Appraisal of water-quality conditions, lower Black River, Windsor County, Vermont
Toppin, K.W.
1983-01-01
Six hydroelectric power dams are planned along a 22-mile reach of the lower Black River in southeastern Windsor County, Vermont. Data were collected at 10 stations, during water years 1977-81, to appraise quality conditions before construction. Average specific conductance of Black River is 101 micromhos indicating low concentrations of dissolved solids. Concentrations of common constituents and minor elements were generally low and within safe levels for aquatic life. Near-saturated dissolved oxygen concentrations and relatively low mean total organic carbon concentrations indicate little oxygen-consuming substances in Black River. Mean total nitrogen concentrations ranged from 0.31 mg/L (milligrams per liter) to 0.61 mg/L. The highest concentrations were most likely due to secondary waste discharges entering the river. Nitrate was the primary form of inorganic nitrogen, mean concentrations ranged from 0.13 to 0.27 mg/L. Concentrations seem high enough to promote excessive algal growth in the proposed Hawks Mountain Reservoir. Mean concentrations of total phosphorus ranged from 0.014 to 0.112 mg/L as P. Maximum concentrations at all stations generally exceeded U.S. Environmental Protection Agency suggested levels for water entering lakes and reservoirs. Mean orthophosphorus concentrations ranged from 0.005 to 0.029 mg/L, suggesting a potential for nuisance algal conditions to develop in the proposed reservoir. Mean algal growth potential concentrations ranged from 1.3 to 8.8 mg/L, falling within the moderately high to high productivity range. No pesticides and polychlorinated biphenyls were detected. (USGS)
Impact of particle concentration and out-of-range sizes on the measurements of the LISST
NASA Astrophysics Data System (ADS)
Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth
2018-05-01
The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.
Aguirre, Ana-Maria; Bassi, Amarjeet
2014-07-01
Biofuels from algae are considered a technically viable energy source that overcomes several of the problems present in previous generations of biofuels. In this research high pressure steaming (HPS) was studied as a hydrothermal pre-treatment for extraction of lipids from Chlorella vulgaris, and analysis by response surface methodology allowed finding operational points in terms of target temperature and algae concentration for high lipid and glucose yields. Within the range covered by these experiments the best conditions for high bio-crude yield are temperatures higher than 174°C and low biomass concentrations (<5 g/L). For high glucose yield there are two suitable operational ranges, either low temperatures (<105°C) and low biomass concentrations (<4 g/L); or low temperatures (<105°C) and high biomass concentrations (<110 g/L). High pressure steaming is a good hydrothermal treatment for lipid recovery and does not significantly change the fatty acids profile for the range of temperatures studied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Serum fructosamine concentrations in dogs with hypothyroidism.
Reusch, C E; Gerber, B; Boretti, F S
2002-10-01
Serum fructosamine concentrations were measured in 11 untreated hypothyroid dogs with normal serum glucose and serum protein concentrations. The fructosamine level ranged between 276 and 441 micromol/L (median 376 micromol/L; reference range 207-340 micromol/L). Nine of the 11 dogs had fructosamine levels above the reference range. The fructosamine levels decreased significantly during treatment with levothyroxine. It is suggested that serum fructosamine concentrations may be high in hypothyroid dogs because of decelerated protein turnover, independent of the blood glucose concentration.
Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick
2006-02-01
The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to -196 degrees C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than -70 degrees C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate.
Involvement of Two Specific Causes of Cell Mortality in Freeze-Thaw Cycles with Freezing to −196°C
Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick
2006-01-01
The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to −196°C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than −70°C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate. PMID:16461684
Long-range electrostatic screening in ionic liquids
Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.
2015-01-01
Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001
Ramli, A Termizi; Hussein, A Wahab M A; Wood, A Khalik
2005-01-01
Concentrations of uranium-238 and thorium-232 in soil, water, grass, moss and oil-palm fruit samples collected from an area of high background radiation were determined using neutron activation analysis (NAA). U-238 concentration in soil ranged from 4.9 mg kg(-1) (58.8 Bq kg(-1)) to 40.4 mg kg(-1) (484.8 Bq kg(-1)), Th-232 concentration ranged from 14.9 mg kg(-1) (59.6 Bq kg(-1)) to 301.0 mg kg(-1) (1204 Bq kg(-1)). The concentration of U-238 in grass samples ranged from below the detection limit to 0.076 mg kg(-1) (912 mBq kg(-1)), and Th-232 ranged from 0.008 mg kg(-1) (32 mBq kg(-1)) to 0.343 mg kg(-1) (1.372 Bq kg(-1)). U-238 content in water samples ranged from 0.33 mg kg(-1) (4.0 Bq L(-1)) to 1.40 mg kg(-1) (16.8 Bq L(-1)), and Th-232 ranged from 0.19 mg kg(-1) (0.76 Bq L(-1)) to 0.66 mg kg(-1) (2.64 Bq L(-1)). It can be said that the concentrations of environmental U-238 and Th-232 in grass and water samples in the study area are insignificant. Mosses were found to be possible bio-radiological indicators due to their high absorption of the heavy radioelements from the environment.
Gibbons, R. J.; Moreno, E. C.; Etherden, I.
1983-01-01
The influence of bacterial cell concentration on estimates of the number of binding sites and the affinity for the adsorption of a strain of Streptococcus sanguis to saliva-treated hydroxyapatite was determined, and the possible presence of multiple binding sites for this organism was tested. The range of concentrations of available bacteria varied from 4.7 × 106 to 5,960 × 106 cells per ml. The numbers of adsorbed bacteria increased over the entire range tested, but a suggestion of a break in an otherwise smooth adsorption isotherm was evident. Values for the number of binding sites and the affinity varied considerably depending upon the range of available bacterial concentrations used to estimate them; high correlation coefficients were obtained in all cases. The use of low bacterial cell concentrations yielded lower values for the number of sites and much higher values for the affinity constant than did the use of high bacterial cell concentrations. When data covering the entire range of bacterial concentrations were employed, values for the number of sites and the affinity were similar to those obtained by using only high bacterial cell concentrations. The simplest explanation for these results is that there are multiple binding sites for S. sanguis on saliva-treated hydroxyapatite surfaces. When present in low concentration, the streptococci evidently attach to more specific high-affinity sites which become saturated when higher bacterial concentrations are employed. The possibility of multiple binding sites was substantiated by comparing estimates of the adsorption parameters from a computer-simulated isotherm with those derived from the experimentally generated isotherm. A mathematical model describing bacterial adsorption to binary binding sites was further evidence for the existence of at least two classes of binding sites for S. sanguis. Far fewer streptococci adsorbed to experimental pellicles prepared from saliva depleted of bacterial aggregating activity when low numbers of streptococci were used, but the magnitude of this difference was considerably less when high streptococcal concentrations were employed. This suggests an association between salivary components which possess bacterial-aggregating activity and bacterial adsorption to high-affinity specific binding sites on saliva-treated hydroxyapatite surfaces. PMID:6822416
Ma, Hongcai; Wu, Lin
2015-07-10
We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.
The status of photovoltaic concentrator development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maish, A. B.
1992-10-01
Several companies in the United States are actively pursuing the commercialization of photovoltaic concentrator technology. Under the auspices of the US Department of Energy`s Concentrator Initiative, the Electric Power Research Institute`s High Concentration Photovoltaic Program and several privately funded programs, these companies are developing a range of designs from low-concentration linear-focus to high-concentration point-focus cells and collectors. Design details and status of each development program is presented.
Miller, K.F.; Walters, D.A.
2001-01-01
Dioxin is a toxic chemical that, when present in the environment, can cause cancer and birth defects in humans. Dioxin is of particular concern because concentrations of dioxin that were released into the environment many years ago remain a contributing factor to current exposure. Dioxin exposure often occurs in surface-water systems downstream from contaminated sites and is detrimental to aquatic life. For these reasons and because the U.S. Geological Survey has expertise in conducting high-volume dioxin sampling, the U.S. Environmental Protection Agency and the State of North Carolina asked the U.S. Geological Survey to collect water samples in the lower Roanoke River to be analyzed for the presence of dioxin. Water quality of the lower Roanoke River Basin in North Carolina was assessed at eight sites during February 26-March 7, 2001. Water- quality samples were collected for analysis of suspended-sediment and dioxin concentrations; high-volume (750-liter) water samples were collected for dioxin analysis. Discharge measurements were made at or near the high-volume sampling sites. Suspended-sediment sampling and water-quality measurements of specific conductance, pH, water temperature, and dissolved-oxygen concentrations made at each sampling site included multidepth measurements at two cross-section transects and hourly measurements at the point of high-volume sampling. Multidepth measurements were made near the surface, mid-depth, and near the bottom of the water column. These values were averaged for each cross section. During the sampling period, all sites sampled had dioxin concentrations above detection limits (1 part per quintillion) for both suspended and dissolved dioxin. Suspended dioxin ranged from 5.1 to 900 femtograms per liter, and dissolved dioxin values ranged from 0.31 to 41 femtograms per liter. Suspended-sediment concentrations ranged from 1.1 to 14 milligrams per liter. Specific conductance values ranges from 111 to 340 microsiemens per centimeter at 25 degrees Celsius. The range of pH values at the sampling sites was from 6.6 to 7.7. Water temperatures ranged from 8.9 to 13 degrees Celsius. Dissolved-oxygen concentrations ranged from 7.3 to 10.9 milligrams per liter.
Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
Binabaji, Elaheh; Ma, Junfen; Zydney, Andrew L
2015-09-01
The large increase in viscosity of highly concentrated monoclonal antibody solutions can be challenging for downstream processing, drug formulation, and delivery steps. The objective of this work was to examine the viscosity of highly concentrated solutions of a high purity IgG1 monoclonal antibody over a wide range of protein concentrations, solution pH, ionic strength, and in the presence / absence of different excipients. Experiments were performed with an IgG1 monoclonal antibody provided by Amgen. The steady-state viscosity was evaluated using a Rheometrics strain-controlled rotational rheometer with a concentric cylinder geometry. The viscosity data were well-described by the Mooney equation. The data were analyzed in terms of the antibody virial coefficients obtained from osmotic pressure data evaluated under the same conditions. The viscosity coefficient in the absence of excipients was well correlated with the third osmotic virial coefficient, which has a negative value (corresponding to short range attractive interactions) at the pH and ionic strength examined in this work. These results provide important insights into the effects of intermolecular protein-protein interactions on the behavior of highly concentrated antibody solutions.
Anjema, Karen; van Rijn, Margreet; Verkerk, Paul H; Burgerhof, Johannes G M; Heiner-Fokkema, M Rebecca; van Spronsen, Francjan J
2011-11-01
In phenylketonuria, knowledge about the relation between behavior and plasma phenylalanine is scarce. The aim of this study was to determine whether high phenylalanine is associated with disturbed behavior noticed by the patient and or close environment (parents or partners). 48 early treated PKU patients (median age 8.5, range 0-35 years) participated (median phenylalanine concentration in total sample 277 (range 89-1171) μmol/l; and in patients <12 years 238 (range 89-521) μmol/l). After sending blood samples, patients or close environment were interviewed with a standardized questionnaire whether they noticed hyperactivity, annoying behavior, mood swings and introvert or extravert behavior. The interviewer as well as the respondents were blinded with regard to the phenylalanine concentration. Patients reported less deviant behavior compared to close environment. Mood swings were positively associated with phenylalanine concentrations in the total group (P=0.039) and patients <12 years (P=0.042). The relationships between temporary high phenylalanine concentrations and hyperactivity, annoying behavior, introvert and extravert behavior were not statistically significant. there is a positive association between phenylalanine concentrations and mood swings. Copyright © 2011 Elsevier Inc. All rights reserved.
Greenacre, C B; Young, D W; Behrend, E N; Wilson, G H
2001-11-01
To validate a novel high-sensitivity radioimmunoassay (RIA) procedure developed to accurately measure the relatively low serum total thyroxine (T4) concentrations of birds and reptiles and to establish initial reference ranges forT4 concentration in selected species of psittacine birds and snakes. 56 healthy nonmolting adult psittacine birds representing 6 species and 42 captive snakes representing 4 species. A solid-phase RIA designed to measure free T4 concentrations in dialysates of human serum samples was used without dialysis to evaluate total T4 concentration in treated samples obtained from birds and reptiles. Serum T4 binding components were removed to allow assay of undialyzed samples. Assay validation was assessed by determining recovery of expected amounts of T4 in treated samples that were serially diluted or to which T4 was added. Intra- and interassay coefficient of variation (CV) was determined. Mean recovery of T4 added at 4 concentrations ranged from 84.9 to 115.0% and 95.8 to 119.4% in snakes and birds, respectively. Intra- and interassay CV was 3.8 and 11.3%, respectively. Serum total T4 concentrations for 5 species of birds ranged from 2.02 to 768 nmol/L but ranged from 3.17 to 142 nmol/L for blue-fronted Amazon parrots; concentrations ranged from 0.21 to 6.06 nmol/L for the 4 species of snakes. This new RIA method provides a commercially available, accurate, and sensitive method for measurement of the relatively low serum T4 concentrations of birds and snakes. Initial ranges for the species evaluated were established.
Schmidt, Debra A; Ellersieck, Mark R; Cranfield, Michael R; Karesh, William B
2006-09-01
Cholesterol concentrations in captive gorillas and orangutans vary widely within species and average approximately 244 mg/dl for gorillas and 169 mg/dl for orangutans as published previously. The International Species Inventory System reports higher concentrations of 275 and 199 mg/dl for gorillas and orangutans, respectively. It is unknown whether these values were typical, influenced by captive management, or both. To answer this question, banked serum samples from free-ranging mountain gorillas (Gorilla beringei), western lowland gorillas (Gorilla gorilla gorilla), and Bornean orangutans (Pongo pygmaeus) were analyzed for total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol concentrations. Mountain gorillas did not differ significantly from free-ranging western lowland gorillas in cholesterol, triglyceride, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol concentrations, indicating mountain gorilla values could be a model for western lowland gorillas. Captive gorilla total cholesterol and low-density lipoprotein cholesterol concentrations were significantly higher (P < 0.05) than in free-ranging groups. Triglyceride concentrations for captive gorillas were significantly higher (P < 0.05) than the male mountain and western lowland gorillas, but they were not significantly different from the female mountain gorillas. Captive orangutan total cholesterol concentrations were only higher (P < 0.05) than the free-ranging female orangutans, whereas captive orangutan low-density lipoprotein cholesterol concentrations were significantly higher (P < 0.05) than both free-ranging male and female orangutans. Calculated and measured low-density lipoprotein cholesterol concentrations were compared for all free-ranging animals and were significantly different (P < 0.05) for all groups, indicating Friedewald's equation for calculating low-density lipoprotein cholesterol is not appropriate for use with nonfasted apes. The higher total cholesterol and low-density lipoprotein cholesterol concentrations in captive apes may predispose them to cardiovascular disease and might be attributed to diets, limited energy expenditure, and genetics.
Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.
Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David
2017-05-02
The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.
Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean
NASA Astrophysics Data System (ADS)
Wang, Deli; Henrichs, Susan M.; Guo, Laodong
2006-09-01
Seawater samples were collected from stations along a transect across the shelf-basin interface in the western Arctic Ocean during September 2002, and analyzed for nutrients, dissolved organic carbon (DOC), and total dissolved carbohydrate (TDCHO) constituents, including monosaccharides (MCHO) and polysaccharides (PCHO). Nutrients (nitrate, ammonium, phosphate and dissolved silica) were depleted at the surface, especially nitrate. Their concentrations increased with increasing depth, with maxima centered at ˜125 m depth within the halocline layer, then decreased with increasing depth below the maxima. Both ammonium and phosphate concentrations were elevated in shelf bottom waters, indicating a possible nutrient source from sediments, and in a plume that extended into the upper halocline waters offshore. Concentrations of DOC ranged from 45 to 85 μM and had an inverse correlation with salinity, indicating that mixing is a control on DOC concentrations. Concentrations of TDCHO ranged from 2.5 to 19 μM-C, comprising 13-20% of the bulk DOC. Higher DOC concentrations were found in the upper water column over the shelf along with higher TDCHO concentrations. Within the TDCHO pool, the concentrations of MCHO ranged from 0.4 to 8.6 μM-C, comprising 20-50% of TDCHO, while PCHO concentrations ranged from 0.5 to 13.6 μM-C, comprising 50-80% of the TDCHO. The MCHO/TDCHO ratio was low in the upper 25 m of the water column, followed by a high MCHO/TDCHO ratio between 25 and 100 m, and a low MCHO/TDCHO ratio again below 100 m. The high MCHO/TDCHO ratio within the halocline layer likely resulted from particle decomposition and associated release of MCHO, whereas the low MCHO/TDCHO (or high PCHO/TDCHO) ratio below the halocline layer could have resulted from slow decomposition and additional particulate CHO sources.
Tritium Separation from High Volume Dilute Aqueous Streams- Milestone Report for M3FT-15OR0302092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.
2016-02-29
This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration covering the range of concentration anticipated in nuclear fuel processing where potentially both acid and water streams are recycled. The permeate was recovered under vacuum. The tritium concentration ranged from 0.5 to 1more » mCi/mL which is about 0.1 mg/L or 0.1 ppm. The HTO concentration was three orders of magnitude lower than experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes. Separation factor calculated from the measured tritium concentrations ranged from 0.83-0.98. Although the membrane performance characterization results were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water. We have identified several new approaches, such as tuning the diffusion coefficient of HTO, that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.« less
Gerner, Steven J.; Spangler, Lawrence E.
2006-01-01
Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.
[Pollutants produced in municipal refuse container during transfer process].
Wang, Xiao-Yuan; Liu, Yin-Hua; Wang, Fei; Huang, Chang-Ying; Lu, Feng; Xie, Bing
2014-05-01
The generation and variation of the secondary pollutants in containers during seasons of a year were investigated in a municipal refuse transfer station of Shanghai. The results showed that the primary odors, the concentration of H2S was in a range of 0.3-10.3 mg.m-3, CH4 was in a range of 0.02% -2.97% and NH3 was in a range of 0.7-4.5 mg m-3, and their concentrations all reached the peak in the summer. The pH of the leachate was in a range of 5.4-6. 3, COD was 41 633-84 060 mgL- 1, and BOD, was 18 116-34 130 mg.L , the concentration of pollutants were all higher in winter than that in summer. The ammonia concentration of leachate was in a range of 537-1222 mg.L'', while the TP fluctuated acutely in a range of 17.98-296 mg L-1, exhibiting the relationship with seasonal variation. Extreme temperatures especially the high temperature in summer significantly affected air pollution producing, which indicated that containers should be kept against high temperature exposure and long residence time in order to prevent flammable gases and other pollutants generated largely.
Serum concentrations of micronutrient antioxidants in an adult Arab population.
Abiaka, Clifford; Olusi, Samuel; Simbeye, Amos
2002-01-01
Serum concentrations of retinol, alpha-tocopherol, beta-carotene and lycopene were measured by reversed-phase high-performance liquid chromatography (r-P HPLC) in 260 randomly selected healthy adult Kuwaitis (159 men and 101 women) aged 18-63 years (mean 33.3 years) to established reference ranges of the micronutrient antioxidants. Total cholesterol concentrations were assayed by an enzymatic method to determine alpha-tocopherol: cholesterol ratios. The mean +/- SEM (micromol/L) for retinol, alpha-tocopherol, beta-carotene and lycopene were 1.76+/-0.02, 20.0+/-0.5, 0.52+/-0.03, 0.95+/-0.05, respectively. Compared to other populations, these data showed, on the whole, ordinary concentrations of beta-carotene, comparatively low concentrations of retinol and alpha-tocopherol and high concentrations of lycopene. Retinol concentrations were similar for both sexes, whereas alpha-tocopherol concentration was significantly (P < 0.0001) lower and the carotenoid levels (beta-carotene and lycopene) significantly higher (P < 0.0001) in women. Of the micronutrient antioxidants, alpha-tocopherol was most correlated with cholesterol (r = 0.492, P < 0.0001). beta-Carotene and lycopene were highly correlated with each other (r =0.744, P< 0.0001). Age was positively associated with beta-carotene (r = 0.214, P = 0.001) and lycopene (r = 239, P< 0.0001). Our data enabled us to establish a gender non-specific reference range for retinol and gender-specific reference ranges for alpha-tocopherol, beta-carotene and lycopene.
Diffusiophoresis of charged colloidal particles in the limit of very high salinity.
Prieve, Dennis C; Malone, Stephanie M; Khair, Aditya S; Stout, Robert F; Kanj, Mazen Y
2018-06-13
Diffusiophoresis is the migration of a colloidal particle through a viscous fluid, caused by a gradient in concentration of some molecular solute; a long-range physical interaction between the particle and solute molecules is required. In the case of a charged particle and an ionic solute (e.g., table salt, NaCl), previous studies have predicted and experimentally verified the speed for very low salt concentrations at which the salt solution behaves ideally. The current study presents a study of diffusiophoresis at much higher salt concentrations (approaching the solubility limit). At such large salt concentrations, electrostatic interactions are almost completely screened, thus eliminating the long-range interaction required for diffusiophoresis; moreover, the high volume fraction occupied by ions makes the solution highly nonideal. Diffusiophoretic speeds were found to be measurable, albeit much smaller than for the same gradient at low salt concentrations.
Dahlberg, Daniel; Ivanovic, Jugoslav; Hassel, Bjørnar
2014-04-01
Brain abscesses often cause symptoms of brain dysfunction, including seizures, suggesting interference with normal neurotransmission. We determined the concentration of extracellular neuroactive amino acids in brain abscesses from 16 human patients. Glutamate was present at 3.6 mmol/L (median value, range 0.5-10.8), aspartate at 1.0 mmol/L (range 0.09-6.8). For comparison, in cerebroventricular fluid glutamate was ∼0.6 μmol/L, and aspartate was not different from zero. The total concentration of amino acids was higher in eight patients with seizures: 66 mmol/L (median value, range 19-109) vs. 21 mmol/L (range 4-52) in eight patients without seizures (p=0.026). The concentration of aspartate and essential amino acids tryptophan, phenylalanine, tyrosine, leucine, and isoleucine was higher in pus from patients with seizures (p⩽0.040), whereas that of glutamate was not (p=0.095). The median concentration of the non-proteinogenic, inhibitory amino acid taurine was similar in the two groups, 0.7-0.8 mmol/L (range 0.1-6.1). GABA could not be detected in pus. The patient groups did not differ with respect to abscess volume, the cerebral lobe affected, age, or time from symptom onset to surgery. Seven patients with extracerebral, intracranial abscesses had significantly lower pus concentration of glutamate (352 μmol/L, range 83-1368) and aspartate (71 μmol/L, range 22-330) than intracerebral abscesses (p<0.001). We conclude that excitatory amino acids glutamate and aspartate may reach very high concentrations in brain abscesses, probably contributing to symptoms through activation of glutamate receptors in the surrounding brain tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of high aluminum consumption on mechanics and composition of furculae of free-ranging coots
Hui, C.A.; Ellers, O.
1999-01-01
High levels of ingested Al can affect mechanical properties of bones. Because of the spring action of the furcula during the wingbeat, small changes in the mechanical properties of this bone may have measurable impacts on long-distance flight. We examined the furculae and ingesta of free- ranging American coots (Fulica americana) in San Francisco Bay (California, USA), where they consume a diet high in Al. We measured the spring stiffness and phase angle (??) of the furculae and the concentrations of Al, Ca, F. Mg, and P in both the furculae and ingesta. The ingesta had mean Al concentrations (2,384 ??g/g, dry weight) and Al:P molar ratios (6.4:1) predicted to affect bone integrity but the bone concentrations of Al were near the normal range and the furcula stiffness did not change with Al concentration. The tan ?? of the furculae changed with Al concentration but the relationship was weak. The chemical speciation of the ingested Al may have affected its physiologic role and the high mean levels of ingested calcium (71,283 ??g/g, dry weight) very likely neutralized the activity of the Al. Controlled feeding studies have shown that F strengthens avian bones. The bones in our study had molar concentrations of F more than two orders of magnitude greater than Al (170:1) but F appears to have insignificant influence on bone mechanics. The coots in San Francisco Bay apparently are not suffering furcula impairment despite a diet high in Al.
Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D
2004-01-01
High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.
Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Schneider, J.F.
1993-05-01
Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less
Mercury data from small lakes in Voyageurs National Park, northern Minnesota, 2000-02
Goldstein, Robert M.; Brigham, Mark E.; Steuwe, Luke; Menheer, Michael A.
2003-01-01
Mercury contamination of aquatic ecosystems is a resource concern in Voyageurs National Park. High concentrations of mercury in fish pose a potential risk to organisms that consume large amounts of those fish. During 2000–02, the U.S. Geological Survey measured mercury in water collected from 20 lakes in Voyageurs National Park. Those lakes span a gradient in fish-mercury concentrations, and also span gradients in other environmental variables that are thought to influence mercury cycling. During 2001, near surface methylmercury concentrations ranged from below the method detection limit of 0.04 nanograms per liter (ng/L) to 0.41 ng/L. Near surface total mercury concentrations ranged from 0.34 ng/L to 3.74 ng/L. Hypolimnetic methylmercury ranged from below detection to 2.69 ng/L, and hypolimnetic total mercury concentrations ranged from 0.34 ng/L to 7.16 ng/L. During 2002, near surface methylmercury concentrations ranged from below the method detection limit to 0.46 ng/L, and near surface total mercury ranged from 0.34 ng/L to 4.81 ng/L.
Hagiwara, Masaya; Peng, Fei; Ho, Chih-Ming
2015-01-27
We have succeeded in developing hollow branching structure in vitro commonly observed in lung airway using primary lung airway epithelial cells. Cell concentration gradient is the key factor that determines production of the branching cellular structures, as optimization of this component removes the need for heterotypic culture. The higher cell concentration leads to the more production of morphogens and increases the growth rate of cells. However, homogeneous high cell concentration does not make a branching structure. Branching requires sufficient space in which cells can grow from a high concentration toward a low concentration. Simulation performed using a reaction-diffusion model revealed that long-range inhibition prevents cells from branching when they are homogeneously spread in culture environments, while short-range activation from neighboring cells leads to positive feedback. Thus, a high cell concentration gradient is required to make branching structures. Spatial distributions of morphogens, such as BMP-4, play important roles in the pattern formation. This simple yet robust system provides an optimal platform for the further study and understanding of branching mechanisms in the lung airway, and will facilitate chemical and genetic studies of lung morphogenesis programs.
Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H
2003-01-01
Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hair and toenail arsenic concentrations in populations exposed to a range of environmental arsenic concentrations in both drinking water and soil as well as in a control population with low arsenic concentrations in both drinking water and soil. In this study, we recruited 153 participants from areas with elevated arsenic concentrations in drinking water and residential soil, as well as a control population with no anticipated arsenic exposures. The median drinking water arsenic concentrations in the exposed population were 43.8 micro g/L (range, 16.0-73 micro g/L) and median soil arsenic concentrations were 92.0 mg/kg (range, 9.1-9,900 mg/kg). In the control group, the median drinking water arsenic concentration was below the limit of detection, and the median soil arsenic concentration was 3.3 mg/kg. Participants were categorized based on household drinking water and residential soil arsenic concentrations. The geometric mean hair arsenic concentrations were 5.52 mg/kg for the drinking water exposure group and 3.31 mg/kg for the soil exposure group. The geometric mean toenail arsenic concentrations were 21.7 mg/kg for the drinking water exposure group and 32.1 mg/kg for the high-soil exposure group. Toenail arsenic concentrations were more strongly correlated with both drinking water and soil arsenic concentrations; however, there is a strong likelihood of significant external contamination. Measures of residential exposure were better predictors of hair and toenail arsenic concentrations than were local environmental concentrations. PMID:12573904
Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability
NASA Astrophysics Data System (ADS)
French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.
2010-10-01
Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.
Rill, Randolph L; Beheshti, Afshin; Van Winkle, David H
2002-08-01
Electrophoretic mobilities of DNA molecules ranging in length from 200 to 48 502 base pairs (bp) were measured in agarose gels with concentrations T = 0.5% to 1.3% at electric fields from E = 0.71 to 5.0 V/cm. This broad data set determines a range of conditions over which the new interpolation equation nu(L) = (beta+alpha(1+exp(-L/gamma))(-1) can be used to relate mobility to length with high accuracy. Mobility data were fit with chi(2) > 0.999 for all gel concentrations and fields ranging from 2.5 to 5 V/cm, and for lower fields at low gel concentrations. Analyses using so-called reptation plots (Rousseau, J., Drouin, G., Slater, G. W., Phys. Rev. Lett. 1997, 79, 1945-1948) indicate that this simple exponential relation is obeyed well when there is a smooth transition from the Ogston sieving regime to the reptation regime with increasing DNA length. Deviations from this equation occur when DNA migration is hindered, apparently by entropic-trapping, which is favored at low fields and high gel concentrations in the ranges examined.
Groundwater quality in the Basin and Range Basin-Fill Aquifers, southwestern United States
Musgrove, MaryLynn; Belitz, Kenneth
2017-01-19
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Basin and Range basin-fill aquifers constitute one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 20 percent of the study area and at moderate concentrations in about 49 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.
Occurrence of nitrous oxide in the central High Plains aquifer, 1999
McMahon, P.B.; Bruch, B.W.; Becker, M.F.; Pope, L.M.; Dennehy, K.F.
2000-01-01
Nitrogen-enriched groundwater has been proposed as an important anthropogenic source of atmospheric nitrous oxide (N2O), yet few measurements of N2O in large aquifer systems have been made. Concentrations of N2O in water samples collected from the 124 000 km2 central High Plains aquifer in 1999 ranged from < 1 to 940 nM, with a median concentration of 29 nM (n = 123). Eighty percent of the N20 concentrations exceeded the aqueous concentration expected from equilibration with atmospheric N2O. Measurements of N2O, NO3-, and 3H in unsaturated-zone sediments, recently recharged groundwater, and older groundwater indicate that concentrations of N2O in groundwater increased over time and will likely continue to increase in the future as N-enriched water recharges the aquifer. Large concentrations of O2 and NO3- and small concentrations of NH4+ and dissolved organic carbon in the aquifer indicate that N2O in the central High Plains aquifer was produced primarily by nitrification. Calculations indicate that the flux of N2O from the central High Plains aquifer to the atmosphere from well pumping and groundwater discharge to streams was not a significant source of atmospheric N2O.Nitrogen-enriched groundwater has been proposed as an important anthropogenic source of atmospheric nitrous oxide (N2O), yet few measurements of N2O in large aquifer systems have been made. Concentrations of N2O in water samples collected from the 124000 km2 central High Plains aquifer in 1999 ranged from < 1 to 940 nM, with a median concentration of 29 nM (n = 123). Eighty percent of the N2O concentrations exceeded the aqueous concentration expected from equilibration with atmospheric N2O. Measurements of N2O, NO3-, and 3H in unsaturated-zone sediments, recently recharged groundwater, and older groundwater indicate that concentrations of N2O in groundwater increased over time and will likely continue to increase in the future as N-enriched water recharges the aquifer. Large concentrations of O2 and NO3- and small concentrations of NH4+ and dissolved organic carbon in the aquifer indicate that N2O in the central High Plains aquifer was produced primarily by nitrification. Calculations indicate that the flux of N2O from the central High Plains aquifer to the atmosphere from well pumping and groundwater discharge to streams was not a significant source of atmospheric N2O.Water samples were collected from 92 domestic wells, 16 monitoring wells and 15 public-supply wells in the High Plains Aquifer in 1999, and concentrations of nitrous oxide were measured. The groundwater concentrations ranged from less than 1 to 940 nM. Concentrations expressed as a percent of saturation in water ranged from less than 10 to 9690%. A significant decrease was noted in N2O concentrations with increasing depth of the well screen below the water table, and a significant positive correlation was found between the concentrations of N2O and nitrate. The small area-averaged N2O emission rate for the aquifer indicated that it was not an important component of the atmospheric N2O budget, but the importance could increase as groundwater N2O concentrations increase.
Medalie, Laura
2007-01-01
The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.
Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.
Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia
2013-04-01
Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.
NASA Astrophysics Data System (ADS)
Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.
2016-12-01
We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH <10 mg/L) and locations with no contaminations. Our results for the terminal electron acceptors (TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate and contaminated with hydrocarbon, dominance of sulfate reduction as the TEA is responsible for iron cycling and therefore the high MS associated with biodegradation. [AE1]What about sulfate concentrations? And the range in salinity? You need to add these values to the bastrcat
Kumar, Vineet; Dixit, Nitin; Zhou, Liqiang Lisa; Fraunhofer, Wolfgang
2011-12-12
The purpose of this work was to determine the nature of long and short-range forces governing protein aggregation kinetics at low and high concentrations for a monoclonal antibody (IgG1) and a dual-variable-domain immunoglobulin (DVD-Ig). Protein-protein interactions (PPI) were studied under dilute conditions by utilizing the methods of static (B(22)) and dynamic light scattering (k(D)). PPI in solutions containing minimal ionic strengths were characterized to get detailed insights into the impact of ionic strength on aggregation. Microcalorimetry and susceptibility to denature at air-liquid interface were used to assess the tertiary structure and quiescent stability studies were conducted to study aggregation characteristics. Results for IgG1 showed that electrostatic interactions governed protein aggregation kinetics both under dilute and concentrated conditions (i.e., 5 mg/mL and 150 mg/mL). For DVD-Ig molecules, on the other hand, although electrostatic interactions governed protein aggregation under dilute conditions, hydrophobic forces clearly determined the kinetics at high concentrations. This manuscript shows for the first time that short-range hydrophobic interactions can outweigh electrostatic forces and play an important role in determining protein aggregation at high concentrations. Additionally, results show that although higher-order virial coefficients become significant under low ionic strength conditions, removal of added charges may be used to enhance the aggregation stability of dilute protein formulations. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.
2015-05-01
The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.
Mercury Methylation at Mercury Mines In The Humboldt River Basin, Nevada, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, John E.; Crock, James G.; Lasorsa, Brenda K.
2002-12-01
Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River basin. Mine-waste calcines contain total Hg concentrations as high as 14 000?g/g. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170?g/g, whereas stream sediments collected>5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations<0.5?g/g. Similarly, methylmercury concentrations in mine-waste calcines are locally asmore » high as 96 ng/g, but methylmercury contents in stream-sediments collected downstream from the mines and from the Humboldt River are lower, ranging from<0.05 to 0.95 ng/g. Stream-water samples collected below two mines studied contain total Hg concentrations ranging from 6 to 2000 ng/L, whereas total Hg in Humboldt River water was generally lower ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in the Humboldt River water were the lowest in this study (<0.02-0.27 ng/L). Although total Hg and methylmercury concentrations are locally high in mine-waste calcines, there is significant dilution of Hg and lower Hg methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is> 8 km from any mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.« less
Evaluation of the Dacos 3.0 analyser.
Pons, J F; Alumá, A; Antoja, F; Biosca, C; Alsina, M J; Galimany, R
1990-01-01
The selective multitest Coulter Dacos 3.0 analyser was evaluated according to the guidelines of the Comisión de Instrumentación de la Sociedad Española de Química Clínica and of the European Committee for Clinical Laboratory Standards.THE EVALUATION WAS PERFORMED IN FOUR STEPS: examination of the analytical units; evaluation of routine working; study of interferences; and assessment of practicability.The evaluation included a photometric study. The inaccuracy is acceptable for 340 nm and 420 nm, and the imprecision at absorbances from 0.05 to 2.00 ranged from 0.06 to 0.28% at 340 nm and from 0.06 to 0.08% at 420 nm. The linearity showed some dispersion at low absorbance for PNP at 420 nm and the drift was negligible.The imprecision of the pipette delivery system, the temperature control system and the washing system were satisfactory.IN ROUTINE WORK CONDITIONS, SEVEN ANALYTICAL METHODS WERE STUDIED: glucose, creatinine, iron, total protein, AST, ALP and calcium. Within-run imprecision ranged, at low concentrations, from 0.9% (CV) for glucose, to 7.6% (CV) for iron; at medium concentrations, from 0.7% (CV) for total protein to 5.2% (CV) to creatinine; and at high concentrations, it ranged from 0.6% (CV) for glucose to 3.9% (CV) for ALP.Between-run imprecision at low concentrations ranged from 1.4% (CV) for glucose to 15.1% (CV) for iron; at medium concentrations it ranged from 1.2% (CV) for protein to 6.7% (CV) for iron; and at high concentrations the range is from l.2for AST to 5.7% (CV) for iron.No contamination was found in the sample carry-over study. Some contamination was found in the reagent carry-over study (total protein due to iron and calcium reagents). Relative inaccuracy is good for all the constituents assayed. Only LDH (high and low levels) and urate (low level) showed weak and negative interference caused by turbidity, and gamma-GT (high level) and amylase, bilirubin and ALP (two levels) showed a negative interference caused by haemolysis.
On a PLIF quantification methodology in a nonlinear dye response regime
NASA Astrophysics Data System (ADS)
Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.
2016-06-01
A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Alpers, Charles N.
2010-01-01
This study examined mercury concentrations in whole fish from Camp Far West Reservoir, an 830-ha reservoir in northern California, USA, located downstream from lands mined for gold during and following the Gold Rush of 1848–1864. Total mercury (reported as dry weight concentrations) was highest in spotted bass (mean, 0.93 μg/g; range, 0.16–4.41 μg/g) and lower in bluegill (mean, 0.45 μg/g; range, 0.22–1.96 μg/g) and threadfin shad (0.44 μg/g; range, 0.21–1.34 μg/g). Spatial patterns for mercury in fish indicated high concentrations upstream in the Bear River arm and generally lower concentrations elsewhere, including downstream near the dam. These findings coincided with patterns exhibited by methylmercury in water and sediment, and suggested that mercury-laden inflows from the Bear River were largely responsible for contaminating the reservoir ecosystem. Maximum concentrations of mercury in all three fish species, but especially bass, were high enough to warrant concern about toxic effects in fish and consumers of fish.
NASA Astrophysics Data System (ADS)
Yu, C.; Wen, L.; Yu, Z.
2017-12-01
Seasonal variation in the arsenic (As) concentration of natural water has been studied the first time in the source area of the Yellow River (SAYR) in Tibet, China. Samples were collected in the lake, river and spring across the whole area in April (spring) and July (summer), 2014. In April the average values of arsenic concentration in SAYR from high to low were: lake (38.1μg/L, n=47, range 8.6-131.0μg/L) > river (24.3μg/L, n=83, range 4.3-77.1μg/L) > spring (19.1μg/L, n=12, range 12.0-29.4μg/L). In July the same order of the average values of arsenic concentration in SAYR was found: lake (14.1μg/L, n=57, range 5.8-68.5μg/L) > river (7.3μg/L, n=106, range 3.6-22.9μg/L)> spring (6.7μg/L, n=9, range 4.8-8.2μg/L).The average arsenic concentrations in April were almost three times higher than those in July. In both season, the higher concentrations of arsenic were distributed in the upper reaches above the two biggest lakes of Gyaring and Ngoring Lakes in SAYR. The two big lakes buffered the naturally generated arsenic concentration in surface water, suggesting the important ecological role of the lakes. Generally, the lower concentrations in July probably were due to 1. the dilution effect of the precipitation; 2 the change of water sources. In April when the permafrost and mountain snow started to thaw and melt, ground water with high arsenic concentration was the main water source with high concentration of arsenic; but in July, with the increase of the temperature, mountain snow, permafrost would contribute more than in April, in addition, the main arsenic contributor groundwater was diluted by the precipitation recharge. Since in spring, lake and river water arsenic concentration decreased with almost the same magnitude., assuming the dilution effect dominant. The exported arsenic from SAYR in April (903.4Kg) were twice more than it in July (449.1Kg), because the flowrates were similar in the two months, the water source of the runoff components was grandly different in April and July. The seasonal variation of arsenic is obvious and further investigation is needed.
McDonough, Carrie A; De Silva, Amila O; Sun, Caoxin; Cabrerizo, Ana; Adelman, David; Soltwedel, Thomas; Bauerfeind, Eduard; Muir, Derek C G; Lohmann, Rainer
2018-06-05
Organophosphate esters (OPEs) have been found in remote environments at unexpectedly high concentrations, but very few measurements of OPE concentrations in seawater are available, and none are available in subsurface seawater. In this study, passive polyethylene samplers (PEs) deployed on deep-water moorings in the Fram Strait and in surface waters of Canadian Arctic lakes and coastal sites were analyzed for a suite of common OPEs. Total OPEs ( ∑ 11 OPE) at deep-water sites were dominated by chlorinated OPEs, and ranged from 6.3 to 440 pg/L. Concentrations were similar in eastern and western Fram Strait. Chlorinated OPEs were also dominant in Canadian Arctic surface waters (mean concentration ranged from < DL to 4400 pg/L), while nonhalogenated alkyl/aryl-substituted OPEs remained low (1.3-55 pg/L), possibly due to the greater long-range transport potential of chlorinated OPEs. Polybrominated diphenyl ethers (PBDEs) were found at much lower concentrations than OPEs (
Size fractionation of double-stranded DNA by precipitation with polyethylene glycol
Lis, John T.; Schleif, Robert
1975-01-01
We show that DNA molecules of differing molecular mass are separable by selective precipitation with polyethylene glycol (PEG†). Higher molecular mass DNA precipitates at lower PEG concentrations than lower molecular mass DNA. Double-stranded DNA can be fractionated at least in the range of 3 × 107 to 1 × 105 daltons. The effects of PEG concentration, sodium chloride concentration, DNA concentration, pH, divalent ions, precipitation time, and centrifugal force have been determined. These studies show PEG precipitation offers a size fractionation method for DNA which is convenient, of high capacity, and applicable over a wide range of conditions. However, resolution is not high and separation of two species approaches 100% only if they differ in molecular mass by at least a factor of two. Images PMID:236548
Microbiology of solar salt ponds
NASA Technical Reports Server (NTRS)
Javor, B.
1985-01-01
Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.
NASA Astrophysics Data System (ADS)
Batista, F.; Cutter, G. A.; Cutter, L. S.; Johannesson, K. H.
2001-12-01
Arsenic concentrations and speciation were measured in surface water samples collected from the Great Dismal Swamp in southeastern Virginia, USA using, selective hydride generation and atomic adsorption spectroscopy. Phosphate concentrations were also determined in these surface waters using the molybdate blue spectrophotometric method. Great Dismal Swamp waters are characterized as blackwaters, having high dissolved organic carbon (DOC) concentrations that range from 445 iM to 6304 iM, with a mean (n = 12) of 3282+/-2165 iM. pH ranged from 4.30 to 6.42, with a mean (n = 12) of 5.14+/-1.04. The inflow waters (Cypress and Pocosin Swamps) have higher pH's (mean of 6.32+/- 0.10 for n = 5) than waters from Lake Drummond and its immediate inflow and outflow ditches, where the mean pH (n = 7) is 4.30+/-0.04. Total arsenic concentrations in Great Dismal Swamp waters range from 2.18 nM up to 21.42 nM. Phosphate concentrations range from 0.18 iM to 1.42 iM, but are not correlated with arsenate concentrations (r 2 = 0.004). Arsenate typically predominates in oxic, surface waters. However, As(III) was detected at higher concentrations (1 - 17.72 nM, mean value of 8.00+/-5.80 nM for all samples, n = 10) in half of the samples from the lower part of the watershed (i.e., mainly in Lake Drummond and its outflow, the Feeder Ditch; mean of 12.89+/-2.89 nM, n = 5). No methylated species were detected in the selected samples analyzed for organoarsenical forms (monomethyl and dimethyl arsenicals) A strong correlation exists between dissolved As(III) concentrations and dissolved organic carbon concentrations (r2 = 0.88), and this correlation is significant at greater than the 99% confidence level. The high abundance of As(III) in comparison to both thermodynamic predictions, and other surface waters, suggests that either there is a strong anoxic source of this form, or that the high DOC concentrations stabilize it via complexation and slower rate of oxidation.
Basunia, S; Landsberger, S
2001-10-01
Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.
Wei, Guocui; Zhan, Tingting; Zhan, Xiancheng; Yu, Lan; Wang, Xiaolan; Tan, Xiaoying; Li, Chengrong
2016-09-01
The osmotic pressure of glucose solution at a wide concentration range was calculated using ASOG model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with the well-established freezing point osmometry and ASOG model calculations at low concentrations and with only ASOG model calculations at high concentrations where no standard experimental method could serve as a reference for comparison. Results indicate that air humidity osmometry measurements are comparable to ASOG model calculations at a wide concentration range, while at low concentrations freezing point osmometry measurements provide better comparability with ASOG model calculations.
Trace contaminant concentrations in the Kara Sea and its adjacent rivers, Russia.
Sericano, J L; Brooks, J M; Champ, M A; Kennicutt, M C; Makeyev, V V
2001-11-01
Trace organic (chlorinated pesticides, PCBs, PAHs and dioxins/furans) and trace metal concentrations were measured in surficial sediment and biological tissues (i.e., worms, crustaceans, bivalve molluscs, and fish livers) collected from the Russian Arctic. Total DDT, chlordane, PCB and PAH concentrations ranged from ND to 1.2, ND to <0.1, ND to 1.5 and <20-810 ng g(-1), respectively, in a suite of 40 surficial sediment samples from the Kara Sea and the adjacent Ob and Yenisey Rivers. High sedimentary concentrations of contaminants were found in the lower part of the Yenisey River below the salt wedge. Total dioxins/furans were analysed in a subset of 20 sediment samples and ranged from 1.4 to 410 pg g(-1). The highest trace organic contaminant concentrations were found in organisms, particularly fish livers. Concentrations as high as 89 ng g(-1) chlordane; 1010 ng g(-1) total DDTs; 460 ng g(-1) total PCBs; and 1110 ng g(-1) total PAH, were detected. A subset of 11 tissue samples was analysed for dioxins and furans with total concentrations ranging from 12 to 61 pg g(-1). Concentrations of many trace organic and metal contaminants in the Kara Sea appear to originate from riverine sources and atmospheric transport from more temperate areas. Most organic contaminant concentrations in sediments were low; however, contaminants are being concentrated in organisms and may pose a health hazard for inhabitants of coastal villages.
García-Ramos, Amador; Haff, Guy Gregory; Pestaña-Melero, Francisco Luis; Pérez-Castilla, Alejandro; Rojas, Francisco Javier; Balsalobre-Fernández, Carlos; Jaric, Slobodan
2017-09-05
This study compared the concurrent validity and reliability of previously proposed generalized group equations for estimating the bench press (BP) one-repetition maximum (1RM) with the individualized load-velocity relationship modelled with a two-point method. Thirty men (BP 1RM relative to body mass: 1.08 0.18 kg·kg -1 ) performed two incremental loading tests in the concentric-only BP exercise and another two in the eccentric-concentric BP exercise to assess their actual 1RM and load-velocity relationships. A high velocity (≈ 1 m·s -1 ) and a low velocity (≈ 0.5 m·s -1 ) was selected from their load-velocity relationships to estimate the 1RM from generalized group equations and through an individual linear model obtained from the two velocities. The directly measured 1RM was highly correlated with all predicted 1RMs (r range: 0.847-0.977). The generalized group equations systematically underestimated the actual 1RM when predicted from the concentric-only BP (P <0.001; effect size [ES] range: 0.15-0.94), but overestimated it when predicted from the eccentric-concentric BP (P <0.001; ES range: 0.36-0.98). Conversely, a low systematic bias (range: -2.3-0.5 kg) and random errors (range: 3.0-3.8 kg), no heteroscedasticity of errors (r 2 range: 0.053-0.082), and trivial ES (range: -0.17-0.04) were observed when the prediction was based on the two-point method. Although all examined methods reported the 1RM with high reliability (CV≤5.1%; ICC≥0.89), the direct method was the most reliable (CV<2.0%; ICC≥0.98). The quick, fatigue-free, and practical two-point method was able to predict the BP 1RM with high reliability and practically perfect validity, and therefore we recommend its use over generalized group equations.
High-Temperature Intergranular Crack Growth in Martensitic 2-1/4 Cr-1Mo Steel,
1987-01-01
segregation of sulphur to crack-tip regions. Crack advance appears to occur by discrete jumps wtfen a critical concentration of sulphur is achieved over the...7 Equilibrium concentration (Co) of sulphur in iron containing 0.53 Mn (vt.%) 27 -- 3 - K CONEX1TS (cont’d) ILLUSTRATIONS I Notched beand tesetpiece...the range of quenched conditions 17 Calculated average concentration of sulphur (atomic 2) required to promote grain boundary fracture for a range of
Furlong, Edward T.; Anderson, Bruce D.; Werner, Stephen L.; Soliven, Paul P.; Coffey, Laura J.; Burkhardt, Mark R.
2001-01-01
In 1996, the U.S. Geological Survey National Water Quality Laboratory (NWQL) developed and implemented a graphitized carbon-based solid-phase extraction and high-performance liquid chromatographic analytical method to determine polar pesticide concentrations in surface- and ground-water samples. Subsequently, the NWQL developed a complementary analysis that uses high-performance liquid chromatography/mass spectrometry to detect, identify, and quantify polar pesticides and pesticide metabolites in filtered water at concentrations as low as 10 nanograms per liter. This new method was designed to improve sensitivity and selectivity over the prior method, and to reduce known interferences from natural organic matter.In this new method, pesticides are extracted from filtered water samples by useing a 0.5-gram graphitized carbon-based solid-phase extraction cartridge, eluted from the cartridge, and concentrations determined by using high-performance liquid chromatography with electrospray ionization-mass spectrometry. The upper concentration limit is 1.000 microgram per liter (μg/L) for most compounds. Single-operator method detection limits in organic-free water samples fortified with pesticides at a concentration of 0.025 μg/L ranged from 0.0019 to 0.022 μg/L for all compounds in the method. The grand mean (mean of mean recoveries for individual compounds) recoveries in organic-free water samples ranged from 72 to 89 percent, fortified with pesticides at three concentrations between 0.025 and 0.5 μg/L. Grand mean recoveries in ground- and surface-water samples ranged from 46 to 119 percent, also fortified with pesticides at three concentrations between 0.025 and 0.5 μg/L. Long-term recoveries from reagent water spikes were used to demonstrate that 38 of 65 compounds can be reported without qualification of the quantitative result across the analytical range of the method. The remaining 27 are reported with qualified estimates of concentration because of greater variability of recovery.
Statistical-thermodynamic model for light scattering from eye lens protein mixtures
NASA Astrophysics Data System (ADS)
Bell, Michael M.; Ross, David S.; Bautista, Maurino P.; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F.; Lahnovych, Carrie N.; Thurston, George M.
2017-02-01
We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation.
Distribution of organic contamination of sediments from Ichkeul Lake and Bizerte Lagoon, Tunisia.
Ben Salem, Fida; Ben Said, Olfa; Mahmoudi, Ezzeddine; Duran, Robert; Monperrus, Mathilde
2017-10-15
Analyses of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and butyl tins (BuSn) were conducted on sediments from Ichkeul Lake-Bizerte Lagoon watershed (Tunisia). A total of 59 compounds (16 PAHs, 12 PCBs, 22 OCPs and 9 BuSn) were measured in 40 surface sediment samples collected during two campaigns. High concentrations of total PAHs were identified in the lagoon ranging from 122 to 19600ng·g -1 . Several OCPs, including endrin, dieldrin, and lindane (Hexachlorocyclohexane or HCH or BHC) were found in high concentrations in Ichkeul Lake, ranging from 28 to 2012ngg -1 . PAHs and OCPs varied seasonally, in response to the complex hydrology of the watershed. The concentrations of total PCBs ranged between 0.04 and 10.653ngg -1 and suggests low total PCBs sediment contamination, when compared to most international criteria. Total BuSn concentrations range between 67 and 526ng·g -1 , which are relatively low when compared to most international criteria and ecological risk assessments. This is the first study of organic contamination in Ichkeul Lake (RAMSAR and UNESCO World Heritage site). Copyright © 2017 Elsevier Ltd. All rights reserved.
Rubio, Francisco; Alemán, Fernando; Nieves-Cordones, Manuel; Martínez, Vicente
2010-06-01
The high-affinity K(+) transporter AtHAK5 and the inward-rectifier K(+) channel AtAKT1 have been described to contribute to K(+) uptake in Arabidopsis thaliana. Studies with T-DNA insertion lines showed that both systems participate in the high-affinity range of concentrations and only AtAKT1 in the low-affinity range. However the contribution of other systems could not be excluded with the information and plant material available. The results presented here with a double knock-out athak5, atakt1 mutant show that AtHAK5 is the only system mediating K(+) uptake at concentrations below 0.01 mM. In the range between 0.01 and 0.05 mM K(+) AtHAK5 and AtAKT1 are the only contributors to K(+) acquisition. At higher K(+) concentrations, unknown systems come into operation and participate together with AtAKT1 in low-affinity K(+) uptake. These systems can supply sufficient K(+) to promote plant growth even in the absence of AtAKT1 or in the presence of 10 mM K(+) where AtAKT1 is not essential.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
Chi, Kai Hsien; Lin, Chuan-Yao; Yang, Chang-Feng Ou; Wang, Jia-Lin; Lin, Neng-Heui; Sheu, Guey-Rong; Lee, Chung-Te
2010-04-15
Recent biomass burning in Southeast Asia has raised global concerns over its adverse effects on visibility, human health, and global climate. The concentrations of total suspended particles (TSPs) and other vapor-phase pollutants (CO and ozone) were monitored at Lulin, an atmospheric background station in central Taiwan in 2008. To evaluate the long-range transport of persistent organic pollutants (POPs) during the Southeast Asia biomass burning event, the atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were also measured at Lulin station. The atmospheric PCDD/F and TSP concentrations measured at Lulin station ranged from 0.71-3.41 fg I-TEQ/m(3) and 5.32-55.6 microg/m(3), respectively, during the regular sampling periods. However, significantly higher concentrations of PCDD/Fs, TSPs, CO, and ozone were measured during the spring season. These high concentrations could be the result of long-range transport of the products of Southeast Asia biomass burning. During the Southeast Asia biomass burning event (March 18-24, 2008), an intensive observation program was also carried out at the same station. The results of this observation program indicated that the atmospheric PCDD/F concentration increased dramatically from 2.33 to 390 fg I-TEQ/m(3) (March 19, 2008). The trace gas (CO) of biomass burning also significantly increased to 232 ppb during the same period, while the particle-bound PCDD/Fs in the TSP increased from 28.7 to 109 pg I-TEQ/g-TSP at Lulin station during the burning event. We conclude that there was a significant increase in the PCDD/F concentration in ambient air at a high-altitude background station in central Taiwan during the Southeast Asia biomass burning event.
