanded warm pool in the ocean, weaker Hadley and Walker circulations in the atmosphere, and amplified high-latitude warming. Having conducted a range of modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows an excellent agreement with proxy sea surface temperature data from the major equatorial and coastal upwelling regions, the tropical warm pool, and the mid- and high- latitudes. A good agreement is also achieved with available subsurface temperature data. Within this simulated early Pliocene state, we explore the major climatic features such as ENSO and the Atlantic meridional overturning circulation (AMOC).

  10. Seasonal Evolution of Titan's South Pole 220 cm-1 Cloud

    NASA Astrophysics Data System (ADS)

    Jennings, Donald

    2016-06-01

    A cloud of ices that had been seen only in Titan's north during winter began to emerge at the south pole in 2012. Discovered by Voyager IRIS as an emission feature at 220 cm-1, the cloud has been studied extensively in both the north and south by Cassini CIRS. The spectral feature acts as a tracer of the seasonal changes at Titan's poles, relating to evolving composition, temperature structure and dynamics. Although candidates have been proposed, the chemical makeup of the cloud has never been identified. The cloud is composed of condensates derived from gases created at high altitude and transported to the cold, shadowed pole. In the north the cloud has diminished gradually over the Cassini mission as Titan has transitioned from winter to spring. The southern cloud, on the other hand, grew rapidly after 2012. By late 2014 it had developed a complex ring structure that was confined to latitudes poleward of 70°S within the deep temperature well that had formed at the south pole [1]. The location of the cloud coincides in latitude with the HCN cloud reported by ISS and VIMS [2,3]. CIRS also saw enhanced gas emissions at those latitudes [4]. When it first formed, the cloud was abundant at altitudes as high as 250 km, while later it was found mostly at 100-150 km, suggesting that the material that had been deposited from above had gathered at the lower altitudes. Radiance from the southern cloud increased until mid-2015 and since then has decreased. The cloud may be transitioning to the more uniform hood morphology familiar in the north. Taking the north and south together, by the end of the Cassini mission in 2017 we will have observed almost an entire seasonal cycle of the ice cloud.

  11. The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis

    PubMed Central

    Roberts, A J; Knippertz, P

    2014-01-01

    Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277

  12. Titan’s High Altitude South Polar (HASP) Stratospheric Ice Cloud as observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Nna-Mvondo, Delphine; Samuelson, Robert E.; Achterberg, Richard K.; Flasar, F. Michael; Jennings, Donald E.; Raulin, Francois

    2017-10-01

    During Cassini’s T112 flyby of Titan in the late southern fall season (July 2015), the Composite InfraRed Spectrometer (CIRS) made a startling discovery - a massive cloud system had developed throughout Titan’s mid stratosphere (~200 km) at high southern latitudes. The vertical distributions of intensity of this High-Altitude South Polar (HASP) stratospheric ice cloud system are at least an order of magnitude stronger than the CIRS-observed northern winter polar stratospheric cloud system [1]. The chemical composition of the HASP cloud is not identical to its northern winter counterpart, in that it exhibits different spectral characteristics. The HASP cloud is just one illustrative example demonstrating the rapidly changing conditions occurring in Titan’s south polar stratospheric region as Titan began its journey into southern winter. Such observed changes are contrary to the observed configuration as Titan’s northern polar stratosphere transitioned out of northern winter, which revealed a relatively slow decay of: 1) the cold polar stratospheric temperatures, 2) the strength of the polar vortex, and 3) the abundances in stratospheric organic gases and ices. We will discuss the physical and chemical characteristics of the CIRS-observed HASP mid stratospheric ice cloud system. Potential ice analog candidates obtained from thin film transmission spectra of co-condensed nitrile/hydrocarbon ice mixtures obtained with our SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) chamber are used to support these analyses. [1] Anderson C. M. and Samuelson R. E. (2011) Icarus, 212, 762-778.

  13. Using long-term ARM observations to evaluate Arctic mixed-phased cloud representation in the GISS ModelE GCM

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Fridlind, A. M.; Luke, E. P.; Tselioudis, G.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2016-12-01

    The presence of supercooled liquid in clouds affects surface radiative and hydrological budgets, especially at high latitudes. Capturing these effects is crucial to properly quantifying climate sensitivity. Currently, a number of CGMs disagree on the distribution of cloud phase. Adding to the challenge is a general lack of observations on the continuum of clouds, from high to low-level and from warm to cold. In the current study, continuous observations from 2011 to 2014 are used to evaluate all clouds produced by the GISS ModelE GCM over the ARM North Slope of Alaska site. The International Satellite Cloud Climatology Project (ISCCP) Global Weather State (GWS) approach reveals that fair-weather (GWS 7, 32% occurrence rate), as well as mid-level storm related (GWS 5, 28%) and polar (GWS 4, 14%) clouds, dominate the large-scale cloud patterns at this high latitude site. At higher spatial and temporal resolutions, ground-based cloud radar observations reveal a majority of single layer cloud vertical structures (CVS). While clear sky and low-level clouds dominate (each with 30% occurrence rate) a fair amount of shallow ( 10%) to deep ( 5%) convection are observed. Cloud radar Doppler spectra are used along with depolarization lidar observations in a neural network approach to detect the presence, layering and inhomogeneity of supercooled liquid layers. Preliminary analyses indicate that most of the low-level clouds sampled contain one or more supercooled liquid layers. Furthermore, the relationship between CVS and the presence of supercooled liquid is established, as is the relationship between the presence of supercool liquid and precipitation susceptibility. Two approaches are explored to bridge the gap between large footprint GCM simulations and high-resolution ground-based observations. The first approach consists of comparing model output and ground-based observations that exhibit the same column CVS type (i.e. same cloud depth, height and layering). Alternatively, the second approach consists of comparing model output and ground-based observations that exhibit the same large-scale GWS type (i.e. same cloud top pressure and optical depth patterns) where ground-based observations are associated to large-scale GWS every 3 hours using the closest satellite overpass.

  14. Remote Sensing of Supercooled Cloud Layers in Cold Climate Using Ground Based Integrated Sensors System and Comparison with Pilot Reports and model forecasts

    NASA Astrophysics Data System (ADS)

    Boudala, Faisal; Wu, Di; Gultepe, Ismail; Anderson, Martha; turcotte, marie-france

    2017-04-01

    In-flight aircraft icing is one of the major weather hazards to aviation . It occurs when an aircraft passes through a cloud layer containing supercooled drops (SD). The SD in contact with the airframe freezes on the surface which degrades the performance of the aircraft.. Prediction of in-flight icing requires accurate prediction of SD sizes, liquid water content (LWC), and temperature. The current numerical weather predicting (NWP) models are not capable of making accurate prediction of SD sizes and associated LWC. Aircraft icing environment is normally studied by flying research aircraft, which is quite expensive. Thus, developing a ground based remote sensing system for detection of supercooled liquid clouds and characterization of their impact on severity of aircraft icing one of the important tasks for improving the NWPs based predictions and validations. In this respect, Environment and Climate Change Canada (ECCC) in cooperation with the Department of National Defense (DND) installed a number of specialized ground based remote sensing platforms and present weather sensors at Cold Lake, Alberta that includes a multi-channel microwave radiometer (MWR), K-band Micro Rain radar (MRR), Ceilometer, Parsivel distrometer and Vaisala PWD22 present weather sensor. In this study, a number of pilot reports confirming icing events and freezing precipitation that occurred at Cold Lake during the 2014-2016 winter periods and associated observation data for the same period are examined. The icing events are also examined using aircraft icing intensity estimated using ice accumulation model which is based on a cylindrical shape approximation of airfoil and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predicted LWC, median volume diameter and temperature. The results related to vertical atmospheric profiling conditions, surface observations, and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predictions are given. Preliminary results suggest that remote sensing and present weather sensors based observations of cloud SD regions can be used to describe micro and macro physical characteristics of the icing conditions. The model based icing intensity prediction reasonably agreed with the PIREPs and MWR observations.

  15. Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2011-09-02

    We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.

  16. Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Geerts, Bart; Chen, Yaosheng

    2016-01-01

    Boundary layer convection (BLC) is common over high-latitude oceans and adjacent coastal regions when a cold airmass becomes exposed to a sufficient fetch of open water. The vertical structure of mixed-phase BLC clouds and precipitation is examined using the Atmospheric Radiation Measurement Program data set collected at the North Slope of Alaska (NSA) site at Barrow, Alaska. BLC may occur at this location in autumn, when cold air masses originating at higher latitudes advect southward over the still ice-free coastal waters north of Alaska. This study identifies such BLC and documents its occurrence and characteristics. Instruments used for this study include profiling Ka band radars, a depolarization backscatter profiling lidar, a scanning X band radar, a microwave radiometer, a ceilometer, surface meteorological probes, and radiosondes. Six criteria are applied to objectively identify the BLC events, using data collected between 2004 and 2013. BLC episodes are relatively common at the NSA site, but almost exclusively in the month of October, and most episodes are relatively short, less than 10 h in duration. Liquid water is commonly found in these mixed-phase BLC clouds, with a typical liquid water path of 150 g/m2, and snowfall rates average ~3 mm h-1 (water equivalent), in some cases over 10 mm h-1, notwithstanding the low cloud echo tops (~1.0-1.5 km). In one rather weak but persistent episode fall speed estimates derived from the profiling Ka band radar indicates the presence of rimed particles, confirming the convective nature of this precipitation.

  17. Presolar Organic Globules in Astromaterials

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Clemett, S. J.

    2012-01-01

    Presolar grains were identified in meteorite residues 20 years ago based on their exotic isotopic compositions [1]. Their study has provide new insights into stellar evolution and the first view of the original building blocks of the solar system. Organic matter in meteorites and IDPs is highly enriched in D/H and N-15/N-14 at micron scales, possibly due to presolar organic grains [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material. Identifying the carriers of these anomalies and elucidating their physical and chemical properties may give new views of interstellar chemistry and better understanding of the original components of the protosolar disk. However, identifying the carriers has been hampered by their small size and the inability to chemically isolate them. Thanks to major advances in nano-scale analytical techniques and advanced sample preparation, we were able to show that in the Tagish Lake meteorite, the principle carriers of these isotopic anomalies are sub-microns, hollow organic globules [5]. The organic globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk [5]. Organic globules with similar physical, chemical, and isotopic properties are also recently found from Bells CM2 carbonaceous chondrite, in IDPs [6] and in the comet Wild-2 samples returned by Stardust [7]. These results support the view that microscopic organic grains were widespread constituents of the protoplanetary disk. Their exotic isotopic compositions trace their origins to the outermost portions of the protosolar disk or a presolar cold molecular cloud.

  18. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical

    NASA Astrophysics Data System (ADS)

    Agúndez, Marcelino; Cernicharo, José; Guélin, Michel

    2015-05-01

    We conducted radioastronomical observations of 9 dark clouds with the IRAM 30 m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483 and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which significantly extends the number of dark clouds where these molecules are known to be present. We have derived a beam-averaged column density of HCCO of ~5 × 1011 cm-2 in both Lupus-1A and L483, which means that the ketenyl radical is just ~10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7) ×1012 cm-2, and CH2CHCH3, (1.9-4-2) ×1013 cm-2, are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in light of these new observational results. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Tables 3-6 are available in electronic form at http://www.aanda.org

  19. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  20. WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In-Situ and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Tao, W.-K.; Matsui, T.; Cifelli, R.; Huo, A.; Lang, S.; Tokay, A.; Peters-Lidard, C.; Jackson, G.; Rutledge, S.; hide

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.

  1. Airborne lidar/radiometric measurements of cirrus cloud parameters and their application to LOWTRAN radiance evaluations

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    1990-01-01

    SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud distribution and analyzing cirrus cloud optical properties. Operation of upward viewing infrared radiometers from an airborne platform provides the optimum method of measuring high altitude cold cloud radiative properties with minimum interference from the thermal emission by the earth's surface and lower atmospheric components. Airborne installed sensors can also operate over large regional areas including water, urban, and mountain surfaces and above lower atmospheric convective clouds and haze layers. Currently available sensors installed on the SRI Queen Air aircraft are illustrated. Lidar and radiometric data records are processed for real time viewing on a color video screen. A cirrus cloud data example is presented as a black and white reproduction of a color display of data at the aircraft altitude of 12,000 ft, the 8 to 14 micron atmospheric radiation background was equivalent to a blackbody temperature of about -60 C and, therefore, the radiometer did not respond strongly to low density cirrus cloud concentrations detected by the lidar. Cloud blackbody temperatures (observed by radiometer) are shown plotted against midcloud temperatures (derived from lidar observed cloud heights and supporting temperature profiles) for data collected on 30 June and 28 July.

  2. A Cloud Greenhouse Effect on Mars: Significant Climate Change in the Recent Past

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Kahre, Melinda A.; Schaeffer, James R.; Montmessin, Frank; Phillips, R J.

    2012-01-01

    The large variations in Mars orbit parameters are known to be significant drivers of climate change on the Red planet. The recent discovery of buried CO2 ice at the South Pole adds another dimension to climate change studies. In this paper we present results from the Ames GCM that show within the past million years it is possible that clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold clouds form, reduce the outgoing longwave radiation, and drive up surface temperatures to maintain global energy balance.

  3. The Arctic clouds from model simulations and long-term observations at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    The Arctic is a region that is very sensitive to global climate change while also experiencing significant changes in its surface air temperature, sea-ice cover, atmospheric circulation, precipitation, snowfall, biogeochemical cycling, and land surface. Although previous studies have shown that the arctic clouds play an important role in the arctic climate changes, the arctic clouds are poorly understood and simulated in climate model due to limited observations. Furthermore, most of the studies were based on short-term experiments and typically only cover the warm seasons, which do not provide a full understanding of the seasonal cycle of arctic clouds. To address the above concerns and to improve our understanding of arctic clouds, six years of observational and retrieval data from 1999 to 2004 at the Atmospheric Radiation Management (ARM) Climate Research Facility (ACRF) North Slope of Alaska (NSA) Barrow site are used to understand the arctic clouds and related radiative processes. In particular, we focus on the liquid-ice mass partition in the mixed-phase cloud layer. Statistical results show that aerosol type and concentration are important factors that impact the mixed-phase stratus (MPS) cloud microphysical properties: liquid water path (LWP) and liquid water fraction (LWF) decrease with the increase of cloud condensation nuclei (CCN) number concentration; the high dust loading and dust occurrence in the spring are possible reasons for the much lower LWF than the other seasons. The importance of liquid-ice mass partition on surface radiation budgets was analyzed by comparing cloud longwave radiative forcings under the same LWP but different ice water path (IWP) ranges. Results show the ice phase enhance the surface cloud longwave (LW) forcing by 8˜9 W m-2 in the moderately thin MPS. This result provides an observational evidence on the aerosol glaciation effect in the moderately thin MPS, which is largely unknown so far. The above new insights are important to guide the model parameterizations of liquid-ice mass partition in arctic mixed-phase clouds, and are served as a test bed to cloud models and cloud microphysical schemes. The observational data between 1999 and 2007 are used to assess the performance of the European Center for Medium-Range Weather Forecasts (ECMWF) model in the Arctic region. The ECMWF model-simulated near-surface humidity had seasonal dependent biases as large as 20%, while also experiencing difficulty representing boundary layer (BL) temperature inversion height and strength during the transition seasons. Although the ECMWF model captured the seasonal variation of surface heat fluxes, it had sensible heat flux biases over 20 W m-2 in most of the cold months. Furthermore, even though the model captured the general seasonal variations of low-level cloud fraction (LCF) and LWP, it still overestimated the LCF by 20% or more and underestimated the LWP over 50% in the cold season. On average, the ECMWF model underestimated LWP by ˜30 g m-2 but more accurately predicted ice water path for BL clouds. For BL mixed-phase clouds, the model predicted water-ice mass partition was significantly lower than the observations, largely due to the temperature dependence of water-ice mass partition used in the model. The new cloud and BL schemes of the ECMWF model that were implemented after 2003 only resulted in minor improvements in BL cloud simulations in summer. These results indicate that significant improvements in cold season BL and mixed-phase cloud processes in the model are needed. In this study, single-layer MPS clouds were simulated by the Weather Research and Forecasting (WRF) model under different microphysical schemes and different ice nuclei (IN) number concentrations. Results show that by using proper IN concentration, the WRF model incorporated with Morrison microphysical scheme can reasonably capture the observed seasonal differences in temperature dependent liquid-ice mass partition. However, WRF simulations underestimate both LWP and IWP indicating its deficiency in capturing the radiative impacts of arctic MPS clouds.

  4. Sea spray as a source of ice nucleating particles - results from the AIDA Ocean03 campaign

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Ickes, L.; Adams, M.; Bierbauer, S.; Bilde, M.; Christiansen, S.; Ekman, A.; Gorokhova, E.; Höhler, K.; Kiselev, A. A.; Leck, C.; Mohr, C.; Mohler, O.; Murray, B. J.; Porter, G.; Ullrich, R.; Wagner, R.

    2017-12-01

    Clouds and their radiative effects are one of the major influences on the radiative fluxes in the atmosphere, but at the same time they remain the largest uncertainty in climate models. This lack of understanding is especially pronounced in the high Arctic. Summertime clouds can persist over long periods in this region, which is difficult to replicate in models based on our current understanding. The clouds most often encountered in the summertime high Arctic consist of a mixture of ice crystals and super-cooled water droplets, so-called mixed-phase clouds. This cloud type is sensitive to the availability of aerosol particles, which can act as cloud condensation nuclei and ice nuclei. However, since the high Arctic is a pristine region, aerosol particles are not very abundant, and the hypothesis of open leads in the Arctic as a potentially important source of cloud and ice nucleating particles via bubble bursting has emerged. In this context, we have conducted a series of experiments at the AIDA chamber at KIT, designed to investigate the mechanisms linking marine biology, seawater chemistry and aerosol physics/potential cloud impacts. During this campaign, two marine diatom species (Melosira arctica and Skeletonema marinoi) as well as sea surface microlayer samples collected during several Arctic Ocean research cruises were investigated. To aerosolize the samples, a variety of methods were used including a sea spray simulation chamber to mimic the process of bubble-bursting. The ice nucleating efficiency (mixed-phase cloud regime) of the samples was determined either directly in the AIDA chamber during adiabatic expansions, or using the INKA continuous flow diffusion chamber, or a cold stage. Results from the campaign along with the potential implications are presented.

  5. ALMA Observations of a Quiescent Molecular Cloud in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Rémy; Bernard, Jean-Philippe; Onishi, Toshikazu; Wojciechowski, Evan; Bandurski, Jeffrey B.; Kawamura, Akiko; Roman-Duval, Julia; Cao, Yixian; Chen, C.-H. Rosie; Chu, You-hua; Cui, Chaoyue; Fukui, Yasuo; Montier, Ludovic; Muller, Erik; Ott, Juergen; Paradis, Deborah; Pineda, Jorge L.; Rosolowsky, Erik; Sewiło, Marta

    2017-12-01

    We present high-resolution (subparsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in 12CO(2-1) and the high column density regions in 13CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the “Planck cold cloud” or PCC) in the southern outskirts of the galaxy where star formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and five times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface-density structures tend to exhibit supervirial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (“leaves”) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-line-width relationships.

  6. Boundary conditions for the paleoenvironment: Chemical and physical processes in the pre-solar nebula

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Schloerb, F. Peter

    1987-01-01

    Detailed study of the first interstellar hydrocarbon ring, cyclopropenylidene (C3H2), is continuing. The singly deuterated isotope of this molecule, C3HD, was observed in several cold interstellar clouds. The results of a large survey for C3H2 in galactic sources of various types will soon be completed. It appears that cyclopropenylidene is present in virtually all interstellar clouds of at least moderate density. In order to make the first determinations of the CO2/CO abundance ratio in interstellar sources, observations of protonated CO2 were pursued. The spectrum from 18.5 to 22 GHz for several interstellar clouds is being systematically measured. Particular attention is being given to the cold, dark clouds TMC-1 and L124N, which may be formation sites for solar mass stars. The phenomena of maser emission from molecules of methanol is being studied in certain interstellar clouds. A comparison of 1 millimeter continuum emission from dust with the column density of carbon monoxide as determined from the rare C(18)O isotope for 4 molecular clouds in the Galaxy is nearing completion. Papers published during the period of this report are listed.

  7. Fundamental Physics

    NASA Image and Video Library

    2003-02-09

    This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.

  8. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    2017-11-01

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.

  9. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed 2 mm h-1, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.

  10. Observation and modelling of fog at Cold Lake, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Wu, Di; Boudala, Faisal; Weng, Wensong; Taylor, Peter A.; Gultepe, Ismail; Isaac, George A.

    2017-04-01

    Climatological data indicate that the Cold Lake, Alberta airport location (CYOD, 54.4°N, 110.3°W) is often affected by various low cloud and fog conditions. In order to better understand these conditions, Environment and Climate Change Canada (ECCC), in cooperation with the Canadian Department of National Defense (DND), installed a number of specialized instruments. The ground based instruments include a Vaisala PWD22 present weather sensor, a multi-channel microwave profiling radiometer (MWR) and a Jenoptik CHM15k ceilometer. The focus here will be on understanding the micro-physical and dynamical conditions within the boundary layer, on the surface and aloft that lead to the occurrence of fog using a high resolution 1-D boundary-layer model, ground based measurements, Geostationary Operational Environmental Satellite (GOES) data and predictions from the Canadian 2.5 km resolution NWP model (HRDPS - High Resolution Deterministic Prediction System ). Details of the 1-D model will be presented. The condensation of water vapour into droplets and the formation of fog in the Earth's atmospheric boundary layer can involve a complex balance between vertical turbulent mixing of heat and water vapour, cloud micro-physical processes and radiative transfers of heat. It is a phenomenon which has been studied for many years in a variety of contexts. On land, surface cooling via long wave radiation at night is often the trigger and a number of 1-D (one dimensional, height and time dependent) radiative fog models have been developed. Our turbulence closure includes the turbulent kinetic energy equation but we prefer to specify a height, roughness Rossby number and local stability dependent, "master" length scale instead of somewhat empirical dissipation or similar equations. Results show that low cloud and fog can develop, depending on initial profiles of wind, temperature and mixing ratio, land surface interactions and solar radiation. Preliminary analysis of Cold Lake observational data indicates that the surface-based in situ measurements agree well with aviation weather observation METAR reports and are comparable with model simulations. Both the HRDPS model and microwave radiometry data indicate low level fog and cloud formation but the depths and intensities differ considerably depending on environmental conditions. Causes for this are under investigation with the high resolution 1-D boundary-layer model.

  11. Artist's Rendering of Multiple Whirlpools in a Sodium Gas Cloud

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.

  12. Uptake and mobilization of organic chemicals with clouds: evidence from a hail sample.

    PubMed

    Ma, Jianmin; Sverko, Ed; Su, Yushan; Zhang, Junhua; Gao, Hong

    2013-09-03

    Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were measured in hail samples collected during a storm that occurred on a spring morning in Toronto, Canada. The presence of these organic chemicals in hail suggests that clouds likely provide an atmospheric transport pathway for these substances in the free atmosphere. Results reported here may carry significant implications for atmospheric transport, mass balance, tropospheric cold trapping, and environmental fate of organic chemicals. Backward trajectories along with measured and modeled cloud cover show that clouds causing the hail event were formed and advected from the midwestern and southeastern United States. After being emitted to the atmosphere, the organic chemicals were likely lifted by atmospheric ascending motions to a higher atmospheric elevation and partitioned onto clouds. These clouds then carry the organic chemicals to a downwind location where they are deposited to the ground surface via precipitation. We found that the organic chemicals with high solubility and vapor pressure tend to partition into clouds through sorption to cloudwater droplets and ice particles. It was found that approximately 7-30% of pyrene could be sorbed into cloudwater droplets and ice particles in this hail event at the expense of reduced gas-phase concentrations.

  13. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and thin liquid water clouds from the Southern Ocean. Low pressure systems over the Bellingshausen Sea produce outflow of cold, dry continental polar air, yielding predominantly tenuous ice cloud at Ross Island.

  14. A-Train Observations of Deep Convective Storm Tops

    NASA Technical Reports Server (NTRS)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  15. Is the gas-phase OH+H2CO reaction a source of HCO in interstellar cold dark clouds? A kinetic, dynamic and modelling study

    PubMed Central

    Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.

    2018-01-01

    Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. k values greatly increase from 2.1×10-11 cm3 s-1 at 107 K to 1.2×10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented. PMID:29880977

  16. Is the Gas-phase OH+H2CO Reaction a Source of HCO in Interstellar Cold Dark Clouds? A Kinetic, Dynamic, and Modeling Study

    NASA Astrophysics Data System (ADS)

    Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.

    2017-11-01

    The chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T ˜ 10-100 K). Scarce kinetic information is currently available for these kinds of reactions at T < 200 K. In this work, we use the Cinétique de Réaction en Ecoulement Supersonique Uniforme (CRESU; Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. The k values greatly increase from 2.1 × 10-11 cm3 s-1 at 107 K to 1.2 × 10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface that generates highly accurate potential and includes long-range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10 K (2.6 × 10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yr. The different sources of production of HCO are presented and the uncertainties in the chemical networks are discussed. The present reaction is shown to account for a few percent of the total HCO production rate. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. Extensions to photodissociation regions and diffuse cloud environments are also addressed.

  17. Is the gas-phase OH+H2CO reaction a source of HCO in interstellar cold dark clouds? A kinetic, dynamic and modelling study.

    PubMed

    Ocaña, A J; Jiménez, E; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Agúndez, M; Cernicharo, J; Zanchet, A; Del Mazo, P; Roncero, O; Aguado, A

    2017-11-20

    Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU ( Cinétique de Réaction en Ecoulement Supersonique Uniforme , which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients ( k ) of the gas-phase OH+H 2 CO reaction between 22 and 107 K. k values greatly increase from 2.1×10 -11 cm 3 s -1 at 107 K to 1.2×10 -10 cm 3 s -1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H 2 CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10 -10 cm 3 s -1 ). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 10 5 -10 6 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.

  18. A mesoscale vortex over Halley Station, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.; Lachlan-Cope, T.A.; Warren, D.E.

    1993-05-01

    A detailed analysis of the evolution and structure of a mesoscale vortex and associated cloud comma that developed at the eastern edge of the Weddell Sea, Antarctica, during the early part of January 1986 is presented. The system remained quasi-stationary for over three days close to the British research station Halley (75[degrees]36'S, 26'42[degrees]W) and gave severe weather with gale-force winds and prolonged snow. The formation and development of the system were investigated using conventional surface and upper-air meteorological observations taken at Halley, analyses from the U.K. Meteorological Office 15-level model, and satellite imagery and sounder data from the TIROS-N-NOAA seriesmore » of polar orbiting satellites. The thermal structure of the vortex was examined using atmospheric profiles derived from radiance measurements from the TIROS Operational Vertical Sounder. Details of the wind field were examined using cloud motion vectors derived from a sequence of Advanced Very High Resolution Radiometer images. The vortex developed inland of the Brunt Ice Shelf in a strong baroclinic zone separating warm air, which had been advected polewards down the eastern Weddell Sea, and cold air descending from the Antarctic Plateau. The system intensified when cold, continental air associated with an upper-level short-wave trough was advected into the vortex. A frontal cloud band developed when slantwise ascent of warm air took place at the leading edge of the cold-air outbreak. Most of the precipitation associated with the low occurred on this cloud band. The small sea surface-atmospheric temperature differences gave only limited heat fluxes and there was no indication of deep convection associated with the system. The vortex was driven by baroclinic forcing and had some features in common with the baroclinic type of polar lows that occur in the Northern Hemisphere. 25 refs., 14 figs.« less

  19. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that theremore » is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.« less

  20. Propagation of light through small clouds of cold interacting atoms

    NASA Astrophysics Data System (ADS)

    Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.

    2016-11-01

    We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.

  1. Miniaturized Lab System for Future Cold Atom Experiments in Microgravity

    NASA Astrophysics Data System (ADS)

    Kulas, Sascha; Vogt, Christian; Resch, Andreas; Hartwig, Jonas; Ganske, Sven; Matthias, Jonas; Schlippert, Dennis; Wendrich, Thijs; Ertmer, Wolfgang; Maria Rasel, Ernst; Damjanic, Marcin; Weßels, Peter; Kohfeldt, Anja; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Grzeschik, Christoph; Krutzik, Markus; Wicht, Andreas; Peters, Achim; Herrmann, Sven; Lämmerzahl, Claus

    2017-02-01

    We present the technical realization of a compact system for performing experiments with cold 87Rb and 39K atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low μK regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub- μK temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an optical dipole trap. A first test in microgravity, including the creation of a cold Rb ensemble, shows the functionality of the system.

  2. Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy

    2018-04-01

    This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.

  3. Clouds in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Montmessin, Franck

    2018-01-01

    Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.

  4. Magnetic conveyor belt for transporting and merging trapped atom clouds.

    PubMed

    Hänsel, W; Reichel, J; Hommelhoff, P; Hänsch, T W

    2001-01-22

    We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.

  5. Formation of a katabatic induced cold front at the east Andean slopes

    NASA Astrophysics Data System (ADS)

    Trachte, K.; Nauss, T.,; Rollenbeck, R.; Bendix, J.

    2009-04-01

    Within the DFG research unit 816, climate dynamics in a tropical mountain rain forest in the national reserve of the Reserva Biósfera de San Francisco in South Ecuador are investigated. Precipitation measurements in the mountain environment of the Estación Científica de San Francisco (ECSF) with a vertical rain radar profiler have been made over the last seven years. They reveal unexpected constant early morning rainfall events. On the basis of cloud top temperatures from corresponding GOES satellite imageries, a Mesoscale Convective System could be derived. Its formation region is located south-east of the ECSF in the Peruvian Amazon basin. The generation of the MCS is assumed to results from an interaction of both local and mesoscale conditions. Nocturnal drainage air from the Andean slopes and valleys confluences in the Amazon basin due to the concave lined terrain. This cold air converges with the warm-moist air of the Amazon inducing a local cold front. This process yields to deep convection resulting in a MCS. With the numerical model ARPS the hypothesized formation of a cloud cluster due to a katabatic induced cold front is shown in an ideal case study. Therefor an ideal terrain model representing the features of the Andes in the target area has been used. The simplification of the oprography concerns a concave lined slope and a valley draining into the basin. It describes the confluence of the cold drainage air due to the shape of the terrain. Inside the basin the generation of a local cold front is shown, which triggers the formation of a cloud cluster.

  6. Evaluating the Performance of Single and Double Moment Microphysics Schemes During a Synoptic-Scale Snowfall Event

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2011-01-01

    Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models for winter weather and identify best practices present within these various schemes.

  7. The impact of organic vapours on warm cloud formation; characterisation of chamber setup and first experimental results

    NASA Astrophysics Data System (ADS)

    Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon

    2016-04-01

    The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.

  8. Antarctica Cloud Cover for October 2003 from GLAS Satellite Lidar Profiling

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hart, W. D.

    2005-01-01

    Seeing clouds in polar regions has been a problem for the imagers used on satellites. Both clouds and snow and ice are white, which makes clouds over snow hard to see. And for thermal infrared imaging both the surface and the clouds cold. The Geoscience Laser Altimeter System (GLAS) launched in 2003 gives an entirely new way to see clouds from space. Pulses of laser light scatter from clouds giving a signal that is separated in time from the signal from the surface. The scattering from clouds is thus a sensitive and direct measure of the presence and height of clouds. The GLAS instrument orbits over Antarctica 16 times a day. All of the cloud observations for October 2003 were summarized and compared to the results from the MODIS imager for the same month. There are two basic cloud types that are observed, low stratus with tops below 3 km and high cirrus form clouds with cloud top altitude and thickness tending at 12 km and 1.3 km respectively. The average cloud cover varies from over 93 % for ocean and coastal regions to an average of 40% over the East Antarctic plateau and 60-90% over West Antarctica. When the GLAS monthly average cloud fractions are compared to the MODIS cloud fraction data product, differences in the amount of cloud cover are as much as 40% over the continent. The results will be used to improve the way clouds are detected from the imager observations. These measurements give a much improved understanding of distribution of clouds over Antarctica and may show how they are changing as a result of global warming.

  9. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change. © 2016 John Wiley & Sons Ltd.

  10. Cloud-resolving model intercomparison of an MC3E squall line case: Part I-Convective updrafts: CRM Intercomparison of a Squall Line

    DOE PAGES

    Fan, Jiwen; Han, Bin; Varble, Adam; ...

    2017-09-06

    An intercomparison study of a midlatitude mesoscale squall line is performed using the Weather Research and Forecasting (WRF) model at 1 km horizontal grid spacing with eight different cloud microphysics schemes to investigate processes that contribute to the large variability in simulated cloud and precipitation properties. All simulations tend to produce a wider area of high radar reflectivity (Z e > 45 dBZ) than observed but a much narrower stratiform area. Furthermore, the magnitude of the virtual potential temperature drop associated with the gust front passage is similar in simulations and observations, while the pressure rise and peak wind speedmore » are smaller than observed, possibly suggesting that simulated cold pools are shallower than observed. Most of the microphysics schemes overestimate vertical velocity and Z e in convective updrafts as compared with observational retrievals. Simulated precipitation rates and updraft velocities have significant variability across the eight schemes, even in this strongly dynamically driven system. Differences in simulated updraft velocity correlate well with differences in simulated buoyancy and low-level vertical perturbation pressure gradient, which appears related to cold pool intensity that is controlled by the evaporation rate. Simulations with stronger updrafts have a more optimal convective state, with stronger cold pools, ambient low-level vertical wind shear, and rear-inflow jets. We found that updraft velocity variability between schemes is mainly controlled by differences in simulated ice-related processes, which impact the overall latent heating rate, whereas surface rainfall variability increases in no-ice simulations mainly because of scheme differences in collision-coalescence parameterizations.« less

  11. Application of the CloudSat and NEXRAD Radars Toward Improvements in High Resolution Operational Forecasts

    NASA Technical Reports Server (NTRS)

    Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.

    2008-01-01

    As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.

  12. Investigation of diverse bacteria in cloud water at Mt. Tai, China.

    PubMed

    Xu, Caihong; Wei, Min; Chen, Jianmin; Sui, Xiao; Zhu, Chao; Li, Jiarong; Zheng, Lulu; Sui, Guodong; Li, Weijun; Wang, Wenxing; Zhang, Qingzhu; Mellouki, Abdelwahid

    2017-02-15

    Bacteria are abundant in atmospheric water phase with the potential to influence atmospheric processes and human health, yet relatively little information is known about the bacterial characteristics at high altitudes. Here we investigated the bacterial community by high throughput sequencing in 24 cloud water samples collected from September 26 to October 31, at the summit of Mt. Tai (36°15' N, 117°06' E, 1534m a.s.l) in China. Diverse bacterial population were identified and the gram-negative bacteria contributed the majority of total bacteria including Proteobacteria (81.6%) and Bacteroidetes (3.9%), followed by gram-positive bacteria Firmicutes (7.1%) and Actinobacteria (2.3%). These gram-negative taxa mainly inhabited in leaf-surface and cold environments. Meanwhile bacteria involved in the cloud condensation nuclei and ice nuclei formation were observed such as Sphingomonas (6.7%), Pseudomonas (4.1%), and Bacillus (1.1%). In addition, Sphingmonas was more active than that in daytime and participated in the cloud chemistry process. Meanwhile O 3 and SO 2 critically contributed to the variation of bacterial community. It is the first report on the bacterial community structure of cloud water over Asian area. Our results can serve as an important reference for environmental scientists, and biologists. Copyright © 2016. Published by Elsevier B.V.

  13. The Galactic fountain as an origin for the Smith Cloud

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Fraternali, F.

    2017-01-01

    The recent discovery of an enriched metallicity for the Smith high-velocity H I Cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces the kinematics and the distance of the SC, but is in disagreement with the cloud's cometary morphology, if this is produced by ram-pressure stripping by the ambient gas. To explain the cloud morphology, we explore two scenarios: (I) the outflow is inclined with respect to the vertical direction and (II) the cloud is entrained by a fast wind that escapes an underlying superbubble. Solutions in agreement with all observational constraints can be found for both cases, the former requires outflow angles >40° while the latter requires ≳1000 km s-1 winds. All scenarios predict that the SC is in the ascending phase of its trajectory and has large - but not implausible - energy requirements.

  14. A characteristic scale for cold gas

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie

    2018-02-01

    We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.

  15. Odd cloud in the Ross Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 28, 2002, MODIS captured this image of an interesting cloud formation in the boundary waters between Antarctica's Ross Sea and the Southern Ocean. A dragon? A snake? A fish? No, but it is an interesting example of the atmospheric physics of convection. The 'eye' of this dragon-looking cloud is likely a small spot of convection, the process by which hot moist air rises up into the atmosphere, often producing big, fluffy clouds as moisture in the air condenses as rises into the colder parts of the atmosphere. A false color analysis that shows different kinds of clouds in different colors reveals that the eye is composed of ice crystals while the 'body' is a liquid water cloud. This suggests that the eye is higher up in the atmosphere than the body. The most likely explanation for the eye feature is that the warm, rising air mass had enough buoyancy to punch through the liquid water cloud. As a convective parcel of air rises into the atmosphere, it pushes the colder air that is higher up out of its way. That cold air spills down over the sides of the convective air mass, and in this case has cleared away part of the liquid cloud layer below in the process. This spilling over of cold air from higher up in the atmosphere is the reason why thunderstorms are often accompanied by a cool breeze. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenfeld, Daniel; Chemke, Rei; DeMott, Paul J.

