Sample records for high conductivity phase

  1. Electronic and thermoelectric analysis of phases in the In 2O 3(ZnO) k system

    DOE PAGES

    Hopper, E. Mitchell; Zhu, Qimin; Song, Jung-Hwan; ...

    2011-01-01

    The high-temperature electrical conductivity and thermopower of several compounds in the In 2O 3(ZnO) k system (k = 3, 5, 7, and 9) were measured, and the band structures of the k = 1, 2, and 3 structures were predicted based on first-principles calculations. These phases exhibit highly dispersed conduction bands consistent with transparent conducting oxide behavior. Jonker plots (Seebeck coefficient vs. natural logarithm of conductivity) were used to obtain the product of the density of states and mobility for these phases, which were related to the maximum achievable power factor (thermopower squared times conductivity) for each phase by Ioffemore » analysis (maximum power factor vs. Jonker plot intercept). With the exception of the k = 9 phase, all other phases were found to have maximum predicted power factors comparable to other thermoelectric oxides if suitably doped.« less

  2. Pair distribution function analysis of sulfide glassy electrolytes for all-solid-state batteries: Understanding the improvement of ionic conductivity under annealing condition.

    PubMed

    Shiotani, Shinya; Ohara, Koji; Tsukasaki, Hirofumi; Mori, Shigeo; Kanno, Ryoji

    2017-08-01

    In general, the ionic conductivity of sulfide glasses decreases with their crystallization, although it increases for a few sulphide glasses owing to the crystallization of a highly conductive new phase (e.g., Li 7 P 3 S 11 : 70Li 2 S-30P 2 S 5 ). We found that the ionic conductivity of 75Li 2 S-25P 2 S 5 sulfide glass, which consists of glassy and crystalline phases, is improved by optimizing the conditions of the heat treatment, i.e., annealing. A different mechanism of high ionic conductivity from the conventional mechanism is expected in the glassy phase. Here, we report the glassy structure of 75Li 2 S-25P 2 S 5 immediately before the crystallization by using the differential pair distribution function (d-PDF) analysis of high-energy X-ray diffraction. Even though the ionic conductivity increases during the optimum annealing, the d-PDF analysis indicated that the glassy structure undergoes no structural change in the sulfide glass-ceramic electrolyte at a crystallinity of 33.1%. We observed the formation of a nanocrystalline phase in the X-ray and electron diffraction patterns before the crystallization, which means that Bragg peaks were deformed. Thus, the ionic conductivity in the mixture of glassy and crystalline phases is improved by the coexistence of the nanocrystalline phase.

  3. Fabrication of Conductive Macroporous Structures Through Nano-phase Separation Method

    NASA Astrophysics Data System (ADS)

    Kim, Soohyun; Lee, Hyunjung

    2018-03-01

    Thermoelectric power generation performance is characterized on the basis of the figure of merit, which tends to be high in thermoelectric materials with high electrical conductivity and low thermal conductivity. Porous structures cause phonon scattering, which decreases thermal conductivity. In this study, we fabricated porous structures for thermoelectric devices via nano-phase separation of silica particles from a polyacrylonitrile (PAN) matrix via a sol-gel process. The porosity was determined by control of silica particle size with various the mixing ratio of tetraethylorthosilicate as the precursor of silica particles to PAN. High electrical conductivity was maintained by subsequent carbonization of the PAN matrix in spited of a high porosity. As the results, the conductive porous structures having porosity from 13.9 to 83.3 (%) was successfully fabricated, keeping their electrical conductivities.

  4. A study of suppressed formation of low-conductivity phases in doped Li 7La 3Zr 2O 12 garnets by in situ neutron diffraction

    DOE PAGES

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...

    2015-09-28

    Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  5. Synthesis and Study on Ionic Conductive (Bi1−x,Vx)O1.5−δ Materials with a Dual-Phase Microstructure

    PubMed Central

    Lai, Yu-Wei; Wei, Wen-Cheng J.

    2016-01-01

    Homogeneous Bi2O3-V2O5 powder mixtures with different amounts of V2O5 content (≤15 mol%) were prepared by colloidal dispersion and sintering to high density. The sintered and annealed samples were studied by thermal analysis, quantitative X-ray diffraction and scanning electron microscopy. The electrical and ionic conductivities of the conductors were also measured by a four-probe direct current (DC) method. The results of the samples prepared at 600–800 °C and annealed for as long as 100 h show that the sintered samples consisting of a pure γ phase or δ + γ binary phase perform differently in conductivity. The highly conductive δ phase in the composition of Bi0.92V0.08O1.5−δ enhances the electric conductivity 10-times better than that of the pure γ-sample (Bi0.94V0.06O1.5−δ) between 400 and 600 °C. The compatible regions of the γ phase with the α- or δ phase are also reported and discussed, so a part of the previously published Bi2O3-V2O5 phase diagram below 800 °C is revised. PMID:28773981

  6. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure.

    PubMed

    Wang, Ming; Zhang, Kai; Dai, Xin-Xin; Li, Yin; Guo, Jiang; Liu, Hu; Li, Gen-Hui; Tan, Yan-Jun; Zeng, Jian-Bing; Guo, Zhanhu

    2017-08-10

    Formation of highly conductive networks is essential for achieving flexible conductive polymer composites (CPCs) with high force sensitivity and high electrical conductivity. In this study, self-segregated structures were constructed in polydimethylsiloxane/multi-wall carbon nanotube (PDMS/MWCNT) nanocomposites, which then exhibited high piezoresistive sensitivity and low percolation threshold without sacrificing their mechanical properties. First, PDMS was cured and pulverized into 40-60 mesh-sized particles (with the size range of 250-425 μm) as an optimum self-segregated phase to improve the subsequent electrical conductivity. Then, the uncured PDMS/MWCNT base together with the curing agent was mixed with the abovementioned PDMS particles, serving as the segregated phase. Finally, the mixture was cured again to form the PDMS/MWCNT nanocomposites with self-segregated structures. The morphological evaluation indicated that MWCNTs were located in the second cured three-dimensional (3D) continuous PDMS phase, resulting in an ultralow percolation threshold of 0.003 vol% MWCNTs. The nanocomposites with self-segregated structures with 0.2 vol% MWCNTs achieved a high electrical conductivity of 0.003 S m -1 , whereas only 4.87 × 10 -10 S m -1 was achieved for the conventional samples with 0.2 vol% MWCNTs. The gauge factor GF of the self-segregated samples was 7.4-fold that of the conventional samples at 30% compression strain. Furthermore, the self-segregated samples also showed higher compression modulus and strength as compared to the conventional samples. These enhanced properties were attributed to the construction of 3D self-segregated structures, concentrated distribution of MWCNTs, and strong interfacial interaction between the segregated phase and the continuous phase with chemical bonds formed during the second curing process. These self-segregated structures provide a new insight into the fabrication of elastomers with high electrical conductivity and piezoresistive sensitivity for flexible force-sensitive materials.

  7. Hydrogen-Resistant Fe/Ni/Cr-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Chen, Po-Shou; Panda, Binayak

    1994-01-01

    Strong Fe/Ni/Cr-base hydrogen- and corrosion-resistant alloy developed. Superalloy exhibits high strength and exceptional resistance to embrittlement by hydrogen. Contains two-phase microstructure consisting of conductivity precipitated phase in conductivity matrix phase. Produced in wrought, weldable form and as castings, alloy maintains high ductility and strength in air and hydrogen. Strength exceeds previously known Fe/Cr/Ni hydrogen-, oxidation-, and corrosion-resistant alloys. Provides higher strength-to-weight ratios for lower weight in applications as storage vessels and pipes that must contain hydrogen.

  8. Influence of La/W ratio on electrical conductivity of lanthanum tungstate with high La/W ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojo, Gen; Shono, Yohei; Ushiyama, Hiroshi

    The proton-conducting properties of lanthanum tungstates (LWOs) with high La/W ratios were investigated using electrochemical measurements and quantum chemical calculations. Single phases of LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized by high-temperature sintering at around 1700 °C. The electrical conductivity of LWO increased with increasing La/W ratio in the single-phase region. The LWO synthesized at the optimum sintering temperature and time, and with the optimum La/W ratio gave the maximum conductivity, i.e., 2.7×10{sup −3} S cm{sup −1} with La/W=6.7 at 500 °C. Density functional theory calculations, using the nudged elastic band method, were performed to investigate the proton diffusionmore » barrier. The results suggest that the proton diffusion paths around La sites have the lowest proton diffusion barrier. These findings improve our understanding of LWO synthesis and the proton-conducting mechanism and provide a strategy for improving proton conduction in LWOs. - Graphical abstract: The LWOs with high La/W ratios were synthesized for the first time. The optimum La/W ratio gave the maximum conductivity with La/W=6.7 at 500 °C. The proton diffusion paths were also considered with density functional theory calculations. - Highlights: • The proton-conducting properties of lanthanum tungstates (LWOs) were investigated. • Single phase LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized successfully. • LWOs with the high La/W ratios showed high proton conductivity. • The DFT calculation suggested the lowest proton diffusion barrier in the path around La sites.« less

  9. Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate

    PubMed Central

    Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.

    2012-01-01

    Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508

  10. Low Thermal Conductivity of RE-Doped SrO(SrTiO3)1 Ruddlesden Popper Phase Bulk Materials Prepared by Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Putri, Yulia Eka; Said, Suhana Mohd; Refinel, Refinel; Ohtaki, Michitaka; Syukri, Syukri

    2018-04-01

    The SrO(SrTiO3)1 (Sr2TiO4) Ruddlesden Popper (RP) phase is a natural superlattice comprising of alternately stacking perovskite-type SrTiO3 layers and rock salt SrO layers along the crystallographic c direction. This paper discusses the properties of the Sr2TiO4 and (La, Sm)-doped Sr2TiO4 RP phase synthesized via molten salt method, within the context of thermoelectric applications. A good thermoelectric material requires high electrical conductivity, high Seebeck coefficient and low thermal conductivity. All three conditions have the potential to be fulfilled by the Sr2TiO4 RP phase, in particular, the superlattice structure allows a higher degree of phonon scattering hence resulting in lowered thermal conductivity. In this work, the Sr2TiO4 RP phase is doped with Sm and La respectively, which allows injection of charge carriers, modification of its electronic structure for improvement of the Seebeck coefficient, and most significantly, reduction of thermal conductivity. The particles with submicron size allows excessive phonon scattering along the boundaries, thus reduces the thermal conductivity by fourfold. In particular, the Sm-doped sample exhibited even lower lattice thermal conductivity, which is believed to be due to the mismatch in the ionic radius of Sr and Sm. This finding is useful as a strategy to reduce thermal conductivity of Sr2TiO4 RP phase materials as thermoelectric candidates, by employing dopants of differing ionic radius.

  11. Protonic Conduction of BaCe0.85YO. 1503 Doped with SrTiO3

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    Reformers based on ceramic membrane technology potentially offer hydrogen production that is comparable to the cost of fossil fuels. Protonic conducting ceramic with the chemical formula AB03 offers the promise of highly selective hydrogen separation at intermediate temperature (400-800 C). Among different perovskite-type oxides, BaCe03 and SrCe03 based compositions show high protonic conductivities but strong resistance to densification. X-ray diffraction studies on sintered specimens of BaCe0.85Y0.1503-6 show multi-phase formation which was found to show dependence upon powder synthesis method. Doping with SrTiO3 suppresses multi-phase formation and enhances grain growth. Conductivity measurements in temperature range of 200 to 1000 C were performed by ac impedance spectroscopy under dry and wet conditions. Sintering behavior, phase formation and conductivity results will be reported.

  12. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    PubMed

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  13. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  14. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  15. Electrical conductivity of MgH2 at multiple shock compression

    NASA Astrophysics Data System (ADS)

    Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir

    2011-06-01

    The electrical conductivity of MgH2 has been studied under multishock compression. Earlier we had been experimentally studied metallization possibility of alane at high pressures in conditions quasiisentropic compression up to 100 GPa. A study of thermodynamic properties of MgH2 under multishock compression has been carried out also. High pressures and temperatures were obtained with an explosive device, which accelerates the metallic impactor up to 3 km/s. Identification of the hydride in experiments was made on the basis of calculations of phase trajectories loading a material in the area of existence of polymorphic phases including high-pressure phases of magnesium hydride (α and γ MgH2, hP1 and hP2). It is shown that occurrence of magnesium hydride electrical conductivity occurs in the field of existence of high-pressure hP2 phase This work was partially supported by the Presidium of the Russian Academy of Sciences within the Program of Basic Research ``Thermal Physics and Mechanics of Extreme Energy Effects and Physics of Strongly Compressed Matter and Russian Foundation for Basic Research Grant No. 10-02-01078.''

  16. Effectiveness of high school safety belt instruction

    DOT National Transportation Integrated Search

    1982-12-01

    The Effectiveness of High School Safety Belt Instruction was developed during a two-phased project. In Phase I, Focus Group Activities were conducted to determine whether audiovisual safety belt instructional materials assembled by the National Highw...

  17. Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity.

    PubMed

    Zhang, Hemin; Tsuchiya, Takashi; Liang, Changhao; Terabe, Kazuya

    2015-08-12

    Nanoscaled ionic conductors are crucial for future nanodevices. A well-known ionic conductor, AgI, exhibited conductivity greater than 1 Ω(-1) cm(-1) in α-phase and transformed into poorly conducting β-/γ-phase below 147 °C, thereby limiting applications. Here, we report that transition temperatures both from the β-/γ- to α-phase (Tc↑) and the α- to β-/γ-phase (Tc↓) are tuned by AgI/Ag heteronanowires embedded in anodic aluminum oxide (AAO) membranes with 10-30 nm pores. Tc↑ and Tc↓ shift to correspondingly higher and lower temperature as pore size decreases, generating a progressively enlarged thermal hysteresis. Tc↑ and Tc↓ specifically achieve 185 and 52 °C in 10 nm pores, and the final survived conductivity reaches ∼8.3 × 10(-3) Ω(-1) cm(-1) at room temperature. Moreover, the low-temperature stabilizing α-phase (down to 21 °C, the lowest in state of the art temperatures) is reproducible and survives further thermal cycling. The low-temperature phase stabilization and enhancement conductivity reported here suggest promising applications in silver-ion-based future nanodevices.

  18. Enhanced conductivity at orthorhombic–rhombohedral phase boundaries in BiFeO 3 thin films

    DOE PAGES

    Heo, Yooun; Lee, Jin Hong; Xie, Lin; ...

    2016-08-26

    Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less

  19. Structural characterization and electrical conductivity of the Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} solid series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yong; Duan, Nanqi; Yan, Dong, E-mail: yand@hust.edu.cn

    Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} (x=0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.99) is prepared by using a solid reaction route, and single phase is achieved. Structural and phase transformation of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} have been characterized by high temperature X-ray diffraction. The lattice parameters a, b, c decrease and γ increases with increasing x, at both room and high temperature. The phase transformation temperature increases linearly with increasing x for Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ}. The electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} is measured in wet air. A clear relationship between the structural, phase transformation andmore » electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} is built, which will provide a guideline to tailor the electrical conductivity. - Graphical abstract: Structural and phase transformation of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} have been characterized by high temperature X-ray diffraction, as well as the conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} in wet air. A clear relationship between the structural, phase transformation and electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} is built. - Highlights: • Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} with various Sm contents was prepared. • Structure, phase transformation and electrical conductivity of Ca{sub 0.01}La{sub 0.99−x}Sm{sub x}NbO{sub 4−δ} were characterized. • A relationship between the structure, phase transformation and electrical conductivity was well established.« less

  20. Development and Evaluation of a Prototype Wheeled Ultra-High Pressure Extinguisher System with Novec 1230

    DTIC Science & Technology

    2016-01-01

    Fire Tests Pool fire tests were conducted as outlined below, and consisted of a pretest phase, in which the F-100 engine nacelle was first...the nacelle during the test phase. Pretest Phase  Determine and record extinguisher full weight.  Initiate flow of jet fuel through the...extinguisher after test. 3.4.2. Rear Engine Fire Tests Rear engine fire tests were conducted as outlined below, and consisted of a pretest phase

  1. Ionic conduction in sodium azide under high pressure: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Wang, Qinglin; Ma, Yanzhang; Sang, Dandan; Wang, Xiaoli; Liu, Cailong; Hu, Haiquan; Wang, Wenjun; Zhang, Bingyuan; Fan, Quli; Han, Yonghao; Gao, Chunxiao

    2018-04-01

    Alkali metal azides can be used as starting materials for the synthesis of polymeric nitrogen, a potential material of high energy density. In this letter, we report the ionic transport behavior in sodium azide under high pressure by in situ impedance spectroscopy and density functional theory calculations. The ionic transportation consists of ion transfer and Warburg diffusion processes. The ionic migration channels and barrier energy were given for the high-pressure phases. The enhanced ionic conductivity of the γ phase with pressure is because of the formation of space charge regions in the grain boundaries. This ionic conduction and grain boundary effect in NaN3 under pressures could shed light on the better understanding of the conduction mechanism of alkali azides and open up an area of research for polymeric nitrogen in these compounds and other high-energy-density polynitrides.

  2. Structural properties of zirconia - in-situ high temperature XRD characterization

    NASA Astrophysics Data System (ADS)

    Kurpaska, Lukasz

    2018-07-01

    In this work, the effect of high temperature on structural properties of pure zirconium have been investigated. In-situ X-ray diffraction analysis of the oxide layer formed at temperature window 25-600 °C on pure zirconium were performed. Conducted experiment aimed at investigation of the zirconia phases developed on surface of the metallic substrate. Based on the conducted studies, possible stress state (during heating, continuous oxidation and cooling), cell parameters and HWHM factor were analyzed. A tetragonal and monoclinic phases peak shifts and intensities change were observed, suggesting that different phases react in different way upon temperature effect.

  3. CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials.

    PubMed

    Bocher, L; Aguirre, M H; Logvinovich, D; Shkabko, A; Robert, R; Trottmann, M; Weidenkaff, A

    2008-09-15

    Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K < T < 1070 K). Furthermore, lower thermal conductivity values are achieved for the SC-derived phases (kappa < 1 W m(-1) K(-1)) compared to the SSR compounds. High power factors combined with low thermal conductivity (leading to ZT values > 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.

  4. A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w/w) gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Holt, Lucy A.; Bushby, Richard J.; Evans, Stephen D.; Burgess, Andrew; Seeley, Gordon

    2008-03-01

    The presence of 1% (w/w) of methylbenzene thiol coated gold nanoparticles increases the conductivity of the discotic liquid crystal 2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (HAT6) by about two orders of magnitude in all three phases (crystal, columnar liquid crystal, and isotropic liquid). However, when a field (above a certain critical value) is applied to the isotropic phase, the conductivity rapidly increases by another three or four orders of magnitude after which the higher conductivity is maintained regardless of phase, field, or temperature. This increase in conductivity is attributed to the formation of chains of gold nanoparticles. A similar phenomenon is observed for 1% (w/w) gold nanoparticles in the isotropic phase of hexadecane. However, the liquid crystal/nanoparticle mixture preserves its high conductivity when it is cooled into the crystalline phase whereas that of the hexadecane/nanoparticle mixture is lost. In hexadecane, crystal grain boundaries are expected to form in a random fashion and this disrupts the conductive pathways. However, if HAT6 crystallizes via the homeotropically aligned columnar phase, the grain boundaries form predominantly surface to surface (electrode to electrode) so that the conductive nanoparticle chains are trapped in a stabilizing solid matrix.

  5. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    NASA Astrophysics Data System (ADS)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  6. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  7. Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.

    2003-01-01

    This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.

  8. New precursors for direct synthesis of single phase Na- and K-{beta}{double_prime}-aluminas for use in AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, R.L.; MacQueen, D.B.; Bader, K.E.

    1997-12-31

    Alkali Metal Thermoelectric Converters (AMTEC) are efficient direct energy conversion devices that depend on the use of highly conductive beta-alumina membranes for their operation. The key component of the AMTEC system is a highly conductive Na-{beta}{double_prime}-alumina solid electrolyte which conducts sodium ions from the high to low temperature zone, thereby generating electricity. AMTEC cells convert thermal to electrical energy by using heat to produce and maintain an alkali metal concentration gradient across the ion transporting BASE membrane. They have developed a method for producing pure phase Na-{beta}{double_prime}-alumina and K-{beta}{double_prime}-alumina powders from single phase nano-sized carboxylato-alumoxanes precursors. Sodium or potassium ionsmore » (the mobile ions) and either Mg{sup 2+} or Li{sup +} ions (which stabilize the {beta}{double_prime}-alumina structure) can be atomically dispersed into the carboxylato-alumoxane lattice at low (< 100 C) temperature. Calculation of the carboxylato-alumoxane precursors at 1,200--1,500 C produces pure phase {beta}{double_prime}-alumina powders.« less

  9. Characterization of various two-phase materials based on thermal conductivity using modified transient plane source method

    NASA Astrophysics Data System (ADS)

    Jayachandran, S.; Prithiviraajan, R. N.; Reddy, K. S.