Grandahl, Kasper; Suadicani, Poul; Jacobsen, Peter
2012-08-01
International studies have shown blood lead at levels causing health concern in recreational indoor shooters. We hypothesized that Danish recreational indoor shooters would also have a high level of blood lead, and that this could be explained by shooting characteristics and the physical environment at the shooting range. This was an environmental case study of 58 male and female shooters from two indoor shooting ranges with assumed different ventilation and cleaning conditions. Information was obtained on general conditions including age, gender, tobacco and alcohol use, and shooting conditions: weapon type, number of shots fired, frequency of stays at the shooting range and hygiene habits. A venous blood sample was drawn to determine blood lead concentrations; 14 non-shooters were included as controls. Almost 60% of the shooters, hereof five out of 14 women, had a blood lead concentration above 0.48 micromol/l, a level causing long-term health concern. All controls had blood lead values below 0.17 micromol/l. Independent significant associations with blood lead concentrations above 0.48 micromol/l were found for shooting at a poorly ventilated range, use of heavy calibre weapons, number of shots and frequency of stays at the shooting range. A large proportion of Danish recreational indoor shooters had potentially harmful blood lead concentrations. Ventilation, amounts of shooting, use of heavy calibre weapons and stays at the shooting ranges were independently associated with increased blood lead. The technical check at the two ranges was performed by the Danish Technological Institute and costs were defrayed by the Danish Rifle Association. To pay for the analyses of blood lead, the study was supported by the The Else & Mogens Wedell-Wedellsborg Foundation. The Danish Regional Capital Scientific Ethics Committee approved the study, protocol number H-4-2010-130.
Galanopoulou, Stavroula; Vgenopoulos, Andreas; Conispoliatis, Nikolaos
2005-05-01
Sediment samples were collected from Keratsini harbour, Saronikos gulf, Greece and were analysed for chlorinated organic pesticides (DDTs, HCB, Lindane) and polychlorinated biphenyls (PCBs). High total DDTs values were detected in all the sediments samples ranging from 9.1 to 75.6 mug/g, dry weight. PCBs concentrations range from 47.8 to 351.8 ng/g. The results and especially the high concentrations of DDTs reflect the influence of the industrial and urban wastes in the pollution for the Keratsini harbour environment.
Daniel K. Manter; Kathleen L. Kavanagh; Cathy L. Rose
2005-01-01
High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in...
Gray, J.E.; Hines, M.E.
2009-01-01
Salmon Falls Creek Reservoir (SFCR) in southern Idaho has been under a mercury (Hg) advisory since 2001 as fish in this reservoir contain elevated concentrations of Hg. Concentrations of total Hg (HgT) and methyl-Hg (MeHg) were measured in reservoir water, bottom sediment, and porewater to examine processes of Hg methylation at the sediment/water interface in this reservoir. Rates of Hg methylation and MeHg demethylation were also measured in reservoir bottom sediment using isotopic tracer techniques to further evaluate methylation of Hg in SFCR. The highest concentrations for HgT and MeHg in sediment were generally found at the sediment/water interface, and HgT and MeHg concentrations declined with depth. Porewater extracted from bottom sediment contained highly elevated concentrations of HgT ranging from 11-230??ng/L and MeHg ranging from 0.68-8.5??ng/L. Mercury methylation was active at all sites studied. Methylation rate experiments carried out on sediment from the sediment/water interface show high rates of Hg methylation ranging from 2.3-17%/day, which is significantly higher than those reported in other Hg contaminant studies. Using porewater MeHg concentrations, we calculated an upward diffusive MeHg flux of 197??g/year for the entire reservoir. This sediment derived MeHg is delivered to the overlying SFCR water column, and eventually transferred to biota, such as fish. This study indicates that methylation of Hg is highly influenced by the hypolimnetic and eutrophic conditions in SFCR.
Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D. Kirk; Youcha, E.K.
2008-01-01
Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with this interpretation, elevated dissolved Sb concentrations (as high as 59????g/L), also correlated with occurrences of hypogene sulfide minerals, were measured in samples with high dissolved As concentrations.
Felmlee, J.K.; Cadigan, R.A.
1982-01-01
Multivariate statistical analyses were performed on data from 156 mineral-spring sites in nine Western States to analyze relationships among the various parameters measured in the spring waters. Correlation analysis and R-mode factor analysis indicate that three major factors affect water composition in the spring systems studied: (1) duration of water circulation, (2) depth of water circulation, and (3) partial pressure of carbon dioxide. An examination of factor scores indicates that several types of hydrogeologic systems were sampled. Most of the samples are (1) older water from deeper circulating systems having relatively high salinity, high temperature, and low Eh or (2) younger water from shallower circulating systems having relatively low salinity, low temperature, and high Eh. The rest of the samples are from more complex systems. Any of the systems can have a relatively high or low content of dissolved carbonate species, resulting in a low or high pH, respectively. Uranium concentrations are commonly higher in waters of relatively low temperature and high Eh, and radium concentrations are commonly higher in waters having a relatively high carbonate content (low pH) and, secondarily, relatively high salinity. Water samples were collected and (or) measurements were taken at 156 of the 171 mineral-spring sites visited. Various samples were analyzed for radium, uranium, radon, helium, and radium-228 as well as major ions and numerous trace elements. On-site measurements for physical properties including temperature, specific conductance, pH, Eh, and dissolved oxygen were made. All constituents and properties show a wide range of values. Radium concentrations range from less than 0.01 to 300 picocuries per liter; they average 1.48 picocuries per liter and have an anomaly threshold value of 171 picocuries per liter for the samples studied. Uranium concentrations range from less than 0.01 to 120 micrograms per liter and average 0.26 micrograms per liter; they have an anomaly threshold value of 48.1 micrograms per liter. Radon content ranges from less than 10 to 110,000 picocuries per liter, averages 549 picocuries per liter and has an anomaly threshold of 20,400 picocuries per liter. Helium content ranges from -1,300 to +13,000 parts per billion relative to atmospheric helium; it averages +725 parts per billion and has an anomaly threshold of 10,000 parts per billion. Radium-228 concentrations range from less than 2.0 to 33 picocuries per liter; no anomaly threshold was determined owing to the small number of samples. All of the anomaly thresholds may be somewhat high because the sampling was biased toward springs likely to be radioactive. The statistical variance in radium and uranium concentrations unaccounted for by the identified factors testifies to the complexity of some hydrogeologic systems. Unidentified factors related to geologic setting and the presence of uranium-rich rocks in the systems also affect the observed concentrations of the radioactive elements in the water. The association of anomalous radioactivity in several springs with nearby known uranium occurrences indicates that other springs having anomalous radioactivity may also be associated with uranium occurrences as yet undiscovered.
Miller, B.; Jimenez, M.; Bridle, H.
2016-01-01
Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244
Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia.
Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara
2012-11-01
We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m(3)) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m(3). Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.
Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia
NASA Astrophysics Data System (ADS)
Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara
2012-11-01
We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.
Stream nitrogen concentrations are variable and often high in the Oregon Coast Range, uncharacteristic for a predominantly forested region. We compiled stream nitrogen data and GIS-derived landscape characteristics in order to examine variation in nitrogen across the region. In s...
NASA Technical Reports Server (NTRS)
Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.
1986-01-01
Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.
Becker, Carol J.
2013-01-01
From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn
Uranium is a key contaminant of concern in the groundwater at 91 waste sites at 18 U.S. Department of Energy (DOE) facilities within the United States and is a potential source of groundwater contamination and a risk to human health and the environment through discharges to surface water. Dissolved inorganic carbon (bicarbonate/carbonate) has a high affinity for complexing with uranium that is present as sorbed or unique uranium-bearing mineral phases within the sedimentary matrix. This process can result in the formation of soluble uranyl carbonate aqueous species, which are mobile under circumneutral pH conditions. This study was conducted to quantifymore » the rate of release of uranium from the autunite mineral, (Ca[(UO 2)(PO 4)] 2∙3H 2O), that was formed during polyphosphate injection to remediate uranium; the dissolution of uranium was studied as a function of the aqueous bicarbonate concentration, ranging from 25 to 100 mM. Experiments were carried out in the pH range from 7 to 11 in the temperature range of 23-90°C via single-pass flow-through testing. Consistent with the results of previous studies (Gudavalli et al., 2013 a, b), the rate of uranium release from autunite exhibited minimal dependency on temperature, but was strongly dependent on pH and increasing concentrations of bicarbonate in the solution. Data obtained during these experiments were compared with results of previous experiments conducted using a low-concentration range of bicarbonate solutions (0.5-3.0 mM). An 8- to 30 fold increase in the rate of uranium release was observed in the presence of high bicarbonate concentrations at pH 7-8 compared to low bicarbonate values, while at pH 9-11, there was only a 5-fold increase in uranium rate of release with an increase in bicarbonate concentrations. The rate of uranium release was calculated to be between 5.18 x 10 -8 and 1.69 x 10 -7 mol m -2 s -1. The activation energy values at high and low bicarbonate concentrations were similar, with ratio values in the range of 0.6-1.0.« less
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn
2018-05-02
Uranium is a key contaminant of concern in the groundwater at U.S. Department of Energy (DOE) facilities within the United States and is a potential source of groundwater contamination and a risk to human health and the environment through discharges to surface water. Dissolved inorganic carbon (bicarbonate/carbonate) has a high affinity for complexing with uranium that is present as sorbed or unique uranium-bearing mineral phases within the sedimentary matrix. This process can result in the formation of soluble uranyl carbonate aqueous species, which are mobile under circumneutral pH conditions. This study was conducted to quantify the rate of release of uranium from the autunite mineral, (Ca[(UO 2 )(PO 4 )] 2 •3H 2 O), that was formed during polyphosphate injection to remediate uranium; the dissolution of uranium was studied as a function of the aqueous bicarbonate concentration, ranging from 25 to 100 mM. Experiments were carried out in the pH range from 7 to 11 in the temperature range of 23-90 °C via single-pass flow-through testing. Consistent with the results of previous studies (Gudavalli et al., 2013a, 2013b), the rate of uranium release from autunite exhibited minimal dependency on temperature, but was strongly dependent on pH and increasing concentrations of bicarbonate in the solution. Data obtained during these experiments were compared with results of previous experiments conducted using a low-concentration range of bicarbonate solutions (0.5-3.0 mM). An 8- to 30-fold increase in the rate of uranium release was observed in the presence of high bicarbonate concentrations at pH 7-8 compared to low bicarbonate values, while at pH 9-11, there was only a 5-fold increase in uranium rate of release with an increase in bicarbonate concentrations. The rate of uranium release was calculated to be between 5.18 × 10 -8 and 1.69 × 10 -7 mol m -2 s -1 . The activation energy values at high and low bicarbonate concentrations were similar, with ratio values in the range of 0.6-1.0. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sun, Xiangyu; Ma, Tingting; Han, Luyang; Huang, Weidong; Zhan, Jicheng
2017-05-03
The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.
Tsai, Jiun-Horng; Chang, Li-Peng; Chiang, Hung-Lung
2013-07-01
A Micro-Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI were employed to determine the size-segregated mass distributions of ambient particulate matter (PM) and water-soluble ionic species for particulate constituents. In addition, gas precursors, including HCl, HONO, HNO3, SO2, and NH3 gases, were analyzed by an annular denuder system. PM size mass distribution, mass concentration, and ionic species concentration were measured during the day and at night during episode and non-episode periods in winter and summer. Average total suspended particle (TSP) concentrations during episode days in winter were as high as 153 ± 33 μg/m(3), and PM mass concentrations in summer were as low as one-third of that in winter. Generally, PM concentration at night was higher than that in the daytime in southern Taiwan during the sampling periods. In winter during the episode periods, the size-segregated mass distribution of PM mass concentration was mostly in the 0.32-3.2-μm range, and the PM concentration increased significantly in the range of 0.32-3.2 μm at night. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34-48% of TSP mass. High concentrations of ammonia (12.9-49 μg/m(3)) and SO2 (2.6-27 μg/m(3)) were observed in the gas precursors. The conversion ratio was high in the PM size range of 0.18-3.2 μm both during the day and at night in winter, and the conversion ratio of episode days was 20% higher than that of non-episode days. The conversion factor was high for both nitrogen and sulfur species at nighttime, especially on episode days.
NASA Astrophysics Data System (ADS)
Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.
2015-04-01
The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for example, tide gauge records), calling for a careful application of time series analysis tools when studying such data.
Rubio, Francisco; Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente
2008-12-01
The relative contribution of the high-affinity K(+) transporter AtHAK5 and the inward rectifier K(+) channel AtAKT1 to K(+) uptake in the high-affinity range of concentrations was studied in Arabidopsis thaliana ecotype Columbia (Col-0). The results obtained with wild-type lines, with T-DNA insertion in both genes and specific uptake inhibitors, show that AtHAK5 and AtAKT1 mediate the NH4+-sensitive and the Ba(2+)-sensitive components of uptake, respectively, and that they are the two major contributors to uptake in the high-affinity range of Rb(+) concentrations. Using Rb(+) as a K(+) analogue, it was shown that AtHAK5 mediates absorption at lower Rb(+) concentrations than AtAKT1 and depletes external Rb(+) to values around 1 muM. Factors such as the presence of K(+) or NH4+ during plant growth determine the relative contribution of each system. The presence of NH4+ in the growth solution inhibits the induction of AtHAK5 by K(+) starvation. In K(+)-starved plants grown without NH4+, both systems are operative, but when NH4+ is present in the growth solution, AtAKT1 is probably the only system mediating Rb(+) absorption, and the capacity of the roots to deplete Rb(+) is reduced.
Blood harmane, blood lead, and severity of hand tremor: evidence of additive effects.
Louis, Elan D; Factor-Litvak, Pam; Gerbin, Marina; Slavkovich, Vesna; Graziano, Joseph H; Jiang, Wendy; Zheng, Wei
2011-03-01
Tremor is a widespread phenomenon in human populations. Environmental factors are likely to play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-β]indole) is a potent tremor-producing β-carboline alkaloid. Lead is another tremor-producing neurotoxicant. The effects of harmane and lead with respect to tremor have been studied in isolation. We tested the hypothesis that tremor would be particularly severe among individuals who had high blood concentrations of both of these toxicants. Blood concentrations of harmane and lead were each quantified in 257 individuals (106 essential tremor cases and 151 controls) enrolled in an environmental epidemiological study. Total tremor score (range = 0-36) was a clinical measure of tremor severity. The total tremor score ranged from 0 to 36, indicating that a full spectrum of tremor severities was captured in our sample. Blood harmane concentration correlated with total tremor score (p = 0.007), as did blood lead concentration (p = 0.045). The total tremor score was lowest in participants with both low blood harmane and lead concentrations (8.4 ± 8.2), intermediate in participants with high concentrations of either toxicant (10.5 ± 9.8), and highest in participants with high concentrations of both toxicants (13.7 ± 10.4) (p=0.01). Blood harmane and lead concentrations separately correlated with total tremor scores. Participants with high blood concentrations of both toxicants had the highest tremor scores, suggesting an additive effect of these toxicants on tremor severity. Given the very high population prevalence of tremor disorders, identifying environmental determinants is important for primary disease prevention. Copyright © 2010 Elsevier Inc. All rights reserved.
Blood Harmane, Blood Lead, and Severity of Hand Tremor: Evidence of Additive Effects
Louis, Elan D.; Factor-Litvak, Pam; Gerbin, Marina; Slavkovich, Vesna; Graziano, Joseph H; Jiang, Wendy; Zheng, Wei
2010-01-01
Background Tremor is a widespread phenomenon in human populations. Environmental factors are likely to play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-β]indole) is a potent tremor-producing β-carboline alkaloid. Lead is another tremor-producing neurotoxicant. The effects of harmane and lead with respect to tremor have been studied in isolation. Objectives We tested the hypothesis that tremor would be particularly severe among individuals who had high blood concentrations of both of these toxicants. Methods Blood concentrations of harmane and lead were each quantified in 257 individuals (106 essential tremor cases and 151 controls) enrolled in an environmental epidemiological study. Total tremor score (range = 0 – 36) was a clinical measure of tremor severity. Results The total tremor score ranged from 0 – 36, indicating that a full spectrum of tremor severities was captured in our sample. Blood harmane concentration correlated with total tremor score (p = 0.007), as did blood lead concentration (p = 0.045). The total tremor score was lowest in participants with both low blood harmane and lead concentrations (8.4 ± 8.2), intermediate in participants with high concentrations of either toxicant (10.5 ± 9.8), and highest in participants with high concentrations of both toxicants (13.7 ± 10.4)(p = 0.01). Conclusions Blood harmane and lead concentrations separately correlated with total tremor scores. Participants with high blood concentrations of both toxicants had the highest tremor scores, suggesting an additive effect of these toxicants on tremor severity. Given the very high population prevalence of tremor disorders, identifying environmental determinants is important for primary disease prevention. PMID:21145352
A summary of selected chemical-quality conditions in 66 California streams 1950-72
Irwin, George A.; Lemons, Michael
1975-01-01
Water from California streams has been analyzed for concentrations of selected chemical constituents since the early 1950's. This summary includes about 1,200 water years of data from 88 sampling sites on 66 streams. Results of this summary show that about 80 percent of the sites had a mean dissolved-solids concentration of 400 milligrams per litre or less. All the sites that had mean concentrations ranging from 601 to 800 milligrams per litre were in either the South Coastal or Central Coastal subregions. Results of regression analysis between specific conductance and calcium, magnesium, sodium, bicarbonate, dissolved solids, and hardness usually indicated a high percentage of explained variance. Other constituents, such as potassium, sulfate, chloride, and particularly nitrate, were not as frequently highly associated with specific conductance. At sites where the water discharge was highly regulated, the variation in specific conductance that was explained as a function of discharge ranged from 0 to more than 90 percent. Whereas at the unregulated sites, the explained variance ranged from 50 to more than 90 percent.
Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki
2014-08-30
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.
2012-01-01
The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.
Wang, Yan; Wu, Xiaowei; Zhao, Hongxia; Xie, Qing; Hou, Minmin; Zhang, Qiaonan; Du, Juan; Chen, Jingwen
2017-02-15
The concentrations and distributions of PBDEs and novel brominated flame retardants (NBFRs) in dissolved phase of surface seawater near a coastal mariculture area of the Bohai Sea were investigated. The total concentrations of PBDE and NBFRs were in the range of 15.4-65.5 and 2.12-13.6ng/L, respectively. The highest concentration was discovered in the water near an anchorage ground, whereas concentrations in water samples from offshore cage-culture area were not elevated. Relatively high concentrations of BDE28, 99, and 100 were discovered in the medium range of distance from shore, where is the path of tidal or coastal current. This suggested that inputs from ships or through tidal current rather than mariculture activities may be the main sources of BFRs in this area. BDE209, BDE47, hexabromobenzene (HBB), and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) were the most abundant BFR congeners. Relatively high proportions of these BFRs may originate from discharge of wastewater nearby or degradation from higher brominated PBDEs. No correlations were found between BFR concentrations and water dissolved organic carbon, suggesting that concentrations and distributions of BFRs in this area were source-dependent. The relatively high concentrations in this study emphasized the importance of monitoring and managing BFR contaminations in mariculture areas of China. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ross, H. Richard; Bourgeois, Chris M.
1995-01-01
Apparatus continuously monitors concentration of hydrogen, at level ranging from few parts per million to several percent, in mixture of gases. Simple and fast, providing high sensitivity and linear response. Used to alert technicians to potentially explosive concentrations of residual hydrogen.
Amorphous In-Ga-Zn-O Powder with High Gas Selectivity towards Wide Range Concentration of C₂H₅OH.
Chen, Hongxiang; Jiang, Wei; Zhu, Lianfeng; Yao, Youwei
2017-05-24
Amorphous indium gallium zinc oxide (a-IGZO) powder was prepared by typical solution-based process and post-annealing process. The sample was used as sensor for detecting C₂H₅OH, H₂, and CO. Gas-sensing performance was found to be highly sensitive to C₂H₅OH gas in a wide range of concentration (0.5-1250 ppm) with the response of 2.0 towards 0.5 ppm and 89.2 towards 1250 ppm. Obvious difference of response towards C₂H₅OH, H₂, and CO was found that the response e.g., was 33.20, 6.64, and 2.84 respectively at the concentration of 200 ppm. The response time and recovery time of was 32 s and 14 s respectively towards 200 ppm concentration of C₂H₅OH gas under heating voltage of 6.5 V.
Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.
2009-01-01
An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
Gammer, C.; Escher, B.; Ebner, C.; ...
2017-03-21
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammer, C.; Escher, B.; Ebner, C.
Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2014-07-01 2013-07-01 true Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2012-07-01 2011-07-01 true Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
32 CFR 644.523 - Restricting future of artillery and other ranges.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2013-07-01 2013-07-01 false Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...
Mercury contamination in bats from the central United States.
Korstian, Jennifer M; Chumchal, Matthew M; Bennett, Victoria J; Hale, Amanda M
2018-01-01
Mercury (Hg) is a highly toxic metal that has detrimental effects on wildlife. We surveyed Hg concentrations in 10 species of bats collected at wind farms in the central United States and found contamination in all species. Mercury concentration in fur was highly variable both within and between species (range: 1.08-10.52 µg/g). Despite the distance between sites (up to 1200 km), only 2 of the 5 species sampled at multiple locations had fur Hg concentrations that differed between sites. Mercury concentrations observed in the present study all fell within the previously reported ranges for bats collected from the northeastern United States and Canada, although many of the bats we sampled had lower maximum Hg concentrations. Juvenile bats had lower concentrations of Hg in fur compared with adult bats, and we found no significant effect of sex on Hg concentrations in fur. For a subset of 2 species, we also measured Hg concentration in muscle tissue; concentrations were much higher in fur than in muscle, and Hg concentrations in the 2 tissue types were weakly correlated. Abundant wind farms and ongoing postconstruction fatality surveys offer an underutilized opportunity to obtain tissue samples that can be used to assess Hg contamination in bats. Environ Toxicol Chem 2018;37:160-165. © 2018 SETAC. © 2017 SETAC.
Eiden, C; Meniane, J C; Peyrière, H; Eymard-Duvernay, S; Le Falher, G; Ceballos, P; Fegueux, N; Cociglio, M; Reynes, J; Hillaire-Buys, D
2012-02-01
Posaconazole (PCZ) is given at 200 mg three times daily as a fungal prophylaxis in neutropenic hematologic malignancy patients. A relationship between exposure, plasma concentration, and efficacy is suggested. The objectives of this prospective study were to analyze the PCZ plasma concentration in hematology adults at high risk of developing invasive fungal infections (IFIs), and factors that could have an impact on the PCZ plasma concentration. PCZ plasma concentrations were measured after 2, 7, 10, 14, and 21 days of PCZ prophylaxis. Factors such as gender, age, body weight, posology, treatment duration, mucositis, proton pump inhibitor (PPI) use, and food intake were studied. Sixty-three patients were included, with a median age of 52 years (range 17-70) and a median weight of 75 kg (range 47-150). The median PCZ plasma concentration of the 63 patients ranged from 0.42 to 0.48 mg/L. At day 2, 30% of PCZ plasma concentration were under 0.35 mg/L, and at day 7, 74% were <0.70 mg/L. PCZ plasma concentrations were not affected by gender, age, body weight, or treatment duration. We found that food intake had a high influence on PCZ plasma concentrations (p = 0.0049). PCZ was well tolerated. One patient has developed a probable IFI, probably related to a low exposure to PCZ. PCZ therapeutic drug monitoring (TDM) is essential in order to early detect patients with low concentrations, to assess the etiology of such results, and to decide on the treatment strategy to apply.
Highly Specific and Wide Range NO2 Sensor with Color Readout.
Fàbrega, Cristian; Fernández, Luis; Monereo, Oriol; Pons-Balagué, Alba; Xuriguera, Elena; Casals, Olga; Waag, Andreas; Prades, Joan Daniel
2017-11-22
We present a simple and inexpensive method to implement a Griess-Saltzman-type reaction that combines the advantages of the liquid phase method (high specificity and fast response time) with the benefits of a solid implementation (easy to handle). We demonstrate that the measurements can be carried out using conventional RGB sensors; circumventing all the limitations around the measurement of the samples with spectrometers. We also present a method to optimize the measurement protocol and target a specific range of NO 2 concentrations. We demonstrate that it is possible to measure the concentration of NO 2 from 50 ppb to 300 ppm with high specificity and without modifying the Griess-Saltzman reagent.
de Solla, S R; Bishop, C A; Lickers, H; Jock, K
2001-04-01
Subsamples of eight clutches of common snapping turtle eggs (Chelydra serpentina serpentina) were collected from four sites from the territory of the Mohawk Nation, Akwesasne, on the shore of the St. Lawrence River. Egg contents were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), dibenzodioxins, and furans. The sites were 2 to 13 km downstream from PCB-contaminated landfill sites. Maximum concentrations of total PCBs in snapping turtle clutches were extremely high, and ranged from 2 378.2 ng/g to 737 683 ng/g (wet weight) and are among the highest recorded in any tissue of a free-ranging animal. Similarly, in a pooled sample of eggs from all four sites, the summed concentrations of non-ortho PCBs (n = 6 congeners) was also very high at 54.54 ng/g and the summed dioxin and furan concentrations (n = 11 congeners) was 85.8 ng/g. Sum organochlorine pesticide levels varied from 28 to 2,264 ng/g among the four sites. The levels of PCBs found in turtle eggs exceed concentrations associated with developmental problems and reduced hatching success in snapping turtles and other species and also exceed the Canadian tissue residue guidelines for toxic equivalency concentrations. The extremely high levels of organochlorine contaminants demonstrate the high degree of contamination in the environment in the Akwesasne area.
NASA Astrophysics Data System (ADS)
Yan, Dan; Lei, Yalin; Shi, Yukun; Zhu, Qing; Li, Li; Zhang, Zhien
2018-06-01
Atmospheric haze pollution has become a global concern because of its severe effects on human health and the environment. The Beijing-Tianjin-Hebei urban agglomeration is located in northern China, and its haze is the most serious in China. The high concentration of PM2.5 is the main cause of haze pollution, and thus investigating the temporal and spatial characteristics of PM2.5 is important for understanding the mechanisms underlying PM2.5 pollution and for preventing haze. In this study, the PM2.5 concentration status in 13 cities from the Beijing-Tianjin-Hebei region was statistically analyzed from January 2016 to November 2016, and the spatial variation of PM2.5 was explored via spatial autocorrelation analysis. The research yielded three overall results. (1) The distribution of PM2.5 concentrations in this area varied greatly during the study period. The concentrations increased from late autumn to early winter, and the spatial range expanded from southeast to northwest. In contrast, the PM2.5 concentration decreased rapidly from late winter to early spring, and the spatial range narrowed from northwest to southeast. (2) The spatial dependence degree, by season from high to low, was in the order winter, autumn, spring, summer. Winter (from December to February of the subsequent year) and summer (from June to August) were, respectively, the highest and lowest seasons with regard to the spatial homogeneity of PM2.5 concentrations. (3) The PM2.5 concentration in the Beijing-Tianjin-Hebei region has significant spatial spillovers. Overall, cities far from Bohai Bay, such as Shijiazhuang and Hengshui, demonstrated a high-high concentration of PM2.5 pollution, while coastal cities, such as Chengde and Qinhuangdao, showed a low-low concentration.
Graham, G.E.; Kelley, K.D.; Slack, J.F.; Koenig, A.E.
2009-01-01
The Zn-Pb-Ag metallogenic province of the western and central Brooks Range, Alaska, contains two distinct but mineralogically similar deposit types: shale-hosted massive sulphide (SHMS) and smaller vein-breccia occurrences. Recent investigations of the Red Dog and Anarraaq SHMS deposits demonstrated that these deposits are characterized by high trace-element concentrations of As, Ge, Sb and Tl. This paper examines geochemistry of additional SHMS deposits (Drenchwater and Su-Lik) to determine which trace elements are ubiquitously elevated in all SHMS deposits. Data from several vein-breccia occurrences are also presented to see if trace-element concentrations can distinguish SHMS deposits from vein-breccia occurrences. Whole-rock geochemical data indicate that Tl is the most consistently and highly concentrated characteristic trace element in SHMS deposits relative to regional unmineralized rock samples. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and sphalerite indicate that Tl is concentrated in pyrite in SHMS. Stream sediment data from the Drenchwater and Su-Lik SHMS show that high Tl concentrations are more broadly distributed proximal to known or suspected mineralization than As, Sb, Zn and Pb anomalies. This broader distribution of Tl in whole-rock and particularly stream sediment samples increases the footprint of exposed and shallowly buried SHMS mineralization. High Tl concentrations also distinguish SHMS mineralization from the vein-breccia deposits, as the latter lack high concentrations of Tl but can otherwise have similar trace-element signatures to SHMS deposits. ?? 2009 AAG/Geological Society of London.
Roberts, J A; Stove, V; De Waele, J J; Sipinkoski, B; McWhinney, B; Ungerer, J P J; Akova, M; Bassetti, M; Dimopoulos, G; Kaukonen, K-M; Koulenti, D; Martin, C; Montravers, P; Rello, J; Rhodes, A; Starr, T; Wallis, S C; Lipman, J
2014-05-01
The aims of this study were to describe the variability in protein binding of teicoplanin in critically ill patients as well as the number of patients achieving therapeutic target concentrations. This report is part of the multinational pharmacokinetic DALI Study. Patients were sampled on a single day, with blood samples taken both at the midpoint and the end of the dosing interval. Total and unbound teicoplanin concentrations were assayed using validated chromatographic methods. The lower therapeutic range of teicoplanin was defined as total trough concentrations from 10 to 20 mg/L and the higher range as 10-30 mg/L. Thirteen critically ill patients were available for analysis. The following are the median (interquartile range) total and free concentrations (mg/L): midpoint, total 13.6 (11.2-26.0) and free 1.5 (0.7-2.5); trough, total 11.9 (10.2-22.7) and free 1.8 (0.6-2.6). The percentage free teicoplanin for the mid-dose and trough time points was 6.9% (4.5-15.6%) and 8.2% (5.5-16.4%), respectively. The correlation between total and free antibiotic concentrations was moderate for both the midpoint (ρ = 0.79, P = 0.0021) and trough (ρ = 0.63, P = 0.027). Only 42% and 58% of patients were in the lower and higher therapeutic ranges, respectively. In conclusion, use of standard dosing for teicoplanin leads to inappropriate concentrations in a high proportion of critically ill patients. Variability in teicoplanin protein binding is very high, placing significant doubt on the validity of total concentrations for therapeutic drug monitoring in critically ill patients. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Persistent konzo and cyanogen toxicity from cassava in northern Mozambique.
Ernesto, Mario; Cardoso, A Paula; Nicala, Domingos; Mirione, Estevão; Massaza, Fernando; Cliff, Julie; Haque, M Rezaul; Bradbury, J Howard
2002-06-01
We aimed to detect new cases of konzo and monitor cyanogen exposure from cassava flour in communities previously affected by konzo epidemics in Nampula Province, northern Mozambique. Other objectives were to detect subclinical upper motor neuron damage in schoolchildren and test a new kit to measure urinary thiocyanate concentration. In 1999 and 2000, we carried out active and passive case detection for konzo in Memba and Mogincual Districts. In July and October, 1999, we collected cassava flour from 30 houses in three communities and measured cyanogen concentrations with a picrate kit. In October 1999, we examined all schoolchildren in three communities for ankle clonus and measured urinary thiocyanate concentration in thirty schoolchildren in each of five communities with a picrate kit. We found 27 new cases of konzo in Mogincual District. Mean total cyanogen concentrations in cassava flour varied between both seasons and years, but were always high, ranging from 26 to 186 ppm. Very high mean levels at three sites in November 1998 and July 1999 were probably due to low rainfall in the 1997-1998 season. The proportion of schoolchildren with ankle clonus varied from 8 to 17%. The new picrate kit for urinary thiocyanate worked well; mean concentrations in schoolchildren ranged from 225 to 384 micromol x l(-1). Konzo and sub-clinical upper motor neuron damage persist in poor rural communities in northern Mozambique, associated with high cyanogen concentrations in cassava flour and high urinary thiocyanate concentrations in schoolchildren.
Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J
2014-01-01
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.
Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean
2016-10-01
To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.
NASA Astrophysics Data System (ADS)
Campbell, J. M.; Jordan, P.; Arnscheidt, J.
2015-01-01
This study reports the use of high-resolution water quality monitoring to assess the influence of changes in land use management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the issue of agricultural soil P management and subsequent diffuse transfers at high river flows over a 5-year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STSs) and mitigation efforts - a key concern for catchment management. Results showed an inconsistent response to soil P management over 5 years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STSs) and also to gauge their effectiveness.
NASA Astrophysics Data System (ADS)
Campbell, J. M.; Jordan, P.; Arnscheidt, J.
2014-09-01
This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.
Jeong, Ukkyo; Kim, Jhoon; Lee, Hanlim; Jung, Jinsang; Kim, Young J; Song, Chul H; Koo, Ja-Ho
2011-07-01
The contributions of long range transported aerosol in East Asia to carbonaceous aerosol and particulate matter (PM) concentrations in Seoul, Korea were estimated with potential source contribution function (PSCF) calculations. Carbonaceous aerosol (organic carbon (OC) and elemental carbon (EC)), PM(2.5), and PM(10) concentrations were measured from April 2007 to March 2008 in Seoul, Korea. The PSCF and concentration weighted trajectory (CWT) receptor models were used to identify the spatial source distributions of OC, EC, PM(2.5), and coarse particles. Heavily industrialized areas in Northeast China such as Harbin and Changchun and East China including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin region were identified as high OC, EC and PM(2.5) source areas. The conditional PSCF analysis was introduced so as to distinguish the influence of aerosol transported from heavily polluted source areas on a receptor site from that transported from relatively clean areas. The source contributions estimated using the conditional PSCF analysis account for not only the aerosol concentrations of long range transported aerosols but also the number of transport days effective on the measurement site. Based on the proposed algorithm, the condition of airmass pathways was classified into two types: one condition where airmass passed over the source region (PS) and another condition where airmass did not pass over the source region (NPS). For most of the seasons during the measurement period, 249.5-366.2% higher OC, EC, PM(2.5), and coarse particle concentrations were observed at the measurement site under PS conditions than under NPS conditions. Seasonal variations in the concentrations of OC, EC, PM(2.5), and coarse particles under PS, NPS, and background aerosol conditions were quantified. The contributions of long range transported aerosols on the OC, EC, PM(2.5), and coarse particle concentrations during several Asian dust events were also estimated. We also investigated the performance of the PSCF results obtained from combining highly time resolved measurement data and backward trajectory calculations via comparison with those from data in low resolutions. Reduced tailing effects and the larger coverage over the area of interest were observed in the PSCF results obtained from using the highly time resolved data and trajectories.
Lietz, Arthur C.; Meyer, Michael T.
2006-01-01
The Comprehensive Everglades Restoration Plan has identified highly treated wastewater as a possible water source for the restoration of natural water flows and hydroperiods in selected coastal areas, including the Biscayne Bay coastal wetlands. One potential source of reclaimed wastewater for the Biscayne Bay coastal wetlands is the effluent from the South District Wastewater Treatment Plant in southern Miami-Dade County. The U.S. Geological Survey, in cooperation with the Comprehensive Everglades Restoration Plan Wastewater Reuse Technology Pilot Project Delivery Team, initiated a study to assess the presence of emerging contaminants of concern in the South District Wastewater Treatment Plant influent and effluent using current wastewater-treatment methods. As part of the study, 24-hour composite and discrete samples were collected at six locations (influent at plants 1 and 2, effluent pump, reuse train, chlorine dioxide unit, and ultraviolet pilot unit) at the plant during: (1) a dry-season, low-flow event on March 2-3, 2004, with an average inflow rate of 83.7 million gallons per day; (2) a wet-season, average-flow event on July 20-21, 2004, with an average inflow rate of 89.7 million gallons per day; and (3) high-rate disinfection tests on October 5 and 20, 2004, with average flow rates of 84.1 and 119.6 million gallons per day, respectively. During these four sampling events, 26, 27, 29, and 35 constituents were detected, respectively. The following transformations in concentration were determined in the waste stream: -100 to 180 percent at the effluent pump and -100 to 85 percent at the reuse train on March 2-3, 2004, and -100 to 1,609 percent at the effluent pump and -100 to 832 percent at the reuse train on July 20-21, 2004; -100 to -37 percent at the effluent pump, -100 to -62 percent at the reuse train, -100 to -56 percent at the chlorine dioxide unit, and -100 to -40 percent at the ultraviolet pilot unit on October 5, 2004; and -100 to -4 percent at the effluent pump, -100 to 17 percent at the reuse train, -100 to -40 percent at the chlorine dioxide unit, and -100 to -14 percent at the ultraviolet pilot unit on October 20, 2004. Samples were tested for detection of household and industrial (organic) wastewater compounds, pharmaceutical compounds, antibiotic compounds, and hormones in influent. Two 'known' endocrine disrupting compounds?17 beta-estradiol (E2) and diethoxynonylphenol? and four 'suspected' endocrine-disrupting compounds?1,4-dichlorobenzene, benzophenone, tris(2-chloroethyl) phosphate, and tris(dichloroisopropyl) phosphate?were detected during these sampling events. Phenanthrene and indole showed the greatest concentration ranges and highest concentrations for the organic wastewater compounds. Acetaminophen showed the greatest concentration range and highest concentration, and warfarin showed the smallest concentration range for the pharmaceutical compounds. Sulfamethoxazole (a sulfonamide) showed the greatest concentration range and highest concentration, and sulfathiozole (also a sulfonamide) showed the smallest concentration range for the antibiotic compounds. Two hormones, 17 beta-estradiol (E2) and estrone (E1), were detected in influent. Samples were also tested for detection of organic wastewater compounds, pharmaceutical compounds, antibiotic compounds, and hormones in effluent. Indole showed the greatest concentration range and highest concentration, and triphenyl phosphate showed the smallest concentration range for the organic wastewater compounds. Dehydronifedipine showed the greatest concentration range and highest concentration, and warfarin had the smallest concentration range for the pharmaceutical compounds. Anhydro-erythromycin (a macrolide degradation product) showed the greatest concentration range, and sulfadiazine (a sulfonamide) and tetracycline showed the lowest concentration ranges for the antibiotic compounds. One hormone, 17 beta-estradiol (E2), was det
Terio, Karen A; Marker, Laurie; Munson, Linda
2004-04-01
The cheetah (Acinonyx jubatus) is highly endangered because of loss of habitat in the wild and failure to thrive in captivity. Cheetahs in zoos reproduce poorly and have high prevalences of unusual diseases that cause morbidity and mortality. These diseases are rarely observed in free-ranging cheetahs but have been documented in cheetahs that have been captured and held in captive settings either temporarily or permanently. Because captivity may be stressful for this species and stress is suspected as contributing to poor health and reproduction, this study aimed to measure chronic stress by comparing baseline concentrations of fecal corticoid metabolites and adrenal gland morphology between captive and free-ranging cheetahs. Additionally, concentrations of estradiol and testosterone metabolites were quantified to determine whether concentrations of gonadal steroids correlated with corticoid concentration and to assure that corticosteroids in the free-ranging samples were not altered by environmental conditions. Concetntrations of fecal corticoids, estradiol, and testosterone were quantified by radioimmunoassay in 20 free-ranging and 20 captive cheetahs from samples collected between 1994 and 1999. Concentrations of baseline fecal corticoids were significantly higher (p = 0.005) in captive cheetahs (196.08 +/- 36.20 ng/g dry feces) than free-ranging cheetahs (71.40 +/- 14.35 ng/g dry feces). Testosterone concentrations were lower in captive male cheetahs (9.09 +/- 2.84 ng/g dry feces) than in free-ranging cheetahs (34.52 +/- 12.11 ng/g dry feces), which suggests suppression by elevated corticoids in the captive males. Evidence for similar sulppression of estradiol concentrations in females was not present. Adrenal corticomedullary ratios were determined on midsagittal sections of adrenal glands from 13 free-ranging and 13 captive cheetahs obtained between 1991 and 2002. The degree of vacuolation of cortical cells in the zona fasciculata was graded for each animal. Corticomedullary ratios were larger (p = 0.05) in captive cheetahs; however, there was no difference (p = 0.31) in the degree of corticocyte vacnolation between the two populations. These data proxile both mnorphologic and functional evidence suggestive of chronic stress in captive cheetahs. Further research into the role of hypercortisolemia in the pathogenesis of the reproductive abnormalities and unusual diseases of captive cheetahs is needed.
Chemistry of selected high-elevation lakes in seven national parks in the western United States
Clow, David W.; Striegl, Robert G.; Nanus, Leora; Mast, M. Alisa; Campbell, Donald H.; Krabbenhoft, David P.
2002-01-01
A chemical survey of 69 high-altitude lakes in seven national parks in the western United States was conducted during the fallof 1999; the lakes were previously sampled during the fall of 1985, as part of the Western Lake Survey. Lakes in parks in the Sierra/southern Cascades (Lassen Volcanic, Yosemite, Sequoia/Kings Canyon National Parks) and in the southern RockyMountains (Rocky Mountain National Park) were very dilute; medianspecific conductance ranged from 4.4 to 12.2 μS cm-1 andmedian alkalinity concentrations ranged from 32.2 to 72.9 μeqL-1. Specific conductances and alkalinity concentrations were substantially higher in lakes in the central and northernRocky Mountains parks (Grand Teton, Yellowstone, and GlacierNational Parks), probably due to the prevalence of more reactivebedrock types. Regional patterns in lake concentrations of NO3 and SO4 were similar to regional patterns in NO3 and SO4 concentrations in precipitation, suggestingthat the lakes are showing a response to atmospheric deposition.Concentrations of NO3 were particularly high in Rocky Mountain National Park, where some ecosystems appear to be undergoing nitrogen saturation.
Schultz, M.M.; Furlong, E.T.
2008-01-01
Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.
Domagalski, Joseph L.
1999-01-01
Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a
Kabakov, Anatoli Y.; Rosenberg, Paul A.
2015-01-01
Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS). Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19–75 μM) and high (300–1200 μM) glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q 10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV) remained constant in the 10 μM–10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might vary in the presence of chloride are discussed. PMID:26301411
Gaidajis, George
2003-01-01
To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.
Zheng, Jinkai; Bi, Jinfeng; Johnson, David; Sun, Yue; Song, Mingyue; Qiu, Peiju; Dong, Ping; Decker, Eric; Xiao, Hang
2015-01-21
Polymethoxyflavones (PMFs) have been known as a type of bioactive flavones that possess various beneficial biological functions. Accumulating evidence demonstrated that the metabolites of PMFs, that is, hydroxyl PMFs (OH-PMFs), had more potent beneficial biological effects than their corresponding parent PMFs. To facilitate the further identification and quantification of OH-PMFs in biological samples, the aim of this study was to develop a methodology for the simultaneous determination of 10 OH-PMFs using high-performance liquid chromatography (HPLC) coupled with electrochemistry detection. The HPLC profiles of these 10 OH-PMFs affected by different chromatographic parameters (different organic composition in mobile phases, the concentration of trifluoroacetic acid, and the concentration of ammonium acetate) are fully discussed in this study. The optimal condition was selected for the following validation studies. The linearity of calibration curves, accuracy, and precision (intra- and interday) at three concentration levels (low, middle, and high concentration range) were verified. The regression equations were linear (r > 0.9992) over the range of 0.005-10 μM. The limit of detection for 10 OH-PMFs was in the range of 0.8-3.7 ng/mL (S/N = 3, 10 μL injection). The recovery rates ranged from 86.6 to 108.7%. The precisions of intraday and interday analyses were less than 7.37 and 8.63% for relative standard deviation, respectively. This validated method was applied for the analysis of a variety of samples containing OH-PMFs. This paper also gives an example of analyzing the metabolites of nobiletin in mouse urine using the developed method. The transformation from nobiletin to traces of 5-hydroxyl metabolites has been discovered by this effective method, and this is the first paper to report such an association.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).
A novel public health threat - high lead solder in stainless steel rainwater tanks in Tasmania.
Lodo, Kerryn; Dalgleish, Cameron; Patel, Mahomed; Veitch, Mark
2018-02-01
We identified two water tanks in Tasmania with water lead concentrations exceeding the Australian Drinking Water Guidelines (ADWG) limit; they had been constructed with stainless steel and high-lead solder from a single manufacturer. An investigation was initiated to identify all tanks constructed by this manufacturer and prevent further exposure to contaminated water. To identify water tanks we used sales accounts, blood and water lead results from laboratories, and media. We analysed blood and water lead concentration results from laboratories and conducted a nested cohort study of blood lead concentrations in children aged <18 years. We identifed 144 tanks constructed from stainless steel and high lead solder. Median water lead concentrations were significantly higher in the stainless steel tanks (121µg/L) than in the galvanised tanks (1µg/L). Blood lead concentrations ranged from 1 to 26µg/dL (median 5µg/dL); of these, 77% (n=50) were below the then-recommended health-related concentration of 10µg/dL. Concentrations in the 15 people (23%) above this limit ranged from 10-26µg/dL, with a median of 14µg/dL. The median blood lead concentration in the nested cohort of children was initially 8.5µg/dL, dropping to 4.5µg/dL after follow-up. Lead concentrations in the water tanks constructed from stainless steel and high-lead solder were up to 200 times above the recommended ADWG limits. Implications for public health: This investigation highlights the public health risk posed by use of non-compliant materials in constructing water tanks. © 2017 Department of Health and Human Services Tasmania.
Wang, Ji-Zhong; Liu, Liang-Ying; Zhang, Kai; Liang, Bo; Li, Guo-Lian; Chen, Tian-Hu
2012-11-01
Halogenated organic contaminants (HOCs) including 16 polybrominated diphenyl ethers (PBDEs) and 37 polychlorinated biphenyls (PCBs) were determined in 49 surfacial sediments from Chaohu Lake, a highly eutrophicated lake, China. PBDEs were detected in almost samples with the range of the total concentration (defined as Σ(16)PBDEs) from 0.84 to 86.6 ng g(-1). Compared with the occurrence of PBDEs in Pearl River Delta and Yangtze River Delta in China, lower percentage of BDE-209 over the concentration of Σ(16)PBDEs was inferred by the high-volume application of penta-BDE mixture product for local domestic furniture purpose. The total concentration of 37 PCBs (Σ(37)PCBs) ranged from 0.05 to 3.36 ng g(-1) with the most detection of PCB-1, -4, -52 and -71. Both the concentrations of Σ(16)PBDE and Σ(37)PCB poorly correlated with total organic carbon (TOC), suggesting the significant contribution of phytoplankton organic carbons to sediment TOC. The contamination by PBDEs and PCBs in western region of the lake was significantly more serious than in eastern lake. Our findings about the higher residues of PBDEs and PCBs in sediments at the estuary of Nanfei River compared to the other estuaries also supported the conclusion that urban area (Hefei city) was the main source of PBDEs and PCBs. The comparison with the concentration of HOC in the present study with those in other lacustrine sediments around the world suggested the contamination by PBDEs in Chaohu Lake is at middle of the global concentration range, whereas PCBs is at low end of the global range which could be elucidated by local economic development and historical usage of PBDEs and PCBs. The mass inventories of HOCs in the lake were estimated at 561 and 38 kg, which corresponds to only 0.000006% and 0.0001% of these global historical produce volumes, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dittman, J. A.; Shanley, J. B.; Driscoll, C. T.; Aiken, G.; Chalmers, A.; Towse, J.
2007-12-01
Mercury (Hg) contamination is widespread in remote areas of the northeastern USA. Atmospheric Hg is deposited on terrestrial uplands and subsequently mobilized to downstream aquatic ecosystems. We are investigating the fate of Hg deposited in forested watersheds by quantifying stream transport of Hg, and the interactions with dissolved and particulate organic matter. We hypothesize that the landscape characteristics controlling the production and mobility of organic matter will likewise control the mobility of Hg. This research was conducted at three sites in the Northeast that represent a range of hydrochemical conditions and span a range of wetland cover. Most stream export of Hg occurs at high flow; therefore we collected samples during snowmelt and storms. Mercury concentrations increase with discharge at all three sites; however the partitioning of Hg fractions (dissolved vs. particulate) differs among sites during high flow events. At the Hubbard Brook Experimental Forest, NH (watershed 6), there are no true wetlands and dissolved organic carbon (DOC) and total Hg (THg) concentrations, and suspended sediment concentration (SSC) (mean DOC = 3.1 mg C L-1; THg = 1.5 ng L-1; SSC < 50 mg L-1) are low even during the highest of flow events. At Sleepers River, VT (watershed 9), SSC can be elevated during events (SSC > 500 mg L-1), consequently the particulate Hg fraction can range as high as 95% of the THg concentration (mean particulate Hg concentration = 10.2 ng L- 1). At Archer Creek (Huntington Forest, NY), which has the greatest percent wetland cover (10%) of our three sites, DOC concentrations are high (mean DOC = 7.5 mg C L-1), while SSC are low (SSC < 10 mg L- 1). At Archer Creek, Hg is largely in the dissolved form (~75% of Hg) and strongly correlated with DOC (r2 = 0.90). The hydrophobic organic acid (HPOA) fraction of DOC is most effective at mobilizing Hg and is strongly correlated to Hg concentrations in stream water. This research suggests that high concentrations of Hg can be present in stream water from forest watersheds during high flow events, and that wetlands and suspended sediment favor Hg export. However, it is not clear to what degree this Hg is bioavailable for potential uptake by organisms in aquatic ecosystems following mobilization.
Trace elements in soil and biota in confined disposal facilities for dredged material
Beyer, W.N.; Miller, G.; Simmers, J.W.
1990-01-01
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.
Tunable stability of monodisperse secondary O/W nano-emulsions
NASA Astrophysics Data System (ADS)
Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.
2014-07-01
Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S3, and Tables S1-S6. See DOI: 10.1039/c4nr02273d
Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding.
Yoon, Chung Sik; Paik, Nam Won; Kim, Jeong Han
2003-11-01
This study was performed to investigate the fume generation rates (FGRs) and the concentrations of total chromium and hexavalent chromium when stainless steel was welded using flux-cored arc welding (FCAW) with CO2 gas. FGRs and concentrations of total chromium and hexavalent chromium were quantified using a method recommended by the American Welding Society, inductively coupled plasma-atomic emission spectroscopy (NIOSH Method 7300) and ion chromatography (modified NIOSH Method 7604), respectively. The amount of total fume generated was significantly related to the level of input power. The ranges of FGR were 189-344, 389-698 and 682-1157 mg/min at low, optimal and high input power, respectively. It was found that the FGRs increased with input power by an exponent of 1.19, and increased with current by an exponent of 1.75. The ranges of total chromium fume generation rate (FGRCr) were 3.83-8.27, 12.75-37.25 and 38.79-76.46 mg/min at low, optimal and high input power, respectively. The ranges of hexavalent chromium fume generation rate (FGRCr6+) were 0.46-2.89, 0.76-6.28 and 1.70-11.21 mg/min at low, optimal and high input power, respectively. Thus, hexavalent chromium, which is known to be a carcinogen, generated 1.9 (1.0-2.7) times and 3.7 (2.4-5.0) times as the input power increased from low to optimal and low to high, respectively. As a function of input power, the concentration of total chromium in the fume increased from 1.57-2.65 to 5.45-8.13% while the concentration of hexavalent chromium ranged from 0.15 to 1.08%. The soluble fraction of hexavalent chromium produced by FCAW was approximately 80-90% of total hexavalent chromium. The concentration of total chromium and the solubility of hexavalent chromium were similar to those reported from other studies of shielded metal arc welding fumes, and the concentration of hexavalent chromium was similar to that obtained for metal inert gas-welding fumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, R.G.
1979-05-01
During the summers of 1976, 1977, and 1978, 598 water and 1657 sediment samples were collected from 1775 locations within the 19,600-km/sup 2/ area of the Cortez Quadrangle, Colorado and Utah. Water samples were collected from streams, springs, and wells; sediment samples were collected from stream channels (wet and dry) and from springs. Each water sample was analyzed for 13 elements, and each sediment sample was analyzed for 43 elements. Uranium concentrations in water samples range from below the detection limit of 0.02 to 241.47 ppB and have a median of 0.87 ppB and a mean of 3.80 ppB. Backgroundmore » uranium concentrations are 2 to 5 ppB in several nonmountainous regions but are much lower in mountainous areas, particularly in the northeastern portion of the quadrangle. Water samples containing high uranium concentrations (>20 ppB) generally are associated with high conductivities, high concentrations of other metallic elements, and geologic units, such as the Mancos shale, that are unfavorable for uranium mineralization. However, four ground-water samples exhibit high uranium concentrations without concomitant high conductivities or high concentrations of other metallic elements. Two of these samples were collected from sites in the Slick Rock U--V district, and two were collected in the Morrison formation in the southern portion of the quadrangle where large uranium deposits are not known. Water samples collected from the northwestern corner of the quadrangle uniformly exhibit background uranium values but generally contain high nickel concentrations. In this area, U--Cu (White Canyon-type) deposits are hosted primarily by the Shinarump member of the Chinle formation. Uranium concentrations in sediment samples range from 0.51 to 76.41 ppM and have a median of 2.76 ppM and a mean of 3.08 ppM. Background uranium and metallic element concentrations decrease to the southwest from the highest values in the northeastern portion of the quadrangle.« less
Caskey, Brian J.; Bunch, Aubrey R.; Shoda, Megan E.; Frey, Jeffrey W.; Selvaratnam, Shivi; Miltner, Robert J.