    The formation of highly supercooled rain was documented by aircraft observations in clouds at a wide range of conditions near the coastal region of the western United States. Several case studies are described in detail using combined cloud and aerosol measurements to document both the highly super-cooled condition and the relatively pristine aerosol conditions under which it forms. The case studies include: (1) Marine convective clouds over the coastal waters of northern California, as measured by cloud physics probes flown on a Gulfstream-1 aircraft during the CALWATER campaign in February and early March 2011. The clouds had extensive drizzle inmore » their tops, which extended downward to the 0°C isotherm as supercooled rain. Ice multiplication was observed only in mature parts of the clouds where cloud water was already depleted. (2) Orographically triggered convective clouds in marine air mass over the foothills of the Sierra Nevada to the east of Sacramento, as measured in CALWATER. Supercooled rain was observed down to -21°C. No indications for ice multiplication were evident. (3) Orographic layer clouds over Yosemite National Park, also measured in CALWATER. The clouds had extensive drizzle at -21°C, which intensified with little freezing lower in the cloud, and (4) Supercooled drizzle drops in layer clouds near Juneau, Alaska, as measured by the Wyoming King Air as part of a FAA project to study aircraft icing in this region. Low concentrations of CCN was a common observation in all these clouds, allowing for the formation of clouds with small concentration of large drops that coalesced into supercooled drizzle and raindrops. Another common observation was the absence of ice nuclei and/or ice crystals in measurable concentrations was associated with the persistent supercooled drizzle and rain. Average ice crystal concentrations were 0.007 l-1 at the top of convective clouds at -12°C and 0.03 l-1 in the case of layer clouds at -21°C. In combination these two conditions provide ideal conditions for the formation of highly supercooled drizzle and rain. These results help explain the anomalously high incidences of aircraft icing at cold temperatures in U.S. west coast clouds (Bernstein et al., 2004) and highlight the need to include aerosol effects when simulating aircraft icing with cloud models. These case studies can also serve as benchmarks for explicit cloud microphysics models attempting to simulate the formation of precipitation in these types of pristine conditions.« less

  17. Two cold-season derechoes in Europe

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  18. Method for cold stable biojet fuel

    DOEpatents

    Seames, Wayne S.; Aulich, Ted

    2015-12-08

    Plant or animal oils are processed to produce a fuel that operates at very cold temperatures and is suitable as an aviation turbine fuel, a diesel fuel, a fuel blendstock, or any fuel having a low cloud point, pour point or freeze point. The process is based on the cracking of plant or animal oils or their associated esters, known as biodiesel, to generate lighter chemical compounds that have substantially lower cloud, pour, and/or freeze points than the original oil or biodiesel. Cracked oil is processed using separation steps together with analysis to collect fractions with desired low temperature properties by removing undesirable compounds that do not possess the desired temperature properties.

  19. Thin Ice Clouds in Far IR Experiment: TICFIRE

    NASA Astrophysics Data System (ADS)

    Blanchet, Jean-Pierre

    The TICFIRE mission concept developed with the support of the Canadian Space Agency aims: 1) to improve measurements of water-vapor concentration in the low limit, where cold regions are most sensitive and 2) to determine the contribution of Thin Ice Clouds (TIC) to the energy balance and the role of their microphysical properties on atmospheric cooling. TICFIRE is a process-oriented mission on a micro-satellite platform dedicated to observe key parameters of TIC forming in the cold regions of the Poles and globally, in the upper troposphere. It locates cloud top profiles at the limb and measures at nadir the corresponding upwelling radiance of the atmosphere directly in the thermal window and in the Far Infrared (FIR) spectrum over cold geographical regions, precisely where most of the atmospheric thermal cooling takes place. Due to technological limitations, the FIR spectrum (17 to 50 m) is not regularly monitored by conventional sensors despite its major importance. This deficiency in key data also impacts operational weather forecasting. TICFIRE will provide on a global scale a needed contribution in calibrated radiance assimilation near the IR maximum emission to improve weather forecast. Therefore, TICFIRE is a science-driven mission with a strong operational component.

  20. SH Observations In and Toward Sgr B2(N): Linking the Missing Sulfur

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael

    Where is the missing sulfur in the molecular reservoir of the interstellar medium (ISM)? In the warm gas phase ISM, the abundance of sulfur is nearly equivalent to its solar value, but in the cold, diffuse clouds which span the space between stars, sulfur is depleted by several orders of magnitude. Our inability to account for this depletion represents a significant gap in our understanding of the fundamental chemical and physical processes occurring in the primordial reservoirs of gas and dust in the ISM. Central to this chemistry is SH, a radical for which few observations presently exist, and for which SOFIA is uniquely capable of accessing in its ground rotational state. We propose observations of SH in the cold, shocked molecular shell surrounding Sgr B2(N), and, simultaneously, in diffuse and translucent clouds along the line of sight to Sgr B2(N). We will constrain the abundance of SH, and compare it to previous measurements of SO, CS, C_2S, HCS(+) , H_2CS, and H_2S in these sources which span the evolutionary timescale from diffuse clouds to dense, cold shocked regions.

  1. Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    China, Swarup; Kulkarni, Gourihar; Scarnato, Barbara V.

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those frommore » supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. Lastly, these results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.« less

  2. Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties

    DOE PAGES

    China, Swarup; Kulkarni, Gourihar; Scarnato, Barbara V.; ...

    2015-11-01

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those frommore » supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. Lastly, these results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.« less

  3. An analytical model for the evolution of the coldest component of the Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Bohigas, J.

    2017-04-01

    The most striking feature of the Boomerang Nebula is a large nearly spherical cloud where the temperature is close to 2 K. At its inner and outer boundaries, this cloud is expanding at velocities close to 35 and 180 km s-1. The cloud surrounds an asymptotic giant branch (AGB) star and a smaller bipolar molecular cloud, expanding much more slowly. The ultracold spherical cloud has been and still is expanding into a rarefied medium, since there is no trace of a shock wave. This ultracold cloud is modelled using the analytical solution for a power-driven expansion of a spherically symmetric cloud, followed by an adiabatic expansion phase, both into a vacuum. Assuming that the cloud is at a distance of 1500 pc, the present temperature and velocity profile are reproduced with a model where the cloud has an energy close to 8.5 × 1046 erg per solar mass and was ejected 1000 yr ago. In this model, the power-driven phase lasts for ˜10 yr and half of the energy is injected in less than a year. The general features of this model, are amenable with what is found in other spherical shells surrounding AGB stars, the small amount of mass lost by massive OH/IR stars and evolutionary models indicating that there may be extremely high and abrupt mass-loss phases in AGB stars. The energy and time-scale suggest that the ejection of the cold spherical cloud was an intermediate luminosity transient.

  4. Pattern of downstream eddies in stratocumulus clouds over Pacific Ocean

    NASA Image and Video Library

    1973-08-01

    SL3-121-2371 (July-September 1973) --- A pattern of downstream eddies in the stratocumulus clouds over the Pacific Ocean west of Baja California, as photographed by the crewmen of the second Skylab manned mission (Skylab 3) from the space station cluster in Earth orbit. The clouds, produced by the cold California current running to the south and southwest, are prevented from rising by warm air above them. Photo credit: NASA

  5. Simulation of the brightness temperatures observed by the visible infrared imaging radiometer suite instrument

    NASA Astrophysics Data System (ADS)

    Evrard, Rebecca L.; Ding, Yifeng

    2018-01-01

    Clouds play a large role in the Earth's global energy budget, but the impact of cirrus clouds is still widely questioned and researched. Cirrus clouds reside high in the atmosphere and due to cold temperatures are comprised of ice crystals. Gaining a better understanding of ice cloud optical properties and the distribution of cirrus clouds provides an explanation for the contribution of cirrus clouds to the global energy budget. Using radiative transfer models (RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global energy budget as well as improve the use of global climate models. A newer, faster RTM such as the visible infrared imaging radiometer suite (VIIRS) fast radiative transfer model (VFRTM) is compared to a rigorous RTM such as the line-by-line radiative transfer model plus the discrete ordinates radiative transfer program. By comparing brightness temperature (BT) simulations from both models, the accuracy of the VFRTM can be obtained. This study shows root-mean-square error <0.2 K for BT difference using reanalysis data for atmospheric profiles and updated ice particle habit information from the moderate-resolution imaging spectroradiometer collection 6. At a higher resolution, the simulated results of the VFRTM are compared to the observations of VIIRS resulting in a <1.5 % error from the VFRTM for all cases. The VFRTM is validated and is an appropriate RTM to use for global cloud retrievals.

  6. The Teton-Yellowstone Tornado of 21 July 1987

    NASA Technical Reports Server (NTRS)

    Fujita, T. Theodore

    1989-01-01

    The Teton-Yellowstone Tornado, rated F4, crossed the Continental Divide at 3070 m, leaving behind a damage swath 39.2-km long and 2.5-km wide. A detailed damage analysis by using stereo-pair and color photos revealed the existence of four spinup swirl marks and 72 microburst outflows inside the damage area. The tornado was spawned by a mesocyclone that formed at the intersection of a mesohigh boundary and a warm front. The parent cloud of the tornado, tracked on eight infrared-temperature maps from GOES East and West, moved at 25 m s-1 and the number of cold temperature pixels below -60 C reached a distinct peak during the tornado time. Identified and tracked also are two warm spots enclosed inside the cold anvil cloud. On the basis of their identity and movement, an attempt was made to explain the cause of these spots as being the stratospheric cirrus clouds.

  7. The Relationship Between Latent Heating, Vertical Velocity, and Precipitation Processes: the Impact of Aerosols on Precipitation in Organized Deep Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-01-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  8. The role of marine organic ice nuclei in a global climate model

    NASA Astrophysics Data System (ADS)

    Hummel, Matthias; Egill Kristjansson, Jon

    2016-04-01

    Ice particle concentrations are a key parameter for cold clouds, exerting a strong influence on cloud lifetime, precipitation release, and the cloud radiative effect. The availability of ice-nucleating particles (INPs) and the temperature range in which they become activated determine the rate of ice formation in clouds (Hoose und Möhler, 2012). Particles from marine sources may contribute to ice formation in clouds, as they are abundant in the atmosphere and some of them have been found to be ice-nucleating active, but the extent of their influence on clouds is not known (Wilson et al., 2015). Wilson et al. (2015) collected marine INPs from the sea surface microlayer and analyzed their ice nucleation efficiency with a cold stage. Even in cirrus clouds, marine INPs may play a role, as their ice nucleation surface site density as a function of RHice at -40° C has been shown to be larger than for mineral dusts (ATD, kaolinite, and feldspar). In this study, we test the influence of marine organic aerosols on clouds via immersion freezing with the earth system model NorESM2 (Version 2 of the Norwegian Earth System Model; Bentsen et al., 2013). The model is based on the Community Earth System Model (CESM1.2) and its atmospheric part (CAM5 Oslo) is based on the Community Atmosphere Model (CAM5.3). The parameterization of ice nucleation of marine INPs is expressed as an exponential function of temperature multiplied by the total organic content. Marine organic aerosols are part of the sea spray aerosol and are ejected during bubble bursting. INPs are associated with exudates or other macromolecules mainly from diatoms. Hence, their concentration is related to the sea salt aerosols in the model simulation. Our first results indicate that the high marine INP concentrations at around 850 hPa occur at high latitudes. These regions have low mineral dust concentrations, which might increase the influence of marine INP on clouds. However, they do not coincide with regions of high winds and therefore large sea spray aerosol concentrations, contrary to model simulations in Wilson et al. (2015) with the global aerosol process model (GLOMAP), but are shifted further polewards. Therefore, marine INP concentrations strongly depend on temperature and do not necessarily coincide with large sea spray concentrations. At mid-latitudes, marine INP concentrations rank below dust INP by at least one order of magnitude. Further, this presentation will describe the influence of marine INP on cloud properties and give an estimate of the cloud radiative effect of marine INP. Bentsen, M., I. Bethke, et al. (2013): The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev. 6(3): 687-720. Hoose, C. und O. Möhler (2012): Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys. 12(20): 9817-9854. Wilson, T. W., L. A. Ladino, et al. (2015): A marine biogenic source of atmospheric ice-nucleating particles, Nature 525(7568): 234-238.

  9. The puzzling Venusian polar atmospheric structure reproduced by a general circulation model

    PubMed Central

    Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro; Kashimura, Hiroki; Imamura, Takeshi; Matsuda, Yoshihisa

    2016-01-01

    Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called ‘cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels. PMID:26832195

  10. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE PAGES

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  11. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yang; Barger, Vernon; Berger, Joshua

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  12. Anomalous 13C isotope abundances in C3S and C4H observed toward the cold interstellar cloud, Taurus Molecular Cloud-1.

    PubMed

    Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi

    2013-10-03

    We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

  13. New Insights on Hydro-Climate Feedback Processes over the Tropical Ocean from TRMM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Li, Xiaofan; Sui, C. H.

    2002-01-01

    In this paper, we study hydro-climate feedback processes over the tropical oceans, by examining the relationships among large scale circulation and Tropical Rainfall Measuring Mission Microwave Imager-Sea Surface Temperature (TMI-SST), and a range of TRMM rain products including rain rate, cloud liquid water, precipitable water, cloud types and areal coverage, and precipitation efficiency. Results show that for a warm event (1998), the 28C threshold of convective precipitation is quite well defined over the tropical oceans. However, for a cold event (1999), the SST threshold is less well defined, especially over the central and eastern Pacific cold tongue, where stratiform rain occurs at much lower than 28 C. Precipitation rates and cloud liquid water are found to be more closely related to the large scale vertical motion than to the underlying SST. While total columnar water vapor is more strongly dependent on SST. For a large domain, over the eastern Pacific, we find that the areal extent of the cloudy region tends to shrink as the SST increases. Examination of the relationship between cloud liquid water and rain rate suggests that the residence time of cloud liquid water tends to be shorter, associated with higher precipitation efficiency in a warmer climate. It is hypothesized that the reduction in cloudy area may be influenced both by the shift in large scale cloud patterns in response to changes in large scale forcings, and possible increase in the cloud liquid water conversion to rain water in a warmer environment. Results of numerical experiments with the Goddard cloud resolving model to test the hypothesis will be discussed.

  14. Can Hail and Rain Nucleate Cloud Droplets?

    NASA Astrophysics Data System (ADS)

    Weiss, S.; Prabhakaran, P.; Krekhov, A.; Pumir, A.; Bodenschatz, E.

    2017-12-01

    We present results from a laboratory scale moist convection experiment composed of a mixture of pressurized sulphur hexafluoride (SF6 - liquid and vapor phase) and helium (He - gas phase) to mimic the wet (saturated water vapor) and dry components (nitrogen, oxygen etc.) of the earth's atmosphere. We operate the experiments close to critical conditions to allow for homogeneous nucleation of sulphur hexafluoride droplets. The liquid SF6 pool is heated from below and the warm SF6 vapor from the liquid-vapor interface rise and condense underneath the cold top plate. We observe the nucleation of microdroplets in the wake of cold drops falling through the SF6-He atmosphere. Using classical nucleation theory, we show that the nucleation is caused by isobaric cooling of SF6 vapor in the wake of the cold drop. Furthermore, we argue that in an atmospheric cloud, falling hail and large cold raindrops may induce heterogeneous nucleation of microdroplets in their wake. We also observe that under appropriate conditions these microdroplets form a stable horizontal layer, thus separating regions of super and sub-critical saturation.

  15. Can hail and rain nucleate cloud droplets?

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Prasanth; Weiss, Stephan; Krekhov, Alexei; Pumir, Alain; Bodenschatz, Eberhard

    2017-11-01

    We present results from a laboratory scale moist convection experiment composed of a mixture of pressurized sulphur hexafluoride (SF6 - liquid and vapor phase) and helium (He - gas phase) to mimic the wet (saturated water vapor) and dry components (nitrogen, oxygen etc.) of the earth's atmosphere. We operate the experiments close to critical conditions to allow for homogeneous nucleation of sulphur hexafluoride droplets. The liquid SF6 pool is heated from below and the warm SF6 vapor from the liquid-vapor interface rise and condense underneath the cold top plate. We observe the nucleation of microdroplets in the wake of cold drops falling through the SF6-He atmosphere. Using classical nucleation theory, we show that the nucleation is caused by isobaric cooling of SF6 vapor in the wake of the cold drop. Furthermore, we argue that in an atmospheric cloud, falling hail and large cold raindrops may induce heterogeneous nucleation of microdroplets in their wake. We also observe that under appropriate conditions these microdroplets form a stable horizontal layer, thus separating regions of super and sub-critical saturation.

  16. High-stability compact atomic clock based on isotropic laser cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas

    2010-09-15

    We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less

  17. Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew

    2004-01-01

    Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.

  18. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Wei-Kuo

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e.,more » Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain suppression, however, only occurs during the first hour of simulation. This result suggests that microphysical processes dominate the impact of aerosols on precipitation in the early stage of precipitation development. • During the mature stage of the simulations, the effect of increasing aerosol concentration ranges from rain suppression in the PRESTORM case to little effect on surface rainfall in the CRYSTAL-FACE case to rain enhancement in the TOGA COARE case. • The model results suggest that evaporative cooling is a key process in determining whether higher CCN reduces or enhances precipitation. Cold pool strength can be enhanced by stronger evaporation. When cold pool interacts with the near surface wind shear, the low-level convergence can be stronger, facilitating secondary cloud formation and more vigorous precipitation processes. Evaporative cooling is more than two times stronger at low levels with higher CCN for the TOGA COARE case during the early stages of precipitation development. However, evaporative cooling is slightly stronger at lower levels with lower CCN for the PRESTORM case. The early formation of rain in the clean environment could allow for the formation of an earlier and stronger cold pool compared to a dirty environment. PRESTORM has a very dry environment and both large and small rain droplets can evaporate. Consequently, the cold pool is relatively weaker, and the system is relatively less intense with higher CCN. • Sensitivity tests are conducted to determine the impact of ice processes on aerosol-precipitation interaction. The results suggested that ice processes are crucial for suppressing precipitation due to high CCN for the PRESTORM case. More and smaller ice particles are generated in the dirty case and transported to the trailing stratiform region. This reduces the heavy convective rain and contributes to the weakening of the cold pool. Warm rain processes dominate the TOGA COARE case. Therefore, ice processes only play a secondary role in terms of aerosol-precipitation interaction. • Two of the three cloud systems presented in this paper formed a line structure (squall system). A 2D simulation, therefore, gives a good approximation to such a line of convective clouds. Since the real atmosphere is 3D, further 3D cloud-resolving simulations are needed to address aerosol-precipitation interactions. 4. REFERENCES Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., 112, D24S18, doi:10.1029/2007JD008728. All other references can be found in above paper. 5. Acknowledgements The GCE model is mainly supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Tropical Rainfall Measuring Mission (TRMM). The research was also supported by the Office of Science (BER), U. S. Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Interagency. The authors acknowledge NASA Goddard Space Flight Center for computer time used in this research.« less

  19. Cloud Streets over the Atlantic Ocean

    NASA Image and Video Library

    2017-12-08

    In the midst of a cold snap that sent temperatures 20–40°F (11–22°C) below normal across much of the United States, the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite captured this image of cloud streets over the Atlantic Ocean on January 7, 2014. Cloud streets—long parallel bands of cumulus clouds—form when cold air blows over warmer waters and a warmer air layer (or temperature inversion) rests over the top of both. The comparatively warm water gives up heat and moisture to the cold air above, and columns of heated air called thermals naturally rise through the atmosphere. The temperature inversion acts like a lid, so when the rising thermals hit it, they roll over and loop back on themselves, creating parallel cylinders of rotating air. As this happens, the moisture cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the direction of the prevailing wind. On January 7, the winds were predominantly out of the northwest. Cloud streets can stretch for hundreds of kilometers if the land or water surface underneath is uniform. Sea surface temperature need to be at least 40°F (22°C) warmer than the air for cloud streets to form. More info: earthobservatory.nasa.gov/NaturalHazards/view.php?id=82800 NASA Earth Observatory image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Clouds Sailing Overhead on Mars, Unenhanced

    NASA Image and Video Library

    2017-08-09

    Wispy clouds float across the Martian sky in this accelerated sequence of images from NASA's Curiosity Mars rover. The rover's Navigation Camera (Navcam) took these eight images over a span of four minutes early in the morning of the mission's 1,758th Martian day, or sol (July 17, 2017), aiming nearly straight overhead. This sequence uses raw images, which include a bright ring around the center of the frame that is an artifact of sunlight striking the camera lens even though the Sun is not in the shot. A processed version removing that artifact and emphasizing changes between images is also available. The clouds resemble Earth's cirrus clouds, which are ice crystals at high altitudes. These Martian clouds are likely composed of crystals of water ice that condense onto dust grains in the cold Martian atmosphere. Cirrus wisps appear as ice crystals fall and evaporate in patterns known as "fall streaks" or "mare's tails." Such patterns have been seen before at high latitudes on Mars, for instance by the Phoenix Mars Lander in 2008, and seasonally nearer the equator, for instance by the Opportunity rover. However, Curiosity has not previously observed such clouds so clearly visible from the rover's study area about five degrees south of the equator. The Hubble Space Telescope and spacecraft orbiting Mars have observed a band of clouds to appear near the Martian equator around the time of the Martian year when the planet is farthest from the Sun. With a more elliptical orbit than Earth's, Mars experiences more annual variation than Earth in its distance from the Sun. The most distant point in an orbit around the Sun is called the aphelion. The near-equatorial Martian cloud pattern observed at that time of year is called the "aphelion cloud belt." These new images from Curiosity were taken about two months before aphelion, but the morning clouds observed may be an early stage of the aphelion cloud belt. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21842

  1. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron-sized cloud particles as a result of forward scattering. The presence of a cold or hot circumplanetary disk may also produce a detectable degree of polarization (≲1%) even with a uniform cloud layer in the atmosphere.

  2. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    NASA Astrophysics Data System (ADS)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.

  3. Snow Clouds and the Carbon Dioxide Cycle on Mars

    NASA Astrophysics Data System (ADS)

    Hayne, P. O.; Paige, D. A.

    2009-12-01

    The present climate of Mars is strongly influenced by the energy balance at the planet’s poles, with ~30% of the atmospheric mass exchanged seasonally with the polar ice caps. While the spring and summer sublimation process is observable in sunlight, the deposition process occurs in the darkness of polar night. We present direct radiometric observations of carbon dioxide snow clouds from the Mars Climate Sounder (MCS) and estimate the rate of deposition due to snowfall. We also present radiative transfer models capable of reproducing the observations and providing constraints on the radiative and thermal properties of the cap-atmosphere system. Snow clouds display a multi-layered structure with greatest opacity near the surface and extending to typical altitudes of about 20 km, with equivalent normal visible optical depths of ~0.1. Our modeling suggests the observed carbon dioxide snow grains are ~10 μm in radius, implying modest deposition rates, and suggesting the majority of the seasonal cap is deposited in a vertical region within one MCS field of view (or ~1 km) of the surface. Models reproducing the MCS limb observations only reproduce the nadir observations if the surface (or near-surface) is an optically thick layer of small (< 100 μm radius) carbon dioxide grains, which are therefore the primary cause of radiometrically cold areas (“cold spots”) observed since the Viking era. For the extreme polar regions, a persistent, ~500 km diameter snow cloud is strongly coupled to the most active cold spots, and smaller clouds (< 50 km diameter) in the latitude range 60-80°, though unobserved, cannot be ruled out by the MCS data. Based on this correlation, and observations of cold spots recurring near topographic slopes, we conclude that deposition is indeed linked to cloud formation, with the majority of material condensing below ~1 km altitude. Optically thin water ice layers are necessary to accurately model the MCS spectrum, particularly at altitudes above 20 km. This suggests water ice functions as the required condensation nucleus, consistent with earlier laboratory and theoretical studies. Important hemispherical differences are observed in the deposition process: 1) northern clouds are optically thicker at middle altitudes, ~5-15 km; 2) southern clouds are more often “detached”, showing a local maximum opacity near 20-25 km altitude; 3) mode particle radii are larger (~100 μm versus ~10 μm) in the north. Total normal optical depths are typically higher by a factor of ~2 in the north, and water ice content is relatively higher. Energy balance constraints can be placed on the system by MCS observations of outgoing infrared flux, which we map through time as an effective emissivity by taking account of the topography from MOLA and the expected frost point temperature.

  4. A systematic search for dwarf counterparts to ultra compact high velocity clouds

    NASA Astrophysics Data System (ADS)

    Bennet, Paul; Sand, David J.; Crnojevic, Denija; Strader, Jay

    2015-01-01

    Observations of the Universe on scales smaller than typical, massive galaxies challenge the standard Lambda Cold Dark Matter paradigm for structure formation. It is thus imperative to discover and characterize the faintest dwarf galaxy systems, not just within the Local Group, but in relatively isolated environments as well in order to properly connect them with models of structure formation. Here we report on a systematic search of public ultraviolet and optical archives for dwarf galaxy counterparts to so-called Ultra Compact High Velocity Clouds (UCHVCs), which are compact, isolated HI sources recently found in the Galactic Arecibo L-band Feed Array-HI (GALFA-HI) and Arecibo Legacy Fast ALFA (ALFALFA-HI) surveys. Our search has uncovered at least three strong dwarf galaxy candidates, and we present their inferred star formation rate and structural properties here.

  5. Discovery of lake-effect clouds on Titan

    USGS Publications Warehouse

    Brown, M.E.; Schaller, E.L.; Roe, H.G.; Chen, C.; Roberts, J.; Brown, R.H.; Baines, K.H.; Clark, R.N.

    2009-01-01

    Images from instruments on Cassini as well as from telescopes on the ground reveal the presence of sporadic small-scale cloud activity in the cold late-winter north polar region of Saturn's large moon Titan. These clouds lie underneath the previously discovered uniform polar cloud attributed to a quiescent ethane cloud at ???40 km and appear confined to the same latitudes as those of the largest known hydrocarbon lakes at the north pole of Titan. The physical properties of these clouds suggest that they are due to methane convection and condensation. Such convection could be caused by a process in some ways analogous to terrestrial lake-effect clouds. The lakes on Titan could be a key connection between the surface and the meteorological cycle. ?? 2009 by the American Geophysical Union.

  6. From aerosol-limited to invigoration of warm convective clouds.

    PubMed

    Koren, Ilan; Dagan, Guy; Altaratz, Orit

    2014-06-06

    Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base and cold top. Here, we provide evidence from observations and numerical modeling of a dramatic aerosol effect on warm clouds. We propose that convective-cloud invigoration by aerosols can be viewed as an extension of the concept of aerosol-limited clouds, where cloud development is limited by the availability of cloud-condensation nuclei. A transition from pristine to slightly polluted atmosphere yields estimated negative forcing of ~15 watts per square meter (cooling), suggesting that a substantial part of this anthropogenic forcing over the oceans occurred at the beginning of the industrial era, when the marine atmosphere experienced such transformation. Copyright © 2014, American Association for the Advancement of Science.

  7. Widespread SiO and CH3OH emission in filamentary infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Cosentino, G.; Jiménez-Serra, I.; Henshaw, J. D.; Caselli, P.; Viti, S.; Barnes, A. T.; Fontani, F.; Tan, J. C.; Pon, A.

    2018-03-01

    Infrared dark clouds (IRDCs) are cold, dense regions of high (optical and infrared) extinction, believed to be the birthplace of high-mass stars and stellar clusters. The physical mechanisms leading to the formation of these IRDCs are not completely understood and it is thus important to study their molecular gas kinematics and chemical content to search for any signature of the IRDCs formation process. Using the 30-m-diameter antenna at the Instituto de Radioastronomía Milimétrica (IRAM), we have obtained emission maps of dense gas tracers (H13CO+ and HN13C) and typical shock tracers (SiO and CH3OH) towards three IRDCs, G028.37+00.07, G034.43+00.24, and G034.77-00.55 (clouds C, F, and G, respectively). We have studied the molecular gas kinematics in these clouds and, consistent with previous works towards other IRDCs, the clouds show complex gas kinematics with several velocity-coherent substructures separated in velocity space by a few km s-1. Correlated with these complex kinematic structures, widespread (parsec-scale) emission of SiO and CH3OH is present in all the three clouds. For clouds C and F, known to be actively forming stars, widespread SiO and CH3OH is likely associated with on-going star formation activity. However, for cloud G, which lacks either 8 or 24 μm sources and 4.5 μm H2 shock-excited emission, the detected widespread SiO and CH3OH emission may have originated in a large-scale shock interaction, although a scenario involving a population of low-mass stars driving molecular outflows cannot be fully ruled out.

  8. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.

    2016-02-01

    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  9. On the Use of Deep Convective Clouds to Calibrate AVHRR Data

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Nguyen, Louis; Minnis, Patrick

    2004-01-01

    Remote sensing of cloud and radiation properties from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) satellites requires constant monitoring of the visible sensors. NOAA satellites do not have onboard visible calibration and need to be calibrated vicariously in order to determine the calibration and the degradation rate. Deep convective clouds are extremely bright and cold, are at the tropopause, have nearly a Lambertian reflectance, and provide predictable albedos. The use of deep convective clouds as calibration targets is developed into a calibration technique and applied to NOAA-16 and NOAA-17. The technique computes the relative gain drift over the life-span of the satellite. This technique is validated by comparing the gain drifts derived from inter-calibration of coincident AVHRR and Moderate-Resolution Imaging Spectroradiometer (MODIS) radiances. A ray-matched technique, which uses collocated, coincident, and co-angled pixel satellite radiance pairs is used to intercalibrate MODIS and AVHRR. The deep convective cloud calibration technique was found to be independent of solar zenith angle, by using well calibrated Visible Infrared Scanner (VIRS) radiances onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, which precesses through all solar zenith angles in 23 days.

  10. Plenoptic Imaging of a Three Dimensional Cold Atom Cloud

    NASA Astrophysics Data System (ADS)

    Lott, Gordon

    2017-04-01

    A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.

  11. Earth Observations taken by Expedition 34 crewmember

    NASA Image and Video Library

    2013-01-04

    ISS034-E-016601 (4 Jan. 2013) --- On Jan. 4 a large presence of stratocumulus clouds was the central focus of camera lenses which remained aimed at the clouds as the Expedition 34 crew members aboard the International Space Station flew above the northwestern Pacific Ocean about 460 miles east of northern Honshu, Japan. This is a descending pass with a panoramic view looking southeast in late afternoon light with the terminator (upper left). The cloud pattern is typical for this part of the world. The low clouds carry cold air over a warmer sea with no discernable storm pattern.

  12. Galactic cold cores. IX. Column density structures and radiative-transfer modelling

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Malinen, J.; Montillaud, J.; Pelkonen, V.-M.; Ristorcelli, I.; Tóth, L. V.

    2018-06-01

    Context. The Galactic Cold Cores (GCC) project has made Herschel photometric observations of interstellar clouds where Planck detected compact sources of cold dust emission. The fields are in different environments and stages of star formation. Aims: Our aim is to characterise the structure of the clumps and their parent clouds, and to study the connections between the environment and the formation of gravitationally bound objects. We also examine the accuracy to which the structure of dense clumps can be determined from sub-millimetre data. Methods: We use standard statistical methods to characterise the GCC fields. Individual clumps are extracted using column density thresholding. Based on sub-millimetre measurements, we construct a three-dimensional radiative transfer (RT) model for each field. These are used to estimate the relative radiation field intensities, to probe the clump stability, and to examine the uncertainty of column density estimates. We examine the structural parameters of the clumps, including their radial column density profiles. Results: In the GCC fields, the structure noise follows the relations previously established at larger scales and in lower-density clouds. The fractal dimension has no significant dependence on column density and the values DP = 1.25 ± 0.07 are only slightly lower than in typical molecular clouds. The column density probability density functions (PDFs) exhibit large variations, for example, in the case of externally compressed clouds. At scales r > 0.1 pc, the radial column density distributions of the clouds follow an average relation of N r-1. In spite of a great variety of clump morphologies (and a typical aspect ratio of 1.5), clumps tend to follow a similar N r-1 relation below r 0.1 pc. RT calculations indicate only factor 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with AV > 5 mag but most bound objects appear to be pressure-confined. Conclusions: The host clouds of the cold clumps in the GCC sample have statistical properties similar to general molecular clouds. The gravitational stability, peak column density, and clump orientation are connected to the cloud background while most other statistical clump properties (e.g. DP and radial profiles) are insensitive to the environment. The study of clump morphology should be continued with a comparison with numerical simulations. Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  13. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2018-01-01

    We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.

  14. Rain estimation from satellites: An examination of the Griffith-Woodley technique

    NASA Technical Reports Server (NTRS)

    Negri, A. J.; Adler, R. F.; Wetzel, P. J.

    1983-01-01

    The Griffith-Woodley Technique (GWT) is an approach to estimating precipitation using infrared observations of clouds from geosynchronous satellites. It is examined in three ways: an analysis of the terms in the GWT equations; a case study of infrared imagery portraying convective development over Florida; and the comparison of a simplified equation set and resultant rain map to results using the GWT. The objective is to determine the dominant factors in the calculation of GWT rain estimates. Analysis of a single day's convection over Florida produced a number of significant insights into various terms in the GWT rainfall equations. Due to the definition of clouds by a threshold isotherm the majority of clouds on this day did not go through an idealized life cycle before losing their identity through merger, splitting, etc. As a result, 85% of the clouds had a defined life of 0.5 or 1 h. For these clouds the terms in the GWT which are dependent on cloud life history become essentially constant. The empirically derived ratio of radar echo area to cloud area is given a singular value (0.02) for 43% of the sample, while the rainrate term is 20.7 mmh-1 for 61% of the sample. For 55% of the sampled clouds the temperature weighting term is identically 1.0. Cloud area itself is highly correlated (r=0.88) with GWT computed rain volume. An important, discriminating parameter in the GWT is the temperature defining the coldest 10% cloud area. The analysis further shows that the two dominant parameters in rainfall estimation are the existence of cold cloud and the duration of cloud over a point.

  15. Bibliography on Cold Regions Science and Technology. Volume 52. Part 2,

    DTIC Science & Technology

    1998-12-01

    eng] 52-5087 spheric gases from antarctic ice cores. Gillaik, T., et al, in sediments and biota from four US arctic lakes. Allen-Gil, Study of the...1996,eng] 52-2678 52-690 Solomon , S., et at, [1997,eng] 52-879 Studies of cloud ice water path and optical thickness during Homogeneous ice...of clouds: a wave ota, D., et al, [1995,eng] 52-5364 flash rate. Solomon , R.C., [1997,eng] 52-1070 cloud case study . Ackerman, S.A., et al, [1998,eng

  16. Numerical simulation of cloud and precipitation structure during GALE IOP-2

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Perkey, D. J.; Seablom, M. S.

    1988-01-01

    A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.

  17. Simulation of Shallow Cumuli and Their Transition to Deep Convective Clouds by Cloud-resolving Models with Different Third-order Turbulence Closures

    NASA Technical Reports Server (NTRS)

    Cheng, Anning; Xu, Kuan-Man

    2006-01-01

    The abilities of cloud-resolving models (CRMs) with the double-Gaussian based and the single-Gaussian based third-order closures (TOCs) to simulate the shallow cumuli and their transition to deep convective clouds are compared in this study. The single-Gaussian based TOC is fully prognostic (FP), while the double-Gaussian based TOC is partially prognostic (PP). The latter only predicts three important third-order moments while the former predicts all the thirdorder moments. A shallow cumulus case is simulated by single-column versions of the FP and PP TOC models. The PP TOC improves the simulation of shallow cumulus greatly over the FP TOC by producing more realistic cloud structures. Large differences between the FP and PP TOC simulations appear in the cloud layer of the second- and third-order moments, which are related mainly to the underestimate of the cloud height in the FP TOC simulation. Sensitivity experiments and analysis of probability density functions (PDFs) used in the TOCs show that both the turbulence-scale condensation and higher-order moments are important to realistic simulations of the boundary-layer shallow cumuli. A shallow to deep convective cloud transition case is also simulated by the 2-D versions of the FP and PP TOC models. Both CRMs can capture the transition from the shallow cumuli to deep convective clouds. The PP simulations produce more and deeper shallow cumuli than the FP simulations, but the FP simulations produce larger and wider convective clouds than the PP simulations. The temporal evolutions of cloud and precipitation are closely related to the turbulent transport, the cold pool and the cloud-scale circulation. The large amount of turbulent mixing associated with the shallow cumuli slows down the increase of the convective available potential energy and inhibits the early transition to deep convective clouds in the PP simulation. When the deep convective clouds fully develop and the precipitation is produced, the cold pools produced by the evaporation of the precipitation are not favorable to the formation of shallow cumuli.

  18. Long-wave Irradiance Measurement and Modeling during Snowmelt, a Case Study in the Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Sicart, J.; Essery, R.; Pomeroy, J.

    2004-12-01

    At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.

  19. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    USDA-ARS?s Scientific Manuscript database

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  20. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  1. On the dominant impact of vertical moisture gradient on mesoscale cloud cellular organization of stratocumulus

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ackerman, A. S.; Fridlind, A. M.; Kollias, P.