    2017-07-01

    This paper presents the thermal conductivity of various two-phase materials using modified transient plane source (MTPS) technique. The values are determined by using commercially available C-Therm TCi apparatus. It is specially designed for testing of low to high thermal conductivity materials in the range of 0.02 to 100 Wm-1K-1 within a temperature range of 223-473 K. The results obtained for the two-phase materials (solids, powders and liquids) are having an accuracy better than 5%. The transient method is one of the easiest and less time consuming method to determine the thermal conductivity of the materials compared to steady state methods.

  10. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    NASA Astrophysics Data System (ADS)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  11. Microscopic Analysis of Current and Mechanical Properties of Nafion® Studied by Atomic Force Microscopy

    PubMed Central

    Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas

    2012-01-01

    The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429

  12. An NLRA Transducer for Dual Use Bone Conduction Audio and Haptic Communication. Summary Report

    DTIC Science & Technology

    2016-12-30

    VIBRANT COMPOSITES INC. 1 A16-019 Phase 1 Summary Report Vibrant Composites Inc. December 30, 2016 I. ABSTRACT A combined transducer capable of bone ...transducer core capable of both precise haptic communication and high fidelity bone conduction audio. The transducer design leverages Micro-Multilayer...head-mounted system. In this Phase I SBIR, Vibrant Composites has delivered functional dual-mode bone conduction and vibrotactile transducer prototypes

  13. Effect of Se substitution on the phase change properties of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Shekhawat, Roopali; Rangappa, Ramanna; Gopal, E. S. R.; Ramesh, K.

    2018-05-01

    Ge2Sb2Te5 popularly known as GST is being explored for non-volatile phase change random access memory(PCRAM) applications. Under high electric field, thin films of amorphous GST undergo a phase change from amorphous to crystalline with a high contrast in electrical resistivity (about 103). The phase change is between amorphous and metastable NaCl structure occurs at about 150°C and not to the stable hexagonal phase which occurs at a high temperature (> 250 °C). In GST, about 50 % of Te substituted by Se (Ge2Sb2Te2.5Se2.5) is found to increase the contrast in electrical resistivity by 7 orders of magnitude (about 4 orders of magnitude higher than GST). The phase transition in Se added GST also found to be between amorphous and the stable hexagonal structure. The threshold voltage at which the Ge2Sb2Te2.5Se2.5 switches to the high conducting state increases to 9V as compared to 2V in GST. Interestingly, the threshold current decrease to 1mA as compared to 1.8mA in GST indicating the Se substitution reduces the power needed for switching between the low and high conducting states. The reduction in power needed for phase change, high contrast in electrical resistivity with high thermal stability makes Ge2Sb2Te2.5Se2.5 as a better candidate for PCRAM.

  14. Schlieren optical visualization for transient EHD induced flow in a stratified dielectric liquid under gas-phase ac corona discharges

    NASA Astrophysics Data System (ADS)

    Ohyama, R.; Inoue, K.; Chang, J. S.

    2007-01-01

    A flow pattern characterization of electrohydrodynamically (EHD) induced flow phenomena of a stratified dielectric fluid situated in an ac corona discharge field is conducted by a Schlieren optical system. A high voltage application to a needle-plate electrode arrangement in gas-phase normally initiates a conductive type EHD gas flow. Although the EHD gas flow motion initiated from the corona discharge electrode has been well known as corona wind, no comprehensive study has been conducted for an EHD fluid flow motion of the stratified dielectric liquid that is exposed to the gas-phase ac corona discharge. The experimentally observed result clearly presents the liquid-phase EHD flow phenomenon induced from the gas-phase EHD flow via an interfacial momentum transfer. The flow phenomenon is also discussed in terms of the gas-phase EHD number under the reduced gas pressure (reduced interfacial momentum transfer) conditions.

  15. The high squareness Sm-Co magnet having Hcb=10.6 kOe at 150°C

    NASA Astrophysics Data System (ADS)

    Machida, Hiroaki; Fujiwara, Teruhiko; Kamada, Risako; Morimoto, Yuji; Takezawa, Masaaki

    2017-05-01

    The relationship between magnetic properties and magnetic domain structures of Sm(Fe, Cu, Zr, Co)7.5 magnet was investigated. The developed Sm-Co magnet, which is conducted homogenization heat treatment at ingot state, high temperature short time sintering and long time solid solution heat treatment showed the maximum energy product, [BH]m of 34.0 MGOe and the coercivity, Hcb of 11.3 kOe at 20°C respectively. Moreover, Hcb of 10.6 kOe at 150°C was achieved. Heat treated ingot has clear 1-7 phase in mother phase from optical microscope observation. Kerr effect microscope with magnetic field applied was used to investigate magnetic domain structure. Reverse magnetic domains were generated evenly but generation of them from inside grain were not observed. Cell structure was observed by scanning transmission electron microscope and composition analysis was conducted by energy dispersive X-ray spectroscopy. Cell size was approximately 150 ˜ 300 nm, Fe and Cu were clearly separated and concentrated to 2-17 phase and 1-5 phase respectively. Moreover, Cu concentration went up to 40 at% in 1-5 phase. That means the gap of domain wall energy between 1-5 phase and 2-17 phase was increased due to microstructure control by conducting heat treatment for compositional homogeneity.

  16. Conductivity of an inverse lyotropic lamellar phase under shear flow

    NASA Astrophysics Data System (ADS)

    Panizza, P.; Soubiran, L.; Coulon, C.; Roux, D.

    2001-08-01

    We report conductivity measurements on solutions of closed compact monodisperse multilamellar vesicles (the so-called ``onion texture'') formed by shearing an inverse lyotropic lamellar Lα phase. The conductivity measured in different directions as a function of the applied shear rate reveals a small anisotropy of the onion structure due to the existence of free oriented membranes. The results are analyzed in terms of a simple model that allows one to deduce the conductivity tensor of the Lα phase itself and the proportion of free oriented membranes. The variation of these two parameters is measured along a dilution line and discussed. The high value of the conductivity perpendicular to the layers with respect to that of solvent suggests the existence of a mechanism of ionic transport through the insulating solvent.

  17. ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH PRESSURE LIQUID CHROMATOGRAPHY/UV

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...

  18. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    PubMed

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  19. Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Srinath, J.; Jha, Abhay K.; Pant, Bhanu; Sharma, S. C.; George, Koshy M.

    2013-07-01

    A high-strength Cu-Ni-Si alloy was developed with the additions of Co and Zr. The aging curve for the alloy was generated using hardness. Electron microscopy studies were conducted to analyze the phases in the alloy. Two types of phases, one of copper matrix and the other of Ni-Si-Co-Zr intermetallic phase, could be identified using scanning electron microscopy. Transmission electron microscopy studies confirmed the presence of two types of precipitates in solution-treated and aged (STA) condition, i.e., Ni2Si and Co2Si. Mechanical properties and electrical conductivity were evaluated in solution-treated (ST) and STA conditions. Aging of the ST samples at 500 °C for 3 h has shown an increase of 72 and 15% in yield strength (YS) and electrical conductivity, respectively. This increase in YS and conductivity on aging is primarily attributed to the formation of fine Ni2Si and Co2Si precipitates.

  20. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less

  1. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    PubMed

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yooun; Lee, Jin Hong; Xie, Lin

    Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less

  3. Protonic Conductors for Intermediate Temperature Fuel Cell Electrolytes: Superprotonic CsH2PO4 Stabilization and in-Doped SnP2O7 Structure Study

    NASA Astrophysics Data System (ADS)

    Martinez Salinas, Heber Jair

    Proton conductor solid electrolytes CsH2PO4 and In-doped tin pyrophosphate have been investigated as candidates to fill a gap of suitable electrolytes for fuel cells at the intermediate temperature range due their unusually high conductivities between 200 and 300 °C. Unfortunately, in the case of CsH2PO4, complicated experimental conditions, like a humidified environment, or high pressure, are needed to preserve the sought high conducting phase. In the first stage of this work, X-ray diffraction on CsH2PO 4 samples performed in air, and under normal conditions of humidity and pressure, evidence of the cubic phase of CsH2PO4 was observed during short intervals of temperature and time, starting at 215 °C and disappearing completely at 265 °C into a dehydrated phase. An AC impedance spectroscopy experimental setup has been assembled and data has been successfully collected on undoped, and doped CsH2PO 4 samples to investigate the effects of chemical and environmental modifications. Measurements performed in the temperature range 200 - 260 °C, and using the frequency range 1 - 6 MHz, showed that the high conducting phase of undoped CsH2PO4 was present for a very short interval of temperature. Additionally, these measurements showed that nano-silica-doped CsH2PO4, and CsH2PO4 under a humidified environment achieve the highest values of conductivity, above 10-2 S cm-1 among the samples tested. In the second stage of this investigation, AC impedance spectroscopy measurements were successfully performed on CsH2PO4 samples in air, at temperatures from 200 - 260 °C, and in the frequency range 1 - 6 MHz, inside a hermetically sealed stainless-steel chamber, which was designed and assembled in-house. Results showed that the highly conducting phase of CsH2PO 4 was achieved at temperatures measured above 230 °C, reaching conductivity values up to 1.7 x10-2 S cm-1, and remaining stable for over 40 hours. Consequent X-ray diffraction analysis of such samples showed that a monoclinic structure, characteristic of room temperature CsH 2PO4, was the only phase present even after the samples had been heated for over 40 hours at a temperature of 250 °C. By using this novel contraption, this has been the first time that undoped CsH2PO 4 has achieved its high conductivity phase and maintained a stable conductivity for a significant amount of time in air, without the use of a humidified environment, and without high pressure in an AC impedance spectroscopy study. Finally, in-house and synchrotron X-ray diffraction studies performed in the Sn1-xInxP2O7 series showed the cubic structure characteristic of the undoped compound at room temperature remains present up to temperatures of 250 °C. Sn0.9In 0.1P2O7, which is known to have the highest conductivity of the compound series, presented an increased unit cell as compared to the rest of the series when measured in air. However, the increased unit cell was not observed when measured under vacuum or an inert gas. Doping did not produce any major distortions on the P2O7 tetrahedra.

  4. Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.

    2018-06-01

    A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.

  5. (PRESENT AT NCCU) ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these pyre...

  6. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  7. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE PAGES

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen; ...

    2016-02-17

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  8. Physical chemistry: Molecular motion watched

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley; Collet, Eric

    2013-04-01

    A laser pulse can switch certain crystals from an insulating phase to a highly conducting phase. The ultrafast molecular motions that drive the transition have been directly observed using electron diffraction. See Letter p.343

  9. A study of the phase transition behaviour of [(NH4)0.63Li0.37]2TeBr6

    NASA Astrophysics Data System (ADS)

    Karray, R.; Linda, D.; Van Der Lee, A.; Ben Salah, A.; Kabadou, A.

    2012-02-01

    The mixed hexabromotellurate [(NH4)0.63Li0.37]2TeBr6, presenting at room temperature a K2PtCl6-type structure with space group Fm bar 3 m, exhibits three anomalies at 195, 395 and 498 K in the differential scanning calorimetry diagram. Different techniques: dielectric investigation, High-temperature X-ray powder diffraction and infrared spectroscopic study, in the range temperature (300-470) K are applied to explore the phase transition around 395 K. Combining XRD, dielectric and differential scanning calorimetry (DSC) results, no phase transition leading to a super-ionic conductivity phase is found. At high temperature, [(NH4)0.63Li0.37]2TeBr6 is characterized by a medium conductivity σ453≈ 10-4 Ω-1m-1.

  10. Synthesis and characterization of La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.

    2015-08-15

    Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275more » °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.« less

  11. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  12. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE PAGES

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue; ...

    2018-01-31

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  13. ELECTROMECHANICAL TECHNOLOGY. A FIELD STUDY OF ELECTROMECHANICAL TECHNICIAN OCCUPATIONS, PART I. A POST-HIGH SCHOOL TECHNICAL CURRICULUM, PART II. (TITLE SUPPLIED)

    ERIC Educational Resources Information Center

    RONEY, MAURICE W.

    A FIELD STUDY OF THE ELECTOMECHANICAL TECHNICIAN OCCUPATION WAS CONDUCTED IN TWO STAGES. IN THE FIRST PHASE, PERSONAL INTERVIEWS WERE CONDUCTED IN 26 INDUSTRIAL ORGANIZATIONS SELECTED BY SIZE, PRINCIPAL ACTIVITY, AND GEOPGRAPHICAL DISTRIBUTION. IN THE SECOND PHASE, A BRIEF QUESTIONNAIRE WAS USED TO OBTAIN A BROAD SAMPLE OF THE QUANTITATIVE NEED…

  14. High temperature lithium cells with solid polymer electrolytes

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  15. Blends of POSS-PEO(n=4)(8) and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries.

    PubMed

    Zhang, Hanjun; Kulkarni, Sunil; Wunder, Stephanie L

    2007-04-12

    Solid polymer electrolyte blends were prepared with POSS-PEO(n=4)8 (3K), poly(ethylene oxide) (PEO(600K)), and LiClO4 at different salt concentrations (O/Li = 8/1, 12/1, and 16/1). POSS-PEO(n=4)8/LiClO4 is amorphous at all O/Li investigated, whereas PEO(600K) is amorphous only for O/Li = 8/1 and semicrystalline for O/Li = 12/1 and 16/1. The tendency of PEO(600K) to crystallize limited the amount of POSS-PEO(n=4)(8) that could be incorporated into the blends, so that the greatest incorporation of POSS-PEO(n=4)(8) occurred for O/Li = 8/1. Blends of POSS-PEO(n=4)(8)/PEO(600K)/LiClO4 (O/Li = 8/1 and 12/1) microphase separated into two amorphous phases, a low T(g) phase of composition 85% POSS-PEO(n=4)(8)/15% PEO(600K) and a high T(g) phase of composition 29% POSS-PEO(n=4)(8)/71% PEO(600K). For O/Li = 16/1, the blends contained crystalline (pure PEO(600K)), and two amorphous phases, one rich in POSS-PEO(n=4)(8) and one rich in PEO(600K). Microphase, rather than macrophase separation was believed to occur as a result of Li(+)/ether oxygen cross-link sites. The conductivity of the blends depended on their composition. As expected, crystallinity decreased the conductivity of the blends. For the amorphous blends, when the low T(g) (80/20) phase was the continuous phase, the conductivity was intermediate between that of pure PEO(600K) and POSS-PEO(n=4)(8). When the high T(g) (70/30, 50/50, 30/70, and 20/80) phase was the continuous phase, the conductivity of the blend and PEO(600K) were identical, and lower than that for the POSS-PEO(n=4)(8) over the whole temperature range (10-90 degrees C). This suggests that the motions of the POSS-PEO(n=4)(8) were slowed down by the dynamics of the long chain PEO(600K) and that the minor, low Tg phase was not interconnected and thus did not contribute to enhanced conductivity. At temperatures above T(m) of PEO(600K), addition of the POSS-PEO(n=4)(8) did not result in conductivity improvement. The highest RT conductivity, 8 x 10(-6) S/cm, was obtained for a 60% POSS-PEO(n=4)(8)/40% PEO(600K)/LiClO4 (O/Li = 12/1) blend.

  16. Subdimensions of Adolescent Belonging in High School

    ERIC Educational Resources Information Center

    Wallace, Tanner LeBaron; Ye, Feifei; Chhuon, Vichet

    2012-01-01

    Adolescents' sense of belonging in high school may serve a protective function, linking school-based relationships to positive youth outcomes. To advance the study of sense of belonging, we conducted a mixed method, factor analytic study (Phase 1 focus groups, N = 72; Phase 2 cross-sectional survey, N = 890) to explore the multidimensionality of…

  17. A reversible bipolar WORM device based on AlOxNy thin film with Al nano phase embedded

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Li, J.; Zhang, L.; Hu, X. C.

    2017-03-01

    An Al-rich AlOxNy thin film based reversible Write-Once-Read-Many-Times (WORM) memory device with MIS structure could transit from high resistance state (HRS, ∼1011 Ω) to low resistance state (LRS, ∼105 Ω) by sweeping voltage up to ∼20 V. The first switching could be recorded as writing process for WORM device which may relate to conductive path are formed through the thin film. The conductive path should be formed by both Al nano phase and oxygen vacancies. Among of them, Al nano phases are not easy to move, but oxygen vacancies could migrate under high E-field or at high temperature environment. Such conductive path is not sensitive to charging effect after it formed, but it could be broken by heating effect, which may relate to the migration of excess Al ions and oxygen vacancies at high temperature. After baking LRS (ON state) WORM device at 200 °C for 2 min, the conductivity will decrease to HRS which indicates conductive path is broken and device back to HRS (OFF state) again. This phenomenon could be recorded as recovery process. Both writing and recovery process related to migration of oxygen vacancies and could be repeated over 10 times in this study. It also indicates that there is no permanent breakdown occurred in MIS structured WORM device operation. We suggest that this conductive path only can be dissolved by a temperature sensitive electro-chemical action. This WORM device could maintain at LRS over 105 s with on-off ratio over 4 orders.

  18. The Chancellor's Model School Project (CMSP)

    NASA Technical Reports Server (NTRS)

    Lopez, Gil

    1999-01-01

    What does it take to create and implement a 7th to 8th grade middle school program where the great majority of students achieve at high academic levels regardless of their previous elementary school backgrounds? This was the major question that guided the research and development of a 7-year long project effort entitled the Chancellor's Model School Project (CMSP) from September 1991 to August 1998. The CMSP effort conducted largely in two New York City public schools was aimed at creating and testing a prototype 7th and 8th grade model program that was organized and test-implemented in two distinct project phases: Phase I of the CMSP effort was conducted from 1991 to 1995 as a 7th to 8th grade extension of an existing K-6 elementary school, and Phase II was conducted from 1995 to 1998 as a 7th to 8th grade middle school program that became an integral part of a newly established 7-12th grade high school. In Phase I, the CMSP demonstrated that with a highly structured curriculum coupled with strong academic support and increased learning time, students participating in the CMSP were able to develop a strong foundation for rigorous high school coursework within the space of 2 years (at the 7th and 8th grades). Mathematics and Reading test score data during Phase I of the project, clearly indicated that significant academic gains were obtained by almost all students -- at both the high and low ends of the spectrum -- regardless of their previous academic performance in the K-6 elementary school experience. The CMSP effort expanded in Phase II to include a fully operating 7-12 high school model. Achievement gains at the 7th and 8th grade levels in Phase II were tempered by the fact that incoming 7th grade students' academic background at the CMSP High School was significantly lower than students participating in Phase 1. Student performance in Phase II was also affected by the broadening of the CMSP effort from a 7-8th grade program to a fully functioning 7-12 high school which as a consequence lessened the focus and structure available to the 7-8th grade students and teachers -- as compared to Phase I. Nevertheless, the CMSP does represent a unique curriculum model for 7th and 8th grade students in urban middle schools. Experience in both Phase I and Phase II of the project allowed the CMSP to be developed and tested along the broad range of parameters and characteristics that embody an operating public school in an urban environment.

  19. Growth and study of first order metal insulator transition in VO2 films

    NASA Astrophysics Data System (ADS)

    Rathore, Ajay K.; Kumar, Satish; Kumar, Dhirendra; Sathe, V. G.

    2015-06-01

    VO2 films have been grown on Si substrate using pulse laser deposition technique. The as-deposited film prepared by V2O3 target is found to possess signatures of V2O5 phase. Up on annealing at 780°C the film transforms to VO2 phase. The annealed film is found to be highly oriented along (011) and single phase in nature. The high temperature Raman spectroscopic measurements on the annealed film showed first order transition from monoclinic insulating phase to conductive tetragonal rutile phase around 65°C.

  20. Phase stability and processing of strontium and magnesium doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Zheng, Feng

    Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than YSZ at all temperatures. In addition, based on the structure and phase relations, a high temperature phase diagram for this system has been proposed. Finally, a model has been proposed to account for the high ionic conductivity of this material and to explain the effect of the doping content and the stoichiometry on the ionic conductivity. (Abstract shortened by UMI.)