2013-01-01
Excess nutrients in aquatic ecosystems can lead to shifts in species composition, reduced dissolved oxygen concentrations, fish kills, and toxic algal blooms. In this study, nutrients, periphyton chlorophyll a (CHLa), and invertebrate- and fishcommunity data collected during 2005-9 were analyzed from 318 sites on Indiana rivers and streams. The objective of this study was to determine which invertebrate and fish-taxa attributes best reflect the conditions of streams in Indiana along a gradient of nutrient concentrations by (1) determining statistically and ecologically significant relations among the stressor (total nitrogen, total phosphorus, and periphyton CHLa) and response (invertebrate and fish community) variables; and (2) determining the levels at which invertebrate- and fish-community measures change in response to nutrients or periphyton CHLa. For water samples at the headwater sites, total nitrogen (TN) concentrations ranged from 0.343 to 21.6 milligrams per liter (mg/L) (median 2.12 mg/L), total phosphorus (TP) concentrations ranged from 0.050 to 1.44 mg/L (median 0.093 mg/L), and periphyton CHLa ranged from 0.947 to 629 mg/L (median 69.7 mg/L). At the wadable sites, TN concentrations ranged from 0.340 to 10.0 mg/L (median 2.31 mg/L), TP concentrations ranged from 0.050 to 1.24 mg/L (median 0.110 mg/L), and periphyton CHLa ranged from 0.383 to 719 mg/L (median 44.7 mg/L). Recursive partitioning identified statistically significant low and high breakpoint thresholds on invertebrate and fish measures, which demonstrated the ecological response in enriched conditions. The combined community (invertebrate and fish) mean low and high TN breakpoint thresholds were 1.03 and 2.61 mg/L, respectively. The mean low and high breakpoint thresholds for TP were 0.083 and 0.144 mg/L, respectively. The mean low and high breakpoint thresholds for periphyton CHLa were 20.9 and 98.6 milligrams per square meter (mg/m2), respectively. Additive quantile regression analysis found similar thresholds (TN of 0.656 mg/L, mean TP of 0.118 mg/L, and periphyton CHLa of 27.2 mg/m2) for some stressor variables as determined by the breakpoint analysis. The TN and TP concentrations in this study showed a nutrient gradient that spanned three orders of magnitude. Sites were divided into Low, Medium, and High nutrient groups based on the 10th and 75th percentiles. The invertebrate and fish communities were similar along the nutrient gradient, using an analysis of similarity, demonstrating there was not a species trophic gradient. Within all nutrient groups, invertebrate and fish communities were dominated by nutrient tolerant taxa (algivores, herbivores, and omnivores) that included invertebrates, such as Cheumatopsyche sp., Physella sp., and fish such as Stonerollers (Campostoma spp.) and Bluntnose Minnow (Pimephales notatus). To determine if low nutrient concentrations at some sites were caused by algal uptake and not oligotrophic conditions, sites with low nutrient concentrations (less than 10th percentile for TN or TP) were examined based on the Low (less than or equal to the 10th percentile) and High (greater than the 75th percentile) periphyton CHLa concentrations. Within low nutrient sites, the invertebrate and fish communities were statistically different between Low and High periphyton CHLa categories. The majority of variance between the Low and High periphyton CHLa categories was caused by Cheumatopsyche sp. (caddisfly), Physella sp. (pulmonate snail), and Caenis latipennis (a mayfly) in the invertebrate community; and caused by Stonerollers, Western Blacknose Dace (Rhinichthys atratulus meleagris), and Creek Chub (Semotilus atromaculatus) in the fish community. The dominance of tolerant herbivore and omnivore taxa in the High periphyton CHLa group indicates that low nutrient concentrations are a result of nutrient uptake and increased algal growth. This study highlights the importance of assessing multiple lines of evidence when attempting to identify the trophic condition of a site.
Highly sensitive and selective sugar detection by terahertz nano-antennas
NASA Astrophysics Data System (ADS)
Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q.-Han; Seo, Minah
2015-10-01
Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5-2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity.
Highly sensitive and selective sugar detection by terahertz nano-antennas
Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah
2015-01-01
Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5–2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity. PMID:26494203
Determinants of hydroxychloroquine blood concentration variations in systemic lupus erythematosus.
Jallouli, M; Galicier, L; Zahr, N; Aumaître, O; Francès, C; Le Guern, V; Lioté, F; Smail, A; Limal, N; Perard, L; Desmurs-Clavel, H; Le Thi Huong, D; Asli, B; Kahn, J-E; Pourrat, J; Sailler, L; Ackermann, F; Papo, T; Sacré, K; Fain, O; Stirnemann, J; Cacoub, P; Leroux, G; Cohen-Bittan, J; Sellam, J; Mariette, X; Blanchet, B; Hulot, J S; Amoura, Z; Piette, J C; Costedoat-Chalumeau, N
2015-05-01
Blood concentrations of hydroxychloroquine (HCQ) vary widely among patients with systemic lupus erythematosus (SLE). A pharmacokinetic/pharmacodynamic relationship has been found in different situations, and a very low blood concentration of HCQ is a simple marker of nonadherence to treatment. Therefore, interest in blood HCQ concentration measurement has increased, but little is known about factors that influence blood HCQ concentration variability. This study was undertaken to analyze determinants of blood HCQ concentrations. We conducted a retrospective analysis of patient data, including data from the Plaquenil Lupus Systemic (PLUS) study, to determine the association of epidemiologic, clinical, and biologic factors with blood HCQ concentrations. Data for nonadherent patients (blood HCQ concentration <200 ng/ml) were excluded. To examine homogeneous pharmacologic data, we restricted the analyses of the PLUS data to the 509 SLE patients receiving 400 mg/day. We found no association of ethnicity or smoking with blood HCQ concentrations and no pharmacokinetic drug-drug interaction with antacids or with inhibitors or inducers of cytochrome P450 enzymes. On multivariate analysis, high body mass index (P = 0.008), no treatment with corticosteroids (P = 0.04), increased time between the last tablet intake and measurement of blood HCQ concentrations (P = 0.017), low platelet count (P < 0.001), low neutrophil count (P < 0.001), and high estimated creatinine clearance (P < 0.001) were associated with low blood HCQ concentrations. In 22 SLE patients with chronic renal insufficiency (median serum creatinine clearance 52 ml/minute [range 23-58 ml/minute]) who received 400 mg/day HCQ, the median blood HCQ concentration was significantly higher than that in the 509 patients from the PLUS study (1,338 ng/ml [range 504-2,229 ng/ml] versus 917 ng/ml [range 208-3316 ng/ml]) (P < 0.001). We provide a comprehensive analysis of determinants of blood HCQ concentrations. Because this measurement is increasingly being used, these data might be useful for clinicians. © 2015, American College of Rheumatology.
Bentley, R Timothy; Thomovsky, Stephanie A; Miller, Margaret A; Knapp, Deborah W; Cohen-Gadol, Aaron A
2018-06-04
Metronomic (daily low-dose) chlorambucil requires further study before use in human patients with glioma. The aim of this study was to investigate distribution and safety of metronomic chlorambucil in naturally occurring canine glioma. Eight client-owned (pet) dogs with newly diagnosed spontaneous glioma were prospectively enrolled. Chlorambucil was administered preoperatively at 4 mg/m 2 every 24 hours for ≥3 days and continued postoperatively until death or dose-limiting adverse events. Chlorambucil concentrations in the surgical glioma specimen, cerebrospinal fluid, and serum were analyzed. Dogs additionally received lomustine postoperatively. Dogs were monitored for seizures, myoclonus, cytopenias, and tumor recurrence. Complete microsurgical resection was achieved in 7 oligodendrogliomas and 1 astrocytoma (6 high grade, 2 low grade). Median surgical glioma specimen chlorambucil concentration was 0.52 ng/g (range, 0-2.62 ng/g), or 37% (range, 0%-178%) of serum concentration. Median cerebrospinal fluid concentration was 0.1 ng/mL (range, 0-0.3 ng/mL). Chlorambucil was not associated with increase in seizure activity. Six dogs displayed prolonged seizure-free intervals. There was no myoclonus. Three dogs developed asymptomatic thrombocytopenia after 8-12 months of chlorambucil. Median progression-free survival was 253 days (range, 63-860 days). Median overall survival was 257 days (range, 64-860 days). The presence of intratumoral chlorambucil indicated an altered blood-brain barrier that varied from case to case. Despite sporadic previous reports of neurotoxicity, prolonged seizure-free intervals supported a high safety margin at this dose in this species. Metronomic chlorambucil was well tolerated. Spontaneous canine glioma offers a robust preclinical model. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu
2016-04-15
The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channelsmore » of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits of inertial focusing for technological applications.« less
NASA Astrophysics Data System (ADS)
Sahu, Jyoti; Juvekar, Vinay A.
2018-05-01
Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.
Platinum concentration in silicone breast implant material and capsular tissue by ICP-MS.
Maharaj, S V M
2004-09-01
Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the concentration of platinum (Pt) in silicone breast implant gel (range, 0.26-48.90 microg g(-1) Pt; n=15), elastomer (range, 3.05-28.78 microg g(-1) Pt; n=7), double lumen (range, 5.79-125.27 microg g(-1) Pt; n=7), foam (range, 5.79-8.36 microg g(-1) Pt; n=2), and capsular tissue (range, 0.003-0.272 microg g(-1) Pt; n=15). The results show that very high levels of Pt are present in the encasing elastomer, double lumen, and foam envelope materials. Silicone breast implants can be a source of significant Pt exposure for individuals with these implants.
Lubin, Arnaud; Sheng, Sheng; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-11-17
Lack of knowledge on the expected concentration range or insufficient linear dynamic range of the analytical method applied are common challenges for the analytical scientist. Samples that are above the upper limit of quantification are typically diluted and reanalyzed. The analysis of undiluted highly concentrated samples can cause contamination of the system, while the dilution step is time consuming and as the case for any sample preparation step, also potentially leads to precipitation, adsorption or degradation of the analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, Andrey; Mirzoev, Alexander
2015-08-17
In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides. ?? 2002 Elsevier Science Ltd. All rights reserved.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low ‘intrinsic’ SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides.
Dolton, Michael J.; Perera, Vidya; Pont, Lisa G.
2014-01-01
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens. PMID:24126579
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.
2013-04-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Major and trace element geochemistry and background concentrations for soils in Connecticut
Brown, Craig; Thomas, Margaret A.
2014-01-01
Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The <2-millimeter fraction of each sample was analyzed for 44 elements by methods that yield the total or near-total elemental content. Sample sites were characterized by glacial setting, underlying bedrock geology, and soil type. These spatial data were used with element concentrations in the C-horizon to relate geologic factors to soil chemistry. Concentrations of elements in C-horizon soils varied with grain size in surficial glacial materials and with underlying rock types, as determined using nonparametric statistical procedures. Concentrations of most elements in C-horizon soils showed a positive correlation with silt and (or) clay content and were higher in surficial materials mapped as till, thick till, and (or) fines. Element concentrations in C-horizon soils showed significant differences among the underlying geologic provinces and were highest overlying the Grenville Belt and (or) the Grenville Shelf Sequence Provinces in western CT. These rocks consist mainly of carbonates and the relatively high element concentrations in overlying soils likely result from less influence of dilution by quartz compared to other provinces. Element concentrations in C-horizon soils in CT were compared with those in samples from other New England states overlying similar lithologic bedrock types. The upper range of As concentrations in C-horizon soils overlying the New Hampshire-Maine (NH-ME) Sequence in CT was 15 mg/kg, lower than the upper range of 24 mg/kg in C-horizon soils overlying the same sequence in ME. In CT, U concentration means were significantly higher in C-horizon soils overlying Avalonian granites, and U concentrations ranged as high as 14 mg/kg, compared to those in C-horizon soil samples collected from other New England states, which ranged as high as 6.1 mg/kg in a sample in NH overlying the NH-ME Sequence. Element concentrations in C-horizon soils in CT were compared with those in samples collected from shallower depths. Concentrations of most major elements were highest in C-horizon soil samples, including Al, Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.
Ji, De; Su, Xiaonan; Huang, Ziyan; Wang, Qiaohan; Lu, Tulin
2018-06-01
We established a rapid and sensitive ultra high-performance liquid chromatography tandem mass spectrometry method for the simultaneous quantification of xanthones and steroidal saponins in rat plasma. Chromatographic separation was achieved on a C 18 column with a mobile phase comprising acetonitrile and 0.1% formic acid. The detection was performed by negative electrospray ionization in multiple reaction monitoring mode. The validated method showed good linearity within the tested range (r > 0.9945). The intra- and interday precision at high, medium, and low concentrations was less than 7.96%. The bias of accuracies ranged from -1.92 to 9.62%. The extraction recoveries of the compounds ranged from 84.78 to 88.69%, and the matrix effects ranged from 96.76 to 108.59%. This method was successfully applied to a pharmacokinetic comparison of crude and salt-processed Anemarrhenae Rhizoma aqueous extracts after oral administration in rats. The maximum plasma concentration and area under concentration-time curve of timosaponin BIII and timosaponin AIII increased significantly (P < 0.05 or 0.01) and those of timosaponin BII decreased significantly (P < 0.05) after processing. These results could contribute to the clinical application of crude and salt-processed Anemarrhenae Rhizoma and reveal the processing mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Survey of polyfluorinated chemicals (PFCs) in the atmosphere over the northeast Atlantic Ocean
NASA Astrophysics Data System (ADS)
Shoeib, Mahiba; Vlahos, Penny; Harner, Tom; Peters, Andrew; Graustein, Margaret; Narayan, Julie
2010-08-01
High volume air sampling in Bermuda, Sable Island (Nova Scotia) and along a cruise track from the Gulf of Mexico to northeast coast of the USA, was carried out to assess air concentrations, particle-gas partitioning and transport of polyfluorinated chemicals (PFCs) in this region. Samples were collected in the summer of 2007. Targeted compounds included the neutral PFCs: fluorotelomer alcohols (FTOHs), perfluoroalkyl sulfonamides (FOSAs) and perfluoroalkyl sulfonamido ethanols (FOSEs). Among the FTOHs, 8:2 FTOH was dominant in all samples. Sum of the concentration of FTOHs (gas+particle phase) were higher in Bermuda (mean, 34 pg m -3) compared to Sable Island (mean, 16 pg m -3). In cruise samples, sum of FTOHs were highly variable (mean, 81 pg m -3) reflecting contributions from land-based sources in the northeast USA with concentrations reaching as high as 156 pg m -3. Among the FOSAs and FOSEs, MeFOSE was dominant in all samples. In Bermuda, levels of MeFOSE were exceptionally high (mean, 62 pg m -3), exceeding the FTOHs. Sable Island samples also exhibited the dominance of MeFOSE but at a lower concentration (mean, 15 pg m -3). MeFOSE air concentrations (pg m -3) in cruise samples ranged from 1.6 to 73 and were not linked to land-based sources. In fact high concentrations of MeFOSE observed in Bermuda were associated with air masses that originated over the Atlantic Ocean. The partitioning to particles for 8:2 FTOH, 10:2 FTOH, MeFOSE and EtFOSE ranged from as high as 15 to 42% for cruise samples to 0.9 to 14% in Bermuda. This study provides key information for validating and developing partitioning and transport models for the PFCs.
Amorphous In–Ga–Zn–O Powder with High Gas Selectivity towards Wide Range Concentration of C2H5OH
Chen, Hongxiang; Jiang, Wei; Zhu, Lianfeng; Yao, Youwei
2017-01-01
Amorphous indium gallium zinc oxide (a-IGZO) powder was prepared by typical solution-based process and post-annealing process. The sample was used as sensor for detecting C2H5OH, H2, and CO. Gas-sensing performance was found to be highly sensitive to C2H5OH gas in a wide range of concentration (0.5–1250 ppm) with the response of 2.0 towards 0.5 ppm and 89.2 towards 1250 ppm. Obvious difference of response towards C2H5OH, H2, and CO was found that the response e.g., was 33.20, 6.64, and 2.84 respectively at the concentration of 200 ppm. The response time and recovery time of was 32 s and 14 s respectively towards 200 ppm concentration of C2H5OH gas under heating voltage of 6.5 V. PMID:28538686
Twigg, L E; King, D R; Bowen, L H; Wright, G R; Eason, C T
1996-01-01
Gas chromatography confirmed the relatively high concentrations of fluoroacetate found in toxic Gastrolobiums, a genus of indigenous Australian plants. Fluoroacetate concentration in these plants ranged from 0.1 to 3875 micrograms/g (ppm) dry weight, with young leaves and flowers containing the highest concentrations. However, there was considerable intrastand variation between individual plants of at least two species with coefficients of variation ranging from 94% to 129%. Despite the high concentrations of fluoroacetate in many species, only one of nine soil samples collected from beneath these plants contained fluoroacetate. None of the 16 water samples collected from nearby streams and catchment dams contained fluoroacetate. This suggests that fluoroacetate does not persist in this environment. Fluoroacetate was also found in the genus Nemcia, and very low levels of fluoroacetate (ng/g) were detected in the foodstuffs, tea and guar gum. The latter indicates that other plant species may produce biologically insignificant amounts of fluoroacetate.
Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China
NASA Astrophysics Data System (ADS)
Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike
2018-03-01
Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.
Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.
Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim
2017-12-15
The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.
Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.
Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.
1987-01-01
Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.
Toxicity of sediments and pore water from Brunswick Estuary, Georgia
Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey
1993-01-01
A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.
Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun
2006-03-01
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Gurganus, E. A.
1977-01-01
An effort to investigate the potential of remote sensing for monitoring nonpoint source pollution was conducted. Spectral reflectance characteristics for four types of soil sediments were measured for mixture concentrations between 4 and 173 ppm. For measurements at a spectral resolution of 32 mm, the spectral reflectances of Calvert, Ball, Jordan, and Feldspar soil sediments were distinctly different over the wavelength range from 400 to 980 nm at each concentration tested. At high concentrations, spectral differences between the various sediments could be detected by measurements with a spectral resolution of 160 nm. At a low concentration, only small differences were observed between the various sediments when measurements were made with 160 nm spectral resolution. Radiance levels generally varied in a nonlinear manner with sediment concentration; linearity occurred in special cases, depending on sediment type, concentration range, and wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M. S.
Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less
NASA Astrophysics Data System (ADS)
Sprovieri, F.; Pirrone, N.; Hedgecock, I. M.; Landis, M. S.; Stevens, R. K.
2002-12-01
It is well known that due to its long atmospheric residence time, mercury is distributed on a global scale and aeolian transport is believed to be the major contributor to mercury in polar environments. No measurements of reactive gaseous mercury (RGM) at all have ever been performed in the Antarctic before. Hg0(g) concentrations were in the range 0.29 to 2.3 ng m-3, with an average value of 0.9 ± 0.3 ng m-3. RGM was measured using KCl-coated annular denuders and a speciation unit coupled to a TGM analyzer; concentrations ranged from 10.5 to 334 pg m-3, with an average of 116.2 ± 77.8 pg m-3. The Hg0(g) measurements are in good agreement with the few data available for such southerly latitudes. The RGM concentrations are as high as those found in some industrial environments; the high concentrations in the absence of local sources (anthropogenic or natural) show that in situ gas phase oxidation of Hg0 is the most important factor influencing RGM production and therefore also Hg deposition. The toxicity of Hg means that the consequences of high concentrations of oxidized and soluble Hg species depositing in the fragile Antarctic environment could be serious indeed.
Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paul Allen; Lee, Denise L
2009-05-01
In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperaturemore » range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a temperature of 5{sup o}C, and overestimates the gadolinium concentration at all higher temperatures. This guarantees that the calculation is conservative, in that the actual concentration will be at least as high as that calculated. If an additional safety factor is desired, it is recommended that an administrative control limit be set that is higher than the required minimum amount of gadolinium.« less
Experiment study on sediment erosion of Pelton turbine flow passage component material
NASA Astrophysics Data System (ADS)
Liu, J.; Lu, L.; Zhu, L.
2012-11-01
A rotating and jet experiment system with high flow velocity is designed to study the anti-erosion performance of materials. The resultant velocity of the experiment system is high to 120 m/s. The anti-erosion performance of materials used in needle and nozzle and bucket of Pelton turbine, which is widely used in power station with high head and little discharge, was studied in detail by this experiment system. The experimental studies were carried with different resultant velocities and sediment concentrations. Multiple linear regression analysis method was applied to get the exponents of velocity and sediment concentration. The exponents for different materials are different. The exponents of velocity ranged from 3 to 3.5 for three kinds of material. And the exponents of sediment concentration ranged from 0.97 to 1.03 in this experiment. The SEM analysis on the erosion surface of different materials was also carried. On the erosion condition with high resultant impact velocity, the selective cutting loss of material is the mainly erosion mechanism for metal material.
High-Solids Polyimide Precursor Solutions
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2004-01-01
The invention is a highly concentrated stable solution of polymide precursors (monometers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursos solution comparisons effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.
The measurement of the size distribution of artificial fogs
NASA Technical Reports Server (NTRS)
Deepak, A.; Cliff, W. C.; Mcdonald, J. R.; Ozarski, R.; Thomson, J. A. L.; Huffaker, R. M.
1974-01-01
The size-distribution of the fog droplets at various fog particle concentrations in fog chamber was determined by two methods: (1) the Stokes' velocity photographic method and (2) using the active scattering particle spectrometer. It is shown that the two techniques are accurate in two different ranges of particle size - the former in the radii range (0.1 micrometers to 10.0 micrometers), and the latter for radii greater than 10.0 micrometers. This was particularly true for high particle concentration, low visibility fogs.
Kolle, Susanne N; Melching-Kollmuss, Stephanie; Krennrich, Gerhard; Landsiedel, Robert; van Ravenzwaay, Bennard
2011-08-01
Humans are exposed to a combination of various substances such as cosmetic ingredients, drugs, biocides, pesticides and natural-occurring substances in food. The combined toxicological effects of two or more substances can simply be additive on the basis of response-addition, or it can be greater (synergistic) or smaller (antagonistic) than this. The need to assess combined effects of compounds with endocrine activity is currently discussed for regulatory risk assessment. We have used a well described yeast based androgen receptor transactivation assay YAS to assess the combinatorial effects of vinclozolin and flutamide; both mediating antiandrogenicity via the androgen receptor. Both vinclozolin and flutamide were antiandrogens of similar potency in the YAS assay. In the concentration range tested the two antiandrogens vinclozolin and flutamide did not act synergistically. Concentration additivity was observed in the linear, non-receptor-saturated concentration range. At high concentrations of one of the two substances tested the contribution of the second at lower concentration levels was less than additive. The combined response of both compounds at high concentration levels was also less than additive (saturation effect). At concentration levels which did not elicit a response of the individual compounds, the combination of these compounds also did not elicit a response. Copyright © 2011 Elsevier Inc. All rights reserved.
Chien, Szu-Chia; Pérez-Sánchez, Germán; Gomes, José R. B.; ...
2017-02-17
Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant–water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems—in the concentration range where pure surfactant solutions yieldmore » a liquid crystal phase—the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.« less
Multiorgan insulin sensitivity in lean and obese subjects.
Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel
2012-06-01
To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.
Han, Ying; Liu, Wenbin; Hansen, Hans Chr Bruun; Chen, Xuebin; Liao, Xiao; Li, Haifeng; Wang, Mengjing; Yan, Nan
2016-08-01
Long-range atmospheric transportation (LRAT) of persistent organic pollutants followed by their deposition in cold, arid regions is of wide concern. This problem occurs at Qinghai Lake in the northeastern Tibetan Plateau, a sparsely populated area with extreme weather conditions and little current or historical anthropogenic pollution. The concentrations and distribution patterns of the mono-to octa-chlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) congeners in surface soil samples collected from around Qinghai Lake were quantified. Concentration differences between low-(mono-to tri-) chlorinated PCDD/Fs and high-(tetra-to octa-) chlorinated PCDD/Fs were measured. High PCDD/F levels were detected, with total concentrations of 15,108 ± 6323 pg/g for the 27 PCDD/F congeners and 15,104 ± 6324 pg/g for the low-chlorinated PCDD/Fs. The concentrations of 17 2,3,7,8-substituted PCDD/Fs were only 3.1 ± 4.4 pg/g and the corresponding international toxicity equivalency (I-TEQ) was 0.11 ± 0.22 pg I-TEQ/g. Given their higher vapor pressures and lower boiling points, low-chlorinated PCDD/Fs, were predominantly gaseous, whereas high-chlorinated PCDD/Fs were predominantly solid, indicating that there is a higher potential for long-range transport of low-chlorinated PCDD/Fs. Overall, because of their high LRAT potential, low-chlorinated PCDD/Fs may pose a greater risk to local ecosystems in cold, remote areas than high-chlorinated PCDD/Fs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maternal exposure to metals—Concentrations and predictors of exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, A.C., E-mail: a.callan@ecu.edu.au; Hinwood, A.L.; Ramalingam, M.
2013-10-15
A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations ofmore » metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01–0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01–0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: • High concentrations of uranium with respect to international literature. • Environmental concentrations of Al, Cu and Li influenced urinary concentrations. • Exposure to mechanics/welding hobbies increased blood Mn concentrations. • Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn.« less
A Unique Photon Bombardment System for Space Applications
NASA Technical Reports Server (NTRS)
Klein, E. J.
1993-01-01
The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.
Remote measurement of turbidity and chlorophyll through aerial photography
NASA Technical Reports Server (NTRS)
Schwebel, M. D.; James, W. P.; Clark, W. J.
1973-01-01
Studies were conducted utilizing six different film and filter combinations to quantitatively detect chlorophyll and turbidity in six farm ponds. The low range of turbidity from 0-35 JTU correlated well with the density readings from the green band of normal color film and the high range above 35 JTU was found to correlate with density readings in the red band of color infrared film. The effect of many of the significant variables can be reduced by using standardized procedures in taking the photography. Attempts to detect chlorophyll were masked by the turbidity. The ponds which were highly turbid also had high chlorophyll concentrations; whereas, the ponds with low turbidity also had low chlorophyll concentrations. This prevented a direct correlation for this parameter. Several suggested approaches are cited for possible future investigations.
Hsu, Yung-Heng; Chen, Dave Wei-Chih; Tai, Chun-Der; Chou, Ying-Chao; Liu, Shih-Jung; Ueng, Steve Wen-Neng; Chan, Err-Cheng
2014-01-01
We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics. PMID:25246790
Wang, Xiao-Lan; Zhan, Ting-Ting; Zhan, Xian-Cheng; Tan, Xiao-Ying; Qu, Xiao-You; Wang, Xin-Yue; Li, Cheng-Rong
2014-01-01
The osmotic pressure of ammonium sulfate solutions has been measured by the well-established freezing point osmometry in dilute solutions and we recently reported air humidity osmometry in a much wider range of concentration. Air humidity osmometry cross-validated the theoretical calculations of osmotic pressure based on the Pitzer model at high concentrations by two one-sided test (TOST) of equivalence with multiple testing corrections, where no other experimental method could serve as a reference for comparison. Although more strict equivalence criteria were established between the measurements of freezing point osmometry and the calculations based on the Pitzer model at low concentration, air humidity osmometry is the only currently available osmometry applicable to high concentration, serves as an economic addition to standard osmometry.
Tian, Chao; Wang, Lixin; Novick, Kimberly A
2016-10-15
High-precision analysis of atmospheric water vapor isotope compositions, especially δ(17) O values, can be used to improve our understanding of multiple hydrological and meteorological processes (e.g., differentiate equilibrium or kinetic fractionation). This study focused on assessing, for the first time, how the accuracy and precision of vapor δ(17) O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ(2) H, δ(18) O and δ(17) O measurements. The sensitivity of accuracy and precision to water vapor concentration was evaluated using two international standards (GISP and SLAP2). The sensitivity of precision to delta value was evaluated using four working standards spanning a large delta range. The sensitivity of precision to averaging-time was assessed by measuring one standard continuously for 24 hours. Overall, the accuracy and precision of the δ(2) H, δ(18) O and δ(17) O measurements were high. Across all vapor concentrations, the accuracy of δ(2) H, δ(18) O and δ(17) O observations ranged from 0.10‰ to 1.84‰, 0.08‰ to 0.86‰ and 0.06‰ to 0.62‰, respectively, and the precision ranged from 0.099‰ to 0.430‰, 0.009‰ to 0.080‰ and 0.022‰ to 0.054‰, respectively. The accuracy and precision of all isotope measurements were sensitive to concentration, with the higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. The precision was also sensitive to the range of delta values, although the effect was not as large compared with the sensitivity to concentration. The precision was much less sensitive to averaging-time than the concentration and delta range effects. The accuracy and precision performance of the T-WVIA depend on concentration but depend less on the delta value and averaging-time. The instrument can simultaneously and continuously measure δ(2) H, δ(18) O and δ(17) O values in water vapor, opening a new window to better understand ecological, hydrological and meteorological processes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L
2013-04-18
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
Novel AlInN/GaN integrated circuits operating up to 500 °C
NASA Astrophysics Data System (ADS)
Gaska, R.; Gaevski, M.; Jain, R.; Deng, J.; Islam, M.; Simin, G.; Shur, M.
2015-11-01
High electron concentration in 2DEG channel of AlInN/GaN devices is remarkably stable over a broad temperature range, enabling device operation above 500 °C. The developed IC technology is based on three key elements: (1) exceptional quality AlInN/GaN heterostructure with very high carrier concentration and mobility enables IC fast operation in a broad temperature range; (2) heterostructure field effect transistor approach t provides fully planar IC structure which is easy to scale and to combine with the other high temperature electronic components; (3) fabrication advancements including novel metallization scheme and high-K passivation/gate dielectrics enable high temperature operation. The feasibility of the developed technology was confirmed by fabrication and testing of the high temperature inverter and differential amplifier ICs using AlInN/GaN heterostructures. The developed ICs showed stable performance with unit-gain bandwidth above 1 MHz and internal response time 45 ns at temperatures as high as 500 °C.
Chai, Chao; Cheng, Qiqi; Wu, Juan; Zeng, Lusheng; Chen, Qinghua; Zhu, Xiangwei; Ma, Dong; Ge, Wei
2017-08-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed in soil (n=196) and vegetable (n=30) collected from greenhouses, and also in the soil (n=27) collected from agriculture fields close to the greenhouses in Shandong Province, China. The total PAH concentration (∑ 16 PAH) ranged from 152.2µg/kg to 1317.7µg/kg, within the moderate range in agricultural soils of China. Three-ring PAHs were the dominant species, with Phe (16.3%), Ace (13.1%), and Fl (10.5%) as the major compounds. The concentrations of low molecular weight (LMW ≤3 rings) PAHs were high in the east and north of Shandong, while the concentrations of high molecular weight (HMW ≥4 rings) PAHs were high in the south and west of the study area. The PAH level in soils in industrial areas (IN) was higher than those in transport areas (TR) and rural areas (RR). No significant difference in concentration of ∑ 16 PAH and composition was observed in soils of vegetable greenhouses and field soils. PAH concentration exhibited a weakly positive correlation with alkaline nitrogen, available phosphorus in soil, but a weakly negative correlation with soil pH. However, no obvious correlation was observed between PAH concentration and organic matter of soil, or ages of vegetable greenhouses. ∑ 16 PAH in vegetables ranged from 89.9µg/kg to 489.4µg/kg, and LMW PAHs in vegetables positively correlated with those in soils. The sources of PAHs were identified and quantitatively assessed through positive matrix factorization. The main source of PAHs in RR was coal combustion, while the source was traffic in TR and IN. Moreover, petroleum source, coke source, biomass combustion, or mixed sources also contributed to PAH pollution. According to Canadian soil quality guidelines, exposure to greenhouse soils in Shandong posed no risk to human health. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten
2013-04-01
Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1‰), good accuracy and linearity (overall SD <0.9‰). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50‰ among samples did not affect the precision of the analysis of natural abundance and labeled samples. Natural DOM, derived from different soils and assessed at various concentrations, was measured with similar good analytical performance, and also tested for the effect of freezing and re-dissolving. We found good performance of TOC-IRMS in comparison with other systems capable of determining C concentration and isotopic signatures. We recognize the advantages of this system providing: - High sample throughput, short measurement time (15 minutes), flexible sample volume - Easy maintenance, handling, rapid sample preparation (no pretreatment) This preliminary assessment highlights wide-ranging opportunities for further research on concentrations and isotopic signatures by TOC-IRMS to elucidate the role of dissolved carbon in terrestrial and aquatic systems.
David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.
2009-01-01
In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.
Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia
2011-05-01
The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.
Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang
2011-01-01
The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344
Gray, J.E.; Greaves, I.A.; Bustos, D.M.; Krabbenhoft, D.P.
2003-01-01
The Palawan Quicksilver mine, Philippines, produced about 2,900 t of mercury during mining of cinnabar ore from 1953 to 1976. More than 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining, much of which were used to construct a jetty in nearby Honda Bay. Since 1995, high Hg contents have been found in several people living near the mine, and 21 of these people were treated for mercury poisoning. Samples of mine-waste calcine contain high total Hg concentrations ranging from 43-660 ??g/g, whereas total Hg concentrations in sediment samples collected from a mine pit lake and local stream vary from 3.7-400 ??g/g. Mine water flowing through the calcines is acidic, pH 3.1-4.3, and total Hg concentrations ranging from 18-31 ??g/l in this water significantly exceed the 1.0-??g/l drinking water standard for Hg recommended by the World Health Organization (WHO). Total Hg contents are generally lower in water samples collected from surrounding domestic wells, the mine pit lake, Honda Bay, and the nearby stream, varying from 0.008-1.4 ??g/l. Methylmercury concentrations in water draining mine calcines range from <0.02-1.4 ng/l, but methylmercury is highest in the pit lake water, ranging from 1.7-3.1 ng/l. Mercury methylation at the Palawan mine is similar to or higher than that found in other mercury mines worldwide. Much of the methylmercury generated in Palawan mine-waste calcines and those in Honda Bay is transferred to water, and then to marine fish and seafood. A food source pathway of Hg to humans is most likely in this coastal, high fish-consuming population.
Bees' subtle colour preferences: how bees respond to small changes in pigment concentration
NASA Astrophysics Data System (ADS)
Papiorek, Sarah; Rohde, Katja; Lunau, Klaus
2013-07-01
Variability in flower colour of animal-pollinated plants is common and caused, inter alia, by inter-individual differences in pigment concentrations. If and how pollinators, especially bees, respond to these small differences in pigment concentration is not known, but it is likely that flower colour variability impacts the choice behaviour of all flower visitors that exhibit innate and learned colour preferences. In behavioural experiments, we simulated varying pigment concentrations and studied its impact on the colour choices of bumblebees and honeybees. Individual bees were trained to artificial flowers having a specific concentration of a pigment, i.e. Acridine Orange or Aniline Blue, and then given the simultaneous choice between three test colours including the training colour, one colour of lower and one colour of higher pigment concentration. For each pigment, two set-ups were provided, covering the range of low to middle and the range of middle to high pigment concentrations. Despite the small bee-subjective perceptual contrasts between the tested stimuli and regardless of training towards medium concentrations, bees preferred neither the training stimuli nor the stimuli offering the highest pigment concentration but more often chose those stimuli offering the highest spectral purity and the highest chromatic contrast against the background. Overall, this study suggests that bees choose an intermediate pigment concentration due to its optimal conspicuousness. It is concluded that the spontaneous preferences of bees for flower colours of high spectral purity might exert selective pressure on the evolution of floral colours and of flower pigmentation.
Determination of six iodotrihalomethanes in drinking water in Korea.
Woo, Bomi; Park, Ju-Hyun; Kim, Seungki; Lee, Jeongae; Choi, Jong-Ho; Pyo, Heesoo
2018-06-02
Trihalomethanes (THMs) are chemicals regulated by Environmental Protection Agency's first drinking water regulation issued after the passage of the Safe Drinking Water Act. Among THMs, iodotrihalomethanes (I-THMs) are produced by treating water containing iodides ion with chlorine or ozone. I-THMs are more carcinogenic and biotoxic than chlorinated or brominated THMs. The purpose of this study was to analyze of I-THMs in drinking water using the liquid-liquid extraction (LLE) method with various extraction solvents. The calibration curves ranged from 0.01 to 20 ng/mL and the correlation coefficient showed a good linearity of 0.99 or more. The method detection limit ranged from 0.01 to 0.10 ng/mL. The accuracy of the LLE method ranged from 99.43 to 112.40%, and its precision ranged from 1.10 to 10.36%. Good recoveries (71.35-118.60%) were obtained for spiked drinking water samples, demonstrating that the LLE method is suitable for the analysis of drinking water samples. Dichloroiodomethane, bromochloroiodomethane, and dibromoiodomethane were identified in drinking water collected from 70 places of water purification plants in Korea. The samples were classified by disinfection systems, regions, seasons, and water sources. The concentration of I-THMs in pre-/postchlorination facilities owing to excess chlorine usage was higher than in ozonization/postchlorination facilities. Moreover, the concentrations of I-THMs were high in the coastal region, because of the large amount of halide ions from the sea. There was no seasonal difference; however, the concentration of I-THMs in pre-/postchlorination facilities increased in spring and summer. The concentration of I-THMs in water sources was high in samples from the Geum River and the Yeongsan and Sumjin River. The concentration and detection frequency of I-THMs in Han River and Nakdong River were high in the coastal region, because of numerous pre-/postchlorination facilities and the abundance of halide ions from the ocean. Copyright © 2018 Elsevier B.V. All rights reserved.
Wind tunnel simulation of air pollution dispersion in a street canyon.
Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek
2002-01-01
Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.
Lee, Carol Eunmi; Moss, Wynne E; Olson, Nora; Chau, Kevin Fongching; Chang, Yu-Mei; Johnson, Kelsey E
2013-01-01
Saline to freshwater invasions have become increasingly common in recent years. A key hypothesis is that rates of freshwater invasions have been amplified in recent years by increased food concentration, yet this hypothesis has remained unexplored. We examined whether elevated food concentration could enhance freshwater tolerance, and whether this effect evolves following saline to freshwater invasions. We examined physiological response to salinity and food concentration in a 2 × 2 factorial design, using ancestral brackish and freshwater invading populations of the copepod Eurytemora affinis. We found that high food concentration significantly increases low-salinity tolerance. This effect was reduced in the freshwater population, indicating evolution following the freshwater invasion. Thus, ample food could enable freshwater invasions, allowing subsequent evolution of low-salinity tolerance even under food-poor conditions. We also compared effects of food concentration on freshwater survival between two brackish populations from the native range. Impacts of food concentration on freshwater survival differed between the brackish populations, suggesting variation in functional properties affecting their propensity to invade freshwater habitats. The key implication is that high food concentration could profoundly extend range expansions of brackishwater species into freshwater habitats, potentially allowing for condition-specific competition between saline invaders and resident freshwater species. PMID:23789033
Schermeyer, Marie-Therese; Wöll, Anna K.; Eppink, Michel; Hubbuch, Jürgen
2017-01-01
ABSTRACT High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50–200 mg/ml at pH 5–9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability. PMID:28617076
Max, Jean-Joseph; Meddeb-Mouelhi, Fatma; Beauregard, Marc; Chapados, Camille
2012-12-01
Enzymatic assays need robust, rapid colorimetric methods that can follow ongoing reactions. For this, we developed a highly accurate, multi-wavelength detection method that could be used for several systems. Here, it was applied to the detection of para-nitrophenol (pNP) in basic and acidic solutions. First, we confirmed by factor analysis that pNP has two forms, with unique spectral characteristics in the 240 to 600 nm range: Phenol in acidic conditions absorbs in the lower range, whereas phenolate in basic conditions absorbs in the higher range. Thereafter, the method was used for the determination of species concentration. For this, the intensity measurements were made at only two wavelengths with a microtiter plate reader. This yielded total dye concentration, species relative abundance, and solution pH value. The method was applied to an enzymatic assay. For this, a chromogenic substrate that generates pNP after hydrolysis catalyzed by a lipase from the fungus Yarrowia lipolytica was used. Over the pH range of 3-11, accurate amounts of acidic and basic pNP were determined at 340 and 405 nm, respectively. This method surpasses the commonly used single-wavelength assay at 405 nm, which does not detect pNP acidic species, leading to activity underestimations. Moreover, alleviation of this pH-related problem by neutralization is not necessary. On the whole, the method developed is readily applicable to rapid high-throughput of enzymatic activity measurements over a wide pH range.
Lanio, M E; Alvarez, C; Pazos, F; Martinez, D; Martínez, Y; Casallanovo, F; Abuin, E; Schreier, S; Lissi, E
2003-01-01
The effect of sodium dodecyl sulfate (SDS) upon the conformation and hemolytic activity of St I and St II strongly depends on its concentration. At relatively low surfactant concentrations (ca. 0.5-5mM range) the surfactant leads to the formation of aggregates, as suggested by the turbidity observed even at relatively low (micromolar range) protein concentrations. In this surfactant range, the proteins show an increase in intrinsic fluorescence intensity and reduced quenching by acrylamide, with an almost total loss of its hemolytic activity. At higher surfactant concentrations the protein adducts disaggregates. This produces a decrease in fluorescence intensity, increase in quenching efficiency by acrylamide, loss of the native tertiary conformation (as reported by the near UV-CD spectra), and increase in alpha-helix content (as evidenced by the far UV-CD spectra). However, and in spite of these substantial changes, the toxins partially recover their hemolytic activity. The reasons for this recovering of the activity at high surfactant concentrations is discussed.
Studzińska, Sylwia; Mounicou, Sandra; Szpunar, Joanna; Łobiński, Ryszard; Buszewski, Bogusław
2015-01-15
This text presents a novel method for the separation and detection of phosphorothioate oligonucleotides with the use of ion pair ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry The research showed that hexafluoroisopropanol/triethylamine based mobile phases may be successfully used when liquid chromatography is coupled with such elemental detection. However, the concentration of both HFIP and TEA influences the final result. The lower concentration of HFIP, the lower the background in ICP-MS and the greater the sensitivity. The method applied for the analysis of serum samples was based on high resolution inductively coupled plasma mass spectrometry. Utilization of this method allows determination of fifty times lower quantity of phosphorothioate oligonucleotides than in the case of quadrupole mass analyzer. Monitoring of (31)P may be used to quantify these compounds at the level of 80 μg L(-1), while simultaneous determination of sulfur is very useful for qualitative analysis. Moreover, the results presented in this paper demonstrate the practical applicability of coupling LC with ICP-MS in determining phosphorothioate oligonucleotides and their metabolites in serum within 7 min with a very good sensitivity. The method was linear in the concentration range between 0.2 and 3 mg L(-1). The limit of detection was in the range of 0.07 and 0.13 mg L(-1). Accuracy varied with concentration, but was in the range of 3%. Copyright © 2014 Elsevier B.V. All rights reserved.
Mercury transport in a high-elevation watershed in Rocky Mountain National Park, Colorado
Mast, M.A.; Campbell, D.H.; Krabbenhoft, D.P.; Taylor, Howard E.
2005-01-01
Mercury (Hg) was measured in stream water and precipitation in the Loch Vale watershed in Rocky Mountain National Park, Colorado, during 2001-2002 to investigate processes controlling Hg transport in high-elevation ecosystems. Total Hg concentrations in precipitation ranged from 2.6 to 36.2 ng/L and showed a strong seasonal pattern with concentrations that were 3 to 4 times higher during summer months. Annual bulk deposition of Hg was 8.3 to 12.4 ?? g/m 2 and was similar to deposition rates in the Midwestern and Northeastern U.S. Total Hg concentrations in streams ranged from 0.8 to 13.5 ng/L and were highest in mid-May on the rising limb of the snowmelt hydrograph. Stream-water Hg was positively correlated with dissolved organic carbon suggesting organically complexed Hg was flushed into streams from near-surface soil horizons during the early stages of snowmelt. Methylmercury (MeHg) in stream water peaked at 0.048 ng/L just prior to peak snowmelt but was at or below detection (< 0.040 ng/L) for the remainder of the snowmelt season. Annual export of total Hg in Loch Vale streams ranged from 1.2 to 2.3 ?? g/m2, which was less than 20% of wet deposition, indicating the terrestrial environment is a net sink of atmospheric Hg. Concentrations of MeHg in stream water and corresponding watershed fluxes were low, indicating low methylation rates or high demethylation rates or both. ?? Springer 2005.
Weiss, W P; St-Pierre, N R; Willett, L B
2009-11-01
The effects of forage source, concentration of metabolizable protein (MP), type of carbohydrate, and their interactions on nutrient digestibility and production were evaluated using a central composite treatment design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Rumen-degradable protein comprised 10.7% of the dry matter (DM) in all diets, but undegradable protein ranged from 4.1 to 7.1%, resulting in dietary MP concentrations of 8.8 to 12.0% of the DM. Dietary starch ranged from 22 to 30% of the DM with a concomitant decrease in neutral detergent fiber concentrations. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block consisted of three 21-d periods, and each cow was assigned a unique sequence of 3 diets, resulting in 108 observations. Milk production and composition, feed intake, and digestibility of major nutrients (via total collection of feces and urine) were measured. Few significant interactions between main effects were observed. Starch concentration had only minor effects on digestibility and production. Replacing corn silage with alfalfa decreased digestibility of N but increased digestibility of neutral detergent fiber. Increasing the concentration of MP increased N digestibility. The concentration (Mcal/kg) of dietary digestible energy (DE) increased linearly as starch concentration increased (very small effect) and was affected by a forage by MP interaction. At low MP, high alfalfa reduced DE concentration, but at high MP, increasing alfalfa increased DE concentration. Increasing alfalfa increased DM and DE intakes, which increased yields of energy-corrected milk, protein, and fat. Increasing MP increased yields of energy-corrected milk and protein. The response in milk protein to changes in MP was much less than predicted using the National Research Council (2001) model.
Attia, T E; Shendi, E H; Shehata, M A
2015-02-01
A detailed gamma ray spectrometry survey was carried out to make an action in environmental impact assessment of urbanization and industrialization on Port Said city, Egypt. The concentrations of the measured radioelements U-238, Th-232 in ppm, and K-40 %, in addition to the total counts of three selected randomly dumping sites (A, B, and C) were mapped. The concentration maps represent a base line for the radioactivity in the study area in order to detect any future radioactive contamination. These concentrations are ranging between 0.2 and 21 ppm for U-238 and 0.01 to 13.4 ppm for Th-232 as well as 0.15 to 3.8 % for K-40, whereas the total count values range from 8.7 to 123.6 uR. Moreover, the dose rate was mapped using the same spectrometer and survey parameters in order to assess the radiological effect of these radioelements. The dose rate values range from 0.12 to 1.61 mSv/year. Eighteen soil samples were collected from the sites with high radioelement concentrations and dose rates to determine the activity concentrations of Ra-226, Th-232, and K-40 using HPGe spectrometer. The activity concentrations of Ra-226, Th-232, and K-40 in the measured samples range from 18.03 to 398.66 Bq kg(-1), 5.28 to 75.7 Bq kg(-1), and 3,237.88 to 583.12 Bq kg(-1), respectively. In addition to analyze heavy metal for two high reading samples (a 1 and a 10) which give concentrations of Cd and Zn elements (a 1 40 ppm and a 10 42 ppm) and (a 1 0.90 ppm and a 10 0.97 ppm), respectively, that are in the range of phosphate fertilizer products that suggested a dumped man-made waste in site A. All indicate that the measured values for the soil samples in the two sites of three falls within the world ranges of soil in areas with normal levels of radioactivity, while site A shows a potential radiological risk for human beings, and it is important to carry out dose assessment program with a specifically detailed monitoring program periodically.
Vanadium Requirements and Uptake Kinetics in the Dinitrogen-Fixing Bacterium Azotobacter vinelandii▿
Bellenger, J. P.; Wichard, T.; Kraepiel, A. M. L.
2008-01-01
Vanadium is a cofactor in the alternative V-nitrogenase that is expressed by some N2-fixing bacteria when Mo is not available. We investigated the V requirements, the kinetics of V uptake, and the production of catechol compounds across a range of concentrations of vanadium in diazotrophic cultures of the soil bacterium Azotobacter vinelandii. In strain CA11.70, a mutant that expresses only the V-nitrogenase, V concentrations in the medium between 10−8 and 10−6 M sustain maximum growth rates; they are limiting below this range and toxic above. A. vinelandii excretes in its growth medium micromolar concentrations of the catechol siderophores azotochelin and protochelin, which bind the vanadate oxoanion. The production of catechols increases when V concentrations become toxic. Short-term uptake experiments with the radioactive isotope 49V show that bacteria take up the V-catechol complexes through a regulated transport system(s), which shuts down at high V concentrations. The modulation of the excretion of catechols and of the uptake of the V-catechol complexes allows A. vinelandii to precisely manage its V homeostasis over a range of V concentrations, from limiting to toxic. PMID:18192412
Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing
2015-05-01
Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation. Copyright © 2015. Published by Elsevier Inc.
Palytoxin isolated from marine coelenterates. The inhibitory action on (Na,K)-ATPase.
Ishida, Y; Takagi, K; Takahashi, M; Satake, N; Shibata, S
1983-07-10
Palytoxin (PTX), C129H223N3O54, a highly toxic substance isolated from zoanthids of Palythoa tuberculosa, inhibited (Na,K)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) prepared from guinea pig heart and hog cerebral cortex in a dose-dependent manner at concentrations greater than 10(-8) M. In the presence of Na (100 mM) and K (20 mM), PTX showed potency nearly equal to that of ouabain. When the ATPase was activated by the various Na concentrations at a constant K concentration, both PTX and ouabain inhibited the ATPase activity noncompetitively. On the other hand, when K concentration was changed at a constant Na concentration, PTX caused a competitive inhibition in all ranges of K concentrations employed, whereas ouabain caused a competitive inhibition at low concentrations and a noncompetitive inhibition at high concentrations.
Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation
Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine
2011-01-01
Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.
Water-quality investigation, Salinas River, California
Irwin, G.A.
1976-01-01
Concentrations of dissolved solids in the Salinas River, California, are variable and range from 164 to 494 milligrams per liter near Bradley and from 170 to 1,090 milligrams per liter near Spreckels. Higher concentrations near Spreckels are caused mainly by sewage inflow about 150 feet (50 meters) upstream. Concentrations of nitrogen, phosphorus, total organic carbon, selected trace elements, and pesticides also generally increase downstream from Pozo to Spreckels and are related to sewage effluent; however, high concentrations occur elsewhere in the river. Specific conductance and water discharge regression results indicate that relations were all significant at the 1-percent probability level at Paso Robles, Bradley, and Spreckels with the explained variance ranging from 66 to 74 percent. Concentations of nitrogen, phosphorus, total organic carbon, and trace elements are only infrequently related to water discharge. (Woodard-USGS)
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
Photonic sensing in highly concentrated biotechnical processes by photon density wave spectroscopy
NASA Astrophysics Data System (ADS)
Hass, Roland; Sandmann, Michael; Reich, Oliver
2017-04-01
Photon Density Wave (PDW) spectroscopy is introduced as a new approach for photonic sensing in highly concentrated biotechnical processes. It independently quantifies the absorption and reduced scattering coefficient calibration-free and as a function of time, thus describing the optical properties in the vis/NIR range of the biomaterial during their processing. As examples of industrial relevance, enzymatic milk coagulation, beer mashing, and algae cultivation in photo bioreactors are discussed.
Parker, Suzanne L; Guerra Valero, Yarmarly C; Roberts, Darren M; Lipman, Jeffrey; Roberts, Jason A; Wallis, Steven C
2016-06-01
An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the analysis of cefazolin and cefalothin in human plasma (total and unbound), urine and peritoneal dialysate has been developed and validated. Total plasma concentrations are measured following protein precipitation and are suitable for the concentration range of 1-500 µg/mL. Unbound concentrations are measured from ultra-filtered plasma acquired using Centrifree(®) devices and are suitable for the concentration range of 0.1-500 µg/mL for cefazolin and 1-500 µg/mL for cefalothin. The urine method is suitable for a concentration range of 0.1-20 mg/mL for cefazolin and 0.2-20 mg/mL for cefalothin. Peritoneal dialysate concentrations are measured using direct injection, and are suitable for the concentration range of 0.2-100 µg/mL for both cefazolin and cefalothin. The cefazolin and cefalothin plasma (total and unbound), urine and peritoneal dialysate results are reported for recovery, inter-assay precision and accuracy, and the lower limit of quantification, linearity, stability and matrix effects, with all results meeting acceptance criteria. The method was used successfully in a pilot pharmacokinetic study with patients with peritoneal dialysis-associated peritonitis, receiving either intraperitoneal cefazolin or cefalothin. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.
Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun
2014-01-01
In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed.
Ultrafine particles and nitrogen oxides generated by gas and electric cooking.
Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A
2001-08-01
To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.
Methane fluxes from tropical coastal lagoons surrounded bymangroves, Yucatán, Mexico
Chuang, Pei-Chuan; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A; Paytan, Adina
2017-01-01
Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m−2 d−1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.
Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico
NASA Astrophysics Data System (ADS)
Chuang, P.-C.; Young, M. B.; Dale, A. W.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.
2017-05-01
Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.
West, A.J.; Findlay, S.E.G.; Burns, Douglas A.; Weathers, K.C.; Lovett, Gary M.
2001-01-01
Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.
Serum transferrin receptor status of healthy adult Arabs.
Knox-Macaulay, Huxley; Gravell, David; Elender, Frances
2007-01-01
Several studies have provided reference ranges for the concentration of serum transferrin receptor (sTfR) in various white populations, but there is a dearth of relevant reference sTfR data in non-whites. The aim of this investigation was to establish sTfR reference ranges and mean values for a healthy non-white Arab population that could be used also for Arabs worldwide. sTfR and serum ferritin concentrations were estimated by immunoassays and blood counts were determined by conventional methods. Analysis of the data of 114 volunteer Arab blood donors (91 male, 23 female) revealed a higher mean sTfR concentration in males of 22.6+/-8.1 nmol/L (range 10.9-38.7 nmol/L) compared to that in females of 18.7+/-4.4 nmol/L (range 10.7-25.8 nmol/L, p=0.001). There was no significant correlation of sTfR concentration with age, serum ferritin level, or blood haemoglobin level, but a strong inverse correlation was demonstrated with mean cell volume and mean cell haemoglobin of red cells. Iron-replete volunteer subjects with alpha-thalassaemia trait appear to have relatively high mean sTfR concentration. We recommend the use of gender-dependent sTfR reference values for Arabs.