    2016-12-01

    Large-eddy simulations are performed to study the mechanisms of stratocumulus organization. Precipitation tends to increase horizontal cloud scales, but is not required for cloud mesoscale organization. A study of the terms in the prognostic equation for total water mixing ratio variance shows the critical impact of vertical moisture gradient on cloud scale. For precipitating clouds, the organization originates from the negative moisture gradient in the boundary layer resulting from evaporation of precipitation. This hypothesis is supported by simulations in which thermodynamics profiles are nudged to their initial well-mixed state, which reduces cloud scales. Cold pools effect are surprisingly found to respond to rather than determine the cloud mesoscale variability. For non-precipitating clouds, organization results from turbulent transport of moisture variance originating primarily from cloud top, where dry air is entrained into the boundary layer through convection driven by cloud top longwave (LW) cooling. Both LW cooling and a moisture gradient above cloud top are essential for the growth of mesoscale fluctuations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ -ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed bymore » shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.« less

  3. Central Andes mountains, Chile/Argentina as seen from STS-67

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Chilean coastline and the arid Atacama Desert stretch the length of the view with the high Andes on the eastern margin where hundreds of volcanoes dot the landscape. The wider (250-350 kilometers) Altiplano ('plains') sector of the Andes appears in the top half of the view, and the narrow (120 kilometers) 'mountain-chain-dominated' sector to the bottom. The northern half of Chile can be seen, with the 'hammer-head' peninsula at the city of Antofagasta, top left. Up welling of cold water as the Humboldt Current immediately offshore gives rise to low stratus cloud. The extensive cloud mass on the right lies beyond the Andes in the low country of Argentina's 'pampas' grasslands and Chaco semi-desert.

  4. Aerosol partitioning in mixed-phase clouds at the Jungfraujoch (3580 m asl)

    NASA Astrophysics Data System (ADS)

    Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.

    2003-04-01

    Field measurements on the partitioning between the interstitial and the liquid/ice phase in natural clouds were performed at the high-alpine research station Jungfraujoch (3580 m asl, Switzerland) during a summer and a winter campaign. The size distributions of the total and the interstitial aerosol were determined by means of a scanning mobility particle sizer (SMPS). From these, size resolved scavenging ratios were calculated. Simultaneously, cloud water content (CWC) and cloud particle size distributions along with meteorological data were obtained. In cold mixed phase clouds (existing of liquid droplets and ice crystals), strong differences were found in comparison to the warm summer clouds. In the warm cloud types all particles above a certain diameter were activated and thereby the scavenging ratio (number of activated particles divided by the total number concentration) above a certain threshold diameter approached 1. In the winter clouds, the scavenging ratio never reached the value of 1 and could be as low as 0. These observations are explained by the Bergeron-Findeisen process: Here, particles are also activated to droplets in the first step, but after the formation of the ice phase droplets evaporate while the ice crystals grow, due to difference in the saturation vapor pressure over water and ice. This release of aerosol particles to the interstitial aerosol has significant implications for the climate forcing: It can be expected that the number of CCN is of less importance as soon as ice crystals are formed.

  5. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  6. Determine precipitation rates from visible and infrared satellite images of clouds by pattern recognition technique. Progress Report, 1 Jul. 1985 - 31 Mar. 1987 Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Weinman, James A.; Garan, Louis

    1987-01-01

    A more advanced cloud pattern analysis algorithm was subsequently developed to take the shape and brightness of the various clouds into account in a manner that is more consistent with the human analyst's perception of GOES cloud imagery. The results of that classification scheme were compared with precipitation probabilities observed from ships of opportunity off the U.S. east coast to derive empirical regressions between cloud types and precipitation probability. The cloud morphology was then quantitatively and objectively used to map precipitation probabilities during two winter months during which severe cold air outbreaks were observed over the northwest Atlantic. Precipitation probabilities associated with various cloud types are summarized. Maps of precipitation probability derived from the cloud morphology analysis program for two months and the precipitation probability derived from thirty years of ship observation were observed.

  7. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel

    How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that depositionmore » plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm -3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm -3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and increases the cloud glaciation temperature, while increasing CCN has the opposite effect with much smaller significance.« less

  8. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

    DOE PAGES

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; ...

    2017-01-23

    How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that depositionmore » plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm -3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm -3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and increases the cloud glaciation temperature, while increasing CCN has the opposite effect with much smaller significance.« less

  9. Spontaneous evolution of rydberg atoms into an ultracold plasma

    PubMed

    Robinson; Tolra; Noel; Gallagher; Pillet

    2000-11-20

    We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.

  10. Convective Formation of Pileus Cloud Near the Tropopause

    NASA Technical Reports Server (NTRS)

    Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick

    2005-01-01

    Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.

  11. Chemistry and dynamics of the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter

    2016-04-01

    Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.

  12. Cold column trapping-cloud point extraction coupled to high performance liquid chromatography for preconcentration and determination of curcumin in human urine.

    PubMed

    Rahimi, Marzieh; Hashemi, Payman; Nazari, Fariba

    2014-05-15

    A cold column trapping-cloud point extraction (CCT-CPE) method coupled to high performance liquid chromatography (HPLC) was developed for preconcentration and determination of curcumin in human urine. A nonionic surfactant, Triton X-100, was used as the extraction medium. In the proposed method, a low surfactant concentration of 0.4% v/v and a short heating time of only 2min at 70°C were sufficient for quantitative extraction of the analyte. For the separation of the extraction phase, the resulted cloudy solution was passed through a packed trapping column that was cooled to 0 °C. The temperature of the CCT column was then increased to 25°C and the surfactant rich phase was desorbed with 400μL ethanol to be directly injected into HPLC for the analysis. The effects of different variables such as pH, surfactant concentration, cloud point temperature and time were investigated and optimum conditions were established by a central composite design (response surface) method. A limit of detection of 0.066mgL(-1) curcumin and a linear range of 0.22-100mgL(-1) with a determination coefficient of 0.9998 were obtained for the method. The average recovery and relative standard deviation for six replicated analysis were 101.0% and 2.77%, respectively. The CCT-CPE technique was faster than a conventional CPE method requiring a lower concentration of the surfactant and lower temperatures with no need for the centrifugation. The proposed method was successfully applied to the analysis of curcumin in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The 20-22 January 2007 Snow Events over Canada: Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Tao. W.K.; Shi, J.J.; Matsui, T.; Hao, A.; Lang, S.; Peters-Lidard, C.; Skofronick-Jackson, G.; Petersen, W.; Cifelli, R.; Rutledge, S.

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.

  14. Monitoring System for Atmospheric Water Vapor with a Ground-Based Multi-Band Radiometer: Meteorological Application of Radio Astronomy Technologies

    NASA Astrophysics Data System (ADS)

    Nagasaki, T.; Araki, K.; Ishimoto, H.; Kominami, K.; Tajima, O.

    2016-08-01

    High-resolution estimation of thermodynamic properties in the atmosphere can help to predict and mitigate meteorological disasters, such as local heavy rainfall and tornadic storms. For the purposes of short-term forecasting and nowcasting of severe storms, we propose a novel ground-based measurement system, which observes the intensity of atmospheric radiation in the microwave range. Our multi-band receiver system is designed to identify a rapid increase in water vapor before clouds are generated. At frequencies between 20 and 30 GHz, our system simultaneously measures water vapor as a broad absorption peak at 22 GHz as well as cloud liquid water. Another band at 50-60 GHz provides supplementary information from oxygen radiation to give vertical profiles of physical temperature. For the construction of this cold receiver system, novel technologies originally developed for observations of cosmic microwave background radiation were applied. The input atmospheric signal is amplified by a cold low-noise amplifier maintained below 10 K, while the spectrum of this amplified signal is measured using a signal analyzer under ambient conditions. The cryostat also contains a cold black body at 40 K to act as a calibration signal. This calibration signal is transported to each of the receivers via a wire grid. We can select either the atmospheric signal or the calibration signal by changing the orientation of this wire. Each receiver can be calibrated using this setup. Our system is designed to be compact (<1 m3), with low power consumption (˜ 1.5 kW). Therefore, it is easy to deploy on top of high buildings, mountains, and ship decks.

  15. West Antarctica as a Natural Laboratory for Single- and Mixed-Phase Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Scott, R. C.; Lubin, D.

    2016-12-01

    As part of the ARM West Antarctic Radiation Experiment (AWARE), a micropulse lidar (MPL) and a shortwave spectroradiometer were deployed to the West Antarctic Ice Sheet (WAIS) Divide Ice Camp during December 2015 and January 2016. Contrasting meteorological conditions gave rise to several distinct episodes of mixed-phase clouds, liquid water clouds, and entirely glaciated clouds. These phases were readily distinguished in the polarization signature from the MPL. The spectroradiometer measured downwelling hemispheric irradiance in the wavelength interval 0.35-2.2 microns, with 3-nanometer resolution at visible and 10-nanometer resolution at near-infrared wavelengths. Under overcast sky conditions, this measured irradiance is sensitive to total cloud optical depth for wavelengths shorter than 1.1 microns, and is sensitive at both cloud phase and effective particle size in the 1.6-micron window. For single-phase clouds, the spectral irradiance in the 1.6-micron window shows marked contrasts between liquid and ice water. For mixed phase clouds, this spectral dependence of the 1.6-micron irradiance is consistent with the prevailing phase, but in all cases the irradiance is small than that under a liquid water cloud having the same total optical depth. Radiative transfer retrievals of effective particle size from the 1.6-micron irradiance data reveal liquid water effective radii typically 2 microns smaller than found in the spring and summertime high Arctic. Most of the clouds sampled here were within 2 km of the surface, and there are comprehensive ancillary data including sondes four times daily, additional microwave radiometer data, and broadband radiometry. This AWARE data set from WAIS Divide provides a unique opportunity for testing and improving cloud microphysical parameterizations in extreme cold and pristine conditions.

  16. In Situ Microphysical and Scattering Properties of Falling Snow in GPM-GCPEx

    NASA Astrophysics Data System (ADS)

    Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.; Poellot, M.; Chandrasekar, C. V.; Hudak, D. R.

    2013-12-01

    The Global Precipitation Measurement Cold-season Precipitation Experiment (GPM-GCPEx) field campaign was conducted near Egbert, Ontario, Canada in January-February 2012 to study the physical characteristics and microwave radiative properties of the column of hydrometeors in cold season precipitation events. Extensive in situ aircraft profiling was conducted with the University of North Dakota (UND) Citation aircraft within the volume of several remote sensing instruments within a wide variety of precipitation events, from snow to freezing drizzle. Several of the primary goals of GCPEx include improving our understanding of the microphysical characteristics of falling snow and how those characteristics relate to the multi-wavelength radiative characteristics In this study, particle size distribution parameters, effective particle densities, and habit distributions are determined using in-situ cloud measurements obtained on the UND citation using the High Volume Precipitation Spectrometer, the Cloud Particle Imager, and the Cloud Imaging Probe. These quantities are matched compared to multi-frequency radar measurements from the Environment Canada King City C-Band and NASA D3R Ku-Ka Band dual polarization radars. These analysis composites provide the basis for direct evaluation of particle size distributions and observed multi-wavelength and multi-polarization radar observations, including radar reflectivity, differential reflectivity, and dual wavelength ratio) in falling snow at weather radar and GPM radar frequencies. Theoretical predictions from Mie, Rayleigh-Gans, and more complex snowflake aggregate scattering model predictions using observed particle size distributions are compared with observed radar scattering characteristics along the Citation flight track.

  17. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  18. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  19. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  20. Stand-off molecular composition analysis

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Meinhold, Peter; O'Neill, Hugh; Brashears, Travis; Zhang, Qicheng; Griswold, Janelle; Riley, Jordan; Motta, Caio

    2015-09-01

    Molecular composition of distant stars is explored by observing absorption spectra. The star produces blackbody radiation that passes through the molecular cloud of vaporized material surrounding the star. Characteristic absorption lines are discernible with a spectrometer, and molecular composition is investigated by comparing spectral observations with known material profiles. Most objects in the solar system—asteroids, comets, planets, moons—are too cold to be interrogated in this manner. Molecular clouds around cold objects consist primarily of volatiles, so bulk composition cannot be probed. Additionally, low volatile density does not produce discernible absorption lines in the faint signal generated by low blackbody temperatures. This paper describes a system for probing the molecular composition of cold solar system targets from a distant vantage. The concept utilizes a directed energy beam to melt and vaporize a spot on a distant target, such as from a spacecraft orbiting the object. With sufficient flux (~10 MW/m2), the spot temperature rises rapidly (to ~2 500 K), and evaporation of all materials on the target surface occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a molecular plume in front of the spot. Bulk composition is investigated by using a spectrometer to view the heated spot through the ejected material. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole, and shallow sub-surface composition profiling is also possible. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis.

  1. Hong-Ou-Mandel Interference Between Triggered And Heralded Single Photons From Separate Atomic Systems

    NASA Astrophysics Data System (ADS)

    Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian

    2015-05-01

    The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.

  2. Coherent scattering of near-resonant light by a dense, microscopic cloud of cold two-level atoms: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre

    2018-05-01

    We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.

  3. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign

    DOE PAGES

    Zhou, Xiaoli; Kollias, Pavlos; Lewis, Ernie R.

    2015-03-01

    The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporatedmore » before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)« less

  4. The Origin of the X-Ray Emission from the High-velocity Cloud MS30.7-81.4-118

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.; Kwak, Kyujin

    2014-08-01

    A soft X-ray enhancement has recently been reported toward the high-velocity cloud MS30.7-81.4-118 (MS30.7), a constituent of the Magellanic Stream. In order to investigate the origin of this enhancement, we have analyzed two overlapping XMM-Newton observations of this cloud. We find that the X-ray enhancement is ~6' or ~100 pc across, and is concentrated to the north and west of the densest part of the cloud. We modeled the X-ray enhancement with a variety of spectral models. A single-temperature equilibrium plasma model yields a temperature of (3.69^{+0.47}_{-0.44}) \\times 10^6 \\,K and a 0.4-2.0 keV luminosity of 7.9 × 1033 erg s-1. However, this model underpredicts the on-enhancement emission around 1 keV, which may indicate the additional presence of hotter plasma (T >~ 107 K), or that recombination emission is important. We examined several different physical models for the origin of the X-ray enhancement. We find that turbulent mixing of cold cloud material with hot ambient material, compression or shock heating of a hot ambient medium, and charge exchange reactions between cloud atoms and ions in a hot ambient medium all lead to emission that is too faint. In addition, shock heating in a cool or warm medium leads to emission that is too soft (for reasonable cloud speeds). We find that magnetic reconnection could plausibly power the observed X-ray emission, but resistive magnetohydrodynamical simulations are needed to test this hypothesis. If magnetic reconnection is responsible for the X-ray enhancement, the observed spectral properties could potentially constrain the magnetic field in the vicinity of the Magellanic Stream.

  5. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  6. Size dependence of single-photon superradiance of cold and dilute atomic ensembles

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.

    2017-11-01

    We report a theoretical investigation of angular distribution of a single-photon superradiance from cold and dilute atomic clouds. In the present work we focus our attention on the dependence of superradiance on the size and shape of the cloud. We analyze the dynamics of the afterglow of atomic ensemble excited by pulse radiation. Two theoretical approaches are used. The first is the quantum microscopic approach based on a coupled-dipole model. The second approach is random walk approximation. We show that the results obtained in both approaches coincide with a good accuracy for incoherent fluorescence excited by short resonant pulses. We also show that the superradiance decay rate changes with size differently for radiation emitted into different directions.

  7. Measurements of the H2(13)CO ortho/para ratio in cold dark molecular clouds

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Dickens, J. E.; Irvine, W. M.; McGonagle, D.

    1995-01-01

    H2(13)CO has been detected for the first time toward cold dark molecular clouds using the NRAO 12 m telescope. The H2(13)CO ortho/para abundance ratio R for B335, which we report as R approximately 1.7, suggests equilibrium at the local kinetic temperature and appears to be distinctly different from that for both TMC-1 and L134N, where R is close to or higher than the statistical value 3. Since only B335 among the observed positions includes an imbedded IR source, this difference may result from heating of the grain surfaces, providing the energy necessary for desorption of formaldehyde formed on the grains.

  8. Upper limits for the ethyl-cyanide abundances in TMC-1 and L134N - Chemical implications

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.

    1991-01-01

    Interstellar ethyl-cyanide has been sought via its 2(02)-1(01) transition towards two cold, dark clouds, and upper limits of the total column densities of 3 x 10 to the 12th/sq cm and 2 x 10 to the 12th/sq cm for TMC-1 and L134N, respectively. The 2(02)-1(01) transition of vynil cyanide, previously identified in TMC-1 by Matthews and Sears (1983b), was also observed. The detection of vinyl cyanide and the nondetection of ethyl cyanide in TMC-1 are consistent with gas phase ion-molecule chemical models, and there is thus no necessity of invoking grain surface synthesis for vinyl cyanide in cold clouds.

  9. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  10. A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Gutermuth, Robert A.; Ali, Babar; Megeath, S. Thomas; Pipher, Judith; Myers, Philip C.; Fischer, William J.; Henning, Thomas; Wolk, Scott J.; Allen, Lori; Tobin, John J.

    2014-06-01

    We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We isolated the filaments and studied radial column density profile in this cloud.

  11. Hurricane Isadore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: AIRS channel 2333 (2616 cm-1)Figure 2: HSB channel 2 (150 GHz)

    Three different Views of Hurricane Isidore from the Atmospheric Infrared Sounding System (AIRS) on Aqua.

    At the time Aqua passed over Isidore, it was classified as a Category 3 (possibly 4) hurricane, with minimum pressure of 934 mbar, maximum sustained wind speeds of 110 knots (gusting to 135) and an eye diameter of 20 nautical miles. Isidore was later downgraded to a Tropical Storm before gathering strength again.

    This is a visible/near-infrared image, made with the AIRS instrument. Its 2 km resolution shows fine details of the cloud structure, and can be used to help interpret the other images. For example, some relatively cloud-free regions in the eye of the hurricane can be distinguished. This image was made with wavelengths slightly different than those seen by the human eye, causing plants to appear very red.

    Figure 1 shows high and cold clouds in blue. Figure 2 shows heavy rain cells over Alabama in blue. This image shows the swirling clouds in white and the water of the Gulf of Mexico in blue. The eye of the hurricane is apparent in all three images.

    Figure 1 shows how the hurricane looks through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in clear regions. The lowest temperatures are over Alabama and are associated with high, cold cloud tops at the end of the cloud band streaming from the hurricane. Although the eye is visible, it does not appear to be completely cloud free.

    Figure 2 shows the hurricane as seen through a microwave channel of the Humidity Sounder for Brazil (HSB). This channel is sensitive to humidity, clouds and rain. Unlike the AIRS infrared channel, it can penetrate through cloud layers and therefore reveals some of the internal structure of the hurricane. In this image, the green and yellow colors indicate clouds and heavy moisture, while blue indicates scattering by precipitation in intense convection. Orange indicates warm, moist air near the surface. The ocean surface, could it be seen, would appear slightly colder (yellow to green) due to the relatively low emissivity of water. Three sets of eye walls are apparent, and a number of intense convective cells can also be distinguished.

    In the near future, weather data derived from these images will allow us to improve our forecasts and track the paths of hurricanes more accurately. The AIRS sounding system provides 2400 such images, or channels, continuously.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  12. The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.

  13. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions with the low-level wind shear. Consequently, precipitation processes can be more vigorous. For example,, the evaporative cooling is more than two times stronger in the lower troposphere with high CCN for the Pacific case. Sensitivity tests also suggest that ice processes are crucial for suppressing precipitation in the Oklahoma case with high CCN.

  14. Genesis of Pre-Hurricane Felix (2007). Part I: The Role of the Easterly Wave Critical Layer

    DTIC Science & Technology

    2010-06-01

    the boundary layer does not overcome the positive entropy flux from the ocean surface. As suggested by Montgomery et al. (2006), cold pools of...Weather Research and Forecasting (WRF) model with a high-resolution nested grid configuration that permits the representation of cloud system processes...from the jet level to the top of the atmospheric boundary layer. The region of a quasi-closed Lagrangian circulation within the wave pouch provides a

  15. Aerosols Observations with a new lidar station in Punta Arenas, Chile

    NASA Astrophysics Data System (ADS)

    Barja, Boris; Zamorano, Felix; Ristori, Pablo; Otero, Lidia; Quel, Eduardo; Sugimoto, Nobuo; Shimizu, Atsushi; Santana, Jorge

    2018-04-01

    A tropospheric lidar system was installed in Punta Arenas, Chile (53.13°S, 70.88°W) in September 2016 under the collaboration project SAVERNET (Chile, Japan and Argentina) to monitor the atmosphere. Statistical analyses of the clouds and aerosols behavior and some cases of dust detected with lidar, at these high southern latitude and cold environment regions during three months (austral spring) are discussed using information from satellite, modelling and solar radiation ground measurements.

  16. Comparison of Cell Regeneration Mechanisms Between Isolated Cb Clouds Moving Along A Valley and Over Flat Terrain

    NASA Astrophysics Data System (ADS)

    Curic, M.; Janc, D.; Vuckovic, V.; Vujovic, D.

    Cell regeneration mechanism within air-mass Cb cloud moving along the river valley is investigated by three-dimensional mesoscale ARPS model with improved micro- physics. Simulated cloud characteristics are then compared with those performed for the flat terrain conditions. The Western Morava valley area (Serbia) has selected as an important place for formation of such clouds in agreement with observations. Ana- lyzed results suggest that the river valley plays an important role for the cell regenera- tion mechanism in front of the mother cloud. Futher, it contributes to the fast Cb cloud propagation along the valley. In contrast, the front-side cell regeneration mechanism is absent for the flat terrain conditions since the cold air below cloud base deverges in all directions without any restrictions. This investigation gives us more complete insight in cell regeneration mechanisms than classic approach.

  17. Status of High Latitude Precipitation Estimates from Observations and Reanalyses

    NASA Technical Reports Server (NTRS)

    Behrangi, Ali; Christensen, Matthew; Richardson, Mark; Lebsock, Matthew; Stephens, Graeme; Huffman, George J.; Bolvin, David T.; Adler, Robert F.; Gardner, Alex; Lambrigtsen, Bjorn H.; hide

    2016-01-01

    An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular, the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally based Global Precipitation Climatology Project (GPCP), Global Precipitation Climatology Centre, and Climate Prediction Center Merged Analysis of Precipitation (CMAP) products and the ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction-Department of Energy Reanalysis 2 (NCEP-DOE R2) reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55 latitude are considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow, or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment. The intercomparison is performed for the 20072010 period when CloudSat was fully operational. It is found that ERA-Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over Northern Hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models.

  18. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  19. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  20. Hurricane Hector in the Eastern Pacific

    NASA Image and Video Library

    2006-08-17

    Infrared, microwave, and visible/near-infrared images of Hurricane Hector in the eastern Pacific were created with data from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 17, 2006. The infrared AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). At the time the data were taken from which these images were made, Hector is a well organized storm, with the strongest convection in the SE quadrant. The increasing vertical wind shear in the NW quadrant is appearing to have an effect. Maximum sustained winds are at 85 kt, gusts to 105 kt. Estimated minimum central pressure is 975 mbar. The microwave image is created from microwave radiation emitted by Earth's atmosphere and received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm where there are either some clouds or no clouds, indicate where the sea surface shines through. The "visible" image is created from data acquired by the visible light/near-infrared sensor on the AIRS instrument. http://photojournal.jpl.nasa.gov/catalog/PIA00507

  1. Towards a new parameterization of ice particles growth

    NASA Astrophysics Data System (ADS)

    Krakovska, Svitlana; Khotyayintsev, Volodymyr; Bardakov, Roman; Shpyg, Vitaliy

    2017-04-01

    Ice particles are the main component of polar clouds, unlike in warmer regions. That is why correct representation of ice particle formation and growth in NWP and other numerical atmospheric models is crucial for understanding of the whole chain of water transformation, including precipitation formation and its further deposition as snow in polar glaciers. Currently, parameterization of ice in atmospheric models is among the most difficult challenges. In the presented research, we present a renewed theoretical analysis of the evolution of mixed cloud or cold fog from the moment of ice nuclei activation until complete crystallization. The simplified model is proposed that includes both supercooled cloud droplets and initially uniform particles of ice, as well as water vapor. We obtain independent dimensionless input parameters of a cloud, and find main scenarios and stages of evolution of the microphysical state of the cloud. The characteristic times and particle sizes have been found, as well as the peculiarities of microphysical processes at each stage of evolution. In the future, the proposed original and physically grounded approximations may serve as a basis for a new scientifically substantiated and numerically efficient parameterizations of microphysical processes in mixed clouds for modern atmospheric models. The relevance of theoretical analysis is confirmed by numerical modeling for a wide range of combinations of possible conditions in the atmosphere, including cold polar regions. The main conclusion of the research is that until complete disappearance of cloud droplets, the growth of ice particles occurs at a practically constant humidity corresponding to the saturated humidity over water, regardless to all other parameters of a cloud. This process can be described by the one differential equation of the first order. Moreover, a dimensionless parameter has been proposed as a quantitative criterion of a transition from dominant depositional to intense collectional growth of ice particles; it could be used in models with bulk parameterization of cloud and precipitation formation processes.

  2. THE 1.1 mm CONTINUUM SURVEY OF THE SMALL MAGELLANIC CLOUD: PHYSICAL PROPERTIES AND EVOLUTION OF THE DUST-SELECTED CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500more » μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.« less

  3. The 1.1 mm Continuum Survey of the Small Magellanic Cloud: Physical Properties and Evolution of the Dust-selected Clouds

    NASA Astrophysics Data System (ADS)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Komugi, Shinya; Kohno, Kotaro; Tosaki, Tomoka; Sorai, Kazuo; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo; Ezawa, Hajime; Oshima, Tai; Scott, Kimberly S.; Austermann, Jason E.; Matsuo, Hiroshi; Aretxaga, Itziar; Hughes, David H.; Kawabe, Ryohei; Wilson, Grant W.; Yun, Min S.

    2017-01-01

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg2 of the SMC with 1σ noise levels of 5-12 mJy beam-1, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μm, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μm). The 1.1 mm objects show dust temperatures of 17-45 K and gas masses of 4 × 103-3 × 105 M⊙, assuming single-temperature thermal emission from the cold dust with an emissivity index, β, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μm and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μm flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Cold and warm atomic gas around the Perseus molecular cloud. I. Basic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanimirović, Snežana; Murray, Claire E.; Miller, Jesse

    2014-10-01

    Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T{sub s} ) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for randommore » interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of cold H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ∼15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with ≳ 85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear candidates for probing the CO-dark gas as they have N(H I)>10{sup 21} cm{sup –2} yet no detectable CO emission.« less

  5. Quantifying photometric observing conditions on Paranal using an IR camera

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Hanuschik, Reinhard

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. In addition to measuring precipitable water vapour (PWV) the instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. Due to its extended operating range down to -100 °C it is capable of detecting very cold and very thin, even sub-visual, cirrus clouds. We present a set of instrument flux calibration values as compared with a detrended fluctuation analysis (DFA) of the IR camera zenith-looking sky brightness data measured above Paranal taken over the past two years. We show that it is possible to quantify photometric observing conditions and that the method is highly sensitive to the presence of even very thin clouds but robust against variations of sky brightness caused by effects other than clouds such as variations of precipitable water vapour. Hence it can be used to determine photometric conditions for science operations. About 60 % of nights are free of clouds on Paranal. More work will be required to classify the clouds using this technique. For the future this approach might become part of VLT science operations for evaluating nightly sky conditions.

  6. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.

  7. A Regulation of Tropical Climate by Radiative Cooling as Simulated in a Cumulus Ensemble Model

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Lau, K.-M.; Li, X.; Chou, M.-D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Responses of tropical atmosphere to low-boundary forcing are investigated in a 2-D cumulus ensemble model (CEM) with an imposed warm-pool and cold-pool SST contrast (deltaSST). The domain-mean vertical motion is constrained to produce heat sink and moisture source as in the observed tropical climate. In a series of experiments, the warm pool SST is specified at different values while the cold pool SST is specified at 26 C. The strength of the circulation increases with increasing deltaSST until deltaSST reaches 3.5 C, and remains unchanged as deltaSST exceeds 3.5 C. The regulation of tropical convection by zonal SST gradient is constrained by the radiative cooling over the cold pool. For deltaSST less than 3.5 C, an enhanced subsidence warming is balanced by a reduced condensation heating over the cold pool. For deltaSST greater than 3.5 C, the subsidence regime expands over the entire cold pool where no condensation heating exist so that a further enhanced subsidence warming can no longer be sustained. The above regulation mechanism is also evident in the change of energy at the top of the atmosphere (TOA) that is dominated by cloud and water vapor greenhouse effect (c (sub LW)) and G (sub clear). The change in shortwave radiation at TOA is largely cancelled between the warm pool and cold pool, likely due to the same imposed vertical motion in our experiments. For deltaSST less than 3.5 C, an increase of deltaSST is associated with a large increase in c (sub Lw) due to increased total clouds in response to enhanced SST-induced circulation. For deltaSST greater than 3.5 C, clouds over the warm pool decrease with increasing SST, and the change in c (sub LW) is much smaller. In both dSST regimes, the change in CLW is larger than the change in G(sub clear) which is slightly negative. However, in the case of uniform warming (deltaSST=0), DeltaG(sub clear), is positive, approximately 5 W per square meters per degree change of SST.

  8. Jupiter's Multi-level Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.

    By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.

    The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity, while yellowish regions at temperate latitudes may indicate tropospheric clouds with small particles which also allow leakage. A mix of high and low-altitude aerosols causes the aqua appearance of the Great Red Spot and equatorial region.

    The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov.

  9. The effect of aerosol-derived changes in the warm phase on the properties of deep convective clouds

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven; Dagan, Guy

    2017-04-01

    The aerosol impact on deep convective clouds starts in an increased number of cloud droplets in higher aerosol loading environment. This change drives many others, like enhanced condensational growth, delay in collision-coalescence and others. Since the warm processes serve as the initial and boundary conditions for the mixed and cold-phase processes in deep clouds, it is highly important to understand the aerosol effect on them. The weather research and forecasting model (WRF) with spectral bin microphysics was used to study a deep convective system over the Marshall Islands, during the Kwajalein Experiment (KWAJEX). Three simulations were conducted with aerosol concentrations of 100, 500 and 2000 cm-3, to reflect clean, semipolluted, and polluted conditions. The results of the clean run agreed well with the radar profiles and rain rate observations. The more polluted simulations resulted in larger total cloud mass, larger upper level cloud fraction and rain rates. There was an increased mass both below and above the zero temperature level. It indicates of more efficient growth processes both below and above the zero level. In addition the polluted runs showed an increased upward transport (across the zero level) of liquid water due to both stronger updrafts and larger droplet mobility. In this work we discuss the transport of cloud mass crossing the zero temperature level (in both directions) in order to gain a process level understanding of how aerosol effects on the warm processes affect the macro- and micro-properties of deep convective clouds.

  10. Title: Characterizing a Frozen Extrasolar World

    NASA Technical Reports Server (NTRS)

    Skemer, Andrew J.; Morley, Caroline V.; Allers, Katelyn N.; Geballe, Thomas R.; Marley, Mark S.; Fortney, Jonathan J.; Faherty, Jacqueline K.; Bjoraker, Gordon L.

    2016-01-01

    The recently discovered brown dwarf WISE 0855 presents our first opportunity to study an object outside the Solar System that is nearly as cold as our own gas giant planets. However the traditional methodology for characterizing brown dwarfs-near infrared spectroscopy-is not currently feasible as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 micrometers spectrum, the same bandpass long used to study Jupiter's deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter. The spectrum is high enough quality to allow the investigation of dynamical and chemical processes that have long been studied in Jupiter's atmosphere, but this time on an extrasolar world.

  11. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  12. Cloud Statistics and Discrimination in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Chan, M.; Comiso, J. C.

    2012-12-01

    Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice-sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.

  13. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; hide

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  14. Relating Line Width and Optical Depth for CO Emission in the Large Mgellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Evan; Wong, Tony; Bandurski, Jeffrey; MC3 (Mapping CO in Molecular Clouds in the Magellanic Clouds) Team

    2018-01-01

    We investigate data produced from ALMA observations of giant molecular clouds (GMCs) located in the Large Magellanic Cloud (LMC), using 12CO(2–1) and 13CO(2–1) emission. The spectral line width is generally interpreted as tracing turbulent rather than thermal motions in the cloud, but could also be affected by optical depth, especially for the 12CO line (Hacar et al. 2016). We compare the spectral line widths of both lines with their optical depths, estimated from an LTE analysis, to evaluate the importance of optical depth effects. Our cloud sample includes two regions recently published by Wong et al. (2017, submitted): the Tarantula Nebula or 30 Dor, an HII region rife with turbulence, and the Planck cold cloud (PCC), located in a much calmer environment near the fringes of the LMC. We also include four additional LMC clouds, which span intermediate levels of star formation relative to these two clouds, and for which we have recently obtained ALMA data in Cycle 4.

  15. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE PAGES

    Drager, Aryeh J.; van den Heever, Susan C.

    2017-05-09

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  16. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drager, Aryeh J.; van den Heever, Susan C.

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  17. Study of mesoscale phenomena, winter monsoon clouds and snow area based on LANDSAT data

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Most longitudinal clouds which appear as continuous linear clouds are composed of small transversal clouds. There are mountain waves of different wavelength in a comparatively narrow area indicating complicated orographical effects on wind and temperature distribution or on both dynamical and static stability condition. There is a particular shape of cirrus cloud suggestive of turbulence in the vicinity of CAT in the upper troposphere near jet stream level and its cold air side. Thin cirrus of overcast condition can be distinguished by MSS; however, extremely thin cirrus of partly cloudy condition cannot be detected even in LANDSAT data. This presents a serious problem in the interpretation of satellite thermal infrared radiation data since they affect the value.

  18. Global snowfall: A combined CloudSat, GPM, and reanalysis perspective.

    NASA Astrophysics Data System (ADS)

    Milani, Lisa; Kulie, Mark S.; Skofronick-Jackson, Gail; Munchak, S. Joseph; Wood, Norman B.; Levizzani, Vincenzo

    2017-04-01

    Quantitative global snowfall estimates derived from multi-year data records will be presented to highlight recent advances in high latitude precipitation retrievals using spaceborne observations. More specifically, the analysis features the 2006-2016 CloudSat Cloud Profiling Radar (CPR) and the 2014-2016 Global Precipitation (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) observational datasets and derived products. The ERA-Interim reanalysis dataset is also used to define the meteorological context and an independent combined modeling/observational evaluation dataset. An overview is first provided of CloudSat CPR-derived results that have stimulated significant recent research regarding global snowfall, including seasonal analyses of unique snowfall modes. GMI and DPR global annual snowfall retrievals are then evaluated against the CloudSat estimates to highlight regions where the datasets provide both consistent and diverging snowfall estimates. A hemispheric seasonal analysis for both datasets will also be provided. These comparisons aim at providing a unified global snowfall characterization that leverages the respective instrument's strengths. Attention will also be devoted to regions around the globe that experience unique snowfall modes. For instance, CloudSat has demonstrated an ability to effectively discern snowfall produced by shallow cumuliform cloud structures (e.g., lake/ocean-induced convective snow produced by air/water interactions associated with seasonal cold air outbreaks). The CloudSat snowfall database also reveals prevalent seasonal shallow cumuliform snowfall trends over climate-sensitive regions like the Greenland Ice Sheet. Other regions with unique snowfall modes, such as the US East Coast winter storm track zone that experiences intense snowfall rates directly associated with strong low pressure systems, will also be highlighted to demonstrate GPM's observational effectiveness. Linkages between CloudSat and GPM global snowfall analyses and independent ERA-Interim datasets will also be presented as a final evaluation exercise.

  19. Convectively-generated gravity waves and clear-air turbulence (CAT)

    NASA Astrophysics Data System (ADS)

    Sharman, Robert; Lane, Todd; Trier, Stanley

    2013-04-01

    Upper-level turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. The relation of convectively-induced gravity waves to turbulence outside the cloud (either above cloud or laterally away from cloud) is examined based on high resolution cloud-resolving simulations, both with and without cloud microphysics in the simulations. Results for both warm-season and cold-season cloud systems indicate that the turbulence in the clear air away from cloud is often caused by gravity wave production processes in or near the cloud which once initiated, are able to propagate away from the storm, and may eventually "break." Without microphysics of course this effect is absent and turbulence is not produced in the simulations. In some cases the convectively-induced turbulence may be many kilometers away from the active convection and can easily be misinterpreted as "clear-air turbulence" (CAT). This is a significant result, and may be cause for a reassessment of the working definition of CAT ("turbulence encountered outside of convective clouds", FAA Advisory Circular AC 00-30B, 1997).

  20. Advances in Understanding the Role of Frozen Precipitation in High Latitude Hydrology

    NASA Astrophysics Data System (ADS)

    L'Ecuyer, T. S.; Wood, N.; Smalley, M.; McIlhattan, E.; Kulie, M.