  1. New insights into the structure, chemistry, and properties of Cu 4SnS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman

    The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less

  2. New insights into the structure, chemistry, and properties of Cu 4SnS 4

    DOE PAGES

    Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman; ...

    2017-05-25

    The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less

  3. Maximizing return on socioeconomic investment in phase II proof-of-concept trials.

    PubMed

    Chen, Cong; Beckman, Robert A

    2014-04-01

    Phase II proof-of-concept (POC) trials play a key role in oncology drug development, determining which therapeutic hypotheses will undergo definitive phase III testing according to predefined Go-No Go (GNG) criteria. The number of possible POC hypotheses likely far exceeds available public or private resources. We propose a design strategy for maximizing return on socioeconomic investment in phase II trials that obtains the greatest knowledge with the minimum patient exposure. We compare efficiency using the benefit-cost ratio, defined to be the risk-adjusted number of truly active drugs correctly identified for phase III development divided by the risk-adjusted total sample size in phase II and III development, for different POC trial sizes, powering schemes, and associated GNG criteria. It is most cost-effective to conduct small POC trials and set the corresponding GNG bars high, so that more POC trials can be conducted under socioeconomic constraints. If δ is the minimum treatment effect size of clinical interest in phase II, the study design with the highest benefit-cost ratio has approximately 5% type I error rate and approximately 20% type II error rate (80% power) for detecting an effect size of approximately 1.5δ. A Go decision to phase III is made when the observed effect size is close to δ. With the phenomenal expansion of our knowledge in molecular biology leading to an unprecedented number of new oncology drug targets, conducting more small POC trials and setting high GNG bars maximize the return on socioeconomic investment in phase II POC trials. ©2014 AACR.

  4. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    NASA Astrophysics Data System (ADS)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  5. Disruptive Behaviour in Religious and Secular High Schools: Teachers' and Students' Attitudes

    ERIC Educational Resources Information Center

    Romi, Shlomo

    2004-01-01

    This two-phase study, conducted in religious and secular high schools, investigated the attitudes of teachers and students to disruptive behaviour. The first phase examined a religious school, then applied the same research tools to a secular school. It was assumed that differences of attitude would be found, with teachers viewing disruptive…

  6. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    NASA Astrophysics Data System (ADS)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small relaxation time formed at the electrodes interface). Therefore, this dielectric response should be taken into account at high frequency to better analytically separate the medium own response from that linked to the measuring electrodes used. We modeled this effect by adding a capacitance connected in parallel with the traditional equivalent electric circuit used to describe the dielectric response of medium.

  7. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    PubMed

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  8. Estimates of crystalline LiF thermal conductivity at high temperature and pressure by a Green-Kubo method

    DOE PAGES

    Jones, R. E.; Ward, D. K.

    2016-07-18

    Here, given the unique optical properties of LiF, it is often used as an observation window in high-temperature and -pressure experiments; hence, estimates of its transmission properties are necessary to interpret observations. Since direct measurements of the thermal conductivity of LiF at the appropriate conditions are difficult, we resort to molecular simulation methods. Using an empirical potential validated against ab initio phonon density of states, we estimate the thermal conductivity of LiF at high temperatures (1000–4000 K) and pressures (100–400 GPa) with the Green-Kubo method. We also compare these estimates to those derived directly from ab initio data. To ascertainmore » the correct phase of LiF at these extreme conditions, we calculate the (relative) phase stability of the B1 and B2 structures using a quasiharmonic ab initio model of the free energy. We also estimate the thermal conductivity of LiF in an uniaxial loading state that emulates initial stages of compression in high-stress ramp loading experiments and show the degree of anisotropy induced in the conductivity due to deformation.« less

  9. Dynamic and Structure of Polymer-Cellulose Composite Electrolyte for Li-ion Battery

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Maranas, Janna

    Crystalline PEO6LiX complex is a tunnel-like polymer/salt structure that promotes fast Li motion. The application is limited because high ion conductivity is only observed with short molecular weight PEO, as the molecular weight increase, tunnels are misaligned and the conductivity is decreased. High aspect ratio nanofillers based on cellulose nanowhiskers are hypothesized to promote the formation of tunnel structures. Compared with unfilled electrolyte, the room temperature ion conductivity increased as much as 1100% in filled electrolyte. With wide angle x-ray scattering (WAXS), we observe that the structure transitions from amorphous phase to crystalline phase as we add cellulose nanowhiskers and this is because the interaction between cellulose surface and polymer chain enhances the crystallization. From the temperature dependence of conductivity, the calculated Li+ hopping activation energy is shown to be lower in acidic cellulose nanowhisker filled samples. Our quasi-elastic neutron scattering (QENS) indicates with acidic surface, the rotation of PEO6 channels are more stabilized and this could be the origin of the low activation energy and high conductivity

  10. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-01-01

    The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  11. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  12. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  13. Monitoring gradient profile on-line in micro- and nano-high performance liquid chromatography using conductivity detection.

    PubMed

    Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong

    2016-08-19

    In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.

  14. The special features of the crystal structure and properties of oxides with mixed conductivity based on lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Ivanov, S. A.; Kaleva, G. M.; Mosunov, A. V.; Rusakov, V. S.

    2008-10-01

    The paper presents a review of works on the synthesis, structural composition effects, phase transitions, and electrical conductivity properties of multicomponent solid solutions based on heterosubstituted lanthanum gallate (La,A)(Ga,M)O3 - y . High-temperature phase transitions and structural and charge ordering effects were studied. The presence of iron cations in different valence states was proved; the relative contents of these cations depended on the x parameter and nonstoichiometry parameter y of the base composition. For M = Fe, antiferromagnetic ordering was observed; its temperature interval was determined by the concentration of iron cations in the high-spin state. The total conductivity was found to increase as the concentration of transition metal cations grew because of an increase in the electronic conductivity component. The data on structural parameters and dc and ac conductivity substantiated the conclusion that the highest ionic conductivity and permeability to oxygen were characteristic of iron-containing oxides. The results obtained are evidence that crystal chemical factors play a determining role in the formation of the ion-conducting properties of anion-deficient perovskite-like oxides.

  15. An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor

    NASA Astrophysics Data System (ADS)

    Yijing, Yin

    Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.

  16. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  17. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE PAGES

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...

    2017-08-02

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  18. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  19. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Sato, Toyoto; Unemoto, Atsushi; Matsuo, Motoaki; Ikeshoji, Tamio; Udovic, Terrence J.; Orimo, Shin-ichi

    2017-03-01

    In the present work, we developed highly sodium-ion conductive Na2B10H10-Na2B12H12 pseudo-binary complex hydride via mechanically ball-milling admixtures of the pure Na2B10H10 and Na2B12H12 components. Both of these components show a monoclinic phase at room temperature, but ball-milled mixtures partially stabilized highly ion-conductive, disordered cubic phases, whose fraction and favored structural symmetry (body-centered cubic or face-centered cubic) depended on the conditions of mechanical ball-milling and molar ratio of the component compounds. First-principles molecular-dynamics simulations demonstrated that the total energy of the closo-borane mixtures and pure materials is quite close, helping to explain the observed stabilization of the mixed compounds. The ionic conductivity of the closo-borane mixtures appeared to be correlated with the fraction of the body-centered-cubic phase, exhibiting a maximum at a molar ratio of Na2B10H10:Na2B12H12 = 1:3. A conductivity as high as log(σ/S cm-1) = -3.5 was observed for the above ratio at 303 K, being approximately 2-3 orders of magnitude higher than that of either pure material. A bulk-type all-solid-state sodium-ion battery with a closo-borane-mixture electrolyte, sodium-metal negative-electrode, and TiS2 positive-electrode demonstrated a high specific capacity, close to the theoretical value of NaTiS2 formation and a stable discharge/charge cycling for at least eleven cycles, with a high discharge capacity retention ratio above 91% from the second cycle.

  20. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-12-31

    The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  1. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  2. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    NASA Astrophysics Data System (ADS)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  3. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    PubMed

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  4. Preparation and thermal properties of Glauber’s salt-based phase-change materials for Qinghai-Tibet Plateau solar greenhouses

    NASA Astrophysics Data System (ADS)

    Jiang, Zipeng; Tie, Shengnian

    2017-07-01

    This paper reports the preparation and characterization of eutectic Glauber’s salt-based composite, phase-change materials (G-PCMs). PCMs were prepared using industrial-grade sodium sulfate decahydrate (Na2SO4 ṡ 10H2O) as the basic material. Other salts were added to obtain the eutectic Glauber’s salt-based PCMs with phase-change temperatures of 25∘C, 15∘C and 10∘C. The modification of the G-PCMs was designed using the same experimental method to select the efficient nucleating, thickening and thermal conductive agents. The results show that borax can be an effective nucleating agent, sodium carboxymethyl cellulose is an excellent thickener and carbon powder is a good thermal conductive agent. The phase-change temperature, latent heat and thermal conductivity of the three different PCMs are 23.9∘C, 15.4∘C and 9.5∘C; 179.6, 129 and 116.2 J/g; and 1.02, 1.10 and 1.23 W/(m K), respectively. These PCMs possess suitable phase-change temperature, high latent heat and good thermal conductivity, and can be used in Qinghai-Tibet Plateau agricultural solar greenhouses.

  5. Thermal conductivity switch: Optimal semiconductor/metal melting transition

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-10-01

    Scrutinizing distinct solid/liquid (s /l ) and solid/solid (s /s ) phase transitions (passive transitions) for large change in bulk (and homogenous) thermal conductivity, we find the s /l semiconductor/metal (S/M) transition produces the largest dimensionless thermal conductivity switch (TCS) figure of merit ZTCS (change in thermal conductivity divided by smaller conductivity). At melting temperature, the solid phonon and liquid molecular thermal conductivities are comparable and generally small, so the TCS requires localized electron solid and delocalized electron liquid states. For cyclic phase reversibility, the congruent phase transition (no change in composition) is as important as the thermal transport. We identify X Sb and X As (X =Al , Cd, Ga, In, Zn) and describe atomic-structural metrics for large ZTCS, then show the superiority of S/M phonon- to electron-dominated transport melting transition. We use existing experimental results and theoretical and ab initio calculations of the related properties for both phases (including the Kubo-Greenwood and Bridgman formulations of liquid conductivities). The 5 p orbital of Sb contributes to the semiconductor behavior in the solid-phase band gap and upon disorder and bond-length changes in the liquid phase this changes to metallic, creating the large contrast in thermal conductivity. The charge density distribution, electronic localization function, and electron density of states are used to mark this S/M transition. For optimal TCS, we examine the elemental selection from the transition, basic, and semimetals and semiconductor groups. For CdSb, addition of residual Ag suppresses the bipolar conductivity and its ZTCS is over 7, and for Zn3Sb2 it is expected to be over 14, based on the structure and transport properties of the better-known β -Zn4Sb3 . This is the highest ZTCS identified. In addition to the metallic melting, the high ZTCS is due to the electron-poor nature of II-V semiconductors, leading to the significantly low phonon conductivity.

  6. Eddy currents in the measurement of magnetic susceptibility of rocks

    NASA Astrophysics Data System (ADS)

    Ježek, Josef; Hrouda, František

    2018-01-01

    The in-phase and out-of-phase susceptibility of rocks is determined by the magnetic permeability of minerals, their viscous relaxation, and by eddy currents in electrically conductive minerals induced by the applied field. The last effect has been modelled by analytical solution of Maxwell equations for a conductive sphere immersed in a homogeneous, non-conductive medium with given permeability, in presence of an alternating field. The solution is a complex function of parameters describing the sphere (its size, conductivity and permeability), surrounding medium (permeability) and applied field (frequency). Without numerical evaluations, it is difficult to distinguish in-phase and out-of-phase (OPS) susceptibility. In this paper, approximate equations are derived for both susceptibility components, which depend only on the permeability contrast between the sphere and the surrounding medium, and the skin ratio, defined as the ratio between sphere radius and skin depth of the induced currents. These equations are used to obtain a systematic assessment of the role of electrical conductivity in determining the susceptibility of rock samples. The contribution of eddy currents to the susceptibility of diluted (<5%) magnetite particle dispersions is negligible at 1 kHz, but not at higher frequencies. Common rock-forming paramagnetic and diamagnetic minerals with weak electrical conductivity and magnetic permeability are characterized by negligible OPS at 1 kHz. Theoretically, measurable OPS and high phase angles can be produced by paramagnetic conductive minerals in certain combinations with a diamagnetic matrix. This can be excluded from practical point of view for paramagnetic minerals with susceptibilities >0.003 and conductivities not exceeding 5000 S/m.

  7. Electrical conductivity and thermopower of (1 - x) BiFeO(3) - xBi(0.5)K(0.5)TiO3 (x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition.

    PubMed

    Wefring, E T; Einarsrud, M-A; Grande, T

    2015-04-14

    Ferroelectric BiFeO3 has attractive properties such as high strain and polarization, but a wide range of applications of bulk BiFeO3 are hindered due to high leakage currents and a high coercive electric field. Here, we report on the thermal behaviour of the electrical conductivity and thermopower of BiFeO3 substituted with 10 and 20 mol% Bi0.5K0.5TiO3. A change from p-type to n-type conductivity in these semi-conducting materials was demonstrated by the change in the sign of the Seebeck coefficient and the change in the slope of the isothermal conductivity versus partial pressure of O. A minimum in the isothermal conductivity was observed at ∼10(-2) bar O2 partial pressure for both solid solutions. The strong dependence of the conductivity on the partial pressure of O2 was rationalized by a point defect model describing qualitatively the conductivity involving oxidation/reduction of Fe(3+), the dominating oxidation state of Fe in stoichiometric BiFeO3. The ferroelectric to paraelectric phase transition of 80 and 90 mol% BiFeO3 was observed at 648 ± 15 and 723 ± 15 °C respectively by differential thermal analysis and confirmed by dielectric spectroscopy and high temperature powder X-ray diffraction.

  8. Transient current interruption mechanism in a magnetically delayed vacuum switch

    NASA Technical Reports Server (NTRS)

    Morris, Gibson, Jr.; Dougal, Roger A.

    1993-01-01

    The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.

  9. Impedance of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite annealed in a tubular furnace

    NASA Astrophysics Data System (ADS)

    Boiko, Oleksandr

    2016-12-01

    The objective of the present research has been to determine the influence of annealing in tubular furnace on capacity of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite produced by ion beam sputtering using combined argon and oxygen beam. The phase angle of the nanocomposite directly after preparing demonstrates negative values, which indicates the capacitive type of electrical conductivity of the material. The rapid increase of conductivity when frequency increases indicates hopping conductance in the material. The additional polarization of the nanocomposite occurs with its extinction in the area of high frequencies. The electrons relaxation time has been defined as of ca τ = 1,25×10-4 s. Annealing of nanocomposite sample x = 55.9 at.% at temperature Ta = 548 K causes phase angle obtains positive values in high frequency area, which indicates the change of conduction type from capacitive to inductive. The voltage resonance phenomenon occurs in the material. Annealing in temperature of Ta = 648 K causes changes of the nanomaterials capacity. The additional oxidization of CoFeZr metallic phase nanograins which provides to the potential barrier formation around potential wells (CoFeZr nanoparticles).

  10. Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates

    NASA Astrophysics Data System (ADS)

    Karpus, John Francis

    In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7 changes the lattice parameter along the c-axis and also adds an extra electron, providing bandwidth and band filling control, respectively. This addition of La also lowers the orbital ordering temperature to T ˜ 43 K, and provides a greater sensitivity of the orbital phases to applied magnetic fields, as evidenced by changes in the phases occurring at lower fields and over a greater field range than seen in the undoped system.

  11. Electrochemically Induced Insulator-Metal-Insulator Transformations of Vanadium Dioxide Nanocrystal Films

    NASA Astrophysics Data System (ADS)

    Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy

    Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.

  12. Photoinduced topological phase transition and spin polarization in a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Chen, M. N.; Su, W.; Deng, M. X.; Ruan, Jiawei; Luo, W.; Shao, D. X.; Sheng, L.; Xing, D. Y.

    2016-11-01

    A great deal of attention has been paid to the topological phases engineered by photonics over the past few years. Here, we propose a topological quantum phase transition to a quantum anomalous Hall (QAH) phase induced by off-resonant circularly polarized light in a two-dimensional system that is initially in a quantum spin Hall phase or a trivial insulator phase. This provides an alternative method to realize the QAH effect, other than magnetic doping. The circularly polarized light effectively creates a Zeeman exchange field and a renormalized Dirac mass, which are tunable by varying the intensity of the light and drive the quantum phase transition. Both the transverse and longitudinal Hall conductivities are studied, and the former is consistent with the topological phase transition when the Fermi level lies in the band gap. A highly controllable spin-polarized longitudinal electrical current can be generated when the Fermi level is in the conduction band, which may be useful for designing topological spintronics.

  13. Nb-doped SrTiO3 glass-ceramics as high temperature stable n-type oxide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Lingner, Julian; Jakob, Gerhard; Letz, Martin

    2012-06-01

    Niobium doped SrTiO3 is known for its high potential as an oxide thermoelectric material and is one of the possible candidates for the n-type site in an oxidic thermoelectric module. The high thermal conductivity [1] and the lack of high-temperature stability of the oxygen vacancies [2] limit its properties in the ceramic systems. Glass-ceramics are intrinsic nano-structured systems and provide crystal phases densely embedded in a glass matrix which prevents the material from detoriation at high temperatures. In particular, the glass-matrix prevents an uncontrolled reoxidization as well as an uncontrolled grain growth therefore retaining the nano-structure even at high temperatures. Here, measurements and results of first glass-ceramic systems are presented, which show a low thermal conductivity due to the residue glass phase. Furthermore a stable thermal cycling up to 650 °C is demonstrated.

  14. Ionic Conductivity of TlBr1-xIx(x = 0, 0.2, 1): Candidate Gamma Ray Detector

    NASA Astrophysics Data System (ADS)

    Bishop, S. R.; Ciampi, G.; Lee, C. D.; Kuhn, M.; Tuller, H. L.; Higgins, W.; Shah, K. S.

    2012-10-01

    The ionic conductivity of TlBr, TlI and their solid solutions, candidates for high energy radiation detection, was examined using impedance spectroscopy. The orthorhombic to cubic phase change in TlI was observed via a steep change in conductivity with increasing temperature, whereas the TlBr-TlI solid solution was cubic throughout the measured temperature range, in agreement with the literature. The intrinsic conductivity of the cubic phase of each material showed nearly identical behavior, indicating that I substitution for Br has little to no effect on the combined defect formation and transport parameters in the studied range. Additionally, optical transmission was correlated with I concentration.

  15. Pressure-induced effects and phase relations in Mg2NiH4

    NASA Astrophysics Data System (ADS)

    Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.

    1985-05-01

    The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.

  16. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  17. Inorganic-Macroion-Induced Formation of Bicontinuous Block Copolymer Nanocomposites with Enhanced Conductivity and Modulus.

    PubMed

    Zhang, Liying; Cui, Tingting; Cao, Xiao; Zhao, Chengji; Chen, Quan; Wu, Lixin; Li, Haolong

    2017-07-24

    A facile and electrostatically driven approach has been developed to prepare bicontinuous polymer nanocomposites that is based on the polyoxometalate (POM) macroion induced phase transition of PS-b-P2VP from an initial lamellar phase to a stable bicontinuous phase. The multi-charged POMs can electrostatically cross-link P2VP blocks and give rise to bicontinuous phases in which the POM hybrid conductive domains occupy a large volume fraction of more than 50 %. Furthermore, the POMs can give rise to high proton conductivity and serve as nanoenhancers, endowing the bicontinuous nanocomposites with a conductivity of 0.1 mS cm -1 and a Young's modulus of 7.4 GPa at room temperature; these values are greater than those of pristine PS-b-P2VP by two orders of magnitude and a factor of 1.8, respectively. This approach can provide a new concept based on electrostatic control to design functional bicontinuous polymer materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xuexuan

    2016-09-15

    High quality AA6101 aluminum cables are critical to electrical industry to meet the energy consumption requests. In the present work, the influence of Mg/Si ratios on the electrical conductivity and mechanical properties of AA6101 aluminum alloy was investigated. Wheatstone Bridge method and tensile test were employed to characterize the mechanical properties. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were used to understand the morphology of the precipitation and the mechanism of age hardening. It is found that excessive Si benefits high strength and high conductivity while excessive Mg plays a negative role in the strengthmore » and the conductivity of AA6101 cables. Excessive Si elements promote both the precipitating rate and quantity of β″ phase therefore increase the tensile strength. Excessive Si elements also help with decreasing the lattice distortion, which contributes to the enhancement of the conductivity. Excessive Mg elements lead to more dissolved Mg after aging treatment, therefore increase lattice distortion of the matrix and promote the deposit of coarse Mg-enriched secondary phase. - Highlights: •A new available method to improve the mechanical and electrical properties of Al-Mg-Si alloy •Investigation on the role of various Mg/Si ratios in the changes of comprehensive performances •Discussions on the morphology of the precipitation phases and the mechanism of hardening.« less

  19. Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment

    NASA Astrophysics Data System (ADS)

    Howard, Jason; Hood, Zachary D.; Holzwarth, N. A. W.