Rauert, Cassandra; Harner, Tom; Schuster, Jasmin K; Eng, Anita; Fillmann, Gilberto; Castillo, Luisa Eugenia; Fentanes, Oscar; Villa Ibarra, Martín; Miglioranza, Karina S B; Moreno Rivadeneira, Isabel; Pozo, Karla; Aristizábal Zuluaga, Beatriz Helena
2018-06-15
A special initiative was run by the Global Atmospheric Passive Sampling (GAPS) Network to provide atmospheric data on a range of emerging chemicals of concern and candidate and new persistent organic pollutants in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale data for a range of flame retardants (FRs) including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and a range of alternative FRs (novel FRs) are reported over 2 years of sampling with low detection frequencies of the novel FRs. Atmospheric concentrations of the OPEs were an order of magnitude higher than all other FRs, with similar profiles at all sites. Regional-scale background concentrations of the poly- and perfluoroalkyl substances (PFAS), including the neutral PFAS (n-PFAS) and perfluoroalkyl acids (PFAAs), and the volatile methyl siloxanes (VMS) are also reported. Ethyl perfluorooctane sulfonamide (EtFOSA) was detected at highly elevated concentrations in Brazil and Colombia, in line with the use of the pesticide sulfluramid in this region. Similar concentrations of the perfluoroalkyl sulfonates (PFAS) were detected throughout the GRULAC region regardless of location type, and the VMS concentrations in air increased with the population density of sampling locations. This is the first report of atmospheric concentrations of the PFAAs and VMS from this region.
Electrical conductivity of high-purity germanium crystals at low temperature
NASA Astrophysics Data System (ADS)
Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming
2018-05-01
The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.
Sources and composition of PM2.5 in the Colorado Front Range during the DISCOVER-AQ study
NASA Astrophysics Data System (ADS)
Valerino, M. J.; Johnson, J. J.; Izumi, J.; Orozco, D.; Hoff, R. M.; Delgado, R.; Hennigan, C. J.
2017-01-01
Measurements of particulate matter (PM2.5) chemical composition were carried out in Golden, CO, during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field study. Chemical composition was dominated by organic compounds, which comprised an average of 75% of the PM2.5 mass throughout the study. Most of the organic matter was secondary (i.e., secondary organic aerosol) and appears to derive predominantly from regional sources, rather than the Denver metropolitan area. The concentration and composition of PM2.5 in Golden were strongly influenced by highly regular wind patterns and the site's close proximity to the mountains ( 5 km). This second factor may be the cause of distinct differences between observations in Golden and those in downtown Denver, despite a distance between the sites of only 15 km. Concentrations of aerosol nitrate, ammonium, and elemental carbon increased significantly during the daytime when the winds were from the northeast, indicating a strong local source for these compounds. Local sources of dust appeared to minimally impact the Golden site, although this was not likely representative of other conditions in the Colorado Front Range. Conversely, dust that had undergone long-range transport from the southwestern U.S. likely impacted the entire Colorado Front Range, including Golden. During this event, water-soluble Ca2+ concentrations exceeded 1 µg m-3, and the PM2.5/PM10 ratio reached its lowest level throughout the study. The long-range transport of wildfire emissions also impacted the Colorado Front Range for 1-2 days during DISCOVER-AQ. The smoke event was characterized by high concentrations of organics and water-soluble K+. The results show a complex array of sources, and atmospheric processes influence summertime PM in the Colorado Front Range.
NASA Astrophysics Data System (ADS)
Ren, Tao; Modest, Michael F.; Fateev, Alexander; Clausen, Sønnik
2015-01-01
In this study, we present an inverse calculation model based on the Levenberg-Marquardt optimization method to reconstruct temperature and species concentration from measured line-of-sight spectral transmissivity data for homogeneous gaseous media. The high temperature gas property database HITEMP 2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O transmissivity measurements. Optimal wavenumber ranges for CO2 and H2O transmissivity measured across a wide range of temperatures and concentrations were determined according to the performance of inverse calculations. Results indicate that the inverse radiation model shows good feasibility for measurements of temperature and gas concentration.
Weisberg, Arel; Lakis, Rollin E; Simpson, Michael F; Horowitz, Leo; Craparo, Joseph
2014-01-01
The versatility of laser-induced breakdown spectroscopy (LIBS) as an analytical method for high-temperature applications was demonstrated through measurement of the concentrations of the lanthanide elements europium (Eu) and praseodymium (Pr) in molten eutectic lithium chloride-potassium chloride (LiCl-KCl) salts at a temperature of 500 °C. Laser pulses (1064 nm, 7 ns, 120 mJ/pulse) were focused on the top surface of the molten salt samples in a laboratory furnace under an argon atmosphere, and the resulting LIBS signals were collected using a broadband Echelle-type spectrometer. Partial least squares (PLS) regression using leave-one-sample-out cross-validation was used to quantify the concentrations of Eu and Pr in the samples. The root mean square error of prediction (RMSEP) for Eu was 0.13% (absolute) over a concentration range of 0-3.01%, and for Pr was 0.13% (absolute) over a concentration range of 0-1.04%.
McKee, Lester J; Gilbreath, Alicia N
2015-08-01
Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.
Distribution and bioavailability of Cr in central Euboea, Greece
NASA Astrophysics Data System (ADS)
Megremi, Ifigeneia
2010-06-01
Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L-1 to 130 μg.L-1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L-1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L-1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L-1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.
Assessment of indoor air quality at an electronic cigarette (Vaping) convention.
Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M
2017-12-29
E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.
Origin of methane and sources of high concentrations in Los Angeles groundwater
Kulongoski, Justin; McMahon, Peter B.; Land, Michael; Wright, Michael; Johnson, Theodore; Landon, Matthew K.
2018-01-01
In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from −80.8 to −45.5 per mil (‰) and −249.8 to −134.9‰, respectively, and, along with oxidation‐reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.
Origin of Methane and Sources of High Concentrations in Los Angeles Groundwater
NASA Astrophysics Data System (ADS)
Kulongoski, J. T.; McMahon, P. B.; Land, M.; Wright, M. T.; Johnson, T. A.; Landon, M. K.
2018-03-01
In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from -80.8 to -45.5 per mil (‰) and -249.8 to -134.9‰, respectively, and, along with oxidation-reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.
Mallik, Arun Kumar; Farrell, Gerald; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Semenova, Yuliya
2018-01-26
A silica gel coated microsphere resonator is proposed and experimentally demonstrated for measurements of ammonia (NH 3 ) concentration in air with ultra-high sensitivity. The optical properties of the porous silica gel layer change when it is exposed to low (parts per million (ppm)) and even ultra-low (parts per billion (ppb)) concentrations of ammonia vapor, leading to a spectral shift of the WGM resonances in the transmission spectrum of the fiber taper. The experimentally demonstrated sensitivity of the proposed sensor to ammonia is estimated as 34.46 pm/ppm in the low ammonia concentrations range from 4 ppm to 30 ppm using an optical spectrum analyser (OSA), and as 800 pm/ppm in the ultra-low range of ammonia concentrations from 2.5 ppb to 12 ppb using the frequency detuning method, resulting in the lowest detection limit (by two orders of magnitude) reported to date equal to 0.16 ppb of ammonia in air. In addition, the sensor exhibits excellent selectivity to ammonia and very fast response and recovery times measured at 1.5 and 3.6 seconds, respectively. Other attractive features of the proposed sensor are its compact nature, simplicity of fabrication.
Sulfur isotope and porewater geochemistry of Florida escarpment seep sediments
Chanton, J.P.; Martens, C.S.; Paull, C.K.; Coston, J.A.
1993-01-01
Distributions of porewater constituents, SO4=, NH4+, Cl-, ???CO2, and H2S, solid phase iron, and sulfur concentrations, and the sulfur isotopic composition of dissolved and solid phases were investigated in sediments from abyssal seeps at the base of the Florida escarpment. Despite the apparent similarity of seep sediment porewater chemistry to that of typical marine sediments undergoing early diagenesis, relationships between chemical distributions and isotopic measurements revealed that the distribution of pore fluid constituents was dominated by processes occurring within the platform rather than by in situ microbial processes. Ammonium and sulfate concentrations were linearly correlated with chloride concentrations, indicating that variations in porewater chemistry were controlled by the admixture of seawater and a sulfate depleted brine with a chlorinity of 27.5 ?? 1.9%. and 2.2 ?? 1.3 mM ammonium concentration. At sites dominated by seepage, dissolved sulfate isotopic composition remained near seawater values despite depletion in porewater concentrations. Porewater ???CO2 concentrations were found to be elevated relative to seawater, but not to the extent predicted from the observed sulfate depletion. Sediment solid phase sulfur was predominantly pyrite, at concentrations as high as 20% S by weight. In contrast to typical marine deposits, pyrite concentrations were not related to the quantity of sedimentary organic matter. Pyrite ??34S values ranged from -29%. to + 21%. (CDT). However, only positive ??34S values were observed at sites associated with high pyrite concentrations. Isotopically heavy pyrite was observed at sites with porewater sulfate of seawater-like isotopic composition. Isotopically light pyrite was associated with sites where porewater sulfate exhibited ??34S values greater than those in seawater, indicating the activity of in situ microbial sulfate reduction. Thus, dual sulfide sources are suggested to explain the range in sediment pyrite isotopic composition: a ??34S enriched (+10 to +20%.) source adverted from within the Florida platform, and a lighter 34S depleted component generated in situ from microbial reduction of seawater sulfate. The degree of pyritization of seep sediments was as high as 0.9 and was controlled by pyrite concentrations, which varied over a wider range than did the non-pyrite solid phase iron concentrations. The highest non-sulfide solid phase iron concentrations were observed in sediments that are believed to be at the "front" of the advancing seep fluids (i.e., hemipelagic sediments newly exposed to the seep fluids), indicating that dissolution of hemipelagic background sediment may be the source of at least half of the iron to the highly pyritized seep sediments. Porewater sulfide concentrations were variable, reaching a maximum of 5.7 mM, and were not correlated with the degree of pyritization of the sediments, suggesting that iron was not particularly limiting to pyrite formation. ?? 1993.
Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania
NASA Astrophysics Data System (ADS)
Boniface, Nelson
2017-02-01
The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.
Stock, Philipp; Utzig, Thomas; Valtiner, Markus
2015-05-15
By virtue of its importance for self-organization of biological matter the hydrophobic force law and the range of hydrophobic interactions (HI) have been debated extensively over the last 40 years. Here, we directly measure and quantify the hydrophobic force-distance law over large temperature and concentration ranges. In particular, we study the HI between molecularly smooth hydrophobic self-assembled monolayers, and similarly modified gold-coated AFM tips (radii∼8-50 nm). We present quantitative and direct evidence that the hydrophobic force is both long-ranged and exponential down to distances of about 1-2 nm. Therefore, we introduce a self-consistent radius-normalization for atomic force microscopy data. This approach allows quantitative data fitting of AFM-based experimental data to the recently proposed Hydra-model. With a statistical significance of r(2)⩾0.96 our fitting and data directly reveal an exponential HI decay length of 7.2±1.2 Å that is independent of the salt concentration up to 750 mM. As such, electrostatic screening does not have a significant influence on the HI in electrolyte concentrations ranging from 1 mM to 750 mM. In 1 M solutions the observed instability during approach shifts to longer distances, indicating ion correlation/adsorption effects at high salt concentrations. With increasing temperature the magnitude of HI decreases monotonically, while the range increases slightly. We compare our results to the large body of available literature, and shed new light into range and magnitude of hydrophobic interactions at very close distances and over wide temperature and concentration regimes. Copyright © 2015 Elsevier Inc. All rights reserved.
Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075
NASA Astrophysics Data System (ADS)
Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.
High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.
Investigation of Sorption and Diffusion Mechanisms, and Preliminary Economic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.
This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several monovalent and divalent cation exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed using tritiated water feed solution containing tritium at the high end of the range (1 mCi/mL) anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. Themore » tritium concentration was about 0.1 ppm. The permeate was recovered under vacuum. The HTO/H2O selectivity and separation factor calculated from the measured tritium concentrations ranged from 0.99 to 1.23, and 0.83-0.98, respectively. Although the membrane performance for HTO separation was lower than expected, several encouraging observations including molecular sieving and high vapor permeance are reported. Additionally, several new approaches are proposed, such as tuning the sorption and diffusion properties offered by small pore LTA zeolite materials, and cation exchanged aluminosilicates with high metal loading. It is hypothesized that substantially improved preferential transport of tritium (HTO) resulting in a more concentrated permeate can be achieved. Preliminary economic analysis for the membrane-based process to concentrate tritiated water is also discussed.« less
Ngouémazong, Doungla E; Jolie, Ruben P; Cardinaels, Ruth; Fraeye, Ilse; Van Loey, Ann; Moldenaers, Paula; Hendrickx, Marc
2012-02-01
The influence of the degree and pattern of methylesterification (DM and PM, respectively) on the stiffness of Ca(2+)-pectin gels is extensively examined, at various Ca(2+) concentrations. Accordingly, a highly methyl-esterified pectin was selectively de-esterified using NaOH, plant or fungal pectin methylesterase in order to produce series of pectins with varied pattern and broad ranges of methylesterification. The PM was quantified as absolute degree of blockiness (DB(abs)). Ca(2+)-pectin gels were prepared at various Ca(2+) concentrations. Gel stiffness (G' at 1rad/s) was determined and mapped out as a function of DM, DB(abs) and Ca(2+) concentration. At low Ca(2+) concentrations, G' depends on polymer's DM and DB(abs). At high Ca(2+) concentrations, a master curve is obtained over a wide range of DM, irrespective of DB(abs). Depending on methylesterification pattern, increase of G' is related not only to an increase in the number of junction zones per pectin chain, but also to an increase in the size of junction zones and the number of dimerised chains occurring in the gels. These results provide a detailed insight into the occurrence of junction zones in Ca(2+)-pectin gels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhulidov, Daniel A; Robarts, Richard D; Zhulidov, Alexander V; Zhulidova, Olga V; Markelov, Danila A; Rusanov, Viktor A; Headley, John V
2002-01-01
Samples of the slime mold Fuligo septica (L.) Wiggers were collected from an ecologically diverse selection of sites across the former USSR and in North Korea to determine their Zn concentrations. Plasmodia were collected from trees, rocks, soils, the walls of buildings and a variety of other materials and structures from 1990 to 1996. The biomass collected ranged from 305 to 968 mg, whereas Zn concentrations in plasmodia of F. septica ranged from 8400 to 23,000 mg kg(-1) dry wt. (mean and standard error = 14,200 +/- 860 mg kg(-1) dry wt.). No clear trend as to which areas produced F. septica with the highest Zn concentrations was discernable. Nor was it possible to identify any particular substrate on which F. septica grew that produced noticeably high Zn concentrations. For example, forest litter on which F. septica was found had Zn concentrations of only 25 to 130 mg kg(-1) dry wt. Our data confirm the only other study showing hyperaccumulation of Zn in F. septica, which was carried out in Finland. This ability seems to be unique to this species, but how or why it does this, or why such high Zn concentrations are not toxic to F. septica, are questions requiring future research.
Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 5
2005-04-01
aluminum, arsenic, and iron were naturally elevated (Ampleman et al. 2003). A cadmium concentration at 0.3 ppb was observed in one sample. Copper...copper concentration was twice the CCME criterion. Iron was also observed in the Shaver River sample at three times the CCME criterion. Concentrations...mainly in C-295, the first site visited. Copper and iron were found at high concentrations in almost all samples; however, only one or two samples showed
The relationship of nitrate concentrations in streams to row crop land use in Iowa
Schilling, K.E.; Libra, R.D.
2000-01-01
The relationship between row crop land use and nitrate N concentrations in surface water was evaluated for 15 Iowa watersheds ranging from 1002 to 2774 km2 and 10 smaller watersheds ranging from 47 to 775 km2 for the period 1996 to 1998. The percentage of land in row crop varied from 24 to >87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p 87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p<0.0003). Linear regression showed similar slope for both sets of watersheds (0.11) suggesting that average annual surface water nitrate concentrations in Iowa, and possibly similar agricultural areas in the midwestern USA, can be approximated by multiplying a watershed's row crop percentage by 0.1. Comparing the Iowa watershed data with similar data collected at a subwatershed scale in Iowa (0.1 to 8.1 km2) and a larger midcontinent scale (7300 to 237 100 km2) suggests that watershed scale affects the relationship of nitrate concentration and land use. The slope of nitrate concentration versus row crop percentage decreases with increasing watershed size.Mean nitrate concentrations and row crop land use were summarized for 15 larger and ten smaller watersheds in Iowa, and the relationship between NO3 concentration and land use was examined. Linear regression of mean NO3 concentration and percent row crop was highly significant for both sets of watershed data, but a stronger correlation was noted in the small-watershed data. Both data sets suggested that mean annual surface-water NO3 concentrations in the state could be approximated by multiplying the watershed's percent row crop by 0.1. The slope of NO3 concentration versus row crop percentage appeared to decrease with increasing watershed size.
Tracking integration in concentrating photovoltaics using laterally moving optics.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2011-05-09
In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.
Nilsson, Lars B; Skansen, Patrik
2012-06-30
The investigations in this article were triggered by two observations in the laboratory; for some liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems it was possible to obtain linear calibration curves for extreme concentration ranges and for some systems seemingly linear calibration curves gave good accuracy at low concentrations only when using a quadratic regression function. The absolute and relative responses were tested for three different LC/MS/MS systems by injecting solutions of a model compound and a stable isotope labeled internal standard. The analyte concentration range for the solutions was 0.00391 to 500 μM (128,000×), giving overload of the chromatographic column at the highest concentrations. The stable isotope labeled internal standard concentration was 0.667 μM in all samples. The absolute response per concentration unit decreased rapidly as higher concentrations were injected. The relative response, the ratio for the analyte peak area to the internal standard peak area, per concentration unit was calculated. For system 1, the ionization process was found to limit the response and the relative response per concentration unit was constant. For systems 2 and 3, the ion detection process was the limiting factor resulting in decreasing relative response at increasing concentrations. For systems behaving like system 1, simple linear regression can be used for any concentration range while, for systems behaving like systems 2 and 3, non-linear regression is recommended for all concentration ranges. Another consequence is that the ionization capacity limited systems will be insensitive to matrix ion suppression when an ideal internal standard is used while the detection capacity limited systems are at risk of giving erroneous results at high concentrations if the matrix ion suppression varies for different samples in a run. Copyright © 2012 John Wiley & Sons, Ltd.
Variations of surface ozone concentration across the Klang Valley, Malaysia
NASA Astrophysics Data System (ADS)
Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew
2012-12-01
Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.
Global evaluation and calibration of a passive air sampler for gaseous mercury
NASA Astrophysics Data System (ADS)
McLagan, David S.; Mitchell, Carl P. J.; Steffen, Alexandra; Hung, Hayley; Shin, Cecilia; Stupple, Geoff W.; Olson, Mark L.; Luke, Winston T.; Kelley, Paul; Howard, Dean; Edwards, Grant C.; Nelson, Peter F.; Xiao, Hang; Sheu, Guey-Rong; Dreyer, Annekatrin; Huang, Haiyong; Hussain, Batual Abdul; Lei, Ying D.; Tavshunsky, Ilana; Wania, Frank
2018-04-01
Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day-1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m-3, this represents an ability to resolve concentrations to within 0.13 ng m-3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active-passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or deviate considerably from the average of the deployments in this study (9.89 °C, 3.41 m s-1). Overall, the study demonstrates that the sampler is capable of recording background gaseous Hg concentrations across a wide range of environmental conditions with accuracy similar to that of industry standard active sampling instruments. Results at sites with active speciation units were inconclusive on whether the PASs take up total gaseous Hg or solely gaseous elemental Hg primarily because gaseous oxidized Hg concentrations were in a similar range as the uncertainty of the PAS. 1Subscripted numbers are not significant, but are reported to reduce rounding errors in subsequent studies (see Sect. 2.3 for details).
NASA Astrophysics Data System (ADS)
Webster, James D.; Congdon, Roger D.; Lyons, Paul C.
1995-02-01
Glass inclusions in quartz microphenocrysts were analyzed for major and minor elements by electron microprobe and H, Li, Be, B, Rb, Sr, Y, Nb, Mo, Sn, Cs, Ce, Th, and U by ion microprobe. The phenocrysts and inclusions occur as fresh relicts in about eleven strongly kaolinized, air-fall volcanic ash units (tonsteins) that outcrop in five states located in the central Appalachian basin; the ashes were erupted during the Pennsylvanian. Even though the whole-rock tonstein samples are extremely altered, the glass trapped in quartz microphenocrysts preserves pre-eruptive melt compositions, and, consequently, the inclusions are useful for determining compositions of source magmas and identifying geochemical trends indicative of magmatic evolution. Interpretation of inclusion compositions indicates the strongly altered tonsteins were derived from potassium-enriched, metaluminous to mildly peraluminous magma(s). The tonsteins can be divided into two groups on the basis of trapped melt compositions: older tonsteins that have inclusions with high Sr and normative quartz contents and comparatively low concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be) and younger tonsteins whose inclusions contain low Sr and normative quartz and high concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be). In general, as concentrations of Sr decreased, the magmatic abundances of Rb, Y, Cs, Nb, U, Th, Cl, and F (±Be) increased. The associated magma or magmas were highly evolved, volatile enriched, and contained Rb, Nb, and Y abundances characteristic of continental within-plate granites; compositions ranged from high-silica rhyolite to topaz rhyolite. Pre-eruptive volatile abundances in the source magma(s) were generally high but also highly variable. Chlorine contents of melt(s) ranged from 0.02-0.23 wt%, and F ranged from 0.01-0.7 wt%. Concentrations of H 2O in melt(s) ranged from 1.6-6.5 wt%. The high pre-eruptive H 2O contents are consistent with large eruptive volumes indicating the precursor rhyolites, which weathered to tonsteins, were a result of plinian eruptions. Even though pre-eruptive water concentrations exhibit no recognizable trends with any elements studied, magmatic evolution appears to have been a strong function of F and H 2O in melt(s); the thermal stabilities of quartz and feldspar were controlled by F and H 2O activities at pressures of approximately 0.5-1 kbar.
Parker, K; Morrison, G
2016-08-01
Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Analysis of Heavy Metal Content (Pb) on Waters and Fish at The Floating Cages BPPP Ambon
NASA Astrophysics Data System (ADS)
Wattimena, Rachel L.; Selanno, Debby A. J.; Tuhumury, Semuel F.; Tuahatu, Juliana W.
2018-02-01
Coastal waters play important roles due to highly in natural resources and developing of environmental services. However, there are highly intensity of natural resources utilization, environment and settlement. Consequently, environment and natural resources would be degraded such as in the Ambon Bay. One of the potency at the Ambon Bay is mariculture area namely the floating cages (KJA) which belongs to Fisheries education and training (BPPP) Ambon. The research aimed to analyze physical-chemical of waters (temperature, pH, salinity and current speed), to analyze heavy metal concentration (Pb) on water and fish from floating cages (KJA) and to analyze waters pollution status at KJA BPPP Ambon. The average salinity of each floating cage ranged from 30.09 - 30.34°C, pH ranged from 8.03 - 8.44, salinity ranged from 31.36 - 33.34 PSU, and current speed at spring tide ranged from 0.5 - 55.8 Cm/sec while neap tide ranged from 0.1 - 9.8 Cm/sec. Heavy metal concentration (Pb) on waters was below the standard for waters quality and the average concentration was 0.002 mg/l. Whilst, the heavy metal concentration (Pb) on fishes was below standard for floating cages (floating cages 2-6) which was 0.05 and 0.17mg/l. Otherwise, floating cage 1 had been above maximum standard for fish food and its processing following SNI 7387:2009 (0.3mg/l) which was 0.31 mg/l. The status of waters pollution at KJA BPPP Ambon belonged to C class and could be categorized as moderate based on standard for waters quality issued by State Ministerial Decree for the Environment No. 51 Year 2004.
Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal
NASA Astrophysics Data System (ADS)
Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana
2014-05-01
The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling the properties of a long-range correlated process.
Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation
ERIC Educational Resources Information Center
Forgy, David
2012-01-01
Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…
Background: Quantitative high-throughput screening (qHTS) assays are increasingly being employed to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in co...
Specifications of the High-Flux Solar Furnace | Concentrating Solar Power |
Non-imaging compound parabolic Acceptance angle: 14 degrees Entrance diameter: 6 cm Exit diameter secondary concentrator configurations are possible depending on the experimental needs. Back to top XYZ controllers ranging from 2,000 to 30,000 sccm Exhaust hood above experimental area Drill press and hand tools
Investigation of air solubility in jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Rupprecht, S. D.; Faeth, G. M.
1981-01-01
The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.
Assessment of metals content in dandelion (Taraxacum officinale) leaves grown on mine tailings
NASA Astrophysics Data System (ADS)
Levei, Levente; Andrei, Mariana Lucia; Hoaghia, Maria Alexandra; Ozunu, Alexandru
2017-12-01
Dandelion (Taraxacum officinale) is one of the plant species that has the ability to spontaneously grow on mine tailings, due to its high tolerance for harsh environmental conditions (low nutrients level, high metal contents). The concentrations of Cd, Cu, Pb and Zn were determined in tailings and dandelion leaves grown on nonferrous mine tailings from Romania, while the metal accumulation was assessed by transfer factors (TFs) calculated as the ratio between the metal concentration in plant leaves and in tailings underneath. The results showed that the metal concentrations in tailings ranged between 0.4-8.0 mg/kg Cd, 20-1300 mg/kg Cu, 27-570 mg/kg Pb and 48-800 mg/kg Zn, while the metal concentrations in dandelion ranged between 0.2-4.8 mg/kg Cd, 6.2-17 mg/kg Cu, 0.5-75 mg/kg Pb and 27-260 mg/kg Zn. The TFs were below 0.8 for Cd and Zn and below 0.4 for Cu and Pb and decreased in the following order Cd≥Zn>Cu≥Pb, suggesting the Cd and Zn accumulation capability of dandelion.
NASA Technical Reports Server (NTRS)
Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.
2016-01-01
Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.
Nookabkaew, Sumontha; Rangkadilok, Nuchanart; Prachoom, Norratouch; Satayavivad, Jutamaad
2016-04-27
Thailand is predominantly an agriculture-based country. Organic farming is enlisted as an important national agenda to promote food safety and international export. The present study aimed to determine the concentrations of trace elements in commercial organic fertilizers (fermented and nonfermented) composed of pig and cattle manures available in Thailand. Pig and cattle manures as well as animal feeds were also collected from either animal farms or markets. The results were compared to the literature data from other countries. Fermented fertilizer composed of pig manure contained higher concentrations of nitrogen (N) and phosphorus (P) than fertilizer composed of cattle manure. High concentrations of copper (Cu) and zinc (Zn) were also found in fertilizers and manures. Some organic fertilizers had high concentrations of arsenic (As), cadmium (Cd), and lead (Pb). The range of As concentration in these fertilizers was 0.50-24.4 mg/kg, whereas the ranges of Cd and Pb were 0.10-11.4 and 1.13-126 mg/kg, respectively. Moreover, pig manure contained As and Cd (15.7 and 4.59 mg/kg, respectively), higher than their levels in cattle manure (1.95 and 0.16 mg/kg, respectively). The use of pig manure as soil supplement also resulted in high Cd contamination in herbal tea (Gynostemma pentaphyllum Makino; GP). The Cd concentration in GP plants positively correlated with the Cd concentration in the soil. Therefore, the application of some organic fertilizers or animal manures to agricultural soil could increase some potentially toxic elements in soil, which may be absorbed by plants and, thus, increase the risk of contamination in agricultural products.
NASA Astrophysics Data System (ADS)
Ahemen, I.; Dejene, F. B.; Kroon, R. E.; Swart, H. C.
2017-12-01
This work reports the influence of Eu3+ ion concentration on the structure and photoluminescence properties of Li2BaZrO4 nanocrystals including its intrinsic quantum efficiency (IQE). Chemical bath method was employed in the synthesis procedure. X-ray diffraction results showed tetragonal phase for Eu3+ ion concentration in the range 1 and 7 mol% and cubic phase at 8 mol%. The presence of barium oxide (BaO) was confirmed from selected area electron diffraction (SAED). The excitation spectra for these phosphors consisted of broad charge transfer (CT) bands due to the combination of Zr4+ - O2- and Eu3+-O2- charge transfer states. Superimposed on the CT band were direct excitation levels of Eu3+ and Ba2+ ions, in the range 320-450 nm. At high Eu3+ ions concentrations, the intensities of CT bands decreased because some of the ions were coordinated with Ba2+ ions. Photoluminescence emissions for all the doped samples at room temperature appeared to be entirely from intraconfigurational Eu3+ emissions and depended both on the site symmetry as well as the ion concentration. The quadrupole-quadrupole multipolar process was found to be solely responsible for the luminescence quenching. The intensity parameters (Ω2 ,Ω4), asymmetry ratio, R0 and the average decay lifetime of the nanocrystals showed dependence on concentration. High internal quantum efficiency (IQE) values were obtained at low Eu3+ ion concentrations, but efficiency decreased with increasing ion concentration. The CIE coordinates values were comparable to existing red phosphors and in combination with the high IQE make this phosphor a good candidate for red light emitting applications.
Nguyen, Duc Luong; Kim, Jin Young; Ghim, Young Sung; Shim, Shang-Gyoo
2015-03-01
PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.
Freitas, Amanda Souza; Simoneti, Christian Silva; Ferraz, Erica; Bagatin, Ericson; Brandão, Izaira Tincani; Silva, Celio Lopes; Borges, Marcos Carvalho; Vianna, Elcio Oliveira
2016-05-06
Endotoxin from Gram-negative bacteria are found in different concentrations in dust and on the ground of laboratories dealing with small animals and animal houses. Cross-sectional study performed in workplaces of two universities. Dust samples were collected from laboratories and animal facilities housing rats, mice, guinea pigs, rabbits or hamsters and analyzed by the "Limulus amebocyte lysate" (LAL) method. We also sampled workplaces without animals. The concentrations of endotoxin detected in the workplaces were tested for association with wheezing in the last 12 months, asthma defined by self-reported diagnosis and asthma confirmed by bronchial hyperresponsiveness (BHR) to mannitol. Dust samples were obtained at 145 workplaces, 92 with exposure to animals and 53 with no exposure. Exposed group comprised 412 subjects and non-exposed group comprised 339 subjects. Animal-exposed workplaces had higher concentrations of endotoxin, median of 34.2 endotoxin units (EU) per mg of dust (interquartile range, 12.6-65.4), as compared to the non-exposed group, median of 10.2 EU/mg of dust (interquartile range, 2.6-22.2) (p < 0.001). The high concentration of endotoxin (above whole sample median, 20.4 EU/mg) was associated with increased wheezing prevalence (p < 0.001), i.e., 61 % of workers exposed to high endotoxin concentration reported wheezing in the last 12 months compared to 29 % of workers exposed to low endotoxin concentration. The concentration of endotoxin was not associated with asthma report or with BHR confirmed asthma. Exposure to endotoxin is associated with a higher prevalence of wheezing, but not with asthma as defined by the mannitol bronchial challenge test or by self-reported asthma. Preventive measures are necessary for these workers.
Mass transport in polyelectrolyte solutions
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Leyte, J. C.
1999-02-01
The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.
NASA Astrophysics Data System (ADS)
Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K. S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Regan, P. H.; Santawamaitre, T.; Malain, D.; Habib, A.; Al-Dosari, Hanan; Daar, Eman
2016-09-01
The goal of this study was to establish the first baseline measurements for radioactivity concentration of the artificial radionuclide 137Cs in soil samples collected from the Qatarian peninsula. The work focused on the determination of the activity concentrations levels of man-made radiation in 129 soil samples collected across the landscape of the State of Qatar. All the samples were collected before the most recent accident in Japan, “the 2011 Fukushima Dai-ichi nuclear power plant accident”. The activity concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A radiological map showing the activity concentrations of 137Cs is presented in this work. The concentration wasfound to range from 0.21 to 15.41 Bq/kg. The highest activity concentration of 137Cs was observed in sample no. 26 in North of Qatar. The mean value was found to be around 2.15 ± 0.27 Bq/kg. These values lie within the expected range relative to the countries in the region. It is expected that this contamination is mainly due to the Chernobyl accident on 26 April 1986, but this conclusion cannot be confirmed because of the lack of data before this accident.
Concentration measurements of biodiesel in engine oil and in diesel fuel
NASA Astrophysics Data System (ADS)
Mäder, A.; Eskiner, M.; Burger, C.; Ruck, W.; Rossner, M.; Krahl, J.
2012-05-01
This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.
García-de la Parra, Luz María; Cervantes-Mojica, L Juleny; González-Valdivia, Carolina; Martínez-Cordero, Francisco J; Aguilar-Zárate, Gabriela; Bastidas-Bastidas, Pedro; Betancourt-Lozano, Miguel
2012-10-01
Agriculture is one of the most important economic activities in Sinaloa, Mexico. The Culiacan Valley is an extensive agricultural region characterized by a variety of crops with high-yield productions. In this study, concentrations of organochlorine (OCPs) and organophosphorus (OPs) pesticides and polychlorobiphenyls (PCBs) were determined in sediments of the agricultural drainage system of Culiacan Valley. Overall, 32 compounds were detected, with concentrations widely ranging from 0.03 to 1 294 ng g(-1) dry weight. OCP concentrations (15) ranged from 0.1 to 20.19 ng g(-1) dw. OP concentrations (8) ranged from 0.03 to 1294 ng g(-1) dw, and diazinon was the compound with the highest concentration. PCB concentrations were also determined and varied from 0.05 to 3.29 ng g(-1) dw. Other compounds detected included permethrin, triadimefon, and fipronil. The central zone registered the higher concentrations and the greatest number of compounds, which could be related to the occurrence of horticultural fields in this zone. According to sediment quality guidelines, the compounds exceeding the probable effect level were γ-HCH, p,p'-DDT and p,p'-DDE, while the pesticides above the maximum permissible concentration were endosulfan, azinphos methyl, diazinon, dichlorvos, and permethrin. Although Sinaloa is an important agricultural crop producer in northwest Mexico, there are not many studies dealing with pesticide distribution in agricultural areas.
Ikoma, Toshikazu; Tsuchiya, Yasuo; Asai, Takao; Okano, Kiyoshi; Ito, Naoko; Endoh, Kazuo; Yamamoto, Masaharu; Nakamura, Kazutoshi
2015-01-01
Our previous study detected aflatoxins in red chili peppers from Chile, Bolivia, and Peru, each of which have a high incidence of gallbladder cancer (GBC). Since the aflatoxin B1 concentration was not so high in these peppers, it is important to clarify the presence of other mycotoxins. Here we attempted to determine any associations between the concentrations of aflatoxins and ochratoxin A (OTA) in red chili peppers, and the corresponding GBC incidences. We collected red chili peppers from three areas in Peru: Trujillo (a high GBC incidence area), Cusco (an intermediate GBC incidence area), and Lima (a low GBC incidence rate), and from Chile and Bolivia. Aflatoxins and OTA were extracted with organic solvents. The concentrations of aflatoxins B1, B2, G1, and G2, and OTA were measured by high-performance liquid chromatography. The values obtained were compared with the incidence of GBC in each area or country. All of the red chili peppers from the three areas showed contamination with aflatoxins below the Commission of the European Communities (EC) recommended limits (5 μg/kg), but the OTA contamination of two samples was above the EC recommended limit (15 μg/kg). The mean concentrations of OTA in the peppers from Chile (mean 355 μg/kg, range <5-1,059 μg/kg) and Bolivia (mean 207 μg/kg, range 0.8-628 μg/kg), which has a high incidence of GBC, were higher than that in Peru (14 μg/kg, range <5-47 μg/kg), which has an intermediate GBC incidence. The OTA contamination in the red chili peppers from Chile, Bolivia, and Peru was stronger than that of aflatoxins. Our data suggest that OTA in red chili peppers may be associated with the development of GBC.
An Update on the Development of a Line-Focus Refractive Concentrator Array
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; ONeill, Mark J.; Fraas, Lewis M.
1994-01-01
Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concentrator concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, stowability and ease of manufacturing and assembly. This paper will address the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as detail the recent fabrication of prototype hardware.
Samara, Fatin; Elsayed, Yehya; Soghomonian, Balik; Knuteson, Sandra L
2016-10-15
Water and sediments were collected on March 2013 and April 2014 from Khalid Khor creek area in United Arab Emirates to assess their quality parameters. The pH and alkalinity of the water samples were measured and their values were similar to those of shallow saltwater ecosystems. In addition, elemental analyses and organic compounds were done using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Gas Chromatography-Mass Spectroscopy (GC-MS), respectively. The concentration of heavy and trace metals in the water samples were within the acceptable limits except for lead which showed high values, while the concentrations of metals in the sediment samples were relatively high and ranged from 6517 to 13,768mg/kg. GC-MS analysis showed the presence of polyaromatic heterocyclic (PAHs) compounds in sediments near the shipping area and in amounts classified as highly carcinogenic; however, no polychlorinated biphenyls (PCB) were identified. Moreover, fecal bacterial contamination in water was detected in concentrations that range between 300 and 10,140 organisms/100mL. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biological nitrification/denitrification of high sodium nitrite (navy shipyard) wastewater.
Kamath, S; Sabatini, D A; Canter, L W
1991-01-01
In the hydroblasting of ships' boiler tubes, a wastewater high in nitrite (as high as 1200 mg litre(-1)) is produced by the US Navy. This research has evaluated the use of a suspended-growth biological system to treat this wastewater by denitrification. Two biological treatment configurations were evaluated (direct denitrification versus nitrification/denitrification) with nitrification/denitrification producing better nitrite removal efficiencies (54 to 62% versus 40%, respectively). The introduction of metals (cadmium, chromium, lead, copper and iron) in concentrations typical for this wastewater did not inhibit the nitrite removal efficiencies. The influent metal concentrations ranged from 0.02 mg litre(-1) for cadmium to 22 mg litre(-1) for iron and the metal removal efficiencies ranged from 4.8% for cadmium to 50% for copper. Increasing sludge age resulted in improved nitrite removal efficiencies (52%, 57% and 74% for sludge ages of 4, 6 and 8 days, respectively). The resulting biokinetic constants were similar to those reported by others for lower influent concentrations of nitrite or nitrate (Ygs=0.02 mg/mg; Ygn=0.16 mg/mg; Yb=0.8 mg/mg; and b=0.006 h(-1)).
Yuyama, Ken-ichi; Wu, Chi-Shiun; Sugiyama, Teruki; Masuhara, Hiroshi
2014-02-01
We present the laser trapping-induced crystallization of L-phenylalanine through high-concentration domain formation in H2O and D2O solutions which is achieved by focusing a continuous-wave (CW) near-infrared laser beam at the solution surface. Upon laser irradiation into the H2O solution, laser trapping of the liquid-like clusters increases the local concentration, accompanying laser heating, and a single plate-like crystal is eventually prepared at the focal spot. On the other hand, in the D2O solution, a lot of the monohydrate needle-like crystals are observed, not at the focal spot where the concentration is high enough to trigger crystal nucleation, but in the 0.5-1.5 mm range from the focal spot. The dynamics and mechanism of the amazing crystallization behaviour induced by laser trapping are discussed from the viewpoints of the concentration increase due to laser heating depending on solvent, the large high-concentration domain formation by laser trapping of liquid-like clusters, and the orientational disorder of molecules/clusters at the domain edge.
NASA Technical Reports Server (NTRS)
Otterson, D. A.; Seng, G. T.
1985-01-01
An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.
High-Flux Solar Furnace Facility | Concentrating Solar Power | NREL
High-Flux Solar Furnace Facility High-Flux Solar Furnace Facility NREL's High-Flux Solar Furnace (HFSF) is a 10-kW optical furnace for testing high-temperature processes or applications requiring high range of technologies with a diverse set of experimental requirements. The high heating rates create the
Fayiga, A O; Saha, U K
2016-09-01
The total lead (Pb) concentrations of the surface soil, sub surface soil, vegetation and surface waters of outdoor shooting ranges are extremely high and above regulatory limits. Lead is dangerous at high concentrations and can cause a variety of serious health problems. Shooters and range workers are exposed to lead dust and can even take Pb dust home to their families while some animals around the shooting range can ingest the Pb bullets. The toxicity of Pb depends on its bioavailability which has been determined to be influenced greatly by the geochemical properties of each site. The bioavailability of Pb in shooting ranges has been found to be higher than other metal contaminated soils probably because of its very low residual Pb (<1%). Despite being an immobile element in the soil, migration of Pb within shooting ranges and offsite has been reported in literature. Best management practices to reduce mobility of Pb in shooting ranges involve an integrated Pb management program which has been described in the paper. The adoption of the non-toxic "green bullet" which has been developed to replace Pb bullets may reduce or prevent environmental pollution at shooting ranges. However, the contaminated soil resulting from decades of operation of several shooting ranges still needs to be restored to its natural state. Copyright © 2016 Elsevier Ltd. All rights reserved.
WIND MEASUREMENTS WITH HIGH-ENERGY DOPPLER LIDAR
NASA Technical Reports Server (NTRS)
Koch, Grady J.; Kavaya, Michael J.; Barnes, Bruce W.; Beyon, Jeffrey Y.; Petros, Mulugeta; Jirong, Yu; Amzajerdian, Farzin; Slingh, Upendra N.
2006-01-01
Coherent lidars at 2-micron wavelengths from holmium or thulium solid-state lasers have been in use to measure wind for applications in meteorology, aircraft wake vortex tracking, and turbulence detection [1,2,3] These field-deployed lidars, however, have generally been of a pulse energy of a few millijoules, limiting their range capability or restricting operation to regions of high aerosol concentration such as the atmospheric boundary layer. Technology improvements in the form of high-energy pulsed lasers, low noise detectors, and high optical quality telescopes are being evaluated to make wind measurements to long ranges or low aerosol concentrations. This research is aimed at developing lidar technology for satellite-based observation of wind on a global scale. The VALIDAR project was initiated to demonstrate a high pulse energy coherent Doppler lidar. VALIDAR gets its name from the concept of validation lidar, in that it can serve as a calibration and validation source for future airborne and spaceborne lidar missions. VALIDAR is housed within a mobile trailer for field measurements.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng
2018-01-01
Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.
SEDIMENT DENITRIFICATION IN THE YAQUINA ESTUARY, OREGON
Rivers draining watersheds of the Coast Range in the northwestern United States frequently contain high concentrations of dissolved nitrate, particularly after high flow events (up to 180 ?M nitrate-N). The nitrate source appears to originate from the fixation of atmospheric nit...
Arrizon, Javier; Gschaedler, Anne
2002-11-01
In the tequila industry, fermentation is traditionally achieved at sugar concentrations ranging from 50 to 100 g x L(-1). In this work, the behaviour of the Saccharomyces cerevisiae yeast (isolated from the juices of the Agave tequilana Weber blue variety) during the agave juice fermentation is compared at different sugar concentrations to determine if it is feasible for the industry to run fermentation at higher sugar concentrations. Fermentation efficiency is shown to be higher (above 90%) at a high concentration of initial sugar (170 g x L(-1)) when an additional source of nitrogen (a mixture of amino acids and ammonium sulphate, different than a grape must nitrogen composition) is added during the exponential growth phase.
NASA Astrophysics Data System (ADS)
Sun, Yutao; Zhou, Xiaocheng; Zheng, Guodong; Li, Jing; Shi, Hongyu; Guo, Zhengfu; Du, Jianguo
2017-11-01
Degassing of carbon monoxide (CO), which plays a significant role in the contribution of deep carbon to the atmosphere, commonly occurs within active fault zones. CO degassing from soil to the atmosphere in the Basin and Range province, west of Beijing (BRPB), China, was investigated by in-situ field measurements in the active fault zones. The measured concentrations of CO in soil gas in the BRPB ranged from 0.29 × 10-6 to 1.1 × 10-6 with a mean value of 0.6 × 10-6, which is approximately twice as large as that in the atmosphere. Net fluxes of CO degassing ranged from -48.6 mg m-2 d-1 to 12.03 mg m-2 d-1. The diffusion of CO from soil to the atmosphere in the BRPB was estimated to be at least 7.6 × 103 ton/a, which is comparable to the corresponding result of about 1.2 × 104 ton/a for CO2. CO concentrations were spatially heterogeneous with clearly higher concentrations along the NE-SW trending in the BRPB. These elevated values of CO concentrations were also coincident with the region with low-velocity and high conductivity in deep mantle, and high Poisson's ratio in the crust, thereby suggesting that CO degassing from the soil might be linked to upwelling of the asthenospheric mantle. Other sources of CO in the soil gas are suggested to be dominated by chemical reactions between deep fluids and carbonate minerals (e.g., dolomite, limestone, and siderite) in country rocks. Biogenic processes may also contribute to the CO in soil gas. The spatial distribution patterns of CO concentrations are coincident with the stress field, suggesting that the concentrations of CO could be a potential indicator for crustal stress field and, hence is potential useful for earthquake monitoring in the BRPB.
[Allelopathy of Andrographis paniculata vegetative].
Li, Ming; Zhou, Xiao-Yan; Lu, Zhan-Hong
2010-12-01
Andrographis paniculata at vegetative stage were analyzed for the allelopathic effect on cabbage (Brassica chinensis), Radis (Raphanus sativus), and Desmodium styracifolium, and provided the theory reference for their application of compounding planting pattern in practice. Water extracts of Andrographis paniculata root, stem and leaf were used to dispose Brassica chinensis, Raphanus sativus and Desmodium styracifolium seeds, young seedlings. There were allelopathic effect of water extracts of Andrographis paniculata on seed germination of Brassica chinensis, Raphanus sativus and Desmodium styracifolium, but there were difference on allelopathic effect. The suppression effects of roots on seed germination rates of Brassica chinensis showed more significantly, the stems and leaves of Andrographis paniculata on the allelopathic effects on Brassica chinensis seed germination rate index was also significantly higher than the other two receptors plants. Under the treating condition of root, stem and leaf aqueous extracts of Andrographis paniculata, the root growth of receptors seeding mostly showed inhibition effect. Under low concentrations treated. The effects on the seedlings height of Raphanus sativus and Desmodium styracifolium showed the results in which low concentration promoted and high concentration inhibited, and with increasing concentration increased the promotion or inhibition effects. But in the measured concentration range, the effects on the seedlings height of Brassica chinensis were showed promote effect. Within the testing concentration range, water extracts of Andrographis paniculata on allelopathic effects of cabbage (Brassica chinensis), Radis (Raphanus sativus) and Desmodium styracifolium showed allelopathic effect, and roughly showed inhibiti effect. However, showed different effect in which high concentration inhibitied and low concentration promoted to different receptor.
Hakansson, Eva; Kaynak, Akif; Kouzani, Abbas
2016-01-01
Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1–18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p-toluene sulfonic acid (pTSA) concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH)). The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High pTSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties. PMID:28773729
Hakansson, Eva; Kaynak, Akif; Kouzani, Abbas
2016-07-22
Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1-18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p -toluene sulfonic acid ( p TSA) concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH)). The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L p TSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High p TSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties.
Application of High-Throughput In Vitro Assays for Risk-Based ...
Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos
20150325 - Application of High-Throughput In Vitro Assays for ...
Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos
Hess, C; Unger, M; Madea, B; Stratmann, B; Tschoepe, D
2018-05-01
Due to a lack of reference values for blood concentration of metformin in the literature, the forensic evaluation of metformin findings in blood samples is difficult. Interpretations with regard to the assessment of blood concentrations as well as an estimation of the ingested metformin amounts are often vague. Furthermore, post mortem evaluation of death due to lactic acidosis because of metformin is difficult since renal performance or lactate concentrations can not always reliably be determined after death. To describe a concentration range in clinical samples after chronic use of metformin, metformin serum concentrations were determined in serum samples of 95 diabetic patients receiving daily doses of 500mg-3000mg of metformin. The analyses of metformin was carried out using a validated high performance liquid chromatograph coupled to triple quadrupole mass spectrometry (LC-QQQ-MS). On average, metformin concentrations were 1846ng/mL (
An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Erin Shammel; Livesay, Eric A.; Orton, Daniel J.
2010-02-05
A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL.more » In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking level present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects, but in turn limits the achievable dynamic range compared to the TOF detector.« less
Caswell, Andrew W; Kraetschmer, Thilo; Rein, Keith; Sanders, Scott T; Roy, Sukesh; Shouse, Dale T; Gord, James R
2010-09-10
Two time-division-multiplexed (TDM) sources based on fiber Bragg gratings were applied to monitor gas temperature, H(2)O mole fraction, and CH(4) mole fraction using line-of-sight absorption spectroscopy in a practical high-pressure gas turbine combustor test article. Collectively, the two sources cycle through 14 wavelengths in the 1329-1667 nm range every 33 μs. Although it is based on absorption spectroscopy, this sensing technology is fundamentally different from typical diode-laser-based absorption sensors and has many advantages. Specifically, the TDM lasers allow efficient, flexible acquisition of discrete-wavelength information over a wide spectral range at very high speeds (typically 30 kHz) and thereby provide a multiplicity of precise data at high speeds. For the present gas turbine application, the TDM source wavelengths were chosen using simulated temperature-difference spectra. This approach is used to select TDM wavelengths that are near the optimum values for precise temperature and species-concentration measurements. The application of TDM lasers for other measurements in high-pressure, turbulent reacting flows and for two-dimensional tomographic reconstruction of the temperature and species-concentration fields is also forecast.
Tai, Yi-Ping; Luo, Xiao-Dong; Mo, Ce-Hui; Li, Yan-Wen; Wu, Xiao-Lian; Liu, Xing-Yue
2011-04-01
The occurrence and distribution of four quinolones and four sulfonamides in swine and cattle feces sampled from twenty large-scale feeding operations in different areas of Guangdong province were detected using solid phase extraction (SPE) and high performance liquid chromatography (HPLC). Quinolone and sulfonamide compounds were observed in all pig dung samples. Their total concentrations ranged from 24.5 microg/kg to 1516.2 microg/kg (F. W.) with an average of 581.0 microg/kg and ranged from 1925.9-13399.5 microg/kg with an average of 4403.9 microg/kg respectively. The dominant compounds in pig feces were ciprofloxacin and enrofloxacin for quinolones and sulfamerazine and sulfamethoxazole for sulfonamides. Quinolone compounds which dominated with norfloxacin and ciprofloxacin were also observed in all cattle dung samples, its total concentrations ranged from 73.2 microg/kg to 1328.0 microg/kg which averaged 572.9 microg/kg. While the positive rates of sulfonamide compounds detected in cattle dung samples were above 90%, predominated by sulfamethoxazole and sulfamerazine. Concentration and distribution of both quinolone and sulfonamide compounds in swine and cattle dungs of different feeding operations varied greatly. Relatively high concentrations of the two kinds of antibiotics were found in both swine and cattle dungs from Guangzhou area, while sulfameter and sulfamethazine in cattle dungs from Foshan and Shenzhen areas were below the limit of detection.
Comparable Efficacy With Varying Dosages of Glucarpidase in Pediatric Oncology Patients
Scott, Jeffrey R.; Zhou, Yinmei; Cheng, Cheng; Ward, Deborah A.; Swanson, Hope D.; Molinelli, Alejandro R.; Stewart, Clinton F.; Navid, Fariba; Jeha, Sima; Relling, Mary V.; Crews, Kristine R.
2016-01-01
Background Glucarpidase rapidly reduces methotrexate plasma concentrations in patients experiencing methotrexate-induced renal dysfunction. Debate exists regarding the role of glucarpidase in therapy given its high cost. The use of reduced-dose glucarpidase has been reported, and may allow more institutions to supply this drug to their patients. This report explores the relationship between glucarpidase dosage and patient outcomes in pediatric oncology patients. Methods The authors evaluated data from 26 patients who received glucarpidase after high-dose methotrexate. Decrease in plasma methotrexate concentrations and time to renal recovery were evaluated for an association with glucarpidase dosage, which ranged from 13 to 90 units/kg. Results No significant relationship was found between glucarpidase dosage (units/kg) and percent decrease in methotrexate plasma concentrations measured by TDx (P >0.1) or HPLC (P >0.5). Patients who received glucarpidase dosages <50 units/kg had a median percent reduction in methotrexate plasma concentration of 99.4% (range, 98–100) measured by HPLC compared to a median percent reduction of 99.4% (range, 77.2–100) in patients who received ≥50 units/kg. Time to SCr recovery was not related to glucarpidase dosage (P >0.8). Conclusions The efficacy of glucarpidase in the treatment of HDMTX-induced kidney injury was not dosage-dependent in this retrospective analysis of pediatric oncology patients. Pediatr Blood Cancer 2015;62:1518–1522. PMID:25631103
Lucas, E L; Bertrand, P; Guazzetti, S; Donna, F; Peli, M; Jursa, T P; Lucchini, R; Smith, D R
2015-04-01
Adolescents living in communities with ferromanganese alloy plant activity have been shown to exhibit deficits in olfactory and fine motor function. Household dust may serve as an important manganese (Mn) exposure pathway to children, though dust Mn concentrations have not previously been measured to assess household contamination from ferromanganese alloy plant emissions. Here we determined the association between dust concentrations and surface loadings of Mn and other metals (Al, Cd, Cr, Cu, Fe, Pb, and Zn) in indoor and outdoor household dust from three Italian communities that differ by history of ferromanganese alloy plant activity: Bagnolo Mella, with an active ferromanganese alloy plant (n=178 households); Valcamonica, with historically active plants (n=166); and Garda Lake, with no history of ferromanganese plant activity (n=99). We also evaluated Mn levels in other environmental (soil, airborne particulates) and candidate biomarker (blood, hair, saliva, fingernails) samples from children within the households. Household dust Mn concentrations and surface loadings were significantly different between the three sites, with levels highest in Bagnolo Mella (outdoor median Mn concentration=4620, range 487-183,000µg/g), intermediate in Valcamonica (median=876, range 407-8240µg/g), and lowest in Garda Lake (median=407, range 258-7240µg/g). Outdoor dust Mn concentrations in Bagnolo Mella, but not the other communities, were significantly inversely related with distance from the plant (R(2)=0.6630, P<0.0001). Moreover, outdoor dust Mn concentrations and loadings were highly predictive of but significantly higher than indoor dust Mn concentrations and loadings by ~2 to ~7-fold (Mn concentrations) and ~7 to ~20-fold (Mn loadings). Finally, both indoor and outdoor dust Mn concentrations and outdoor dust Mn loading values were highly significantly correlated with both soil and air Mn concentrations, and with children's hair and fingernail Mn concentrations, but weakly or not associated with saliva or blood Mn levels. Given the evidence associating elevated Mn exposure with neurological impairments in children, these data support that dust Mn levels should be reduced in contaminated environments to protect the health of resident children. Copyright © 2015 Elsevier Inc. All rights reserved.