    2017-12-01

    Satellite-based millimeter wavelength radar observations provide a unique perspective on the global character of frozen precipitation that has been difficult to detect using conventional spaceborne precipitation sensors. This presentation will describe the methodology underpinning the ten-year CloudSat global snowfall product and discuss the results of a number of complementary approaches that have been adopted to quantify its uncertainties. These datasets are shedding new light on the distribution, character, and impacts of frozen precipitation on high latitude hydrology. Inferred regional snowfall accumulations, for example, provide valuable constraints on projected changes in precipitation and mass balance on the Antarctic ice sheet in climate models. When placed in the broader context of complementary observations from other A-Train sensors, instantaneous snowfall estimates also hint at the large-scale processes that influence snow formation including air-sea interactions associated with cold-air outbreaks, lake-effect snows, and orographic enhancement. Simultaneous CloudSat and CALIPSO observations further emphasize the important role snowfall plays in the lifetime of super-cooled liquid containing clouds in the Arctic and highlight a model deficiency with important implications for surface energy and mass balance on the Greenland ice sheet.

  1. The excitation of OH by H2 revisited - I: fine-structure resolved rate coefficients

    NASA Astrophysics Data System (ADS)

    Kłos, J.; Ma, Q.; Dagdigian, P. J.; Alexander, M. H.; Faure, A.; Lique, F.

    2017-11-01

    Observations of OH in molecular clouds provide crucial constraints on both the physical conditions and the oxygen and water chemistry in these clouds. Accurate modelling of the OH emission spectra requires the calculation of rate coefficients for excitation of OH by collisions with the most abundant collisional partner in the molecular clouds, namely the H2 molecule. We report here theoretical calculations for the fine-structure excitation of OH by H2 (both para- and ortho-H2) using a recently developed highly accurate potential energy surface. Full quantum close coupling rate coefficients are provided for temperatures ranging from 10 to 150 K. Propensity rules are discussed and the new OH-H2 rate coefficients are compared to the earlier values that are currently used in astrophysical modelling. Significant differences were found: the new rate coefficients are significantly larger. As a first application, we simulate the excitation of OH in typical cold molecular clouds and star-forming regions. The new rate coefficients predict substantially larger line intensities. As a consequence, OH abundances derived from observations will be reduced from the values predicted by the earlier rate coefficients.

  2. Cloud and Radiation Studies during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir). These retrievals will be discussed and compared with in situ observations.

  3. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.

  4. Snow in Italy

    NASA Image and Video Library

    2012-02-24

    NASA image acquired February 24, 2012 By late February, 2012, the great European cold wave had begun to loosen its frigid grip, but significant snow still remained in the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite captured this true-color image of snow in Italy on February 24 at 12:35 UTC (1:30 p.m. local time). In the north of the image, bright white clouds blanket the region in a broad arc. Snow, which tends to be generally less bright that clouds, covers the Alps in the north of Italy. The Apennine Mountains, which form the backbone of the Italian peninsula, also carry a blanket of snow. Although clouds and snow can, at times, be distinguished visually in a true-color image, sometimes they can appear very similar. When it is important to clearly define snow from cloud, false color images are often helpful. Rome, which can be seen as a gray smudge on the southwestern coast of the peninsula, recorded highs of a spring-like 50°F the day this image was captured, but earlier in the month the temperatures dove as low as 26°F on February 5. During that cold snap a rare intense snowfall blanketed Rome, causing the closure of the Colosseum, the Roman Forum and the Palatine Hill due to concerns of the risk of icy footing for tourists, and roads became impassible. Further north, temperatures plummeted to −21 °C (−6 °F) on 7 February. On February 11, news media reported over 2 meters (6.5 feet) of snow had fallen in Urbino, a walled town situated on a high sloping hillside on the eastern side of the Apennine Mountains. That same snowfall cut access to many remote towns in the Apennines, blocking roads and trapping some people in the homes. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Clouds Sailing Overhead on Mars, Enhanced

    NASA Image and Video Library

    2017-08-09

    Wispy clouds float across the Martian sky in this accelerated sequence of enhanced images from NASA's Curiosity Mars rover. The rover's Navigation Camera (Navcam) took these eight images over a span of four minutes early in the morning of the mission's 1,758th Martian day, or sol (July 17, 2017), aiming nearly straight overhead. They have been processed by first making a "flat field' adjustment for known differences in sensitivity among pixels and correcting for camera artifacts due to light reflecting within the camera, and then generating an "average" of all the frames and subtracting that average from each frame. This subtraction results in emphasizing any changes due to movement or lighting. The clouds are also visible, though fainter, in a raw image sequence from these same observations. On the same Martian morning, Curiosity also observed clouds near the southern horizon. The clouds resemble Earth's cirrus clouds, which are ice crystals at high altitudes. These Martian clouds are likely composed of crystals of water ice that condense onto dust grains in the cold Martian atmosphere. Cirrus wisps appear as ice crystals fall and evaporate in patterns known as "fall streaks" or "mare's tails." Such patterns have been seen before at high latitudes on Mars, for instance by the Phoenix Mars Lander in 2008, and seasonally nearer the equator, for instance by the Opportunity rover. However, Curiosity has not previously observed such clouds so clearly visible from the rover's study area about five degrees south of the equator. The Hubble Space Telescope and spacecraft orbiting Mars have observed a band of clouds to appear near the Martian equator around the time of the Martian year when the planet is farthest from the Sun. With a more elliptical orbit than Earth's, Mars experiences more annual variation than Earth in its distance from the Sun. The most distant point in an orbit around the Sun is called the aphelion. The near-equatorial Martian cloud pattern observed at that time of year is called the "aphelion cloud belt." These new images from Curiosity were taken about two months before aphelion, but the morning clouds observed may be an early stage of the aphelion cloud belt. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21841

  6. Clouds Sailing Above Martian Horizon, Enhanced

    NASA Image and Video Library

    2017-08-09

    Clouds drift across the sky above a Martian horizon in this accelerated sequence of enhanced images from NASA's Curiosity Mars rover. The rover's Navigation Camera (Navcam) took these eight images over a span of four minutes early in the morning of the mission's 1,758th Martian day, or sol (July 17, 2017), aiming toward the south horizon. They have been processed by first making a "flat field' adjustment for known differences in sensitivity among pixels and correcting for camera artifacts due to light reflecting within the camera, and then generating an "average" of all the frames and subtracting that average from each frame. This subtraction emphasizes changes whether due to movement -- such as the clouds' motion -- or due to lighting -- such as changing shadows on the ground as the morning sunlight angle changed. On the same Martian morning, Curiosity also observed clouds nearly straight overhead. The clouds resemble Earth's cirrus clouds, which are ice crystals at high altitudes. These Martian clouds are likely composed of crystals of water ice that condense onto dust grains in the cold Martian atmosphere. Cirrus wisps appear as ice crystals fall and evaporate in patterns known as "fall streaks" or "mare's tails." Such patterns have been seen before at high latitudes on Mars, for instance by the Phoenix Mars Lander in 2008, and seasonally nearer the equator, for instance by the Opportunity rover. However, Curiosity has not previously observed such clouds so clearly visible from the rover's study area about five degrees south of the equator. The Hubble Space Telescope and spacecraft orbiting Mars have observed a band of clouds to appear near the Martian equator around the time of the Martian year when the planet is farthest from the Sun. With a more elliptical orbit than Earth's, Mars experiences more annual variation than Earth in its distance from the Sun. The most distant point in an orbit around the Sun is called the aphelion. The near-equatorial Martian cloud pattern observed at that time of year is called the "aphelion cloud belt." These new images from Curiosity were taken about two months before aphelion, but the morning clouds observed may be an early stage of the aphelion cloud belt. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21840

  7. The Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, M.; Liu, F.

    2013-12-01

    A stratus-sea fog event occurred on 3 June 2011 over the Yellow and East China Seas (as shown in figure) is investigated observationally and numerically. Emphasis is put on the influences of the sea surface temperature front (SSTF) and of the synoptic circulations on the transition of stratus to sea fog. The southerly winds from a synoptic high pressure transport water vapor from the East China Sea to the Yellow Sea, while the subsidence induced by the high contributes to the formation of the temperature inversion on the top of the stratus or stratocumulus that appears mainly over the warm flank of a sea surface temperature front in the East China Sea. Forced by the SSTF, there is a secondary cell within the atmospheric boundary layer (ABL), with a sinking branch on the cold flank and a rising one on the warm flank of the SSTF. This sinking branch, in phase with the synoptic subsidence, forces the stratus or stratocumulus to lower in the elevation getting close to the sea surface as these clouds move northward driven by the southerly winds. The cloud droplets can either reach to the sea surface directly or evaporate into water vapor that may condense again when coming close to the cold sea surface to form fog. In this later case, the stratus and fog may separate. The cooling effect of cold sea surface counteracts the adiabatic heating induced by the subsidence and thus helps the transition of stratus to sea fog in the southern Yellow Sea. By smoothing the SSTF in the numerical experiment, the secondary cell weakens and the sea fog patches shrink obviously over the cold flank of the SSTF though the synoptic subsidence and moist advection still exist. A conceptual model is suggested for the transition of stratus to sea fog in the Yellow and East China Seas, which is helpful for the forecast of sea fog over these areas. The satellite visible image of the stratus-fog event. The fog appears in the Yellow Sea and the stratocumulus in the East China Sea.

  8. Topoclimatological and snowhydrological survey of Switzerland

    NASA Technical Reports Server (NTRS)

    Winiger, M. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The chosen time of overflight of HCMM seems to be ideal for the study of basic climatological events. Nocturnal temperature inversion zones are easily detectable and their dependency on the relief is clearly seen. Especially the alpine valleys show a very differentiated pattern of cold lakes, separated by warmer zones as a consequence of rock and forrest barriers or changes in the valley profile. Wet areas are usually colder than dry parts under comparable topographic conditions. Even very small topographic obstacles are able to block up the flow of cold air masses (or ground water flow). Urban areas are clearly detectable. Differences to the surface temperatures of surrounding rural land are much more significant during day-time (mainly during the summer months). Fog layers are clearly defined in the visible channel (day-time), but much more difficult to identify in the IR (mainly during the night). There is not a fundamental difference to NOAA-analysis of cloud systems. The most important advantage is the better detectability of convective cloud systems (small cumulus clouds).

  9. Applying the WRF Double-Moment Six-Class Microphysics Scheme in the GRAPES_Meso Model: A Case Study

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Wang, Hong; Zhang, Xiaoye; Peng, Yue; Che, Huizheng

    2018-04-01

    This study incorporated the Weather Research and Forecasting (WRF) model double-moment 6-class (WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_Meso). A rainfall event that occurred during 3-5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme (WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei (CCN) number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration ( N c) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration ( N r), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.

  10. Evolutionary Models of Cold, Magnetized, Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Gammie, Charles F.; Ostriker, Eve; Stone, James M.

    2004-01-01

    We modeled the long-term and small-scale evolution of molecular clouds using direct 2D and 3D magnetohydrodynamic (MHD) simulations. This work followed up on previous research by our group under auspices of the ATP in which we studied the energetics of turbulent, magnetized clouds and their internal structure on intermediate scales. Our new work focused on both global and smallscale aspects of the evolution of turbulent, magnetized clouds, and in particular studied the response of turbulent proto-cloud material to passage through the Galactic spiral potential, and the dynamical collapse of turbulent, magnetized (supercritical) clouds into fragments to initiate the formation of a stellar cluster. Technical advances under this program include developing an adaptive-mesh MHD code as a successor to ZEUS (ATHENA) in order to follow cloud fragmentation, developing a shearing-sheet MHD code which includes self-gravity and externally-imposed gravity to follow the evolution of clouds in the Galactic potential, and developing radiative transfer models to evaluate the internal ionization of clumpy clouds exposed to external photoionizing UV and CR radiation. Gammie's work at UIUC focused on the radiative transfer aspects of this program.

  11. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of the Mediterranean obtained concurrently on June 14, 2002 from the three instruments that make up the Atmospheric Infrared Sounder experiment system aboard NASA's Aqua spacecraft. The system features thousands of individual channels that observe Earth in the visible, infrared and microwave spectral regions. Each channel has a unique sensitivity to temperature, moisture, surface conditions and clouds.

    This visible light image from the AIRS instrument shows a band of white clouds extending from the Adriatic Sea over Greece to the Black Sea.

    The AIRS image (figure 1) at 900 cm-1 (11 micrometers) measures actual surface or cloud top temperatures. In it, land and ocean boundaries are well defined, with land appearing as warmer (darker red) than the ocean. The band of cold high cumulus clouds appears blue, with the darkest blue most likely a large thunderstorm.

    The 150 gigahertz channel from the Humidity Sounder for Brazil instrument (figure 2) is sensitive to moisture, ice particles and precipitation. The dry land temperature is comparable to the 11 micrometer temperatures, but over ocean this channel measures the temperature of moisture in the mid troposphere. The cold, blue areas off Sicily and in the Aegean Sea represent unusually dry areas over the ocean. There, clouds appear as green filaments--likely areas of precipitation.

    The 31.4 gigahertz channel from the Advanced Microwave Sounding Unit instrument (figure 3) is not affected by clouds.

    NASA's Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua spacecraft, began sending high quality data on June 12, 2002. This 'first light' data is exceeding the expectations of scientists, confirming that the AIRS experiment is well on its way to meeting its goals of improving weather forecasting, establishing the connection between severe weather and climate change, determining if the global water cycle is accelerating, and detecting the effects of increased greenhouse gases.

    The AIRS sounding suite is a tightly integrated remote sensing system that will be used to create global three-dimensional maps of temperature, humidity and clouds in the Earth's atmosphere with unprecedented accuracy. This will lead to better weather forecasts as well as a wealth of data that will be used to study and characterize and eventually predict the global climate. The AIRS system is made up of three of the six Aqua instruments - AIRS itself, which is an infrared sounder with an unprecedented 2378 spectral channels, complemented with a 4-channel visible/near-infrared imaging module; AMSU-A, which is a 15-channel microwave temperature sounder; and HSB, which is a 4-channel microwave humidity sounder. These instruments are carefully aligned with each other and scan the atmosphere in a synchronized way, giving us simultaneous multispectral views of a highly variable target.

    The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

    The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.

  12. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to determine particle size distributions of cloud layers. Depending on how ice particles vary through the cloud, several layers per cloud with relatively uniform properties have been analysed. Preliminary results of the balloon campaign, targeting upper tropospheric, cold cirrus clouds, are presented here. Ice particles in these clouds were predominantly very small, with a median size of measured particles of around 50 µm and about 80 % of all particles below 100 µm in size. The properties of the particle size distributions at temperatures between -36 and -67 °C have been studied, as well as particle areas, extinction coefficients, and their shapes (area ratios). Gamma and log-normal distribution functions could be fitted to all measured particle size distributions achieving very good correlation with coefficients R of up to 0.95. Each distribution features one distinct mode. With decreasing temperature, the mode diameter decreases exponentially, whereas the total number concentration increases by two orders of magnitude with decreasing temperature in the same range. The high concentrations at cold temperatures also caused larger extinction coefficients, directly determined from cross-sectional areas of single ice particles, than at warmer temperatures. The mass of particles has been estimated from area and size. Ice water content (IWC) and effective diameters are then determined from the data. IWC did vary only between 1 × 10-3 and 5 × 10-3 g m-3 at temperatures below -40 °C and did not show a clear temperature trend. These measurements are part of an ongoing study.

  13. A 10 Year Climatology of Arctic Cloud Fraction and Radiative Forcing at Barrow, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiquan; Xi, Baike; Crosby, Kathryn

    2010-09-15

    A 10-yr record of Arctic cloud fraction and surface radiation budget has been generated using data collected from June 1998 to May 2008 at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site and the nearby NOAA Barrow Observatory (BRW). The record includes the seasonal variations of cloud fraction (CF), cloud liquid water path (LWP), precipitable water vapor (PWV), surface albedo, shortwave (SW) and longwave (LW) fluxes and cloud radative forcings (CRFs), as well as their decadal variations. Values of CF derived from different instruments and methods agree well, having an annual average of ~0.74. Cloudiness increases frommore » March to May, remains high (~0.8-0.9) from May to October, and then decreases over winter. More clouds and higher LWP and PWV occurred during the warm season (May-October) than the cold season (November-April). These results are strongly associated with southerly flow which transports warm, moist air masses to Barrow from the North Pacific and over area of Alaska already free of snow during the warm season and with a dipole pattern of pressure in which a high is centered over the Beaufort Sea and low over the Aleutians during the cold season. The monthly means of estimated clear-sky and measured allsky SW-down and LW-down fluxes at the two facilities are almost identical with the annual mean differences less than 1.6 W m-2. The downwelling and upwelling LW fluxes remain almost constant from January to March, then increase from March and peak during July-August. SW-down fluxes are primarily determined by seasonal changes in the intensity and duration of insolation over Northern Alaska, and are also strongly dependent on cloud fraction and optical depth, and surface albedo. The monthly variations of NET CRF generally follow the cycle of SW CRF, modulated by LW effects. On annual average, the negative SW CRF and positive LW CRF tend to cancel, resulting in annual average NET CRF of 2-4.5 Wm-2. Arctic clouds have a 3 net warming effect on the surface throughout the year, with exception of the snow-free period from middle June to middle September when there tends to be a cooling effect. The daily average surface albedos agree well at the two sites remaining high (>0.8) until late May, dropping below 0.2 after the snow melts around June and increasing during autumn once snow begins to accumulate. On the basis of long-term regression analyses CF has decreased by about 0.048 while temperature has risen by ≈1.1 K over the 10-yr period, which can be characterized by tendencies of warming mainly during December and April. With regard to the 2007 record minimum Arctic ice extent, this study provides additional empirical evidence that decreased cloud cover and increased SW-down flux during summer contributed to anomalous ice melt in the region north of Barrow. At Barrow, average June-August CF decreased by 0.062 in 2007 from the 10-yr mean, while SW-down and NET fluxes increased by 28.4 Wm-2 and 11.3 Wm-2, respectively. The increase in the NET radiative flux during summer 2007 most likely contributed to an increase in surface air temperature of 1.6 K.« less

  14. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    NASA Astrophysics Data System (ADS)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  15. How do changes in warm-phase microphysics affect deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.

  16. Research Opportunities at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  17. Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development

    NASA Astrophysics Data System (ADS)

    Albrecht, Rachel I.; Morales, Carlos A.; Silva Dias, Maria A. F.

    2011-04-01

    This study investigated the physical processes involved in the development of thunderstorms over southwestern Amazon by hypothesizing causalities for the observed cloud-to-ground lightning variability and the local environmental characteristics. Southwestern Amazon experiences every year a large variety of environmental factors, such as the gradual increase in atmospheric moisture, extremely high pollution due to biomass burning, and intense deforestation, which directly affects cloud development by differential surface energy partition. In the end of the dry period it was observed higher percentages of positive cloud-to-ground (+CG) lightning due to a relative increase in +CG dominated thunderstorms (positive thunderstorms). Positive (negative) thunderstorms initiated preferentially over deforested (forest) areas with higher (lower) cloud base heights, shallower (deeper) warm cloud depths, and higher (lower) convective potential available energy. These features characterized the positive (negative) thunderstorms as deeper (relatively shallower) clouds, stronger (relatively weaker) updrafts with enhanced (decreased) mixed and cold vertically integrated liquid. No significant difference between thunderstorms (negative and positive) and nonthunderstorms were observed in terms of atmospheric pollution, once the atmosphere was overwhelmed by pollution leading to an updraft-limited regime. However, in the wet season both negative and positive thunderstorms occurred during periods of relatively higher aerosol concentration and differentiated size distributions, suggesting an aerosol-limited regime where cloud electrification could be dependent on the aerosol concentration to suppress the warm and enhance the ice phase. The suggested causalities are consistent with the invoked hypotheses, but they are not observed facts; they are just hypotheses based on plausible physical mechanisms.

  18. Navy Tactical Applications Guide. Volume 2. Environmental Phenomena and Effects

    DTIC Science & Technology

    1979-01-01

    usually distinguished: the polar-front jet stream, associated with extratropical frontal systems; and the subtropical jet stream, overlying the poleward...patterns have formed in the cold air behind a frontal cloud band which extends from North Africa into Southern Europe . Note that the cellular cloud field...but because of the future potential of such areas for rapid storm " , development. (See Case 3 for the further development of these vorticity centers

  19. Detection of nitric oxide in the dark cloud L134N

    NASA Technical Reports Server (NTRS)

    Mcgonagle, D.; Irvine, W. M.; Minh, Y. C.; Ziurys, L. M.

    1990-01-01

    The first detection of interstellar nitric oxide (NO) in a cold dark cloud, L134N is reported. Nitric oxide was observed by means of its two 2 Pi 1/2, J = 3/2 - 1/2, rotational transitions at 150.2 and 150.5 GHz, which occur because of Lambda-doubling. The inferred column density for L134N is about 5 x 10 to the 14th/sq cm toward the SO peak in that cloud. This value corresponds to a fractional abundance relative to molecular hydrogen of about 6 x 10 to the -8th and is in good agreement with predictions of quiescent cloud ion-molecule chemistry. NO was not detected toward the dark cloud TMC-1 at an upper limit of 3 x 10 to the -8th or less.

  20. Use of ARM Products in Reanalysis Applications and IPCC Model Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, John E; Chapman, William L

    2011-09-30

    Year-3 of the project was spent developing an observed cloud climatology for Barrow, AK and relating the observed cloud fractions to the surface circulation patterns and locally observed winds. Armed with this information, we identified errors and sources of errors of cloud fraction simulations by numerical models in the Arctic. Specifically, we compared the cloud simulations output by the North American Regional Reanalysis (NARR) to corresponding observed cloud fractions obtained by the Department of Energy's Atmospheric Radiation Measurement (ARM) program for four mid-season months: (January, April, July, and October). Reanalyses are obtained from numerical weather prediction models that are notmore » run in real-time. Instead, a reanalysis model ingests a wide variety of historical observations for the purpose of producing a gridded dataset of many model-derived quantities that are as temporally homogeneous as possible. Therefore, reanalysis output can be used as a proxy for observations, although some biases and other errors are inevitable because of model parameterizations and observational gaps. In the observational analysis we documented the seasonality of cloudiness at the north slope including cloud base height and dependence on synoptic regime. We followed this with an evaluation of the associations of wind-speed and direction and cloud amounts in both the observational record and the reanalysis model. The Barrow cloud fraction data show that clear conditions are most often associated with anomalous high pressure to the north of Barrow, especially in spring and early summer. Overcast skies are most commonly associated with anomalous low pressure to the south. The observational analysis shows that low, boundary layer clouds are the most common type of cloud observed North Slope ARM observing site. However, these near-surface clouds are a major source of errors in the NARR simulations. When compared to observations, the NARR over-simulates the fraction of low clouds during the winter months, and under-simulates the fraction of low clouds during the summer months. The NARR wind speeds at the North Slope are correlated to the observed ARM wind speeds at Barrow. The following correlations were obtained using the 3-hourly data: Jan (0.84); Apr (0.83); Jul (0.69); Oct (0.79). A negative bias (undersimulation) exists in the reanalysis wind speeds for January through July, but is typically 3ms-1 or less in magnitude. Overall, the magnitude of the wind vector is undersimulated approximately 74% of the time in the cold season months and 85% of the time July, but only about half of the time in October. Wind direction biases in the model are generally small (10-20 degrees), but they are generally in the leftward-turning direction in all months. We also synthesized NARR atmospheric output into a composite analysis of the synoptic conditions that are present when the reanalysis model fails in its simulations of Arctic cloud fractions, and similarly, those conditions present when the model simulates accurate cloud fractions. Cold season errors were highest when high pressure was located north of Barrow favoring anomalous winds and longer fetches from the northeast. In addition, larger cloud fraction biases were found on days with relatively calm winds (2-5 m/s). The most pronounced oversimulation biases associated with poorly simulated clouds occur during conditions with very low cloud-base heights (< 50 m). In contrast, the model appears more adept at capturing cloudless conditions in the spring than the winter with oversimulations occurring just 5% of the time in spring compared to 20% in the winter months. During the warm season, low level clouds are present in 32% of the time with onshore flow and less than half this frequent in offshore wind conditions. Composite sea level pressure fields indicate that clear sky conditions typically result when high pressure is centered at or near Barrow, AK. Overcast days are associated with generally lower sea level pressures near the North Slope and onshore flow from the NW in most months. Warm season errors were highest when high pressure was persistent to the north of Barrow, AK. This synoptic situation results in onshore flow for the North Slope with persistent winds from the east and northeast. In these situations, the predominant climatological synoptic situation, the NARR model under-simulates summer clouds on the North Slope. In general, the NARR often fails to capture clouds in the lowest 200 meters of the atmosphere. We conclude that the cloud model parameterization fails to cature boundary layer clouds like Arctic stratus and fog, which are observed in 65% of the undersimulations. These NARR undersimulations occur most often during onshore flow environments, such as when high pressure is located north of Barrow and the prevailing winds are from the northeast. In these cases, the airflow is along a fetch of scattered sea ice and open ocean (ice concentrations between 0 and 100%). NARR treats sea ice as a binary function. Grid cells are either considered a slap of ice cover, or totally open ocean. We note that implementing provisions for partial sea ice concentrations in the reanalysis model may help in more accurately depicting surface moisture fluxes and associated model-derived low cloud amounts.« less

  1. Pattern Formations for Optical Switching Using Cold Atoms as a Nonlinear Medium

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Greenberg, Joel; Gauthier, Daniel

    2011-05-01

    The study of spatio-temporal pattern formation in nonlinear optical systems has both led to an increased understanding of nonlinear dynamics as well as given rise to sensitive new methods for all-optical switching. Whereas the majority of past experiments utilized warm atomic vapors as nonlinear media, we report the first observation of an optical instability leading to pattern formation in a cloud of cold Rubidium atoms. When we shine a pair of counterpropagating pump laser beams along the pencil-shaped cloud's long axis, new beams of light are generated along cones centered on the trap. This generated light produces petal-like patterns in the plane orthogonal to the pump beams that can be used for optical switching. We gratefully acknowledge the financial support of the NSF through Grant #PHY-0855399 and the DARPA Slow Light Program.

  2. Occurrence and Forms of Water and Ice on the Earth and Beyond, and the Origin(s) of Life

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    The natural history of the biogenic elements (H,C,O,N) from their first association within cold molecular clouds to their delivery to the Earth during the late bombardment of the inner solar system, is intimately linked to water ice. The earliest organic compounds are formed in cold interstellar molecular clouds as a result of UV and thermal processing of sub-micrometer ice grains which contain trapped carbon and nitrogen molecules. Structural changes in the water ice host underlie and fundamentally control important macroscopic phenomena such as the outgassing of volatiles, the rates of chemical reactions, and processing and retention of organic compounds. Prebiotic organic material was in all likelihood delivered the early Earth in a pristine state as a consequence of its sequestration within a protective water ice host.

  3. Characterization of Arctic ice cloud properties observed during ISDAC

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Girard, Eric; Pelon, Jacques; Gultepe, Ismail; Delanoë, Julien; Blanchet, Jean-Pierre

    2012-12-01

    Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-2A), being topped by a cover of nonprecipitating very small (radar unseen) ice crystals (TIC-1), is found more frequently in pristine environment, whereas the second type (TIC-2B), detected by both sensors, is associated preferentially with a high concentration of aerosols. To further investigate the microphysical properties of TIC-1/2A and TIC-2B, airborne in situ and satellite measurements of specific cases observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC) have been analyzed. For the first time, Arctic TIC-1/2A and TIC-2B microstructures are compared using in situ cloud observations. Results show that the differences between them are confined in the upper part of the clouds where ice nucleation occurs. TIC-2B clouds are characterized by fewer (by more than 1 order of magnitude) and larger (by a factor of 2 to 3) ice crystals and a larger ice supersaturation (of 15-20%) compared to TIC-1/2A. Ice crystal growth in TIC-2B clouds seems explosive, whereas it seems more gradual in TIC-1/2A. It is hypothesized that these differences are linked to the number concentration and the chemical composition of aerosols. The ice crystal growth rate in very cold conditions impinges on the precipitation efficiency, dehydration and radiation balance. These results represent an essential and important first step to relate previous modeling, remote sensing and laboratory studies with TICs cloud in situ observations.

  4. THE FIRST SPECTRUM OF THE COLDEST BROWN DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.

    2016-08-01

    The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs—near-infrared spectroscopy—is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5–5.2 μ m spectrum, the same bandpass long used to study Jupiter’s deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter’s. The spectrum quality ismore » high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter’s atmosphere, but now on an extrasolar world.« less

  5. VizieR Online Data Catalog: Planck Catalogue of Galactic cold clumps (PGCC) (Planck+, 2016)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorsk, I. K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2017-01-01

    The Planck Catalogue of Galactic Cold Clumps (PGCC) is a list of 13188 Galactic sources and 54 sources located in the Small and Large Magellanic Clouds. The sources have been identified in Planck data as sources colder than their environment. It has been built using the 48 months Planck data at 857, 545, and 353GHz combined with the 3THz IRAS data. (1 data file).

  6. The chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1991-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar and circumstellar clouds incorporating the biogenic elements. Recent results include the identification of a new astronomical carbon-chain molecule, C4Si. This species was detected in the envelope expelled from the evolved star IRC+10216 in observations at the Nobeyama Radio Observatory in Japan. C4Si is the carrier of six unidentified lines which had previously been observed. This detection reveals the existence of a new series of carbon-chain molecules, C sub n Si (n equals 1, 2, 4). Such molecules may well be formed from the reaction of Si(+) with acetylene and acetylene derivatives. Other recent research has concentrated on the chemical composition of the cold, dark interstellar clouds, the nearest dense molecular clouds to the solar system. Such regions have very low kinetic temperatures, on the order of 10 K, and are known to be formation sites for solar-type stars. We have recently identified for the first time in such regions the species of H2S, NO, HCOOH (formic acid). The H2S abundance appears to exceed that predicted by gas-phase models of ion-molecule chemistry, perhaps suggesting the importance of synthesis on grain surfaces. Additional observations in dark clouds have studied the ratio of ortho- to para-thioformaldehyde. Since this ratio is expected to be unaffected by both radiative and ordinary collisional processes in the cloud, it may well reflect the formation conditions for this molecule. The ratio is observed to depart from that expected under conditions of chemical equilibrium at formation, perhaps reflecting efficient interchange between cold dust grains in the gas phase.

  7. Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information

    NASA Astrophysics Data System (ADS)

    Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.

    2016-12-01

    This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.

  8. Progress report: Continued development of an integrated sounding system in support of the DOE/ARM experimental program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgeworth R. Westwater; Kenneth S. Gage; Yong Han

    1996-09-06

    From January 6 to February 28, 1993, the second phase of the Prototype Radiation Observation Experiment (PROBE) was conducted in Kavieng, Papua New Guinea. Data taken during PROBE included frequent radiosondes, 915 MHz Wind profiler/Radio Acoustic Sounding System (RASS) observations of winds and temperatures, and lidar measurements of cloud-base heights. In addition, a dual-channel Microwave Water Substance Radiometer (MWSR) at 23.87 and 31.65 GHz and a Fourier Transform Infrared Radiometer (FTIR) were operated. The FTIR operated between 500 and 2000 cm{sup -1} and measured some of the first high spectral resolution (1 cm{sup -1}) radiation data taken in the tropics.more » The microwave radiometer provided continuous measurements with 30-second resolution of precipitable water vapor (PWV) and integrated cloud liquid (ICL), the RASS measured virtual temperature profiles every 30 minutes, and the cloud lidar provided episodic measurements of clouds every minute. The RASS, MWSR, and FTIR data taken during PROBE were compared with radiosonde data. Broadband longwave and shortwave irradiance data and lidar data were used to identify the presence of cirrus clouds and clear conditions. Comparisons were made between measured and calculated radiance during clear conditions, using radiosonde data as input to a Line-By-Line Radiative Transfer Model. Comparisons of RASS-measured virtual temperature with radiosonde data revealed a significant cold bias below 500 m.« less

  9. Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian

    2017-01-01

    The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.

  10. Cool neutral hydrogen in the direction of an anonymous OB association

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bania, T.M.

    1983-08-01

    H I self-absorption is seen in the direction l = 55./sup 0/6 probably physically associated with an anonymous OB association which has the Cepheid GY Sagittae as a member. The cool H I is in two clouds at least 15 pc in diameter located 3.25 kpc from the Sun. If their temperature is approx. =50 K, the cloud masses are approx. =10/sup 3/ M/sub sun/. The neutral atomic hydrogen clouds are probably warm envelopes surrounding cold molecular cloud cores because CO observations in this region show two molecular clouds nearly coincident with the absorbing H i gas. Since the OBmore » association is only approx. =10/sup 7/ years old, these clouds are likely to be part of the original cloud complex from which the stellar cluster formed. The H i clouds are part of the larger Arecibo survey of self-absorption which suggests that many of the Arecibo clouds are associated with heretofore unidentified star clusters. Even if this is generally not the case, the Arecibo objects have accurate kinematic distances and thus provide a new sample of cool H I clouds whose thermodynamic properties can be studied.« less

  11. Statistical properties of the polarized emission of Planck Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Ristorcelli, Isabelle; Planck Collaboration

    2015-08-01

    The Galactic magnetic fields are considered as one of the key components regulating star formation, but their actual role on the dense cores formation and evolution remains today an open question.Dust polarized continuum emission is particularly well suited to probe the dense and cold medium and study the magnetic field structure. Such observations also provide tight constraints to better understand the efficiency of the dust alignment along the magnetic field lines, which in turn relate on our grasp to properly interpret the B-field properties.With the Planck all-sky survey of dust submillimeter emission in intensity and polarization, we can investigate the intermediate scales, between that of molecular cloud and of prestellar cores, and perform a statistical analysis on the polarization properties of cold clumps.Combined with the IRAS map at 100microns, the Planck survey has allowed to build the first all-sky catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015). The corresponding 13188 sources cover a broad range in physical properties, and correspond to different evolutionary stages, from cold and starless clumps, nearby cores, to young protostellar objects still embedded in their cold surrounding cloud.I will present the main results of our polarization analysis obtained on different samples of sources from the PGCC catalogue, based on the 353GHz polarized emission measured with Planck. The statistical properties are derived from a stacking method, using optimized estimators for the polarization fraction and angle parameters. These properties are determined and compared according to the nature of the sources (starless or YSOs), their size or density range. Finally, I will present a comparison of our results with predictions from MHD simulations of clumps including radiative transfer and the dust radiative torque alignment mechanism.

  12. Chemistry in dynamically evolving clouds

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.

    1985-01-01

    A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.

  13. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-07-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to properly account for supercooled clouds in both climate models and cloud property retrievals.

  14. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-12-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature-independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud optical thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to account for supercooled clouds properly in both climate models and cloud-property retrievals.

  15. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    Vergara-Temprado, Jesús; Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.; Murray, Benjamin J.; Carslaw, Ken S.

    2018-03-01

    Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.

  16. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles

    PubMed Central

    Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.

    2018-01-01

    Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions. PMID:29490918

  17. Planck Cold Clumps in the λ Orionis Complex. II. Environmental Effects on Core Formation

    NASA Astrophysics Data System (ADS)

    Yi, Hee-Weon; Lee, Jeong-Eun; Liu, Tie; Kim, Kee-Tae; Choi, Minho; Eden, David; Evans, Neal J., II; Di Francesco, James; Fuller, Gary; Hirano, N.; Juvela, Mika; Kang, Sung-ju; Kim, Gwanjeong; Koch, Patrick M.; Lee, Chang Won; Li, Di; Liu, H.-Y. B.; Liu, Hong-Li; Liu, Sheng-Yuan; Rawlings, Mark G.; Ristorcelli, I.; Sanhueza, Patrico; Soam, Archana; Tatematsu, Ken’ichi; Thompson, Mark; Toth, L. V.; Wang, Ke; White, Glenn J.; Wu, Yuefang; Yang, Yao-Lun; the JCMT Large Program “SCOPE” Collaboration; TRAO Key Science Program “TOP” Collaboration

    2018-06-01

    Based on the 850 μm dust continuum data from SCUBA-2 at James Clerk Maxwell Telescope (JCMT), we compare overall properties of Planck Galactic Cold Clumps (PGCCs) in the λ Orionis cloud to those of PGCCs in the Orion A and B clouds. The Orion A and B clouds are well-known active star-forming regions, while the λ Orionis cloud has a different environment as a consequence of the interaction with a prominent OB association and a giant H II region. PGCCs in the λ Orionis cloud have higher dust temperatures (T d = 16.13 ± 0.15 K) and lower values of dust emissivity spectral index (β = 1.65 ± 0.02) than PGCCs in the Orion A (T d = 13.79 ± 0.21 K, β = 2.07 ± 0.03) and Orion B (T d = 13.82 ± 0.19 K, β = 1.96 ± 0.02) clouds. We find 119 substructures within the 40 detected PGCCs and identify them as cores. Out of a total of 119 cores, 15 cores are discovered in the λ Orionis cloud, while 74 and 30 cores are found in the Orion A and B clouds, respectively. The cores in the λ Orionis cloud show much lower mean values of size R = 0.08 pc, column density N(H2) = (9.5 ± 1.2) × 1022 cm‑2, number density n(H2) = (2.9 ± 0.4) × 105 cm‑3, and mass M core = 1.0 ± 0.3 M ⊙ compared to the cores in the Orion A [R = 0.11 pc, N(H2) = (2.3 ± 0.3) × 1023 cm‑2, n(H2) = (3.8 ± 0.5) × 105 cm‑3, and M core = 2.4 ± 0.3 M ⊙] and Orion B [R = 0.16 pc, N(H2) = (3.8 ± 0.4) × 1023 cm‑2, n(H2) = (15.6 ± 1.8) × 105 cm‑3, and M core = 2.7 ± 0.3 M ⊙] clouds. These core properties in the λ Orionis cloud can be attributed to the photodissociation and external heating by the nearby H II region, which may prevent the PGCCs from forming gravitationally bound structures and eventually disperse them. These results support the idea of negative stellar feedback on core formation.