    2017-12-01

    Solid-state electrolytes that are compatible with high-capacity electrodes are expected to enable the next generation of batteries. As a promising example, Li2OHCl was reported to have good ionic conductivity and to be compatible with a lithium metal anode even at temperatures above 100 ∘C . In this work, we explore the fundamental properties of Li2OHCl by comparing simulations and experiments. Using calculations based on density functional theory, including both static and dynamic contributions through the quasiharmonic approximation, we model a tetragonal ground state, which is not observed experimentally. An ordered orthorhombic low-temperature phase was also simulated, agreeing with experimental structural analysis of the pristine electrolyte at room temperature. In addition, comparison of the ordered structures with simulations of the disordered cubic phase provide insight into the mechanisms associated with the experimentally observed abrupt increase in ionic conductivity as the system changes from its ordered orthorhombic to its disordered cubic phase. A large Haven ratio for the disordered cubic phase is inferred from the computed tracer diffusion coefficient and measured ionic conductivity, suggesting highly correlated motions of the mobile Li ions in the cubic phase of Li2OHCl . We find that the OH bond orientations participate in gating the Li ion motions which might partially explain the predicted Li-Li correlations.

  20. The phase diagram of high-pressure superionic ice

    DOE PAGES

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; ...

    2015-08-28

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2 1/c symmetry. We also discover that higher pressuremore » phases have lower transition temperatures. The diffusive hydrogen in the P2 1/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2 1/c superionic phase transition.« less

  1. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.

  2. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com; Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044; Ahmed, Akhlaq

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport numbermore » of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.« less

  3. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  4. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  5. Development program on a cold cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Holland, C. E.

    1985-01-01

    During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.

  6. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  7. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  8. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    PubMed

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  9. Unconventional charge order in a co-doped high-Tc superconductor

    PubMed Central

    Pelc, D.; Vučković, M.; Grafe, H. -J.; Baek, S. -H.; Požek, M.

    2016-01-01

    Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8−xEu0.2SrxCuO4. We use three complementary experiments—nuclear quadrupole resonance, nonlinear conductivity and specific heat—to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order. PMID:27605152

  10. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe.

    PubMed

    Roychowdhury, Subhajit; Jana, Manoj K; Pan, Jaysree; Guin, Satya N; Sanyal, Dirtha; Waghmare, Umesh V; Biswas, Kanishka

    2018-04-03

    Crystalline solids with intrinsically low lattice thermal conductivity (κ L ) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ L of 0.35 Wm -1  K -1 in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ L in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermal effects in two-phase flow through face seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Basu, Prithwish

    1988-01-01

    When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.

  12. Perceptions of Student-Teacher Relationships, Self-Efficacy, and Subject Matter Retention in a Secondary Chemistry Course

    ERIC Educational Resources Information Center

    Bechtel, Michael Dean

    2012-01-01

    This was a study of students who had completed a chemistry course taught by one instructor in a large urban high school during 2009-2010. It was conducted in two phases: Phase One assessed self-efficacy, teaching practices, and subject matter retention taken 16 months after course completion. Phase Two consisted of a multiple-choice final exam…

  13. Optical Techniques for the Remote Detection of Biological Aerosols

    DTIC Science & Technology

    1974-08-01

    1) Laboratory exneriments (2) Remote detection experiments. In the first phase , the optical characteristics of several selected biological...the-art optical sensor system. The estimates were favorable, and a second research phase was initiated. Remote detection experiments were conducted...that of phase fluorometry. The fluorescence is excited by 3. continuous light source, the output of which is modulated at a high freeuency by an optical

  14. Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong; Li, Shuai; Zhang, Yi

    Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less

  15. Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte

    DOE PAGES

    Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...

    2016-09-07

    Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less

  16. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Perry, William D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  17. Terahertz conductivity of the highly mismatched amorphous alloy, GaNBi

    NASA Astrophysics Data System (ADS)

    Vaisakh, C. P.; Foxon, C. T.; Novikov, S. V.; Kini, R. N.

    2017-12-01

    We report terahertz optical conductivity measurements of the highly mismatched alloy, GaNBi. We find that in these amorphous GaNBi epilayers grown using plasma assisted molecular beam epitaxy, the optical conductivity is enhanced in the samples grown at higher gallium beam equivalent pressure (BEP). The optical conductivity spectra in these pseudo-amorphous epilayers follow a Drude-Smith behaviour due to charge confinement effects. The direct current conductivity in the epilayers grown at the highest Ga BEP (3.1 × 10-7 Torr) show an increase of three orders of magnitude compared to the one grown at the lowest Ga BEP (2.0 × 10-7 Torr). Our measurements suggests a percolative transition from an insulating nature in the GaNBi epilayers grown at low Ga BEP to a highly conducting phase in the epilayers grown at high Ga BEP.

  18. Article for thermal energy storage

    DOEpatents

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  19. Polymer compositions based on PXE

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  20. High pressure elasticity and thermal properties of depleted uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N., E-mail: nenad@lanl.gov

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties ofmore » depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  1. High pressure elasticity and thermal properties of depleted uranium

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. Lastly, this work presents the first high pressure studies of the elasticity and thermalmore » properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  2. Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7-3 xGa xLa3Zr2O12 Thin Films.

    PubMed

    Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S

    2018-04-25

    Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.

  3. Lightweight solar concentrator structures, phase 2

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Kaplan, Richard B.

    1993-01-01

    This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.

  4. The preparation of in situ doped hydrogenated amorphous silicon by homogeneous chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meyerson, B. S.; Scott, B. A.; Wolford, D. J.

    1983-03-01

    Raman scattering, infrared absorption, conductivity measurements, electron microprobe, and secondary ion mass spectrometry (SIMS) were used to characterize boron and phosphorus doped hydrogenated amorphous silicon (a-Si:H) films prepared by Homogeneous Chemical Vapor Deposition (HOMOCVD). HOMOCVD is a thermal process which relies upon the gas phase pyrolysis of a source (silane containing up to 1.0% diborane or phosphine) to generate activated species for deposition upon a cooled substrate. Doped films prepared at 275 °C by this process were found to contain ˜12-at. % hydrogen as determined by infrared absorption. We examined dopant incorporation from the gas phase, obtaining values for a distribution coefficient CD (film dopant content/gas phase dopant concentration, atomic basis) of 0.33≤CD ≤0.63 for boron, while 0.4≤CD ≤10.75 in the limits 3.3×10-5≤PH3/SiH4≤0.004. We interpret the data as indicative of the formation of an unstable phosphorus/silicon intermediate in the gas phase, leading to the observed enhancements in CD at high gas phase phosphine content. HOMOCVD films doped at least as efficiently as their prepared counterparts, but tended to achieve higher conductivities [σ≥0.1 (Ω cm)-1 for 4.0% incorporated phosphorus] in the limit of heavy doping. Raman spectra showed no evidence of crystallinity in the doped films. Film properties (conductivity, activation energy of of conduction) have not saturated at the doping levels investigated here, making the attainment of higher ``active'' dopant levels a possibility. We attribute the observation that HOMOCVD appears more amenable to high ``active'' dopant levels than plasma techniques to the low (˜0.1 eV) thermal energy at which HOMOCVD proceeds, versus ˜10-100 eV for plasma techniques. Low substrate temperature (75 °C) doped films were prepared with initial results showing these films to dope as readily as those prepared at high temperature (T˜275 °C).

  5. P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature

    DOE PAGES

    Woods-Robinson, Rachel; Cooper, Jason K.; Xu, Xiaojie; ...

    2016-03-16

    All transparent conducting materials (TCMs) of technological practicality are n-type; the inferior conductivity of p-type TCMs has limited their adoption. Additionally, many relatively high-performing p-type TCMs require synthesis temperatures > 400 °C. Here, room-temperature pulsed laser deposition of copper-alloyed zinc sulfide (Cu x Zn 1- x S) thin films (0 ≤ x ≤ 0.75) is reported. For 0.09 ≤ x ≤ 0.35, Cu x Zn 1- x S has high p-type conductivity, up to 42 S cm -1 at x = 0.30, with an optical band gap tunable from ≈3.0–3.3 eV and transparency, averaged over the visible, of 50%–71% formore » 200–250 nm thick films. In this range, synchrotron X-ray and electron diffraction reveal a nanocrystalline ZnS structure. Secondary crystalline Cu y S phases are not observed, and at higher Cu concentrations, x > 0.45, films are amorphous and poorly conducting. Furthermore, within the TCM regime, the conductivity is temperature independent, indicating degenerate hole conduction. A decrease in lattice parameter with Cu content suggests that the hole conduction is due to substitutional incorporation of Cu onto Zn sites. This hole-conducting phase is embedded in a less conducting amorphous Cu y S, which dominates at higher Cu concentrations. Finally, the combination of high hole conductivity and optical transparency for the peak conductivity Cu x Zn 1- x S films is among the best reported to date for a room temperature deposited p-type TCM.« less

  6. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy.

    PubMed

    Rettenwander, Daniel; Redhammer, Günther J; Guin, Marie; Benisek, Artur; Krüger, Hannes; Guillon, Olivier; Wilkening, Martin; Tietz, Frank; Fleig, Jürgen

    2018-03-13

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σ bulk of sub-mm-sized flux grown Na 3 Sc 2 (PO 4 ) 3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies E a . Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σ bulk turned out to be as high as 3 × 10 -4 S cm -1  at RT ( E a, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.

  7. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy

    PubMed Central

    2018-01-01

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals. PMID:29606799

  8. Improving Participants' Retention in a Smoking Cessation Intervention Using a Community-based Participatory Research Approach.

    PubMed

    Estreet, Anthony; Apata, Jummai; Kamangar, Farin; Schutzman, Christine; Buccheri, Jane; O'Keefe, Anne-Marie; Wagner, Fernando; Sheikhattari, Payam

    2017-01-01

    This study compares participant' sretention in three phases of smoking cessation interventions, one provided in a health clinic and the subsequent two in community-based settings. Smoking cessation interventions were conducted in three phases from 2008 to 2015 in two underserved urban communities with low socioeconomic profiles and high rates of smoking ( n = 951). Phase I was conducted in a clinic; Phases II and III were conducted in community venues. In Phases II and III, incremental changes were made based on lessons learned from the previous phases. Retention (attending six or more sessions) was the primary predictor of cessation and was analyzed while controlling for associated factors including age, gender, race, employment, education, and nicotine dependence. Retention increased substantially over the three phases, with rates for attending six or more sessions of 13.8%, 51.9%, and 67.9% in Phases I, II, and III, respectively. Retention was significantly higher in community settings than in the clinic setting (adjusted odds ratio [OR] = 6.7; 95% confidence intervals [CI] = 4.6, 9.8). In addition to the intervention in community venues, predictors of retention included age and unemployment. Higher retention was significantly associated with higher quit rates (adjusted OR = 2.4; 95% CI = 1.5, 3.8). Conducting the intervention in community settings using trained peer motivators rather than health-care providers resulted in significantly higher retention and smoking cessation rates. This was due in part to the ability to tailor cessation classes in the community for specific populations and improving the quality of the intervention based on feedback from participants and community partners.

  9. High throughput integrated thermal characterization with non-contact optical calorimetry

    NASA Astrophysics Data System (ADS)

    Hou, Sichao; Huo, Ruiqing; Su, Ming

    2017-10-01

    Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

  10. Influence of lithium vacancies on the polaronic transport in olivine phosphate structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugavel, Sevi, E-mail: murug@physics.du.ac.in; Sharma, Monika; Shahid, Raza

    2016-01-28

    Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity betweenmore » the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO{sub 4} (LFP) and delithiated heterosite FePO{sub 4} (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.« less

  11. Additional EIPC Study Analysis: Interim Report on High Priority Topics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W

    Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a Stakeholder Steering Committee (SSC) that included representatives from the Eastern Interconnection States Planning Council (EISPC) among others, the project was conducted in two phases. Phase 1 involved a long-term capacity expansion analysis that involved creation of eight major futures plus 72 sensitivities. Three scenarios were selected for more extensive transmission- focused evaluation in Phase 2. Five power flow analyses, nine production cost model runs (including six sensitivities), and three capital cost estimations weremore » developed during this second phase. The results from Phase 1 and 2 provided a wealth of data that could be examined further to address energy-related questions. A list of 13 topics was developed for further analysis; this paper discusses the first five.« less

  12. Rod/Coil Block Copolyimides for Ion-Conducting Membranes

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.

    2003-01-01

    Rod/coil block copolyimides that exhibit high levels of ionic conduction can be made into diverse products, including dimensionally stable solid electrolyte membranes that function well over wide temperature ranges in fuel cells and in lithium-ion electrochemical cells. These rod/coil block copolyimides were invented to overcome the limitations of polymers now used to make such membranes. They could also be useful in other electrochemical and perhaps some optical applications, as described below. The membranes of amorphous polyethylene oxide (PEO) now used in lithium-ion cells have acceptably large ionic conductivities only at temperatures above 60 C, precluding use in what would otherwise be many potential applications at lower temperatures. PEO is difficult to process, and, except at the highest molecular weights it is not very dimensionally stable. It would be desirable to operate fuel cells at temperatures above 80 C to take advantage of better kinetics of redox reactions and to reduce contamination of catalysts. Unfortunately, proton-conduction performance of a typical perfluorosulfonic polymer membrane now used as a solid electrolyte in a fuel cell decreases with increasing temperature above 80 C because of loss of water from within the membrane. The loss of water has been attributed to the hydrophobic nature of the polymer backbone. In addition, perfluorosulfonic polymers are expensive and are not sufficiently stable for long-term use. Rod/coil block copolyimides are so named because each molecule of such a polymer comprises short polyimide rod segments alternating with flexible polyether coil segments (see figure). The rods and coils can be linear, branched, or mixtures of linear and branched. A unique feature of these polymers is that the rods and coils are highly incompatible, giving rise to a phase separation with a high degree of ordering that creates nanoscale channels in which ions can travel freely. The conduction of ions can occur in the coil phase, the rod phase, or both phases.

  13. Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba- closo -borate Salts

    DOE PAGES

    Tang, Wan Si; Yoshida, Koji; Soloninin, Alexei V.; ...

    2016-09-01

    Solid lithium and sodium closo-polyborate-based salts are capable of superionic conductivities surpassing even liquid electrolytes, but often only at above-ambient temperatures where their entropically driven disordered phases become stabilized. Here we show by X-ray diffraction, quasielastic neutron scattering, differential scanning calorimetry, NMR, and AC impedance measurements that by introducing 'geometric frustration' via the mixing of two different closo-polyborate anions, namely, 1-CB 9H 10- and CB 11H 12-, to form solid-solution anion-alloy salts of lithium or sodium, we can successfully suppress the formation of possible ordered phases in favor of disordered, fast-ion-conducting alloy phases over a broad temperature range from subambientmore » to high temperatures. Finally, this result exemplifies an important advancement for further improving on the remarkable conductive properties generally displayed by this class of materials and represents a practical strategy for creating tailored, ambient-temperature, solid, superionic conductors for a variety of upcoming all-solid-state energy devices of the future.« less

  14. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics.

    PubMed

    Yeo, Jun-Seok; Yun, Jin-Mun; Kim, Dong-Yu; Park, Sungjun; Kim, Seok-Soon; Yoon, Myung-Han; Kim, Tae-Wook; Na, Seok-In

    2012-05-01

    In the present study, a novel polar-solvent vapor annealing (PSVA) was used to induce a significant structural rearrangement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films in order to improve their electrical conductivity and work function. The effects of polar-solvent vapor annealing on PEDOT:PSS were systematically compared with those of a conventional solvent additive method (SAM) and investigated in detail by analyzing the changes in conductivity, morphology, top and bottom surface composition, conformational PEDOT chains, and work function. The results confirmed that PSVA induces significant phase separation between excess PSS and PEDOT chains and a spontaneous formation of a highly enriched PSS layer on the top surface of the PEDOT:PSS polymer blend, which in turn leads to better 3-dimensional connections between the conducting PEDOT chains and higher work function. The resultant PSVA-treated PEDOT:PSS anode films exhibited a significantly enhanced conductivity of up to 1057 S cm(-1) and a tunable high work function of up to 5.35 eV. The PSVA-treated PEDOT:PSS films were employed as transparent anodes in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs). The cell performances of organic optoelectronic devices with the PSVA-treated PEDOT:PSS anodes were further improved due to the significant vertical phase separation and the self-organized PSS top surface in PSVA-treated PEDOT:PSS films, which can increase the anode conductivity and work function and allow the direct formation of a functional buffer layer between the active layer and the polymeric electrode. The results of the present study will allow better use and understanding of polymeric-blend materials and will further advance the realization of high-performance indium tin oxide (ITO)-free organic electronics.

  15. Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Halford, Gary R.

    1992-01-01

    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test.

  16. Inelastic x-ray scattering measurements of phonon dynamics in URu 2Si 2

    DOE PAGES

    Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; ...

    2016-02-11

    In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu 2Si 2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations inmore » the low temperature phase.« less

  17. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.

    PubMed

    Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan

    2014-07-22

    Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.

  18. Nanoscale thermal cross-talk effect on phase-change probe memory.

    PubMed

    Wang, Lei; Wen, Jing; Xiong, Bangshu

    2018-05-14

    Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.

  19. Asymmetric Operation of the Locomotor Central Pattern Generator in the Neonatal Mouse Spinal Cord

    PubMed Central

    Endo, Toshiaki; Kiehn, Ole

    2008-01-01

    The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a “push–pull” operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase–related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase–related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a multilayered and distributed structure of the network. PMID:18829847

  20. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Piao, Mingxing; Chu, Jin; Wang, Xiao; Chi, Yao; Zhang, Heng; Li, Chaolong; Shi, Haofei; Joo, Min-Kyu

    2018-01-01

    Two-dimensional materials have gained great attention as a promising thermoelectric (TE) material due to their unique density of state with confined electrons and holes. Here, we synthesized 1T phase tungsten disulfide (WS2) nanosheets with high TE performance via the hydrothermal method. Flexible WS2 nanosheets restacked thin films were fabricated by employing the vacuum filtration technique. The measured electrical conductivity was 45 S cm-1 with a Seebeck coefficient of +30 μV K-1 at room temperature, indicating a p-type characteristic. Furthermore, the TE performance could be further improved by thermal annealing treatment. It was found the electrical conductivity could be enhanced 2.7 times without sacrificing the Seebeck coefficient, resulting in the power factor of 9.40 μW m-1 K-2. Moreover, such 1T phase WS2 nanosheets possess high phase stability since the TE properties maintained constant at least half one year in the air atmosphere. Notably, other kinds of 1T phase transitional metal dichalcogenides (TMDCs) with excellent TE performance also could be imitated by using the procedure in this work. Finally, we believe a variety of materials based on 1T phase TMDCs nanosheets have great potential as candidate for future TE applications.

  1. Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System

    NASA Astrophysics Data System (ADS)

    Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.

    Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.

  2. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  3. A pilot hospital-school educational program to address teen motor vehicle safety.

    PubMed

    Unni, Purnima; Morrow, Stephen E; Shultz, Barbara L; Tian, Tina T

    2013-10-01

    Texting while driving has emerged as a significant distracted driving behavior among teenage drivers. A unique hospital-school collaborative pilot intervention (called "Be in the Zone" or "BITZ") was implemented to combat this growing problem. This intervention was hypothesized to lead to a decline in texting while driving among high school students. This collaborative intervention consisted of two separate phases. In Phase 1, small groups of high school student leaders participated in a half-day interactive educational session in a pediatric hospital. Pre- and post-follow-up surveys were administered to this group. In Phase 2, these same students took the lessons they learned from the hospital to plan and implement a yearlong peer-to-peer campaign that focused on a clear "no texting while driving" message at their schools. Two unannounced driver observations were conducted to evaluate the effectiveness of the pilot program. Sixty-one high school students participated in Phase 1. Self-reported texting while driving rates decreased significantly among the participants after Phase 1. Two schools were recruited to participate in Phase 2. Unannounced driver observations were conducted before the campaign and toward the end of the campaign. Postintervention, there was a significant decrease in the percentage of drivers who texted while driving. Preliminary results from this pilot program suggest that a strategy of combining hospital-school partnerships with a peer-driven educational approach can be effective in reducing texting while driving among teenagers in the short-term.