Lucas, E.L.; Bertrand, P.; Guazzetti, S.; Donna, F.; Peli, M.; Jursa, T.R.; Lucchini, R.; Smith, D.R.
2015-01-01
Adolescents living in communities with ferromanganese alloy plant activity have been shown to exhibit deficits in olfactory and fine motor function. Household dust may serve as an important manganese (Mn) exposure pathway to children, though dust Mn concentrations have not previously been measured to assess household contamination from ferromanganese alloy plant emissions. Here we determined the association between dust concentrations and surface loadings of Mn and other metals (Al, Cd, Cr, Cu, Fe, Pb, and Zn) in indoor and outdoor household dust from three Italian communities that differ by history of ferromanganese alloy plant activity: Bagnolo Mella, with an active ferromanganese alloy plant (n=178 households); Valcamonica, with historically active plants (n=166); and Garda Lake, with no history of ferromanganese plant activity (n=99). We also evaluated Mn levels in other environmental (soil, airborne particulates) and candidate biomarker (blood, hair, saliva, fingernails) samples from children within the households. Household dust Mn concentrations and surface loadings were significantly different between the three sites, with levels highest in Bagnolo Mella (outdoor median Mn concentration = 4620, range 487 – 183,000 µg/g), intermediate in Valcamonica (median = 876, range 407 – 8240 µg/g), and lowest in Garda Lake (median = 407, range 258 – 7240 µg/g). Outdoor dust Mn concentrations in Bagnolo Mella, but not the other communities, were significantly inversely related with distance from the plant (R2=0.6630, P<0.0001). Moreover, outdoor dust Mn concentrations and loadings were highly predictive of but significantly higher than indoor dust Mn concentrations and loadings by ~2 to ~7-fold (Mn concentrations) and ~7 to ~20-fold (Mn loadings). Finally, both indoor and outdoor dust Mn concentrations and outdoor dust Mn loading values were highly significantly correlated with both soil and air Mn concentrations, and with children’s hair and fingernail Mn concentrations, but weakly or not associated with saliva or blood Mn levels. Given the evidence associating elevated Mn exposure with neurological impairments in children, these data support that dust Mn levels should be reduced in contaminated environments to protect the health of resident children. PMID:25747819
Keshavarzi, Behnam; Mokhtarzadeh, Zeinab; Moore, Farid; Rastegari Mehr, Meisam; Lahijanzadeh, Ahmadreza; Rostami, Soqra; Kaabi, Helena
2015-12-01
Karoon is the longest river in Iran and provides water for industries located along its banks, such as metal, petrochemical, and oil industries. It is also the source of drinking water for cities such as Ahwas, Abadan, and Khorramshahr. In this study, 34 and 18 surface sediment samples were collected and analyzed for heavy metals (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and polycyclic aromatic hydrocarbons (PAHs). The measured concentrations of heavy metals were compared with US EPA sediment quality guidelines, and the results showed that Cu concentration was above the threshold effect level (TEL) in 65.67% of the samples and Hg concentration was above the effect range median (ERM) in some samples. The results revealed that Hg was severely enriched (5 < enrichment factor < 20) and classified in very high ecological risk index category. It is the major metallic contaminant in the study area. The total PAH concentrations ranged from 11.54-117,730 μg/kg, with the mean value of 7034.55 μg/kg dominated by lower molecular weight (LMW) PAHs. The total potentially carcinogenic PAHs (∑cPAHs) in sediment samples ranged from 2.09 to 31,930 μg/kg, indicating high carcinogenic potential of sediments in the study area. The total toxic equivalent (TEQ) values ranged from 1.06 to 7228.7 μg/kg. Maximum TEQ occurred in Abadan oil refinery station followed by Khorramshahr soap factory and Abadan petrochemical complex. Principal component analysis and cluster analysis also revealed the relationships between the studied parameters and identified their probable sources.
NASA Astrophysics Data System (ADS)
Solehah, A. R.; Yasir, M. S.; Samat, S. B.
2016-11-01
The activity concentrations of the natural radionuclides 226Ra, 232Th, and 40K were determined in vegetable crops consumed by Malaysian people in Sungai Besar, Selangor. Sample of vegetables and the soil where the crops were cultivated and collected at five different location. The activity concentrations in Bq/kg of 226Ra, 232Th, and 40K were measured by the gamma-ray spectroscopy using the high purity germanium detector. The range activity concentration in soil is between 51.81 and 71.84 Bq/kg, 64.18 and 78.00 Bq/kg, and 210.49 and 244.29 Bq/kg for 226Ra, 232Th, and 40K, respectively. The activity concentration of 226Ra, 232Th, and 40K in vegetables were found to be in the range of 2.06 to 5.44 Bq/kg, Not Detectable to 0.61 Bq/kg, and 101.00 to 1223.09 Bq/kg, respectively. The activity concentration in both soil and vegetables were all less than lower limit stated by UNSCEAR. The Transfer Factors range value for 226Ra, 232Th, and 40K varied from 0.02 to 0.06, 0.003 to 0.008, and 1.79 to 5.19 respectively. Radium equivalent for soil range from 165.57 to 194.84 Bq/kg. It was within the international accepted value (370 Bq/kg). Absorb dose rate for soil range between 73.5 to 86.40 nGyh-1, in safe range from limit of international accepted value (55nGyh-1). Effective dose rate is found to be in range of 0.09 to 0.11 mSvy-1 for soil which is less than 2.4 mSv/y. External and Internal Hazard indices of soil was all below 1, within agreement of other researcher and UNSCEAR. The estimation of the consequent radiological risk due to the presence of those radionuclides is significantly low.
Groundwater Quality Assessment in the Upper East Region of Ghana
NASA Astrophysics Data System (ADS)
Apambire, W. B.
2001-05-01
In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high concentrations of Al are associated with shallow wells and ponds. There is a highly positive correlation (r = +1) between Fe and Al, suggesting that dissolution of weathered lateritic material (e.g., Fe oxides, gibbsite, etc.) is the common source for these elements. Manganese concentrations are generally within acceptable limits, except for 11 wells that have concentrations above the guideline limit of 0.1 mg/L. These anomalous concentrations may be associated with manganiferous deposits in the study area. A majority of the samples contain very low concentrations of the trace elements Zn, Pb, Cd, Cr, As and Se; however, the highest concentrations occur in areas where small-scale mining is practiced.
Mora, Miguel A.; Taylor, Robert J.; Brattin, Bryan L.
2007-01-01
We investigated the occurrence and potential ecotoxicological significance of elevated concentrations of strontium (Sr) in eggshells of nine passerine birds from four regions in Arizona. Concentrations of Sr in eggshells ranged from 70 to 1360 µg g−1 dry weight (overall mean = 684 ± 345 SD µg g−1 dw) for the four regions. 23% of the eggshells had Sr concentrations greater than 1000 µg g−1 dw. To our knowledge, these are among the highest levels of Sr that have been reported in bird eggshells in North America. Of the nine species, Brown-headed Cowbirds (Molothrus ater) had the greatest concentrations of Sr. There was a significant positive correlation between Sr and calcium (Ca), and between barium (Ba) and Ca. Ca, Sr, and Ba interact with each other and can exert similar chemical and pharmacological effects. Mean (n ≥ 3) eggshell∶egg ratios for Sr varied with species and ranged from 6.1∶1 to 40.2∶1; ratios for individual eggs reached 92.7∶1. Mean Sr/Ca values ranged from 1.3 × 10−3 to 3.0 × 10−3 and mean eggshell thickness ranged from 83 ± 6 to 120 ± 9 µm for all species. Eggshell thickness was not significantly correlated with Sr for any species but tended to increase with Sr concentrations. We postulate that high concentrations of Sr in the shell could affect later-stage embryos by possible interference with Ca metabolism and bone growth, resulting in reduced hatching success and potential minor beak deformities.
Stavros, Hui-Chen W; Stolen, Megan; Durden, Wendy Noke; McFee, Wayne; Bossart, Gregory D; Fair, Patricia A
2011-03-01
The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations. Copyright © 2010. Published by Elsevier Ltd.
Adjei-Boateng, D; Obirikorang, K A; Amisah, S; Madkour, H A; Otchere, F A
2011-12-01
The relationship between gonadal development and the concentrations of four heavy metals Mn, Zn, Fe and Hg in the tissues of the clam Galatea paradoxa was evaluated at the Volta estuary, Ghana, over an 18-month period. Metal concentrations in the clam tissues were highly variable over the sampling period and seemed to be influenced by the reproductive cycle of the clam. Mn concentrations varied over a wide range from 49 to 867 μg/g and exhibited a significant positive correlation with gonadal development (p = 0.0146, r(2) = 0.3190). Zn and Fe concentrations ranged from 13 to 59 μg/g and 79 to 484 μg/g, respectively and both revealed negative relationships between gonad development and metal accumulation (Zn (p = 0.0554, r(2) = 0.0554) and Fe (p = 0.1040, r(2) = 0.1567)). Hg concentrations ranged from 0.026 to 0.059 μg/g over the sampling period and exhibited a slight positive relationship between gonadal development and metal accumulation (p = 0.0861, r(2) = 0.1730).
Use of real-time sensors to characterise human exposures to combustion related pollutants.
Delgado-Saborit, Juana Maria
2012-07-01
Concentrations of black carbon and nitrogen dioxide have been collected concurrently using a MicrAeth AE-51 and an Aeroqual GSS NO(2) sensor. Forty five sampling events with a duration spanning between 16 and 22 hours have collected 10,800 5 min data in Birmingham (UK) from July to October 2011. The high temporal resolution database allowed identification of peak exposures and which activities contributed the most to these peaks, such as cooking and commuting. Personal exposure concentrations for non-occupationally exposed subjects ranged between 0.01 and 50 μg m(-3) for BC with average values of 1.3 ± 2.2 μg m(-3) (AM ± SD). Nitrogen dioxide exposure concentrations were in the range
Jacob, Peyton; Holiday, David B.; Benowitz, Neal L.; Sosnoff, Connie S.; Doig, Mira V.; Feyerabend, Colin; Aldous, Kenneth M.; Sharifi, Mehran; Kellogg, Mark D.; Langman, Loralie J.
2009-01-01
Introduction: Cotinine, the primary proximate metabolite of nicotine, is commonly measured as an index of exposure to tobacco in both active users of tobacco and nonsmokers with possible exposure to secondhand smoke (SHS). A number of laboratories have implemented analyses for measuring serum cotinine in recent years, but there have been few interlaboratory comparisons of the results. Among nonsmokers exposed to SHS, the concentration of cotinine in blood can be quite low, and extensive variability in these measurements has been reported in the past. Methods: In this study, a group of seven laboratories, all experienced in serum cotinine analysis, measured eight coded serum pools with concentrations ranging from background levels of about 0.05 ng/ml to relatively high concentrations in the active smokers range. All laboratories used either gas–liquid chromatography with nitrogen–phosphorus detection or liquid chromatography with mass spectrometric detection. Results: All seven laboratories reliably measured the cotinine concentrations in samples that were within the range of their methods. In each case, the results for the pools were correctly ranked in order, and no significant interlaboratory bias was observed at the 5% level of significance for results from any of the pools. Discussion: We conclude that present methods of chromatographic analysis of serum cotinine, as used by these experienced laboratories, are capable of providing accurate and precise results in both the smoker and the nonsmoker concentration range. PMID:19933777
Effect of food on absorption of Dilantin Kapseals and Mylan extended phenytoin sodium capsules.
Wilder, B J; Leppik, I; Hietpas, T J; Cloyd, J C; Randinitis, E J; Cook, J
2001-08-28
Because of phenytoin's narrow therapeutic index and nonlinear pharmacokinetics, food-induced alterations in absorption may markedly influence drug concentrations and, in turn, safety and effectiveness. Potential food-associated differences between 100-mg Mylan (Mylan Pharmaceuticals) extended-release phenytoin sodium capsules and Parke-Davis 100-mg Dilantin Kapseals were examined. A single-dose, two-way crossover study was conducted in 24 healthy subjects to determine the effect of a high-fat meal on the pharmacokinetics of both formulations. Pharmacokinetic parameters were estimated by noncompartmental methods. The impact of switching products on steady-state phenytoin concentrations was investigated through simulation using pharmacokinetic data previously obtained from 30 epileptic patients. Based on AUC(0-infinity), bioavailability of the Mylan product administered with food was 13% lower than that observed with Dilantin Kapseals. Simulations of substituting the Mylan product for Dilantin suggested that the 13% decrease in bioavailability would result in a median 37% decrease (range 19 to 58%) in plasma phenytoin concentrations when the drug is given with food; in 46% of patients, phenytoin concentrations would likely fall below the therapeutic range of 10 to 20 mg/L. Simulations of substituting Dilantin for the Mylan product suggested that the 15% increase in bioavailability would result in a median 102% increase (range 24 to >150%) in plasma phenytoin concentrations, with 84% of patients having phenytoin concentrations above the therapeutic range. Results suggest that when taking phenytoin sodium with food, product switches may result in either side effects or loss of seizure control.
Dietary biomagnification of organochlorine contaminants in Alaskan polar bears
Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; Muir, D.C.G.; O'Hara, T. M.
2008-01-01
Concentrations of organochlorine contaminants in the adipose tissue of polar bears (Ursus maritimus Phipps, 1774) vary throughout the Arctic. The range in concentrations has not been explained fully by bear age, sex, condition, location, or reproductive status. Dietary pathways expose polar bears to a variety of contaminant profiles and concentrations. Prey range from lower trophic level bowhead whales (Balaena mysticetus L., 1758), one of the least contaminated marine mammals, to highly contaminated upper trophic level ringed seals (Phoca hispida (Schreber, 1775)). We used ??15N and ??13C signatures to estimate the trophic status of 42 polar bears sampled along Alaska's Beaufort Sea coast to determine the relationship between organochlorine concentration and trophic level. The ?? 15N values in the cellular portions of blood ranged from 18.2% to 20.7%. We found strong positive relationships between concentrations of the most recalcitrant polychlorinated biphenyls (PCBs) and ??15N values in models incorporating age, lipid content, and ??13C value. Specifically these models accounted for 67% and 76% of the variation in PCB153 and oxychlordane concentration in male polar bears and 85% and 93% in females, respectively. These results are strong indicators of variation in diet and biomagnification of organochlorines among polar bears related to their sex, age, and trophic position. ?? 2008 NRC.
High-quantum efficiency, long-lived luminescing refractory oxides
Chen, Y.; Gonzalez, R.; Summers, G.P.
A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.
Wang, Y H; Li, P; Dai, X Y; Zhang, R; Jiang, Z; Jiang, D W; Wang, Y X
2015-05-15
To investigate the community diversity and abundance of methanogens and their potential role in high arsenic groundwater, 17 groundwater samples from Hetao Plain of Inner Mongolia were investigated with an integrated method including 16S rRNA gene clone library, quantitative polymerase chain reaction and geochemistry analyses. Total arsenic (AsTot) concentrations were 82.7-1088.7 μg/L and arsenite (AsIII) mostly dominated in these samples with percentages of 0.04-0.79. CH₄ concentrations ranged from 0.01 to 292 μg/L and distinctly elevated only when AsTot were relatively high and SO₄(2-) were distinctly low. Principal component analysis indicated that these samples were divided into three groups according to the variations of AsTot, CH₄ and SO₄(2-). AsTot concentrations were distinctly high in the group with high CH₄ and low SO₄(2-) comparing to the other two groups (one with high CH₄ and high SO₄(2-), the other with low CH₄ and SO₄(2-)). The mcrA gene (methyl coenzyme-M reductase gene) based phylogenetic analysis of methanogens population showed that methanogenic archaea was diverse but mainly composed of Methanomicrobiales, Methanosarcinales, Methanobacteria and unidentified groups, with Methanomicrobiales being distinctly dominant (50.6%). The mcrA gene abundance in high arsenic groundwater ranged from 3.01 × 10(3) to 3.80 × 10(6)copies/L and accounted for 0-30.2% of total archaeal 16S rRNA genes. The abundance of mcrA genes was positively correlated with the concentrations of AsTot (R=0.59), AsIII (R=0.57) and FeII (R=0.79), while it was negatively correlated with oxidation-reduction potential (R=-0.66) and SO₄(2-) concentration (R=-0.64). These results implied that methanogenic archaea might accelerate As release in groundwater aquifers in Hetao Plain. Copyright © 2015. Published by Elsevier B.V.
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
Nadler, Boaz; Schuss, Zeev; Hollerbach, Uwe; Eisenberg, R S
2004-11-01
The ionic current flowing through a protein channel in the membrane of a biological cell depends on the concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate of arrival of bath ions to the channel's entrance increases, and typically so does the net current. This concentration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-concentration relations for a single ion channel. Such models, however, neglect other effects of bath concentrations on the net current. The net current depends not only on the entrance rate of ions into the channel, but also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an uncharged lipid membrane contains a blocking (shielding) term that is proportional to the square root of the ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g., Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance may actually decrease with increasing concentrations: the conductance-concentration curve can invert. Therefore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different regimes of conductance-concentration relations observed in experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, John L.; Aalseth, Craig E.; Arnquist, Isaac J.
2016-02-13
Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are assayed via inductively coupled plasma mass spectrometry (ICP-MS) after anion exchange column separation on dissolved lead samples. The 210Pb concentration is inferred through α-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po α-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from β-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sourcesmore » of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6 – 15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1 – 75 Bq/kg, as inferred by the 210Po α-spectroscopy assay method.« less
Walker, O; Dawodu, A H; Adeyokunnu, A A; Salako, L A; Alvan, G
1983-01-01
Twelve children with acute falciparum malaria were treated with 25 mg/kg chloroquine orally in three divided doses at 24 h intervals. Concentrations of chloroquine and its metabolite, desethylchloroquine, were measured in plasma from the beginning of treatment for up to 7 days using a high pressure liquid chromatography (h.p.l.c.) technique. Chloroquine was detectable in plasma within 30 min of giving the drug. Peak level was reached in 1-8 h after the first dose of 10 mg/kg and the peak concentrations ranged between 65 and 263 ng/ml. Chloroquine concentration declined slowly in plasma after stopping drug administration so that the concentration at the seventh day was 37.5% of the concentration on the third day. The apparent half-life was 3-4 days. Desethylchloroquine was detectable in plasma within 30 min of giving chloroquine and peak levels were reached in 2-12 h. Peak concentration after the first dose of chloroquine ranged between 9 and 62 ng/ml. Desethylchloroquine was also slowly cleared from plasma and mean concentration at the end of 7 days was 49% of the mean concentration at the end of 3 days. PMID:6661356
High levels of migratable lead and cadmium on decorated drinking glassware.
Turner, Andrew
2018-03-01
Externally decorated glassware used for the consumption of beverages, purchased new or sourced second-hand, and including tumblers, beer glasses, shot glasses, wine glasses and jars, has been analysed for Pb and Cd by portable x-ray fluorescence (XRF) spectrometry. Out of 197 analyses performed on distinctly different colours and regions of enamelling on 72 products, Pb was detected in 139 cases and among all colours tested, with concentrations ranging from about 40 to 400,000μgg -1 (median=63,000μgg -1 ); Cd was detected in 134 cases and among all colours apart from gold leaf, with concentrations ranging from about 300 to 70,000μgg -1 (median=8460μgg -1 ). The frequent occurrence of these metals is attributed to their use in both the oxidic fluxes and coloured pigments of decorative enamels employed by the glass industry. A standard test involving extraction of the external surface to within 20mm of the rim (lip area) by 4% acetic acid and subsequent analysis by ICP was applied to selected positive samples (n=14). Lead concentrations normalised to internal volume exceeded limit values of 0.5mgL -1 in all but one case, with concentrations over 100mgL -1 returned by three products. Cadmium concentrations exceeded limit values of 4mgL -1 in five cases, with a maximum concentration of about 40mgL -1 . Repeating the experiment on five positive samples using a carbonated drink (Coca Cola Classic) resulted in lower extractable concentrations but non-compliance for Pb in all cases. The presence of high concentrations of total and extractable Pb and Cd in the decorated lip areas of a wide range of products manufactured in both China and Europe is cause for concern from a health and safety perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Proceedings 43rd Stanford Geothermal Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stuart; Kirby, Stefan; Verplanck, Philip
Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrationsmore » that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that brines in sedimentary basins, or derived from lacustrine evaporites, enable aqueous transport of gallium, germanium, and lithium.« less
NASA Astrophysics Data System (ADS)
Boreddy, Suresh K. R.; Kawamura, Kimitaka; Okuzawa, Kazuhiro; Kanaya, Yugo; Wang, Zifa
2017-04-01
To better understand the impact of agricultural waste burning on the air quality of free troposphere over the North China Plain (NCP), we collected total suspended particles (TSP) at the summit of Mt. Tai, located in the NCP using a high volume air sampler during 29 May to 28 June 2006, when the field burning of agricultural residue was intense. Temporal variations of all measured species showed that their concentration increases from late May to mid June (major BB period), peaking during 12-14 June, and then significantly decreased towards late June (minor BB period). We noticed that a significant reduction in the concentrations of carbonaceous aerosols during the period of 8-11 June, when the wind direction shifted from southerly to northerly. We found that concentrations of carbonaceous aerosols and some major ions showed several times higher during major BB period than those of minor BB period. We also found that nighttime concentrations are higher than daytime during major BB period, suggesting that a long-range atmospheric transport of biomass burning plumes in the free troposphere, which arrived at the summit of Mt. Tai. In contrast, daytime concentrations are higher than nighttime during minor BB period. We found higher concentrations of secondary organic carbon (SOC) during major BB period, suggesting that formation of secondary organic aerosols through aqueous phase chemistry under high NOx conditions during a long-range atmospheric transport. nss-K+ showed about four times higher concentrations during major BB than those of minor BB. Concentrations of nss-Ca2+ are higher in nighttime during major BB period, implying that a significant long-range atmospheric transport of mineral dust over the sampling site. These results are further supported by the positive matrix factorization (PMF) analysis, which showed that biomass burning was a major source for the carbonaceous aerosols followed by mineral dust sources over the summit of Mt. Tai.
Monitoring mercury in two South African herbaria.
Kataeva, Maria; Panichev, Nikolay; van Wyk, Abraham E
2009-01-15
Mercury [Hg] emissions from old plant collections treated with mercuric chloride (HgCl(2)) may present a high health risk for staff working in certain herbaria. The present study evaluated Hg concentrations in ambient air, plant specimens and biological samples from staff working in the Pretoria National Herbarium (PRE) and the H.G.W.J. Schweickerdt Herbarium (PRU), University of Pretoria. Biological samples from a group of 15 people exposed to HgCl(2) in herbaria and a non-exposed control group of five people were studied. Additionally, plant samples from herbarium specimens treated and non-treated with HgCl(2) were analysed. Plant materials treated with HgCl(2) had persistent high concentrations of Hg in the range of 114-432 microg g(-1), whereas untreated materials were in the range of 0.20-0.45 microg g(-1). The HgCl(2)-treated plant specimens induced elevated concentrations of Hg into the herbarium rooms near storage cabinets, where up to 1 microg m(-3) of Hg was measured in the air of both herbaria. However, no significant difference in mean Hg concentrations in hair was found between herbarium workers and members of the control group, 0.46 and 0.64 microg g(-1) respectively (p0.05, Student's t-test). For both groups, Hg concentrations were lower than that indicated by the World Health Organization [WHO] for non-exposed adults, namely 2 microg g(-1). The mean concentration of total Hg in urine from the mercury-exposed herbarium group, 2.28 microg g(-1) creatinine, was significantly higher than in the control group, 1.05 microg g(-1) of creatinine. For both populations, the concentrations of Hg in their urine were below the threshold Hg values set by the WHO, i.e., 5 microg g(-1) creatinine. We concluded that there was no strong response by individual herbarium staff from long-term exposure to Hg concentrations in the range of 0.28-1.1 microg m(-3).
Three-dimensional tracking solar energy concentrator and method for making same
NASA Technical Reports Server (NTRS)
Miller, C. G.; Pohl, J. G. (Inventor)
1977-01-01
A three dimensional tracking solar energy concentrator, consisting of a stretched aluminized polymeric membrane supported by a hoop, was presented. The system is sturdy enough to withstand expected windage forces and precipitation. It can provide the high temperature output needed by central station power plants for power production in the multi-megawatt range.
Wankhede, S. B.; Raka, K. C.; Wadkar, S. B.; Chitlange, S. S.
2010-01-01
Two UV-spectrophotometric and one reverse phase high performance liquid chromatography methods have been developed for the simultaneous estimation of amlodipine besilate, losartan potassium and hydrochlorothiazide in tablet dosage form. The first UV spectrophotometric method was a determination using the simultaneous equation method at 236.5, 254 and 271 nm over the concentration range 5-25, 10-50 and 5-25 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. The second UV method was a determination using the area under curve method at 231.5-241.5, 249-259 and 266-276 nm over the concentration range of 5-25, 5-25 and 10-50 μg/ml for amlodipine besilate, hydrochlorothiazide and losartan potassium, respectively. In reverse phase high performance liquid chromatography analysis is carried out using 0.025 M phosphate buffer (pH 3.7):acetonitrile (57:43 v/v) as the mobile phase and Kromasil C18 (4.6 mm i.d×250 mm) column as stationery phase with detection wavelength of 232 nm linearity was obtained in the concentration range of 2-14, 20-140 and 5-40 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. Both UV-spectrophotometric and reverse phase high performance liquid chromatography methods were statistically validated and can be used for analysis of combined dose tablet formulation containing amlodipine besilate, losartan potassium and hydrochlorothiazide. PMID:20582208
Red alder (a nitrogen-fixing tree) and sea salt inputs can strongly influence stream nitrogen concentrations in western Oregon and Washington. We compiled a database of stream nitrogen and landscape characteristics in the Oregon Coast Range. Basal area of alder, expressed as a ...
Crocodile Chemistry. [CD-ROM].
ERIC Educational Resources Information Center
1999
This high school chemistry resource is an on-screen chemistry lab. In the program, students can experiment with a huge range of chemicals, choosing the form, quantity and concentrations. Dangerous or difficult experiments can be investigated safely and easily. A vast range of equipment can be set up, and complex simulations can be put together and…
USDA-ARS?s Scientific Manuscript database
Accurate assessment of mineral nutrition in range cattle is complicated by seasonal changes in diet mineral concentrations, shifting requirements and a lack of knowledge of seasonal mineral intake variability. This study was designed to evaluate variation in herd mineral intake, and individual cow m...
Determination of acetaminophen concentrations in serum by high-pressure liquid chromatography.
Horvitz, R A; Jatlow, P I
1977-09-01
We describe a method for determination of serum acetaminophen concentrations in serum by reversed phase high-pressure liquid chromatography. The homolog N-propionyl-p-aminophenol was used as an internal standard. The procedure, which requires only a single extraction with diethyl ether, can be optimized to be linear over the ranges of 10 to 100 or 1 to 20 mg/liter. Within-run CV was 1.2%; between-run CV was 4.4% and 4.9% at two different concentrations. Many commonly used drugs were tested and found not to interfere. The procedure is simple and rapid enough for use on an emergency basis in cases of overdosage, and can be optimized for measurement of either therapeutic or toxic concentrations.
Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, C.I.
1979-01-01
Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individualmore » morphologies of the plants and the environments in which they occurred.« less
Factors affecting the viscosity of sodium hypochlorite and their effect on irrigant flow.
Bukiet, F; Soler, T; Guivarch, M; Camps, J; Tassery, H; Cuisinier, F; Candoni, N
2013-10-01
To assess the influence of concentration, temperature and surfactant addition to a sodium hypochlorite solution on its dynamic viscosity and to calculate the corresponding Reynolds number to determine the corresponding flow regimen. The dynamic viscosity of the irrigant was assessed using a rotational viscometer. Sodium hypochlorite with concentrations ranging from 0.6% to 9.6% was tested at 37 and 22 °C. A wide range of concentrations of three different surfactants was mixed in 2.4% sodium hypochlorite for viscosity measurements. The Reynolds number was calculated under each condition. Data were analysed using two-way anova. There was a significant influence of sodium hypochlorite concentration (P < 0.001) and temperature (P < 0.001) on dynamic viscosity: the latter significantly increased with sodium hypochlorite concentration and decreased with temperature. A significant influence of surfactant concentration on dynamic viscosity (P < 0.001) occurred, especially for high surfactant concentrations: 6.25% for benzalkonium chloride, 15% for Tween 80 and 6.25% for Triton X-100. Reynolds number values calculated for a given flow rate (0.14 mL s(-1)), and root canal diameter (sizes 45 and 70) clearly qualified the irrigant flow regimen as laminar. Dynamic viscosity increased with sodium hypochlorite and surfactant concentration but decreased with temperature. Under clinical conditions, all viscosities measured led to laminar flow. The transition between laminar and turbulent flow may be reached by modifying different parameters at the same time: increasing flow rate and temperature whilst decreasing irrigant viscosity by adding surfactants with a high value of critical micellar concentration. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Elvira, S; González-Fernández, I; Alonso, R; Sanz, J; Bermejo-Bermejo, V
2016-10-01
The Sierra de Guadarrama mountain range, located at 60 km from Madrid City (Spain), includes high valuable ecosystems following an altitude gradient, some of them protected under the Sierra de Guadarrama National Park. The characteristic Mediterranean climatic conditions and the precursors emitted from Madrid favor a high photochemical production of ozone (O 3 ) in the region. However, very little information is available about the patterns and levels of O 3 and other air pollutants in the high elevation areas and their potential effects on vegetation. Ozone levels were monitored at three altitudes (2262, 1850, and 995 m a.s.l.) for at least 3 years within the 2005-2011 period. NO x and SO 2 were also recorded at the highest and lowest altitude sites. Despite the inter-annual and seasonal variations detected in the O 3 concentrations, the study revealed that SG is exposed to a chronic O 3 pollution. The two high elevation sites showed high O 3 levels even in winter and at nighttime, having low correlation with local meteorological variables. At the lower elevation site, O 3 levels were more related with local meteorological and pollution conditions. Ozone concentrations at the three sites exceeded the thresholds for the protection of human health and vegetation according to the European Air Quality Directive (EU/50/2008) and the thresholds for vegetation protection of the CLRTAP. Ozone should be considered as a stress factor for the health of the Sierra de Guadarrama mountain ecosystems. Furthermore, since O 3 levels at foothills differ from concentration in high elevation, monitoring stations in mountain ranges should be incorporated in regional air quality monitoring networks.
Brownian dynamics simulation of protein diffusion in crowded environments
NASA Astrophysics Data System (ADS)
Mereghetti, Paolo; Wade, Rebecca C.
2013-02-01
High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. We first describe the development of a Brownian dynamics simulation methodology to investigate the dynamic and structural properties of protein solutions using atomic-detail protein structures. We then discuss insights obtained from applying this approach to simulation of solutions of a range of types of proteins.
Sensory characteristics and relative sweetness of tagatose and other sweeteners.
Fujimaru, Tomomi; Park, Jin-Hee; Lim, Juyun
2012-09-01
The present study investigated the sensory characteristics and relative sweetness of tagatose, an emerging natural low-calorie sweetener with various functional properties, compared to other sweeteners (sucrose, sucralose, erythritol, rebaudioside A), over a wide range of sweetness commonly found in foods and beverages (3% to 20% sucrose [w/v]). A total of 34 subjects evaluated aqueous solutions of the 5 sweeteners for the perceived intensities of sweetness, bitterness, astringency, chemical-like sensations, and sweet aftertaste, using the general version of the Labeled Magnitude Scale. The relationship between the physical concentrations of the sweeteners and their perceived sweetness (that is, psychophysical functions) was derived to quantify the relative sweetness and potency of the sweeteners. The results suggest that tagatose elicits a sweet taste without undesirable qualities (bitterness, astringency, chemical-like sensations). Out of the 5 sweeteners tested, rebaudioside A was the only sweetener with notable bitterness and chemical-like sensations, which became progressively intense with increasing concentration (P < 0.001). In terms of perceived sweetness intensity, the bulk sweeteners (tagatose, erythritol, sucrose) had similar sweetness growth rates (slopes > 1), whereas the high-potency sweeteners (sucralose, rebaudioside A) yielded much flatter sweetness functions (slopes < 1). Because the sweetness of tagatose and sucrose grew at near-identical rates (slope = 1.41 and 1.40, respectively), tagatose produced about the same relative sweetness to sucrose across the concentrations tested. However, the relative sweetness of other sweeteners to sucrose was highly concentration dependent. Consequently, sweetness potencies of other sweeteners varied across the concentrations tested, ranging from 0.50 to 0.78 for erythritol, 220 to 1900 for sucralose, and 300 to 440 for rebaudioside A, while tagatose was estimated to be approximately 0.90 times as potent as sucrose irrespective of concentration. The present study investigated the sensory characteristics and relative sweetness of tagatose, an emerging natural low-calorie sweetener, compared to other sweeteners. Study results suggest that tagatose elicits a sweet taste without undesirable qualities over a wide range of concentrations. Tagatose produced about the same relative sweetness to sucrose across the concentrations tested, while the relative sweetness of other sweeteners was highly concentration dependent. The present data provide a general guideline when considering the use of tagatose and other sweeteners in foods and beverages. © 2012 Institute of Food Technologists®
Eberhardt, S H; Marone, F; Stampanoni, M; Büchi, F N; Schmidt, T J
2014-11-01
Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.
NASA Astrophysics Data System (ADS)
He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.
2018-06-01
Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.
Airborne bio-aerosols and noise in a dry waste treatment plant in Pietarsaari, Finland.
Tolvanen, O K
2001-04-01
Ewapower Ltd in Pietarsaari, Finland produces pellets from paper and plastic waste for burning. During 1998 and 1999, several measurements were made to determine the dust, particle, microbe and endotoxin concentrations, and also the noise level in the hall where the waste is received and pre-crushed. The noise level exceeded the Finnish recommended level of 85 dBA. The dust and the particle concentrations were low, but the microbe concentrations, especially in the summer and in the autumn, were at a level which may be harmful to health. The total concentration of microbes (both dead and alive) was high--approximately 4.8 million particles m(-3). The concentrations of endotoxins was high in summer and in autumn, from 340 to 1000 ng m(-3) and exceeded recommended values. In the winter, the concentration of the endotoxin was lower, ranging between 4.7 and 33 ng m(-3).
Photovoltaic performance of the dome-shaped Fresnel-Köhler concentrator
NASA Astrophysics Data System (ADS)
Zamora, Pablo; Benítez, Pablo; Yang, Li; Miñano, Juan Carlos; Mendes-Lopes, Joao; Araki, Kenji
2012-10-01
In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the domeshaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel- Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.
High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures.
Shu, Jie; Gao, Weilu; Reichel, Kimberly; Nickel, Daniel; Dominguez, Jason; Brener, Igal; Mittleman, Daniel M; Xu, Qianfan
2014-02-24
We experimentally demonstrate a polarization-independent terahertz Fano resonance with extraordinary transmission when light passes through two concentric subwavelength ring apertures in the metal film. The Fano resonance is enabled by the coupling between a high-Q dark mode and a low-Q bright mode. We find the Q factor of the dark mode ranges from 23 to 40, which is 3~6 times higher than Q of bright mode. We show the Fano resonance can be tuned by varying the geometry and dimension of the structures. We also demonstrate a polarization dependent Fano resonance in a modified structure of concentric ring apertures.
Chigutsa, Emmanuel; de Mendizabal, Nieves Velez; Chua, Laiyi; Heathman, Michael; Friedrich, Stuart; Jackson, Kimberley; Reich, Kristian
2018-06-07
Ixekizumab, a high-affinity monoclonal antibody, selectively targets interleukin-17A and has been shown to be efficacious in the treatment of moderate to severe psoriasis. The objective was to describe the relationship between ixekizumab concentrations and efficacy response (static Physician Global Assessment [sPGA] and the Psoriasis Activity and Severity Index [PASI) scores] after 12 weeks of ixekizumab treatment in psoriasis patients from 3 phase 3 studies. Data from 2888 psoriasis patients randomized to receive placebo or 80 mg ixekizumab every 2 weeks or every 4 weeks were analyzed. Separate logistic regression models describing the relationship between ixekizumab concentrations and sPGA or PASI scores at week 12 were used to determine the probability of patients achieving a response and to investigate the impact of various patient factors other than drug concentrations on response rates. Both dosing regimens were efficacious, with higher rates of response achieved with the higher range of observed ixekizumab concentrations after every-2-week dosing. Although higher bodyweight, palmoplantar involvement, lower baseline disease state, or high baseline C-reactive protein were associated with slightly lower response rates, the magnitude of effect of these factors on sPGA(0,1) response was small, with all subgroups able to achieve high levels of response. Other factors tested had no effect including age, sex, and antidrug antibody status. Logistic regression modeling of ixekizumab concentration and efficacy data accurately identified the proportion of responders using sPGA or PASI end points. The higher concentration ranges achieved with 80 mg every 2 weeks versus every 4 weeks were associated with higher response levels. © 2018, The American College of Clinical Pharmacology.
Probing water dynamics with OH -
NASA Astrophysics Data System (ADS)
Corridoni, T.; Sodo, A.; Bruni, F.; Ricci, M. A.; Nardone, M.
2007-07-01
Isotropic Raman spectra of aqueous solutions of LiOH, NaOH and KOH at concentrations ranging from high dilution to saturation have been measured and the frequency and width of the OH - stretching band have been analyzed. The dependence of the bandwidth on solute concentration suggests that the OH - vibration undergoes a transition from fast to slow modulation regimes as the solvent concentration decreases below the value of ˜20 water molecules per solute molecule. A correlation between this finding and structural modifications of the H-bond network of the solvent at similar concentrations is envisaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linley, Timothy; Krogstad, Eirik; Mueller, Robert
2016-06-21
We investigated mercury accumulation in Pacific lamprey and sediments in the Columbia River basin. Mercury concentrations in larval lamprey differed significantly among sample locations (P < 0.001) and were correlated with concentrations in sediments (r 2 = 0.83), whereas adult concentrations were highly variable (range 0.1–9.5 µg/g) and unrelated to holding time after collection. The results suggest that Pacific lamprey in the Columbia River basin may be exposed to mercury levels that have adverse ecological effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustamante, Paco, E-mail: pbustama@univ-lr.fr; Carravieri, Alice; Centre d’Etudes Biologiques de Chizé
Hg can affect physiology of seabirds and ultimately their demography, particularly if they are top consumers. In the present study, body feathers of >200 wandering albatrosses from Possession Island in the Crozet archipelago were used to explore the potential demographic effects of the long-term exposure to Hg on an apex predator. Variations of Hg with sex, age class, foraging habitat (inferred from δ{sup 13}C values), and feeding habits (inferred from δ{sup 15}N values) were examined as well as the influence of Hg on current breeding output, long-term fecundity and survival. Wandering albatrosses displayed among the highest Hg feather concentrations reportedmore » for seabirds, ranging from 5.9 to 95 µg g{sup −1}, as a consequence of their high trophic position (δ{sup 15}N values). These concentrations fall within the same range of those of other wandering albatross populations from subantarctic sites, suggesting that this species has similar exposure to Hg all around the Southern Ocean. In both immature and adult albatrosses, females had higher Hg concentrations than males (28 vs. 20 µg g{sup −1} dw on average, respectively), probably as a consequence of females foraging at lower latitudes than males (δ{sup 13}C values). Hg concentrations were higher in immature than in adult birds, and they remained fairly constant across a wide range of ages in adults. Such high levels in immature individuals question (i) the frequency of moult in young birds, (ii) the efficiency of Hg detoxification processes in immatures compared to adults, and (iii) importantly the potential detrimental effects of Hg in early life. Despite very high Hg concentrations in their feathers, neither effects on adults' breeding probability, hatching failure and fledgling failure, nor on adults' survival rate were detected, suggesting that long-term bioaccumulated Hg was not under a chemical form leading to deleterious effects on reproductive parameters in adult individuals. - Highlights: • Immature albatrosses had higher feather Hg concentrations than adults. • Foraging habitat influenced Hg bioaccumulation as a result of male and female segregation. • No carry-over effects were detected on reproductive parameters.« less
Owens, Tammy J; Larsen, Jennifer A; Farcas, Amy K; Nelson, Richard W; Kass, Philip H; Fascetti, Andrea J
2014-07-01
To determine total dietary fiber (TDF) composition of feline diets used for management of obesity and diabetes mellitus. Cross-sectional survey. Dry veterinary (n = 10), canned veterinary (12), and canned over-the-counter (3) feline diets. Percentage of TDF as insoluble dietary fiber (IDF), high-molecular-weight soluble dietary fiber (HMWSDF), and low-molecular-weight soluble dietary fiber (LMWSDF) was determined. Median measured TDF concentration was greater than reported maximum crude fiber content in dry and canned diets. Median TDF (dry-matter) concentration in dry and canned diets was 12.2% (range, 8.11% to 27.16%) and 13.8% (range, 4.7% to 27.9%), respectively. Dry and canned diets, and diets with and without a source of oligosaccharides in the ingredient list, were not different in energy density or concentrations of TDF, IDF, HMWSDF, or LMWSDF. Similarly, loaf-type (n = 11) and gravy-type (4) canned diets differed only in LMWSDF concentration. Disparities in TDF concentrations among products existed despite a lack of differences among groups. Limited differences in TDF concentration and dietary fiber composition were detected when diets were compared on the basis of carbohydrate concentration. Diets labeled for management of obesity were higher in TDF concentration and lower in energy density than diets for management of diabetes mellitus. Diets provided a range of TDF concentrations with variable concentrations of IDF, HMWSDF, and LMWSDF. Crude fiber concentration was not a reliable indicator of TDF concentration or dietary fiber composition. Because carbohydrate content is calculated as a difference, results suggested that use of crude fiber content would cause overestimation of both carbohydrate and energy content of diets.
Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom
Mattes, Benjamin R.; Wang, Hsing-Lin
2000-01-01
Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.
Recent results from advanced research on space solar cells at NASA
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1990-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Solar sustained plasma/absorber conceptual design
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Krascella, N. L.; Kendall, J. S.
1979-01-01
A space power system concept was evaluated which uses concentrated solar energy to heat a working fluid to temperatures as high as 4000 K. The high temperature working fluid could be used for efficient electric power production in advanced thermal or magnetohydrodynamic conversion cycles. Energy absorber configurations utilizing particles or cesium vapor absorber material were investigaed. Results of detailed radiant heat transfer calculations indicated approximately 86 percent of the incident solar energy could be absorbed within a 12-cm-dia flowing stream of gas borne carbon particles. Calculated total energy absorption in the cesium vapor seeded absorber configuration ranged from 34 percent to 64 percent of the incident solar energy. Solar flux concentration ratios of between approximately 3000 and 10,000 will be required to sustain absorber temperatures in the range from 3000 K to 4000 K.
NASA advanced space photovoltaic technology-status, potential and future mission applications
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.
1989-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Chowdhury, Alamgir Zaman; Jahan, Salina Akter; Islam, Mohammad Nazrul; Moniruzzaman, Mohammed; Alam, Mohammad Khorshed; Zaman, Mohammad A; Karim, Nurul; Gan, Siew Hua
2012-07-01
We report the presence of organophosphorus and carbamate residues in 24 surface water samples and five ground water samples from Pirgacha Thana, Rangpur district, Bangladesh using high-performance liquid chromatography. A number of samples of surface water from paddy fields were found to contain chlorpyriphos, carbofuran and carbaryl at concentrations ranging from 0-1.189, 0-3.395 and 0-0.163 μg/L, respectively. Surface water from the lakes had chlorpyriphos, carbofuran and carbaryl at concentrations ranging from 0.544-0.895, 0.949-1.671 and 0-0.195 μg/L, respectively. This result indicates that the general public living in the area of Rangpur is at high risk of pesticide exposure from contaminated waters in the environment.
Fitzpatrick, Faith A.; Arnold, Terri L.; Colman, John A.
1998-01-01
Geochemical data for the upper Illinois River Basin are presented for concentrations of 39 elements in streambed sediment collected by the U.S. Geological Survey in the fall of 1987. These data were collected as part of the pilot phase of the National Water-Quality Assessment Program. A total of 372 sites were sampled, with 238 sites located on first- and second-order streams, and 134 sites located on main stems. Spatial distribution maps and exceedance probability plots are presented for aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, carbon (total, inorganic, and organic), cerium, chromium, cobalt, copper, gallium, iron, lanthanum, lead, lithium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, niobium, phosphorus, potassium, scandium, selenium, silver, sodium, strontium, sulfur, thorium, titanium, uranium, vanadium, yttrium, and zinc. For spatial distribution maps, concentrations of the elements are grouped into four ranges bounded by the minimum concentration, the 10th, 50th, and 90th percentiles, and the maximum concentrations. These ranges were selected to highlight streambed sediment with very low or very high element concentrations relative to the rest of the streambed sediment in the upper Illinois River Basin. Exceedance probability plots for each element display the differences, if any, in distributions between high- and low-order streams and may be helpful in determining differences between background and elevated concentrations.
Pb concentrations and isotopic record preserved in northwest Greenland snow.
Kang, Jung-Ho; Hwang, Heejin; Han, Changhee; Hur, Soon Do; Kim, Seong-Joong; Hong, Sungmin
2017-11-01
We present high-resolution lead (Pb) concentrations and isotopic ratios from a northwest Greenland snow pit covering a six-year period between 2003 and 2009. Pb concentrations ranged widely from 2.7 pg g -1 to 97.3 pg g -1 , with a mean concentration of 21.6 pg g -1 . These values are higher than those recorded for the pre-industrial period. Pb concentrations exhibit seasonal spikes in winter-spring layers. Crustal Pb enrichment factors (EF) suggest that the northwest Greenland snow pit is highly enriched with Pb of predominantly anthropogenic origin. The 206 Pb/ 207 Pb ratios ranged from 1.144 to 1.169 with a mean value of 1.156, which fall between less radiogenic Eurasian-type and more radiogenic Canadian-type signatures. This result suggests that several potential source areas of Pb impact on northwest Greenland. Abrupt changes in Pb concentrations and Pb isotope ratios were observed and related to seasonal shifts in source regions of aerosol transport. The 206 Pb/ 207 Pb isotope ratio increased gradually between 2003 and 2009. The similarity of the three-isotope plot ( 206 Pb/ 207 Pb versus 208 Pb/ 207 Pb) between some of our samples and Chinese urban aerosols suggests a steadily increasing contribution of Chinese Pb to northwest Greenland snow. Copyright © 2017. Published by Elsevier Ltd.
Boni, Fernanda Isadora; Prezotti, Fabíola Garavello; Cury, Beatriz Stringhetti Ferreira
2016-08-01
Gellan gum microspheres were obtained by ionotropic gelation technique, using the trivalent ion Al(3+). The percentage of entrapment efficiency ranged from 48.76 to 87.52% and 2(2) randomized full factorial design demonstrated that both the increase of polymer concentration and the decrease of crosslinker concentration presented a positive effect in the amount of encapsulated drug. Microspheres size and circularity ranged from 700.17 to 938.32 μm and from 0.641 to 0.796 μm, respectively. The increase of polymer concentration (1-2%) and crosslinker concentration (3-5%) led to the enlargement of particle size and circularity. However, the association of increased crosslinker concentration and reduced polymer content made the particles more irregular. In vitro and ex vivo tests evidenced the high mucoadhesiveness of microspheres. The high liquid uptake ability of the microspheres was demonstrated and the pH variation did not affect this parameter. Drug release was pH dependent, with low release rates in acid pH (42.40% and 44.93%) and a burst effect in phosphate buffer pH (7.4). The Weibull model had the best correlation with the drug release data, demonstrating that the release process was driven by a complex mechanism involving the erosion and swelling of the matrix or by non-Fickian diffusion.
Logarithmic sensing in Bacillus subtilis aerotaxis.
Menolascina, Filippo; Rusconi, Roberto; Fernandez, Vicente I; Smriga, Steven; Aminzare, Zahra; Sontag, Eduardo D; Stocker, Roman
2017-01-01
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.
Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States
Green, C.T.; Fisher, L.H.; Bekins, B.A.
2008-01-01
The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
High-Throughput Toxicokinetics (HTTK) R package (CompTox CoP presentation)
Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting tissue concentrations due to exposure, but traditional TK methods are resource intensive. Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to determine range of effic...
Determination of 137Cs activity in soil from Qatar using high-resolution gamma-ray spectrometry
NASA Astrophysics Data System (ADS)
Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K. S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Matthews, M.; Regan, P. H.; Santawamaitre, T.; Malain, D.; Habib, A.; Al-Dosari, Hanan; Al Sadig, Ibrahim; Daar, Eman
2016-10-01
With interest in establishing baseline concentrations of 137Cs in soil from the Qatarian peninsula, we focus on determination of the activity concentrations in 129 soil samples collected across the State of Qatar prior to the 2011 Fukushima Dai-ichi nuclear power plant accident. As such, the data provides the basis of a reference map for the detection of releases of this fission product. The activity concentrations were measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector enclosed in a copper-lined passive lead shield that was situated in a low-background environment. The activity concentrations ranged from 0.21 to 15.41 Bq/kg, with a median value of 1 Bq/kg, the greatest activity concentration being observed in a sample obtained from northern Qatar. Although it cannot be confirmed, it is expected that this contamination is mainly due to releases from the Chernobyl accident of 26 April 1986, there being a lack of data from Qatar before the accident. The values are typically within but are sometimes lower than the range indicated by data from other countries in the region. The lower values than those of others is suggested to be due to variation in soil characteristics as well as metrological factors at the time of deposition.
Qu, Xueyin; Su, Chuanyou; Zheng, Nan; Li, Songli; Meng, Lu; Wang, Jiaqi
2017-01-01
In recent years, high levels of hormone residue in food, capable of damaging the health of consumers, have been recorded frequently. In this study, 195 raw milk samples were obtained from Tangshan City, China, and the concentrations of 22 steroid hormones were measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Cortisol was detected in 12.5% of raw milk samples (mean 0.61 µg/kg; range:
Carravieri, Alice; Bustamante, Paco; Tartu, Sabrina; Meillère, Alizée; Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent; Barbraud, Christophe; Weimerskirch, Henri; Chastel, Olivier; Cherel, Yves
2014-12-16
Top marine predators are effective tools to monitor bioaccumulative contaminants in remote oceanic environments. Here, we used the wide-ranging wandering albatross Diomedea exulans to investigate potential geographical variations of contaminant transfer to predators in the Southern Ocean. Blood concentrations of 19 persistent organic pollutants and 14 trace elements were measured in a large number of individuals (N = 180) of known age, sex and breeding status from the subantarctic Crozet Islands. Wandering albatrosses were exposed to a wide range of contaminants, with notably high blood mercury concentrations. Contaminant burden was markedly influenced by latitudinal foraging habitats (inferred from blood δ(13)C values), with individuals feeding in warmer subtropical waters having lower concentrations of pesticides, but higher concentrations of mercury, than those feeding in colder subantarctic waters. Sexual differences in contaminant burden seemed to be driven by gender specialization in feeding habitats, rather than physiological characteristics, with females foraging further north than males. Other individual traits, such as adult age and reproductive status, had little effect on blood contaminant concentrations. Our study provides further evidence of the critical role of global distillation on organic contaminant exposure to Southern Ocean avian predators. In addition, we document an unexpected high transfer of mercury to predators in subtropical waters, which merits further investigation.
Pruneda-Alvarez, Lucía G; Ruíz-Vera, Tania; Ochoa-Martínez, Angeles C; Pérez-Maldonado, Iván N
2017-11-02
This study aimed to determine t,t-muconic acid (t,t-MA; exposure biomarker for benzene) and hippuric acid (HA; exposure biomarker for toluene) concentrations in the urine of women living in Mexico. In a cross-sectional study, apparently healthy women (n = 104) were voluntarily recruited from localities with a high risk of air pollution; t,t-MA and HA in urine were quantified using a high-performance liquid chromatography (HPLC) technique. Mean urinary levels of t,t-MA ranged from 680 to 1,310 μg/g creatinine. Mean values of HA ranged from 0.38 to 0.87 g/g creatinine. In conclusion, compared to data recently reported in literature, we found high urinary levels of t,t-MA and HA in assessed women participating in this study. We therefore deem the implementation of a strategy aimed at the reduction of exposure as a necessary measure for the evaluated communities.
NASA Technical Reports Server (NTRS)
Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.
1981-01-01
Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.
An update on the development of a line-focus refractive concentrator array
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Oneill, Mark J.; Fraas, Lewis M.
1994-01-01
Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, storability, and ease of manufacturing and assembly. This paper addresses the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as details recent fabrication of prototype hardware.
Water-quality conditions in the New River, Imperial County, California
Setmire, James G.
1979-01-01
The New River, when entering the United States at Calexico, Calif., often contains materials which have the appearance of industrial and domestic wastes. Passage of some of these materials is recognized by a sudden increase in turbidity over background levels and the presence of white particulate matter. Water samples taken during these events are usually extremely high in organic content. During a 4-day reconnaissance of water quality in May 1977, white-to-brown extremely turbid water crossed the border on three occasions. On one of these occasions , the water was intensively sampled. The total organic-carbon concentration ranged from 80 to 161 milligrams per liter (mg/l); dissolved organic carbon ranged from 34 to 42 mg/l, and the chemical oxygen demand was as high as 510 mg/l. River profiles showed a dissolved-oxygen sag, with the length of the zone of depressed dissolved-oxygen concentrations varying seasonally. During the summer months, dissolved-oxygen concentrations in the river were lower and the zone of depressed dissolved-oxygen concentrations was longer. The largest increases in dissolved-oxygen concentration from reaeration occurred at the three drop structures and the rock weir near Seeley. The effects of oxygen demanding materials crossing the border extended as far as Highway 80, 19.5 miles downstream from the international boundary at Calexico. Fish kills and anaerobic conditions were also detected as far as Highway 80. Standard bacteria indicator tests for fecal contamination showed a very high health-hazard potential near the border. (Woodard-USGS)
Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A
2013-10-15
Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.