  18. APEX/SABOCA observations of small-scale structure of infrared-dark clouds . I. Early evolutionary stages of star-forming cores

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.; Henning, Thomas; Beuther, Henrik

    2013-11-01

    Infrared-dark clouds (IRDCs) harbor the early phases of cluster and high-mass star formation and are comprised of cold (~20 K), dense (n > 104 cm-3) gas. The spectral energy distribution (SED) of IRDCs is dominated by the far-infrared and millimeter wavelength regime, and our initial Herschel study examined IRDCs at the peak of the SED with high angular resolution. Here we present a follow-up study using the SABOCA instrument on APEX which delivers 7.8″ angular resolution at 350 μm, matching the resolution we achieved with Herschel/PACS, and allowing us to characterize substructure on ~0.1 pc scales. Our sample of 11 nearby IRDCs are a mix of filamentary and clumpy morphologies, and the filamentary clouds show significant hierarchical structure, while the clumpy IRDCs exhibit little hierarchical structure. All IRDCs, regardless of morphology, have about 14% of their total mass in small scale core-like structures which roughly follow a trend of constant volume density over all size scales. Out of the 89 protostellar cores we identified in this sample with Herschel, we recover 40 of the brightest and re-fit their SEDs and find their properties agree fairly well with our previous estimates (⟨ T ⟩ ~ 19 K). We detect a new population of "cold cores" which have no 70 μm counterpart, but are 100 and 160 μm-bright, with colder temperatures (⟨ T ⟩ ~ 16 K). This latter population, along with SABOCA-only detections, are predominantly low-mass objects, but their evolutionary diagnostics are consistent with the earliest starless or prestellar phase of cores in IRDCs. Based on observations carried out with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between Max Planck Institut für Radioastronomie (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO).Appendices are available in electronic form at http://www.aanda.org

  19. Warm/cold cloud processes

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1981-01-01

    Final development of a gravimetric test for performance evaluation of a precision saturator is described. The design and development of a prototype droplet levitation chamber is discussed. Technical assistance to the MSFC Airborne Laser Doppler Program is reported.

  20. Planck View of Orion

    NASA Image and Video Library

    2010-04-26

    The big Hunter in the sky is seen in a new light by Planck, a European Space Agency mission with significant NASA participation. The long-wavelength image shows most of the constellation Orion, highlighting turbid clouds of cold material.

  1. A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Gutermuth, Robert; Ali, Babar; Megeath, Thomas; Pipher, Judith; Myers, Philip; Fischer, William; Henning, Thomas; Wolk, Scott; Allen, Lori; Tobin, John

    2015-08-01

    We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We used dendrograms as a technique to study the hierarchical structures in the GMC.

  2. ELECTRON CLOUD OBSERVATIONS AND CURES IN RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FISCHER,W.; BLASKIEWICZ, M.; HUANG, H.

    Since 2001 RHIC has experienced electron cloud effects, which have limited the beam intensity. These include dynamic pressure rises - including pressure instabilities, tune shifts, a reduction of the stability threshold for bunches crossing the transition energy, and possibly incoherent emittance growth. We summarize the main observations in operation and dedicated experiments, as well as countermeasures including baking, NEG coated warm beam pipes, solenoids, bunch patterns, anti-grazing rings, pre-pumped cold beam pipes, scrubbing, and operation with long bunches.

  3. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  4. Theoretical and Observational Studies of the Central Engines of AGN

    NASA Technical Reports Server (NTRS)

    Sivron, Ran

    1995-01-01

    In Active Galactic Nuclei (AGN) the luminosity is so intense that the effect of radiation pressure on a particle may exceed the gravitational attraction. It was shown that when such luminosities are reached, relatively cold (not completely ionized) thermal matter clouds may form in the central engines of AGN, where most of the luminosity originates. We show that the spectrum of emission from cold clouds embedded in hot relativistic matter is similar to the observed spectrum. We also show that within the hot relativistic matter, cold matter moves faster than the speed of sound or the Alfven speed, and shocks form. The shocks provide a mechanism by which a localized perturbation can propagate throughout the central engine. The shocked matter can emit the observed luminosity, and can explain the flux and spectral variability. It may also provide an efficient mechanism for the outward transfer of angular momentum and provide the outward flow of winds. With observations from X-ray satellites, emission features from the cold and hot matter may be revealed. Our analysis of X-ray data from the Seyfert 1 galaxy MCG - 6-30-15 over five years using detectors on the Ginga and Rosat satellites, revealed some interesting variable features. A source with hot matter emits non-thermal radiation which is Compton reflected from cold matter and then absorbed by warm (partially ionized) absorbing matter in the first model, which can be fit to the data if both the cold and warm absorbers are near the central engine. An alternative model in which the emission from the hot matter is partially covered by very warm matter (in which all elements except Iron are mostly ionized) is also successful. In this model the cold and warm matter may be at distances of up to 100 times the size of the central engine, well within the region where broad optical lines are produced. The flux variability is more naturally explained by the second model. Our results support the existence of cold matter in, or near, the central engine of MCG -6-30-15. Cold matter in the central engine, and evidence of the effects of shocks, is probably forthcoming with future X-ray satellites.

  5. Massive star-forming regions across the galaxy

    NASA Astrophysics Data System (ADS)

    Rygl, Kazi Lucie Jessica

    2010-04-01

    Star-forming regions trace the spiral structure of the Galaxy. They are regions of increased column density and therefore traced well by the extinction in the mid-infrared based on the Spitzer/GLIMPSE 3.6-4.5 micron color excess maps. A sample of 25 high extinction clouds (HECs) was studied in the 1.2 mm dust continuum emission, and followed up by observations of ammonia plus several other molecules using the Effelsberg 100m, IRAM 30m and APEX telescopes. With these data we want to investigate the most early stages of massive star formation, which are currently still largely unknown. Three cloud classes were defined from their morphology in the 1.2 mm continuum maps: the early diffuse HECs, with a low contrast between the clump and cloud emission; the peaked HECs, with an increased contrast; the late multiply peaked HECs, with more than one clump and a high contrast between the clump and the cloud emission. The clouds are cold (T 16 K) and massive (M 800 M_sun) and contain dense clumps (n 10^5 cm^{-3}) of 0.3 pc in size. These clumps were investigated for evidence of gravitational collapse or expansion, for high velocity outflows, and for the presence of young stellar objects. Based on these results we interpret the three cloud classes as an evolutionary sequence of star-forming clouds. Accurate distances are a crucial parameter for establishing the mass, size, and luminosity of an object. Also, for understanding the spiral structure of the Galaxy trustworthy distances are necessary. The most accurate method to measure these is the trigonometric parallax. Using the European Very Large Baseline Interferometry Network of radio antennas we measured, for the first time, parallaxes of 6.7 GHz methanol masers. This transition belongs to the strongest maser species in the Galaxy, it is stable and observed toward numerous massive star-forming regions. We measured distances and proper motions toward L 1287, L 1206, NGC 281-W, ON 1 and S 255, and obtained their 3-dimensional space velocities. Similar to previous studies, these star-forming regions rotate slower than Galactic rotation.

  6. Seasonality of Forcing by Carbonaceous Aerosols

    NASA Astrophysics Data System (ADS)

    Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.

    2006-12-01

    Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol burden is most sensitive to convection and scavenging in warm and cold clouds, and compare seasonally modeled AOD with that retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS).

  7. Properties of Cold HI Emission Clouds in the Inner-Galaxy ALFA Survey

    NASA Astrophysics Data System (ADS)

    Hughes, James Marcus; Gibson, Steven J.; Noriega-Crespo, Alberto; Newton, Jonathan; Koo, Bon-Chul; Douglas, Kevin A.; Peek, Joshua Eli Goldston; Park, Geumsook; Kang, Ji-hyun; Korpela, Eric J.; Heiles, Carl E.; Dame, Thomas M.

    2017-01-01

    Star formation, a critical process within galaxies, occurs in the coldest, densest interstellar clouds, whose gas and dust content are observed primarily at radio and infrared wavelengths. The formation of molecular hydrogen (H2) from neutral atomic hydrogen (HI) is an essential early step in the condensation of these clouds from the ambient interstellar medium, but it is not yet completely understood, e.g., what is the predominant trigger? Even more troubling, the abundance of H2 may be severely underestimated by standard tracers like CO, implying significant "dark" H2, and the quantity of HI may also be in error if opacity effects are neglected. We have developed an automated method to account for both HI and H2 in cold, diffuse clouds traced by narrow-line HI 21-cm emission in the Arecibo Inner-Galaxy ALFA (I-GALFA) survey. Our algorithm fits narrow (2-5 km/s), isolated HI line profiles to determine their spin temperature, optical depth, and true column density. We then estimate the "visible" H2 column in the same clouds with CfA and Planck CO data and the total gas column from dust emission measured by Planck, IRAS, and other surveys. Together, these provide constraints on the dark H2 abundance, which we examine in relation to other cloud properties and stages of development. Our aim is to build a database of H2-forming regions with significant dark gas to aid future analyses of coalescing interstellar clouds. We acknowledge support from NSF, NASA, Western Kentucky University, and Williams College. I-GALFA is a GALFA-HI survey observed with the 7-beam ALFA receiver on the 305-meter William E. Gordon Telescope. The Arecibo Observatory is a U.S. National Science Foundation facility operated under sequential cooperative agreements with Cornell University and SRI International, the latter in alliance with the Ana G. Mendez-Universidad Metropolitana and the Universities Space Research Association.

  8. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  9. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  10. Extinction map of Chamaeleon I molecular cloud with DENIS star counts.

    NASA Astrophysics Data System (ADS)

    Cambresy, L.; Epchtein, N.; Copet, E.; de Batz, B.; Kimeswenger, S.; Le Bertre, T.; Rouan, D.; Tiphene, D.

    1997-08-01

    Massive, large scale star counts in the J (1.25μm) band provided by the Deep Near Infrared Survey of the Southern Sky (DENIS) are used for the first time to draw out an extinction map of the Chamaeleon I dark cloud. We derived a 2' resolution map of the cloud from J star counts within an area of 1.5°x3° around the centre of the cloud using an adaptive grid method and applying a wavelet decomposition. Possible contaminating young stellar objects within the cloud are removed, although they are shown to have a negligible effect on the counts. A comparison of our extinction map with the cold contribution of the IRAS 100μm emission shows an almost perfect matching. It is shown that J star counts supersede optical counts on Schmidt plate where A_V_>4.

  11. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in the Pre-Solar Nebula

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Schloerb, F. Peter

    1997-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar clouds and in primitive solar system objects. Research has included the detection and study of a number of new interstellar molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Soo Ya; Jeong, Jaein I.; Park, R.

    We examine the effect of anthropogenic aerosols on the weekly variability of precipitation in Korea in summer 2004 by using Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models. We con-duct two WRF simulations including a baseline simulation with empirically based cloud condensation nuclei (CCN) number concentrations and a sensitivity simulation with our implementation to account for the effect of aerosols on CCN number concentrations. The first simulation underestimates observed precipitation amounts, particularly in northeastern coastal areas of Korea, whereas the latter shows higher precipitation amounts that are in better agree-ment with the observations. In addition, themore » sensitivity model with the aerosol effects reproduces the observed weekly variability, particularly for precipitation frequency with a high R at 0.85, showing 20% increase of precipita-tion events during the weekend than those during weekdays. We find that the aerosol effect results in higher CCN number concentrations during the weekdays and a three-fold increase of the cloud water mixing ratio through en-hanced condensation. As a result, the amount of warm rain is generally suppressed because of the low auto-conversion process from cloud water to rain water under high aerosol conditions. The inefficient conversion, how-ever, leads to higher vertical development of clouds in the mid-atmosphere with stronger updrafts in the sensitivity model, which increases by 21% cold-phase hydrometeors including ice, snow, and graupel relative to the baseline model and ultimately results in higher precipitation amounts in summer.« less

  13. MULTI-WAVELENGTH STUDIES OF SPECTACULAR RAM PRESSURE STRIPPING OF A GALAXY: DISCOVERY OF AN X-RAY ABSORPTION FEATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Liyi; Makishima, Kazuo; Yagi, Masafumi

    We report the detection of an X-ray absorption feature near the galaxy M86 in the Virgo cluster. The absorber has a column density of 2-3 × 10{sup 20} cm{sup –2}, and its position coincides with the peak of an intracluster H I cloud which was removed from the galaxy NGC 4388 presumably by ram pressure. These results indicate that the H I cloud is located in front of M86 along the line-of-sight, and suggest that the stripping was primarily created by an interaction between NGC 4388 and the hot plasmas of the Virgo cluster, not the M86 halo. By calculatingmore » an X-ray temperature map, we further detected an X-ray counterpart of the H I cloud up to ≈3' south of M86. It has a temperature of 0.89 keV and a mass of ∼4.5 × 10{sup 8} M {sub ☉}, exceeding the estimated H I gas mass. The high hot-to-cold gas ratio in the cloud indicates a significant evaporation of the H I gas, probably by thermal conduction from the hotter cluster plasma with a sub-Spitzer rate.« less

  14. The violent interstellar medium in Milky-Way like disk galaxies

    NASA Astrophysics Data System (ADS)

    Karoline Walch, Stefanie

    2015-08-01

    Molecular clouds are cold, dense, and turbulent filamentary structures that condense out of the multi-phase interstellar medium. They are also the sites of star formation. The minority of new-born stars is massive, but these stars are particularly important for the fate of their parental molecular clouds as their feedback drives turbulence and regulates star formation.I will present results from the SILCC project (SImulating the Life Cycle of molecular Clouds), in which we study the formation and dispersal of molecular clouds within the multi-phase ISM using high-performance, three-dimensional simulations of representative pieces of disk galaxies. Apart from stellar feedback, self-gravity, an external stellar potential, and magnetic fields, we employ an accurate description of gas heating and cooling as well as a small chemical network including molecule formation and (self-)shielding from the interstellar radiation field. We study the impact of the supernova rate and the positioning of the supernova explosions with respect to the molecular gas in a well defined set of simulations. This allows us to draw conclusions on structure of the multi-phase ISM, the amount of molecular gas formed, and the onset of galactic outflows. Furthermore, we show how important stellar wind feedback is for regulating star formation in these disks.

  15. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.

    PubMed

    Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-12-13

    Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200  μs and 78.4% at 4.5 ms, respectively.

  16. The origin and evolution of dust clouds in Central Asia

    USGS Publications Warehouse

    Smirnov, V.V.; Gillette, Dale A.; Golitsyn, G.S.; MacKinnon, D.J.

    1994-01-01

    Data from a high resolution radiometer AVHRR (580-680 nm optical lengthwaves) installed on the "NOAA-11" satellite as well as TV (500-700 nm) and IR (8000-12000 nm) equipment of the Russia satellite "Meteor-2/16" were used to study the evolution of dust storms for 1-30 September 1989 in Tajikistan, Uzbekistan, Turkmenistan and Afghanistan. These data help to validate the hypothesis, that long-term dusted boundary layer (duration of the order of a day or more), but of comparatively not high optical density (4-10 km meteorological visibility range at the 20-50 km background), is formed after the northwest intrusions into a region of intensive cold fronts at the surface wind velocities of 7-15 m/s. Stability of dust clouds of vertical power to 3-3.5 km (up to an inversion level) is explained by an action of collective buoyancy factors at heating the dust particles of 2-4 ??m in mean diameter by solar radiation. The more intensive intrusions stimulate a formation of simultaneously dust and water clouds. The last partially reduce the solar radiation (by the calculations of the order of 30-50%) and decrease the role of buoyancy factors. Thus, initiated is the intensive but short-term dusted boundary layer at horizontal visibility of 50-200 m. ?? 1994.

  17. Revisiting the Scattering Greenhouse Effect of CO2 Ice Clouds

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  18. Precombination Cloud Collapse and Baryonic Dark Matter

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  19. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  20. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.

    PubMed

    Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William

    2016-08-12

    Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.

  1. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE PAGES

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...

    2018-01-01

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  2. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  3. Chemical energy in cold-cloud aggregates - The origin of meteoritic chondrules

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1980-01-01

    If interstellar particles and molecules accumulate into larger particles during the collapse of a cold cloud, the resulting aggregates contain a large store of internal chemical energy. It is here proposed that subsequent warming of these accumulates leads to a thermal runaway when exothermic chemical reactions begin within the aggregate. These, after cooling, are the crystalline chondrules found so abundantly within chondritic meteorites. Chemical energy can also heat meteoritic parent bodies of any size, and both thermal metamorphism and certain molten meteorites are proposed to have occurred in this way. If this new theory is correct, (1) the model of chemical condensation in a hot gaseous solar system is eliminated, and (2) a new way of studying the chemical evolution of the interstellar medium has been found. A simple dust experiment on a comet flyby is proposed to test some features of this controversy.

  4. Cold atomic hydrogen in the inner galaxy

    NASA Technical Reports Server (NTRS)

    Dickey, J. M.; Garwood, R. W.

    1986-01-01

    The VLA is used to measure 21 cm absorption in directions with the absolute value of b less than 1 deg., the absolute value of 1 less than 25 deg. to probe the cool atomic gas in the inner galaxy. Abundant H I absorption is detected; typical lines are deep and narrow, sometimes blending in velocity with adjacent features. Unlike 21 cm emission not all allowed velocities are covered: large portions of the l-v diagram are optically thin. Although not similar to H I emission, the absorption shows a striking correspondence with CO emission in the inner galaxy: essentially every strong feature detected in one survey is seen in the other. The provisional conclusion is that in the inner galaxy most cool atomic gas is associated with molecular cloud complexes. There are few or no cold atomic clouds devoid of molecules in the inner galaxy, although these are common in the outer galaxy.

  5. Extreme hydrometeorological events in the Peruvian Central Andes during austral summer and their relationship with the large-scale circulation

    NASA Astrophysics Data System (ADS)

    Sulca, Juan C.

    In this Master's dissertation, atmospheric circulation patterns associated with extreme hydrometeorological events in the Mantaro Basin, Peruvian Central Andes, and their teleconnections during the austral summer (December-January-February-March) are addressed. Extreme rainfall events in the Mantaro basin are related to variations of the large-scale circulation as indicated by the changing strength of the Bolivian High-Nordeste Low (BH-NL) system. Dry (wet) spells are associated with a weakening (strengthening) of the BH-NL system and reduced (enhanced) influx of moist air from the lowlands to the east due to strengthened westerly (easterly) wind anomalies at mid- and upper-tropospheric levels. At the same time extreme rainfall events of the opposite sign occur over northeastern Brazil (NEB) due to enhanced (inhibited) convective activity in conjunction with a strengthened (weakened) Nordeste Low. Cold episodes in the Mantaro Basin are grouped in three types: weak, strong and extraordinary cold episodes. Weak and strong cold episodes in the MB are mainly associated with a weakening of the BH-NL system due to tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the potential for development of convective cloud cover. The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below the 10-percentile. Extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. Therefore, weak and strong cold episodes in the MB appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection, while the latter plays an important role for extraordinary cold episodes only.

  6. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  7. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-latitude stratospheric aerosols measured by the SAM II satellite system in 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Hamill, P.; Steele, H. M.; Swissler, T. J.; Herman, B. M.; Pepin, T. J.; Russell, P. B.

    1981-01-01

    Results of the first year of data collection by the SAM (Stratospheric Aerosol Measurement) II satellite system are presented. Almost 10,000 profiles of stratospheric aerosol extinction in the Arctic and Antarctic regions are used to construct plots of weekly averaged aerosol extinction versus altitude and time and stratospheric optical depth versus time. Corresponding temperature fields are presented. These data show striking similarities in the aerosol behavior for corresponding seasons. Wintertime polar stratospheric clouds that are strongly correlated with temperature are documented. They are much more prevalent in the Antarctic stratosphere during the cold austral winter and increase the stratospheric optical depths by as much as an order of magnitude for a period of about 2 months. These clouds might represent a sink for stratospheric water vapor and must be considered in the radiative budget for this region and time.

  9. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.

    2015-11-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  10. Satellite Shows Powerful Cold Front Moving Off U.S. East Coast

    NASA Image and Video Library

    2014-05-16

    NOAA's GOES-East satellite captured an image of a powerful cold front that triggered flash flood watches and warnings along the U.S. East Coast on May 16. NOAA's National Weather Service noted flash flooding was possible from New England into eastern North Carolina today, May 16. The clouds associated with the long cold front was captured using visible data from NOAA's GOES-East or GOES-13 satellite on at 1900 UTC (3:00 p.m. EDT) and was made into an image by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds stretched from Maine south through the Mid-Atlantic down to southern Florida with a tail of clouds extending into the western Caribbean Sea. South of Lake Michigan the rounded swirl of clouds indicates another low pressure system. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector

    USGS Publications Warehouse

    Coplen, Tyler B.; Paul J. Neiman,; Allen B. White,; Ralph, F. Martin

    2015-01-01

    During landfall of extratropical cyclones between 2005 and 2011, nearly 1400 precipitation samples were collected at intervals of 30-min time resolution with novel automated collectors at four NOAA sites in northern California [Alta (ATA), Bodega Bay (BBY), Cazadero (CZD) and Shasta Dam (STD)] during 43 events. Substantial decreases were commonly followed hours later by substantial increases in hydrogen isotopic composition (δ2HVSMOW where VSMOW is Vienna Standard Mean Ocean Water) and oxygen isotopic composition (δ18OVSMOW) of precipitation. These variations likely occur as pre-cold frontal precipitation generation transitions from marine vapour masses having low rainout to cold cloud layers having much higher rainout (with concomitant brightband signatures measured by an S-band profiling radar and lower δ2HVSMOW values of precipitation), and finally to shallower, warmer precipitating clouds having lower rainout (with non-brightband signatures and higher δ2HVSMOW values of precipitation), in accord with ‘seeder–feeder’ precipitation. Of 82 intervals identified, a remarkable 100.5 ‰ decrease in δ2HVSMOW value was observed for a 21 January 2010 event at BBY. Of the 61 intervals identified with increases in δ2HVSMOW values as precipitation transitioned to shallower, warmer clouds having substantially less rainout (the feeder part of the seeder–feeder mechanism), a remarkable increase in δ2HVSMOW value of precipitation of 82.3 ‰ was observed for a 10 February 2007 event at CZD. All CZD and ATA events having δ2HVSMOW values of precipitation below −105 ‰ were atmospheric rivers (ARs), and of the 13 events having δ2HVSMOWvalues of precipitation below −80 ‰, 77 % were ARs. Cloud echo-top heights (a proxy for atmospheric temperature) were available for 23 events. The mean echo-top height is greater for higher rainout periods than that for lower rainout periods in 22 of the 23 events. The lowest δ2HVSMOW of precipitation of 28 CZD events was −137.9 ‰ on 16 February 2009 during an AR with cold precipitating clouds and very high rainout with tops >6.5 km altitude. An altitude effect of −2.5 ‰ per 100 m was measured from BBY and CZD δ2HVSMOW data and of −1.8 ‰ per 100 m for CZD and ATA δ2HVSMOW data. We present a new approach to categorise rainfall intervals using δ2HVSMOW values of precipitation and rainfall rates. We term this approach the algorithmic-isotopic categorisation of rainfall, and we were able to identify higher rainout and/or lower rainout periods during all events in this study. We conclude that algorithmic-isotopic categorisation of rainfall can enable users to distinguish between tropospheric vapour masses having relatively high rainout (typically with brightband rain and that commonly are ARs) and vapour masses having lower rainout (commonly with non-brightband rain).

  12. A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection.

    NASA Astrophysics Data System (ADS)

    Kuang, Zhiming; Bretherton, Christopher S.

    2006-07-01

    In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.


  13. Molecules in interstellar clouds. [physical and chemical conditions of star formation and biological evolution

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Hjalmarson, A.; Rydbeck, O. E. H.

    1981-01-01

    The physical conditions and chemical compositions of the gas in interstellar clouds are reviewed in light of the importance of interstellar clouds for star formation and the origin of life. The Orion A region is discussed as an example of a giant molecular cloud where massive stars are being formed, and it is pointed out that conditions in the core of the cloud, with a kinetic temperature of about 75 K and a density of 100,000-1,000,000 molecules/cu cm, may support gas phase ion-molecule chemistry. The Taurus Molecular Clouds are then considered as examples of cold, dark, relatively dense interstellar clouds which may be the birthplaces of solar-type stars and which have been found to contain the heaviest interstellar molecules yet discovered. The molecular species identified in each of these regions are tabulated, including such building blocks of biological monomers as H2O, NH3, H2CO, CO, H2S, CH3CN and H2, and more complex species such as HCOOCH3 and CH3CH2CN.

  14. NASA-NOAA's Suomi NPP Gets an Infrared look at Typhoon Soudelor

    NASA Image and Video Library

    2015-08-10

    On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured an infrared image of the typhoon. The infrared image that showed there were some thunderstorms within the typhoon with very cold cloud top temperatures, colder than -63F/-53C. Temperatures that cold stretch high into the troposphere and are capable of generating heavy rain. Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Cross‐Saharan transport of water vapor via recycled cold pool outflows from moist convection

    PubMed Central

    Trzeciak, Tomasz M.; Garcia‐Carreras, Luis

    2017-01-01

    Abstract Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day's convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere. PMID:28344367

  16. Why Cold-Wet Makes One Feel Chilled: A Literature Review

    DTIC Science & Technology

    1988-06-01

    froid et mouill6. On examine aussi l’effet de la radiation solaire , l’interaction entre la peau at l’humidit6, entre la peau et la temp~rature de mgme...directions, including back out into space. Aerosols of water in clouds reflect incident solar energy . The upper surface of a stratus cloud cover can reflect...earth than under clear conditions. Albedo, the fraction of the incident energy which is reflected by a surface, varies considerably with the terrain

  17. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissionsmore » to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation.« less

  18. OT2_dlis_3: Ammonia as a Tracer of the Earliest Stages of Star Formation

    NASA Astrophysics Data System (ADS)

    Lis, D.

    2011-09-01

    Stars form in molecular cloud cores, cold and dense regions enshrouded by dust. The initiation of this process is among the least understood steps of star formation. High!resolution heterodyne spectroscopy provides invaluable information about the physical conditions (density, temperature), kinematics (infall, outflows), and chemistry of these regions. Classical molecular tracers, such CO, CS, and many other abundant gas!phase species, have been shown to freeze out onto dust grain mantles in pre!stellar cores. However, N!bearing species, in particular ammonia, are much less affected by depletion and are observed to stay in the gas phase at densities in excess of 1e6 cm!3. The molecular freeze!out has important consequences for the chemistry of dense gas. In particular, the depletion of abundant gas!phase species with heavy atoms drives up abundances of deuterated H3+ isotopologues, which in turn results in spectacular deuteration levels of molecules that do remain in the gas phase. Consequently, lines of deuterated N!bearing species, in particular the fundamental lines of ammonia isotopologues, having very high critical densities, are optimum tracers of innermost regions of dense cores. We propose to study the morphology, density structure and kinematics of cold and dense cloud cores, by mapping the spatial distribution of ammonia isotopologues in isolated dense pre!stellar cores using Herschel/HIFI. These observations provide optimum probes of the onset of star formation, as well as the physical processes that control gas!grain interaction, freeze!out, mantle ejection and deuteration. The sensitive, high!resolution spectra acquired within this program will be analyzed using sophisticated radiative transfer models and compared with outputs of state!of!the!art 3D MHD simulations and chemical models developed by the members of our team.

  19. Tropical Depression 6 (Florence) in the Atlantic

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Microwave ImageVisible Light Image

    These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite.

    Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Image AIRS data used to create the microwave images come from the microwave radiation emitted by Earth's atmosphere which is then received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm, where there are either some clouds or no clouds, indicate where the sea surface shines through.

    Vis/NIR Image The AIRS instrument suite contains a sensor that captures light in the visible/near-infrared portion of the electromagnetic spectrum. These 'visible' images are similar to a snapshot taken with your camera.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  20. CO abundance variations in the Orion Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ripple, F.; Heyer, M. H.; Gutermuth, R.; Snell, R. L.; Brunt, C. M.

    2013-05-01

    Infrared stellar photometry from the Two Micron All-Sky Survey (2MASS) and spectral line imaging observations of 12CO and 13CO J = 1-0 line emission from the Five College Radio Astronomy Observatory (FCRAO) 14-m telescope are analysed to assess the variation of the CO abundance with physical conditions throughout the Orion A and Orion B molecular clouds. Three distinct Av regimes are identified in which the ratio between the 13CO column density and visual extinction changes corresponding to the photon-dominated envelope, the strongly self-shielded interior, and the cold, dense volumes of the clouds. Within the strongly self-shielded interior of the Orion A cloud, the 13CO abundance varies by 100 per cent with a peak value located near regions of enhanced star formation activity. The effect of CO depletion on to the ice mantles of dust grains is limited to regions with Av > 10 mag and gas temperatures less than ˜20 K as predicted by chemical models that consider thermal evaporation to desorb molecules from grain surfaces. Values of the molecular mass of each cloud are independently derived from the distributions of Av and 13CO column densities with a constant 13CO-to-H2 abundance over various extinction ranges. Within the strongly self-shielded interior of the cloud (Av> 3 mag), 13CO provides a reliable tracer of H2 mass with the exception of the cold, dense volumes where depletion is important. However, owing to its reduced abundance, 13CO does not trace the H2 mass that resides in the extended cloud envelope, which comprises 40-50 per cent of the molecular mass of each cloud. The implied CO luminosity to mass ratios, M/LCO, are 3.2 and 2.9 for Orion A and Orion B, respectively, which are comparable to the value (2.9), derived from γ-ray observations of the Orion region. Our results emphasize the need to consider local conditions when applying CO observations to derive H2 column densities.

  1. Winter Cloud Streets, North Atlantic

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 24, 2011 What do you get when you mix below-freezing air temperatures, frigid northwest winds from Canada, and ocean temperatures hovering around 39 to 40 degrees Fahrenheit (4 to 5 degrees Celsius)? Paved highways of clouds across the skies of the North Atlantic. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite collected this natural-color view of New England, the Canadian Maritimes, and coastal waters at 10:25 a.m. U.S. Eastern Standard Time on January 24, 2011. Lines of clouds stretch from northwest to southeast over the North Atlantic, while the relatively cloudless skies over land afford a peek at the snow that blanketed the Northeast just a few days earlier. Cloud streets form when cold air blows over warmer waters, while a warmer air layer—or temperature inversion—rests over top of both. The comparatively warm water of the ocean gives up heat and moisture to the cold air mass above, and columns of heated air—thermals—naturally rise through the atmosphere. As they hit the temperature inversion like a lid, the air rolls over like the circulation in a pot of boiling water. The water in the warm air cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the wind. Though they are easy to explain in a broad sense, cloud streets have a lot of mysteries on the micro scale. A NASA-funded researcher from the University of Wisconsin recently observed an unusual pattern in cloud streets over the Great Lakes. Cloud droplets that should have picked up moisture from the atmosphere and grown in size were instead shrinking as they moved over Lake Superior. Read more in an interview at What on Earth? NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Michael Carlowicz. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  2. Orographic enhancement of rainfalls in the Rio San Francisco valley in southern Ecuador

    NASA Astrophysics Data System (ADS)

    Trachte, K.; Rollenbeck, R.; Bendix, J.

    2012-04-01

    In a tropical mountain rain forest in southern Ecuador diurnal dynamics of cloud development and precipitation behavior is investigated in the framework of the DFG research unit 816. With automatic climate stations and rain radar rainfalls in the Rio San Francisco valley are recorded. The observations showed the typical tropical late afternoon convective precipitation as well as local events such as mountain valley breezes and luv-lee effects. Additionally, the data revealed an unusually early morning peak that could be recognized as convective rainfalls. On the basis of GOES-E satellite imagery these rainfalls could be traced back to nocturnal convective clouds at the eastern Andes Mountains. There are some explanations for the occurrence of the clouds: One already examined mechanism is a katabatic induced cold front at the foothills of the Andes in the Peruvian Amazon basin. In this region the mountains form a quasi-concave configuration that contributes to a convergence of cold air drainage with subsequent convective activities. Another explanation for the events is the orographic enhancement by a local seeder-feeder mechanism. Mesoscale convective systems from the Amazon basin are transported to the west via the trade winds. At the Andes Mountains the complex and massive orography acts like a barrier to the clouds. The result is a disconnection of the upper part of the cloud from the lower part. The latter rains out at the eastern slopes and the upper cloud is transported further to the west. There it acts like a seeder to lower level clouds, i. e. the feeder. With the numerical model ARPS (Advanced Regional Prediction System) this procedure is investigated on the basis of two case studies. The events are detected and selected through the analysis of GOES-E brightness temperatures. They are also used to compare and validate the results of the model. Finally, the orographic enhancement of the clouds is examined. By using a vertically pointing radar the development of the resulting precipitation is analyzed and discussed in the context of a seeder-feeder mechanism.

  3. Airborne observations of cloud properties on HALO during NARVAL

    NASA Astrophysics Data System (ADS)

    Konow, Heike; Hansen, Akio; Ament, Felix

    2016-04-01

    The representation of cloud and precipitation processes is one of the largest sources of uncertainty in climate and weather predictions. To validate model predictions of convective processes over the Atlantic ocean, usually satellite data are used. However, satellite products provide just a coarse view with poor temporal resolution of convective maritime clouds. Aircraft-based observations offer a more detailed insight due to lower altitude and high sampling rates. The research aircraft HALO (High Altitude Long Range Research Aircraft) is operated by the German Aerospace Center (DLR). With a ceiling of 15 km, and a range of 10,000 km and more than 10 hours it is able to reach remote regions and operate from higher altitudes than most other research aircraft. Thus, it provides the unique opportunity to exploit regions of the atmosphere that cannot be easily accessed otherwise. Measurements conducted on HALO provide more detailed insights than achievable from satellite data. Therefore, this measurement platform bridges the gap between previous airborne measurements and satellites. The payload used for this study consists of, amongst others, a suite of passive microwave radiometers, a cloud radar, and a water vapor DIAL. To investigate cloud and precipitation properties of convective maritime clouds, the NARVAL (Next-generation Aircraft Remote-Sensing for Validation Studies) campaign was conducted in winter 2013/2014 out of Barbados and Keflavik (Iceland). This campaign was one of the first that took place on the HALO aircraft. During the experiment's two parts 15 research flights were conducted (8 flights during NARVAL-South out of Barbados to investigate trade-wind cumuli and 7 flights out of Keflavik with focus on mid-latitude cyclonic systems). Flight durations were between five and nine hours, amounting to roughly 118 flight hours overall. 121 dropsondes were deployed. In fall 2016 two additional aircraft campaigns with the same payload will take place: The second phase of NARVAL will focus on trade-wind cumuli observations and the NAWDEX (North-Atlantik Waveguide EXperiment) campaign will investigate the warm sector and frontal zones of mid-latitude cyclones. During the first NARVAL campaign, a broad range of cloud regimes from shallow cumuli to cumulonimbus and cold fronts was observed. Derived cloud covers from different instruments on board HALO varied by as much as 25 % since cloud radar, microwave radiometers, lidar and dropsondes measure different aspects of clouds. A cloud mask combining these observations provides a complimentary view of clouds and allows for identification of joint cloud characteristics (e.g., cloud top of ice or water clouds, cloud depth). We will present benefits gained from this combination of measurements and provide a more comprehensive view on clouds and cloud properties in different cloud regimes. Furthermore, we will give an overview of the plans for future campaigns and demonstrate what new insights we can gain from these airborne observations within the scope of past and future campaigns.

  4. Green Bank Telescope Detection of HI Clouds in the Fermi Bubble Wind

    NASA Astrophysics Data System (ADS)

    Lockman, Felix; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.

    2018-01-01

    We used the Robert C. Byrd Green Bank Telescope to map HI 21cm emission in two large regions around the Galactic Center in a search for HI clouds that might be entrained in the nuclear wind that created the Fermi bubbles. In a ~160 square degree region at |b|>4 deg. and |long|<10 deg we detect 106 HI clouds that have large non-circular velocities consistent with their acceleration by the nuclear wind. Rapidly moving clouds are found as far as 1.5 kpc from the center; there are no detectable asymmetries in the cloud populations above and below the Galactic Center. The cloud kinematics is modeled as a population with an outflow velocity of 330 km/s that fills a cone with an opening angle ~140 degrees. The total mass in the clouds is ~10^6 solar masses and we estimate cloud lifetimes to be between 2 and 8 Myr, implying a cold gas mass-loss rate of about 0.1 solar masses per year into the nuclear wind.The Green Bank Telescope is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  5. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles.

    PubMed

    Vergara-Temprado, Jesús; Miltenberger, Annette K; Furtado, Kalli; Grosvenor, Daniel P; Shipway, Ben J; Hill, Adrian A; Wilkinson, Jonathan M; Field, Paul R; Murray, Benjamin J; Carslaw, Ken S

    2018-03-13

    Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions. Copyright © 2018 the Author(s). Published by PNAS.