  4. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.

    PubMed

    Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L

    2009-11-01

    A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.

  5. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Langrand, C.; Hilairet, N.; Konopkova, Z.; Andrault, D.

    2016-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  6. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Sawchuk, K. L. S.; Kavner, A.

    2017-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  7. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  8. High-pressure high-temperature phase diagram of organic crystal paracetamol

    DOE PAGES

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-06

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less

  9. High-pressure high-temperature phase diagram of organic crystal paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  10. Development of a rotating electric field conductance sensor for measurement of water holdup in vertical oil–gas–water flows

    NASA Astrophysics Data System (ADS)

    Wang, Da-Yang; Jin, Ning-De; Zhuang, Lian-Xin; Zhai, Lu-Sheng; Ren, Ying-Yu

    2018-07-01

    Three types of rotating electric field conductance sensors (REFCSs) with four, six, and eight electrodes are designed and optimized in this paper to measure the water holdup of oil–gas–water three-phase flow in vertical upward 20 mm inner diameter pipe. The geometric parameters of the REFCSs are optimized using finite element method to access highly sensitive and homogeneous detection fields. The performance of the REFCSs in the water holdup measurement of three-phase flows is experimentally evaluated by generalizing the Maxwell equation. Based on the measured water holdup from the REFCSs, the slippage behaviors in oil–gas–water are uncovered and the superficial velocity of the water phase is determined. The results show that the REFCSs present a high resolution in the water holdup measurement. The REFCS with eight electrodes has better performance than those with four- and six-electrodes, which indicates that its configuration and geometric parameters are more suitable for vertical oil–gas–water three-phase flow measurement in 20 mm inner diameter pipe.

  11. Technology development for iron Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Brien, R.J.; Raje, A.; Keogh, R.A.

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alphamore » iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.« less

  12. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    NASA Astrophysics Data System (ADS)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  13. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  14. Highway Vehicle Retrofit Evaluation : Phase 2. Report. Testing and Final Evaluation Results.

    DOT National Transportation Integrated Search

    1976-11-01

    This report presents the results of engine dynamometer and vehicle chassis dynamometer tests conducted with selected automotive retrofit devices in the classes of ultrasonic carburetors, high-velocity intake manifolds, tuned exhaust systems, and high...

  15. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation.

    PubMed

    Du, Fei-Peng; Cao, Nan-Nan; Zhang, Yun-Fei; Fu, Ping; Wu, Yan-Guang; Lin, Zhi-Dong; Shi, Run; Amini, Abbas; Cheng, Chun

    2018-04-24

    The typical conductive polymer of PEDOT:PSS has recently attracted intensive attention in thermoelectric conversion because of its low cost and low thermal conductivity as well as high electrical conductivity. However, compared to inorganic counterparts, the relatively poor thermoelectric performance of PEDOT:PSS has greatly limited its development and high-tech applications. Here, we report a dramatic enhancement in the thermoelectric performance of PEDOT:PSS by constructing unique composite films with graphene quantum dots (GQDs). At room temperature, the electrical conductivity and Seebeck coefficient of PEDOT:PSS/GQDs reached to 7172 S/m and 14.6 μV/K, respectively, which are 30.99% and 113.2% higher than those of pristine PEDOT:PSS. As a result, the power factor of the optimized PEDOT:PSS/GQDs composite is 550% higher than that of pristine PEDOT:PSS. These significant improvements are attributed to the ordered alignment of PEDOT chains on the surface of GQDs, originated from the strong interfacial interaction between PEDOT:PSS and GQDs and the separation of PEDOT and PSS phases. This study evidently provides a promising route for PEDOT:PSS applied in high-efficiency thermoelectric conversion.

  16. Characterization of Carbonates by Spectral Induced Polarization

    NASA Astrophysics Data System (ADS)

    Hupfer, Sarah; Halisch, Matthias; Weller, Andreas

    2017-04-01

    This study investigates the complex electrical conductivity of carbonate samples by Spectral Induced Polarization (SIP). The analysis is conducted in combination with petrophysical, mineralogical and geochemical measurements. SIP is a useful tool to obtain more detailed information about rock properties and receive a more qualitative pore space characterization. Rock parameters like permeability, pore-size and -surface area can be predicted. Up to this point, sandstones or sandy materials were investigated in detail by laboratory SIP-measurements. Several robust empirical relationships were found that connect IP-signals and petrophysical parameters (surface area, surface conductivity and cation exchange capacity). Different types of carbonates were analyzed with laboratory SIP-measurements. Rock properties like grain density, porosity, permeability and surface area were determined by petrophysical measurements. Geochemistry and mineralogy were used to differentiate the carbonate types. First results of the SIP-measurements showed polarization effects for all different types. Four different phase behavior were observed in the phase spectra. A constant phase angle, a constant slope, a combination of both and a maximum type could be identified. Each phase behavior can be assigned to the specific carbonate type used, but the constant phase occurs at two carbonate types. Further experiments were conducted to get more insight the phase behavior and get explanations. 1. Approach: An expected phase peak frequency for each sample was calculated to check if this frequency is within the measured spectrum of 2 mHz to 100 Hz. 2. Approach: Significantly reducing of the fluid conductivity to increase phase signal for a better interpretation. 3. Approach: The cation-exchange-capacity (CEC) was regarded as a factor as well. A dependence between imaginary part of conductivity and CEC was detected. 4. Approach: Imaging procedures (scanning electron microscope, x-ray computed tomography, microscopy) were used to create a qualitative image of the carbonate samples and to investigate the pore space, for example the ratio of connected to non-connected pore space. A comparison between SIP data and the petrophysical data of the sample set showed that the phase behavior of carbonates is highly complicated and challenging compared with sandstones. It seems that there is no correlation between polarization effects and any petrophysical parameter. Ongoing investigations and measurements will be conducted to get more insight to the polarization effects of carbonates.

  17. Enhancing electrical conductivity of room temperature deposited Sn-doped In2O3 thin films by hematite seed layers

    NASA Astrophysics Data System (ADS)

    Lohaus, Christian; Steinert, Céline; Deyu, Getnet; Brötz, Joachim; Jaegermann, Wolfram; Klein, Andreas

    2018-04-01

    Hematite Fe2O3 seed layers are shown to constitute a pathway to prepare highly conductive transparent tin-doped indium oxide thin films by room temperature magnetron sputtering. Conductivities of up to σ = 3300 S/cm are observed. The improved conductivity is not restricted to the interface but related to an enhanced crystallization of the films, which proceeds in the rhombohedral phase.

  18. Multiple-stage pure phase encoding with biometric information

    NASA Astrophysics Data System (ADS)

    Chen, Wen

    2018-01-01

    In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.

  19. NASA Tech Briefs, April 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics include: Wearable Environmental and Physiological Sensing Unit; Broadband Phase Retrieval for Image-Based Wavefront Sensing; Filter Function for Wavefront Sensing Over a Field of View; Iterative-Transform Phase Retrieval Using Adaptive Diversity; Wavefront Sensing With Switched Lenses for Defocus Diversity; Smooth Phase Interpolated Keying; Maintaining Stability During a Conducted-Ripple EMC Test; Photodiode Preamplifier for Laser Ranging With Weak Signals; Advanced High-Definition Video Cameras; Circuit for Full Charging of Series Lithium-Ion Cells; Analog Nonvolatile Computer Memory Circuits; JavaGenes Molecular Evolution; World Wind 3D Earth Viewing; Lithium Dinitramide as an Additive in Lithium Power Cells; Accounting for Uncertainties in Strengths of SiC MEMS Parts; Ion-Conducting Organic/Inorganic Polymers; MoO3 Cathodes for High-Temperature Lithium Thin-Film Cells; Counterrotating-Shoulder Mechanism for Friction Stir Welding; Strain Gauges Indicate Differential-CTE-Induced Failures; Antibodies Against Three Forms of Urokinase; Understanding and Counteracting Fatigue in Flight Crews; Active Correction of Aberrations of Low-Quality Telescope Optics; Dual-Beam Atom Laser Driven by Spinor Dynamics; Rugged, Tunable Extended-Cavity Diode Laser; Balloon for Long-Duration, High-Altitude Flight at Venus; and Wide-Temperature-Range Integrated Operational Amplifier.

  20. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  1. Fluids Density Functional Theory of Salt-Doped Block Copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Hall, Lisa M.

    Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.

  2. Construction of a Cerebral Hemorrhage Test System Operated in Real-time

    NASA Astrophysics Data System (ADS)

    Li, Gen; Sun, Jian; Ma, Ke; Yan, Qingguang; Zheng, Xiaolin; Qin, Mingxin; Jin, Gui; Ning, Xu; Zhuang, Wei; Feng, Hua; Huang, Shiyuwei

    2017-02-01

    The real-time monitoring and evaluation of the severity and progression of cerebral hemorrhage is essential to its intensive care and its successful emergency treatment. Based on magnetic induction phase shift technology combined with a PCI data acquisition system and LabVIEW software, this study established a real-time monitoring system for cerebral hemorrhage. To test and evaluate the performance of the system, the authors performed resolution conductivity experiments, salted water simulation experiments and cerebral hemorrhage experiments in rabbits and found that when the conductivity difference was 0.73 S/m, the phase difference was 13.196°. The phase difference change value was positively proportional to the volume of saline water, and the conductivity value was positively related to the phase difference of liquid under the same volume conditions. After injecting 3 mL blood into six rabbits, the average change in the blood phase difference was -2.03783 ± 0.22505°, and it was positively proportional to the volume of blood, which was consistent with the theoretical results. The results show that the system can monitor the progressive development of cerebral hemorrhage in real-time and has the advantages of low cost, small size, high phase accuracy, and good clinical application potentiality.

  3. Diffusion paths formation for Cu + ions in superionic Cu 6PS 5I single crystals studied in terms of structural phase transition

    NASA Astrophysics Data System (ADS)

    Gągor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-01

    In order to understand the structural transformations leading to high ionic conductivity of Cu + ions in Cu 6PS 5I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T=(144-169) K Cu 6PS 5I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above Tc delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43 c ( a'=19.528 Å, z=32). Finally, above T1=274 K increasing disordering of the Cu + ions heightens the symmetry to F-43 m ( a=9.794 Å, z=4). In this work, the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions ( R1=0.0397 for F-43 c phase, and 0.0245 for F-43 m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.

  4. Computational Evaluation of Latent Heat Energy Storage Using a High Temperature Phase Change Material

    DTIC Science & Technology

    2012-05-01

    thermal energy storage system using molten silicon as a phase change material. A cylindrical receiver, absorber, converter system was evaluated using...temperature operation. This work computationally evaluates a thermal energy storage system using molten silicon as a phase change material. A cylindrical... salts ) offering a low power density and a low thermal conductivity, leading to a limited rate of charging and discharging (4). A focus on

  5. Improving Participants’ Retention in a Smoking Cessation Intervention Using a Community-based Participatory Research Approach

    PubMed Central

    Estreet, Anthony; Apata, Jummai; Kamangar, Farin; Schutzman, Christine; Buccheri, Jane; O’Keefe, Anne-Marie; Wagner, Fernando; Sheikhattari, Payam

    2017-01-01

    Background: This study compares participant’ sretention in three phases of smoking cessation interventions, one provided in a health clinic and the subsequent two in community-based settings. Methods: Smoking cessation interventions were conducted in three phases from 2008 to 2015 in two underserved urban communities with low socioeconomic profiles and high rates of smoking (n = 951). Phase I was conducted in a clinic; Phases II and III were conducted in community venues. In Phases II and III, incremental changes were made based on lessons learned from the previous phases. Retention (attending six or more sessions) was the primary predictor of cessation and was analyzed while controlling for associated factors including age, gender, race, employment, education, and nicotine dependence. Results: Retention increased substantially over the three phases, with rates for attending six or more sessions of 13.8%, 51.9%, and 67.9% in Phases I, II, and III, respectively. Retention was significantly higher in community settings than in the clinic setting (adjusted odds ratio [OR] = 6.7; 95% confidence intervals [CI] = 4.6, 9.8). In addition to the intervention in community venues, predictors of retention included age and unemployment. Higher retention was significantly associated with higher quit rates (adjusted OR = 2.4; 95% CI = 1.5, 3.8). Conclusions: Conducting the intervention in community settings using trained peer motivators rather than health-care providers resulted in significantly higher retention and smoking cessation rates. This was due in part to the ability to tailor cessation classes in the community for specific populations and improving the quality of the intervention based on feedback from participants and community partners. PMID:29416835

  6. Epitaxial structure and electronic property of β-Ga2O3 films grown on MgO (100) substrates by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Ryo; Yoshimatsu, Kohei; Hattori, Mai; Ohtomo, Akira

    2017-10-01

    We investigated heteroepitaxial growth of Si-doped Ga2O3 films on MgO (100) substrates by pulsed-laser deposition as a function of growth temperature (Tg) to find a strong correlation between the structural and electronic properties. The films were found to contain cubic γ-phase and monoclinic β-phase, the latter of which indicated rotational twin domains when grown at higher Tg. The formation of the metastable γ-phase and twin-domain structure in the stable β-phase are discussed in terms of the in-plane epitaxial relationships with a square MgO lattice, while crystallinity of the β-phase degraded monotonically with decreasing Tg. The room-temperature conductivity indicated a maximum at the middle of Tg, where the β-Ga2O3 layer was relatively highly crystalline and free from the twin-domain structure. Moreover, both crystallinity and conductivity of β-Ga2O3 films on the MgO substrates were found superior to those on α-Al2O3 (0001) substrates. A ratio of the conductivity, attained to the highest quantity on each substrate, was almost three orders of magnitude.

  7. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries.

    PubMed

    Park, Kyu-Sung; Benayad, Anass; Kang, Dae-Joon; Doo, Seok-Gwang

    2008-11-12

    To modify oxide structure and introduce a thin conductive film on Li4Ti5O12, thermal nitridation was adopted for the first time. NH3 decomposes surface Li4Ti5O12 to conductive TiN at high temperature, and surprisingly, it also modifies the surface structure in a way to accommodate the single phase Li insertion and extraction. The electrochemically induced Li4+deltaTi5O12 with a TiN coating layer shows great electrochemical properties at high current densities.

  8. Electronic structure of HxVO2 probed with in-situ spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Sandilands, Luke J.; Kang, Taedong; Son, Jaeseok; Sohn, C. H.; Yoon, Hyojin; Son, Junwoo; Moon, S. J.; Noh, T. W.

    Vanadium dioxide (VO2) undergoes a metal-to-insulator transition (MIT) near 340K. Despite extensive studies on this material, the role of electron-electron correlation and electron-lattice interactions in driving this MIT is still under debate. Recently, it was demonstrated that hydrogen can be reversibly absorbed into VO2 thin film without destroying the lattice framework. This H-doping allows systematic control of the electron density and lattice structure which in turn leads to a insulator (VO2) - metal (HxVO2) - insulator (HVO2) phase modulation. To better understand the phase modulation of HxVO2, we used in-situ spectroscopic ellipsometry to monitor the electronic structure during the hydrogenization process, i.e. we measured the optical conductivity of HxVO2 while varying x. Starting in the high temperature rutile metallic phase of VO2, we observed a large change in the electronic structure upon annealing in H gas at 370K: the low energy conductivity is continuously suppressed, consistent with reported DC resistivity data, while the conductivity peaks at high energy show strong changes in energy and spectral weight. The implications of our results for the MIT in HxVO2 will be discussed.

  9. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    PubMed

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  10. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate.

    PubMed

    Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M

    2012-06-13

    Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

  11. Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach.

    PubMed

    Liu, Li-Feng; Lee, Seung-Woo; Li, Jing-Bo; Alexe, Marin; Rao, Guang-Hui; Zhou, Wei-Ya; Lee, Jae-Jong; Lee, Woo; Gösele, Ulrich

    2008-12-10

    AgI nanowires/anodic aluminum oxide (AgI NWs/AAO) composites have been fabricated by a simple approach, which involves the thermal melting of AgI powders on the surface of the AAO membrane, followed by the infiltration of the molten AgI inside the nanochannels. As-prepared AgI nanowires have corrugated outer surfaces and are polycrystalline according to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. X-ray diffraction (XRD) shows that a considerable amount of 7H polytype AgI exists in the composites, which is supposed to arise from the interfacial interactions between the embedded AgI and the alumina. AC conductivity measurements for the AgI nanowires/AAO composites exhibit a notable conductivity enhancement by three orders of magnitude at room temperature compared with that of pristine bulk AgI. Furthermore, a large conductivity hysteresis and abnormal conductivity transitions were observed in the temperature-dependent conductivity measurements, from which an ionic conductivity as high as 8.0 × 10(2) Ω(-1) cm(-1) was obtained at around 70 °C upon cooling. The differential scanning calorimetry (DSC) result demonstrates a similar phase transition behavior as that found in the AC conductivity measurements. The enhanced ionic conductivity, as well as the abnormal phase transitions, can be explained in terms of the existence of the highly conducting 7H polytype AgI and the formation of well-defined conduction paths in the composites.

  12. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  13. The modification of BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.2}O{sub 3–δ} with copper oxide: Effect on the structural and transport properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyagaeva, Yu. G.; Vdovin, G. K.; Nikolaenko, I. V.

    2016-06-15

    The effect of the content of CuO additive on the sinterability, phase composition, microstructure, and electrical properties of BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.2}O{sub 3–δ} proton-conducting material is studied. Ceramic samples were produced by the citrate–nitrate synthesis method with the addition of 0, 0.25, 0.5, and 1% CuO. It is shown that the relative density of the samples containing 0.5 and 1% CuO is higher than 94% at a sintering temperature of 1450°C, whereas the relative density of the material is no higher than 85% at a lower content of the sintering additive. From the data of X-ray diffraction analysis and scanningmore » electron microscopy, it is established that the introduction of a small CuO content (0.25%) is inadequate for single-phase and high-dense ceramics to be formed. The conductivity and scanning electron microscopy data show that the sample with BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.2}O{sub 3–δ} + 0.5% CuO composition possesses high total and ionic conductivities as well as a high degree of microstructural stability after hydrogen reduction of the ceramics. The citrate–nitrate method modified by the introduction of a small CuO content can be recommended for the production of single-phase, gas-tight, and high-conductivity electrolytes based on both BaCeO{sub 3} and BaZrO{sub 3}.« less

  14. High-pressure phase diagrams of liquid CO2 and N2

    NASA Astrophysics Data System (ADS)

    Boates, Brian; Bonev, Stanimir

    2011-06-01

    The phase diagrams of liquid CO2 and N2 have been investigated using first-principles theory. Both materials exhibit transitions to conducting liquids at high temperatures (T) and relatively modest pressures (P). Furthermore, both liquids undergo polymerization phase transitions at pressures comparable to their solid counterparts. The liquid phase diagrams have been divided into several regimes through a detailed analysis of changes in bonding, as well as structural and electronic properties for pressures and temperatures up to 200 GPa and 10 000 K, respectively. Similarities and differences between the high- P and T behavior of these fluids will be discussed. Calculations of the Hugoniot are in excellent agreement with available experimental data. Work supported by NSERC, LLNL, and the Killam Trusts. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. Rational and practical exfoliation of graphite using well-defined poly(3-hexylthiophene) for the preparation of conductive polymer/graphene composite.

    PubMed

    Iguchi, Hiroki; Higashi, Chisato; Funasaki, Yuichi; Fujita, Keisuke; Mori, Atsunori; Nakasuga, Akira; Maruyama, Tatsuo

    2017-01-06

    Processing and manipulation of highly conductive pristine graphene in large quantities are still major challenges in the practical application of graphene for electric device. In the present study, we report the liquid-phase exfoliation of graphite in toluene using well-defined poly(3-hexylthiophene) (P3HT) to produce a P3HT/graphene composite. We synthesize and use regioregular P3HT with controlled molecular weights as conductive dispersants for graphene. Simple ultrasonication of graphite flakes with the P3HT successfully produces single-layer and few-layer graphene sheets dispersed in toluene. The produced P3HT/graphene composite can be used as conductive graphene ink, indicating that the P3HT/graphene composite has high electrical conductivity owing to the high conductivity of P3HT and graphene. The P3HT/graphene composite also works as an oxidation-resistant and conductive film for a copper substrate, which is due to the high gas-barrier property of graphene.