Comparison of the properties of some synthetic crudes with petroleum crudes
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1979-01-01
Physical properties and chemical compositions of six synthetic crudes were determined. The results were compared to those of typical petroleum crudes, with the interest being the feasibility of making jet fuels from oil shale and coal syncrudes. The specific gravity, viscosity, and pour point were measured, showing that these crudes would be described as heavier rather than lighter crudes. The boiling range distribution of the crudes was determined by distillation and by gas chromatography. In addition, gel permeation chromatograms were obtained, giving a unique molecular weight distribution profile for each crude. Analyses for carbon, hydrogen, nitrogen and sulfur concentrations were performed, as well as for hydrocarbon group type and trace element concentrations. It was found that the range in concentration of vanadium, an element whose presence in turbine fuels is of major concern, was lower than that of petroleum crudes. Sodium and potassium, other elements of concern, were present in comparatively high concentrations.
Formation of Large (Approximately 100 micrometers) Ice Crystals Near the Tropical Tropopause
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Pfister, L.; Bui, T. V.; Lawson, P.; Baker, B.; Mo, Q.; Baumgardner, D.; Weinstock, E. M.; Smith, J. B.; Moyer, E. J.;
2008-01-01
Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (approx.100 microns length), thin (aspect ratios of approx.6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01/L). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to approx.3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%). If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008)) then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (approx.10:1), then H2O concentrations toward the low end of the measurement range (approx.2-2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm/s to loft the crystals in the tropopause region. These calculations would seem to imply that the measurements indicating water vapor concentrations less than 2ppmv are implausible, but we cannot rule out the possibility that higher humidity prevailed upstream of the aircraft measurements and the air was dehydrated by the cloud formation. Simulations of the cloud formation with a detailed model indicate that homogeneous freezing should generate ice concentrations larger than the observed concentrations (20/L), and even concentrations as low as 20/L should have depleted the vapor in excess of saturation and prevented growth of large crystals. It seems likely that the large crystals resulted from ice nucleation on effective heterogeneous nuclei at low ice supersaturations. Improvements in our understanding of detailed cloud microphysical processes require resolution of the water vapor measurement discrepancies in these very cold, dry regions of the atmosphere.
Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun
2012-01-01
A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.
Variable Linezolid Exposure in Intensive Care Unit Patients-Possible Role of Drug-Drug Interactions.
Töpper, Christoph; Steinbach, Cathérine L; Dorn, Christoph; Kratzer, Alexander; Wicha, Sebastian G; Schleibinger, Michael; Liebchen, Uwe; Kees, Frieder; Salzberger, Bernd; Kees, Martin G
2016-10-01
Standard doses of linezolid may not be suitable for all patient groups. Intensive care unit (ICU) patients in particular may be at risk of inadequate concentrations. This study investigated variability of drug exposure and its potential sources in this population. Plasma concentrations of linezolid were determined by high-performance liquid chromatography in a convenience sample of 20 ICU patients treated with intravenous linezolid 600 mg twice daily. Ultrafiltration applying physiological conditions (pH 7.4/37°C) was used to determine the unbound fraction. Individual pharmacokinetic (PK) parameters were estimated by population PK modeling. As measures of exposure to linezolid, area under the concentration-time curve (AUC) and trough concentrations (Cmin) were calculated and compared with published therapeutic ranges (AUC 200-400 mg*h/L, Cmin 2-10 mg/L). Coadministered inhibitors or inducers of cytochrome P450 and/or P-glycoprotein were noted. Data from 18 patients were included into the PK evaluation. Drug exposure was highly variable (median, range: AUC 185, 48-618 mg*h/L, calculated Cmin 2.92, 0.0062-18.9 mg/L), and only a minority of patients had values within the target ranges (6 and 7, respectively). AUC and Cmin were linearly correlated (R = 0.98), and classification of patients (underexposed/within therapeutic range/overexposed) according to AUC or Cmin was concordant in 15 cases. Coadministration of inhibitors was associated with a trend to higher drug exposure, whereas 3 patients treated with levothyroxine showed exceedingly low drug exposure (AUC ∼60 mg*h/L, Cmin <0.4 mg/L). The median unbound fraction in all 20 patients was 90.9%. Drug exposure after standard doses of linezolid is highly variable and difficult to predict in ICU patients, and therapeutic drug monitoring seems advisable. PK drug-drug interactions might partly be responsible and should be further investigated; protein binding appears to be stable and irrelevant.
NASA Astrophysics Data System (ADS)
Habib, A.; Chen, B.
2017-12-01
Balloon borne measurements were carried out during calm weather conditions in Taklamakan Desert, which is considered as one of the major source areas of Asian dust (KOSA) particles. Vertical distribution of aerosols number concentration, size distribution, mass concentration and horizontal mass flux due to westerly wind was investigated .Vertical distribution of aerosol number concentration and size distribution at Dunhuang (40 °00'N, 94°30'E) China were observed by optical particle counter (OPC) on August 17, 2001, October 17, 2011, January 11, 2002, April 30, 2002. Five channels (0.3, 0.5, 0.8, 1.2 and 3.6 µm) were used in OPC for particle sizing measurements. Aerosol number concentration in winter season (January 11, 2002) at 3-5 km was very high. Variation of free tropospheric aerosols in April 30, 2002 was noticeable. Many inversions of temperature and aerosol concentration change are found at these inversion points. Super micron range was noticeable in size distribution of all balloon borne measurements. High values of estimated mass concentration of aerosols were observed at the ground atmosphere (1-2 km), and interestingly relatively high concentrations were frequently detected above about 2 km. Wind pattern observed by ERA-interim data sets at 500 and 850 hPa, shows that westerly winds were dominated in Taklamakan Desert during balloon borne observation period. Average horizontal mass flux of background Asian dust due to westerly wind was about in the range of 1219-58.5 μg/m³ tons/km2/day. Most of the profiles showed active transport of aerosols in the westerly dominated region, while, fluxes were found to be very low on January 11, 2002, compared with the other seasons. Vertical profiles of aerosols number concentration showed that significant transport of aerosols was dominated in westerly region (4-7 km). Low horizontal mass flux of aerosols was found in winter season
High temperature superconductor current leads
Hull, John R.; Poeppel, Roger B.
1995-01-01
An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.
High temperature superconductor current leads
Hull, J.R.; Poeppel, R.B.
1995-06-20
An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.
Jørgensen, F
1983-08-01
The degree of synchronization (DOS) between the afferent spike activity from one stitch of the lateral line of Necturus maculosus (in vivo) and the mechanical stimulation of one neuromast of the same stitch was measured under different circumstances. The DOS was found to be independent of changes in the concentration of monovalent cations (Na+, K+ and choline+) in the bulk solution at high Ca concentration (1 mM). DOS was also independent of the Ca concentration in the range 1 mM-1 microM in Tris-HCl buffer, but was markedly reduced at Ca = 10 microM in MOPS-KOH buffer. The reduced DOS, however, could be restored by addition of 10-20 mM KCl. 5 mM of 4-aminopyridine did not influence the DOS at high Ca concentration, but completely reduced DOS at Ca = 10 microM. D600 (a methoxy derivative of verapamil) decreased DOS both at high and low Ca concentration.
Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...
2015-12-17
Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less
Volke-Sepúlveda, Tania; Gutiérrez-Rojas, Mariano; Favela-Torres, Ernesto
2006-09-01
Solid-state microcosms were used to assess the influence of constant and variable C/N ratios on the biodegradation efficiency by Aspergillus niger at high hexadecane (HXD) concentrations (180-717 mg g-1). With a constant C/N ratio, 100% biodegradation (33-44% mineralization) was achieved after 15 days, at rates increasing as the HXD concentration increased. Biomass yields (YX/S) remained almost independent (approximately 0.77) of the carbon-source amount, while the specific growth rates (mu) decreased with increasing concentrations of HXD. With C/N ratios ranging from 29 to 115, complete degradation was only attained at 180 mg g-1, corresponding to 46% mineralization. YX/S diminished (approximately 0.50 units) as the C/N ratio increased. The highest values of mu (1.08 day-1) were obtained at low C/N values. Our results demonstrate that, under balanced nutritional conditions, high HXD concentrations can be completely degraded in solid-state microcosms, with a negligible (<10%) formation of by-products.
Levels of airborne dust in furniture making factories in the High Wycombe area
Hounam, R. F.; Williams, J.
1974-01-01
Hounam, R. F. and Williams, J. (1974).British Journal of Industrial Medicine,31, 1-9. Levels of airborne dust in furniture making factories in the High Wycombe area. A dust survey was carried out in five furniture making factories in, or in the vicinity of, High Wycombe. The results, which are among the first to be reported for the United Kingdom, have provided information on the concentrations and size distributions of airborne dust to which wood machinists are currently exposed. Although measured concentrations covered a wide range, the average concentration was similar to the threshold limit value of 5 mg m-3 provisionally recommended by the American Conference of Governmental Industrial Hygienists. A high proportion by mass of the airborne dust was of a size which will be deposited in the nasal passages on inhalation. Images PMID:4821408
Townsend, Michelle; Peck, Connor; Meng, Wei; Heaton, Matthew; Robison, Richard; O'Neill, Kim
2017-04-01
Glyphosate is a highly used active compound in agriculturally based pesticides. The literature regarding the toxicity of glyphosate to human cells has been highly inconsistent. We studied the resulting DNA damage and cytotoxicity of various glyphosate concentrations on human cells to evaluate DNA damaging potential. Utilizing human Raji cells, DNA damage was quantified using the comet assay, while cytotoxicity was further analyzed using MTT viability assays. Several glyphosate concentrations were assessed, ranging from 15 mM to 0.1 μM. We found that glyphosate treatment is lethal to Raji cells at concentrations above 10 mM, yet has no cytotoxic effects at concentrations at or below 100 μM. Treatment concentrations of 1 mM and 5 mM induce statistically significant DNA damage to Raji cells following 30-60 min of treatment, however, cells show a slow recovery from initial damage and cell viability is unaffected after 2 h. At these same concentrations, cells treated with additional compound did not recover and maintained high levels of DNA damage. While the cytotoxicity of glyphosate appears to be minimal for physiologically relevant concentrations, the compound has a definitive cytotoxic nature in human cells at high concentrations. Our data also suggests a mammalian metabolic pathway for the degradation of glyphosate may be present. Copyright © 2017 Elsevier Inc. All rights reserved.
Characteristics of Aerosols over the Garhwal Himalayas: India
NASA Astrophysics Data System (ADS)
Soni, A.; Panwar, P.; Sundriyal, S.; Prabhu, V.; Shridhar, V.
2017-12-01
Aerosols and Black Carbon (BC) is very important pollutants in context of global warming study. Due to high spatio-temporal variation in aerosols, there is a large uncertainty in climate change study. This study was conducted to understand the particulate pollution level in different altitude ranging from 300 m AMSL to 2600 m AMSL (see fig.). In this study eight different sizes of aerosols (10 µm to 0.43 µm) concentration along with BC measured during summer season (MJJ) of 2014-2016 over 5 different locations of Garhwal Himalayas using Anderson Cascade Impactor (ACI) and Aethalometer AE-33. Sampling was performed continuously for 15-20 days at each site. It is the preliminary study to understand the sources of aerosols. Further chemical analysis of different sizes of aerosols helps to identify sources accurately. It will also help in future policies implications. High altitude site i.e. at 2600 m was very close to the Gangotri Glacier where river Ganga originates. The Ganga is one of the most important river in India, millions people rely on the water of this river. Since last decade many catastrophic events happened in this region because of melting of glacier fastly. Previously, no one studies BC and aerosols over this important fragile landscape. BC concentration was ranging from 4.72 ± 5.64 µg m-3 to 15.06 ± 7.69 µg m-3 at 2600 m to 300 m AMSL. At high altitude site highest aerosol concentration was observed to be 56.43 µg m-3 on the size range of PM3.3-4.7. During April-May there was a big fire event (around 3500 hector forest burnt) and the sampling period at 2600 m was on May. So that, to understand transportation of aerosols from forest fire region backward trajectories were calculated using HYSPLIT model. It gives evidence that during summer months aerosols transported from neighbouring forest fire area. While the concentration at lowest altitude was observed to be 248.95 µg m-3 in the size range of PM9-10 which is much higher than the permissible limit of PM10. This site is situated in foothills of Shivalik ranges and it surrounded by industries.
USDA-ARS?s Scientific Manuscript database
Excess volume isotherms of acetonitrile and methanol sorbed on a C18 BEH UHPLC packing were determined over a range of pressure, temperature, flow rate and eluent composition. The isotherm measurements were carried out by two independent experimental methods, viz., concentration pulse and tracer pul...
Fluvial sediment and chemical quality of water in the Little Blue River basin, Nebraska and Kansas
Mundorff, J.C.; Waddell, K.M.
1966-01-01
The Little Blue River drains about 3,37)0 square miles in south-central Nebraska and north-central Kansas. The uppermost bedrock in the basin is limestone and shale of Permian age and sandstone, shale, and limestone of Cretaceous age. Bedrock is exposed in many places in the lower one-third of the basin but elsewhere is buried beneath a thin to thick mantle of younger sediments, mostly of Quaternary age. These younger sediments are largely fluvial and eolian deposits but also include some glacial till. Consisting in large part of sand and gravel, the fluvial deposits are an important source of ground-water supplies throughout much of the upper two-thirds of the basin. Loess, an eolian deposit of clayey silt, is by far the most widespread surficial deposit. The climate is continental. Temperatures ranging from -38 ? F to 118 ? F have been recorded in the basin. Average annual precipitation as low as 10.31 and as high as 49.32 inches has been recorded. During most years in the period 1956-62, when nearly all the water-quality data were obtained, annual precipitation and annual runoff were greater than normal. Flow-duration data indicate, however, that the flow distribution for the period was near normal. The Little Blue River has the same suspended-sediment characteristics as nearly all unregulated streams in the Great Plains--a wide range in concentrations, low concentrations during low-flow periods, and high concentrations during almost all periods of significant overland runoff. The maximum instantaneous concentration normally occurs many hours before maximum water discharge during any given rise in stage; the maximum daily mean concentration during any given year normally occurs at a moderate stream stage, not during a major flood. Suspended-sediment data for Little Blue River near Deweese, Nebr., which receives drainage from the upstream third of the basin, approximately, show that during the 1!}57-61 water years concentrations of 100 ppm (parts per million) or less prevailed about 42 percent of the time and concentrations of 1,000 ppm or less prevailed about 85 percent of the time. Observed concentrations ranged from 2 to 21,000 ppm: daily mean concentrations ranged from 2 to 13,800 ppm. The discharge-weighted suspended-sediment concentration was computed as about 2,800 ppm at Little Blue River near Deweese, about 3,300 ppm near Fairbury (Endicott), and about 3,000 ppm at Waterville. These stations receive drainage from about one-third, two-thirds, and nearly all the basin, respectively. Water-utilization problems resulting from high concentrations are not significant in the basin ; use of water from the Little Blue River is quantitatively negligible. Concentrations and, consequently, discharges of sediment are greater at a given water discharge on a rising stage than at the same discharge on the falling stage of the same runoff event. Also, a wide range in sediment discharge occurs at similar water discharges during different runoff events. Daily sediment discharges at Little Blue River near Deweese ranged from about 1,400 to 16,000 tons at daily mean water discharges of about 500 cfs (cubic feet per second) and from almost 7,500 to 28,000 tons at water discharges of about 1,000 cfs. The estimated long-term sediment discharge at Little Blue River near Deweese is about 400,000 tons per year: near Fairbury, about 1,200,000 tons per year: and at Waterville, about 1.900,000 tons per year. The high sediment discharge from the downstream part of the basin is due to greater precipitation and runoff--not to higher concentrations of suspended sediment--in the downstream parts of the basin. Nearly all the suspended sediment is silt and clay. The streambed material is mainly medium sand to gravel. The median particle size of bed material observed was about 0.73 mm near Deweese and about 0.77 mm near Fairbury. A few computations of total sediment discharge of Little Blue River near Deweese indicate that suspended-sedim
[Fluoride content of bottled natural mineral waters in Spain and prevention of dental caries].
Maraver, Francisco; Vitoria, Isidro; Almerich-Silla, José Manuel; Armijo, Francisco
2015-01-01
The aim of the study was to determine the concentration of fluoride in natural mineral waters marketed in Spain in order to prevent tooth decay without the risk of causing dental fluorosis Descriptive and cross-sectional study during 2012. Natural mineral waters marketed in Spain. Three bottles with different bottling dates of 109 natural mineral waters (97 Spanish and 12 imported brands). Determination of fluoride by ion chromatography Median fluoride concentrations of the natural mineral waters bottled in Spain was 0.22 (range 0.00-4.16; interquartile range:0.37). Most samples (61 brands, 62%) contained less than 0.3mg/L. There are 19 Spanish brands with more than 0.6 mg/L. The median level in imported brands was 0.35 (range 0.10-1.21; interquartile range: 0.23). Only 28 of the 109 brands examined (25.6%) specified the fluoride content on the label. Good correlation was observed between the concentrations indicated and those determined. Fluoride concentrations in natural mineral waters showed high variation. Given the growing consumption of natural mineral waters in Spain, this type of information is important to make proper use of fluoride in the primary prevention of dental caries. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Water Quality in Courtland Creek, East Oakland, California
NASA Astrophysics Data System (ADS)
Bracho, H.; Ahumada, A.; Hernandez, G.; Quintero, D.; Ramirez, J.; Ramirez, L.; Pham, T.; Holt, J.; Johnson, A.; Rubio, E.; Ponce, X.; Medina, S.; Limon, S.
2013-12-01
Courtland Creek is a tributary of the larger East Creek system that runs southeast from the Oakland Hills down to the San Leandro Bay in Oakland, California. In an effort to assess the overall health of Courtland Creek our team conducted a water quality research study. Stream water samples were collected from 4 sites between MacArthur Avenue (describe geographically as not all readers are familiar with Oakland geography) and Thompson Avenue (describe geographically as not all readers are familiar with Oakland geography) at accessible sections of this largely culverted stream. Dissolved oxygen, ammonia, nitrite, nitrate, phosphate, and chlorine concentrations in were measured using wet chemistry procedures. Analysis of collected samples indicates that dissolved oxygen levels in the stream are sufficient for invertebrates, ranging from 5 and 9 parts per million (ppm). Nitrate levels were significantly high, with concentrations ranging from 15 and 40 ppm. Other chemical species associated with waste products--ammonia, nitrite, and phosphate--also were present, but at low concentrations. Small amounts of chlorine also were found in waters of the creek system. The presence of high concentrations of nitrate, together with chlorine, suggests that untreated sewage may be leaking into Courtland Creek at an unidentified location.
Stark, Timo; Wollmann, Nadine; Wenker, Kerstin; Lösch, Sofie; Glabasnia, Arne; Hofmann, Thomas
2010-05-26
Aimed at investigating the concentrations and taste contribution of the oak-derived ellagitannins castalagin and vescalagin as well as their transformation products acutissimin A/B, epiacutissimin A/B, and beta-1-O-ethylvescalagin in red wine, a highly sensitive and accurate quantification method was developed on the basis of LC-MS/MS-MRM analysis with matrix calibration. Method validation showed good recovery rates ranging from 102.4 +/- 5.9% (vescalagin) to 113.7 +/- 15.2% (epiacutissimin A). In oak-matured wines, castalagin was found as the predominant ellagitannin, followed by beta-1-O-ethylvescalagin, whereas the flavano-C-ellagitannins (epi)acutissimin A/B were present in significantly lower amounts. In contrast to the high threshold concentration levels (600-1000 micromol/L) and the puckering astringent orosensation induced by flavan-3-ols, all of the ellagitannin derivatives were found to induce a smooth and velvety astringent oral sensation at rather low threshold concentrations ranging from 0.9 to 2.8 micromol/L. Dose/activity considerations demonstrated that, among all the ellagitannins investigated, castalagin exclusively exceeded its threshold concentration in various oak-matured wine samples.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-03-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-01-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545
NASA Astrophysics Data System (ADS)
Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.
2017-04-01
A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. < 1mm. The sensor was fabricated using a low cost 1000um plastic optical fibre (POF) and was characterized for real time measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.
Ikem, Abua; Lin, Chung-Ho; Broz, Bob; Kerley, Monty; Thi, Ho Le
2017-10-01
Enrofloxacin (ENRO), a fluoroquinolone, was quantified in overflows from an animal lot and residential sewage lagoons and in a receiving-stream (Gans Creek). The concentrations of ENRO in samples was determined by high-performance liquid chromatography - tandem mass spectrometry. In total, ninety samples including duplicates were analyzed during several monthly sampling campaigns. The samples collected represented the residential sewage lagoon overflow (RLO), animal lot lagoon overflow (ALLO), the combined overflows (RLO and ALLO), and Gans Creek (upstream, midstream and downstream positions). The frequency of detection of ENRO was 90% for RLO and 100% for both ALLO and Gans Creek. The highest concentration of ENRO (0.44 μg/L) was found in ALLO sample collected during high precipitation. ENRO levels found in RLO samples ranged from < LOQ to 259 ng/L and the highest value observed also coincided with high flow. The levels of ENRO found in Gans Creek ranged from 17-216 ng/L. A preliminary ecotoxicological assessment was conducted through calculation of the risk quotients (RQs) for organisms based on the ratio of the measured environmental concentrations in this study to the predicted-no-effect-concentrations (acute and chronic effect) data. From the RQs, high risks were observed for Microcystis aeruginosa (cyanobacteria; RQ = 4.4); Anabaena flosaquae (cyanobacteria; RQ = 1.3); and Lemna minor (aquatic vascular plant; RQ = 2.0). The long-term effects of mixtures of PHCs on Gans Creek watershed are probable.
Radioactive cesium concentrations in coastal suspended matter after the Fukushima nuclear accident.
Kubo, Atsushi; Tanabe, Kai; Suzuki, Genta; Ito, Yukari; Ishimaru, Takashi; Kasamatsu-Takasawa, Nobue; Tsumune, Daisuke; Mizuno, Takuji; Watanabe, Yutaka W; Arakawa, Hisayuki; Kanda, Jota
2018-06-01
Radioactive cesium concentrations in the suspended matter of the coastal waters around the Fukushima Daiichi Nuclear Power Plant (FDNPP) were investigated between January 2014 and August 2015. The concentrations of radioactive cesium in the suspended matter were two orders higher in magnitude than those determined in the sediment. In addition, we discovered highly radioactive Cs particles in the suspended matter using autoradiography. The geometrical average radioactivity of particles was estimated to be 0.6 Bq at maximum and 0.2 Bq on average. The contribution ratio of highly radioactive Cs particles to each sample ranged from 13 to 54%, and was 36% on average. A major part of the radioactive Cs concentration in the suspended matter around the FDNPP was strongly influenced by the highly radioactive particles. The subsequent resuspension of highly radioactive Cs particles has been suggested as a possible reason for the delay in radioactive Cs depuration from benthic biota. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lorena, Nádia Suely de Oliveira; Pitombo, Marcos Bettini; Côrtes, Patrícia Barbur; Maya, Maria Cristina Araújo; Silva, Marlei Gomes da; Carvalho, Ana Carolina da Silva; Coelho, Fábrice Santana; Miyazaki, Neide Hiromi Tokumaru; Marques, Elizabeth Andrade; Chebabo, Alberto; Freitas, Andréa D'Avila; Lupi, Otília; Duarte, Rafael Silva
2010-10-01
To evaluate the minimum inhibitory concentration (MIC) of GTA against these microorganisms and alternative disinfectants for high-level disinfection (HLD). Reference mycobacteria and clinical M. massiliense strains were included in this study. Active cultures were submitted to susceptibility qualitative tests with GTA dilutions (ranging from 1.5% to 8%), and commercial orthophthaldehyde (OPA) and peracetic acid (PA)-based solutions, during the period of exposure as recommended by National Agency of Sanitary Surveillance for HLD. All reference and M. massiliense non-BRA100 strains, recovered from sputum, were susceptible to any GTA concentration, OPA and PA solutions. M. massiliense BRA100 strains presented MIC of 8% GTA and were susceptible to OPA and PA. M. massiliense BRA100 strain is resistant to high GTA concentrations (up to 7%), which proves that this product is non-effective against specific rapidly growing mycobacteria and should be substituted by OPA or PA-based solutions for HLD.
Trends in trace organic and metal concentrations in the Pechora and Kara Seas and adjacent rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, J.M.; Champ, M.A.; Wade, T.L.
1995-12-31
Trace organic (pesticides, PCBs, PAHs and dioxin/furan) and trace metal concentrations have been measured in surficial sediment and tissue (i.e., clam, fish liver and flesh) samples from the Pechora and Kara Seas and their adjacent rivers -- Pechora, Ob and Yenisey Rivers. Total PAH, PCB and total DDT and chlordane concentrations ranged in surficial sediments from n.d. to 810 ppb, n.d.--8.7 ppb, n.d.--1.2 ppb, and n.d.--1.2 ppb, respectively, in a suite of 40 samples from the Kara Sea and its adjacent rivers. The highest concentrations of many of the trace organic and metal contaminants were found in the lower partmore » of the Yenisey River below the salt wedge. Some trace metals (As for example) were elevated in the Pechora River dispositional plume region. Dioxin ranged from 1.36 to 413 ppt in a subset of 20 sediment samples. Higher trace organic contaminant concentrations compared to sediments were found in tissue samples from the region, especially fish liver samples. Concentrations as high as 1,114 ppb total PAHs, 89 ppb chlordane, 1,011 ppb for total DDT and 663 ppb PCBs were found in some fish liver samples. Dioxin concentrations in tissue samples ranged from 11.7 to 61 ppt. Concentrations of many trace organic and metal contaminants in these Russian marginal seas are influenced by inputs from these large Arctic rivers. Many organic contaminant concentrations in sediments are low, however detecting these compounds in tissue show they are bioavailable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.
2016-07-01
This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on tubular supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration that correspond to the range anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. The permeate was recovered under vacuum. The tritium concentration rangedmore » from 0.5 to 1 mCi/mL which is about 0.1 mg/L or 0.1 ppm. The separation factors calculated from the measured tritium concentrations ranged from 0.83-0.98. The HTO concentration was three orders of magnitude lower than prior experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes on alumina disk supports. Although the membrane performance characterization results for HTO were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water. Several new approaches are proposed, such as tuning the diffusion coefficient of HTO, and optimization of membrane thickness that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.« less
Sener, Canan; Motagamwala, Ali Hussain; Alonso, David Martin; Dumesic, James
2018-05-18
High yields of furfural (>90%) were achieved from xylose dehydration in a sustainable solvent system composed of -valerolactone (GVL), a biomass derived solvent, and water. It is identified that high reaction temperatures (e.g., 498 K) are required to achieve high furfural yield. Additionally, it is shown that the furfural yield at these temperatures is independent of the initial xylose concentration, and high furfural yield is obtained for industrially relevant xylose concentrations (10 wt%). A reaction kinetics model is developed to describe the experimental data obtained with solvent system composed of 80 wt% GVL and 20 wt% water across the range of reaction conditions studied (473 - 523 K, 1-10 mM acid catalyst, 66 - 660 mM xylose concentration). The kinetic model demonstrates that furfural loss due to bimolecular condensation of xylose and furfural is minimized at elevated temperature, whereas carbon loss due to xylose degradation increases with increasing temperature. Accordingly, the optimal temperature range for xylose dehydration to furfural in the GVL/H2O solvent system is identified to be from 480 to 500 K. Under these reaction conditions, furfural yield of 93% is achieved at 97% xylan conversion from lignocellulosic biomass (maple wood). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research
NASA Astrophysics Data System (ADS)
Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.
2016-09-01
Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.
Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard
2015-02-09
Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.
Quantifying time-varying cellular secretions with local linear models.
Byers, Jeff M; Christodoulides, Joseph A; Delehanty, James B; Raghu, Deepa; Raphael, Marc P
2017-07-01
Extracellular protein concentrations and gradients initiate a wide range of cellular responses, such as cell motility, growth, proliferation and death. Understanding inter-cellular communication requires spatio-temporal knowledge of these secreted factors and their causal relationship with cell phenotype. Techniques which can detect cellular secretions in real time are becoming more common but generalizable data analysis methodologies which can quantify concentration from these measurements are still lacking. Here we introduce a probabilistic approach in which local-linear models and the law of mass action are applied to obtain time-varying secreted concentrations from affinity-based biosensor data. We first highlight the general features of this approach using simulated data which contains both static and time-varying concentration profiles. Next we apply the technique to determine concentration of secreted antibodies from 9E10 hybridoma cells as detected using nanoplasmonic biosensors. A broad range of time-dependent concentrations was observed: from steady-state secretions of 230 pM near the cell surface to large transients which reached as high as 56 nM over several minutes and then dissipated.
The male genital tract is not a pharmacological sanctuary from efavirenz.
Avery, L B; Bakshi, R P; Cao, Y J; Hendrix, C W
2011-07-01
Many antiretroviral (ARV) drugs have large blood plasma-to-seminal plasma (BP/SP) concentration ratios. Concern exists that these drugs do not adequately penetrate the male genital tract (MGT), resulting in the MGT becoming a "pharmacological sanctuary" from these agents, with ineffective MGT concentrations despite effective blood concentrations. Efavirenz (EFV) is the most highly protein-bound ARV drug, with >99% binding in blood plasma and the largest BP/SP total EFV concentration ratio, reportedly ranging from 11 to 33. To evaluate protein binding as an explanation for the differences between the drug concentrations in blood and semen, we developed a novel ultrafiltration method, corrected for the duration of centrifugation, to measure protein binding in the two matrices. In six subjects, protein-free EFV concentrations were the same in blood and semen; the median (interquartile range (IQR)) protein-free EFV SP/BP ratio was 1.21 (0.99-1.35); EFV protein binding was 99.82% (99.79-99.86) in BP and 95.26% (93.24-96.67) in SP. This shows that the MGT is not a sanctuary from EFV.
Seywright, Alice; Torrance, Hazel J; Wylie, Fiona M; McKeown, Denise A; Lowe, David J; Stevenson, Richard
2016-09-01
MDMB-CHMICA is a synthetic cannabinoid receptor agonist which has caused concern due to its presence in cases of adverse reaction and death. 43 cases of suspected synthetic cannabinoid ingestion were identified from patients presenting at an Emergency Department and from post-mortem casework. These were subjected to liquid-liquid extraction using tertiary-butyl methyl ether and quantitatively analysed by Electrospray Ionisation Liquid Chromatography-tandem Mass Spectrometry. For positive samples, case and clinical details were sought and interrogated. 11 samples were found positive for MDMB-CHMICA. Concentrations found ranged from <1 to 22 ng/mL (mean: 6 ng/mL, median: 3 ng/mL). The age range was 15-44 years (mean: 26 years, median: 21 years), with the majority (82%) of positive results found in males. Clinical presentations included hypothermia, hypoglycaemia, syncope, recurrent vomiting, altered mental state and serotonin toxicity, with corresponding concentrations of MDMB-CHMICA as low as <1 ng/mL. Duration of hospitalisation ranged from 3 to 24 h (mean: 12 h, median: 8 h). The concentration range presented in this case series is indicative of MDMB-CHMICA having a high potency, as is known to be the case for other synthetic cannabinoid receptor agonists. The age range and gender representation were consistent with that reported for users of other drugs of this type. The clinical presentations observed were typical of synthetic cannabinoid receptor agonists and show the difficulties in identifying reactions potentially associated with drugs of this type. The range of MDMB-CHMICA concentrations in Emergency Department presentations (n = 9) and post-mortem cases (n = 2) was reported. No correlation between the concentration of this drug and clinical presentation or cause of death was reported in this sample. However, the potential for harm associated with low concentrations of MDMB-CHMICA and the symptoms of toxicity being non-specific were highlighted.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-12-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.
Selenium metabolites in urine of cancer patients receiving L-selenomethionine at high doses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehnelt, Doris; Juresa, Dijana; Francesconi, Kevin A.
2007-04-15
We investigated, with quantitative HPLC/mass spectrometry, the selenium metabolites in urine from five cancer patients receiving high doses of L-selenomethionine over an extended period (2 x 4000 {mu}g Se/day for 7 days, then 4000 {mu}g Se/day for 21 days) as an adjunct to their normal cancer chemotherapy. Urine samples were collected at day 0 (all 5 patients), and at 2-3 additional collection times ranging from 1 to 33 days. The background selenium concentrations ranged from 12 to 55 {mu}g Se/L and increased to 870 to 4420 {mu}g Se/L for the five patients during the study. All five patients had appreciablemore » levels of selenosugars in their background urine sample, and the concentrations increased dramatically after selenium intake. Trimethylselenonium ion (TMSe), on the other hand, was generally present as only a trace metabolite in background urine, and, although the concentration of TMSe increased following selenium exposure, it became a less significant proportion relative to selenosugars. These data refute the currently accepted role of TMSe as the preferred excretion metabolite when selenium exposure is high.« less
Bordeleau, Geneviève; Savard, Martine M; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia
2008-06-06
Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.
NASA Astrophysics Data System (ADS)
Yong, Cheng
2018-03-01
The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.
Serum thyroid-stimulating hormone and cognition in older people.
Ojala, Anna K; Schalin-Jäntti, Camilla; Pitkälä, Kaisu H; Tilvis, Reijo S; Strandberg, Timo E
2016-01-01
high TSH concentrations and cognitive decline are both very common among older people and could be linked. to assess cognition in our cohort of 335 home-dwelling older people (75 years and older) and to cross-sectionally relate the results to thyroid-stimulating hormone (TSH) concentrations. Our special focus was on the upper normal TSH range and subclinical hypothyroidism. cognitive performance was evaluated using the Consortium to Establish a Registry for Alzheimer's disease neuropsychological battery (CERAD-nb). The Clinical Dementia Rating (CDR) scale was used to evaluate severity of cognitive disorder. The APOEε4 genotype was also defined. Subjects were divided into quartiles based on the TSH concentrations, and results were compared between these groups. expected relations were observed between CERAD domains and both educational level and APOEε4 genotype. Female sex significantly associated with better performance in Boston naming (OR = 0.48; 95% CI = 0.27-0.85). In the whole cohort, higher TSH concentrations tended to associate with better scores in most parts of the CERAD-nb tests, but differences were not statistically significant. However, subjects with the highest TSH concentration (90th TSH percentile, range 4.14-14.4 mU/l) had better CDR scores compared with subjects with the lowest TSH concentration (10th percentile, range 0.001-0.63 mIU/l; OR 0.10; 95% CI 0.014-0.76). our results do not support the notion that higher TSH concentrations, not even in the range of subclinical hypothyroidism, would adversely affect cognition among older people. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ramesh, Ch.; Pattar, Manohar G.
2010-01-01
Methanolic extracts of 6 wild edible mushrooms isolated from the Western Ghats of Karnataka were used in this study. Among the isolates (Lycoperdon perlatum, Cantharellus cibarius, Clavaria vermiculris, Ramaria formosa, Marasmius oreades, Pleurotus pulmonarius), only 4 showed satisfactory results. Quantitative analysis of bioactive components revealed that total phenols are the major bioactive component found in extracts of isolates expressed as mg of GAE per gram of fruit body, which ranged from 3.20 ± 0.05 mg/mL to 6.25 ± 0.08 mg/mL. Average concentration of flavonoid ranged from 0.40 ± 0.052 mg/mL to 2.54 ± 0.08 mg/mL; followed by very small concentration of ascorbic acid (range, 0.06 ± 0.01 mg/mL to 0.16 ± 0.01 mg/mL) in all the isolates. All the isolates showed high phenol and flavonoid content, but ascorbic acid content was found in traces. Antioxidant efficiency by inhibitory concentration on 1,1-Diphenly-2-picrylhydrazyl (DPPH) was found significant when compared to standard antioxidant like Buthylated hydroxyanisol (BHA). The concentration (IC50) ranged from 0.94 ± 0.27 mg/mL to 7.57 ± 0.21 mg/mL. Determination of antimicrobial activity profile of all the isolates tested against a panel of standard pathogenic bacteria and fungi indicated that the concentrations of bioactive components directly influence the antimicrobial capability of the isolates. Agar diffusion assay showed considerable activity against all bacteria. Minimum inhibitory concentration values of the extracts of 4 isolates showed that they are also active even in least concentrations. These results are discussed in relation to therapeutic value of the studied mushrooms. PMID:21808550
Caprioli, Giovanni; Navarini, Luciano; Cortese, Manuela; Ricciutelli, Massimo; Torregiani, Elisabetta; Vittori, Sauro; Sagratini, Gianni
2016-09-01
A new method for extracting isoflavones from espresso coffee (EC) was coupled with high-performance liquid chromatography-tandem mass spectrometry (MS/MS) for the first time to analyse five isoflavones, which included both a glycosilated form, genistin and the aglycons daidzein, genistein, formononetin and biochanin A. Isoflavones were extracted from coffee samples using methanol, stored in a freezer overnight to precipitate proteic or lipidic residues and purified on SPE C18 cartridges before high-performance liquid chromatography-MS/MS analysis. The recovery percentages obtained by spiking the matrix at concentrations of 10 and 100 µg l(-1) with a standard mixture of isoflavones were in the range of 70 to 104%. The limits of detection and limits of quantification were in the range of 0.015-0.3 µg l(-1) and 0.05-1 µg l(-1) , respectively. Once validated, the method was used to analyze the concentrations of isoflavones in six ECs and ten ground coffee samples. Only formononetin and biochanin A were found, and their respective concentrations ranged from 0.36 to 0.41 µg l(-1) and from 0.58 to 3.26 µg l(-1) in ECs and from 0.36 to 4.27 µg kg(-1) and from 0.71 to 3.95 µg kg(-1) in ground coffees. This method confirms the high specificity and selectivity of MS/MS systems for detecting bioactives in complex matrices such as coffee.Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ultrafine particles and nitrogen oxides generated by gas and electric cooking
Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A
2001-01-01
OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable. Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, M.W.
1994-12-27
A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, Mark W.
1994-01-01
A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.
Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor.
Zhang, Jingle; Fu, Haiwei; Ding, Jijun; Zhang, Min; Zhu, Yi
2017-11-01
A graphene-oxide-coated interferometric microfiber-sensor-based polarization-maintaining optical fiber is proposed for highly sensitive detecting for ethanol vapor concentration at room temperature in this paper. The strong sensing capability of the sensor to detect the concentration of ethanol vapor is demonstrated, taking advantage of the evanescent field enhancement and gas absorption of a graphene-oxide-coated microfiber. The transmission spectrum of the sensor varies with concentrations of ethanol vapor, and the redshift of the transmission spectrum has been analyzed for the concentration range from 0 to 80 ppm with sensitivity as high as 0.138 nm/ppm. The coated graphene oxide layer induces the evanescent field enhancement and gas selective adsorption, which improves sensitivity and selectivity of the microfiber gas sensor for ethanol vapor detection.
High sensitive and selective Escherichia coli detection using immobilized optical fiber microprobe
NASA Astrophysics Data System (ADS)
Li, Yanpeng; Sun, Qizhen; Luo, Yiyang; Li, Yue; Gong, Andong; Zhang, Haibin; Liu, Deming
2017-04-01
We proposed and demonstrated a stable, label-free bacteriophage-based sensor of Escherichia coli using microfiber probe. T4 Bacteriophage was covalently immobilized on microfiber surface and E.coli concentration was investigated using the high accurate spectral interference mechanism. By immersing microfiber sensor into different concentration E.coli solution, the relationship between resonant wavelength shift and E.coli concentration was analyzed in the range of 103-107cfu/ml. The proposed method is capable of reliable detection of E.coli concentration as low as 103cfu/ml with a fast response time about 10minutes, which makes the real-time detection of E.coli move on a giant step. Additionally, the sensor has great potential to be applied in the fields like environment monitoring and food safety.
Pontes, R de C; Cartaxo, A C; Jonas, R
1988-01-01
1. The concentrations of acetoacetate and 3-hydroxybutyrate have been determined in the blood of the green lizard Ameiva ameiva (Teiidae) in fed animals and in animals starved for periods from one week to about four months. 2. The concentrations of acetoacetate are low and unaltered in fed and starved animals, being in the range from 0.014 to 0.018 mM. 3. The concentrations of 3-hydroxybutyrate are high: 2.67 mM, in fed animals, falling during starvation down to 0.26 mM. 4. The 3-hydroxybutyrate/acetoacetate ratio is high, 151, in fed animals, falling down to 17. 5. The possible importance of ketone bodies in the metabolism of Ameiva ameiva is discussed.
Superlattice photonic crystal as broadband solar absorber for high temperature operation.
Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan
2014-12-15
A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.
Study on Enhancement Principle and Stabilization for the Luminol-H2O2-HRP Chemiluminescence System
Yang, Lihua; Jin, Maojun; Du, Pengfei; Chen, Ge; Zhang, Chan; Wang, Jian; Jin, Fen; Shao, Hua; She, Yongxin; Wang, Shanshan; Zheng, Lufei; Wang, Jing
2015-01-01
A luminol-H2O2-HRP chemiluminescence system with high relative luminescent intensity (RLU) and long stabilization time was investigated. First, the comparative study on the enhancement effect of ten compounds as enhancers to the luminol-H2O2-HRP chemiluminescence system was carried out, and the results showed that 4-(imidazol-1-yl)phenol (4-IMP), 4-iodophenol (4-IOP), 4-bromophenol (4-BOP) and 4-hydroxy-4’-iodobiphenyl (HIOP) had the best performance. Based on the experiment, the four enhancers were dissolved in acetone, acetonitrile, methanol, and dimethylformamide (DMF) with various concentrations, the results indicated that 4-IMP, 4-IOP, 4-BOP and HIOP dissolved in DMF with the concentrations of 0.2%, 3.2%, 1.6% and 3.2% could get the highest RLU values. Subsequently, the influences of pH, ionic strength, HRP, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol on the stabilization of the luminol-H2O2-HRP chemiluminescence system were studied, and we found that pH value, ionic strength, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol have little influence on luminescent stabilization, while HRP has a great influence. In different ranges of HRP concentration, different enhancers should be selected. When the concentration is within the range of 0~6 ng/mL, 4-IMP should be selected. When the concentration of HRP ranges from 6 to 25ng/mL, 4-IOP was the best choice. And when the concentration is within the range of 25~80 ng/mL, HIOP should be selected as the enhancer. Finally, the three well-performing chemiluminescent enhanced solutions (CESs) have been further optimized according to the three enhancers (4-IMP, 4-IOP and HIOP) in their utilized HRP concentration ranges. PMID:26154162
Study on Enhancement Principle and Stabilization for the Luminol-H2O2-HRP Chemiluminescence System.
Yang, Lihua; Jin, Maojun; Du, Pengfei; Chen, Ge; Zhang, Chan; Wang, Jian; Jin, Fen; Shao, Hua; She, Yongxin; Wang, Shanshan; Zheng, Lufei; Wang, Jing
2015-01-01
A luminol-H2O2-HRP chemiluminescence system with high relative luminescent intensity (RLU) and long stabilization time was investigated. First, the comparative study on the enhancement effect of ten compounds as enhancers to the luminol-H2O2-HRP chemiluminescence system was carried out, and the results showed that 4-(imidazol-1-yl)phenol (4-IMP), 4-iodophenol (4-IOP), 4-bromophenol (4-BOP) and 4-hydroxy-4'-iodobiphenyl (HIOP) had the best performance. Based on the experiment, the four enhancers were dissolved in acetone, acetonitrile, methanol, and dimethylformamide (DMF) with various concentrations, the results indicated that 4-IMP, 4-IOP, 4-BOP and HIOP dissolved in DMF with the concentrations of 0.2%, 3.2%, 1.6% and 3.2% could get the highest RLU values. Subsequently, the influences of pH, ionic strength, HRP, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol on the stabilization of the luminol-H2O2-HRP chemiluminescence system were studied, and we found that pH value, ionic strength, 4-IMP, 4-IOP, 4-BOP, HIOP, H2O2 and luminol have little influence on luminescent stabilization, while HRP has a great influence. In different ranges of HRP concentration, different enhancers should be selected. When the concentration is within the range of 0~6 ng/mL, 4-IMP should be selected. When the concentration of HRP ranges from 6 to 25 ng/mL, 4-IOP was the best choice. And when the concentration is within the range of 25~80 ng/mL, HIOP should be selected as the enhancer. Finally, the three well-performing chemiluminescent enhanced solutions (CESs) have been further optimized according to the three enhancers (4-IMP, 4-IOP and HIOP) in their utilized HRP concentration ranges.
Radon in earth-sheltered structures
Landa, E.R.
1984-01-01
Radon concentration in the indoor air of six residential and three non-residential earth-sheltered buildings in eastern Colorado was monitored quarterly over a nine-month period using passive, integrating detectors. Average radon concentrations during the three-month sampling periods ranged from about 1 to 9 pCi/L, although one building, a poorly ventilated storage bunker, had concentrations as high as 39 pCi/L. These radon concentrations are somewhat greater than those typically reported for conventional buildings (around 1 pCi/L); but they are of the same order of magnitude as radon concentrations reported for energy-efficient buildings which are not earth-sheltered. ?? 1984.
Mouser, Vivian H. M.; Melchels, Ferry P.W.; Visser, Jetze; Dhert, Wouter J.A.; Gawlitta, Debby; Malda, Jos
2016-01-01
Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape for e.g. articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3-25% gelMA with 0-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15-37°C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. Addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness, and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as dominant factor for bioprintability. PMID:27431733
Mouser, Vivian H M; Melchels, Ferry P W; Visser, Jetze; Dhert, Wouter J A; Gawlitta, Debby; Malda, Jos
2016-07-19
Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3% to 20% gelMA with 0%-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15 °C-37 °C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. The addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as a dominant factor for bioprintability.
Yu, Liyan; Xiang, Bingren; Zhan, Ying
2008-01-01
A rapid, simple and sensitive reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the measurement of acyclovir (CAS 59277-89-3) concentrations in human plasma and its use in bioavailability studies is evaluated. The method was linear in the concentration range of 0.05-4.0 microg/ml. The lower limit of quantification (LLOQ) was 0.05 microg/ml in 0.5 ml plasma sample. The intra- and inter-day relative standard deviations across three validation runs over the entire concentration range were less than 8.2%. This method was successfully applied for the evaluation of pharmacokinetic profiles of acyclovir capsule in 19 healthy volunteers. The main pharmacokinetic parameters obtained were: AUC(o-t) 6.50 +/- 1.47 and 7.13 +/- 1.44 microg x h/ml, AUC(0-infinity) 6.77 +/- 1.48 and 7.41 +/- 1.49 microg x h/ml, C(max) 2.27 +/- 0.57 and 2.27 +/- 0.62 microg/ml, t(1/2) 2.96 +/- 0.41 and 2.88 +/- 0.33 h, t(max) 0.8 +/- 0.3 and 1.0 +/- 0.5 h for test and reference formulations, respectively. No statistical differences were observed for C(max) and the area under the plasma concentration--time curve for acyclovir. 90% confidence limits calculated for C(max) and AUC from zero to infinity (AUC(0-infinity)) of acyclovir were included in the bioequivalence range (0.8-1.25 for AUC).
Chen, Ru; Yin, Pinghe; Zhao, Ling; Yu, Qiming; Hong, Aihua; Duan, Shunshan
2014-11-01
The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in river surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQ values ranged from 3.6×10(-5) to 35 and 64% of samples gave a HQ>1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region. Copyright © 2014. Published by Elsevier B.V.
One-carbon (bio ?) Geochemistry in Subsurface Waters of the Serpentinizing Coast Range Ophiolite
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.; Mccollom, Tom; Schrenk, Matt; Cardace, Dawn
2011-01-01
Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.
Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride
2017-04-01
An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.
Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction
Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; ...
2015-02-16
The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. In order to determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca 2+, and Mg 2+ concentrations. A speciation-dependent kinetic model was developedmore » to reproduce the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the ‘free’ hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. In the presence of DIC, Ca 2+, and Mg 2+ is suppressed during the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. These results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition. Finally, these findings also imply that the concentration of uranyl non-carbonate species, despite being extremely low, is a determining factor controlling uranium bioreduction at contaminated sites.« less
Extremely high myoglobin plasma concentrations producing hook effect in a critically ill patient.
Kurt-Mangold, Michelle; Drees, Denny; Krasowski, Matthew D
2012-12-24
A 21-year old female suffered a cardiac arrest after a one week history of viral illness later shown to be caused by influenza B. The patient required extended cardiopulmonary resuscitation and had further complications including compartment syndrome. Plasma myoglobin concentration was measured using the Roche Diagnostics electrochemiluminescent myoglobin assay. The myoglobin concentration was 205,590 μg/l in an undiluted specimen, consistent with severe rhabdomyolysis. Subsequent myoglobin concentrations measured two days later showed dramatic decreases to approximately 1000 μg/l, raising suspicion of a hook effect. Dilution and re-analysis of the specimens revealed that the actual myoglobin concentrations were >395,000 μg/l, with one specimen possessing an estimated myoglobin concentration of >600,000 μg/l. Interestingly, three specimens from this patient did not show evidence of hook effect, with undiluted specimens producing myoglobin concentrations as high as 284,000 μg/l. Retrospective analysis of myoglobin results over an 8-year period did not reveal other cases with suspicion of hook effect. The case patient had the highest myoglobin concentrations out of 7301 specimens. This case illustrates that while the Roche myoglobin assay has a very wide dynamic range, hook effect can occur with extremely high concentrations of plasma myoglobin. Copyright © 2012 Elsevier B.V. All rights reserved.
Silva, L.F.O.; Oliveira, M.L.S.; Boit, K.M.; Finkelman, R.B.
2009-01-01
The current paper presents the concentration, distribution, and modes of occurrence of trace elements of 13 coals from south Brazil. The samples were collected in the state of Santa Catarina. Chemical analyses and the high ash yields indicate that all studied coals are rich in mineral matter, with SiO2 and Al2O3 dominating as determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Quartz is the main mineral species and is associated with minor levels of feldspars, kaolinite, hematite, and iron-rich carbonates. The contents of trace elements, including As, Pb, Cd, Ni, Cr, Mn, Be, V, U, Zn, Li, Cu, Tl, and Ni, in coals were determined. A comparison of ranges and means of elemental concentrations in Santa Catarina, Brazil, and world coals shows that the ranges of most elements in Santa Catarina coal are very close to the usual worldwide concentration ranges in coal. ?? Springer Science+Business Media B.V. 2008.
Maciel, Daniele Claudino; de Souza, José Roberto Botelho; Taniguchi, Satie; Bícego, Márcia Caruso; Schettini, Carlos Augusto França; Zanardi-Lamardo, Eliete
2016-12-15
Estuaries generally act as sediment traps and may retain a range of contaminants associated to this matrix. Aliphatic hydrocarbons (AHs) were investigated in Capibaribe Estuarine System and adjacent shelf, Northeast of Brazil, to evaluate the contamination and to better understand its functionality related to the coast. Fourteen sediment samples were analyzed, using gas chromatography with flame ionization detection. Total AHs concentrations ranged from 7.5 to 190.3μgg -1 and n-alkanes ranged from below detection limit (
Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui
2014-01-01
Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.
Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui
2014-01-01
Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175
Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George
2012-01-01
Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073
Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George
2012-01-01
Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.
Ito, Vanessa Mayumi; Batistella, César Benedito; Maciel, Maria Regina Wolf; Maciel Filho, Rubens
2007-04-01
Soybean oil deodorized distillate is a product derived from the refining process and it is rich in high value-added products. The recovery of these unsaponifiable fractions is of great commercial interest, because of the fact that in many cases, the "valuable products" have vitamin activities such as tocopherols (vitamin E), as well as anticarcinogenic properties such as sterols. Molecular distillation has large potential to be used in order to concentrate tocopherols, as it uses very low temperatures owing to the high vacuum and short operating time for separation, and also, it does not use solvents. Then, it can be used to separate and to purify thermosensitive material such as vitamins. In this work, the molecular distillation process was applied for tocopherol concentration, and the response surface methodology was used to optimize free fatty acids (FFA) elimination and tocopherol concentration in the residue and in the distillate streams, both of which are the products of the molecular distiller. The independent variables studied were feed flow rate (F) and evaporator temperature (T) because they are the very important process variables according to previous experience. The experimental range was 4-12 mL/min for F and 130-200 degrees C for T. It can be noted that feed flow rate and evaporator temperature are important operating variables in the FFA elimination. For decreasing the loss of FFA, in the residue stream, the operating range should be changed, increasing the evaporator temperature and decreasing the feed flow rate; D/F ratio increases, increasing evaporator temperature and decreasing feed flow rate. High concentration of tocopherols was obtained in the residue stream at low values of feed flow rate and high evaporator temperature. These results were obtained through experimental results based on experimental design.
Yu, Zirui; Peldszus, Sigrid; Huck, Peter M
2008-06-01
The adsorption of two representative pharmaceutically active compounds (PhACs) (naproxen and carbamazepine) and one endocrine disrupting compound (nonylphenol) were evaluated on two types of activated carbon. When determining their isotherms at environmentally relevant concentration levels, it was found that at this low concentration range (10-800 ng/L), removals of the target compounds were contrary to expectations based on their hydrophobicity. Nonylphenol (log K(ow) 5.8) was most poorly adsorbed, whereas carbamazepine (log K(ow) 2.45) was most adsorbable. Nonylphenol Freundlich isotherms at this very low concentration range had a much higher 1/n compared to isotherms at much higher concentrations. This indicates that extrapolation from an isotherm obtained at a high concentration range to predict the adsorption of nonylphenol at a concentration well below the range of the original isotherm, leads to a substantial overestimation of its removals. Comparison of isotherms for the target compounds to those for other conventional micropollutants suggested that naproxen and carbamazepine could be effectively removed by applying the same dosage utilized to remove odorous compounds (geosmin and MIB) at very low concentrations. The impact of competitive adsorption by background natural organic matter (NOM) on the adsorption of the target compounds was quantified by using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach. The fulfilment of the requirements for applying the simplified IAST-EBC model, which leads to the conclusion that the percentage removal of the target compounds at a given carbon dosage is independent of the initial contaminant concentration, was confirmed for the situation examined in the paper. On this basis it is suggested that the estimated minimum carbon usage rates (CURs) to achieve 90% removal of these emerging contaminants would be valid at concentrations of less than 500 ng/L in natural water.