  6. The evaporatively driven cloud-top mixing layer

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2010-11-01

    Turbulent mixing caused by the local evaporative cooling at the top cloud-boundary of stratocumuli will be discussed. This research is motivated by the lack of a complete understanding of several phenomena in that important region, which translates into an unacceptable variability of order one in current models, including those employed in climate research. The cloud-top mixing layer is a simplified surrogate to investigate, locally, particular aspects of the fluid dynamics at the boundary between the stratocumulus clouds and the upper cloud-free air. In this work, direct numerical simulations have been used to study latent heat effects. The problem is the following: When the cloud mixes with the upper cloud-free layer, relatively warm and dry, evaporation tends to cool the mixture and, if strong enough, the buoyancy reversal instability develops. This instability leads to a turbulent convection layer growing next to the upper boundary of the cloud, which is, in several aspects, similar to free convection below a cold horizontal surface. In particular, results show an approximately self-preserving behavior that is characterized by the molecular buoyancy flux at the inversion base, fact that helps to explain the difficulties found when doing large-eddy simulations of this problem using classical subgrid closures.

  7. Gathering dust: A galaxy-wide study of dust emission from cloud complexes in NGC 300

    NASA Astrophysics Data System (ADS)

    Riener, M.; Faesi, C. M.; Forbrich, J.; Lada, C. J.

    2018-05-01

    Aims: We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods: We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of 170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results: Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from 1.1 × 103 to 1.4 × 104 M⊙. The GDCs have effective temperatures of 13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes 16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 106 M⊙. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds. The catalogue is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A81Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Observations of Cold Pool Properties during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Mayne, S. L.; Schumacher, C.; MacDonald, L.; Turner, D. D.

    2017-12-01

    Convectively generated cold pools are instrumental in both the development of the sub-cloud layer and the organization of deep convection. Despite this, analyses of cold pools in the tropics are constrained by a lack of observational data; insight into the phenomena therefore relies heavily on numerical models. GoAmazon2014/5, a 2-year DOE-sponsored field campaign centered on Manacapuru, Brazil in the central Amazon, provides a unique opportunity to characterize tropical cold pools and allows for the comparison of observational data with theoretical results from model cold pool simulations and parameterizations. This investigation analyzes radar, disdrometer, and profiler measurements at the DOE mobile facility site to study tropical cold pool characteristics. The Brazilian military (SIPAM) operational S-band radar in Manaus is used to provide a broad context of convective systems, while measurements from Parsivel disdrometers are used to assess drop-size distributions (DSDs) at the surface. A unique aspect of this research is the use of the Atmospheric Emitted Radiance Interferometer (AERI) instrument, which utilizes down-welling IR measurements to obtain vertical profiles of thermodynamic quantities such as temperature and water vapor in the lowest few km of the atmosphere. Combined with surface observations and sounding data, these datasets will result in a thorough investigation of the horizontal and vertical characteristics of cold pools over the tropical rain forest. Preliminary analyses of 20 events reveal a mean cold pool height of 220 m and a mean radius of approximately 8.5 km. The average cold pool experienced a temperature (specific humidity) decrease of approximately 1 K (0.4 g/kg) at the surface. The temperature decrease is consistent with modeling studies and limited observations from previous studies over the tropics. The small decrease in specific humidity is attributed to the high moisture content within the cold pools. AERI retrievals of potential temperature and specific humidity profiles show promising similarities with theoretical results produced using the cold pool parameterization presented by Del Genio et al. (2015); however, results are sensitive to both the mass of air injected into the cold pool after its formation, and the thermodynamic characteristics of the downdraft.

  9. Monthly and Seasonal Cloud Cover Patterns at the Manila Observatory (14.64°N, 121.08°E)

    NASA Astrophysics Data System (ADS)

    Antioquia, C. T.; Lagrosas, N.; Caballa, K.

    2014-12-01

    A ground based sky imaging system was developed at the Manila Observatory in 2012 to measure cloud occurrence and to analyse seasonal variation of cloud cover over Metro Manila. Ground-based cloud occurrence measurements provide more reliable results compared to satellite observations. Also, cloud occurrence data aid in the analysis of radiation budget in the atmosphere. In this study, a GoPro Hero 2 with almost 180o field of view is employed to take pictures of the atmosphere. These pictures are taken continuously, having a temporal resolution of 1min. Atmospheric images from April 2012 to June 2013 (excluding the months of September, October, and November 2012) were processed to determine cloud cover. Cloud cover in an image is measured as the ratio of the number of pixels with clouds present in them to the total number of pixels. The cloud cover values were then averaged over each month to know its monthly and seasonal variation. In Metro Manila, the dry season occurs in the months of November to May of the next year, while the wet season occurs in the months of June to October of the same year. Fig 1 shows the measured monthly variation of cloud cover. No data was collected during the months of September (wherein the camera was used for the 7SEAS field campaign), October, and November 2012 (due to maintenance and repairs). Results show that there is high cloud cover during the wet season months (80% on average) while there is low cloud cover during the dry season months (62% on average). The lowest average cloud cover for a wet season month occurred in June 2012 (73%) while the highest average cloud cover for a wet season month occurred in June 2013 (86%). The variations in cloud cover average in this season is relatively smaller compared to that of the dry season wherein the lowest average cloud cover in a month was during April 2012 (38%) while the highest average cloud cover in a month was during January 2013 (77%); minimum and maximum averages being 39% apart. During the wet season, the cloud occurrence is mainly due to tropical storms, Southwest Monsoon, and local convection processes. In the dry season, less cloud is formed because of cold dry air from Northeast Monsoon (December to February) and generally dry and hot weather (March to May). Regular data collection has been implemented for further long term data analysis.

  10. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part I; Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike

    2005-01-01

    A record of single-layer and overcast low cloud (stratus) properties has been generated using approximately 4000 hours of data collected from January 1997 to December 2002 at the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid-phase and liquid-dominant, mixed-phase, low cloud macrophysical, microphysical, and radiative properties including cloud-base and -top heights and temperatures, and cloud physical thickness derived from a ground-based radar and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) and content (LWC), and cloud-droplet effective radius (r(sub e)) and number concentration (N) derived from the macrophysical properties and radiometer data; and cloud optical depth (tau), effective solar transmission (gamma), and cloud/top-of-atmosphere albedos (R(sub cldy)/R(sub TOA)) derived from Eppley precision spectral pyranometer measurements. The cloud properties were analyzed in terms of their seasonal, monthly, and hourly variations. In general, more stratus clouds occur during winter and spring than in summer. Cloud-layer altitudes and physical thicknesses were higher and greater in summer than in winter with averaged physical thicknesses of 0.85 km and 0.73 km for day and night, respectively. The seasonal variations of LWP, LWC, N. tau, R(sub cldy), and R(sub TOA) basically follow the same pattern with maxima and minima during winter and summer, respectively. There is no significant variation in mean r(sub e), however, despite a summertime peak in aerosol loading, Although a considerable degree of variability exists, the 6-yr average values of LWP, LWC, r(sub e), N, tau, gamma, R(sub cldy) and R(sub TOA) are 150 gm(exp -2) (138), 0.245 gm(exp -3) (0.268), 8.7 micrometers (8.5), 213 cm(exp -3) (238), 26.8 (24.8), 0.331, 0.672, 0.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has been developed from this study. The low stratus cloud amount monotonically increases from midnight to early morning (0930 LT), and remains large until around local noon, then declines until 1930 LT when it levels off for the remainder of the night. In the morning, the stratus cloud layer is low, warm, and thick with less LWC, while in the afternoon it is high, cold, and thin with more LWC. Future parts of this series will consider other cloud types and cloud radiative forcing at the ARM SCF.

  11. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud-driven turbulence appear to be dominant. Contrary to previous speculation, the efficiency of turbulent heat exchange is low. The SSHF contribution to ABL mixing is significant during the uplift (low-pressure) followed by the highly stable (stratus cloud) regime.

  12. A study of the cold cores population in the Perseus star-forming regions.

    NASA Astrophysics Data System (ADS)

    Pezzuto, S.; Fiorellino, E.; Benedettini, M.; Schisano, E.; Elia, D.; André, P.; Könyves, V.; Ladjelate, B.; Di Francesco, J.; Piccotti, L.; Herschel Gould Belt Survey Consortium

    As part of the Herschel Gould Belt survey, the Perseus star-forming cloud was observed with the Herschel PACS and SPIRE instruments. Source catalogs are preliminary, as well as the here presented core mass function.

  13. THE DARKEST SHADOWS: DEEP MID-INFRARED EXTINCTION MAPPING OF A MASSIVE PROTOCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Michael J.; Tan, Jonathan C.; Kainulainen, Jouni

    We use deep 8 μm Spitzer-IRAC imaging of massive Infrared Dark Cloud (IRDC) G028.37+00.07 to construct a mid-infrared (MIR) extinction map that probes mass surface densities up to Σ ∼ 1 g cm{sup –2} (A{sub V} ∼ 200 mag), amongst the highest values yet probed by extinction mapping. Merging with an NIR extinction map of the region creates a high dynamic range map that reveals structures down to A{sub V} ∼ 1 mag. We utilize the map to: (1) measure a cloud mass ∼7 × 10{sup 4} M {sub ☉} within a radius of ∼8 pc. {sup 13}CO kinematics indicate thatmore » the cloud is gravitationally bound. It thus has the potential to form one of the most massive young star clusters known in the Galaxy. (2) Characterize the structures of 16 massive cores within the IRDC, finding they can be fit by singular polytropic spheres with ρ∝r{sup −k{sub ρ}} and k {sub ρ} = 1.3 ± 0.3. They have Σ-bar ≃0.1--0.4 g cm{sup −2}—relatively low values that, along with their measured cold temperatures, suggest that magnetic fields, rather than accretion-powered radiative heating, are important for controlling fragmentation of these cores. (3) Determine the Σ (equivalently column density or A{sub V} ) probability distribution function (PDF) for a region that is nearly complete for A{sub V} > 3 mag. The PDF is well fit by a single log-normal with mean A-bar {sub V}≃9 mag, high compared to other known clouds. It does not exhibit a separate high-end power law tail, which has been claimed to indicate the importance of self-gravity. However, we suggest that the PDF does result from a self-similar, self-gravitating hierarchy of structures present over a wide range of scales in the cloud.« less

  14. Velocity-resolved [{\\rm{C}}\\,{\\rm{II}}] Emission from Cold Diffuse Clouds in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Pineda, Jorge L.; Neufeld, David A.; Wolfire, Mark G.; Risacher, Christophe; Simon, Robert

    2018-04-01

    We have combined emission from the 158 μm fine structure transition of C+ observed with the GREAT and upGREAT instruments on SOFIA with 21 cm absorption spectra and visual extinction to characterize the diffuse interstellar clouds found along the lines of sight. The weak [C II] emission is consistent in velocity and line width with the strongest H I component produced by the cold neutral medium. The H I column density and kinetic temperature are known from the 21 cm data and, assuming a fractional abundance of ionized carbon, we calculate the volume density and thermal pressure of each source, which vary considerably, with 27 {cm}}-3≤slant n({{{H}}}0) ≤slant 210 cm‑3 considering only the atomic hydrogen along the lines of sight to be responsible for the C+, while 13 {cm}}-3≤slant n({{{H}}}0+{{{H}}}2)≤slant 190 cm‑3 including the hydrogen in both forms. The thermal pressure varies widely with 1970 cm‑3 K ≤slant {P}th}/k≤slant 10,440 cm‑3 K for H0 alone and 750 cm‑3 K ≤ P th/k ≤ 9360 cm‑3 K including both H0 and H2. The molecular hydrogen fraction varies between 0.10 and 0.67. Photoelectric heating is the dominant heating source, supplemented by a moderately enhanced cosmic ray ionization rate, constrained by the relatively low 45 K to 73 K gas temperatures of the clouds. The resulting thermal balance for the two lower-density clouds is satisfactory, but for the two higher-density clouds, the combined heating rate is insufficient to balance the observed C+ cooling.

  15. Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Rossow, William B.

    1994-01-01

    Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about 3 times the LWP but only half the LWP in the summer hemisphere. Precipitating clouds contribute significantly to monthly, zonal mean LWP values determined from microwave, especially in the intertropical convergence zone (ITCZ), because they have almost 10 times the liquid water (cloud plus precipitation) of nonprecipitating clouds on average. There are significant differences among microwave LWP estimates associated with the treatment of precipitating clouds.

  16. Comparison View of Mars Cloud Cover

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These color and black and white pictures of Mars were taken by NASA's Hubble Space Telescope just two weeks after Earth made its closest approach to the Red Planet during the 1997 opposition. When the Hubble pictures were taken Mars was at a distance of 62 million miles (100 million kilometers) and the resolution at the center of the disk is 13.5 miles/pixel (22 kilometers/pixel). Both images were made with the Wide Field and Planetary Camera 2. The color composite (left image) is constructed from three images taken in red (673 nanometers), green (502 nm) and blue (410 nm) light. The right image, in blue light only, brings out details in the cloud structure and is remarkably similar to weather satellite pictures taken of Earth. A planetary-scale wave curls around the north pole, similar in behavior to high latitude cold fronts which descend over North America and Europe during springtime.

    The picture was taken when Mars was near aphelion, its farthest point from the Sun. The faint sunlight results in cold atmospheric conditions which stimulate the formation of water ice clouds. The clouds themselves further reduce atmospheric temperatures. Atmospheric heating, resulting when sunlight is absorbed by the dust, is reduced when ice forms around the dust particles and causes the dust to gravitationally settle to the ground.

    These images of Mars are centered at approximately 94 degrees longitude and 23 degrees N latitude (oriented with north up). The four largest Tharsis Montes (massive extinct volcanoes) are visible as dark spots extending through the clouds. The vast canyon system, Valles Marineris, stretches across the eastern (lower right) half of the image; the Pathfinder landing site is near the eastern edge of the image. It is early summer in the northern hemisphere, and the North polar cap has retreated to about 80 degrees N latitude; the 'residual' summer cap, which is composed of water ice, is about one-third the size of the 'seasonal' winter cap, which consists mostly of carbon-dioxide frost (dry ice) condensed on the surface. The polar cap is surrounded by a 'sand sea' made up of dark sand dunes. A distinct belt of water-ice clouds extends over much of this hemisphere.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  17. COMPARISON VIEW OF MARS CLOUD COVER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These color and black and white pictures of Mars were taken by NASA's Hubble Space Telescope just two weeks after Earth made its closest approach to the Red Planet during the 1997 opposition. When the Hubble pictures were taken Mars was at a distance of 62 million miles (100 million kilometers) and the resolution at the center of the disk is 13.5 miles/pixel (22 kilometers/pixel). Both images were made with the Wide Field and Planetary Camera 2. The color composite (left image) is constructed from three images taken in red (673 nanometers), green (502 nm) and blue (410 nm) light. The right image, in blue light only, brings out details in the cloud structure and is remarkably similar to weather satellite pictures taken of Earth. A planetary-scale wave curls around the north pole, similar in behavior to high latitude cold fronts which descend over North America and Europe during springtime. The picture was taken when Mars was near aphelion, its farthest point from the Sun. The faint sunlight results in cold atmospheric conditions which stimulate the formation of water ice clouds. The clouds themselves further reduce atmospheric temperatures. Atmospheric heating, resulting when sunlight is absorbed by the dust, is reduced when ice forms around the dust particles and causes the dust to gravitationally settle to the ground. These images of Mars are centered at approximately 94 degrees longitude and 23 degrees N latitude (oriented with north up). The four largest Tharsis Montes (massive extinct volcanoes) are visible as dark spots extending through the clouds. The vast canyon system, Valles Marineris, stretches across the eastern (lower right) half of the image; the Pathfinder landing site is near the eastern edge of the image. It is early summer in the northern hemisphere, and the North polar cap has retreated to about 80 degrees N latitude; the 'residual' summer cap, which is composed of water ice, is about one-third the size of the 'seasonal' winter cap, which consists mostly of carbon-dioxide frost (dry ice) condensed on the surface. The polar cap is surrounded by a 'sand sea' made up of dark sand dunes. A distinct belt of water-ice clouds extends over much of this hemisphere. Credit: Phil James (Univ. Toledo), Todd Clancy (Space Science Inst., Boulder, CO), Steve Lee (Univ. Colorado), and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  18. Shallow to Deep Convection Transition over a Heterogeneous Land Surface Using the Land Model Coupled Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhang, Y.; Klein, S. A.

    2017-12-01

    The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to account for more realistic situations. Our goal is to assist answering the question: "Do the sub-grid scale land surface heterogeneity matter for the weather and climate modeling?" This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 736011.

  19. Formation of Mesospheric Clouds on Mars

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Audouard, J.; Listowski, C.; Mangan, T.; Maattanen, A. E.; Montmessin, F.; Forget, F.; Millour, E.; Spiga, A.; Crismani, M. M. J.; Schneider, N. M.

    2017-12-01

    Martian Mesospheric Clouds (MMCs) are observed intermittently in the Martian atmosphere between 60 and 100 km, occurring particularly at low latitudes. The clouds consist mainly of CO2-ice particles around 1 mm in radius. Explaining the nucleation and growth of these particles is challenging: it has been assumed that - by analogy with polar mesospheric clouds in the terrestrial atmosphere - nucleation occurs on meteoric smoke particles (very small metal-silicate particles resulting from the condensation of the vapor produced by cosmic dust ablation). Indeed, 1D modeling of CO2 microphysics suggests that an exogenous source of nuclei is necessary to model CO2 MMCs, in agreement with observations in cold pockets produced by the coupling of gravity waves and thermal tides. However, a recent laboratory study has shown that smoke particles, which would be around 1 nm in size - require extremely high CO2 supersaturations to nucleate CO2 ice. Here we present an alternative picture of the nucleation of CO2-ice particles. The major meteoric metals - Mg and Fe - should form MgCO3 and FeCO3 molecules in the Mars atmosphere below 90 km. These molecules have enormous electric dipole moments (11.6 and 9.3 Debye, respectively), and so will immediately form stable clusters with 3 CO2 molecules, which then slowly exchange with H2O to produce hexa-hydrated carbonate molecules. These primary particles polymerize readily to form a background population of "dirty" water-ice particles. Using MAVEN-IUVS measurements of the background Mg+ ion layer to constrain the injection rates of Mg and Fe from meteoric ablation, and a 1D model of metal chemistry coupled to an aerosol coagulation model, we show that the population of these water-ice particles with radii greater than 10 nm should be around 200 cm-3 at 80 km, thus providing a population of effective CO2-ice nuclei. When these nuclei are input in the Laboratoire de Météorologie Dynamique (LMD) Mars GCM, first results show that they can be activated in the upper mesosphere cold pockets and hence contribute to form CO­2-ice clouds whose characteristics (spatial and seasonal distribution, opacities, and particle sizes) are in agreement with observations.

  20. Formation of Silicate and Titanium Clouds on Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Powell, Diana; Zhang, Xi; Gao, Peter; Parmentier, Vivien

    2018-06-01

    We present the first application of a bin-scheme microphysical and vertical transport model to determine the size distribution of titanium and silicate cloud particles in the atmospheres of hot Jupiters. We predict particle size distributions from first principles for a grid of planets at four representative equatorial longitudes, and investigate how observed cloud properties depend on the atmospheric thermal structure and vertical mixing. The predicted size distributions are frequently bimodal and irregular in shape. There is a negative correlation between the total cloud mass and equilibrium temperature as well as a positive correlation between the total cloud mass and atmospheric mixing. The cloud properties on the east and west limbs show distinct differences that increase with increasing equilibrium temperature. Cloud opacities are roughly constant across a broad wavelength range, with the exception of features in the mid-infrared. Forward-scattering is found to be important across the same wavelength range. Using the fully resolved size distribution of cloud particles as opposed to a mean particle size has a distinct impact on the resultant cloud opacities. The particle size that contributes the most to the cloud opacity depends strongly on the cloud particle size distribution. We predict that it is unlikely that silicate or titanium clouds are responsible for the optical Rayleigh scattering slope seen in many hot Jupiters. We suggest that cloud opacities in emission may serve as sensitive tracers of the thermal state of a planet’s deep interior through the existence or lack of a cold trap in the deep atmosphere.

  1. Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.

    2009-01-01

    Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud characteristics. Each system provides a unique perspective. The WSR-88D operates in a surveillance mode, sampling cloud volumes of Rayleigh scatterers where reflectivity is proportional to the sixth moment of the size distribution of equivalent spheres. The CloudSat radar provides enhanced sensitivity to smaller cloud ice crystals aloft, as well as consistent vertical profiles along each orbit. However, CloudSat reflectivity signatures are complicated somewhat by resonant Mie scattering effects and significant attenuation in the presence of cloud or rain water. Here, both radar systems are applied to a case of light to moderate snowfall within the warm frontal zone of a cold season, synoptic scale storm. Radars allow for an evaluation of the accuracy of a single-moment scheme in replicating precipitation structures, based on the bulk statistical properties of precipitation as suggested by reflectivity signatures.

  2. A computational fluid dynamics simulation of high- and low-current arcs in self-blast circuit breakers

    NASA Astrophysics Data System (ADS)

    Claessens, M.; Möller, K.; Thiel, H. G.

    1997-07-01

    Computational fluid dynamics calculations for high- and low-current arcs in an interrupter of the self-blast type have been performed. The mixing process of the hot PTFE cloud with the cold 0022-3727/30/13/011/img6 in the pressure chamber is strongly inhomogeneous. The existence of two different species has been taken into account by interpolation of the material functions according to their mass fraction in each grid cell. Depending on the arcing time, fault current and interrupter geometry, blow temperatures of up to 2000 K have been found. The simulation results for a decaying arc immediately before current zero yield a significantly reduced arc cooling at the stagnation point for high blow temperatures.

  3. Ionization impact on molecular clouds and star formation. Numerical simulations and observations

    NASA Astrophysics Data System (ADS)

    Tremblin, P.

    2012-11-01

    At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of the molecular cloud, the velocity spectrum of these globules is shifted at different velocities than the velocity of the shell, pillars and clumps that follow the global expansion of the H ii region. An other diagnostic is the impact of the compression on the probability density function (PDF) of the cold gas. The distribution is double peaked when the turbulent ram pressure is low compared to the ionized-gas pressure. This is the signature of the compression caused by the expansion of the ionized bubble. When the turbulence is high, the two peaks merge and the compression can still be identified although the signature is less clear. We have used Herschel column density maps and molecular-line data to characterize the density and velocity structures of the interface between the ionized and the cold gas in several regions: RCW 120, RCW 36, Cygnus X, the Rosette and Eagle Nebulae. In addition to the diagnostics derived from the simulations, analytical predictions of the shell and pillar parameters was tested and confronted to the observations. In all the regions, we have seen that there is a good agreement with the analytical models and with the simulation diagnostics. The velocity structure of a nascent pillar in the Rosette Nebula suggests that it has been formed by the collapse of the shell on itself and the bulk velocity of cometary globules in Cygnus X and in the Rosette Nebula tends to confirm their turbulent origin. The compression caused by the ionized gas can be seen on the PDF of the cold gas in most of the regions studied. This result is important for the link between the IMF and the global prop! erties of the cloud. If the IMF can be derived from the PDF of a cloud, the impact of the massive stars on the PDF has to be taken in account. Furthermore, we present dedicated simulations of RCW 36 that suggest that the dense clumps at the edge of the ionized gas are not pre-existing, it is likely that their formation was triggered by the compression caused by the ionization. Therefore the ionization from the massive stars is a key process that has to be taken into account for the understanding of the IMF. We also present in appendix other works that have been done in parallel of this thesis: the charge exchange in colliding planetary and stellar winds in collaboration with Prof. E. Chiang during the ISIMA summer school 2011 in Beijing; and the sub-millimeter site testing at the Concordia station in Antarctica with the CAMISTIC team.

  4. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.

    PubMed

    Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min

    2015-06-01

    The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.

    2016-07-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  6. The Effect of Carbon Dioxide (CO 2) Ice Cloud Condensation on the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Lincowski, Andrew; Meadows, Victoria; Robinson, Tyler D.; Crisp, David

    2016-10-01

    The currently accepted outer limit of the habitable zone (OHZ) is defined by the "maximum greenhouse" limit, where Rayleigh scattering from additional CO2 gas overwhelms greenhouse warming. However, this long-standing definition neglects the radiative effects of CO2 clouds (Kopparapu, 2013); this omission was justified based on studies using the two-stream approximation, which found CO2 clouds to be highly likely to produce a net warming. However, recent comparisons of the radiative effect of CO2 clouds using both a two-stream and multi-stream radiative transfer model (Kitzmann et al, 2013; Kitzmann, 2016) found that the warming effect was reduced when the more sophisticated multi-stream models were used. In many cases CO2 clouds caused a cooling effect, meaning that their impact on climate could not be neglected when calculating the outer edge of the habitable zone. To better understand the impact of CO2 ice clouds on the OHZ, we have integrated CO2 cloud condensation into a versatile 1-D climate model for terrestrial planets (Robinson et al, 2012) that uses the validated multi-stream SMART radiative transfer code (Meadows & Crisp, 1996; Crisp, 1997) with a simple microphysical model. We present preliminary results on the habitable zone with self-consistent CO2 clouds for a range of atmospheric masses, compositions and host star spectra, and the subsequent effect on surface temperature. In particular, we evaluate the habitable zone for TRAPPIST-1d (Gillon et al, 2016) with a variety of atmospheric compositions and masses. We present reflectance and transit spectra of these cold terrestrial planets. We identify any consequences for the OHZ in general and TRAPPIST-1d in particular. This more comprehensive treatment of the OHZ could impact our understanding of the distribution of habitable planets in the universe, and provide better constraints for statistical target selection techniques, such as the habitability index (Barnes et al, 2015), for missions like JWST, WFIRST-AFTA and the LUVOIR mission concept.

  7. Open-cell and closed-cell clouds off Peru

    NASA Image and Video Library

    2010-04-27

    2010/107 - 04/17 at 21 :05 UTC. Open-cell and closed-cell clouds off Peru, Pacific Ocean Resembling a frosted window on a cold winter's day, this lacy pattern of marine clouds was captured off the coast of Peru in the Pacific Ocean by the MODIS on the Aqua satellite on April 19, 2010. The image reveals both open- and closed-cell cumulus cloud patterns. These cells, or parcels of air, often occur in roughly hexagonal arrays in a layer of fluid (the atmosphere often behaves like a fluid) that begins to "boil," or convect, due to heating at the base or cooling at the top of the layer. In "closed" cells warm air is rising in the center, and sinking around the edges, so clouds appear in cell centers, but evaporate around cell edges. This produces cloud formations like those that dominate the lower left. The reverse flow can also occur: air can sink in the center of the cell and rise at the edge. This process is called "open cell" convection, and clouds form at cell edges around open centers, which creates a lacy, hollow-looking pattern like the clouds in the upper right. Closed and open cell convection represent two stable atmospheric configurations — two sides of the convection coin. But what determines which path the "boiling" atmosphere will take? Apparently the process is highly chaotic, and there appears to be no way to predict whether convection will result in open or closed cells. Indeed, the atmosphere may sometimes flip between one mode and another in no predictable pattern. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  8. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics: observational evidence of the effect of aerosols on precipitation processes, and results from (CRM) simulations. Note that this presentation is mainly based on a recent paper published in Geophy. Rev. (Tao et al. 2012).

  9. The NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.

    2005-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.

  10. Overview of major hazards. Part 2: Source term; dispersion; combustion; blast, missiles, venting; fire; radiation; runaway reactions; toxic substances; dust explosions

    NASA Astrophysics Data System (ADS)

    Vilain, J.

    Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.

  11. Convective and stratiform components of a Winter Monsoon Cloud Cluster determined from geosynchronous infrared satellite data

    NASA Technical Reports Server (NTRS)

    Goldenberg, Stanley B.; Houze, Robert A., Jr.; Churchill, Dean D.

    1990-01-01

    The horizontal precipitation structure of cloud clusters observed over the South China Sea during the Winter Monsoon Experiment (WMONEX) is analyzed using a convective-stratiform technique (CST) developed by Adler and Negri (1988). The technique was modified by altering the method for identifying convective cells in the satellite data, accounting for the extremely cold cloud tops characteristic of the WMONEX region, and modifying the threshold infrared temperature for the boundary of the stratiform rain area. The precipitation analysis was extended to the entire history of the cloud cluster by applying the modified CST to IR imagery from geosynchronous-satellite observations. The ship and aircraft data from the later period of the cluster's lifetime make it possible to check the locations of convective and stratiform precipitation identified by the CST using in situ observations. The extended CST is considered to be effective for determining the climatology of the convective-stratiform structure of tropical cloud clusters.

  12. Astrochemistry

    NASA Astrophysics Data System (ADS)

    Millar, T. J.

    2015-08-01

    In the last 40 years a wide range of molecules, including neutrals, cations and anions, containing up to 13 atoms—in addition to detections of {{\\text{C}}60} and {{\\text{C}}70} —have been found in the harsh environment of the interstellar medium. The exquisite sensitivity and very high spectral and, more recently, spatial resolution, of modern telescopes has enabled the physics of star formation to be probed through rotational line emission. In this article, I review the basic properties of interstellar clouds and the processes that initiate the chemistry and generate chemical complexity, particularly in regions of star and planet formation. Our understanding of astrochemistry has evolved over the years. Before 1990, the general consensus was that molecules were formed in binary, gas-phase, or volume, reactions, most importantly ion-neutral reactions despite the very low ionization in clouds. Since then, observations have indicated unambiguously that there is also a contribution from surface processes, particularly on the icy mantles that form around refractory grain cores in cold, dense gas. The balance between these two processes depends on particular physical conditions and can vary during the life cycle of a particular volume of interstellar cloud. The complex chemistry that occurs in space is driven mostly through interaction of the gas with cosmic ray protons, a source of ionization that enables a rich ion-neutral chemistry. In addition, I show that the interaction between the gas and the dust in cold, dense regions also leads to additional chemical complexity through reactions that take place in ices at only a few tens of degrees above absolute zero. Although densities are low compared to those in terrestrial environments, the extremely long life times of interstellar clouds and their enormous sizes, enable complex molecules to be synthesised and detected. I show that in some instances, particularly in reactions involving deuterium, the rotational populations of reactants, together with spin-selection rules, can determine the detailed abundances. Although the review is mainly focused on regions associated with star formation, I also consider chemistry in other interesting astronomical regions—in the early Universe and in the envelopes formed by mass loss during the final stages of stellar evolution.

  13. Observed Structure and Characteristics of Cold Pools over Tropical Oceans using Vector Wind Retrievals and WRF simulations

    NASA Astrophysics Data System (ADS)

    Garg, P.; Nesbitt, S. W.; Lang, T. J.; Chronis, T.; Thayer, J. D.; Hence, D. A.

    2017-12-01

    Cold pools generated in the wake of convective activity can enhance the surface sensible heat flux, latent heat flux, and also changes in evaporation out of, and fresh water flux into, the ocean. Recent studies have shown that over the open ocean, cold pool outflow boundaries and their intersections can organize and initiate a spectrum of deep convective clouds, which is a key driver of shallow and deep convection over conditionally-unstable tropical oceans. The primary goal of this study is to understand the structure and characteristics of cold pools over the tropical oceans using observations. With the idea that cold pools will have strong wind gradients at their boundaries, we use ASCAT vector wind retrievals. We identify regions of steep gradients in wind vectors as gradient features (GFs), akin to cold pools. Corresponding to these GFs, sensible and latent heat fluxes were calculated using the observed winds and background temperatures from MERRA-2 reanalysis. To evaluate the proposed technique, cold pools were observed using S-PolKa radar from the DYNAMO/AMIE field campaign in the Indian Ocean for the period of 1 October 2011 to 31 March 2012 and were compared with ASCAT GFs. To relate the thermodynamic and kinematic characteristics of observed and simulated cold pools, simulations were carried out on WRF on a 3-km domain explicitly. The areas of cold pools were identified in the models using virtual temperature (Tv), which is a direct measure of air density, while GFs were identified using model simulated winds. Quantitative measures indicate that GFs are highly correspondent with model-simulated cold pools. In global measurements of cold pools from 2007-2015, it is possible to examine the characteristics of GFs across all tropical ocean basins, and relate them to meteorological conditions, as well as the characteristics of the parent precipitation systems. Our results indicate that while there is a general relationship between the amount of precipitation and the number of cold pools, the largest cold pools exist over the Eastern Pacific basin, where the most stratiform rain is produced from oceanic MCSs. It is anticipated that improved understanding of cold pools, which are a primary triggering mechanism of oceanic shallow and deep convection, will improve prediction of this important component of the climate system.

  14. A new airborne sampler for interstitial particles in ice and liquid clouds

    NASA Astrophysics Data System (ADS)

    Moharreri, A.; Craig, L.; Rogers, D. C.; Brown, M.; Dhaniyala, S.

    2011-12-01

    In-situ measurements of cloud droplets and aerosols using aircraft platforms are required for understanding aerosol-cloud processes and aiding development of improved aerosol-cloud models. A variety of clouds with different temperature ranges and cloud particle sizes/phases must be studied for comprehensive knowledge about the role of aerosols in the formation and evolution of cloud systems under different atmospheric conditions. While representative aerosol measurements are regularly made from aircrafts under clear air conditions, aerosol measurements in clouds are often contaminated by the generation of secondary particles from the high speed impaction of ice particles and liquid droplets on the surfaces of the aircraft probes/inlets. A new interstitial particle sampler, called the blunt-body aerosol sampler (BASE) has been designed and used for aerosol sampling during two recent airborne campaigns using NCAR/NSF C-130 aircraft: PLOWS (2009-2010) and ICE-T (2011). Central to the design of the new interstitial inlet is an upstream blunt body housing that acts to shield/deflect large cloud droplets and ice particles from an aft sampling region. The blunt-body design also ensures that small shatter particles created from the impaction of cloud-droplets on the blunt-body are not present in the aft region where the interstitial inlet is located. Computational fluid dynamics (CFD) simulations along with particle transport modeling and wind tunnel studies have been utilized in different stages of design and development of this inlet. The initial flights tests during the PLOWS campaign showed that the inlet had satisfactory performance only in warm clouds and when large precipitation droplets were absent. In the presence of large droplets and ice, the inlet samples were contaminated with significant shatter artifacts. These initial results were reanalyzed in conjunction with a computational droplet shatter model and the numerical results were used to arrive at an improved sampler design. Analysis of the data from the recent ICE-T campaign with the improved sampler design shows that the modified version of BASE can provide shatter-artifact free sampling of aerosol particles in the presence of ice particles and significantly reduced shatter artifacts in warm clouds. Detailed design and modeling aspects of the sampler will be discussed and the sampler performance in warm and cold clouds will be presented and compared with measurements made using other aerosol inlets flown on the NCAR/NSF C-130 aircraft.

  15. Characterization of hydrometeors and precipitation over the Indian monsoon region using aircraft measurements

    NASA Astrophysics Data System (ADS)

    Maheskumar, R. S.; Padmakumari, B.; Konwar, Mahen; Morwal, S. B.; Deshpande, C. G.

    2018-06-01

    In-situ observations of cloud microphysical properties, carried out over different parts of Indian sub-continent using an instrumented research aircraft during Phase-I of Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) from June to September 2009, were studied. Different cloud probes were used to characterize the hydrometeor and precipitation types in the monsoon clouds. The results revealed that all liquid phase hydrometeors were present at temperatures -12 °C to 15 °C. Most of the presence of rain drops were found in the liquid water content (LWC) range from 0.5 to 2 g/m3. In general, rain drops are initiated when the droplet effective radius (Re) exceeded 12 μm. Rain dominated at the tops of young growing convective clouds even at temperatures colder than -10 °C. Mixed phase hydrometeors were present at temperatures from -2 °C to -18 °C. The cases where mixed phase precipitation occurred at temperatures warmer than about -7 °C were associated with influx of transported dust aerosol at the upper (supercooled) region of these cloud systems. Ice only hydrometeors were found at temperatures extending from -10 °C to -22 °C. Most of the monsoon rain is produced by warm and cold cloud/mixed-phase processes in the cloud. The combined Re from two different cloud probes is useful for validation of satellite derived cloud microphysical parameter.

  16. Mineral dust: observations of emission events and modeling of transport to the upper troposphere

    NASA Astrophysics Data System (ADS)

    Peter, T.; Wiacek, A.; Taddeo, M.

    2009-04-01

    The present study explores differences between mineral dust emission events in West African and Asian (Taklimakan) deserts, focusing on the availability of bare mineral dust ice nuclei for interactions with cirrus clouds without previous processing or washout by liquid water clouds. One-week trajectory calculations with high-resolution ECMWF fields are used to track transported (Lagrangian) relative humidities with respect to liquid water and ice, allowing to estimate the formation of liquid, mixed-phase and ice clouds. Transport trajectories can reasonably be assumed to carry dust with them throughout the year, except for the months of December-February, which are quiescent with respect to dust emission in both regions. Practically none of the simulated air parcels reach regions where homogeneous nucleation can take place (T < -35°C) along trajectories that have not experienced water saturation first, i.e. it is very unlikely that mineral dust particles could be a serious competitor for homogeneous nucleation during the formation of high, cold cirrus clouds. For the temperature region between -35°C < T < 0°C, i.e. in air parcels exhibiting necessary conditions for warmer ice clouds at lower altitudes, a small but significant number of air parcels are found to follow trajectories where RHw < 100% and RHi > 100% are simultaneously maintained. However, the potential for such low ice clouds originating from the Taklimakan desert is greater than that of the Sahara by a factor of 4-6. The implication is that although the Sahara is by far the biggest source of dust in the world, the much smaller Taklimakan desert in China's Tarim Basin may be of greater importance as a source of ice nuclei affecting cirrus cloud formation. This is likely the result of several meteorological factors, including the complex regional topography combined with the higher altitude of Taklimakan dust emissions and, on the synoptic scale, the higher altitude of potential temperature levels in the free troposphere at mid-latitudes than in the tropics. Finally, the very active Bodélé source region in Africa and the Gobi Desert in Asia will also be addressed.