  16. Rational and practical exfoliation of graphite using well-defined poly(3-hexylthiophene) for the preparation of conductive polymer/graphene composite

    NASA Astrophysics Data System (ADS)

    Iguchi, Hiroki; Higashi, Chisato; Funasaki, Yuichi; Fujita, Keisuke; Mori, Atsunori; Nakasuga, Akira; Maruyama, Tatsuo

    2017-01-01

    Processing and manipulation of highly conductive pristine graphene in large quantities are still major challenges in the practical application of graphene for electric device. In the present study, we report the liquid-phase exfoliation of graphite in toluene using well-defined poly(3-hexylthiophene) (P3HT) to produce a P3HT/graphene composite. We synthesize and use regioregular P3HT with controlled molecular weights as conductive dispersants for graphene. Simple ultrasonication of graphite flakes with the P3HT successfully produces single-layer and few-layer graphene sheets dispersed in toluene. The produced P3HT/graphene composite can be used as conductive graphene ink, indicating that the P3HT/graphene composite has high electrical conductivity owing to the high conductivity of P3HT and graphene. The P3HT/graphene composite also works as an oxidation-resistant and conductive film for a copper substrate, which is due to the high gas-barrier property of graphene.

  17. Rational and practical exfoliation of graphite using well-defined poly(3-hexylthiophene) for the preparation of conductive polymer/graphene composite

    PubMed Central

    Iguchi, Hiroki; Higashi, Chisato; Funasaki, Yuichi; Fujita, Keisuke; Mori, Atsunori; Nakasuga, Akira; Maruyama, Tatsuo

    2017-01-01

    Processing and manipulation of highly conductive pristine graphene in large quantities are still major challenges in the practical application of graphene for electric device. In the present study, we report the liquid-phase exfoliation of graphite in toluene using well-defined poly(3-hexylthiophene) (P3HT) to produce a P3HT/graphene composite. We synthesize and use regioregular P3HT with controlled molecular weights as conductive dispersants for graphene. Simple ultrasonication of graphite flakes with the P3HT successfully produces single-layer and few-layer graphene sheets dispersed in toluene. The produced P3HT/graphene composite can be used as conductive graphene ink, indicating that the P3HT/graphene composite has high electrical conductivity owing to the high conductivity of P3HT and graphene. The P3HT/graphene composite also works as an oxidation-resistant and conductive film for a copper substrate, which is due to the high gas-barrier property of graphene. PMID:28059127

  18. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  19. Proton conducting ceramic membranes for hydrogen separation

    DOEpatents

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  20. SPS phase control system performance via analytical simulation

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.; Chie, C. M.; Booth, R. W. D.

    1979-01-01

    A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems.

  1. Mechanochemical induced structural changes in sucrose using the rotational diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Ciezak-Jenkins, Jennifer A.; Jenkins, Timothy A.

    2018-02-01

    The response of sucrose to high-pressure and shear conditions has been studied in a rotational diamond anvil cell. Previous experiments conducted by Bridgman and Teller showed divergent behavior in regard to the existence of a rheological explosion under mechanochemical stimuli. Raman spectroscopy confirmed the existence of the isostructural Phase I to Phase II transition near 5 GPa. When subjected to high-pressure and shear, Raman spectra of Phase I showed evidence that while the sucrose molecule underwent significant molecular deformation, there was no evidence of a complete chemical reaction. In contrast, Phase II showed a near-total loss of the in-situ Raman signal in response to shear, suggesting the onset of amorphization or decomposition. The divergent behaviors of Phase I and Phase II are examined in light of the differences in the hydrogen bonding and plasticity of the material.

  2. CarbAl Heat Transfer Material

    NASA Technical Reports Server (NTRS)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  3. Effect of pre-strain on precipitation and exfoliation corrosion resistance in an Al-Zn-Mg alloy

    NASA Astrophysics Data System (ADS)

    Lu, Xianghan; Du, Zhiwei; Han, Xiaolei; Li, Ting; Wang, Guojun; Lu, Liying; Bai, Xiaoxia; Zhou, Tietao

    2017-12-01

    To investigate the effect of pre-strain on behaviors in a specially developed Al-4.5Zn-1.2Mg alloy, transmission electron microscopy (TEM) bright field (BF) imaging combined with select area electron diffraction (SAED), Vickers-hardness tests and electrical conductivity tests was conducted for insight into precipitation in aluminum (Al) matrix during two step ageing, and standard exfoliation corrosion (EXCO) test combined with high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscopy (SEM) was carried out for corrosion behavior. Results showed that pre-strain accelerated precipitation during two step ageing as the sequence of: (i) supersaturated solid solution (SSS), GPI zones precipitations, GPI dissolution; (ii) SSS, fcc precipitates, η’ phases or η phases. And the precipitation hardening of the fcc precipitates was not effective as GPI zones. Pre-strain also accelerated EXCO developing, which was mainly attributed to the coverage ratio of η phases on high-angle grain boundaries (HAGBs) increasing as pre-strain increase.

  4. Controlling Microstructure-Transport Interplay in Highly Phase-Separated Perfluorosulfonated Aromatic Multiblock Ionomers via Molecular Architecture Design.

    PubMed

    Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine

    2017-01-18

    Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.

  5. Effects of firing schedule on solubility limits and transport properties of ZrO 2-TiO 2-Y 2O 3 fluorites

    NASA Astrophysics Data System (ADS)

    Fagg, D. P.; Frade, J. R.; Mogensen, M.; Irvine, J. T. S.

    2007-08-01

    The low Y/high Zr edge of the cubic defect fluorite solid solution in the system ZrO 2-TiO 2-Y 2O 3 in air is reassessed, as it is these compositions which have been suggested to offer the highest levels of mixed conductivity. Vegard's law is obeyed for values of x which lie within the cubic defect fluorite phase in Zr 1-x-yY yTi xO 2-δ for values of y=0.2 and 0.25. Measured lattice parameters show good agreement with those calculated from the Kim relation. Deviation from Vegard's law places the limit of the solid solution at x=0.18 and 0.20 for values of y=0.2 and 0.25, respectively, at 1500 °C. Discrepancies in current literature data can be shown to be due to differences in firing schedule such as slight temperature fluctuations and/or different cooling rates. A high level of care of sintering temperature and cooling profile is essential to form the most promising single-phase materials which contain maximum Ti-contents with low Y-contents. Contraction of the phase limit as a result of poor synthesis control leads to erroneously high values of bulk ionic conductivity while values of electronic conductivity are shown to be less affected.

  6. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less

  7. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  8. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  9. Diffuse phase ferroelectric vs. Polomska transition in (1-x) BiFeO3-(x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) solid solutions

    NASA Astrophysics Data System (ADS)

    Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.

    2015-01-01

    Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.

  10. Low concentration graphene nanoplatelets for shape stabilization and thermal transfer reinforcement of Mannitol: a phase change material for a medium-temperature thermal energy system

    NASA Astrophysics Data System (ADS)

    Jing, Gu; Dehong, Xia; Li, Wang; Wenqing, Ao; Zhaodong, Qi

    2018-03-01

    We report herein a novel series of Mannitol/GNPs (graphene nanoplatelets) composites with incremental GNPs loadings from 1 wt% to 10 wt% for further applications in medium-temperature thermal energy system. The phase change behavior and thermal conductivity of Mannitol/GNPs composite, a nanostructured PCM, have been evaluated as a function of GNPs content. Compared to the pristine Mannitol, the resultant stabilized composite with 8 wt% of GNPs displays an extremely high 1054% enhancement in thermal conductivity, and inherits 92% of phase change enthalpy of bulk Mannitol PCM (phase change material). More importantly, 92%Mannitol/GNPs composite still preserves its initial shape without any leakage even when subjected to a 400 consecutive melting/re-solidification cycles. The resulting Mannitol composites exhibit excellent chemical compatibility, large phase change enthalpy and improved thermal reliability, as compared to base PCM, which stands distinct in its class of organic with reference to the past literatures.

  11. The role of menstrual cycle phase and anxiety sensitivity in catastrophic misinterpretation of physical symptoms during a CO(2) challenge.

    PubMed

    Nillni, Yael I; Rohan, Kelly J; Zvolensky, Michael J

    2012-12-01

    The current study examined the interactive effects of anxiety sensitivity (AS; fear of anxiety and anxiety-related sensations) and menstrual cycle phase (premenstrual phase vs. follicular phase) on panic-relevant responding (i.e., cognitive and physical panic symptoms, subjective anxiety, and skin conductance level). Women completed a baseline session and underwent a 3-min 10 % CO(2)-enriched air biological challenge paradigm during her premenstrual and follicular menstrual cycle phases. Participants were 55 women with no current or past history of panic disorder recruited from the general community (M (age) = 26.18, SD = 8.9) who completed the biological challenge during both the premenstrual and follicular cycle phases. Results revealed that women higher on AS demonstrated increased cognitive panic symptoms in response to the challenge during the premenstrual phase as compared to the follicular phase, and as compared to women lower on AS assessed in either cycle phase. However, the interaction of AS and menstrual cycle phase did not significantly predict physical panic attack symptoms, subjective ratings of anxiety, or skin conductance level in response to the challenge. Results are discussed in the context of premenstrual exacerbations of cognitive, as opposed to physical, panic attack symptoms for high AS women, and the clinical implications of these findings.

  12. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  13. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (< 5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  14. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less

  15. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska

    Treesearch

    Jonathan A. O' Donnell; Vladimir E. Romanovsky; Jennifer W. Harden; A. David McGuire

    2009-01-01

    Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity...

  16. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  17. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones

    NASA Astrophysics Data System (ADS)

    Hu, Haiying; Dai, Lidong; Li, Heping; Hui, Keshi; Sun, Wenqing

    2017-04-01

    The anomalously high electrical conductivities ( 0.1 to 1 S/m) in deep mantle wedge regions extensively detected by magnetotelluric studies are often associated with the presence of fluids released from the progressive dehydration of subducting slabs. Epidote minerals are the Ca-Al-rich hydrous silicates with huge stability fields exceeding those of amphibole (>70-80 km) in subducting oceanic crust, and they may therefore be transported to greater depth than amphibole and release water to the mantle wedge. In this study, the electrical conductivities of epidote were measured at 0.5-1.5 GPa and 573-1273 K by using a Solartron-1260 Impedance/Gain-Phase Analyzer in a YJ-3000t multianvil pressure within the frequency range of 0.1-106 Hz. The results demonstrate that the influence of pressure on electrical conductivity of epidote is relatively small compared to that of temperature. The dehydration reaction of epidote is observed through the variation of electrical conductivity around 1073 K, and electrical conductivity reaches up to 1 S/m at 1273 K, which can be attributed to aqueous fluid released from epidote dehydration. After sample dehydration, electrical conductivity noticeably decreases by as much as nearly a log unit compared with that before dehydration, presumably due to a combination of the presence of coexisting mineral phases and aqueous fluid derived from the residual epidote. Taking into account the petrological and geothermal structures of subduction zones, it is suggested that the aqueous fluid produced by epidote dehydration could be responsible for the anomalously high conductivities in deep mantle wedges at depths of 70-120 km, particularly in hot subduction zones.

  18. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2013-08-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now be made in the mHz to kHz frequency range. This increased accuracy in the kHz range will allow a more accurate field characterization of the complex electrical conductivity of soils and sediments, which may lead to the improved estimation of saturated hydraulic conductivity from electrical properties. Although the correction methods have been developed for a custom-made EIT system, they also have potential to improve the phase accuracy of EIT measurements made with commercial systems relying on multicore cables.

  19. Oxidation resistance, thermal conductivity, and spectral emittance of fully dense zirconium diboride with silicon carbide and tantalum diboride additives

    NASA Astrophysics Data System (ADS)

    Van Laningham, Gregg Thomas

    Zirconium diboride (ZrB2) is a ceramic material possessing ultra-high melting temperatures. As such, this compound could be useful in the construction of thermal protection systems for aerospace applications. This work addresses a primary shortcoming of this material, namely its propensity to destructively oxidize at high temperatures, as well as secondary issues concerning its heat transport properties. To characterize and improve oxidation properties, thermogravimetric studies were performed using a specially constructed experimental setup. ZrB 2-SiC two-phase ceramic composites were isothermally oxidized for ~90 min in flowing air in the range 1500-1900°C. Specimens with 30 mol% SiC formed distinctive reaction product layers which were highly protective; 28 mol% SiC - 6 mol% TaB2 performed similarly. At higher temperatures, specimens containing lower amounts of SiC were shown to be non-protective, whereas specimens containing greater amounts of SiC produced unstable oxide layers due to gas evolution. Oxide coating thicknesses calculated from weight loss data were consistent with those measured from SEM micrographs. In order to characterize one aspect of the materials' heat transport properties, the thermal diffusivities of ZrB2-SiC composites were measured using the laser flash technique. These were converted to thermal conductivities using temperature dependent specific heat and density data; thermal conductivity decreased with increasing temperature over the range 25-2000°C. The composition with the highest SiC content showed the highest thermal conductivity at room temperature, but the lowest at temperatures in excess of ~400°C, because of the greater temperature sensitivity of the thermal conductivity of the SiC phase, as compared to more electrically-conductive ZrB2. Subsequent finite difference calculations were good predictors of multi-phase thermal conductvities for the compositions examined. The thermal conductivities of pure ZrB2 as a function of temperature were back-calculated from the experimental results for the multi-phase materials, and literature thermal conductivities of the other two phases. This established a relatively constant thermal conductivity of 88-104 W·K over the evaluated temperature range. Further heat transport characterization was performed using pre-oxidized, directly resistively heated ZrB2-30 mol% SiC ribbon specimens under the observation of a spectral radiometer. The ribbons were heated and held at specific temperatures over the range 1100-1330°C in flowing Ar, and normal spectral emittance values were recorded over the 1-6 μm range with a resolution of 10 nm. The normal spectral emittance was shown to decrease with loss of the borosilicate layer over the course of the data collection time periods. This change was measured and compensated for to produce traces showing the emittance of the oxidized composition rising from ~0.7 to ~0.9 over the range of wavelengths measured (1-6 μm).

  20. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    PubMed

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  1. High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Los Alamos High Pressure Materials Research Team

    2013-05-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary science, particularly for the theoretical/computational modeling/simulations.;

  2. Experimental technique for studying high-temperature phase equilibria in reactive molten metal based systems

    NASA Astrophysics Data System (ADS)

    Ermoline, Alexandre

    The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser beam. The follow-up on-ground experiments were conducted to study phase relations in the Zr-O-N system at high-temperatures. Samples with specific compositions were laser-heated above the melt formation and naturally cooled. Recovered samples were characterized using electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results of these analyses combined with the interpretations of the binary Zr-O and Zr-N phase diagrams enabled us to outline the liquidus and the subsolidus equilibria for the ternary Zr-ZrO2-ZrN phase diagrams. Further research is suggested to develop the microgravity techniques for detailed characterization of high-temperature relations in the reactive, metal based systems.

  3. Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir

    2016-06-07

    The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction.more » X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.« less

  4. An Investigation of the Reliability of Using Comparative Judgment to Score Creative Products

    ERIC Educational Resources Information Center

    Tarricone, Pina; Newhouse, C. Paul

    2017-01-01

    In this article we describe a three-year study that was conducted in three phases to evaluate the feasibility of assessing digitized portfolios of student creative work for high-stakes purposes. The first two phases suggested that creative work could be digitized with adequate fidelity, and that students could submit their own work from schools to…

  5. The Comment-Provoking Potential of T-Shirts: A Nonverbal Dimension of Communication Apprehension.

    ERIC Educational Resources Information Center

    Spicer, Christopher H.

    A study was conducted to assess the relationship between printed t-shirts and communication apprehension. In the first phase of the study, self-reports were used to categorize 206 college students as either high or low in communication apprehension. The second phase of the study consisted of others' evaluations of t-shirts worn by selected…

  6. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris-Edinburgh cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jason; Kumar, Ravhi S.; Park, Changyong

    2016-01-01

    A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid–solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric materialmore » PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. Furthermore, this new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.« less

  7. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris-Edinburgh cell.

    PubMed

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad

    2016-11-01

    A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid-solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric material PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. This new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.

  8. Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes.

    PubMed

    Wen, Kaihua; Wang, Yanlei; Chen, Shimou; Wang, Xi; Zhang, Suojiang; Archer, Lynden A

    2018-06-20

    Rechargeable lithium (Li) metal batteries are considered the most promising of Li-based energy storage technologies. However, tree-like dendrite produced by irregular Li + electrodeposition restricts it wide applications. Herein, based on a cation-microphase-regulation strategy, we create solid-liquid electrolytes (SLEs) by absorbing commercial liquid electrolytes into polyethylene glycol (PEG) engineered nanoporous Al 2 O 3 ceramic membranes. By means of molecular dynamics simulations and comprehensive experiments, we show that Li ions are regulated and promoted in the two microphases, the channel phase and nonchannel phase, respectively. The channel phase can achieve homogeneous Li + flux distribution by multiple mechanisms, including its uniform array of nanochannels and ability to suppress lateral dendrite growth by its high modulus. In the nonchannel phase, PEG chains swollen by electrolyte facilitate desolvation and fast conduction of Li + . As a result, the studied SLEs exhibit high ionic conductivity, low interfacial resistance, and the unique ability to stabilize deposition at the Li anode. By means of galvanostatic cycling studies in symmetric Li cells and Li/Li 4 Ti 5 O 12 cells, we further show that the materials open a path to Li metal batteries with excellent cycling performance.

  9. Thermoelectric and Structural Properties of Zr-/Hf-Based Half-Heusler Compounds Produced at a Large Scale

    NASA Astrophysics Data System (ADS)

    Zillmann, D.; Waag, A.; Peiner, E.; Feyand, M.-H.; Wolyniec, A.

    2018-02-01

    The half-Heusler (HH) systems are promising candidates for thermoelectric (TE) applications since they have shown high figures of merit ( zT) of ˜ 1, which are directly related to the energy conversion efficiency. To use HH compounds for TE devices, the materials must be phase-stable at operating temperatures up to 600°C. Currently, only a few HH compositions are available in large quantities. Hence, we focus on the TE and structural properties of three commercially available Zr-/Hf-based HH compounds in this publication. In particular, we evaluate the thermal conductivities and the figures of merit and critically discuss uncertainties and propagation error in the measurements. We find thermal conductivities of less than 6.0 W K^{-1}m^{-1} for all investigated materials and notably high figures of merit of 0.93 and 0.60 for n- and p-type compounds, respectively, at 600°C. Additionally, our investigations reveal that the grain structures of all materials also contain secondary phases like HfO2, Sn-Ni and Ti-Zr-Sn rich phases while an additional SnO_2 phase was found following several hours of harsh heat treatment at 800°C.

  10. Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor.

    PubMed

    Park, Kunsu; Ahn, Kyunghan; Cha, Joonil; Lee, Sanghwa; Chae, Sue In; Cho, Sung-Pyo; Ryee, Siheon; Im, Jino; Lee, Jaeki; Park, Su-Dong; Han, Myung Joon; Chung, In; Hyeon, Taeghwan

    2016-11-02

    Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi 2 Te 3 ) that violates phase equilibrium, namely, phase-pure n-type K 0.06 Bi 2 Te 3.18 . Incorporated potassium and tellurium in Bi 2 Te 3 far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 μW cm -1 K -2 and a high ZT > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications.

  11. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge 4SbTe 5

    DOE PAGES

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  12. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt.more » %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.« less

  13. Diffusion paths formation for Cu{sup +} ions in superionic Cu{sub 6}PS{sub 5}I single crystals studied in terms of structural phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-15

    In order to understand the structural transformations leading to high ionic conductivity of Cu{sup +} ions in Cu{sub 6}PS{sub 5}I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T{sub c}=(144-169)K Cu{sub 6}PS{sub 5}I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above T{sub c} delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43c (a{sup '}=19.528A, z=32). Finally, above T{sub 1}=274K increasing disordering of the Cu{sup +} ions heightens the symmetry to F-43m (a=9.794A, z=4). In this work,more » the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions (R{sub 1}=0.0397 for F-43c phase, and 0.0245 for F-43m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.« less

  14. Annual Research Progress Report, Fiscal Year 1988. Volume 2. (Brooke Army Medical Center)

    DTIC Science & Technology

    1988-10-01

    Phase III. (0) SWOG 8221 Treatment of Advanced Bladder Cancer with Preoperative Irradi- 362 ation and Radical Cystectomy vs. Radical Cystectomy Alone...Disease, Phase II. (0) POG 8731 Phase II Study of Low-dose "Continuous" Oral Methotrexate in 530 the Treatment of Children with Progressive or Recurrent...the other will receive a diet high in protein and carbohydrates but with minimal fiber. The remainder of the study will be conducted as outlined in the

  15. Phase II and III Clinical Studies of Diphtheria-Tetanus-Acellular Pertussis Vaccine Containing Inactivated Polio Vaccine Derived from Sabin Strains (DTaP-sIPV).