Comparison of lacosamide concentrations in cerebrospinal fluid and serum in patients with epilepsy.
May, Theodor W; Brandt, Christian; Helmer, Renate; Bien, Christian G; Cawello, Willi
2015-07-01
This study was carried out to estimate the exposure of the central nervous system (CNS) to the antiepileptic drug (AED) lacosamide, under steady state conditions, in patients with epilepsy who take oral lacosamide alongside up to three other AEDs. Twenty-seven serum and cerebral spinal fluid (CSF) samples were collected from 21 patients receiving lacosamide for the treatment of epilepsy (50-600 mg/day over two or three doses). This included 23 time-matched pairs of serum and CSF samples from 19 patients. The concentration of lacosamide in each sample was determined using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Linear regression was used to characterize the relationship between the CSF-to-serum ratio of lacosamide concentration and the time since dosing, the daily lacosamide dose, or the daily dose normalized by volume of distribution (Vd , approximated to total body water), and between the drug concentrations in each compartment (CSF vs. serum). Concentrations of lacosamide in CSF (mean ± standard deviation [SD] 7.37 ± 3.73 μg/ml, range 1.24-14.95, n = 27) and serum (mean ± SD 8.16 ± 3.82 μg/ml, range 2.29-15.45, n = 27) samples showed a good correlation over the dose range investigated. The mean CSF-to-serum ratio of lacosamide concentrations was 0.897 ± 0.193 (range 0.492-1.254, n = 23 time-matched pairs) and was independent of lacosamide dose. Drug concentrations in the CSF are often used to indicate those in the brain interstitial fluid. In patients with epilepsy who follow a stable oral AED dosing regimen, lacosamide concentration in CSF is approximately 85% of that found in serum, suggesting that serum may be a valuable indicator of lacosamide concentration in the CNS. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Nieuwoudt, Claudine; Quinn, Laura P; Pieters, Rialet; Jordaan, Ilse; Visser, Maret; Kylin, Henrik; Borgen, Anders R; Giesy, John P; Bouwman, Henk
2009-08-01
Persistent organic pollutants (POPs) are a global concern due to their ubiquitous presence and toxicity. Currently, there is a lack of information regarding POPs from South Africa. Here we report and interpret concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), -dibenzofurans (PCDFs) and co-planar-biphenyls (PCBs) in soils and sediments collected from central South Africa. High resolution gas chromatography-high resolution mass spectrometry (HRGC/HRMS) and the H4IIE-luc bio-assay were used to identify and quantify individual PCDD/F congeners and to report the total concentration of 2,3,7,8-tetrachloro dibenzo-p-dioxin equivalents (TCDD-EQ), respectively. TCDD-EQs determined by use of the bio-assay, and concentrations of WHO(2005)-TEQ (toxic equivalents) determined by chemical analysis, were similar. The limit of detection (LOD) for the bio-assay was 0.82 and 2.8 ng TCDD-EQ kg(-1), dw for sediment and soil, respectively. EQ20 concentrations determined by use of the bio-assay ranged from
Li, Haitao; Boling, C Sam; Mason, Andrew J
2016-08-01
Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.
Pijuan, Maite; Torà, Josep; Rodríguez-Caballero, Adrián; César, Elvira; Carrera, Julián; Pérez, Julio
2014-02-01
Nitrous oxide (N2O) and methane emissions were monitored in a continuous granular airlift nitritation reactor from ammonium-rich wastewater (reject wastewater). N2O emissions were found to be dependent on dissolved oxygen (DO) concentration in the range of 1-4.5 mg O2/L, increasing within this range when reducing the DO values. At higher DO concentrations, N2O emissions remained constant at 2.2% of the N oxidized to nitrite, suggesting two different mechanisms behind N2O production, one dependent and one independent of DO concentration. Changes on ammonium, nitrite, free ammonia and free nitrous acid concentrations did not have an effect on N2O emissions within the concentration range tested. When operating the reactor in a sequencing batch mode under high DO concentration (>5 mg O2/L), N2O emissions increased one order of magnitude reaching values of 19.3 ± 7.5% of the N oxidized. Moreover, CH4 emissions detected were due to the stripping of the soluble CH4 that remained dissolved in the reject wastewater after anaerobic digestion. Finally, an economical and carbon footprint assessment of a theoretical scaled up of the pilot plant was conducted. Copyright © 2013 Elsevier Ltd. All rights reserved.
High-quantum efficiency, long-lived luminescing refractory oxides
Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.
1984-01-01
A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.
Grindle, Susan; Garganta, Cheryl; Sheehan, Susan; Gile, Joe; Lapierre, Andree; Whitmore, Harry; Paigen, Beverly; DiPetrillo, Keith
2006-12-01
Chronic kidney disease is a substantial medical and economic burden. Animal models, including mice, are a crucial component of kidney disease research; however, recent studies disprove the ability of autoanalyzer methods to accurately quantify plasma creatinine levels, an established marker of kidney disease, in mice. Therefore, we validated autoanalyzer methods for measuring blood urea nitrogen (BUN) and urinary albumin concentrations, 2 common markers of kidney disease, in samples from mice. We used high-performance liquid chromatography to validate BUN concentrations measured using an autoanalyzer, and we utilized mouse albumin standards to determine the accuracy of the autoanalyzer over a wide range of albumin concentrations. We observed a significant, linear correlation between BUN concentrations measured by autoanalyzer and high-performance liquid chromatography. We also found a linear relationship between known and measured albumin concentrations, although the autoanalyzer method underestimated the known amount of albumin by 3.5- to 4-fold. We confirmed that plasma and urine constituents do not interfere with the autoanalyzer methods for measuring BUN and urinary albumin concentrations. In addition, we verified BUN and albuminuria as useful markers to detect kidney disease in aged mice and mice with 5/6-nephrectomy. We conclude that autoanalyzer methods are suitable for high-throughput analysis of BUN and albumin concentrations in mice. The autoanalyzer accurately quantifies BUN concentrations in mouse plasma samples and is useful for measuring urinary albumin concentrations when used with mouse albumin standards.
Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo
2017-04-10
We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.
Santos, J L; Aparicio, I; Alonso, E
2007-05-01
The occurrence of four anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine) in influent and effluent samples from four wastewater treatment plants (WWTPs) in Seville was evaluated. Removal rates in the WWTPs and risk assessment of the pharmaceutically active compounds have been studied. Analytical determination was carried out by high performance liquid chromatography (HPLC) with diode array (DAD) and fluorescence (Fl) detectors after sample clean up and concentration by solid phase extraction. All pharmaceutically active compounds, except diclofenac, were detected not only in wastewater influents but also in wastewater effluents. Mean concentrations of caffeine, carbamazepine, ketoprofen and naproxen ranged between 0.28-11.44 microg l(-1) and 0.21-2.62 microg l(-1) in influent and effluent wastewater, respectively. Ibuprofen was present in the highest concentrations in the range 12.13-373.11 microg l(-1) and 0.78-48.24 microg l(-1) in influent and effluent wastewater, respectively. Removal rates of the pharmaceuticals ranged between 6 and 98%. Risk quotients, expressed as ratios between the measured environmental concentration (MEC) and the predicted no effect concentrations (PNEC) were higher than 1 for ibuprofen and naproxen in influent wastewater and for ibuprofen in effluent wastewater.
NASA Astrophysics Data System (ADS)
Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi
Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.
Hamid Khan, M A; Chowdhury, M S
2003-10-01
Beach Sand Exploitation Centre at Cox's Bazar, Bangladesh, produces commercial grade concentrations of magnetite, ilmenite, zircon, etc., from the high-grade accumulations available along the beach and foredune of Cox's Bazar. Solid state nuclear track detectors (CR-39 foils) were used to determine indoor radon concentration of radioactive mineral sands and the technologically enhanced radiation level inside the pilot plant of the Centre. It is found that the concentrations at processed mineral stock areas are high, and the maximum concentration was found to be 2,103 +/- 331 Bq m(-3) (0.23 +/- 0.03 WL). The indoor concentration of radon and its decay products in the raw sand stock area and at other locations was in the range of 116 +/- 27 Bq m(-3) (0.03 +/- 0.003 WL) to 2,042 +/- 233 Bq m(-3) (0.22 +/- 0.03 WL).
Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes
2014-01-01
Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.
Minton, Allen P.
2007-01-01
Exact expressions for the static light scattering of a solution containing up to three species of point-scattering solutes in highly nonideal solutions at arbitrary concentration are obtained from multicomponent scattering theory. Explicit expressions for thermodynamic interaction between solute molecules, required to evaluate the scattering relations, are obtained using an equivalent hard particle approximation similar to that employed earlier to interpret scattering of a single protein species at high concentration. The dependence of scattering intensity upon total protein concentration is calculated for mixtures of nonassociating proteins and for a single self-associating protein over a range of concentrations up to 200 g/l. An approximate semiempirical analysis of the concentration dependence of scattering intensity is proposed, according to which the contribution of thermodynamic interaction to scattering intensity is modeled as that of a single average hard spherical species. Simulated data containing pseudo-noise comparable in magnitude to actual experimental uncertainty are modeled using relations obtained from the proposed semiempirical analysis. It is shown that by using these relations one can extract from the data reasonably reliable information about underlying weak associations that are manifested only at very high total protein concentration. PMID:17526566
Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi
2009-11-15
We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.
The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species
NASA Astrophysics Data System (ADS)
Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.
Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.
Günther, Kamilla Nyborg; Johansen, Sys Stybe; Nielsen, Marie Katrine Klose; Wicktor, Petra; Banner, Jytte; Linnet, Kristian
2018-04-01
Drug analysis in hair is useful when seeking to establish drug intake over a period of months to years. Segmental hair analysis can also document whether psychiatric patients are receiving a stable intake of antipsychotics. This study describes segmental analysis of the antipsychotic drug quetiapine in post-mortem hair samples from long-term quetiapine users by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The aim was to obtain more knowledge on quetiapine concentrations in hair and to relate the concentration in hair to the administered dose and the post-mortem concentration in femoral blood. We analyzed hair samples from 22 deceased quetiapine-treated individuals, who were divided into two groups: natural hair colour and dyed/bleached hair. Two to six 1cm long segments were analyzed per individual, depending on the length of the hair, with 6cm corresponding to the last six months before death. The average daily quetiapine dose and average concentration in hair for the last six months prior to death were examined for potential correlation. Estimated doses ranged from 45 to 1040mg quetiapine daily over the period, and the average concentration in hair ranged from 0.18 to 13ng/mg. A significant positive correlation was observed between estimated daily dosage of quetiapine and average concentration in hair for individuals with natural hair colour (p=0.00005), but statistical significance was not reached for individuals with dyed/bleached hair (p=0.31). The individual coefficient of variation (CV) of the quetiapine concentrations between segments ranged from 3 to 34% for individuals with natural hair colour and 22-62% for individuals with dyed/bleached hair. Dose-adjusted concentrations in hair were significantly lower in females with dyed/bleached hair than in individuals with natural hair colour. The quetiapine concentrations in post-mortem femoral blood and in the proximal hair segment, segment 1 (S1), representing the last month before death were also investigated for correlation. A significant positive correlation was observed between quetiapine concentrations in blood at the time of death and concentrations in S1 for individuals with natural hair colour (p=0.003) but not for individuals with dyed/bleached hair (p=0.31). The blood concentrations of quetiapine ranged from 0.006 to 1.9mg/kg, and the quetiapine concentrations in S1 ranged from 0.22 to 24ng/mg. The results of this study suggest a positive correlation of quetiapine between both concentrations in hair and doses, and between proximal hair (S1) and blood concentrations, when conditions such as hair treatments are taken into consideration. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Dongdong; Wang, Lili
2010-05-01
A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.
High 400 °C operation temperature blue spectrum concentration solar junction in GaInN/GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian
2014-12-15
Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1 V is achieved. Of the photons absorbed in the limited spectral range of <450 nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49 mW/cm{sup 2} to 0.51 mW/cm{sup 2} at 40 suns and then falls 0.42 mW/cm{sup 2}more » at 150 suns. Under external heating, a maximum of 0.59 mW/cm{sup 2} is reached at 250 °C. Even at 400 °C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.« less
Fukuda, Masakazu; Watanabe, Atsushi; Hayasaka, Akira; Muraoka, Masaru; Hori, Yuji; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko
2017-03-01
In this study, we investigated the concentration range in which self-association starts to form in humanized IgG monoclonal antibody (mAb) solutions. Furthermore, on the basis of the results, we developed a practical method of screening for low-viscosity antibody solutions by using small-angle X-ray scattering (SAXS) measurements utilizing small quantities of samples. With lower-viscosity mAb3, self-association was not detected in the range of 1-80mg/mL. With higher-viscosity mAb1, on the other hand, self-association was detected in the range of 10-20mg/mL and was clearly enhanced by a decrease in temperature. The viscosities of mAb solutions at 160, 180, and 200mg/mL at 25°C quantitatively correlated very well with the particle size parameters obtained by SAXS measurements of mAb solutions at 15mg/mL at 5°C. The quantity of mAb sample required for the SAXS measurements was only 0.15mg, which is about one-hundredth of that required for actual viscosity measurements at a high concentration, and such quantities could be available even at an early stage of development. In conclusion, the SAXS analysis method proposed in this study is a valuable tool for the development of concentrated mAb therapeutics with high manufacturability and high usability for subcutaneous injection. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Yusun; Tao, Yun; Li, Huarong; Zhou, Tingting; Jing, Tao; Zhou, Yikai; Mei, Surong
2016-01-01
Using a novel magnetic nanocomposite as adsorbent, a convenient and effective magnetic solid-phase extraction (MSPE) procedure was established for selective separation and concentration of nine perfluorinated compounds (PFCs) in surface water sample. Then an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system was employed for detection of PFCs. Good linearity of the developed analytical method was in the range of 0.5–100 ng L−1 with R2 > 0.9917, and the limits of detection (LODs) ranged from 0.029 to 0.099 ng L−1. At three fortified concentrations of 0.5, 5 and 50 ng L−1, the spiked recoveries of PFCs were in the range of 90.05–106.67% with RSDs < 12.62% (n = 3). The proposed analytical method was applied for determination of PFCs in surface water from East Lake (Wuhan, China). The total concentrations of nine PFCs ranged from 30.12 to 125.35 ng L−1, with perfluorooctane sulfonate and perfluoroctanoic acid as the most prevalent PFCs, and the greatest concentrations of PFCs were observed in Niuchao lakelet. The concentrations of the PFCs (C ≥ 11) were mostly less than the limits of quantification (LOQs), attributed to the possibility that the more hydrophobic long-chain PFCs are potential to accumulate in sediment and aquatic biota. PMID:27966658
NASA Astrophysics Data System (ADS)
Zhou, Yusun; Tao, Yun; Li, Huarong; Zhou, Tingting; Jing, Tao; Zhou, Yikai; Mei, Surong
2016-12-01
Using a novel magnetic nanocomposite as adsorbent, a convenient and effective magnetic solid-phase extraction (MSPE) procedure was established for selective separation and concentration of nine perfluorinated compounds (PFCs) in surface water sample. Then an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system was employed for detection of PFCs. Good linearity of the developed analytical method was in the range of 0.5-100 ng L-1 with R2 > 0.9917, and the limits of detection (LODs) ranged from 0.029 to 0.099 ng L-1. At three fortified concentrations of 0.5, 5 and 50 ng L-1, the spiked recoveries of PFCs were in the range of 90.05-106.67% with RSDs < 12.62% (n = 3). The proposed analytical method was applied for determination of PFCs in surface water from East Lake (Wuhan, China). The total concentrations of nine PFCs ranged from 30.12 to 125.35 ng L-1, with perfluorooctane sulfonate and perfluoroctanoic acid as the most prevalent PFCs, and the greatest concentrations of PFCs were observed in Niuchao lakelet. The concentrations of the PFCs (C ≥ 11) were mostly less than the limits of quantification (LOQs), attributed to the possibility that the more hydrophobic long-chain PFCs are potential to accumulate in sediment and aquatic biota.
Health Risk Assessment of Heavy Metals in Traditional Cosmetics Sold in Tunisian Local Markets
Nouioui, Mohamed Anouar; Mahjoubi, Salah; Ghorbel, Asma; Ben Haj Yahia, Marouen; Amira, Dorra; Ghorbel, Hayet; Hedhili, Abderrazek
2016-01-01
This study was undertaken in order to determine heavy metal contents in twelve (n = 12) henna brands and eleven (n = 11) kohl products. An analytical test was performed for Pb, Cd, Cu, and Zn in henna and kohl products using atomic absorption spectrophotometery. The overall mean concentrations of heavy metals in henna varied between 1.2 and 8.9 μg g−1 for Pb; 0.8 and 18.6 μg g−1 for Cd; 0.5 μg g−1 and 3.3 μg g−1 for Cu; and 3.7 μg g−1 and 90.0 μg g−1 for Zn. As for kohl products, Pb concentrations ranged between 51.1 μg g−1 and 4839.5 μg g−1, Cd concentrations ranged between 1.0 μg g−1 and 158.6 μg g−1, Cu concentrations ranged between 2.5 μg g−1 and 162.5 μg g−1, and Zn concentrations ranged between 0.7 μg g−1 and 185.0 μg g−1. The results of our study revealed that Pb, Cd, Cu, and Zn contents in investigated samples were high, making from the prolonged use of such products a potential threat to human health. Therefore, major quality controls are recommended in order to enforce acceptable limits of potential contaminants in cosmetics and good manufacturing practice. PMID:27382641
Electrokinetics of the silica and aqueous electrolyte solution interface: Viscoelectric effects.
Hsu, Wei-Lun; Daiguji, Hirofumi; Dunstan, David E; Davidson, Malcolm R; Harvie, Dalton J E
2016-08-01
The manipulation of biomolecules, fluid and ionic current in a new breed of integrated nanofluidic devices requires a quantitative understanding of electrokinetics at the silica/water interface. The conventional capacitor-based electrokinetic Electric Double Layer (EDL) models for this interface have some known shortcomings, as evidenced by a lack of consistency within the literature for the (i) equilibrium constants of surface silanol groups, (ii) Stern layer capacitance, (iii) zeta (ζ) potential measured by various electrokinetic methods, and (iv) surface conductivity. In this study, we consider how the experimentally observable viscoelectric effect - that is, the increase of the local viscosity due to the polarisation of polar solvents - affects electrokinetcs at the silica/water interface. Specifically we consider how a model that considers viscoelectric effects (the VE model) performs against two conventional electrokinetic models, namely the Gouy-Chapman (GC) and Basic Stern capacitance (BS) models, in predicting four fundamental electrokinetic phenomena: electrophoresis, electroosmosis, streaming current and streaming potential. It is found that at moderate to high salt concentrations (>5×10(-3)M) predictions from the VE model are in quantitative agreement with experimental electrokinetic measurements when the sole additional adjustable parameter, the viscoelectric coefficient, is set equal to a value given by a previous independent measurement. In contrast neither the GS nor BS models is able to reproduce all experimental data over the same concentration range using a single, robust set of parameters. Significantly, we also show that the streaming current and potential in the moderate to high surface charge range are insensitive to surface charge behaviour (including capacitances) when viscoelectric effects are considered, in difference to models that do not consider these effects. This strongly questions the validity of using pressure based electrokinetic experiments to measure surface charge characteristics within this experimentally relevant high pH and moderate to high salt concentration range. At low salt concentrations (<5×10(-3)M) we find that there is a lack of consistency in previously measured channel conductivities conducted under similar solution conditions (pH, salt concentration), preventing a conclusive assessment of any model suitability in this regime. Copyright © 2016 Elsevier B.V. All rights reserved.
Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov
2017-09-01
Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.
Kawakami, Tsuyoshi; Isama, Kazuo; Matsuoka, Atsuko
2011-01-01
The aim of this study was to determine the concentrations of six phthalic acid diesters (PAEs) [di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), diisononyl phthalate (DINP), di-n-octyl phthalate (DNOP), and diisodecyl phthalate (DIDP)], two non-phthalic plasticizers [di(2-ethylhexyl) adipate (DEHA), 2,2,4-trimethyl-1,3-pentanediol diisobutylate (TMPDIB)], and mono 2-ethylhexyl phthalate(MEHP) in polyvinyl chloride (PVC) household products that children often places in their mouths and/or contact with their skin (41 products, 47 samples) in Japan. The detection frequencies of the studied compounds were as follows: DEHP (79 %), DINP-2 (13 %), DINP-1 (11 %), DBP (8.5 %), DEHA (8.5 %), DIDP (4.3 %), and DNOP (2.1 %). Concentrations of these compounds ranged from 0.021 % to 48 %. BBP and TMPDIB were not detected in the all samples. Most samples contained DEHP and DINP at high concentrations over 0.1 %. High concentrations of PAEs were detected in PVC household products that appear appealing to children and can possibly be licked and chewed by them. Di(2-ethylhexyl) terephtalete, diisononyl 1,2-cyclohexanedicarboxylic acid, acetyl tributyl citrate, and di(2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate used as substitute plasticizers were also detected in several samples. MEHP was present in 70 % of the samples, with concentrations ranging from trace amounts to 140 μg/g. The ratios of MEHP against DEHP were 6.2 × 10(-4) to 1.6 × 10(-1) %. MEHP in the household products investigated in this study was most probably an impurity in DEHP. The high concentrations of PAEs detected in products that children often place in their mouth reveal the importance of replacing plasticizers in common household products, and not just children's toys, with safer alternatives.
Kahoun, David; Rezková, Sona; Veskrnová, Katerina; Královský, Josef; Holcapek, Michal
2008-08-15
The objective of this study was the determination of 25 phenolic compounds in different mead samples (honeywines) using high performance liquid chromatography (HPLC) with coulometric-array detection and in case of hydroxymethylfurfural with UV detection. Our method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The method development included the optimization of mobile phase composition, the pH value, conditions of the gradient elution and the flow rate using a window-diagram approach. The developed method was used for the determination of limits of detection and limits of quantitation for individual compounds. The linearity of calibration curves, accuracy and precision (intra- and inter-day) at three concentration levels (low, middle and high concentration range) were verified. Mead samples were diluted with the mobile phase at 1:1 to 1:50 ratio depending on the concentration and filtered through a PTFE filter without any other sample pre-treatment. Phenolic compounds concentration was determined in 50 real samples of meads and correlated with meads composition and hydroxymethylfurfural concentration. The most frequently occurred compounds were protocatechuic acid and vanillic acid (both of them were present in 98% samples), the least occurred compounds were (+)-catechin (10% samples) and sinapic acid (12% samples). Vanillin and ethylvanillin, which are used as artificial additives for the taste improvement, were found in 60% and 42% samples, respectively. Hydroxymethylfurfural concentration, as an indicator of honey quality, was in the range from 2.47 to 158 mg/L. Our method is applicable for the determination of 25 phenolic compounds in mead, honey and related natural samples.
WAGNER, JEFF; GHOSAL, SUTAPA; WHITEHEAD, TODD; METAYER, CATHERINE
2013-01-01
We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100 ppm ranged from <1 to >1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. PMID:23739093
NASA Astrophysics Data System (ADS)
Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.
2018-04-01
Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.
Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom
Mattes, Benjamin R.; Wang, Hsing-Lin
1999-11-09
Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.
Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures
Liu, Chain T.; Takeyama, Masao
1994-01-01
The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.
Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures
Liu, C.T.; Takeyama, Masao.
1994-02-01
The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.
NASA Astrophysics Data System (ADS)
Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.
2017-12-01
Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local point sources.
An integrated approach using high time-resolved tools to study the origin of aerosols.
Di Gilio, A; de Gennaro, G; Dambruoso, P; Ventrella, G
2015-10-15
Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st-20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM2.5 and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive framework and confirm the influence of aerosol transported from heavily polluted areas on the receptor site. Copyright © 2015 Elsevier B.V. All rights reserved.
Kent, Robert; Belitz, Kenneth
2004-01-01
Concentrations of total dissolved solids (TDS) and nutrients in selected Santa Ana Basin streams were examined as a function of water source. The principal water sources are mountain runoff, wastewater, urban runoff, and stormflow. Rising ground water also enters basin streams in some reaches. Data were collected from October 1998 to September 2001 from 6 fixed sites (including a mountain site), 6 additional mountain sites (including an alpine indicator site), and more than 20 synoptic sites. The fixed mountain site on the Santa Ana River near Mentone appears to be a good representative of reference conditions for water entering the basin. TDS can be related to water source. The median TDS concentration in base-flow samples from mountain sites was 200 mg/L (milligrams per liter). Base-flow TDS concentrations from sites on the valley floor typically ranged from 400 to 600 mg/L; base flow to most of these sites is predominantly treated wastewater, with minor contributions of rising ground water and urban runoff. Sparse data suggest that TDS concentrations in urban runoff are about 300 mg/L. TDS concentrations appear to increase on a downstream gradient along the main stem of the Santa Ana River, regardless of source inputs. The major-ion compositions observed in samples from the different sites can be related to water source, as well as to in-stream processes in the basin. Water compositions from mountain sites are categorized into two groups: one group had a composition close to that of the alpine indicator site high in the watershed, and another group had ionic characteristics closer to those in tributaries on the valley floor. The water composition at Warm Creek, a tributary urban indicator site, was highly variable but approximately intermediate to the compositions of the upgradient mountain sites. Water compositions at the Prado Dam and Imperial Highway sites, located 11 miles apart on the Santa Ana River, were similar to one another and appeared to be a mixture of the waters of the upstream sites, Santa Ana River at MWD Crossing, Cucamonga Creek, and Warm Creek. Rainfall usually dilutes stream TDS concentrations. The median TDS concentration in all storm-event discrete samples was 260 mg/L. The median flow-weighted average TDS concentration for stormflow, based on continuous measurement of specific conductance and hydrograph separation of the continuous discharge record, was 190 mg/L. However, stormflow TDS concentrations were variable, and depended on whether the storm was associated with a relatively small or large rainfall event. TDS concentrations in stormflow associated with relatively small events ranged from about 50 to 600 mg/L with a median of 220 mg/L, whereas concentrations in stormflow associated with relatively large events ranged from about 40 to 300 mg/L with a median of 100 mg/L. From the perspective of water managers, the nutrient species of highest concern in Santa Ana Basin streams is nitrate. Most mountain streams had median base-flow concentrations of nitrate below 0.3 mg/L as nitrogen. Nitrate concentrations in both urban runoff and stormflow were near 1 mg/L, which is close to the level found in rainfall for the region. In fact, results from this study suggest that much of the nitrate load in urban storm runoff comes from rainwater. Nitrate concentrations in the Santa Ana River and its major tributaries are highest downstream from wastewater inputs, where median base-flow concentrations of nitrite+nitrate ranged from about 5 to 7 mg/L. About 4 percent of samples collected from sites receiving treated wastewater had nitrate concentrations greater than 10 mg/L. Rising ground water also appears to have high nitrate concentrations (greater than 10 mg/L) in some reaches of the river. Concentrations of other nitrogen species were much lower than nitrate concentrations in base-flow samples. However, storm events increased concentrations and the proportion of organic nitro
Glycine transporter2 inhibitors: Getting the balance right.
Vandenberg, Robert J; Mostyn, Shannon N; Carland, Jane E; Ryan, Renae M
2016-09-01
Neurotransmitter transporters are targets for a wide range of therapeutically useful drugs. This is because they have the capacity to selectively manipulate the dynamics of neurotransmitter concentrations and thereby enhance or diminish signalling through particular brain pathways. High affinity glycine transporters (GlyTs) regulate extracellular concentrations of glycine and provide novel therapeutic targets for neurological disorders. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Pang, Long; Yang, Huiqiang; Yang, Peijie; Zhang, Hongzhong; Zhao, Jihong
2017-08-15
In this study, dispersive liquid-liquid microextraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry was developed for the analysis of five representative organophosphate esters (OPEs) in wine samples. Under optimized conditions, the proposed method resulted in good linearity (R 2 >0.9933) over the range of 0.1-100μgL -1 , with limits of detection (LODs, S/N =3) and quantification (LOQs, S/N =10) in the ranges of 0.48-18.8ngL -1 and 1.58-62.5ngL -1 , respectively. Inter- and intra-assay precisions of RSD% ranged from 3.21% to 6.13% and from 1.69% to 7.63%, respectively. The spiked recoveries of target OPEs from white wine, red wine, and beer samples were in the ranges of 80-122%, 76-120%, and 76-110%, respectively, at two different concentration levels. The total concentrations of five OPEs found in white wine, red wine, and beer samples were in the ranges of 0.29-0.85μgL -1 , 1.00-3.05μgL -1 , and 0.86-1.47μgL -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadanaga, Y.; Bandow, H.; Uno, I.; Sera, T.; Yuba, A.; Takenaka, N.; Takami, A.; Kurokawa, J.; Hatakeyama, S.
2010-12-01
The long-term monitoring of air quality has been continuing at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan in terms of assessing the environmental impact and biogeochemical effect to the marine-surface activities by the economic growth of Asian continent. Among the monitoring data, total odd nitrogen oxides (NOy), HNO3, particulate nitrate (NO3-(p)), NH3, NH4+ and SO42- were analyzed for the period from 16 March to 13 April 2008 as well as the postanalyses of those species by the Community Muti-scale Air Quality model (CMAQ) of those species. NOy and total nitrate (TN = HNO3 + NO3-(p)) concentrations from China (CH) air mass origin were high during the observational period in both observed and model-calculated result. The long-range transport of odd nitrogen species from the Asian continent is supported with respect to both the CMAQ postanalyses and the observations. HNO3 and NO3-(p) concentrations from CH air mass origin were also high during the observational period. However, the HNO3 diurnal variation with daytime peak and nighttime lows suggests that HNO3 around the CHAAMS forms photochemically in situ or in areas relatively close to the CHAAMS. The maximum and minimum concentrations of NH3 were observed at Pacific Ocean (PO) and Middle China air mass origins, respectively, and the observed NH3 concentrations from PO air mass origin were highest. NH3 concentration calculated by the CMAQ failed to reproduce observed variation, this is because the horizontal resolution of CMAQ (-20km) is not sufficient to allocate the land surface/vegetation base NH3 emission. NH4+ and SO42- concentrations from CH air mass origin were high during the observational period for both the observation and the CMAQ calculation. As well as the case of NOy and TN, the long-range transport of ammonium and sulfur compounds from the Asian continent is also supported in terms of both the CMAQ postanalyses and the observations.
Patino, Eduardo; Byrne, Michael J.
2004-01-01
Acoustic and optic methods were applied to estimate suspended-solids concentrations in the St. Lucie River Estuary, southeastern Florida. Acoustic Doppler velocity meters were installed at the North Fork, Speedy Point, and Steele Point sites within the estuary. These sites provide varying flow, salinity, water-quality, and channel cross-sectional characteristics. The monitoring site at Steele Point was not used in the analyses because repeated instrument relocations (due to bridge construction) prevented a sufficient number of samples from being collected at the various locations. Acoustic and optic instruments were installed to collect water velocity, acoustic backscatter strength (ABS), and turbidity data that were used to assess the feasibility of estimating suspended-solids concentrations in the estuary. Other data collected at the monitoring sites include tidal stage, salinity, temperature, and periodic discharge measurements. Regression analyses were used to determine the relations of suspended-solids concentration to ABS and suspended-solids concentration to turbidity at the North Fork and Speedy Point sites. For samples used in regression analyses, measured suspended-solids concentrations at the North Fork and Speedy Point sites ranged from 3 to 37 milligrams per liter, and organic content ranged from 50 to 83 percent. Corresponding salinity for these samples ranged from 0.12 to 22.7 parts per thousand, and corresponding temperature ranged from 19.4 to 31.8 ?C. Relations determined using this technique are site specific and only describe suspended-solids concentrations at locations where data were collected. The suspended-solids concentration to ABS relation resulted in correlation coefficients of 0.78 and 0.63 at the North Fork and Speedy Point sites, respectively. The suspended-solids concentration to turbidity relation resulted in correlation coefficients of 0.73 and 0.89 at the North Fork and Speedy Point sites, respectively. The adequacy of the empirical equations seems to be limited by the number and distribution of suspended-solids samples collected throughout the expected concentration range at the North Fork and Speedy Point sites. Additionally, the ABS relations for both sites seem to overestimate at the low end and underestimate at the high end of the concentration range. Based on the sensitivity analysis, temperature had a greater effect than salinity on estimated suspended-solids concentrations. Temperature also appeared to affect ABS data, perhaps by changing the absorptive and reflective characteristics of the suspended material. Salinity and temperature had no observed effects on the turbidity relation at the North Fork and Speedy Point sites. Estimates of suspended-solids concentrations using ABS data were less 'erratic' than estimates using turbidity data. Combining ABS and turbidity data into one equation did not improve the accuracy of results, and therefore, was not considered.
Characterizing the range of children's air pollutant exposure during school bus commutes.
Sabin, Lisa D; Behrentz, Eduardo; Winer, Arthur M; Jeong, Seong; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A
2005-09-01
Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs.
Ground-water quality of the southern High Plains aquifer, Texas and New Mexico, 2001
Fahlquist, Lynne
2003-01-01
In 2001, the U.S. Geological Survey National Water-Quality Assessment Program collected water samples from 48 wells in the southern High Plains as part of a larger scientific effort to broadly characterize and understand factors affecting water quality of the High Plains aquifer across the entire High Plains. Water samples were collected primarily from domestic wells in Texas and eastern New Mexico. Depths of wells sampled ranged from 100 to 500 feet, with a median depth of 201 feet. Depths to water ranged from 34 to 445 feet below land surface, with a median depth of 134 feet. Of 240 properties or constituents measured or analyzed, 10 exceeded U.S. Environmental Protection Agency public drinking-water standards or guidelines in one or more samples - arsenic, boron, chloride, dissolved solids, fluoride, manganese, nitrate, radon, strontium, and sulfate. Measured dissolved solids concentrations in 29 samples were larger than the public drinking-water guideline of 500 milligrams per liter. Fluoride concentrations in 16 samples, mostly in the southern part of the study area, were larger than the public drinking-water standard of 4 milligrams per liter. Nitrate was detected in all samples, and concentrations in six samples were larger than the public drinking-water standard of 10 milligrams per liter. Arsenic concentrations in 14 samples in the southern part of the study area were larger than the new (2002) public drinking-water standard of 10 micrograms per liter. Radon concentrations in 36 samples were larger than a proposed public drinking-water standard of 300 picocuries per liter. Pesticides were detected at very small concentrations, less than 1 microgram per liter, in less than 20 percent of the samples. The most frequently detected compounds were atrazine and breakdown products of atrazine, a finding similar to those of National Water-Quality Assessment aquifer studies across the Nation. Four volatile organic compounds were detected at small concentrations in six water samples. About 70 percent of the 48 primarily domestic wells sampled contained some fraction of recently (less than about 50 years ago) recharged ground water, as indicated by the presence of one or more pesticides, or tritium or nitrate concentrations greater than threshold levels.
Gray, John E.; Stillings, Lisa L.
2003-01-01
Mercury and methylmercury concentrations were measured in mine wastes, stream sediments, and stream waters collected both proximal and distal from abandoned mercury mines to evaluate mercury contamination and mercury methylation in the Humboldt River system. The climate in the study area is arid, and due to the lack of mine-water runoff, water-leaching laboratory experiments were used to evaluate the potential of mine wastes to release mercury. Mine-waste calcine contains mercury concentrations as high as 14,000 ?g/g. Stream-sediment samples collected within 1 km of the mercury mines studied contain mercury concentrations as high as 170 ?g/g, but sediments collected from the Humboldt River and regional baseline sites have much lower mercury contents, less than 0.44 ?g/g. Similarly, methylmercury concentrations in mine-waste calcine are locally as high as 96 ng/g, but methylmercury contents in stream sediments collected down-stream from the mines and from the Humboldt River are lower (<0.05-0.95 ng/g). Stream-water samples collected below two mines studied contain mercury concentrations ranging from 6 to 2,000 ng/L, whereas mercury contents in Humboldt River and Rye Patch Reservoir water were generally lower, ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in Humboldt River system water were the lowest in this study (<0.02- 0.27 ng/L). Although mercury and methylmercury concentrations were elevated in some mine-waste calcine and mercury concentrations were locally high in mine-waste leachate samples, data show significant dilution of mercury and lower mercury methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is more than 8 km from any mercury mines. Data show only minor, local transference of mercury and methylmercury from mine-waste calcine to stream sediment, and then onto the water column, and indicate little transference of mercury from the mine sites to the Humboldt River system.
NASA Astrophysics Data System (ADS)
Bizimis, M.; Peslier, A. H.
2013-12-01
Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of MORB and OIB [1], but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. We analyzed by FTIR water concentrations in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt. H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than experimental cpx/opx equilibrium data. These pyroxenite cpx and opx water concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and megacrysts from kimberites [2] and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between water in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between water concentrations and the presence of phlogopite. These data imply that cpx and opx water concentrations may be buffered by phlogopite crystallization. Reconstructed bulk rock pyroxenite water concentrations (not including phlogopite, i.e. minimum) range from 200-460 ppm (average 331× 75 ppm), significantly higher than water estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas [1,3]. The average bulk rock pyroxenite H2O/Ce is 69 × 35, lower than estimates of the MORB source (~150) or FOZO, C (200-250) mantle component, but consistent with 'dry' EM sources (<100) [1]. These data suggest that a metasomatized, refertilized oceanic lithosphere that contains a pyroxenite component (e.g. in the lower part of an oceanic plate, where ascending melts can become trapped and crystallize), will have both higher water concentrations and low H2O/Ce, and may contribute to EM-type OIB sources, like that of Samoan basalts [5]. Therefore, a low H2O/Ce mantle source may not necessarily be 'dry'. [1] Dixon et al., 2002, Nature 420, 385-389. [2] Peslier, 2010 JVGR 197, 239-258. [3] Dixon et al., 1997 JP 38, 911-939. [4] O'Leary et al. 2010 EPSL 297, 111-120. [5] Workman et al., 2006 EPSL 241, 932 - 951.
Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake.
Ge, Jing; Lu, Mengxiao; Wang, Donglan; Zhang, Zhiyong; Liu, Xianjin; Yu, Xiangyang
2016-02-01
Dissipation, distribution and uptake pathways of chlorpyrifos were investigated in pakchoi (Brassica chinensis L.) and lettuce (Lactuca sativa) with foliage treatments under a greenhouse trial and root treatments under a hydroponic experiment. The dissipation trends were similar for chlorpyrifos in pakchoi and lettuce with different treatments. More than 94% of chlorpyrifos was degraded in the samples for both of the vegetables 21 days after the foliage treatments. For the root treatment, the dissipation rate of chlorpyrifos in pakchoi and lettuce at the low concentration was greater than 93%, however, for the high concentrations, the dissipation rates were all under 90%. Both shoots and roots of the vegetables were able to absorb chlorpyrifos from the environment and distribute it inside the plants. Root concentration factor (RCF) values at different concentrations with the hydroponic experiment ranged from 5 to 39 for pakchoi, and from 14 to 35 for lettuce. The translocation factor (TF) representing the capability of the vegetables to translocate contaminants was significantly different for pakchoi and lettuce with foliage and root treatments. The values of TF with foliage treatments ranged from 0.003 to 0.22 for pakchoi, and from 0.032 to 1.63 for lettuce. The values of TF with root treatments ranged from 0.01 to 0.17 for pakchoi, and from 0.003 to 0.23 for lettuce. Significant difference of TF was found between pakchoi and lettuce with foliage treatments, and at high concentrations (10 and 50 mg L(-1)) with root treatments as well. However, there was no significant difference of TF between pakchoi and lettuce at 1 mg L(-1) with root treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Matsukami, Hidenori; Suzuki, Go; Someya, Masayuki; Uchida, Natsuyo; Tue, Nguyen Minh; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka
2017-01-01
We investigated the concentrations of polybrominated diphenyl ethers (PBDEs) and alternative flame retardants (FRs) in environmental samples collected in January 2012, 2013, and 2014 from an electronic waste-processing area in northern Vietnam. During the study period, PBDE and alternative FR concentrations in soils around the electronic waste-processing workshops ranged from 37 to 9200 ng g -1 dry weight (dw) and from 35 to 24,000 ng g -1 dw; the concentrations in soils around the open-burning sites ranged from 1.6 to 62 ng g -1 dw and from <4 to 1900 ng g -1 dw; and the concentrations in river sediments around the workshops ranged from 100 to 3800 ng g -1 dw and from 23 to 6800 ng g -1 dw, respectively. Over the course of study period, we observed significant decreases in concentrations of PBDEs and significant increases in concentrations of alternative FRs, particularly Dechlorane Plus isomers and oligomeric organophosphorus FRs (o-PFRs) in both soils and sediments around the workshops. We also report information on concentrations and environmental emissions of o-PFRs and their low-molecular-weight impurities in the same soils and sediments. The detection of o-PFR impurities around the workshops and the open-burning sites highlights an enhanced breakdown of o-PFRs probably due to weathering during open storage and high temperature attained during the burning of electronic wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetics of Mixed Microbial Assemblages Enhance Removal of Highly Dilute Organic Substrates
Lewis, David L.; Hodson, Robert E.; Hwang, Huey-Min
1988-01-01
Our experiments with selected organic substrates reveal that the rate-limiting process governing microbial degradation rates changes with substrate concentration, S, in such a manner that substrate removal is enhanced at lower values of S. This enhancement is the result of the dominance of very efficient systems for substrate removal at low substrate concentrations. The variability of dominant kinetic parameters over a range of S causes the kinetics of complex assemblages to be profoundly dissimilar to those of systems possessing a single set of kinetic parameters; these findings necessitate taking a new approach to predicting substrate removal rates over wide ranges of S. PMID:16347715
Assessing the Impact of Analytical Error on Perceived Disease Severity.
Kroll, Martin H; Garber, Carl C; Bi, Caixia; Suffin, Stephen C
2015-10-01
The perception of the severity of disease from laboratory results assumes that the results are free of analytical error; however, analytical error creates a spread of results into a band and thus a range of perceived disease severity. To assess the impact of analytical errors by calculating the change in perceived disease severity, represented by the hazard ratio, using non-high-density lipoprotein (nonHDL) cholesterol as an example. We transformed nonHDL values into ranges using the assumed total allowable errors for total cholesterol (9%) and high-density lipoprotein cholesterol (13%). Using a previously determined relationship between the hazard ratio and nonHDL, we calculated a range of hazard ratios for specified nonHDL concentrations affected by analytical error. Analytical error, within allowable limits, created a band of values of nonHDL, with a width spanning 30 to 70 mg/dL (0.78-1.81 mmol/L), depending on the cholesterol and high-density lipoprotein cholesterol concentrations. Hazard ratios ranged from 1.0 to 2.9, a 16% to 50% error. Increased bias widens this range and decreased bias narrows it. Error-transformed results produce a spread of values that straddle the various cutoffs for nonHDL. The range of the hazard ratio obscures the meaning of results, because the spread of ratios at different cutoffs overlap. The magnitude of the perceived hazard ratio error exceeds that for the allowable analytical error, and significantly impacts the perceived cardiovascular disease risk. Evaluating the error in the perceived severity (eg, hazard ratio) provides a new way to assess the impact of analytical error.
Copper in the intake and discharge zones of the Surry and Salem Nuclear Power Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, F.L.; Bishop, D.J.; Rice, D.W. Jr.
Copper concentrations were measured in the soluble and particulate fractions of water samples and bedload sediments collected in intake and discharge areas of the Surry and Salem Nuclear Power Stations during normal operations. Additional samples of water and suspended particles were collected during startup of Unit 2 at the Salem Power Station. In water samples collected from Surry, total copper ranged from 6.5 to 24.7 and labile copper from 0.5 to 2.9 ..mu..g/L; in those from Salem, total copper ranged from 6.7 to 10.6 and labile from 0.9 to 3.8 ..mu..g/L. At both sites the highest total copper concentration wasmore » measured in January 1979 during a period of high runoff. In general, differences between influent and effluent waters were small; the maximum was 4.2 ..mu..g Cu/L. Copper concentration in the water during startup of Unit 2 of Salem was high initially (>2500 ..mu..g Cu/L) but was almost entirely in the particulate fraction; labile copper was only 0.6 ..mu..g/L. The apparent complexing capacity (ACC) of the waters from Surry ranged from 6 to 40 and those from Salem from 5 to 60 ..mu..g Cu/L. Ranges in dissolved organic carbon were smaller, 2.9 to 5.1 and 2.2 to 5.0 mg C/L for Surry and Salem, respectively, and showed no relationship with ACC. Ultrafiltration of discharge waters indicated that, in most samples, the largest fraction of copper in the untreated water was in the >10,000 <100,000 molecular weight fraction; in waters treated to destroy dissolved organic carbon, it was generally in the >100,000 molecular weight fraction.Copper concentrations in intact bedload sediments from the intake area of Surry ranged from 2.3 to 26 and of Salem from 36 to 74 ..mu..g/g dry weight; those in the discharge area of Surry ranged from 13 to 30 and of Salem from 3 to 67. We noted considerable spatial heterogeneity both at the intake and discharge areas, and higher copper concentrations in the <62-..mu..m fraction than in intact sediments.« less
Air quality at night markets in Taiwan.
Zhao, Ping; Lin, Chi-Chi
2010-03-01
In Taiwan, there are more than 300 night markets and they have attracted more and more visitors in recent years. Air quality in night markets has become a public concern. To characterize the current air quality in night markets, four major night markets in Kaohsiung were selected for this study. The results of this study showed that the mean carbon dioxide (CO2) concentrations at fixed and moving sites in night markets ranged from 326 to 427 parts per million (ppm) during non-open hours and from 433 to 916 ppm during open hours. The average carbon monoxide (CO) concentrations at fixed and moving sites in night markets ranged from 0.2 to 2.8 ppm during non-open hours and from 2.1 to 14.1 ppm during open hours. The average 1-hr levels of particulate matter with aerodynamic diameters less than 10 microm (PM10) and less than 2.5 microm (PM2.5) at fixed and moving sites in night markets were high, ranging from 186 to 451 microg/m3 and from 175 to 418 microg/m3, respectively. The levels of PM2.5 accounted for 80-97% of their respective PM10 concentrations. The average formaldehyde (HCHO) concentrations at fixed and moving sites in night markets ranged from 0 to 0.05 ppm during non-open hours and from 0.02 to 0.27 ppm during open hours. The average concentration of individual polycyclic aromatic hydrocarbons (PAHs) was found in the range of 0.09 x 10(4) to 1.8 x 10(4) ng/m3. The total identified PAHs (TIPs) ranged from 7.8 x 10(1) to 20 x 10(1) ng/m3 during non-open hours and from 1.5 x 10(4) to 4.0 x 10(4) ng/m3 during open hours. Of the total analyzed PAHs, the low-molecular-weight PAHs (two to three rings) were the dominant species, corresponding to an average of 97% during non-open hours and 88% during open hours, whereas high-molecular-weight PAHs (four to six rings) represented 3 and 12% of the total detected PAHs in the gas phase during non-open and open hours, respectively.
NASA Astrophysics Data System (ADS)
Asada, Satoshi; Kimoto, Tsunenobu; Ivanov, Ivan G.
2017-08-01
Previous work has shown that the concentration of shallow dopants in a semiconductor can be estimated from the photoluminescence (PL) spectrum by comparing the intensity of the bound-to-the-dopant exciton emission to that of the free exciton. In this work, we study the low-temperature PL of high-quality uncompensated Al-doped p-type 4H-SiC and propose algorithms for determining the Al-doping concentration using the ratio of the Al-bound to free-exciton emission. We use three different cryogenic temperatures (2, 41, and 79 K) in order to cover the Al-doping range from mid 1014 cm-3 up to 1018 cm-3. The Al-bound exciton no-phonon lines and the strongest free-exciton replica are used as a measure of the bound- and free-exciton emissions at a given temperature, and clear linear relationships are obtained between their ratio and the Al-concentration at 2, 41, and 79 K. Since nitrogen is a common unintentional donor dopant in SiC, we also discuss the criteria allowing one to determine from the PL spectra whether a sample can be considered as uncompensated or not. Thus, the low-temperature PL provides a convenient non-destructive tool for the evaluation of the Al concentration in 4H-SiC, which probes the concentration locally and, therefore, can also be used for mapping the doping homogeneity.
Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, H.E.; Weaver, T.A.
1979-01-01
During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both aremore » actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations.« less
Kocisko, D A; Walsh, D S; Eamsila, C; Edstein, M D
2000-04-01
A simple, rapid, and accurate high-pressure liquid chromatographic method with fluorescence detection is described for the measurement of tafenoquine (TQ) (also known as WR 238605) from human plasma and venous and capillary blood. Tafenoquine was measured in plasma and venous blood following protein precipitation. Chromatographic separation was achieved using a Waters S5P Spherisorb phenyl analytical cartridge (150 mm x 4.6 mm I.D., 5 microm particle size) (Waters, Milford, MA, USA) and a mobile phase of 22 mM ammonium acetate, pH 4:acetonitrile (45:55, vol/vol). The flow rate was 1.5 mL/min and the retention times were approximately 3.5 min for WR VIIIAc (internal standard) and approximately 7.8 min for TQ. The interday and intraday coefficients of variation of TQ over a concentration range of 20-1000 ng/mL in plasma were < or =8.4% and in venous blood were < or =9.6%. The mean percent difference between added concentration and obtained concentration was 7.3% in plasma and 8.5% in venous blood over the corresponding concentration range. The limit of quantitation for both fluids was 10 ng/mL. Tafenoquine concentrations were comparable between capillary and venous blood with no significant difference between measurement in both biological fluids. The clinical application of the method was demonstrated by measuring plasma and whole blood concentrations of TQ from participants in a chemosuppression trial of the drug against malaria infections in Thailand.
Crucial effect of melt homogenization on the fragility of non-stoichiometric chalcogenides
NASA Astrophysics Data System (ADS)
Ravindren, Sriram; Gunasekera, K.; Tucker, Z.; Diebold, A.; Boolchand, P.; Micoulaut, M.
2014-04-01
The kinetics of homogenization of binary AsxSe100 - x melts in the As concentration range 0% < x < 50% are followed in Fourier Transform (FT)-Raman profiling experiments, and show that 2 g sized melts in the middle concentration range 20% < x < 30% take nearly two weeks to homogenize when starting materials are reacted at 700 °C. In glasses of proven homogeneity, we find molar volumes to vary non-monotonically with composition, and the fragility index M displays a broad global minimum in the 20% < x < 30% range of x wherein M< 20. We show that properly homogenized samples have a lower measured fragility when compared to larger under-reacted melts. The enthalpy of relaxation at Tg, ΔHnr(x) shows a minimum in the 27% < x < 37% range. The super-strong nature of melt compositions in the 20% < x < 30% range suppresses melt diffusion at high temperatures leading to the slow kinetics of melt homogenization.
Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.
Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul
2017-08-31
In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.
Contaminants of emerging concern in a large temperate estuary.
Meador, James P; Yeh, Andrew; Young, Graham; Gallagher, Evan P
2016-06-01
This study was designed to assess the occurrence and concentrations of a broad range of contaminants of emerging concern (CECs) from three local estuaries within a large estuarine ecosystem. In addition to effluent from two wastewater treatment plants (WWTP), we sampled water and whole-body juvenile Chinook salmon (Oncorhynchus tshawytscha) and Pacific staghorn sculpin (Leptocottus armatus) in estuaries receiving effluent. We analyzed these matrices for 150 compounds, which included pharmaceuticals, personal care products (PPCPs), and several industrial compounds. Collectively, we detected 81 analytes in effluent, 25 analytes in estuary water, and 42 analytes in fish tissue. A number of compounds, including sertraline, triclosan, estrone, fluoxetine, metformin, and nonylphenol were detected in water and tissue at concentrations that may cause adverse effects in fish. Interestingly, 29 CEC analytes were detected in effluent and fish tissue, but not in estuarine waters, indicating a high potential for bioaccumulation for these compounds. Although concentrations of most detected analytes were present at relatively low concentrations, our analysis revealed that overall CEC inputs to each estuary amount to several kilograms of these compounds per day. This study is unique because we report on CEC concentrations in estuarine waters and whole-body fish, which are both uncommon in the literature. A noteworthy finding was the preferential bioaccumulation of CECs in free-ranging juvenile Chinook salmon relative to staghorn sculpin, a benthic species with relatively high site fidelity. Published by Elsevier Ltd.
Concha, Gabriela; Broberg, Karin; Grandér, Margaretha; Cardozo, Alejandro; Palm, Brita; Vahter, Marie
2010-09-01
Elevated concentrations of arsenic in drinking water are common worldwide, however, little is known about the presence of other potentially toxic elements. We analyzed 31 different elements in drinking water collected in San Antonio de los Cobres and five surrounding Andean villages in Argentina, and in urine of the inhabitants, using ICP-MS. Besides confirmation of elevated arsenic concentrations in the drinking water (up to 210 microg/L), we found remarkably high concentrations of lithium (highest 1000 microg/L), cesium (320 microg/L), rubidium (47 microg/L), and boron (5950 microg/L). Similarly elevated concentrations of arsenic, lithium, cesium, and boron were found in urine of the studied women (N=198): village median values ranged from 26 to 266 microg/L of arsenic, 340 to 4550 microg/L of lithium, 34 to 531 microg/L of cesium, and 2980 to 16,560 microg/L of boron. There is an apparent risk of toxic effects of long-term exposure to several of the elements, and studies on associations with adverse human health effects are warranted, particularly considering the combined, life-long exposure. Because of the observed wide range of concentrations, all water sources used for drinking water should be screened for a large number of elements; obviously, this applies to all drinking water sources globally.
Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G
2015-03-15
Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Rayne, Sierra; Ikonomou, Michael G; Ross, Peter S; Ellis, Graeme M; Barrett-Lennard, Lance G
2004-08-15
Polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), and polychlorinated naphthalenes (PCNs) were quantified in blubber biopsy samples collected from free-ranging male and female killer whales (Orcinus orca) belonging to three distinct communities (southern residents, northern residents, and transients) from the northeastern Pacific Ocean. High concentrations of sigmaPBDE were observed in male southern residents (942+/-582 ng/g Iw), male and female transients (1015+/-605 and 885+/-706 ng/g Iw, respectively), and male and female northern residents (203+/-116 and 415+/-676 ng/g Iw, respectively). Because of large variation within sample groups, sigmaPBDE levels generally did not differ statistically with the exception of male northern residents, which had lower sigmaPBDE concentrations than male southern residents, male transients, and female transients, perhaps reflecting the consumption of less contaminated prey items. Male transient killer whales, which consume high trophic level prey including other cetaceans and occasionally spend time near populated areas, had sigmaPBDE concentrations approximately equal to southern residents. No significant age-related relationships were observed for sigmaPBDE concentrations. sigmaPBDE concentrations were approximately 1-3 orders of magnitude greater than those of sigmaPBB (3.0-31 ng/g Iw) and sigmaPCN (20-167 ng/g Iw) measured in a subset of samples, suggesting that PBDEs may represent a contaminant class of concern in these marine mammals.
A linear refractive photovoltaic concentrator solar array flight experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, P.A.; Murphy, D.M.; Piszczor, M.F.
1995-12-31
Concentrator arrays deliver a number of generic benefits for space including high array efficiency, protection from space radiation effects, and minimized plasma interactions. The line focus concentrator concept delivers two added advantages: (1) low-cost mass production of the lens material and, (2) relaxation of precise array tracking requirements to only a single axis. New array designs emphasize lightweight, high stiffness, stow-ability and ease of manufacture and assembly. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal pointing errors for satellites having only single-axis tracking capability. In this paper the authorsmore » address the current status of the SCARLET linear concentrator program with special emphasis on hardware development of an array-level linear refractive concentrator flight experiment. An aggressive, 6-month development and flight validation program, sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center, will quantify and verify SCARLET benefits with in-orbit performance measurements.« less
Burgos-Núñez, Saudith; Navarro-Frómeta, Amado; Marrugo-Negrete, José; Enamorado-Montes, Germán; Urango-Cárdenas, Iván
2017-07-15
The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (p<0.05) in juvenile and adult birds. High concentrations of mercury were registered in the seabird (10.19±4.99mgkg -1 ) and fish (0.67μgg -1 ) samples. The total concentration of polycyclic aromatic hydrocarbons ranged from 7.0-41ngg -1 in sediment, 0.03-0.34ngmL -1 in water samples, 53.24ngg -1 in fish, and 66ngg -1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Shan-Jia; Chen, Xiu-Rong; Yan, Long; Zhao, Jian-Guo; Zhang, Fei; Jiang, Zi-Jian
2014-04-01
The effects of different concentrations of bisphenol A (BPA) on Chlorella vulgaris and removal capacity of BPA by Chlorella vulgaris were investigated. Results showed that a low concentration (0-20 mg x L(-1)) of BPA promoted the growth of Chlorella vulgaris, whereas a relative high concentration (20-50 mg x L(-1)) of BPA inhibited the growth of Chlorella vulgaris, and the inhibition effect was positively correlated with the concentration of BPA. Likewise, a high dose of initial BPA (> 20 mg x L(-1)) led to a decline in the content of chlorephyll a. Chlorella vulgaris had BPA removal capacity when initial BPA concentration ranged from 2 mg x L(-1) to 50 mg x L(-1). There was positive correlation between the removal rate of BPA per cell and initial BPA concentration. The removal rate of BPA was the highest when initial BPA was 50 mg x L(-1), which appeared between lag phase and logarithmic phase.
Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya
2016-10-01
Single-chamber microbial fuel cells (MFCs) were inoculated with mangrove-grown brackish sediment (MBS) and continuously supplied with an acetate medium containing different concentrations of NaCl (0-1.8M). Different from MFCs inoculated with paddy-field soil (high power outputs were observed between 0.05 and 0.1M), power outputs from MBS-MFCs were high at NaCl concentrations from 0 to 0.6M. Amplicon-sequence analyses of anode biofilms suggest that different exoelectrogens occurred from MBS depending on NaCl concentrations; Geobacter occurred abundantly below 0.1M, whereas Desulfuromonas was abundant from 0.3M to 0.6M. These results suggest that NaCl concentration is the major determinant of exoelectrogens that occur in anode biofilms from MBS. It is also suggested that MBS is a potent source of microbes for MFCs to be operated in a wide range of NaCl concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kiem, Sungmin; Schentag, Jerome J
2014-12-01
Although antibiotics whose epithelial lining fluid (ELF) concentrations are reported high tend to be preferred in treatment of pneumonia, measurement of ELF concentrations of antibiotics could be misled by contamination from lysis of ELF cells and technical errors of bronchoalveolar lavage (BAL). In this review, ELF concentrations of anti-methicillin resistant Staphylococcus aureus (MRSA) antibiotics were interpreted considering above confounding factors. An equation used to explain antibiotic diffusion into CSF (cerebrospinal fluid) was adopted: ELF/free serum concentration ratio = 0.96 + 0.091 × ln (partition coefficient / molecular weight(1/2)). Seven anti-MRSA antibiotics with reported ELF concentrations were fitted to this equation to see if their ELF concentrations were explainable by the penetration capacity only. Then, outliers were modeled under the assumption of varying contamination from lysed ELF cells (test range 0-10% of ELF volume). ELF concentrations of oritavancin, telavancin, tigecycline, and vancomycin were well described by the diffusion equation, with or without additional impact from cell lysis. For modestly high ELF/free serum concentration ratio of linezolid, technical errors of BAL should be excluded. Although teicoplanin and iclaprim showed high ELF/free serum ratios also, their protein binding levels need to be cleared for proper interpretation. At the moment, it appears very premature to use ELF concentrations of anti-MRSA antibiotics as a relevant guide for treatment of lung infections by MRSA.
Schentag, Jerome J
2014-01-01
Although antibiotics whose epithelial lining fluid (ELF) concentrations are reported high tend to be preferred in treatment of pneumonia, measurement of ELF concentrations of antibiotics could be misled by contamination from lysis of ELF cells and technical errors of bronchoalveolar lavage (BAL). In this review, ELF concentrations of anti-methicillin resistant Staphylococcus aureus (MRSA) antibiotics were interpreted considering above confounding factors. An equation used to explain antibiotic diffusion into CSF (cerebrospinal fluid) was adopted: ELF/free serum concentration ratio = 0.96 + 0.091 × ln (partition coefficient / molecular weight1/2). Seven anti-MRSA antibiotics with reported ELF concentrations were fitted to this equation to see if their ELF concentrations were explainable by the penetration capacity only. Then, outliers were modeled under the assumption of varying contamination from lysed ELF cells (test range 0-10% of ELF volume). ELF concentrations of oritavancin, telavancin, tigecycline, and vancomycin were well described by the diffusion equation, with or without additional impact from cell lysis. For modestly high ELF/free serum concentration ratio of linezolid, technical errors of BAL should be excluded. Although teicoplanin and iclaprim showed high ELF/free serum ratios also, their protein binding levels need to be cleared for proper interpretation. At the moment, it appears very premature to use ELF concentrations of anti-MRSA antibiotics as a relevant guide for treatment of lung infections by MRSA. PMID:25566401
Advanced Fire Detector for Space Applications
NASA Technical Reports Server (NTRS)
Kutzner, Joerg
2012-01-01
A document discusses an optical carbon monoxide sensor for early fire detection. During the sensor development, a concept was implemented to allow reliable carbon monoxide detection in the presence of interfering absorption signals. Methane interference is present in the operating wavelength range of the developed prototype sensor for carbon monoxide detection. The operating parameters of the prototype sensor have been optimized so that interference with methane is minimized. In addition, simultaneous measurement of methane is implemented, and the instrument automatically corrects the carbon monoxide signal at high methane concentrations. This is possible because VCSELs (vertical cavity surface emitting lasers) with extended current tuning capabilities are implemented in the optical device. The tuning capabilities of these new laser sources are sufficient to cover the wavelength range of several absorption lines. The delivered carbon monoxide sensor (COMA 1) reliably measures low carbon monoxide levels even in the presence of high methane signals. The signal bleed-over is determined during system calibration and is then accounted for in the system parameters. The sensor reports carbon monoxide concentrations reliably for (interfering) methane concentrations up to several thousand parts per million.
Simple detection of residual enrofloxacin in meat products using microparticles and biochips.
Ha, Mi-Sun; Chung, Myung-Sub; Bae, Dong-Ho
2016-05-01
A simple and sensitive method for detecting enrofloxacin, a major veterinary fluoroquinolone, was developed. Monoclonal antibody specific for enrofloxacin was immobilised on a chip and fluorescent dye-labelled microparticles were covalently bound to the enrofloxacin molecules. Enrofloxacin in solution competes with the microparticle-immobilised enrofloxacin (enroMPs) to bind to the antibody on the chip. The presence of enrofloxacin was verified by detecting the fluorescence of enrofloxacin-bound microparticles. Under optimum conditions, a high dynamic range was achieved at enrofloxacin concentrations ranging from 1 to 1000 μg kg(-1). The limits of detection and quantification for standard solutions were 5 and 20 μg kg(-1) respectively, which are markedly lower than the maximum residue limit. Using simple extraction methods, recoveries from fortified beef, pork and chicken samples were 43.4-62.3%. This novel method also enabled approximate quantification of enrofloxacin concentration: the enroMP signal intensity decreased with increasing enrofloxacin concentration. Because of its sensitivity, specificity, simplicity and rapidity, the method described herein will facilitate the detection and approximate quantification of enrofloxacin residues in foods in a high-throughput manner.
NASA Astrophysics Data System (ADS)
Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.
2018-03-01
Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged
; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged
value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged
at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false
turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.
Voichick, Nicholas; Topping, David; Griffiths, Ronald
2018-01-01
Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.
Compact Infrared Spectrometers
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis
2009-01-01
Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.
Environmental implications of high metal content in soils of a titanium mining zone in Kenya.
Maina, David M; Ndirangu, Douglas M; Mangala, Michael M; Boman, Johan; Shepherd, Keith; Gatari, Michael J
2016-11-01
Mining activities contribute to an increase of specific metal contaminants in soils. This may adversely affect plant life and consequently impact on animal and human health. The objective of this study was to obtain the background metal concentrations in soils around the titanium mining in Kwale County for monitoring its environmental impacts. Forty samples were obtained with half from topsoils and the other from subsoils. X-ray fluorescence spectrometry was used to determine the metal content of the soil samples. High concentrations of Ti, Mn, Fe, and Zr were observed where Ti concentrations ranged from 0.47 to 2.8 %; Mn 0.02 to 3.1 %; Fe 0.89 to 3.1 %; and Zr 0.05 to 0.85 %. Using ratios of elemental concentrations in topsoil to subsoil method and enrichment factors concept, the metals were observed to be of geogenic origin with no anthropogenic input. The high concentrations of Mn and Fe may increase their concentration levels in the surrounding agricultural lands through deposition, thereby causing contamination on the land and the cultivated food crops. The latter can cause adverse human health effects. In addition, titanium mining will produce tailings containing low-level titanium concentrations, which will require proper disposal to avoid increasing titanium concentrations in the soils of the region since it has been observed to be phytotoxic to plants at high concentrations. The results of this study will serve as reference while monitoring the environmental impact by the titanium mining activities.
NASA Astrophysics Data System (ADS)
Liu, T. L.; Liu, W. R.; Xu, X. H.
2017-11-01
Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.
Moreno-Trejo, Maira Berenice; Sánchez-Domínguez, Margarita
2016-01-01
The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability that exceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple. PMID:28773938
Stahl, Christian; Albe, Karsten
2012-01-01
Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091
NASA Astrophysics Data System (ADS)
Roadman, M. J.; Scudlark, J. R.; Meisinger, J. J.; Ullman, W. J.
The Ogawa passive sampler (Ogawa USA, Pompano Beach, Florida) is a useful tool for monitoring atmospheric ammonia (NH 3(g)) concentrations and assessing the effects of agricultural waste management practices on NH 3(g) emissions. The Ogawa sampler, with filter-discs impregnated with citric acid, was used to trap and determine NH 3(g) concentrations in a variety of agricultural settings. A wide range of NH 3(g) concentrations can be monitored by varying the sampler exposure time, provided that no more than ˜10 μg of NH 3-N are adsorbed on the acid-coated filters. Concentrations less than 1 μg NH 3-N m -3 can be detected using long deployments (⩽14 days), while concentrations as great as 10 mg NH 3-N m -3 may be determined in very short (e.g. 5 min) deployments. Reproducibility ranged from 5% to 10% over the range of concentrations studied and passive determinations of NH 3(g) were similar to those determined using dilute-acid gas scrubbers. Background levels of NH 3(g) at a non-agricultural site in southern Delaware were typically <1 μg NH 3-N m -3. The air entering a chicken house was 10 μg NH 3-N m -3, reflecting the background levels in agricultural settings in this region. Within the house, concentrations ⩽8.5 mg NH 3-N m -3 were observed, reflecting the high rates of NH 3(g) emission from chicken excreta. Using measured NH 3(g) concentrations and poultry house ventilation rates, we estimate that each broiler grown to production size over 6 weeks contributes approximately 19±3 g of NH 3-N to the atmosphere, a value consistent with other published results.
Krämer, Michael; Heese, Peter; Banger, Markus; Madea, Burkhard; Hess, Cornelius
2018-06-01
Due to a lack of reference blood concentrations in the literature, the forensic evaluation of prothipendyl findings in blood samples is difficult. Interpretations with regard to the assessment of blood concentrations as well as an estimation of the ingested prothipendyl amounts were often vague. To describe a concentration range in clinical samples, prothipendyl and prothipendyl sulfoxide concentrations were determined in serum samples of 50 psychiatric patients receiving 40 mg, 80 mg, or 160 mg doses of prothipendyl. The analyses of prothipendyl and prothipendyl sulfoxide were carried out using validated methods of high performance liquid chromatography coupled to triple quadrupole mass spectrometry (LC-QQQ-MS), respectively. 40 mg doses caused average prothipendyl serum concentrations of 18.0 ng/mL (1 hour after intake) and 7.9 ng/mL (10.5 hours after intake), while 80 mg doses caused averages of 42.6 ng/mL and 15.2 ng/mL at the mentioned times of sampling. Irrespective of the given dose, prothipendyl concentrations below 30 ng/mL were observed in 80% of the patient samples taken 1 hour after ingestion as well as in 90% of the samples collected 10.5 hours after administration. Serum concentrations of the Phase I metabolite prothipendyl sulfoxide averaged 4.3 ng/mL (1 hour after intake) and 3.6 ng/mL (10.5 hours after intake). Possible drug-drug interactions regarding absorption and metabolism of prothipendyl are discussed. Results of the herein presented study are useful for the interpretation of analytical prothipendyl findings in forensic toxicology. The utility of the described concentration range is demonstrated by discussing two death cases involving prothipendyl findings. Copyright © 2017 John Wiley & Sons, Ltd.
N2 Fluxes From Amazon Cropland Are a Significant Component of Watershed N Budgets.
NASA Astrophysics Data System (ADS)
Fox, R. J.; Neill, C.; Macedo, M.; Davidson, E. A.; Lefebvre, P.; Jankowski, K.; Maracahipes-Santos, L.
2017-12-01
Amazon tropical rainforests have experienced significant deforestation and conversion to cropland. Recently, cropping has intensified to include higher application rates of N fertilizer, typically in a soybean-corn rotation. Our previous work in Mato Grosso, Brazil, suggests that the addition of N fertilizer (80 Kg N ha-1 yr-1) has not increased N2O fluxes from soils or elevated dissolved N concentrations in streams or groundwater. Here, we investigate whether N fertilizer is converted to N2 in groundwater. We collected samples during January and October 2016 from streams and well transects across riparian forest buffers bordering cropland or within intact riparian forests. Samples were collected using a positive pressure pump and analyzed using Membrane Inlet Mass Spectrometry (MIMS) for N2, Ar, and O2 and gas chromatography for N2O and CH4. N2 concentrations in excess of solubility (based on Ar) were measured at nearly all locations in January and ranged from -15 to 220 in cropland and -2 to 93 µmol N2-N L-1 in intact forest. N2 concentrations were generally lower in October and ranged from -0.9 to 95 in cropland and -0.6 to 52 µmol N2-N L-1 in intact forest. Higher N2 concentrations accumulated at lower dissolved oxygen concentrations and at the borders between cropland and riparian forest. N2O concentrations were significantly lower than N2 concentrations on both dates and ranged between 0.01 and 0.33 µmol N2O-N L-1. Preliminary estimates suggest that N2 losses from cropland ranged from 10 to 20 kg N ha-1 y-1 and losses from forests ranged from 2 to 12 kg N ha-1 y-1. High concentrations of N2 in groundwater have been found in and around agricultural fields in temperate regions, but direct N2 measurements in tropical agricultural regions have not been previously documented. These results suggest that N2 fluxes from tropical cropland receiving modest amounts of N fertilizer could be substantial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-07-01
The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/Lmore » initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.
2015-12-01
Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R = 0.578, p < 0.001; O2: R = 0.517, p < 0.001; Soil moisture: R = 0.408, p < 0.001; N2O: R = 0.218, p = 0.003; CH4: R = 0.195, p = 0.008). Despite the rather low co-variation between methane concentrations and microbial community composition, relative abundances of methanotrophic and methanogenic lineages did co-vary strongly with methane concentrations.
Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.
1992-01-01
This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable, ranging from below the reporting level to concentrations over the Maximum Contaminant Levels for several constituents (arsenic, barium, cadmium, chromium, lead, and selenium). Radionuclide activities also were highly variable. Gross alpha radioactivity ranged from 0.1 to 210 picocuries per liter as 230thorium. Of the wells sampled, 20 percent exceeded the proposed Maximum Contaminant Level of 15 picocuries per liter for gross alpha radioactivity. Organic constituents were detected in 39 percent of the 170 wells sampled for organic constituents; in most cases concentrations were at or near the laboratory minimum reporting levels. Ten of the wells sampled for organic constituents had one or more constituents (chlordane, dieldrin, heptachlor epoxide, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane) at concentrations equal to or greater than the Maximum Contaminant Level or acceptable concentrations as suggested in the Environmental Protection Agency's Health Advisory Summaries. Quality-assurance sampling included duplicate samples, repeated samples, blanks, spikes, and blind samples. These samples proved to be essential in evaluating the accuracy of the data, particularly in the case of volatile organic constituents.
Exposure to particulate matter in a mosque
NASA Astrophysics Data System (ADS)
Ocak, Yılmaz; Kılıçvuran, Akın; Eren, Aykut Balkan; Sofuoglu, Aysun; Sofuoglu, Sait C.
2012-09-01
Indoor air quality in mosques during prayers may be of concern for sensitive/susceptible sub-groups of the population. However, no indoor air pollutant levels of potentially toxic agents in mosques have been reported in the literature. This study measured PM concentrations in a mosque on Friday when the mid-day prayer always receives high attendance. Particle number and CO2 concentrations were measured on nine sampling days in three different campaigns before, during, and after prayer under three different cleaning schedules: vacuuming a week before, a day before, and on the morning of the prayer. In addition, daily PM2.5 concentrations were measured. Number concentrations in 0.5-1.0, 1.0-5.0, and > 5.0 μm diameter size ranges were monitored. In all campaigns the maximum number concentrations were observed on the most crowded days. The lowest number concentrations occurred when vacuuming was performed a day before the prayer day in two of the three size ranges considered. PM2.5 concentrations (four-hour samples that integrated before, during, and after the prayer) were comparable to the other indoor environments reported in the literature. CO2 concentrations suggested that ventilation was not sufficient in the mosque during the prayers. The results showed that better ventilation, a preventive cleaning strategy, and a more detailed study are needed.
Hydroxyatrazine in soils and sediments
Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.
1999-01-01
Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.
Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA
Barringer, J.L.; Riskin, M.L.; Szabo, Z.; Reilly, P.A.; Rosman, R.; Bonin, J.L.; Fischer, J.M.; Heckathorn, H.A.
2010-01-01
The upper Great Egg Harbor River watershed in New Jersey's Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006-2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river's flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils. ?? 2010 US Government.
Cefazolin pharmacokinetics in cats under surgical conditions.
Albarellos, Gabriela A; Montoya, Laura; Passini, Sabrina M; Lupi, Martín P; Lorenzini, Paula M; Landoni, María F
2017-10-01
Objectives The aim of this study was to determine the plasma pharmacokinetic profile, tissue concentrations and urine elimination of cefazolin in cats under surgical conditions after a single intravenous dose of 20 mg/kg. Methods Intravenous cefazolin (20 mg/kg) was administered to nine young mixed-breed cats 30 mins before they underwent surgical procedures (ovariectomy or orchiectomy). After antibiotic administration, samples from blood, some tissues and urine were taken. Cefazolin concentrations were determined in all biological matrices and pharmacokinetic parameters were estimated. Results Initial plasma concentrations were high (C p(0) , 134.80 ± 40.54 µg/ml), with fast and moderately wide distribution (distribution half-life [t ½(d) ] 0.16 ± 0.15 h; volume of distribution at steady state [V (d[ss]) ] 0.29 ± 0.10 l/kg) and rapid elimination (body clearance [Cl B ], 0.21 ± 0.06 l/h/kg; elimination half-life [t ½ ], 1.18 ± 0.27 h; mean residence time 1.42 ± 0.36 h). Thirty to 60 mins after intravenous administration, cefazolin tissue concentrations ranged from 9.24 µg/ml (subcutaneous tissue) to 26.44 µg/ml (ovary). The tissue/plasma concentration ratio ranged from 0.18 (muscle) to 0.58 (ovary). Cefazolin urine concentrations were high with 84.2% of the administered dose being eliminated in the first 6 h postadministration. Conclusions and relevance Cefazolin plasma concentrations remained above a minimum inhibitory concentration of ⩽2 µg/ml up to 4 h in all the studied cats. This suggests that a single intravenous dose of 20 mg/kg cefazolin would be adequate for perioperative prophylactic use in cats.
Nguyen, Bach T; Balakrishnan, Gireeshkumar; Jacquette, Boris; Nicolai, Taco; Chassenieux, Christophe; Schmitt, Christophe; Bovetto, Lionel
2016-11-14
Heat-induced aggregation and gelation of aqueous solutions of whey protein isolate (WPI) in the presence of sodium caseinate (SC) and CaCl 2 was studied at pH 6.6. The effect of adding SC (0-100 g/L) on the structure of the aggregates and the gels was investigated by light scattering and confocal laser scanning microscopy at different CaCl 2 concentration ([CaCl 2 ] = 0-30 mM). The gelation process was studied by oscillatory shear rheology. At the whey protein concentrations studied here (34 and 60 g/L), no gels were formed in the absence of CaCl 2 and SC. However, WPI solutions gelled above a critical CaCl 2 concentration that increased with increasing SC concentration. In the absence of CaCl 2 , WPI gels were formed only above a critical SC concentration. The critical SC concentration needed to induce WPI gelation decreased weakly when CaCl 2 was added. In an intermediate range of CaCl 2 concentrations, gels were formed both at low and high SC concentrations, but not at intermediate SC concentrations. Finally, at high CaCl 2 concentrations gels were formed at all SC concentrations. The gelation rate and the gel structure of the gels formed at low and high casein concentrations were very different. The effect of SC on the thermal gelation of WPI was interpreted by competition for Ca 2+ , a chaperon effect, and microphase separation.
Jalava, Pasi I; Salonen, Raimo O; Hälinen, Arja I; Penttinen, Piia; Pennanen, Arto S; Sillanpää, Markus; Sandell, Erik; Hillamo, Risto; Hirvonen, Maija-Riitta
2006-09-15
The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM(1-0.2)) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The ability of coarse (PM(10-2.5)), intermodal size range (PM(2.5-1)), PM(1-0.2) and ultrafine (PM(0.2)) particles to cause cytokine production (TNFalpha, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.
Baehr, Arthur L.; Reilly, Timothy J.
2001-01-01
Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake Lackawanna in summer 1999;concentrations ranged from 0.05 to 0.19 ug/L. Lake/ground water interaction is a feasible explanation for the nearly ubiquitous presence of MTBE in ground water. The movement of water from lakes to wells is feasible because many static water levels and essentially all pumped water levels in the wells were below lake levels. Furthermore, diatom fragments were present in samples from the wells. Ambient ground water at Cranberry Lake also may be affected by septic-tank effluent, as indicated by the relation among concentrations of nitrate, boron, and chloroform. This result indicates potential vulnerability of the water supply to contamination by other chemicals and pathogens. Radon in ambient ground water is a concern throughout northern New Jersey. In particular, the median radon concentrations in ground-water samples collected from 14 wells at Cranberry Lake in 1998 and 1999 were 1,282 and 1,046 pCi/L, respectively. The median radon concentration in five ground-water samples collected at Lake Lackawanna in 1999 was 340 pCi/L. Although these values exceed regulatory levels, they are not high relative to radon concentrations measured in northwestern New Jersey. Eight wells in a neighborhood of Cranberry Lake with known MTBE contamination were sampled by the U.S. Geological Survey in summer 1998. MTBE was detected at concentrations greater than or equal to 40 ug/L in five of the wells. Concentrations of TAME, another gasoline oxygenate, were highly correlated with concentrations of MTBE; MTBE concentrations were about 10 times the TAME concentrations. In all samples, however, the concentrations of the BTEX compounds were less than 0.05 ug/L, and the sample from the most highly contaminated well, where the MTBE concentration was 900 ug/L, had no detectable BTEX.
Distribution, sources, and air-soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal.
Pokhrel, Balram; Gong, Ping; Wang, Xiaoping; Chen, Mengke; Wang, Chuanfei; Gao, Shaopeng
2018-06-01
Due to the high temperature and extensive use of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), tropical cities could act as secondary sources of these pollutants and therefore received global concern. As compared with other tropical cities, studies on the air-soil exchange of OCPs, PCBs and PAHs in tropical Nepali cities remained limited. In the present study, 39 soil samples from Kathmandu (capital of Nepal) and 21 soil samples from Pokhara (second largest city in Nepal) were collected The soil concentrations of the sum of endosulfans (α- and β-endosulfans) ranged from 0.01 to 16.4 ng/g dw. Meanwhile, ∑dichlorodiphenyltrichloroethane (DDTs) ranged from 0.01 to 6.5 ng/g dw; ∑6PCBs from 0.01 to 9.7 ng/g dw; and ∑15PAHs from 17.1 to 6219 ng/g dw. High concentrations of OCPs were found in the soil of commercial land, while, high soil PAH concentrations were found on tourist/religious and commercial land. Combined the published air concentrations, and the soil data of this study, the directions and fluxes of air-soil exchange were estimated using a fugacity model. It is clear that Nepal is a country contributing prominently to secondary emissions of endosulfans, hexachlorobenzene (HCB), and low molecular weight (LMW) PCBs and PAHs. The flux for all the pollutants in Kathmandu, with ∑endosulfans up to 3553; HCB up to 5263; and ∑LMW-PAHs up to 24378 ng m -2 h -1 , were higher than those in Pokhara. These high flux values indicated the high strength of Nepali soils to act as a source. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reaction of tetracycline with biologically relevant chloramines
NASA Astrophysics Data System (ADS)
Benavides, J.; Barrias, P.; Piro, N.; Arenas, A.; Orrego, A.; Pino, E.; Villegas, L.; Dorta, E.; Aspée, A.; López-Alarcón, C.
2017-05-01
Helicobacter pylori (H. pylori) infection triggers inflammatory processes with the consequent production of hypochlorous acid (HOCl), monochloramine (NH2Cl), and protein-derived chloramines. As the therapy for eradicating H. pylori is partially based on the use of tetracycline, we studied the kinetic of its consumption elicited by HOCl, NH2Cl, N-chloro-n-butylamine (NHCl-But, used as a lysine-derived chloramine model), and lysozyme-derived chloramines. In the micromolar concentration range, tetracycline reacted rapidly with HOCl, generating in the first few seconds intermediates of short half-life. In contrast, a slow tetracycline consumption was observed in the presence of high NH2Cl and NHCl-But concentrations (millimolar range). Similar chlorinated products of tetracycline were identified by mass spectrometry, in the presence of HOCl and NH2Cl. These results evidenced that tautomers of tetracycline are pivotal intermediates in all reactions. In spite of the low reactivity of chloramines towards tetracycline, it is evident that, in the concentration range where they are produced in a H. pylori infection (millimolar range), the reactions lead to oxidation and/or chlorination of tetracycline. This kind of reactions, which were also observed triggered by lysozyme-derived chloramines, could limit the efficiency of the tetracycline-based therapy.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... high- intensity, noise could cause masking at particular frequencies for marine mammals that utilize... mostly concentrated at low frequency ranges, it may have less effect on high frequency echolocation... reduce the communication space of animals (e.g., Clark et al. 2009) and cause increased stress levels (e...
USDA-ARS?s Scientific Manuscript database
Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (<100 nm) (DNR) stabilized using combinations of whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...
Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...
Refractory metal shielding /insulation/ increases operating range of induction furnace
NASA Technical Reports Server (NTRS)
Ebihara, B. T.
1965-01-01
Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels.
Stanton, Jennifer S.; Fahlquist, Lynne
2006-01-01
A study of the quality of ground water beneath irrigated cropland was completed for the northern and southern High Plains aquifer. Ground-water samples were collected from 30 water-table monitoring wells in the northern agricultural land-use (NAL) study area in Nebraska in 2004 and 29 water-table monitoring wells in the southern agricultural land-use (SAL) study area in Texas in 2003. The two study areas represented different agricultural and hydrogeologic settings. The primary crops grown in the NAL study area were corn and soybeans, and the primary crop in the SAL study area was cotton. Overall, pesticide and fertilizer application rates were larger in the NAL study area. Also, precipitation and recharge rates were greater in the NAL study area, and depths to water and evapotranspiration rates were greater in the SAL study area. Ground-water quality beneath irrigated cropland was different in the two study areas. Nitrate concentrations were larger and pesticide detections were more frequent in the NAL study area. Nitrate concentrations in NAL samples ranged from 1.96 to 106 mg/L (milligrams per liter) as nitrogen, with a median concentration of 10.6 mg/L. Water in 73 percent of NAL samples had at least one pesticide or pesticide degradate detected. Most of the pesticide compounds detected (atrazine, alachlor, metolachlor, simazine, and degradates of those pesticides) are applied to corn and soybean fields. Nitrate concentrations in SAL samples ranged from 0.96 to 21.6 mg/L, with a median of 4.12 mg/L. Water in 24 percent of SAL samples had at least one pesticide or pesticide degradate detected. The pesticide compounds detected were deethylatrazine (a degradate of atrazine and propazine), propazine, fluometuron, and tebuthiuron. Most of the pesticides detected are applied to cotton fields. Dissolved-solids concentrations were larger in the SAL area and were positively correlated with both nitrate and chloride concentrations, suggesting a combination of human and natural sources. Dissolved-solids concentrations in NAL samples ranged from 272 to 2,160 mg/L, with a median of 442 mg/L, and dissolved solids in SAL samples ranged from 416 to 3,580 mg/L, with a median of 814 mg/L.
An Eulerian model for scavenging of pollutants by raindrops
NASA Astrophysics Data System (ADS)
Kumar, Sudarshan
An Eulerian model for simulating the coupled processes of gas-phase depletion and aqueousphase accumulation of the pollutant species during a rain event has been formulated. The model is capable of taking into account any realistic vertical profile of pollutant species concentrations and time-dependent initial aqueous-phase concentrations at the cloud base. The model considers the processes of single species absorption and dissociation in the aqueous phase. The coupled partial differential equations constituting the model are discretized into a set of ordinary differential equations by using the Galerkin method with chapeau functions as the basis functions. These equations are solved to obtain the pollutant concentrations of the gas phase and raindrops as well as the pH of raindrops as a function of time and distance below cloud-base. Simulations are performed for scavenging of gaseous HNO 3, H 2O 2, SO 2, formaldehyde and NH 3. For the case of highly soluble HNO 3 and H 2O 2, raindrops are far from equilibrium with the gas phase and their capacity for absorption of these gases is undiminished even as they reach ground level. The gas-phase concentrations for these species decrease exponentially with time and the washout is determined primarily by the rain intensity and mass-transfer coefficient of the gaseous species to the raindrops. The pollutant species concentrations in raindrops are an almost linear function of the distance below the cloud base. For the simulation conditions considered in this study, the half-life periods of these gases for removal from the atmosphere range from 15 to 40 min. For SO 2 and formaldehyde, the aqueous-phase concentrations approach equilibrium as the drops fall to ground level and the gas-phase concentrations show large gradients in the vertical. Half-life periods for SO 2 range from 1.3 to 13 h depending on the initial raindrop pH and rain intensity. For formaldehyde, the half-life ranges from 19 to 63 min. Solubility of NH 3 is a strong function of the raindrop pH. As NH 3 is absorbed, the raindrop pH increases and NH 3 solubility decreases. For pre-acidified drops (pH = 4.6), ammonia solubility is very high and the drops are far from equilibrium with the gas phase throughout the falling period. The half-life for ammonia ranges from 11 min to over 3 h in our simulations.
Marín, David; Posadas, Esther; Cano, Patricia; Pérez, Víctor; Lebrero, Raquel; Muñoz, Raúl
2018-05-01
The influence of the daily and seasonal variations of environmental conditions on the quality of the upgraded biogas was evaluated in an outdoors pilot scale high rate algal pond (HRAP) interconnected to an external absorption column (AC) via a conical settler. The high alkalinity in the cultivation broth resulted in a constant biomethane composition during the day regardless of the monitored month, while the high algal-bacterial activity during spring and summer boosted a superior biomethane quality. CO 2 concentrations in the upgraded biogas ranged from 0.1% in May to 11.6% in December, while a complete H 2 S removal was always achieved regardless of the month. A limited N 2 and O 2 stripping from the scrubbing cultivation broth was recorded in the upgraded biogas at a recycling liquid/biogas ratio in the AC of 1. Finally, CH 4 concentration in the upgraded biogas ranged from 85.6% in December to 99.6% in August. Copyright © 2018 Elsevier Ltd. All rights reserved.
Extremely high concentration of folates in premature newborns.
Zikavska, T; Brucknerova, I
2014-01-01
Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).
Zhang, Wenjie; Wang, Dunqiu; Jin, Yue
2018-02-01
Inorganic carbon (IC) is important for anaerobic ammonium oxidation (anammox). In this study, the effects of the IC concentration on N 2 O emissions and microbial diversity in an anammox reactor were investigated. N 2 O emissions were positively correlated with IC concentrations, and IC concentrations in the range of 55-130 mg/L were optimal, considering the nitrogen removal rate and N 2 O emissions. High IC concentrations resulted in the formation of CaCO 3 on the surface of anammox granules, which impacted the diffusion conditions of the substrate. Microbial community analysis indicated that high IC concentrations decreased the populations of specific bacteria, such as Achromobacter spanius strain YJART-7, Achromobacter xylosoxidans strain IHB B 6801, and Denitratisoma oestradiolicum clone 20b_15. D. oestradiolicum clone 20b_15 appeared to be the key contributor to N 2 O emissions. High N 2 O emissions may result from changes in organic carbon sources, which lead to denitrification by D. oestradiolicum clone 20b_15. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Xiaowei; Shi, Jianghong; Bo, Ting; Zhang, Hui; Wu, Wei; Chen, Qingcai; Zhan, Xinmin
2014-01-01
The first nationwide survey of six phthalic acid esters (PAEs) (diethyl phthalate (DEP); dimethyl phthalate (DMP); di-n-butyl phthalate (DBP); butyl benzyl phthalate (BBP); bis(2-ethylhexyl) phthalate (DEHP); di-n-octyl phthalate (DnOP)) in source waters was conducted in China. The results showed these PAEs were ubiquitous in source waters. DBP and DEHP were the most frequently detected with high concentrations ranging nd-1.52 μg/L and nd-6.35 μg/L, respectively. These PAEs concentrations (except DBP) in surface water (rivers, lakes and reservoirs) were generally higher than those in groundwater; DBP had high concentrations in groundwater in Northeast China (Liao River Basin) and North China (Hai River Basin). Their concentrations in the northern regions were generally higher than those in the southern and eastern regions; particularly, in North China. Three short-chain PAEs (DMP, DEP and DBP) were detected with high concentrations in Hai River Basin, Pearl River Basin and Yellow River Basin. Copyright © 2013 Elsevier Ltd. All rights reserved.
St Gelais, Adam T; Costa-Pierce, Barry A
2016-01-15
Mercury (Hg) contamination testing was conducted on winter-caught male spiny dogfish (Squalus acanthias) in southern New England and results compared to available data on Hg concentrations for this species. A limited risk-reward assessment for EPA (eicosapentanoic acid) and DHA (docosahexanoic acid) lipid concentrations of spiny dogfish was completed in comparison with other commonly consumed marine fish. Mean Hg concentrations were 0.19 ppm (±0.30) wet weight. In comparison, mean Hg concentrations in S. acanthias varied geographically ranging from 0.05 ppm (Celtic Sea) to 2.07 ppm (Crete, Mediterranean Sea). A risk-reward assessment for Hg and DHA+EPA placed S. acanthias in both "low-risk, high-reward" and "high-risk, high-reward" categories for consumption dependent on locations of the catch. Our results are limited and are not intended as consumption advisories but serve to illustrate the need for making more nuanced, geo-specific, consumption guidance for spiny dogfish that is inclusive of seafood traceability and nutritional benefits. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jha, Virendra K.; Wydoski, Duane S.
2002-01-01
A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from filtered natural-water samples is described. Seven of these compounds are reported permanently with an estimated concentration because of performance issues. Water samples are filtered to remove suspended particulate matter, and then 1 liter of filtrate is pumped through disposable solid-phase extraction columns that contain octadecyl-bonded porous silica to extract the compounds. The C-18 columns are dried with nitrogen gas, and method compounds are eluted from the columns with ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in all three water-matrix samples ranged from 0.004 to 0.012 microgram per liter. Method performance was validated by spiking all compounds into three different matrices at three different concentrations. Eight replicates were analyzed at each concentration level in each matrix. Mean recoveries of method compounds spiked in surface-water samples ranged from 39 to 149 percent and those in ground-water samples ranged from 40 to 124 percent for all pesticides except dimethoate. Mean recoveries of method compounds spiked in reagent-water samples ranged from 41 to 119 percent for all pesticides except dimethoate. Dimethoate exhibited reduced recoveries (mean of 43 percent in low- and medium-concentration level spiked samples and 20 percent in high-concentration level spiked samples) in all matrices because of incomplete collection on the C-18 column. As a result, concen-trations of dimethoate and six other compounds (based on performance issues) in samples are reported in this method with an estimated remark code.
Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia.
Bilandzić, Nina; Sedak, Marija; Vratarić, Darija; Perić, Tomislav; Simić, Branimir
2009-07-01
The concentration and relations of Cd and Pb as environmental risk factors were studied by atomic absorption spectrophotometry in the liver, kidney and muscle of free ranging wild boar (n=94) and red deer (n=45) from hunting grounds in four counties of north-east Croatia. In all four counties, the levels of Cd found in the kidney of red deer ranged from 2.28 to 5.91 mg/kg, and in wild boar from 3.47 to 21.10 mg/kg. The mean renal concentration of Cd was significantly higher in wild boar than in red deer from all four study areas. The mean hepatic (0.11 to 0.49 mg/kg, respectively) and muscle (0.01 to 0.04 mg/kg, respectively) Cd concentrations were similar in both species. The mean renal Cd concentration in wild boar and red deer exceeded 1 mg/kg in all four counties, ranging from 67.0% to 91.4% and from 45.5% to 69.2%, respectively. Also, the hepatic Cd/renal Cd ratio was lower than 1 in all animals. In all four counties, renal Pb concentration ranged from 0.058 to 3.77 mg/kg in red deer and from 0.056 to 11.60 mg/kg in wild boar. Hepatic Pb concentration was similar in both species (0.061 to 0.202 mg/kg in wild boar and 0.077 to 0.108 mg/kg in red deer). Because of the high Cd level in the organs of wild boar and red deer, further research is needed to identify the source of contamination in order to preserve the health of animals and humans.
Crawford, Graham C; Puschner, Birgit; Dierenfeld, Ellen S; Dunker, Freeland
2009-12-01
Serum and whole blood samples from 64 clinically normal captive black and white ruffed lemurs (Varecia variegata), aged 6 mo to 32 yr, were analyzed to survey mineral and fat-soluble vitamin concentrations. All animals were fed a commercial primate food and a wide range of fruits and vegetables. Specific commercial diet information was available for 52 animals that were fed one of 10 different diets. Data analysis showed no differences in the analytes attributable to sex or access to natural ultraviolet light. Serum phosphorus (range: 1.4-3.1 mmol/L) was significantly higher and retinol (range: 0.38-1.23 micromol/L) was significantly lower in young animals (< or =4 yr). Iron (range: 17.2-77.0 micromol/L) and copper (range: 10.7-53.3 micromol/L) were much higher than concentrations reported in other free-ranging lemur species, and in some animals were at levels considered potentially toxic in domestic animals. Magnesium (range: 0.66-2.04 mmol/L), sodium (range: 111-201 mmol/L), and potassium (range: 2.0-6.8 mmol/L) ranged both lower and higher than concentrations considered adequate for a mammal, but were similar to concentrations reported in wild red ruffed lemurs (Varecia rubra), a closely related species. Selenium (range: 3.5-7.7 micromol/L) was within the range expected for a mammal, but higher than concentrations reported in wild V rubra. Zinc (range: 9.2-62.7 micromol/L) was similar to concentrations reported in V. rubra. Calcidiol (range: <12.5-144.8 nmol/L) and retinol (range: 0.38-2.95 micromol/L) were both lower and higher than concentrations reported in V. rubra. Lower serum calcidiol concentration correlated with lower commercial dietary vitamin D3. Alpha-tocopherol (range: 1.2-17.6 micromol/L) and y-tocopherol (range: 0.3-3.9 micromol/L) were within a range expected in a captive frugivorous primate but higher than concentrations found in wild V. rubra.
Harnsoongnoen, Supakorn; Wanthong, Anuwat
2017-10-01
Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.
el Nujumi, A M; Rowe, P A; Dahill, S; Dorrian, C A; Neithercut, W D; McColl, K E
1992-01-01
Studies were performed in patients with and without renal failure to investigate the role of bacterial ammonia production in the pathogenesis of the mucosal abnormalities caused by Helicobacter pylori. The high rate of H pylori ammonia production in uraemic patients should accentuate any ammonia induced effects. The median (range) gastric juice ammonium concentration in the H pylori positive patients with renal failure was 19 mmol/l (II-43) compared with 5 mmol/l (1-11) in the H pylori positive patients without renal failure (p < 0.005). In the H pylori negative patients the values were 3 mmol/l (0.5-11) and 0.7 mmol/l (0.1-1.4) respectively in the patients with and without renal failure (p < 0.01). Despite the much higher ammonia production in the H pylori positive uraemic patients, the nature and severity of their gastritis was the same as that in the H pylori positive non-uraemic patients. The median (range) fasting serum gastrin concentration was raised in the uraemic patients compared with the non-uraemic patients but was similar in the uraemic patients with (95 pmol/l (52-333)) or without (114 pmol/l (47-533)) H pylori infection. The median (range) serum pepsinogen I concentration was also high in the uraemic compared with the non-uraemic patients and was significantly higher in uraemic patients with H pylori (352 ng/ml, range 280-653) than in those without H pylori infection (165 ng/ml, range 86-337) (p < 0.01). These findings indicate that the gastritis and hypergastrinaemia associated with H pylori infection are not the result of mucosal damage induced by the organism's ammonia production. PMID:1487161
Chen, Zhi-Feng; Ying, Guang-Guo; Lai, Hua-Jie; Chen, Feng; Su, Hao-Chang; Liu, You-Sheng; Peng, Fu-Qiang; Zhao, Jian-Liang
2012-12-01
A sensitive and robust method using solid-phase extraction and ultrasonic extraction for preconcentration followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS) has been developed for determination of 19 biocides: eight azole fungicides (climbazole, clotrimazole, ketoconazole, miconazole, fluconazole, itraconazole, thiabendazole, and carbendazim), two insect repellents (N,N-diethyl-3-methylbenzamide (DEET), and icaridin (also known as picaridin)), three isothiazolinone antifouling agents (1,2-benzisothiazolinone (BIT), 2-n-octyl-4-isothiazolinone (OIT), and 4,5-dichloro-2-n-octyl-isothiazolinone (DCOIT)), four paraben preservatives (methylparaben, ethylparaben, propylparaben, and butylparaben), and two disinfectants (triclosan and triclocarban) in surface water, wastewater, sediment, sludge, and soil. Recovery of the target compounds from surface water, influent, effluent, sediment, sludge, and soil was mostly in the range 70-120%, with corresponding method quantification limits ranging from 0.01 to 0.31 ng L(-1), 0.07 to 7.48 ng L(-1), 0.01 to 3.90 ng L(-1), 0.01 to 0.45 ng g(-1), 0.01 to 6.37 ng g(-1), and 0.01 to 0.73 ng g(-1), respectively. Carbendazim, climbazole, clotrimazole, methylparaben, miconazole, triclocarban, and triclosan were detected at low ng L(-1) (or ng g(-1)) levels in surface water, sediment, and sludge-amended soil. Fifteen target compounds were found in influent samples, at concentrations ranging between 0.4 (thiabendazole) and 372 ng L(-1) (methylparaben). Fifteen target compounds were found in effluent samples, at concentrations ranging between 0.4 (thiabendazole) and 114 ng L(-1) (carbendazim). Ten target compounds were found in dewatered sludge samples, at concentrations ranging between 1.1 (DEET) and 887 ng g(-1) (triclocarban).
Guzman, David Sanchez-Migallon; Court, Michael H; Zhu, Zhaohui; Summa, Noémie; Paul-Murphy, Joanne R
2017-09-01
Meloxicam has been shown to have a safe and favorable pharmacodynamic profile with individual variability in Hispaniolan Amazon parrots (Amazona ventralis). In the current study, we determined the pharmacokinetics of a sustained-release formulation of meloxicam after subcutaneous administration to Hispaniolan Amazon parrots. Twelve healthy adult parrots, 6 males and 6 females, were used in the study. Blood samples were collected before (time 0) and at 0.5, 1, 2, 6, 12, 24, 48, 72, 96, and 120 hours after a single dose of the sustained-release meloxicam formulation (3 mg/kg SC). Plasma meloxicam concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were determined by noncompartmental analysis. Plasma concentrations reached a mean C max of 23.4 μg/mL (range, 14.7-46.0 μg/mL) at 1.8 hours (range, 0.5-6 hours), with a terminal half-life of 7.4 hours (range, 1.4-40.9 hours). Individual variation was noticeable, such that some parrots (4 of 12 birds) had very low plasma meloxicam concentrations, similar to the high variability reported in a previous pharmacokinetic study of the standard meloxicam formulation in the same group of birds. Two birds developed small self-resolving scabs at the injection site. On the basis of these results, the sustained-release meloxicam formulation could be administered every 12 to 96 hours in Hispaniolan Amazon parrots to manage pain. Because of these highly variable results, the use of this formulation in this species cannot be recommended until further pharmacokinetic, safety, and pharmacogenomic evaluations are performed to establish accurate dosing recommendations and to understand the high pharmacokinetic variability.
Tang, Anna Shiu Ping; Kwong, Ka Ping; Chung, Stephen Wai Cheung; Ho, Yuk Yin; Xiao, Ying
2009-01-01
Fish is the main source of dietary exposure to methylmercury (MeHg), which is a public health concern owing to its potential neurotoxicity. To evaluate the public health risk, this study estimated the total mercury (tHg) and MeHg exposure from fish intake in Hong Kong secondary school students. Median tHg and MeHg concentrations of 280 samples purchased from different commercial outlets (covering 89 species of whole fish and three types of canned tuna), together with the local food consumption data of secondary school students obtained by semi-quantitative food frequency questionnaire in 2000, were used to estimate dietary exposure from fish intake for the average and high consumer (95th percentile exposure). For tHg, the median concentration was 63 µg kg(-1) (range 3-1370 µg kg(-1)) and estimated exposures ranged 0.5-0.6 µg kg(-1) body weight (bw) week(-1) for an average consumer and 1.6-1.9 µg kg(-1) bw week(-1) for a high consumer. For MeHg, median concentration was 48 µg kg(-1) (range 3-1010 µg kg(-1)) and estimated dietary exposures were 0.4-0.5 µg kg(-1) bw week(-1) for an average consumer and 1.2-1.4 µg kg(-1) bw week(-1) for a high consumer. These values are below the respective provisional tolerable weekly intake (PTWI) established by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA). The health risk is greater for high consumers since MeHg exposures may approach or exceed the PTWI when other dietary sources are taken into account.
Alternating gradient photodetector
NASA Technical Reports Server (NTRS)
Overhauser, Albert W. (Inventor); Maserjian, Joseph (Inventor)
1989-01-01
A far infrared (FIR) range responsive photodetector is disclosed. There is a substrate of degenerate germanium. A plurality of alternating impurity-band and high resistivity layers of germanium are disposed on the substrate. The impurity-band layers have a doping concentration therein sufficiently high to include donor bands which can release electrons upon impingement by FIR photons of energy hv greater than an energy gap epsilon. The high resistivity layers have a doping concentration therein sufficiently low as to not include conducting donor bands and are depleted of electrons. Metal contacts are provided for applying an electrical field across the substrate and the plurality of layers. In the preferred embodiment as shown, the substrate is degenerate n-type (N++) germanium; the impurity-band layers are n+ layers of germanium doped to approximately the low 10(exp 16)/cu cm range; and, the high resistivity layers are n-layers of germanium doped to a maximum of approximately 10(exp)/cu cm. Additionally, the impurity-band layers have a thickness less than a conduction-electron diffusion length in germanium and likely to be in the range of 0.1 to 1.0 micron, the plurality of impurity-bands is of a number such that the flux of FIR photons passing therethrough will be substantially totally absorbed therein, the thickness of the high resistivity layers is such compared to the voltage applied that the voltage drop in each the high resistivity layers controls the occurence of impact ionization in the impurity-band layers to a desired level.
Pituitary response to thyrotropin releasing hormone in children with overweight and obesity.
Rijks, Jesse; Penders, Bas; Dorenbos, Elke; Straetemans, Saartje; Gerver, Willem-Jan; Vreugdenhil, Anita
2016-08-03
Thyroid stimulating hormone (TSH) concentrations in the high normal range are common in children with overweight and obesity, and associated with increased cardiovascular disease risk. Prior studies aiming at unravelling the mechanisms underlying these high TSH concentrations mainly focused on factors promoting thyrotropin releasing hormone (TRH) production as a cause for high TSH concentrations. However, it is unknown whether TSH release of the pituitary in response to TRH is affected in children with overweight and obesity. Here we describe TSH release of the pituitary in response to exogenous TRH in 73 euthyroid children (39% males) with overweight or (morbid) obesity. Baseline TSH concentrations (0.9-5.5 mU/L) were not associated with BMI z score, whereas these concentrations were positively associated with TSH concentrations 20 minutes after TRH administration (r(2) = 0.484, p < 0.001) and the TSH incremental area under the curve during the TRH stimulation test (r(2) = 0.307, p < 0.001). These results suggest that pituitary TSH release in response to TRH stimulation might be an important factor contributing to high normal serum TSH concentrations, which is a regular finding in children with overweight and obesity. The clinical significance and the intermediate factors contributing to pituitary TSH release need to be elucidated in future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
During the summer and fall of 1977, 533 water and 1226 sediment samples were collected from 1740 locations within the 18,000 km/sup 2/ area of the Newcastle quadrangle, Wyoming. Water samples were collected from wells and springs; sediment samples were collected from stream channels and from springs. Each water sample was analyzed for uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containingmore » high uranium concentrations (>20 ppB) generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District.« less
Method for preparing polyaniline fibers
Mattes, Benjamin R.; Wang, Hsing-Lin
2000-01-01
Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.
Pituitary response to thyrotropin releasing hormone in children with overweight and obesity
Rijks, Jesse; Penders, Bas; Dorenbos, Elke; Straetemans, Saartje; Gerver, Willem-Jan; Vreugdenhil, Anita
2016-01-01
Thyroid stimulating hormone (TSH) concentrations in the high normal range are common in children with overweight and obesity, and associated with increased cardiovascular disease risk. Prior studies aiming at unravelling the mechanisms underlying these high TSH concentrations mainly focused on factors promoting thyrotropin releasing hormone (TRH) production as a cause for high TSH concentrations. However, it is unknown whether TSH release of the pituitary in response to TRH is affected in children with overweight and obesity. Here we describe TSH release of the pituitary in response to exogenous TRH in 73 euthyroid children (39% males) with overweight or (morbid) obesity. Baseline TSH concentrations (0.9–5.5 mU/L) were not associated with BMI z score, whereas these concentrations were positively associated with TSH concentrations 20 minutes after TRH administration (r2 = 0.484, p < 0.001) and the TSH incremental area under the curve during the TRH stimulation test (r2 = 0.307, p < 0.001). These results suggest that pituitary TSH release in response to TRH stimulation might be an important factor contributing to high normal serum TSH concentrations, which is a regular finding in children with overweight and obesity. The clinical significance and the intermediate factors contributing to pituitary TSH release need to be elucidated in future studies. PMID:27485208
Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN
NASA Astrophysics Data System (ADS)
Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.
2008-10-01
The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.
NASA Astrophysics Data System (ADS)
Ayoub, B. M.
2017-11-01
Two simple spectrophotometric methods were developed for determination of empagliflozin and metformin by manipulating their ratio spectra with application on a recently approved pharmaceutical combination, Synjardy® tablets. A spiking technique was used to increase the concentration of empagliflozin after extraction from the tablets to allow its simultaneous determination with metformin. Validation parameters according to ICH guidelines were acceptable over the concentration range of 2-12 μg/mL for both drugs using constant multiplication and spectrum subtraction methods. The optimized methods are suitable for QC labs.