  17. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  18. Cloud-to-ground lightning in Portugal: patterns and dynamical forcing

    NASA Astrophysics Data System (ADS)

    Santos, J. A.; Reis, M. A.; Sousa, J.; Leite, S. M.; Correia, S.; Janeira, M.; Fragoso, M.

    2012-03-01

    An analysis of the cloud-to-ground discharges (CGD) over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003-2009 (7 yr). Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May-September period (71%), with a bimodal distribution that peaks in May and September, with most of the lightning activity recorded in the afternoon (from 16:00 to 18:00 UTC). In spring and autumn the lightning activity tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low lightning activity. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily lightning regimes revealed three important atmospheric conditions for triggering lightning activity: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.

  19. Cloud Particle Size and Water/Ice Ratio Estimation using the DMSP SSMIS Sounder

    NASA Astrophysics Data System (ADS)

    Peng, G. S.; Fote, A. A.; Wu, D. L.; Boucher, D. J.; Thomas, B. H.; Kishi, A. M.

    2008-12-01

    The Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager/Sounder (SSMIS) is a next-generation passive conically scanning microwave radiometer. It combines both imaging and sounding capabilities of current operational instruments, SSM/I, SSM/T-1 and SSM/T-2. It also improves the capability of temperature sounding by providing profiles from the surface up to 70 km altitude with higher spatial resolutions (~37.5 for lower air and ~75 km for upper air). DMSP Flight 17 launched on 4 November 2006 from Vandenberg Air Force Base carrying the second SSMIS sounder. During the SSMIS Cal/Val period, cold patches were observed in the 50-55 GHz temperature sounding channels at low latitudes. Cold patches were also more apparent in the horizontal polarization (H- pol) than the Vertical polarization (V-pol) channels. A difference in sensitivity of the H-pol and V-pol channels gives the ratio of water to ice in the clouds. Subsequent investigation showed that these patches appeared in the 91.6 GHz channels but not the 37 GHz channels. This information, together with the theoretical scattering efficiency for spherical particles of various sizes, gives an upper bound of < 2 mm diameter for water and ice particles that may not be detected by SSMIS operational 'cloud clearing' algorithms.

  20. Polar Winds

    NASA Image and Video Library

    2018-04-05

    This VIS image shows 'streamers' of clouds created by katabatic winds at the north polar cap. Katabatic winds are created by cold air sinking at the pole and then speeding along the ice surface towards the edge of the polar cap. When the winds enter troughs the wind regime changes from laminar flow to choatic and clouds of ice particles and/or dust are visible. This wind activity peaks at the start of northern hemisphere summer. Orbit Number: 53942 Latitude: 86.8433 Longitude: 99.3149 Instrument: VIS Captured: 2014-02-10 10:50 https://photojournal.jpl.nasa.gov/catalog/PIA22362

  1. Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.

    2017-08-01

    Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.

  2. Influences of drizzle on stratocumulus cloudiness and organization [Influences of drizzle on cloudiness and stratocumulus organization

    DOE PAGES

    Zhou, Xiaoli; Heus, Thijs; Kollias, Pavlos

    2017-06-06

    Large-eddy simulations are used to study the influence of drizzle on stratocumulus organization, based on measurements made as part of the Second Dynamics and Chemistry of the Marine Stratocumulus field study-II. Cloud droplet number concentration ( N c) is prescribed and considered as the proxy for different aerosol loadings. Our study shows that the amount of cloudiness does not decrease linearly with precipitation rate. An N c threshold is observed below which the removal of cloud water via precipitation efficiently reduces cloud depth, allowing evaporation to become efficient and quickly remove the remaining thin clouds, facilitating a fast transition frommore » closed cells to open cells. Using Fourier analysis, stratocumulus length scales are found to increase with drizzle rates. Raindrop evaporation below 300 m lowers the cloud bases and amplifies moisture variances in the subcloud layer, while it does not alter the horizontal scales in the cloud layer, suggesting that moist cold pool dynamic forcings are not essential for mesoscale organization of stratocumulus. Furthermore, the cloud scales are greatly increased when the boundary layer is too deep to maintain well mixed.« less

  3. Influences of drizzle on stratocumulus cloudiness and organization [Influences of drizzle on cloudiness and stratocumulus organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoli; Heus, Thijs; Kollias, Pavlos

    Large-eddy simulations are used to study the influence of drizzle on stratocumulus organization, based on measurements made as part of the Second Dynamics and Chemistry of the Marine Stratocumulus field study-II. Cloud droplet number concentration ( N c) is prescribed and considered as the proxy for different aerosol loadings. Our study shows that the amount of cloudiness does not decrease linearly with precipitation rate. An N c threshold is observed below which the removal of cloud water via precipitation efficiently reduces cloud depth, allowing evaporation to become efficient and quickly remove the remaining thin clouds, facilitating a fast transition frommore » closed cells to open cells. Using Fourier analysis, stratocumulus length scales are found to increase with drizzle rates. Raindrop evaporation below 300 m lowers the cloud bases and amplifies moisture variances in the subcloud layer, while it does not alter the horizontal scales in the cloud layer, suggesting that moist cold pool dynamic forcings are not essential for mesoscale organization of stratocumulus. Furthermore, the cloud scales are greatly increased when the boundary layer is too deep to maintain well mixed.« less

  4. Sub-visual Cirrus detection and characterization

    NASA Technical Reports Server (NTRS)

    Schmidt, E.; Grams, G.; Patterson, E.

    1990-01-01

    Analysis of archived cold optics (COR) radiometer data is yielding useful information on the diurnal, geographic, seasonal and altitude variability of atmospheric background radiance levels in the 11 micron window region. This database is a compilation of Kuiper Infrared Technology Experiment (KITE) and Atmospheric Radiance Study (ARS) observations under a wide variety of conditions. Correlating the measurements from these two studies with the LOWTRAN model code has revealed several important results. First, the 11 micron window appears to be filled-in, i.e., the troughs on either side of the nitric acid peak are shallower than expected. Second, the amplitude of the background radiances measured exceeds the model predictions by a factor of 2 to 3 or more. This is thought to be due to the existence of thin, high altitude cirrus clouds (sub-visual cirrus) above the sensor platform. These high background levels are observed under quiescent conditions in the South Pacific (Marshall Islands), as well as over the continental United States (the West Coast). In the tropics, there appears to be little diurnal variability, a plausible seasonal variation and a linear dependence between 7.2 and 11.4 micron band data, indicating possible multi-spectral approaches to detection of sub-visual cirrus clouds. Theoretical analysis of the magnitude of the effects of a sub-visual cirrus cloud on atmospheric background radiances measured by a near-horizontal sensor is in progress.

  5. The Physical Properties of Near-Pristine Gas at High Redshift

    NASA Astrophysics Data System (ADS)

    Cooke, Ryan; Pettini, Max

    2012-02-01

    High redshift damped Lyman alpha systems (DLAs) with metallicities less than 1/100 of solar are near-ideal environments for probing the nucleosynthesis by some of the first structures to form in the Universe. As part of our on-going survey of metal-poor DLAs, we have recently discovered a handful of quiescent DLAs that exhibit enhanced C/Fe ratios, with abundance patterns that are consistent with models of Population III star nucleosynthesis. Aside from their value as probes of the earliest episodes of star formation, the quiescent kinematics of these DLAs (σ ~ 2 km s^-1) provide us with a rare opportunity to decouple the turbulent and thermal broadening within the clouds by performing a differential analysis of the line widths for atoms of widely differing mass (such as deuterium and silicon). This will allow us to measure the gas temperature of these cold, near- pristine clouds of gas - a task that cannot be accomplished with other DLAs. By also measuring the gas density from the ratio of successive ion stages for multiple ions, we can begin to understand their origin and evolution, as well as the processes that heat and cool these clouds. As an additional bonus, we will also obtain two new measures of the primordial abundance of deuterium, building on the still meagre sample of such data from which the density of baryons in the Universe can be determined independently of CMB fluctuations.

  6. Bacterial properties of rainwater associated with cyclones, stationary fronts and typhoons in southwestern Japan

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Hu, W.; Niu, H.

    2016-12-01

    The activities and role of bioaerosols in aerosol-cloud-precipitation links are important but unresolved issues in atmospheric and microbiological sciences. Bacteria, a main part of bioaerosols, are ubiquitous in atmospheric water. They are considered to be involved in the processes of cloud condensation and ice nuclei formation. However, to date, little information on rainwater bacteria is available. Rainwater samples were collected at a suburban site in southwestern Japan during October 2014 to September 2015. Results show that the cell concentration of rainwater bacteria was 2.3±1.5×104 cells ml-1, with a viability of 80±10% on average. The bacterial abundance and viability systematically differed with the weather systems causing rain. In cold-front-derived rain, the average bacterial concentration was the highest (3.5±1.6×104 cells ml-1), with the lowest viability as 75%. In the stationary-front-derived rain during Meiyu period and typhoon rain, the average bacterial concentrations were lower, but with higher viability. In stationary-front-derived rain during non-Meiyu period, the average abundance was higher (2.4±1.6×104 cells ml-1), while the viability was lower (78%) than those during Meiyu period. It was suggested that clouds produced by air mass from ocean areas carried fewer bacteria but with higher viability than those originated from continental regions. Bacterial concentrations in rainwater did not show good correlations with the ratios of total and decreased airborne particle concentrations to rainfall. Combining the univariate and factorial analysis of chemical compositions and bacterial abundance, we found that bacteria in rainwater were mainly associated with nss-SO42-, nss-Ca2+, and NO3-, which can act as nuclei or be produced within clouds. The cultured heterotrophic marine bacteria were of much higher abundance in stationary-front-derived rain than those in cold-front-derived rain. Bacterial genera containing ice nucleation active bacteria species (Pseudomonas, Xanthomonas and Erwinia) and marine bacterial indicator taxa, were also identified in rainwater samples. These results implicated that besides below-cloud removal, in-cloud processes contributed bacteria to rainwater, and marine bacteria could be disseminated via cloud or rainwater.

  7. Damping Ring R&D at CESR-TA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, David L.

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less

  8. Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.; Olson, W. S.; Martin, D. W.; Weinman, J. A.; Santek, D. A.; Wu, R.

    1983-01-01

    Brightness temperatures obtained through examination of microwave data from the Nimbus 7 satellite are noted to be much lower than those expected on the strength of radiation emanating from rain-producing clouds. Very cold brightness temperature cases all coincided with heavy thunderstorm rainfall, with the cold temperatures being attributable to scattering by a layer of ice hydrometeors in the upper parts of the storms. It is accordingly suggested that brightness temperatures observed by satellite microwave radiometers can sometimes distinguish heavy rain over land.

  9. Engine Cold Start

    DTIC Science & Technology

    2015-09-01

    injection system does not have any sensor feedback to alter injection timing to stabilize combustion. Fuel ignition quality was expected to impact...due to clouding of the camera window from residual soot in the piping, and was cleaned out prior to the next run. Figure 9. 46.9 Cetane Cold... sensor . 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 En gi ne R PM O pa ci ty , T em pe ra

  10. Recent observations of interstellar molecules - Detection of CCO and a limit on H2C3O

    NASA Technical Reports Server (NTRS)

    Brown, R. D.; Cragg, D. M.; Godfrey, P. D.; Irvine, W. M.; Mcgonagle, D.; Ohishi, M.

    1992-01-01

    In order to test gas-phase reaction schemes for the production of small oxides of carbon in cold, dense interstellar clouds, we have searched for the radical CCO and for propadienone (H2C3O) in Taurus Molecular Cloud 1, a nearby cloud which exhibits a rich organic chemistry. The radical CCO has been detected with a fractional abundance some two orders of magnitude less than that of CCS, about one order of magnitude less than that of H2CCO, and slightly less than that of C3O. An upper limit has been obtained on the abundance of propadienone which is slightly less than that of its isomer propynal (HC2CHO).

  11. Coherent Radiation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  12. Ramsey scheme for coherent population resonance detection in the optically dense medium

    NASA Astrophysics Data System (ADS)

    Barantsev, Konstantin; Litvinov, Andrey; Popov, Evgeniy

    2018-04-01

    This work is devoted to a theoretical investigation of the Ramsey method of detection of the coherent population trapping resonance in cold atomic clouds taking into account collective effects caused by finite optical depth of the considered clouds. The interaction of atoms with pulsed laser radiation is described in the formalism of density matrix by means of Maxwell-Bloch set of equations. The Ramsey signal of coherent population trapping resonance was calculated for the radiation passed through the medium and analyzed for different length of the atomic cloud. Also the population of excited level was calculated in dependence on the two-photon detuning and coordinate along the main optical axis. The light shift of sidebands and appearance of additional harmonics were discovered.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhousemore » effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.« less

  14. Noctilucent cloud formation and the effects of water vapor variability on temperatures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.

  15. Game Theory Based Trust Model for Cloud Environment

    PubMed Central

    Gokulnath, K.; Uthariaraj, Rhymend

    2015-01-01

    The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365

  16. Weather, Climate, and You.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…

  17. Ultraviolet interstellar lines in the spectrum of Pi Scorpii recorded at 2 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.; Jenkins, Edward B.

    1991-01-01

    A spectrum of Pi Scorpii has been recorded from 1003 to 1172 A with a maximum SNR of about 20 and a velocity resolution of 2.4 km/s. Three types of H I as well as two discrete H II regions are distinguished in velocity space, allowing independent analyses of physical conditions and abundances for the individual gas components. A direct evaluation of optical depths and column densities across the absorption features is applied for the first time to the dominant ionization stage of Fe, Si, and P. Based on an analysis of the spectrum, it is concluded that all of the Ti II absorption seen toward Pi Sco arises in the warm, neutral intercloud medium while the other elements have their maximum absorption associated with cold clouds. A conservative value of log delta less than -3.4 is inferred for the Ti depletion in the cold clouds, a value more extreme than any integrated, line-of-sight measurement made to date.

  18. The vertical structure of convectively-driven cloud microphysics and its dependency on atmospheric conditions: An investigation through observations and modeling

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Fridlind, A. M.; Sinclair, K.; Ackerman, A. S.

    2016-12-01

    It is generally observed that ice crystal sizes decrease as a function of altitude within clouds. This dependency is often explained as resulting from size sorting owing to the greater fall speeds of larger particles, but may also be related to dependence of ice diffusional growth on available water vapor and temperature, or other factors. Furthermore, the vertical variation of ice sizes is expected to be affected by the glaciation temperature of convectively-driven clouds. Realistic modeling of ice formation, growth and sedimentation is crucial to reliably represent vertical structures of ice clouds and cloud evolution in general. In this presentation we use remote sensing observations of glaciation temperature and ice effective radius obtained with airborne instruments to explore how their vertical dependencies vary with atmospheric conditions, such as humidity and wind profiles. Our focus will be on convectively-driven clouds. Subsequently, we test the ability of a quasi-idealized cloud permitting model to reproduce these dependencies of ice formation and size to atmospheric conditions, applying various ice growth and multiplication assumptions. The goal of this study is to identify variables that determine the vertical structure of cold clouds that can be used to evaluate model simulations.

  19. In situ observations of snow particle size distributions over a cold frontal rainband within an extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Yang, Jiefan; Lei, Hengchi

    2016-02-01

    Cloud microphysical properties of a mixed phase cloud generated by a typical extratropical cyclone in the Tongliao area, Inner Mongolia on 3 May 2014, are analyzed primarily using in situ flight observation data. This study is mainly focused on ice crystal concentration, supercooled cloud water content, and vertical distributions of fit parameters of snow particle size distributions (PSDs). The results showed several discrepancies of microphysical properties obtained during two penetrations. During penetration within precipitating cloud, the maximum ice particle concentration, liquid water content, and ice water content were increased by a factor of 2-3 compared with their counterpart obtained during penetration of a nonprecipitating cloud. The heavy rimed and irregular ice crystals obtained by 2D imagery probe as well as vertical distributions of fitting parameters within precipitating cloud show that the ice particles grow during falling via riming and aggregation process, whereas the lightly rimed and pristine ice particles as well as fitting parameters within non-precipitating cloud indicate the domination of sublimation process. During the two cloud penetrations, the PSDs were generally better represented by gamma distributions than the exponential form in terms of the determining coefficient ( R 2). The correlations between parameters of exponential /gamma form within two penetrations showed no obvious differences compared with previous studies.

  20. 21st Century Trends in the Potential for Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.

    2009-05-01

    We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.

  1. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering/shipping could have substantial local radiative effects, but is unlikely to be effective as the sole means of counterbalancing warming due to climate change.

  2. Evaluation of ERA-interim and MERRA Cloudiness in the Southern Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.

    2014-01-01

    The Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive observations, but they also reveal that low-level clouds in other parts of the cyclones are also not properly represented in the reanalyses. The two reanalyses are in fairly good agreement for the dynamic and thermodynamic characteristics of the cyclones, suggesting that the cloud, convection, or boundary layer schemes are the problem instead. An examination of the lower-tropospheric stability distribution in the cyclones from both reanalyses suggests that the parameterization of shallow cumulus clouds may contribute in a large part to the problem. However, the differences in the cloud schemes and in particular in the precipitation processes, which may also contribute, cannot be excluded.

  3. Aerosol microphysical and radiative effects on continental cloud ensembles

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  4. Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model

    DOE PAGES

    Weijer, Wilbert; Veneziani, Milena; Stössel, Achim; ...

    2017-03-01

    For this scientific paper, we study the atmospheric response to an open-ocean polynya in the Southern Ocean by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation. While coarser-resolution versions of CESM generally do not produce open-ocean polynyas in the Southern Ocean, they do emerge and disappear on interannual timescales in the synoptic-scale simulation. This provides an ideal opportunity to study the polynya’s impact on the overlying and surrounding atmosphere. This has been pursued here by investigating the seasonal cycle of differences of surface and air-column variables between polynya and non-polynya years. Ourmore » results indicate significant local impacts on turbulent heat fluxes, precipitation, cloud characteristics, and radiative fluxes. In particular, we find that clouds over polynyas are optically thicker and higher than clouds over sea ice during non-polynya years. Although the lower albedo of polynyas significantly increases the net shortwave absorption, the enhanced cloud brightness tempers this increase by almost 50%. Also, in this model, enhanced longwave radiation emitted from the warmer surface of polynyas is balanced by stronger downwelling fluxes from the thicker cloud deck. Impacts are found to be sensitive to the synoptic wind direction. Strongest regional impacts are found when northeasterly winds cross the polynya and interact with katabatic winds. Finally, surface air pressure anomalies over the polynya are only found to be significant when cold, dry air masses strike over the polynya, i.e. in case of southerly winds.« less

  5. Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weijer, Wilbert; Veneziani, Milena; Stössel, Achim

    For this scientific paper, we study the atmospheric response to an open-ocean polynya in the Southern Ocean by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation. While coarser-resolution versions of CESM generally do not produce open-ocean polynyas in the Southern Ocean, they do emerge and disappear on interannual timescales in the synoptic-scale simulation. This provides an ideal opportunity to study the polynya’s impact on the overlying and surrounding atmosphere. This has been pursued here by investigating the seasonal cycle of differences of surface and air-column variables between polynya and non-polynya years. Ourmore » results indicate significant local impacts on turbulent heat fluxes, precipitation, cloud characteristics, and radiative fluxes. In particular, we find that clouds over polynyas are optically thicker and higher than clouds over sea ice during non-polynya years. Although the lower albedo of polynyas significantly increases the net shortwave absorption, the enhanced cloud brightness tempers this increase by almost 50%. Also, in this model, enhanced longwave radiation emitted from the warmer surface of polynyas is balanced by stronger downwelling fluxes from the thicker cloud deck. Impacts are found to be sensitive to the synoptic wind direction. Strongest regional impacts are found when northeasterly winds cross the polynya and interact with katabatic winds. Finally, surface air pressure anomalies over the polynya are only found to be significant when cold, dry air masses strike over the polynya, i.e. in case of southerly winds.« less

  6. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both, model simulations and observation show that in 2015/2016 ozone loss was quite strong, but not as strong as in 2010/2011 while denitrification and dehydration were so far the strongest in the Arctic stratosphere.

  7. Testing the sensitivity of past climates to the indirect effects of dust

    NASA Astrophysics Data System (ADS)