    PubMed

    Okada, Kenji; Miyazaki, Chiaki; Kino, Yoichiro; Ozaki, Takao; Hirose, Mizuo; Ueda, Kohji

    2013-07-15

    Phase II and III clinical studies were conducted to evaluate immunogenicity and safety of a novel DTaP-IPV vaccine consisting of Sabin inactivated poliovirus vaccine (sIPV) and diphtheria-tetanus-acellular pertussis vaccine (DTaP). A Phase II study was conducted in 104 healthy infants using Formulation H of the DTaP-sIPV vaccine containing high-dose sIPV (3, 100, and 100 D-antigen units for types 1, 2, and 3, respectively), and Formulations M and L, containing half and one-fourth of the sIPV in Formulation H, respectively. Each formulation was administered 3 times for primary immunization and once for booster immunization. A Phase III study was conducted in 342 healthy infants who received either Formulation M + oral polio vaccine (OPV) placebo or DTaP + OPV. The OPV or OPV placebo was orally administered twice between primary and booster immunizations. Formulation M was selected as the optimum dose. In the Phase III study, the seropositive rate was 100% for all Sabin strains after primary immunization, and the neutralizing antibody titer after booster immunization was higher than in the control group (DTaP + OPV). All adverse reactions were clinically acceptable. DTaP-sIPV was shown to be a safe and immunogenic vaccine. JapicCTI-121902 for Phase II study, JapicCTI-101075 for Phase III study (http://www.clinicaltrials.jp/user/cte_main.jsp).

  16. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km < h < 1800 km. Estimation of the electrical conductivity based on the percolation theory is given. We discuss also the thermodynamic properties and structural anomalies resulting from the spin crossover and metal-insulator transition and compare them with the experimental seismic and geomagnetic field data.

  17. Effect of Si content on microstructure and thermo-physical properties of the joint of Sip/6063Al composite by laser melting deposition

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Tian, Ze; Li, Peng; Chen, Yanbin; Zhang, Hengquan; Gu, Jingyan; Su, Xuan

    2017-12-01

    Laser melting deposition (LMD), an additive manufacturing-based technology, was utilized to join Sip/6063Al composite creatively with different Si weight contents (Al-Si 5%, 12%, 20% and 30%). Influence of the Si content on the constitutional phases, microstructural characteristics, and thermo-physical properties of the layer by layer built-up weld beads was investigated. Experimental results showed that the increasing of deposited Si content could lead to a marked increment of both size and volume of precipitated Si phase, and the circled α-Al phase decreased as a whole. The Si/Al interface began to decrease for the sample Al-Si30 wt.% due to the connection of Si phases. The α-Al phase within the (Al, Si) eutectic were observed to exhibit two sub-micron solidification morphologies, columnar grains and equiaxed grains, respectively. In general, by increasing the content of the deposited Si, the thermal conductivity decreased owing to the decreasing of α-Al phase with high conductivity, and the coefficient of thermal expansion (CTE) had the same varying trend which was attributed to the increasing volume fraction of stiff precipitated Si phase and Si-Si contiguity.

  18. Imidazolium-based anion exchange membranes for alkaline anion fuel cells: elucidation of the morphology and the interplay between the morphology and properties.

    PubMed

    Zhao, Yue; Yoshimura, Kimio; Shishitani, Hideyuki; Yamaguchi, Susumu; Tanaka, Hirohisa; Koizumi, Satoshi; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter; Maekawa, Yasunari

    2016-02-07

    We investigated the morphology and swelling behavior of a new graft-type of anion exchange membrane (AEM) containing 2-methylimidazolium groups by using a contrast variation small angle neutron scattering (SANS) technique. These AEMs were prepared by radiation-induced grafting of 2-methyl-1-vinylimidazole and styrene into poly(ethylene-co-tetrafluoroethylene) (ETFE) films and subsequent N-alkylation with methyliodide, and possessed both high alkaline durability and high conductivity. Our results showed that the crystalline lamellar and crystallite structures originating from the pristine ETFE films were more or less conserved in these AEMs, but the lamellar d-spacing in both dry and wet membranes was enlarged, indicating an expansion of the amorphous lamellae due to the graft chains introduced in the grafting process and the water incorporated in the swelling process. For the first time, the swelling behavior of the AEMs was studied quantitatively in various water mixtures of water and deuterated water with different volume ratios (contrast variation method), and the morphology of these membranes was elucidated by three phases: phase (1) crystalline ETFE domains, which offer good mechanical properties; phase (2) hydrophobic amorphous domains, which are made up of amorphous ETFE chains and offer a matrix to create conducting regions; phase (3) interconnected hydrated domains, which are composed of the entire graft chains and water and play a key role in promoting the conductivity.

  19. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides.

    PubMed

    Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek

    2017-05-19

    This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Realizing zT of 2.3 in Ge1-x-y Sbx Iny Te via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping.

    PubMed

    Hong, Min; Chen, Zhi-Gang; Yang, Lei; Zou, Yi-Chao; Dargusch, Matthew S; Wang, Hao; Zou, Jin

    2018-03-01

    GeTe with rhombohedral-to-cubic phase transition is a promising lead-free thermoelectric candidate. Herein, theoretical studies reveal that cubic GeTe has superior thermoelectric behavior, which is linked to (1) the two valence bands to enhance the electronic transport coefficients and (2) stronger enharmonic phonon-phonon interactions to ensure a lower intrinsic thermal conductivity. Experimentally, based on Ge 1- x Sb x Te with optimized carrier concentration, a record-high figure-of-merit of 2.3 is achieved via further doping with In, which induces the distortion of the density of states near the Fermi level. Moreover, Sb and In codoping reduces the phase-transition temperature to extend the better thermoelectric behavior of cubic GeTe to low temperature. Additionally, electronic microscopy characterization demonstrates grain boundaries, a high-density of stacking faults, and nanoscale precipitates, which together with the inevitable point defects result in a dramatically decreased thermal conductivity. The fundamental investigation and experimental demonstration provide an important direction for the development of high-performance Pb-free thermoelectric materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High-Pressure Electrical, Raman, and Structural Measurements on Lithium Sulfide

    NASA Astrophysics Data System (ADS)

    Ham, Kathryn; Vohra, Yogesh; Tsoi, Georgiy

    High-Pressure studies have been conducted on Lithium Sulfide (Li2S) to 55 GPa, with electrical, structural, and Raman measurements. Due to the highly reactive nature of the sample in air, the loading was conducted in a glove bag under an inert Argon atmosphere. Four probe electrical measurements using designer diamond anvils showed characteristic semiconducting behavior in Li2S up to 33GPa from ambient temperature to 10 K. Li2S was compressed to 55GPa and angle dispersive X-Ray data was collected at the Advanced Photon Source, Argonne National Lab, which showed a phase transition from a face centered cubic phase to a primitive orthorhombic phase. Raman data was obtained for Li2S at ambient conditions after decompression from 55 GPa. The Raman Spectrum showed the characteristic peak for Li2S at 372.5 wavenumbers, but had an additional uncharacteristic peak at 327.4 wavenumbers. There is a possibility that the additional uncharacteristic Raman peak is due to the decomposition of Li2S at high pressure. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Lab, Contract No. DE-AC02-06CH11357; DOE-NNSA Grant No. DE-NA0002014.

  2. Scaling relation of the anomalous Hall effect in (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Glunk, M.; Daeubler, J.; Schoch, W.; Sauer, R.; Limmer, W.

    2009-09-01

    We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities σxx ranging from the low-conductivity to the high-conductivity regime. The anomalous Hall conductivity σxy(AH) is extracted from the measured longitudinal and Hall resistivities. A transition from σxy(AH)=20Ω-1cm-1 due to the Berry phase effect in the high-conductivity regime to a scaling relation σxy(AH)∝σxx1.6 for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.

  3. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    PubMed

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  4. Probing spin helical surface states in topological HgTe nanowires

    NASA Astrophysics Data System (ADS)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  5. [Relationships of positive and negative affectivity to sleep quality in Japanese civil servants: 3-year follow-up study].

    PubMed

    Saeki, Urara; Nasermoaddeli, Ali; Sekine, Michikazu; Kagamimori, Sadanobu

    2008-11-01

    We conducted this longitudinal study to evaluate the relationships of positive and negative affectivity (Affect Balance Scale) to sleep quality among civil servants. For this study we evaluated 827 civil servants of T city in Toyama prefecture in the springs of 2001 (Baseline) and 2004 with complete information in both phases of the study. Based on the median score at each phase, we divided Affect Balance Scale (ABS) scores into high and low groups. We conducted logistic regression analysis to determine the odds ratios (OR) of 3-yr follow-up sleep quality by baseline and follow-up ABS scores. After adjusting for baseline sleep quality scores, age, sex, employment, job strain, and exercise habits, participants who had high ABS scores were more likely (OR: 3.13, 95% confidence interval (CI): 1.78-5.53) to have better sleep quality than those with low ABS scores at both phases. In addition, participants with low ABS scores at baseline and high ABS scores 3 yr later had better sleep quality (OR: 1.81, 95%CI: 1.02-3.20) than those with low ABS scores at both phases. These findings substantiate the relationships of positive and negative affectivity to sleep quality. Improving the affect balance condition as well as maintaining good affect balance condition may be important determinants of sleep quality in civil servants.

  6. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  7. High-temperature fcc phase of Pr:  Negative thermal expansion and intermediate valence state

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. Yu.; Dmitriev, V. P.; Bandilet, O. I.; Weber, H.-P.

    2003-08-01

    A high-temperature angle-dispersive synchrotron radiation diffraction study has revealed the double hexagonal-close-packed-to-face-centered-cubic (dhcp-to-fcc) transformation in the Pr metal occurring martensitically between 575 and 1035 K. The high-temperature fcc phase shows a negative thermal expansion in the range 600 800 K, attributed to the 4f-electron delocalization. A phenomenological theory is developed, which explains consistently the observed effect in terms of the mean valence variation of the metal as a function of temperature; it also predicts the existence of an isostructural phase transition and of a critical end point of a gas-liquid type in compressed Pr. The analysis of published data on P-T variation of conductivity of Pr supports this prediction.

  8. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE PAGES

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler; ...

    2017-09-21

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  9. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  10. Optimization of single crystals of solid electrolytes with tysonite-type structure (LaF3) for conductivity at 293 K: 2. Nonstoichiometric phases R 1- y M y F3- y ( R = La-Lu, Y; M = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.; Krivandina, E. A.; Zhmurova, Z. I.

    2015-01-01

    Single crystals of fluorine-conducting solid electrolytes R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y ( R = La-Lu, Y) with a tysonite-type structure (LaF3) have been optimized for room-temperature conductivity σ293 K. The optimization is based on high-temperature measurements of σ( T) in two-component nonstoichiometric phases R 1 - y M y F3 - y ( M = Sr, Ba) as a function of the MF2 content. Optimization for thermal stability is based on studying the phase diagrams of MF2- RF3 systems ( M = Sr, Ba) and the behavior of nonstoichiometric crystals upon heating when measuring temperature dependences σ( T). Single crystals of many studied R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y phases have σ293 K values large enough to use these materials in solid-state electrochemical devices (chemical sensors, fluorine-ion batteries, accumulators, etc.) operating at room temperature.

  11. Graphene Reinforced Glassy Carbon (GRGC) Beam Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renomeron, Lynda L.

    Secondary particle beams require beam windows that isolate the target (usually in air) from the primary particle beam vacuum. Advanced beam window solutions are needed that can withstand anticipated increases in beam power and intensity that will result in higher thermal shock on the window and increased oxidative erosion rates on the air-side caused by increased temperatures. Carbon-based windows, in particular, glassy carbon windows are of interest to minimize interaction with the beam. The attractive properties of glassy carbon are: 1. Low atomic number 2. Low thermal expansion 3. High strength and low Young's modulus 4. Low gas permeability andmore » low outgassing for ultrahigh vacuum use The one liability of glassy carbon is its low thermal conductivity, nominally 5 W/mK, which will exacerbate temperature rise, oxidation, and thermal shock concerns as beam powers increase. TA&T proposes the development of graphene reinforced glassy carbon (GRGC) composites to increase the thermal conductivity and address this Achilles heel of glassy carbon. Graphene as a reinforcing phase has shown the capability to increase the thermal conductivity of the matrix material by up to two orders of magnitude. For beam windows this would substantially increase heat spreading away from the beam zone of the window and improve thermal shock resistance, and reduce maximum temperature and air-side oxidation of the window. Increased thermal conductivity would also improve the effectiveness of edge-cooling schemes to minimize temperature increase. In the Phase I effort, graphene oxide (GO) particles were dispersed into glassy carbon precursor at different content levels and cast into solid shapes. The goal was to determine the effect of graphene concentration on the mechanical properties (flexure strength), and thermal (thermal conductivity). The Phase I results indicated that addition of graphene did have a significant effect on thermal conductivity; however the microstructural properties of the composite need further improvement. The Phase II work is designed to address the processing issues found during Phase I, so as to fully realize the benefits of GO within the glassy carbon In addition to enabling improved windows for high energy particle beam experiments, the reinforced glassy carbon material will find various other applications such as thruster bodies for rocket propulsion, more durable carbon-based electrodes for electrochemistry applications, bi-polar plates for advanced batteries, catalyst support structures, and structural bio-implants.« less

  12. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  13. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOEpatents

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  14. Integrated P-channel MOS gyrator

    NASA Technical Reports Server (NTRS)

    Hochmair, E. S. (Inventor)

    1974-01-01

    A gyrator circuit is described which is of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 phase reversal, in a circuit having medium Q composed of all field effect transistors of the same conductivity type. The current source to each gyrator amplifier comprises an amplifier which responds to changes in current, with the amplified signals feed back so as to limit current. The feedback amplifier has a large capacitor connected to bypass high frequency components, thereby stabilizing the output. The design makes possible fabrication of circuits with transistors of only one conductivity type, providing economies in manufacture and use.

  15. Feasibility Test of a Liquid Film Thickness Sensor on a Flexible Printed Circuit Board Using a Three-Electrode Conductance Method

    PubMed Central

    Lee, Kyu Byung; Kim, Jong Rok; Park, Goon Cherl; Cho, Hyoung Kyu

    2016-01-01

    Liquid film thickness measurements under temperature-varying conditions in a two-phase flow are of great importance to refining our understanding of two-phase flows. In order to overcome the limitations of the conventional electrical means of measuring the thickness of a liquid film, this study proposes a three-electrode conductance method, with the device fabricated on a flexible printed circuit board (FPCB). The three-electrode conductance method offers the advantage of applicability under conditions with varying temperatures in principle, while the FPCB has the advantage of usability on curved surfaces and in relatively high-temperature conditions in comparison with sensors based on a printed circuit board (PCB). Two types of prototype sensors were fabricated on an FPCB and the feasibility of both was confirmed in a calibration test conducted at different temperatures. With the calibrated sensor, liquid film thickness measurements were conducted via a falling liquid film flow experiment, and the working performance was tested. PMID:28036000

  16. Vocational Cooking Class. Final Report.

    ERIC Educational Resources Information Center

    Morton, Kathy M.

    A project was conducted to develop a course in cooking skills for high school students interested in preparing for jobs or seeking advanced vocational training in the food service occupations. During the first phase of the project, the course instructor, who is also the head cook at the high school, completed courses in cardiopulmonary…

  17. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  18. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  19. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    NASA Astrophysics Data System (ADS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-05-01

    High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.

  20. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Gomès, Séverine; Isaiev, Mykola; Burbelo, Roman; Termentzidis, Konstantinos; Chantrenne, Patrice; Fréchette, Luc G.; Lysenko, Vladimir

    2013-07-01

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 °C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  1. Ultra-High Temperature Thermal Barrier Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Eric; Gell, Maurice; Wang, Jiwen

    In this project, HiFunda LLC worked with the University of Connecticut (UConn) to demonstrate an attractive option for thermal barrier coatings (TBCs), namely yttrium aluminum garnet (YAG), which was well known to have proven thermal stability and excellent high-temperature mechanical properties. YAG and other higher temperature TBCs have not been used to date because they exhibit inadequate durability, resulting from (a) poor erosion resistance and (b) greater thermal expansion mismatch strains compared to 7YSZ. UConn had previously demonstrated that the solution precursor plasma spray (SPPS) process could produce a durable 7YSZ TBC resulting from a highly strain tolerant microstructure, consistingmore » of through-coating-thickness vertical cracks. HiFunda/UConn reasoned at the start of Phase I that such a strain-tolerant microstructure could produce durable, higher temperature TBCs. The Phase I work demonstrated the feasibility of that concept and of SPPS YAG TBCs. The Phase II work demonstrated that SPPS YAG coating possessed the necessary range of properties to be a viable high temperature TBC, including cyclic durability and reduced elevated temperature thermal conductivity. The SPPS YAG TBCs were shown to have the potential to be used at temperatures 200°C higher than APS YSZ, based on thermal stability, sinter resistance, and CMAS resistance. The overall technical objectives of this Phase 2A project were to further improve the commercial viability of SPPS by improving their performance capabilities and manufacturing economics. The improved performance capability was to be achieved through: (1) further reductions in thermal conductivity, which allows higher gas temperatures and/or thinner coatings to achieve similar gas temperatures; and (2) improved resistance to calcium magnesium alumnoslicate (CMAS) attack of the TBCs, which can yield improved lifetimes. The improved thermal conductivity and CMAs resistance was to be accomplished through compositional and microstructural optimization. Finally, the key metrics to improve the process economics were increased deposition rate and efficiency. In addition to these technical objectives, there were commercialization objectives of getting key commercialization partners to evaluate and qualify the SPPS YAG technology independently so that the technology readiness level (TRL) of the technology could be sufficiently advanced to facilitate Phase III strategic partnerships, leading to eventual commercialization consistent with the overall objectives of the DOE SBIR/STTR program. All the Phase 2A goals were successfully achieved.« less

  2. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals

    NASA Astrophysics Data System (ADS)

    Yu, Yifu; Nam, Gwang-Hyeon; He, Qiyuan; Wu, Xue-Jun; Zhang, Kang; Yang, Zhenzhong; Chen, Junze; Ma, Qinglang; Zhao, Meiting; Liu, Zhengqing; Ran, Fei-Rong; Wang, Xingzhi; Li, Hai; Huang, Xiao; Li, Bing; Xiong, Qihua; Zhang, Qing; Liu, Zheng; Gu, Lin; Du, Yonghua; Huang, Wei; Zhang, Hua

    2018-06-01

    Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T'-MoX2 (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T'-MoS2 crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS2 following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T'-MoS2 is much more active than that of 2H-MoS2 for the electrocatalytic hydrogen evolution reaction in an acidic medium.

  3. Validity of High School Physic Module With Character Values Using Process Skill Approach In STKIP PGRI West Sumatera

    NASA Astrophysics Data System (ADS)

    Anaperta, M.; Helendra, H.; Zulva, R.

    2018-04-01

    This study aims to describe the validity of physics module with Character Oriented Values Using Process Approach Skills at Dynamic Electrical Material in high school physics / MA and SMK. The type of research is development research. The module development model uses the development model proposed by Plomp which consists of (1) preliminary research phase, (2) the prototyping phase, and (3) assessment phase. In this research is done is initial investigation phase and designing. Data collecting technique to know validation is observation and questionnaire. In the initial investigative phase, curriculum analysis, student analysis, and concept analysis were conducted. In the design phase and the realization of module design for SMA / MA and SMK subjects in dynamic electrical materials. After that, the formative evaluation which include self evaluation, prototyping (expert reviews, one-to-one, and small group. At this stage validity is performed. This research data is obtained through the module validation sheet, which then generates a valid module.