    Sagoo, Navjit; Storelvmo, Trude

    2017-06-01

    Mineral dust particles are important ice nuclei (IN) and as such indirectly impact Earth's radiative balance via the properties of cold clouds. Using the Community Earth System Model version 1.0.6, and Community Atmosphere Model version 5.1, and a new empirical parameterization for ice nucleation on dust particles, we investigate the radiative forcing induced by dust IN for different dust loadings. Dust emissions are representative of global conditions for the Last Glacial Maximum and the mid-Pliocene Warm Period. Increased dust leads to smaller and more numerous ice crystals in mixed phase clouds, impacting cloud opacity, lifetime, and precipitation. This increases the shortwave cloud radiative forcing, resulting in significant surface temperature cooling and polar amplification—which is underestimated in existing studies relative to paleoclimate archives. Large hydrological changes occur and are linked to an enhanced dynamical response. We conclude that dust indirect effects could potentially have a significant impact on the model-data mismatch that exists for paleoclimates.Plain Language SummaryMineral dust and climate are closely linked, with large fluctuations in dust deposition recorded in geological archives. Dusty conditions are generally associated with cold, glacial periods and low dust with warmer climates. The direct effects of dust on the climate (absorbing and reflecting radiation) are well understood; however, the indirect effects of dust on climate have been overlooked. Dust indirectly impacts the climate through its role as ice nuclei; the presence of dust makes it easier for ice to form in a cloud. We explore the indirect effects of dust in climates with different dust loading from the present by conducting a climate modeling study in which dust are able to act as ice nuclei. Including dust indirect effects increases the sensitivity of our model to changes in dust emission. Increasing dust impacts ice crystal numbers (increased) and size (reduced) in a cloud. This increases cloud reflectivity and lifetime, which increases the sunlight reflected by the cloud and cools the climate. Including the indirect effects of dust has a large impact on the climate, and our results indicate that this is an important but overlooked aspect of paleoclimates that could remedy some of the existing shortcomings of paleoclimate simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ApJ...723..971G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ApJ...723..971G"><span>Detailed Numerical Simulations on the Formation of Pillars Around H II Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten; Walch, Stefanie</p> <p>2010-11-01</p> <p>We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm-3 or 300 cm-3. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of the mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21471288-detailed-numerical-simulations-formation-pillars-around-ii-regions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21471288-detailed-numerical-simulations-formation-pillars-around-ii-regions"><span>DETAILED NUMERICAL SIMULATIONS ON THE FORMATION OF PILLARS AROUND H II REGIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten</p> <p>2010-11-10</p> <p>We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm{sup -3} or 300 cm{sup -3}. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of themore » mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMES...9...39T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMES...9...39T"><span>The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel</p> <p>2017-03-01</p> <p>A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1117M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1117M"><span>Accretion of clumpy cold gas onto massive black hole binaries: the challenging formation of extended circumbinary structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maureira-Fredes, Cristián; Goicovic, Felipe G.; Amaro-Seoane, Pau; Sesana, Alberto</p> <p>2018-05-01</p> <p>Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood. In gas rich environments, an extended, steady circumbinary gaseous disc could play an important role in the MBHB evolution, facilitating its coalescence. However, how gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is unclear. In the aftermath of a galaxy merger, cold turbulent gas condenses into clumps and filaments that can be randomly scattered towards the nucleus. This provides a natural way of feeding the binary with intermittent pockets of gas. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the influence of the infall rate and angular momentum distribution of the incoming clouds on the formation and evolution of structures around the MBHB. We find that the continuous supply of discrete clouds is a double-edge sword, resulting in intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmRe.132...46S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmRe.132...46S"><span>Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sousa, J. F.; Fragoso, M.; Mendes, S.; Corte-Real, J.; Santos, J. A.</p> <p>2013-10-01</p> <p>The present study employs a dataset of cloud-to-ground discharges over Portugal, collected by the Portuguese lightning detection network in the period of 2003-2009, to identify dynamically coherent lightning regimes in Portugal and to implement a statistical-dynamical modeling of the daily discharges over the country. For this purpose, the high-resolution MERRA reanalysis is used. Three lightning regimes are then identified for Portugal: WREG, WREM and SREG. WREG is a typical cold-core cut-off low. WREM is connected to strong frontal systems driven by remote low pressure systems at higher latitudes over the North Atlantic. SREG is a combination of an inverted trough and a mid-tropospheric cold-core nearby Portugal. The statistical-dynamical modeling is based on logistic regressions (statistical component) developed for each regime separately (dynamical component). It is shown that the strength of the lightning activity (either strong or weak) for each regime is consistently modeled by a set of suitable dynamical predictors (65-70% of efficiency). The difference of the equivalent potential temperature in the 700-500 hPa layer is the best predictor for the three regimes, while the best 4-layer lifted index is still important for all regimes, but with much weaker significance. Six other predictors are more suitable for a specific regime. For the purpose of validating the modeling approach, a regional-scale climate model simulation is carried out under a very intense lightning episode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23124703H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23124703H"><span>A Deuteration Survey of Starless Clumps in GemOB1 and the First Quadrant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henrici, Andrew; Shirley, Yancy L.; Svoboda, Brian</p> <p>2018-01-01</p> <p>One very strong chemical process in star-forming regions is the fractionation of deuterium in molecules, which results in an increase in the deuterium ratio many orders of magnitude over the ISM [D]/[H] ratio and provides a chemical probe of cold, dense regions. Recent maps of dust continuum emission at (sub)millimeter wavelengths have identified tens of thousands of dense clumps of gas and dust. By comparing these regions to infrared and radio surveys, we have identified starless clump candidates which have no evidence for embedded star formation. These objects represent the earliest phase of star formation throughout the Milky Way. One benefit of the Milky Way surveys is that it is also possible to study the chemistry of entire core and clump populations within a single cloud. We used the 10m Heinrich Hertz Submillimeter Telescope to survey starless clump candidates in the First Quadrant identified from the Bolocam Galactic Plane Survey 1.1 mm continuum in the deuterated molecular transitions of DCO+ 3-2 and N2D+ 3-2. We also survey the entire clump population of the Gemini OB1 molecular cloud. In both surveys, we compared detection statistics and compare deuteration fraction to physical properties of the clumps and their evolutionary stage. High resolution ALMA observations of 9 starless clump candidates of the same lines are used to analyze how the cold deuterated gas is spatially distributed in these clumps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMES...9..810M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMES...9..810M"><span>Skill of ship-following large-eddy simulations in reproducing MAGIC observations across the northeast Pacific stratocumulus to cumulus transition region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGibbon, J.; Bretherton, C. S.</p> <p>2017-06-01</p> <p>During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons and meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a -0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m-2 in sensible heat flux (SHF). Overall, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.<abstract type="synopsis"><title type="main">Plain Language SummaryDuring the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign in October 2011 to September 2012, a cargo container ship making regular cruises between Los Angeles, CA, and Honolulu, HI, was fitted with tools to measure aspects of the clouds and atmosphere above the ship. We used some of these observations to perform high-resolution computer simulations of the atmosphere in the region around the ship, with the goal of testing how well the simulation produces clouds and atmosphere similar to what was observed. Simulations of 13 one-way cruises to Honolulu, HI, were performed. We see the simulations skillfully produce changes in cloud properties that occur at different times of day and have average properties that match well with the observations. One error is that the air near the surface is slightly too cold in the simulations, meaning more heat is transferred up from the surface. Overall, this result builds confidence and trust in the ability of this type of simulation to produce realistic cloud properties in the northeast Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984PhDT........17Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984PhDT........17Y"><span>A Earth Outgoing Longwave Radiation Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Shi-Keng</p> <p></p> <p>An Earth outgoing longwave radiation (OLWR) climate model has been constructed for radiation budget study. The model consists of the upward radiative transfer parameterization of Thompson and Warren (1982), the cloud cover model of Sherr et al. (1968) and a monthly average climatology defined by the data from Crutcher and Meserve (1971) and Taljaard et al. (1969). Additional required information is provided by the empirical 100mb water vapor mixing ratio equation of Harries (1976), and the mixing ratio interpolation scheme of Briegleb and Ramanathan (1982). Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesia and the Congo. There are regions in the tropics such that their OLWR is as large as that of the subtropics. In the high latitudes, where cold air contains less water vapor, OLWR is basically modulated by the surface temperature. Thus, the topographical heat capacity becomes a dominant factor in determining the distribution. Clouds enhance water vapor modulation of OLWR. Tropical clouds have the coldest cloud top temperatures. This again increases the longitudinal variation in the region. However, in the polar region, where temperature inversion is prominent, cloud top temperature is warmer than the surface. Hence, cloud has the effect of increasing OLWR. The implication of this cloud mechanism is that the latitudinal gradient of net radiation is thus further increased, and the forcing of the general atmospheric circulation is substantially different due to the increased additional available energy. The analysis of the results also suggests that to improve the performance of the Budyko-Sellers type energy balance climate model in the tropical region, the parameterization of the longwave cooling should include a water vapor absorbing term.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..DMP.Z5002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..DMP.Z5002C"><span>Optical beams with embedded vortices: building blocks for atom optics and quantum information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III</p> <p>2006-05-01</p> <p>Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MNRAS.443.3033R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MNRAS.443.3033R"><span>Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.</p> <p>2014-10-01</p> <p>A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00508&hterms=depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddepression','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00508&hterms=depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddepression"><span>Tropical Depression Debbie in the Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p>[figure removed for brevity, see original site] [figure removed for brevity, see original site] Microwave ImageVisible Light Image <p/> Infrared Image These images show Tropical Depression Debbie in the Atlantic, from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 22, 2006. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). At the time the data were taken from which these images were made the eye had not yet opened but the storm is now well organized. The location of the future eye appears as a circle at 275 K brightness temperature in the microwave image just to the SE of the Azores. <p/> Microwave Image The microwave image is created from microwave radiation emitted by Earth's atmosphere and received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm where there are either some clouds or no clouds, indicate where the sea surface shines through. <p/> Vis/NIR Image Tropical Depression Debbie captured by the visible light/near-infrared sensor on the AIRS instrument. <p/> The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950051099&hterms=world+population&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dworld%2Bpopulation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950051099&hterms=world+population&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dworld%2Bpopulation"><span>TOGA COARE Satellite data summaries available on the World Wide Web</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, S. S.; Houze, R. A., Jr.; Mapes, B. E.; Brodzick, S. R.; Yutler, S. E.</p> <p>1995-01-01</p> <p>Satellite data summary images and analysis plots from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), which were initially prepared in the field at the Honiara Operations Center, are now available on the Internet via World Wide Web browsers such as Mosaic. These satellite data summaries consist of products derived from the Japanese Geosynchronous Meteorological Satellite IR data: a time-size series of the distribution of contiguous cold cloudiness areas, weekly percent high cloudiness (PHC) maps, and a five-month time-longitudinal diagram illustrating the zonal motion of large areas of cold cloudiness. The weekly PHC maps are overlaid with weekly mean 850-hPa wind calculated from the European Centre for Medium-Range Weather Forecasts (ECMWF) global analysis field and can be viewed as an animation loop. These satellite summaries provide an overview of spatial and temporal variabilities of the cloud population and a large-scale context for studies concerning specific processes of various components of TOGA COARE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JASTP.121..248P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JASTP.121..248P"><span>Characteristics of cirrus clouds and tropical tropopause layer: Seasonal variation and long-term trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandit, Amit Kumar; Gadhavi, Harish; Ratnam, M. Venkat; Jayaraman, A.; Raghunath, K.; Rao, S. Vijaya Bhaskara</p> <p>2014-12-01</p> <p>In the present study, characteristics of tropical cirrus clouds observed during 1998-2013 using a ground-based lidar located at Gadanki (13.5°N, 79.2°E), India, are presented. Altitude occurrences of cirrus clouds as well as its top and base heights are estimated using the advanced mathematical tool, wavelet covariance transform (WCT). The association of observed cirrus cloud properties with the characteristics of tropical tropopause layer (TTL) is investigated using co-located radiosonde measurements available since 2006. In general, cirrus clouds occurred for about 44% of the total lidar observation time (6246 h). The most probable altitude at which cirrus clouds occurr is 14.5 km. The occurrence of cirrus clouds exhibited a strong seasonal dependence with maximum occurrence during monsoon season (76%) and minimum occurrence during winter season (33%) which is consistent with the results reported recently using space-based lidar measurements. Most of the time, cirrus top was located within the TTL (between cold point and convective outflow level) while cirrus base occurred near the convective outflow level. The geometrical thickness of the cirrus cloud is found to be higher during monsoon season compared to winter and there exists a weak inverse relation with TTL thickness. During the observation period the percentage occurrence of cirrus clouds near the tropopause showed an 8.4% increase at 70% confidence level. In the last 16 years, top and base heights of cirrus cloud increased by 0.56 km and 0.41 km, respectively.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990081104&hterms=physical+dependence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dphysical%2Bdependence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990081104&hterms=physical+dependence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dphysical%2Bdependence"><span>Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DelGenio, Anthony</p> <p>1999-01-01</p> <p>The uncertainty in the global climate sensitivity to an equilibrium doubling of carbon dioxide is often stated to be 1.5-4.5 K, largely due to uncertainties in cloud feedbacks. The lower end of this range is based on the assumption or prediction in some GCMs that cloud liquid water behaves adiabatically, thus implying that cloud optical thickness will increase in a warming climate if the physical thickness of clouds is invariant. Satellite observations of low-level cloud optical thickness and liquid water path have challenged this assumption, however, at low and middle latitudes. We attempt to explain the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurements (ARM) Cloud And Radiation Testbed (CART) site in the Southern Great Plains. We find that low cloud liquid water path is insensitive to temperature in winter but strongly decreases with temperature in summer. The latter occurs because surface relative humidity decreases with warming, causing cloud base to rise and clouds to geometrically thin. Meanwhile, inferred liquid water contents hardly vary with temperature, suggesting entrainment depletion. Physically, the temperature dependence appears to represent a transition from higher probabilities of stratified boundary layers at cold temperatures to a higher incidence of convective boundary layers at warm temperatures. The combination of our results and the earlier satellite findings imply that the minimum climate sensitivity should be revised upward from 1.5 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012mss..confEFD01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012mss..confEFD01M"><span>Spectroscopy and Chemistry of Cold Molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Momose, Takamasa</p> <p>2012-06-01</p> <p>Molecules at low temperatures are expected to behave quite differently from those at high temperatures because pronounced quantum effects emerge from thermal averages. Even at 10 K, a significant enhancement of reaction cross section is expected due to tunneling and resonance effects. Chemistry at this temperature is very important in order to understand chemical reactions in interstellar molecular clouds. At temperatures lower than 1 K, collisions and intermolecular interactions become qualitatively different from those at high temperatures because of the large thermal de Broglie wavelength of molecules. Collisions at these temperatures must be treated as the interference of molecular matter waves, but not as hard sphere collisions. A Bose-Einstein condensate is a significant state of matter as a result of coherent matter wave interaction. Especially, dense para-H_2 molecules are predicted to become a condensate even around 1 K. A convenient method to investigate molecules around 1 K is to dope molecules in cold matrices. Among various matrices, quantum hosts such as solid para-H_2 and superfluid He nano-droplets have been proven to be an excellent host for high-resolution spectroscopy. Rovibrational motion of molecules in these quantum hosts is well quantized on account of the weak interactions and the softness of quantum environment. The linewidths of infrared spectra of molecules in the quantum hosts are extremely narrow compared with those in other matrices. The sharp linewidths allow us to resolve fine spectral structures originated in subtle interactions between guest and host molecules. In this talk, I will describe how the splitting and lineshape of high-resolution spectra of molecules in quantum hosts give us new information on the static and dynamical interactions of molecules in quantum medium. The topics include dynamical response of superfluid environment upon rotational excitation, and possible superfluid phase of para-H_2 clusters. I will also describe our current efforts to make free cold molecules for the study of cold chemistry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00510&hterms=convection+orange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Borange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00510&hterms=convection+orange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Borange"><span>Tropical Storm Ernesto over Cuba</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p>[figure removed for brevity, see original site] Microwave Image <p/> These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite. <p/> Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). <p/> Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. <p/> Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. <p/> The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010082945&hterms=block+chain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dblock%2Bchain','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010082945&hterms=block+chain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dblock%2Bchain"><span>From Interstellar PAHs and Ices to the Origin of Life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)</p> <p>2000-01-01</p> <p>Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building blocks of comets and related to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex organic materials on the early Earth and their composition may be related to the origin of life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMIN11C3634C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMIN11C3634C"><span>OpenTopography: Addressing Big Data Challenges Using Cloud Computing, HPC, and Data Analytics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crosby, C. J.; Nandigam, V.; Phan, M.; Youn, C.; Baru, C.; Arrowsmith, R.</p> <p>2014-12-01</p> <p>OpenTopography (OT) is a geoinformatics-based data facility initiated in 2009 for democratizing access to high-resolution topographic data, derived products, and tools. Hosted at the San Diego Supercomputer Center (SDSC), OT utilizes cyberinfrastructure, including large-scale data management, high-performance computing, and service-oriented architectures to provide efficient Web based access to large, high-resolution topographic datasets. OT collocates data with processing tools to enable users to quickly access custom data and derived products for their application. OT's ongoing R&D efforts aim to solve emerging technical challenges associated with exponential growth in data, higher order data products, as well as user base. Optimization of data management strategies can be informed by a comprehensive set of OT user access metrics that allows us to better understand usage patterns with respect to the data. By analyzing the spatiotemporal access patterns within the datasets, we can map areas of the data archive that are highly active (hot) versus the ones that are rarely accessed (cold). This enables us to architect a tiered storage environment consisting of high performance disk storage (SSD) for the hot areas and less expensive slower disk for the cold ones, thereby optimizing price to performance. From a compute perspective, OT is looking at cloud based solutions such as the Microsoft Azure platform to handle sudden increases in load. An OT virtual machine image in Microsoft's VM Depot can be invoked and deployed quickly in response to increased system demand. OT has also integrated SDSC HPC systems like the Gordon supercomputer into our infrastructure tier to enable compute intensive workloads like parallel computation of hydrologic routing on high resolution topography. This capability also allows OT to scale to HPC resources during high loads to meet user demand and provide more efficient processing. With a growing user base and maturing scientific user community comes new requests for algorithms and processing capabilities. To address this demand, OT is developing an extensible service based architecture for integrating community-developed software. This "plugable" approach to Web service deployment will enable new processing and analysis tools to run collocated with OT hosted data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4822021A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4822021A"><span>Modeling CO 2 ice clouds with a Mars Global Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audouard, Joachim; Määttänen, Anni; Listowski, Constantino; Millour, Ehouarn; Forget, Francois; Spiga, Aymeric</p> <p>2016-10-01</p> <p>Since the first claimed detection of CO2 ice clouds by the Mariner campaign (Herr and Pimentel, 1970), more recent observations and modelling works have put new constraints concerning their altitude, region, time and mechanisms of formation (Clancy and Sandor, 1998; Montmessin et al., 2007; Colaprete et al., 2008; Määttänen et al., 2010; Vincendon et al., 2011; Spiga et al. 2012; Listowski et al. 2014). CO2 clouds are observed at the poles at low altitudes (< 20 km) during the winter and at high altitudes (60-110 km) in the equatorial regions during the first half of the year. However, Martian CO2 clouds's variability and dynamics remain somehow elusive.Towards an understanding of Martian CO2 clouds and especially of their precise radiative impact on the climate throughout the history of the planet, including their formation and evolution in a Global Climate Model (GCM) is necessary.Adapting the CO2 clouds microphysics modeling work of Listowski et al. (2013; 2014), we aim at implementing a complete CO2 clouds scheme in the GCM of the Laboratoire de Météorologie Dynamique (LMD, Forget et al., 1999). It covers CO2 microphysics, growth, evolution and dynamics with a methodology inspired from the water ice clouds scheme recently included in the LMD GCM (Navarro et al., 2014).Two main factors control the formation and evolution of CO2 clouds in the Martian atmosphere: sufficient supersaturation of CO2 is needed and condensation nuclei must be available. Topography-induced gravity-waves (GW) are expected to propagate to the upper atmosphere where they produce cold pockets of supersaturated CO2 (Spiga et al., 2012), thus allowing the formation of clouds provided enough condensation nuclei are present. Such supersaturations have been observed by various instruments, in situ (Schofield et al., 1997) and from orbit (Montmessin et al., 2006, 2011; Forget et al., 2009).Using a GW-induced temperature profile and the 1-D version of the GCM, we simulate the formation of CO2 clouds in the mesosphere and investigate the sensitivity of our microphysics scheme. First results and steps towards the integration in the 3-D GCM will be presented and discussed at the conference.This work is funded by the Laboratory of Excellence ESEP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...607A..20T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...607A..20T"><span>Chemical complexity induced by efficient ice evaporation in the Barnard 5 molecular cloud</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taquet, V.; Wirström, E. S.; Charnley, S. B.; Faure, A.; López-Sepulcre, A.; Persson, C. M.</p> <p>2017-10-01</p> <p>Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. Here we present the detection of the complex organic molecules (COMs) acetaldehyde (CH3CHO) and methyl formate (CH3OCHO), as well as formic acid (HCOOH) and ketene (CH2CO), and the tentative detection of di-methyl ether (CH3OCH3) towards the "methanol hotspot" of Barnard 5 located between two dense cores using the single dish OSO 20 m, IRAM 30 m, and NRO 45 m telescopes. The high energy cis-conformer of formic acid is detected, suggesting that formic acid is mostly formed at the surface of interstellar grains and then evaporated. The detection of multiple transitions for each species allows us to constrain their abundances through LTE and non-LTE methods. All the considered COMs show similar abundances between 1 and 10% relative to methanol depending on the assumed excitation temperature. The non-detection of glycolaldehyde, an isomer of methyl formate, with a [glycolaldehyde]/[methyl formate] abundance ratio lower than 6%, favours gas phase formation pathways triggered by methanol evaporation. According to their excitation temperatures derived in massive hot cores, formic acid, ketene, and acetaldehyde have been designated as "lukewarm" COMs whereas methyl formate and di-methyl ether were defined as "warm" species. Comparison with previous observations of other types of sources confirms that lukewarm and warm COMs show similar abundances in low-density cold gas whereas the warm COMs tend to be more abundant than the lukewarm species in warm protostellar cores. This abundance evolution suggests either that warm COMs are indeed mostly formed in protostellar environments and/or that lukewarm COMs are efficiently depleted by increased hydrogenation efficiency around protostars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000083878','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000083878"><span>Reconnection Remnants in the Magnetic Cloud of October 18-19, 1995: A Shock, Monochromatic Wave, Heat Flux Dropout and Energetic Ion Beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Michael R.; Szabo, A.; Farrell, W.; Slavin, J. A.; Lepping, R. P.; Fitzenreiter, R.; Thompson, B.; Hamilton, D. C.; Gloeckler, G.; Ho, G. C.</p> <p>2000-01-01</p> <p>Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010082948&hterms=NAD&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DNAD','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010082948&hterms=NAD&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DNAD"><span>Simulations of the Vertical Redistribution of HNO3 by NAT or NAD PSCs: The Sensitivity to the Number of Cloud Particles Formed and the Cloud Lifetime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jensen, Eric J.; Tabazadeh, Azadeh; Drdla, Katja; Toon, Owen B.; Gore, Warren J. (Technical Monitor)</p> <p>2000-01-01</p> <p>Recent satellite and in situ measurements have indicated that limited denitrification can occur in the Arctic stratosphere. In situ measurements from the SOLVE campaign indicate polar stratospheric clouds (PSCs) composed of small numbers (about 3 x 10^ -4 cm^-3) of 10-20 micron particles (probably NAT or NAD). These observations raise the issue of whether low number density NAT PSCs can substantially denitrify the air with reasonable cloud lifetimes. In this study, we use a one dimensional cloud model to investigate the verticle redistribution of HNO3 by NAT/NAD PSCs. The cloud formation is driven by a temperature oscillation which drops the temperature below the NAT/NAD formation threshold (about 195 K) for a few days. We assume that a small fraction of the available aerosols act as NAT nuclei when the saturation ratio of HNO3 over NAT(NAD) exceeds 10(l.5). The result is a cloud between about 16 and 20 km in the model, with NAT/NAD particle effective radii as large as about 10 microns (in agreement with the SOLVE data). We find that for typical cloud lifetimes of 2-3 days or less, the net depletion of HNO3 is no more than 1-2 ppbv, regardless of the NAT or NAD particle number density. Repeated passes of the air column through the cold pool build up the denitrification to 3-4 ppbv, and the cloud altitude steadily decreases due to the downward transport of nitric acid. Increasing the cloud lifetime results in considerably more effective denitrification, even with very low cloud particle number densities. As expected, the degree of denitrification by NAT clouds is much larger than that by NAD Clouds. Significant denitrification by NAD Clouds is only possible if the cloud lifetime is several days or more. The clouds also cause a local maximum HNO3 mixing ratio at cloud base where the cloud particles sublimate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MNRAS.437.1662K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MNRAS.437.1662K"><span>DESPOTIC - a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krumholz, Mark R.</p> <p>2014-01-01</p> <p>I describe DESPOTIC, a code to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. DESPOTIC represents such clouds using a one-zone model, and can calculate line luminosities, line cooling rates, and in restricted cases line profiles using an escape probability formalism. It also includes approximate treatments of the dominant heating, cooling and chemical processes for the cold interstellar medium, including cosmic ray and X-ray heating, grain photoelectric heating, heating of the dust by infrared and ultraviolet radiation, thermal cooling of the dust, collisional energy exchange between dust and gas, and a simple network for carbon chemistry. Based on these heating, cooling and chemical rates, DESPOTIC can calculate clouds' equilibrium gas and dust temperatures, equilibrium carbon chemical state and time-dependent thermal and chemical evolution. The software is intended to allow rapid and interactive calculation of clouds' characteristic temperatures, identification of their dominant heating and cooling mechanisms and prediction of their observable spectra across a wide range of interstellar environments. DESPOTIC is implemented as a PYTHON package, and is released under the GNU General Public License.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21322823-stationary-light-pulses-cold-atomic-media-without-bragg-gratings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21322823-stationary-light-pulses-cold-atomic-media-without-bragg-gratings"><span>Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, Y.-W.; Liao, W.-T.; Peters, Thorsten</p> <p></p> <p>We study the creation of stationary light pulses (SLPs), i.e., light pulses without motion, based on the effect of electromagnetically induced transparency with two counterpropagating coupling fields in cold atoms. We show that the Raman excitations created by counterpropagating probe and coupling fields prohibit the formation of SLPs in media of cold and stationary atoms such as laser-cooled atom clouds, Bose condensates or color-center crystals. A method is experimentally demonstrated to suppress these Raman excitations and SLPs are realized in laser-cooled atoms. Furthermore, we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg gratingmore » can be established. Our work advances the understanding of SLPs and opens a new avenue to SLP studies for few-photon nonlinear interactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97d3406H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97d3406H"><span>Synchronization of a self-sustained cold-atom oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.</p> <p>2018-04-01</p> <p>Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.474...97C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.474...97C"><span>A warm or a cold early Earth? New insights from a 3-D climate-carbon model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.</p> <p>2017-09-01</p> <p>Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth warmed by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to cold climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to cold climates and potentially snowball Earth events after large impacts. Our results therefore favor cold or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or warming process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRD..11620211R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRD..11620211R"><span>Why do tornados and hailstorms rest on weekends?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenfeld, Daniel; Bell, Thomas L.</p> <p>2011-10-01</p> <p>This study shows for the first time statistical evidence that when anthropogenic aerosols over the eastern United States during summertime are at their weekly mid-week peak, tornado and hailstorm activity there is also near its weekly maximum. The weekly cycle in summertime storm activity for 1995-2009 was found to be statistically significant and unlikely to be due to natural variability. It correlates well with previously observed weekly cycles of other measures of storm activity. The pattern of variability supports the hypothesis that air pollution aerosols invigorate deep convective clouds in a moist, unstable atmosphere, to the extent of inducing production of large hailstones and tornados. This is caused by the effect of aerosols on cloud drop nucleation, making cloud drops smaller and hydrometeors larger. According to simulations, the larger ice hydrometeors contribute to more hail. The reduced evaporation from the larger hydrometeors produces weaker cold pools. Simulations have shown that too cold and fast-expanding pools inhibit the formation of tornados. The statistical observations suggest that this might be the mechanism by which the weekly modulation in pollution aerosols is causing the weekly cycle in severe convective storms during summer over the eastern United States. Although we focus here on the role of aerosols, they are not a primary atmospheric driver of tornados and hailstorms but rather modulate them in certain conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......111Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......111Z"><span>A unified theory for ice vapor growth suitable for cloud models: Testing and implications for cold cloud evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Chengzhu</p> <p></p> <p>A new microphysical model for the vapor growth and aspect ratio evolution of atmospheric ice crystals is presented. The method is based on the adaptive habit model of Chen and Lamb (1994), but is modified to include surface kinetic processes for crystal growth. Inclusion of surface kinetic effects is accomplished with a new theory that accounts for axis dependent growth. Deposition coefficients (growth efficiencies) are predicted for two axis directions based on laboratory-determined parameters for growth initiation (critical supersaturations) on each face. In essence, the new theory extends the adaptive habit approach of Chen and Lamb (1994) to ice saturation states below that of liquid saturation, where Chen and Lamb (1994) is likely most valid. The new model is used to simulate changes in crystal primary habit as a function of temperature and ice supersaturation. Predictions are compared with a detailed hexagonal growth model both in a single particle framework and in a Lagrangian parcel model to indicate the accuracy of the new method. Moreover, predictions of the ratio of the axis deposition coefficients match laboratory-generated data. A parameterization for predicting deposition coefficients is developed for the bulk microphysics frame work in Regional Atmospheric Modeling System (RAMS). Initial eddy-resolving model simulation is conducted to study the effect of surface kinetics on microphysical and dynamical processes in cold cloud development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002773"><span>Analysis of the Meteorology Associated with the 1998 NASA Glenn Twin Otter Icing Flights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bernstein, Ben C.</p> <p>2000-01-01</p> <p>This document contains a basic analysis of the meteorology associated with the NASA Glenn Twin Otter icing encounters between December 1997 and March 1998. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A brief overview of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared and visible satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (7) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920004303','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920004303"><span>Application of lightning data to satellite-based rainfall estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin, David W.; Hinton, Barry B.; Auvine, Brian A.</p> <p>1991-01-01</p> <p>Information on lightning may improve rain estimates made from infrared images of a geostationary satellite. We address this proposition through a case from the Cooperative Huntsville Meteorological Experiment (COHMEX). During the afternoon and evening of 13 July 1986 waves of showers and thunderstorms developed over and near the lower Tennessee River Valley. For the shower and thunderstorm region within 200 km of the National Weather Service radar at Nashville, Tennessee, we measure cold-cloud area in a sequence of GOES infrared images covering all but the end of the shower and thunderstorm period. From observations of the NASA/Marshall direction-finding network in this small domain, we also count cloud-to-ground lightning flashes and, from scans of the Nashville radar, we calculate volume rain flux. Using a modified version of the Williams and Houze scheme, over an area within roughly 240 km of the radar (the large domain), we identify and track cold cloud systems. For these systems, over the large domain, we measure area and count flashes; over the small domain, we calculate volume rain flux. For a temperature threshold of 235K, peak cloud area over the small domain lags both peak rain flux and peak flash count by about four hours. At a threshold of 226K, the lag is about two hours. Flashes and flux are matched in phase. Over the large domain, nine storm systems occur. These range in size from 300 to 60,000 km(exp 2); in lifetime, from about 2 1/2 h to 6 h or more. Storm system area lags volume rain flux and flash count; nevertheless, it is linked with these variables. In essential respects the associations were the same when clouds were defined by a threshold of 226K. Tentatively, we conclude that flash counts complement infrared images in providing significant additional information on rain flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1232674','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1232674"><span>ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leung, L. R.; Prather, K.; Ralph, R.</p> <p></p> <p>The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associatedmore » with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060024553','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060024553"><span>Analysis of Rapidly Developing Low Cloud Ceilings in a Stable Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wheeler, Mark M.; Case, Jonathan L.</p> <p>2005-01-01</p> <p>This report describes the work done by the Applied Meteorology Unit (AMU) in developing a database of days that experienced rapid (< 90 minutes) low cloud formation in a stable atmosphere, resulting in ceilings at the Shuttle Landing Facility (TTS) that violated Space Shuttle Flight Rules (FR). The meteorological conditions favoring the rapid formation of low ceilings include the presence of any inversion below 8000 ft, high relative humidity beneath the inversion, and a clockwise turning of the winds from the surface to the middle troposphere (approx. 15000 ft). The AMU compared and contrasted the atmospheric and thermodynamic conditions between days with rapid low ceiling formation and days with low ceiling resulting from other mechanism. The AMU found that the vertical wind profile is the probable discerning factor between the rapidly-forming ceiling days and other low ceiling days at TTS. Most rapidly-developing low ceiling days had a clockwise turning of the winds with height, whereas other low ceiling days typically had a counter-clockwise turning of the winds with height or negligible vertical wind shear. Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at TTS to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge. More specifically, forecasters at SMG are concerned with any rapidly developing clouds ceilings below 8000 ft in a stable, capped thermodynamic environment, Therefore, the AMU was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1993-2003 for days that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle FR. The AMU wrote and modified existing code to identify inversions from the morning Cape Canaveral, FL rawinsonde (XMR) during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Days with precipitation or noticeable fog bum-off situations were excluded from the database. Only the daytime hours were examined for possible ceiling development events since low clouds are easier to diagnose with visible satellite imagery. Follow-on work would expand the database to include nighttime cases, using a special enhancement of the infrared imagery for identifying areas of low clouds. The report presents two sample cases of rapidly-developing low cloud ceilings. These cases depict the representative meteorological and thermodynamic characteristics of such events. The cases also illustrate how quickly the cloud decks can develop, sometimes forming in 30 minutes or less. The report also summarizes the composite meteorological conditions for 20 event days with rapid low cloud ceiling formation and 48 non-events days consisting of advection or widespread low cloud ceilings. The meteorological conditions were quite similar for both the event and non-event days, since both types of days experienced low cloud ceilings. Both types of days had a relatively moist environment beneath the inversion based below 8000 ft. In the 20 events identified, de onset of low ceilings occurred between 1200-1800 UTC in every instance. The distinguishing factor between the event and non-event days appears to be the vertical wind profile in the XMR sounding. Eighty-five percent of the event days had a clockwise turning of the winds with height in the lower to middle troposphere whereas 83% of the non-events had a counter-clockwise turning of the winds with height or negligible vertical wind shear. A clockwise turning of the winds with height indicates a warm advection regime, which supports large-scale rising motn and possible cloud formation. Meanwhile, a counter-clockwise turning of the winds with height indicates cold advection or sinking motion in a post-cold frontal environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPT11063S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPT11063S"><span>Progress on the development of FullWave, a Hot and Cold Plasma Parallel Full Wave Code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spencer, J. Andrew; Svidzinski, Vladimir; Zhao, Liangji; Kim, Jin-Soo</p> <p>2017-10-01</p> <p>FullWave is being developed at FAR-TECH, Inc. to simulate RF waves in hot inhomogeneous magnetized plasmas without making small orbit approximations. FullWave is based on a meshless formulation in configuration space on non-uniform clouds of computational points (CCP) adapted to better resolve plasma resonances, antenna structures and complex boundaries. The linear frequency domain wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. The details of FullWave and some preliminary results will be presented, including: 1) a monitor function based on analytic solutions of the cold-plasma dispersion relation; 2) an adaptive CCP based on the monitor function; 3) construction of the finite differences for approximation of derivatives on adaptive CCP; 4) results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach for ECRH, ICRH and Lower Hybrid range of frequencies. Work is supported by the U.S. DOE SBIR program.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017isms.confEMA01V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017isms.confEMA01V"><span>Molecules from Clouds to Planets: Sweet Results from Alma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Dishoeck, Ewine</p> <p>2017-06-01</p> <p>One of the most exciting developments in astronomy is the discovery of thousands of planets around stars other than our Sun. But how do these exo-planets form, and which chemical ingredients are available to build them? Thanks to powerful new telescopes, especially the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers are starting to address these age-old questions scientifically. Stars and planets are born in the cold and tenuous clouds between the stars in the Milky Way. In spite of the extremely low temperatures and densities, a surprisingly rich and interesting chemistry occurs in these interstellar clouds, as evidenced by the detection of more than 180 different molecules. Highly accurate spectroscopic data are key to their identification, and examples of the continued need and close interaction between laboratory work and astronomical observations will be given. ALMA now allows us to zoom in on solar system construction for the first time. Spectral scans of the birth sites of young stars contain tens of thousands of rotational lines. Water and a surprisingly rich variety of organic materials are found, including simple sugars and high abundances of deuterated species. How are these molecules formed? Can these pre-biotic molecules end up on new planets and form the basis for life elsewhere in the universe? Stay tuned for the latest analyses and also a comparison with recent results from the Rosetta mission to comet 67 P/C-G in our own Solar System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.462.2804N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.462.2804N"><span>C+/H2 gas in star-forming clouds and galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nordon, Raanan; Sternberg, Amiel</p> <p>2016-11-01</p> <p>We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.466..677G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.466..677G"><span>Raining on black holes and massive galaxies: the top-down multiphase condensation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaspari, M.; Temi, P.; Brighenti, F.</p> <p>2017-04-01</p> <p>The plasma haloes filling massive galaxies, groups and clusters are shaped by active galactic nucleus (AGN) heating and subsonic turbulence (σv ˜ 150 km s-1), as probed by Hitomi. Novel 3D high-resolution simulations show the soft X-ray, keV hot plasma cools rapidly via radiative emission at the high-density interface of the turbulent eddies, stimulating a top-down condensation cascade of warm 104 K filaments. The kpc-scale ionized (optical/ultraviolet) filaments form a skin enveloping the neutral filaments (optical/infrared/21 cm). The peaks of the warm filaments further condense into cold molecular clouds (<50 K; radio) with total mass of several 107 M⊙ and inheriting the turbulent kinematics. In the core, the clouds collide inelastically, mixing angular momentum and leading to Chaotic Cold Accretion (CCA). The black hole accretion rate (BHAR) can be modelled via quasi-spherical viscous accretion, dot{M}_bullet ∝ ν _c, with clump collisional viscosity νc ≡ λc σv and λc ˜ 100 pc. Beyond the core, pressure torques shape the angular momentum transport. In CCA, the BHAR is recurrently boosted up to 2 dex compared with the disc evolution, which arises as turbulence becomes subdominant. With negligible rotation too, compressional heating inhibits the molecular phase. The CCA BHAR distribution is lognormal with pink noise, f-1 power spectrum characteristic of fractal phenomena. Such chaotic fluctuations can explain the rapid luminosity variability of AGN and high-mass X-ray binaries. An improved criterium to trace non-linear condensation is proposed: σv/vcool ≲ 1. The three-phase CCA reproduces key observations of cospatial multiphase gas in massive galaxies, including Chandra X-ray images, SOAR Hα filaments and kinematics, Herschel [C+] emission and ALMA molecular associations. CCA plays important role in AGN feedback and unification, the evolution of BHs, galaxies and clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...828...22P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...828...22P"><span>Transitions in the Cloud Composition of Hot Jupiters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parmentier, Vivien; Fortney, Jonathan J.; Showman, Adam P.; Morley, Caroline; Marley, Mark S.</p> <p>2016-09-01</p> <p>Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the Kepler light curves of some hot Jupiters are asymmetric: for the hottest planets, the light curve peaks before secondary eclipse, whereas for planets cooler than ˜1900 K, it peaks after secondary eclipse. We use the thermal structure from 3D global circulation models to determine the expected cloud distribution and Kepler light curves of hot Jupiters. We demonstrate that the change from an optical light curve dominated by thermal emission to one dominated by scattering (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the Kepler light curve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. By comparing our models and the observations, we show that the cloud composition of hot Jupiters likely varies with equilibrium temperature. We suggest that a transition occurs between silicate and manganese sulfide clouds at a temperature near 1600 K, analogous to the L/T transition on brown dwarfs. The cold trapping of cloud species below the photosphere naturally produces such a transition and predicts similar transitions for other condensates, including TiO. We predict that most hot Jupiters should have cloudy nightsides, that partial cloudiness should be common at the limb, and that the dayside hot spot should often be cloud-free.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...578A..18F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...578A..18F"><span>Substellar fragmentation in self-gravitating fluids with a major phase transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Füglistaler, A.; Pfenniger, D.</p> <p>2015-06-01</p> <p>Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the possibility of the formation of substellar H2 clumps in cold molecular clouds due to the combination of phase transition and gravity. Fluids presenting a phase transition are gravitationally unstable, independent of the strength of the gravitational potential. Arbitrarily small H2 clumps may form even at relatively high temperatures up to 400-600 K, according to virial analysis. The combination of phase transition and gravity may be relevant for a wider range of astrophysical situations, such as proto-planetary disks. Figures 33-44 are available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395877','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395877"><span>Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Jinqiang; Li, Jun; Xia, Xiangao</p> <p></p> <p>In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1395877-cloud-properties-under-different-synoptic-circulations-comparison-radiosonde-ground-based-active-remote-sensing-measurements','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1395877-cloud-properties-under-different-synoptic-circulations-comparison-radiosonde-ground-based-active-remote-sensing-measurements"><span>Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Jinqiang; Li, Jun; Xia, Xiangao; ...</p> <p>2016-11-28</p> <p>In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1454704-simulating-pliocene-warmth-permanent-el-nino-like-state-role-cloud-albedo','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1454704-simulating-pliocene-warmth-permanent-el-nino-like-state-role-cloud-albedo"><span>Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Burls, N. J.; Fedorov, A. V.</p> <p>2014-09-13</p> <p>We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1222896-near-surface-density-currents-observed-southeast-pacific-stratocumulus-topped-marine-boundary-layer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1222896-near-surface-density-currents-observed-southeast-pacific-stratocumulus-topped-marine-boundary-layer"><span>Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.</p> <p>2015-09-01</p> <p>Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860028966&hterms=conflict+nature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dconflict%2Bnature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860028966&hterms=conflict+nature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dconflict%2Bnature"><span>Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaiser, N.; Davis, M.</p> <p>1985-01-01</p> <p>It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900038314&hterms=water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900038314&hterms=water+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwater%2Bcycle"><span>The role of water ice clouds in the Martian hydrologic cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>James, Philip B.</p> <p>1990-01-01</p> <p>A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26553559','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26553559"><span>Ice nucleation active particles are efficiently removed by precipitating clouds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stopelli, Emiliano; Conen, Franz; Morris, Cindy E; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine</p> <p>2015-11-10</p> <p>Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ -10 °C (INPs-10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...614A..42M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...614A..42M"><span>ALMA observations of AGN fuelling. The case of PKS B1718-649</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Emonts, B. H. C.</p> <p>2018-06-01</p> <p>We present ALMA observations of the 12CO (2-1) line of the newly born (tradio 102 years) active galactic nucleus (AGN), PKS B1718-649. These observations reveal that the carbon monoxide in the innermost 15 kpc of the galaxy is distributed in a complex warped disk. In the outer parts of this disk, the CO gas follows the rotation of the dust lane and of the stellar body of the galaxy hosting the radio source. In the innermost kiloparsec, the gas abruptly changes orientation and forms a circumnuclear disk (r ≲ 700 pc) with its major axis perpendicular to that of the outer disk. Against the compact radio emission of PKS B1718-649 (r 2 pc), we detect an absorption line at red-shifted velocities with respect to the systemic velocity (Δv = +365 ± 22 km s-1). This absorbing CO gas could trace molecular clouds falling onto the central super-massive black hole. A comparison with the near-infrared H2 1-0 S(1) observations shows that the clouds must be close to the black hole (r ≲ 75 pc). The physical conditions of these clouds are different from the gas at larger radii, and are in good agreement with the predictions for the conditions of the gas when cold chaotic accretion triggers an active galactic nucleus. These observations on the centre of PKS B1718-649 provide one of the best indications that a population of cold clouds is falling towards a radio AGN, likely fuelling its activity. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A42</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0203048.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0203048.html"><span>Space Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-08-01</p> <p>This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0203048&hterms=Omega&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DOmega%2B3','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0203048&hterms=Omega&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DOmega%2B3"><span>Hubble Space Telescope Image of Omega Nebula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJS..234...28L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJS..234...28L"><span>The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Tie; Kim, Kee-Tae; Juvela, Mika; Wang, Ke; Tatematsu, Ken’ichi; Di Francesco, James; Liu, Sheng-Yuan; Wu, Yuefang; Thompson, Mark; Fuller, Gary; Eden, David; Li, Di; Ristorcelli, I.; Kang, Sung-ju; Lin, Yuxin; Johnstone, D.; He, J. H.; Koch, P. M.; Sanhueza, Patricio; Qin, Sheng-Li; Zhang, Q.; Hirano, N.; Goldsmith, Paul F.; Evans, Neal J., II; White, Glenn J.; Choi, Minho; Lee, Chang Won; Toth, L. V.; Mairs, Steve; Yi, H.-W.; Tang, Mengyao; Soam, Archana; Peretto, N.; Samal, Manash R.; Fich, Michel; Parsons, Harriet; Yuan, Jinghua; Zhang, Chuan-Peng; Malinen, Johanna; Bendo, George J.; Rivera-Ingraham, A.; Liu, Hong-Li; Wouterloot, Jan; Li, Pak Shing; Qian, Lei; Rawlings, Jonathan; Rawlings, Mark G.; Feng, Siyi; Aikawa, Yuri; Akhter, S.; Alina, Dana; Bell, Graham; Bernard, J.-P.; Blain, Andrew; Bőgner, Rebeka; Bronfman, L.; Byun, D.-Y.; Chapman, Scott; Chen, Huei-Ru; Chen, M.; Chen, Wen-Ping; Chen, X.; Chen, Xuepeng; Chrysostomou, A.; Cosentino, Giuliana; Cunningham, M. R.; Demyk, K.; Drabek-Maunder, Emily; Doi, Yasuo; Eswaraiah, C.; Falgarone, Edith; Fehér, O.; Fraser, Helen; Friberg, Per; Garay, G.; Ge, J. X.; Gear, W. K.; Greaves, Jane; Guan, X.; Harvey-Smith, Lisa; HASEGAWA, Tetsuo; Hatchell, J.; He, Yuxin; Henkel, C.; Hirota, T.; Holland, W.; Hughes, A.; Jarken, E.; Ji, Tae-Geun; Jimenez-Serra, Izaskun; Kang, Miju; Kawabata, Koji S.; Kim, Gwanjeong; Kim, Jungha; Kim, Jongsoo; Kim, Shinyoung; Koo, B.-C.; Kwon, Woojin; Kuan, Yi-Jehng; Lacaille, K. M.; Lai, Shih-Ping; Lee, C. F.; Lee, J.-E.; Lee, Y.-U.; Li, Dalei; Li, Hua-bai; Lo, N.; Lopez, John A. P.; Lu, Xing; Lyo, A.-Ran; Mardones, D.; Marston, A.; McGehee, P.; Meng, F.; Montier, L.; Montillaud, Julien; Moore, T.; Morata, O.; Moriarty-Schieven, Gerald H.; Ohashi, S.; Pak, Soojong; Park, Geumsook; Paladini, R.; Pattle, Kate M.; Pech, Gerardo; Pelkonen, V.-M.; Qiu, K.; Ren, Zhi-Yuan; Richer, John; Saito, M.; Sakai, Takeshi; Shang, H.; Shinnaga, Hiroko; Stamatellos, Dimitris; Tang, Y.-W.; Traficante, Alessio; Vastel, Charlotte; Viti, S.; Walsh, Andrew; Wang, Bingru; Wang, Hongchi; Wang, Junzhi; Ward-Thompson, D.; Whitworth, Anthony; Xu, Ye; Yang, J.; Yang, Yao-Lun; Yuan, Lixia; Zavagno, A.; Zhang, Guoyin; Zhang, H.-W.; Zhou, Chenlin; Zhou, Jianjun; Zhu, Lei; Zuo, Pei; Zhang, Chao</p> <p>2018-02-01</p> <p>The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. “TOP-SCOPE” is a joint survey program targeting ∼2000 PGCCs in J = 1–0 transitions of CO isotopologues and ∼1000 PGCCs in 850 μm continuum emission. The objective of the “TOP-SCOPE” survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are ∼6200 M ⊙, ∼12 pc, and ∼500 M ⊙ pc‑1, respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (β) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002150.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002150.html"><span>Open-cell and closed-cell clouds off Peru [detail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>2010/107 - 04/17 at 21 :05 UTC. Open-cell and closed-cell clouds off Peru, Pacific Ocean. To view the full fame of this image to go: www.flickr.com/photos/gsfc/4557497219/ Resembling a frosted window on a cold winter's day, this lacy pattern of marine clouds was captured off the coast of Peru in the Pacific Ocean by the MODIS on the Aqua satellite on April 19, 2010. The image reveals both open- and closed-cell cumulus cloud patterns. These cells, or parcels of air, often occur in roughly hexagonal arrays in a layer of fluid (the atmosphere often behaves like a fluid) that begins to "boil," or convect, due to heating at the base or cooling at the top of the layer. In "closed" cells warm air is rising in the center, and sinking around the edges, so clouds appear in cell centers, but evaporate around cell edges. This produces cloud formations like those that dominate the lower left. The reverse flow can also occur: air can sink in the center of the cell and rise at the edge. This process is called "open cell" convection, and clouds form at cell edges around open centers, which creates a lacy, hollow-looking pattern like the clouds in the upper right. Closed and open cell convection represent two stable atmospheric configurations — two sides of the convection coin. But what determines which path the "boiling" atmosphere will take? Apparently the process is highly chaotic, and there appears to be no way to predict whether convection will result in open or closed cells. Indeed, the atmosphere may sometimes flip between one mode and another in no predictable pattern. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1025461-aerosol-concentration-size-distribution-measured-below-above-cloud-from-doe-during-vocals-rex','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1025461-aerosol-concentration-size-distribution-measured-below-above-cloud-from-doe-during-vocals-rex"><span>Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.</p> <p>2011-06-21</p> <p>During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smeltersmore » and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two approaches possibly representing shattered cloud droplets or unknown artifact. CDNC and interstitial aerosol were anti-correlated in all cloud transects, consistent with the occurrence of dry in-cloud areas due to entrainment or circulation mixing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817750K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817750K"><span>ESA's Ice Cloud Imager on Metop Second Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, Ulf; Loiselet, Marc; Mason, Graeme; Gonzalez, Raquel; Brandt, Michael</p> <p>2016-04-01</p> <p>Since 2006, the European contribution to operational meteorological observations from polar orbit has been provided by the Meteorological Operational (MetOp) satellites, which is the space segment of the EUMETSAT Polar System (EPS). The first MetOp satellite was launched in 2006, 2nd 2012 and 3rd satellite is planned for launch in 2018. As part of the next generation EUMETSAT Polar System (EPS-SG), the MetOp Second Generation (MetOp-SG) satellites will provide continuity and enhancement of these observations in the 2021 - 2042 timeframe. The noel Ice Cloud Imager (ICI) is one of the instruments selected to be on-board the MetOp-SG satellite "B". The main objective of the ICI is to enable cloud ice retrieval, with emphasis on cirrus clouds. ICI will provide information on cloud ice mean altitude, cloud ice water path and cloud ice effective radius. In addition, it will provide water vapour profile measurement capability. ICI is a 13-channel microwave/sub-millimetre wave radiometer, covering the frequency range from 183 GHz up to 664 GHz. The instrument is composed of a rotating part and a fixed part. The rotating part includes the main antenna, the feed assembly and the receiver electronics. The fixed part contains the hot calibration target, the reflector for viewing the cold sky and the electronics for the instrument control and interface with the platform. Between the fixed and the rotating part is the scan mechanism. Scan mechanism is not only responsible of rotating the instrument and providing its angular position, but it will also have pass through the power and data lines. The Scan mechanism is controlled by the fully redundant Control and Drive Electronics ICI is calibrated using an internal hot target and a cold sky mirror, which are viewed once per rotation. The internal hot target is a traditional pyramidal target. The hot target is covered by an annular shield during rotation with only a small opening for the feed horns to guarantee a stable environment. Also, in order to achieve very good radiometric accuracy and stability, the ICI instrument is designed with sun-shields in order to minimize sun-intrusion at all possible sun angles. Details of the instrument design and the current development status will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA08653&hterms=embryo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dembryo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA08653&hterms=embryo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dembryo"><span>The Sword of Orion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> [figure removed for brevity, see original site] [figure removed for brevity, see original site] AnimationFigure 1 <p/> This infrared image from NASA's Spitzer Space Telescope shows the Orion nebula, our closest massive star-making factory, 1,450 light-years from Earth. The nebula is close enough to appear to the naked eye as a fuzzy star in the sword of the popular hunter constellation. <p/> The nebula itself is located on the lower half of the image, surrounded by a ring of dust. It formed in a cold cloud of gas and dust and contains about 1,000 young stars. These stars illuminate the cloud, creating the beautiful nebulosity, or swirls of material, seen here in infrared. <p/> In the center of the nebula (bottom inset of figure 1) are four monstrously massive stars, up to 100,000 times as luminous as our sun, called the Trapezium (tiny yellow smudge to the lower left of green splotches. Radiation and winds from these stars are blasting gas and dust away, excavating a cavity walled in by the large ring of dust. <p/> Behind the Trapezium, still buried deeply in the cloud, a second generation of massive stars is forming (in the area with green splotches). The speckled green fuzz in this bright region is created when bullets of gas shoot out from the juvenile stars and ram into the surrounding cloud. <p/> Above this region of intense activity are networks of cold material that appear as dark veins against the pinkish nebulosity (upper inset pf figure 1). These dark veins contain embryonic stars. Some of the natal stars illuminate the cloud, creating small, aqua-colored wisps. In addition, jets of gas from the stars ram into the cloud, resulting in the green horseshoe-shaped globs. <p/> Spitzer surveyed a significant swath of the Orion constellation, beyond what is highlighted in this image. Within that region, called the Orion cloud complex, the telescope found 2,300 stars circled by disks of planet-forming dust and 200 stellar embryos too young to have developed disks. <p/> This image shows infrared light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>