  4. Phased in smoke-free workplace laws: impact in grass-roots pubs and clubs in South Australia.

    PubMed

    Miller, Caroline L; Hickling, Jacqueline A

    2007-04-01

    Smoke-free workplace laws with phase-in provisions for licensed bar and gaming venues are being rolled-out across Australia. This study investigates grass-roots industry reactions after the first phase of implementation in South Australia and compares them with views of patrons who smoke. Two surveys were conducted with bar and club managers of randomly selected licensed venues in South Australia. The first survey (baseline) was conducted in November 2004 (n=500; by telephone). The second survey (phase 1) was conducted in May 2005 (n=357; in person including site inspection). Community support was assessed in a telephone survey conducted in 2005 (n=2,004). In 2005, more than half supported the smoking bans planned for 2007 and up to 75% supported the phase-in provisions (for 2005-07). By 2005, 90.7% recognised it was important to provide a smoke-free environment for staff, but one-third were under the mistaken impression that phase-in measures offered health protection. Attempted compliance was very high and, for most, not an effort or financial burden. Verified compliance was fair, although lower than self-report due to confusion about rules for smoking and non-smoking areas. When the views of bar and club managers were compared with community views, collected in a separate survey, it was found that bar and club managers substantially under-estimated community support for impending total smoke-free laws, due in November 2007. Grass-roots industry support for smoke-free laws is considerable and higher than industry comments might imply, but somewhat lesser than community support. Attempted compliance is fair, despite confusion about details.

  5. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells.

    PubMed

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; Lee, Sangwook; Kim, Dong Hoe; Zhu, Kai; Shin, Hyunjung; Kim, Jin Young

    2017-12-06

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb x MA 1-x )PbI 3 ) films and the photovoltaic performance of (Rb x MA 1-x )PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc ) and the short circuit photocurrent density (J sc ) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05 MA 0.95 )PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0 ). The optimized (Rb x MA 1-x )PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.

  6. Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2005-01-01

    Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.

  7. A Designer Fluid For Aluminum Phase Change Devices: Aluminum Inorganic Aqueous Solutions (IAS) Chemistry and Experiments. Volume 2

    DTIC Science & Technology

    2016-11-17

    magnitude larger than necessary. Adding more permanganate into the solution can produce a thicker coating . Manganese oxide has a thermal conductivity ...void before sealing both ends. For terrestrial heat pipes, copper is the most commonly used casing material due to its high thermal conductivity ... thermal conductivity ; however, these were early results and the tubes that were obtained from the Chinese manufacturer appeared to be of inconsistent

  8. NASA SBIR product catalog, 1990

    NASA Technical Reports Server (NTRS)

    Schwenk, F. Carl; Gilman, J. A.

    1990-01-01

    Since 1983 the NASA Small Business Innovation Research (SBIR) program has benefitted both the agency and the high technology small business community. By making it possible for more small businesses to participate in NASA's research and development, SBIR also provides opportunities for these entrepreneurs to develop products which may also have significant commercial markets. Structured in three phases, the SBIR program uses Phase 1 to assess the technical feasibility of novel ideas proposed by small companies and Phase 2 to conduct research and development on the best concepts. Phase 3, not funded by SBIR, is the utilization and/or commercialization phase. A partial list of products of NASA SBIR projects which have advanced to some degree into Phase 3 are provided with a brief description.

  9. Stabilization of superionic α-Agl at room temperature in a glass matrix

    NASA Astrophysics Data System (ADS)

    Tatsumisago, Masahiro; Shinkuma, Yoshikane; Minami, Tsutomu

    1991-11-01

    SINCE the discovery1 that the high-temperature phase of silver iodide (α-AgI) has an ionic conductivity comparable to that of the best liquid electrolytes, solid electrolytes have attracted wide interest. Possible applications of these materials range from solid-state batteries to electrochromic displays and sensors2. Although α-AgI displays conductivities of more than 10 S cm-1 (ref. 3), owing to the almost liquid-like mobility of Ag+ ions, the crystal transforms below 147 °C to the β-phase with a conductivity of only ~10-5 S cm-1 at room temperature. Efforts to achieve good conductivities at lower temperatures have focused on the addition of a second component to AgI to form solid solutions or new compounds such as RbAg4I5 and Ag2HgI4 (refs 4-7). Here we report our success in depressing the α-->β transformation temperature so as to stabilize α-AgI itself at room temperature. We use a melt-quenching technique to prepare crystallites of α-AgI frozen into a silver borate glass matrix. The quenched material showed diffraction peaks characteristic of α-AgI and displayed ionic conductivities of about 10-1 S cm-1. Further development of these glass/crystal composites may make the high ionic conductivity of α-AgI available for room-temperature solid-state applications.

  10. Variations in population exposure and evacuation potential to multiple tsunami evacuation phases on Alameda and Bay Farm Islands, California

    NASA Astrophysics Data System (ADS)

    Peters, J.

    2015-12-01

    Planning for a tsunami evacuation is challenging for California communities due to the variety of earthquake sources that could generate a tsunami. A maximum tsunami inundation zone is currently the basis for all tsunami evacuations in California, although an Evacuation Playbook consisting of specific event-based evacuation phases relating to flooding severity is in development. We chose to investigate the Evacuation Playbook approach for the island community of Alameda, CA since past reports estimated a significant difference in numbers of residents in the maximum inundation zone when compared to an event-based inundation zone. In order to recognize variations in the types of residents and businesses within each phase, a population exposure analysis was conducted for each of the four Alameda evacuation phases. A pedestrian evacuation analysis using an anisotropic, path distance model was also conducted to understand the time it would take for populations to reach high ground by foot. Initial results suggest that the two islands of the City of Alameda have different situations when it comes to the four tsunami evacuation phases. Pedestrian evacuation results suggest that Bay Farm Island would have more success evacuating by vehicle due to limited nearby high ground for pedestrians to reach safety. Therefore, agent-based traffic simulation software was used to model vehicle evacuation off Bay Farm Island. Initial results show that Alameda Island could face challenges evacuating numerous boat docks and a large beach for phases 1 and 2, whereas Bay Farm Island is unaffected at these phases but might be challenged with evacuating by vehicle for phases 3 and maximum due to congestion on limited egress routes. A better understanding of the population exposure within each tsunami Evacuation Playbook phase and the time it would take to evacuate out of each phase by foot or vehicle will help emergency managers implement the evacuation phases during an actual tsunami event.

  11. Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations

    DOE PAGES

    Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...

    2016-06-22

    Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less

  12. Thermoelectric Properties of the Ca1- x R x MnO3 Perovskite System (R: Pr, Nd, Sm) for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Choi, Soon-Mok; Lim, Chang-Hyun; Seo, Won-Seon

    2011-05-01

    Perovskite oxides have attracted considerable attention in the area of thermoelectrics owing to the advantages of their isotropic crystal structure and straightforward control of their electrical properties. Among the many perovskites, different types of polycrystalline Ca1- x R x MnO3 (R: Pr, Nd, Sm) were prepared by solid-state reaction in this study. Three different rare-earth dopants were substituted at the Ca-ion site at various amounts. Considering phase stability, rare-earth ions with nearly the same ionic radius as Ca2+ were selected. To assess thermoelectric performance, the electrical conductivity, Seebeck coefficient, and power factor were measured, and phase analysis was conducted. The effects of ionic radius variation on single phase formation and the effect of doping amount on carrier concentration are discussed.

  13. X-ray studies of aluminum alloy of the Al-Mg-Si system subjected to SPD processing

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Murashkin, M. Yu; Khasanov, M. R.; Kasatkin, I. A.; Chizhov, P. S.; Bobruk, E. V.

    2014-08-01

    Recently it has been established that during high pressure torsion dynamic aging takes place in aluminum Al-Mg-Si alloys resulting in formation of nanosized particles of strengthening phases in the aluminum matrix, which greatly improves the electrical conductivity and strength properties. In the present paper structural characterization of ultrafine-grained (UFG) samples of aluminum 6201 alloy produced by severe plastic deformation (SPD) was performed using X-ray diffraction analysis. As a result, structure features (lattice parameter, size of coherent scattering domains) after dynamic aging of UFG samples were determined. The size and distribution of second- phase particles in the Al matrix were assessed with regard to HPT regimes. Impact of the size and distribution of the formed secondary phases on the strength, ductility and electrical conductivity is discussed.

  14. Effect of titanium addition on the thermal properties of diamond/cu-ti composites fabricated by pressureless liquid-phase sintering technique.

    PubMed

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m · K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained.

  15. Effect of Titanium Addition on the Thermal Properties of Diamond/Cu-Ti Composites Fabricated by Pressureless Liquid-Phase Sintering Technique

    PubMed Central

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m·K for 50 vol% diamond/Cu-0.6  at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained. PMID:24715816

  16. Electrical Characterization of Critical Phase Change Conditions in Nanoscale Ge2Sb2Te5 Pillars

    NASA Astrophysics Data System (ADS)

    Ozatay, Ozhan; Stipe, Barry; Katine, Jordan; Terris, Bruce

    2008-03-01

    Following the original work of Ovshinsky on disordered semiconductors that exhibit ovonic threshold switching (OTS) there has been substantial interest in the electronic reversible switching properties of chalcogenides^1. The current induced phase transitions between polycrystalline and amorphous states in these materials offer orders of magnitude changes in the conductance which makes them an ideal candidate for non-volatile data storage applications. In this work we investigate the scaling of critical programming conditions required to observe such transitions between highly resistive (disordered) and highly conductive (ordered) states by constructing a resistance map with various pulse widths and amplitudes under different cooling conditions (as a function of pulse trailing edge). We study the evolution of critical phase change conditions as a function of contact size (50nm-1μm) and shape (circle-square-rectangle). We compare the resulting switching behaviour with the predictions of a finite-element model of the electro-thermal physics to analyze the nature of the switching dynamics at the nanoscale. ^1 S-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology; doi:10:1038/nnano.2007.291

  17. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  18. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of optical absorption in polycrystalline CVD diamond plates by the phase photothermal method at a wavelength of 10.6 μm

    NASA Astrophysics Data System (ADS)

    Luk'yanov, A. Yu; Ral'chenko, Viktor G.; Khomich, A. V.; Serdtsev, E. V.; Volkov, P. V.; Savel'ev, A. V.; Konov, Vitalii I.

    2008-12-01

    A highly-efficient phase photothermal method is developed for quantitative measurements of the small optical absorption coefficient in thin plates made of highly transparent materials in which bulk losses significantly exceed surface losses. The bulk absorption coefficient at 10.6 μm is estimated in polycrystalline diamond plates grown from the vapour phase (a CVD diamond). The results are compared with those for natural and synthetic diamond single crystals and with the concentrations of nitrogen and hydrogen impurities. The absorption coefficient of the best samples of the CVD diamond did not exceed 0.06 cm-1, which, taking into account the high thermal conductivity of the CVD diamond (1800-2200 W mK-1 at room temperature), makes this material attractive for fabricating output windows of high-power CO2 lasers, especially for manufacturing large-size optics.

  19. High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium

    NASA Astrophysics Data System (ADS)

    Zapata B., Pedro Jose

    Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton conductivity due to precluded segmental motion and physical blockage of the PE chains during crosslinking. In addition, a maximum effective amount of PE (55-60wt%, neutralized form) beneficial for proton conductivity was revealed. Some of the aforementioned effects may possibly have been overlooked if a high-throughput study including plentiful combinations of multiple precursors hadn't been performed. In the case of composite membranes, despite the fact that nanoparticle dispersion was thermodynamically limited, a general improvement in proton conductivity was evidenced at low to medium nanoparticle loadings (0.5 to 1wt%) in comparison to non-hybrid PVDF/PE references. This beneficial effect was particularly noticeable in membranes based on PVDF homopolymers (7% to 14.3% increment), where the nanoparticles induced a "healing" effect by providing proton-conducting paths between non-crosslinked PE channels separated by dense PVDF areas resulting from large PVDF crystallites. In general, the results presented herein are promising for the development of new cost-effective alternative PEMs.

  20. Process for analyzing CO.sub.2 in seawater

    DOEpatents

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey

    1997-01-01

    The process of this invention comprises providing a membrane for separating CO.sub.2 into a first CO.sub.2 sample phase and a second CO.sub.2 analyte phase. CO.sub.2 is then transported through the membrane thereby separating the CO.sub.2 with the membrane into a first CO.sub.2 sample phase and a second CO.sub.2 analyte liquid phase including an ionized, conductive, dissociated CO.sub.2 species. Next, the concentration of the ionized, conductive, dissociated CO.sub.2 species in the second CO.sub.2 analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO.sub.2 to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO.sub.2 in the first CO.sub.2 sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO.sub.2 species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO.sub.2 species are detected using the conductivity measuring instrument.

  1. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankaran, K. J.; Institute for Materials Research; Sundaravel, B.

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of themore » UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.« less

  2. Phase behaviour and conductivity of supporting electrolytes in supercritical difluoromethane and 1,1-difluoroethane.

    PubMed

    Han, Xue; Ke, Jie; Suleiman, Norhidayah; Levason, William; Pugh, David; Zhang, Wenjian; Reid, Gillian; Licence, Peter; George, Michael W

    2016-06-07

    We present investigations into a variety of supporting electrolytes and supercritical fluids probing the phase and conductivity behaviour of these systems and show that they not only provide sufficient electrical conductivity for an electrodeposition bath, but match the requirements imposed by the different precursors and process parameters, e.g. increased temperature, for potential deposition experiments. The two supercritical fluids that have been explored in this study are difluoromethane (CH2F2) and 1,1-difluoroethane (CHF2CH3). For CH2F2, the phase behaviour and electrical conductivity of eight ionic compounds have been studied. Each compound consists of a cation and an anion from the selected candidates i.e. tetramethylammonium ([N(CH3)4](+)), tetrabutylammonium ([N((n)C4H9)4](+)), 1-ethyl-3-methylimidazolium ([EMIM](+)) and 1-butyl-3-methylimidazolium ([BMIM](+)) for cations, and tetrakis(perfluoro-tert-butoxy)aluminate ([Al(OC(CF3)3)4](-)), chloride (Cl(-)), trifluoromethyl sulfonimide ([NTf2](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) for anions. For CHF2CH3, [N((n)C4H9)4][BF4] and [N((n)C4H9)4][B{3,5-C6H3(CF3)2}4] have been investigated for comparison with the previously measured solubility and conductivity in CH2F2. We have found that [N((n)C4H9)4][Al(OC(CF3)3)4], [N((n)C4H9)4][FAP] and [N(CH3)4][FAP] have much higher molar conductivity in scCH2F2 at similar conditions than [N((n)C4H9)4][BF4], a widely used commercial electrolyte. Additionally, scCHF2CH3 shows potential for use as the solvent for supercritical fluid electrodeposition, especially at high temperatures since high density of this fluid can be achieved at lower operating pressures than similar fluids that can be used to produce electrochemical baths with comparable conductivity.

  3. Hyperscaling violating black hole solutions and magneto-thermoelectric DC conductivities in holography

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Tian, Yu; Wu, Shang-Yu; Wu, Shao-Feng

    2017-08-01

    We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with increasing temperature in the high-temperature regime.

  4. Advanced photoinjector experiment photogun commissioning results

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Filippetto, D.; Papadopoulos, C. F.; Staples, J.; Wells, R.; Bailey, B.; Baptiste, K.; Corlett, J.; Cork, C.; De Santis, S.; Dimaggio, S.; Doolittle, L.; Doyle, J.; Feng, J.; Garcia Quintas, D.; Huang, G.; Huang, H.; Kramasz, T.; Kwiatkowski, S.; Lellinger, R.; Moroz, V.; Norum, W. E.; Padmore, H.; Pappas, C.; Portmann, G.; Vecchione, T.; Vinco, M.; Zolotorev, M.; Zucca, F.

    2012-10-01

    The Advanced Photoinjector Experiment (APEX) at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class) electron injector for x-ray free-electron laser (FEL) and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC) cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw) mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.

  5. A model to predict thermal conductivity of irradiated U-Mo dispersion fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    2016-05-01

    Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.

  6. A model to predict thermal conductivity of irradiated U–Mo dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less

  7. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  8. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  9. Strengthening of Cu–Ni–Si alloy using high-pressure torsion and aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seungwon, E-mail: chominamlsw@gmail.com; WPI, International Institute for Carbon-Neutral Energy Research; Matsunaga, Hirotaka

    2014-04-01

    An age-hardenable Cu–2.9%Ni–0.6%Si alloy was subjected to high-pressure torsion. Aging behavior was investigated in terms of hardness, electrical conductivity and microstructural features. Transmission electron microscopy showed that the grain size is refined to ∼ 150 nm and the Vickers microhardness was significantly increased through the HPT processing. Aging treatment of the HPT-processed alloy led to a further increase in the hardness. Electrical conductivity is also improved with the aging treatment. It was confirmed that the simultaneous strengthening by grain refinement and fine precipitation is achieved while maintaining high electrical conductivity. Three dimensional atom probe analysis including high-resolution transmission electron microscopymore » revealed that nanosized precipitates having compositions of a metastable Cu{sub 3}Ni{sub 5}Si{sub 2} phase and a stable NiSi phase were formed in the Cu matrix by aging of the HPT-processed samples and these particles are responsible for the additional increase in strength after the HPT processing. - Highlights: • Grain refinement is achieved in Corson alloy the size of ∼150nm by HPT. • Aging at 300°C after HPT leads to further increase in the mechanical property. • Electrical conductivity reaches 40% IACS after aging for 100 h. • 3D-APT revealed the formation of nanosized-precipitates during aging treatment. • Simultaneous hardening in both grain refinement and precipitation is achieved.« less

  10. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  11. Ultrafast lithium diffusion in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.

    2017-09-01

    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  12. Cannabis-based medicines--GW pharmaceuticals: high CBD, high THC, medicinal cannabis--GW pharmaceuticals, THC:CBD.

    PubMed

    2003-01-01

    GW Pharmaceuticals is undertaking a major research programme in the UK to develop and market distinct cannabis-based prescription medicines [THC:CBD, High THC, High CBD] in a range of medical conditions. The cannabis for this programme is grown in a secret location in the UK. It is expected that the product will be marketed in the US in late 2003. GW's cannabis-based products include selected phytocannabinoids from cannabis plants, including D9 tetrahydrocannabinol (THC) and cannabidiol (CBD). The company is investigating their use in three delivery systems, including sublingual spray, sublingual tablet and inhaled (but not smoked) dosage forms. The technology is protected by patent applications. Four different formulations are currently being investigated, including High THC, THC:CBD (narrow ratio), THC:CBD (broad ratio) and High CBD. GW is also developing a specialist security technology that will be incorporated in all its drug delivery systems. This technology allows for the recording and remote monitoring of patient usage to prevent any potential abuse of its cannabis-based medicines. GW plans to enter into agreements with other companies following phase III development, to secure the best commercialisation terms for its cannabis-based medicines. In June 2003, GW announced that exclusive commercialisation rights for the drug in the UK had been licensed to Bayer AG. The drug will be marketed under the Sativex brand name. This agreement also provides Bayer with an option to expand their license to include the European Union and certain world markets. GW was granted a clinical trial exemption certificate by the Medicines Control Agency to conduct clinical studies with cannabis-based medicines in the UK. The exemption includes investigations in the relief of pain of neurological origin and defects of neurological function in the following indications: multiple sclerosis (MS), spinal cord injury, peripheral nerve injury, central nervous system damage, neuroinvasive cancer, dystonias, cerebral vascular accident and spina bifida, as well as for the relief of pain and inflammation in rheumatoid arthritis and also pain relief in brachial plexus injury. The UK Government stated that it would be willing to amend the Misuse of Drugs Act 1971 to permit the introduction of a cannabis-based medicine. GW stated in its 2002 Annual Report that it was currently conducting five phase III trials of its cannabis derivatives, including a double-blind, placebo-controlled trial with a sublingual spray containing High THC in more than 100 patients with cancer pain in the UK. Also included is a phase III trial of THC:CBD (narrow ratio) being conducted in patients with severe pain due to brachial plexus injury, as are two more phase III trials of THC:CBD (narrow ratio) targeting spasticity and bladder dysfunction in multiple sclerosis patients. Another phase III trial of THC:CBD (narrow ratio) in patients with spinal cord injury is also being conducted. Results from the trials are expected during 2003. Three additional trials are also in the early stages of planning. These trials include a phase I trial of THC:CBD (broad ratio) in patients with inflammatory bowel disease, a phase I trial of High CBD in patients with psychotic disorders such as schizophrenia, and a preclinical trial of High CBD in various CNS disorders (including epilepsy, stroke and head injury). GW Pharmaceuticals submitted an application for approval of cannabis-based medicines to UK regulatory authorities in March 2003. Originally GW hoped to market cannabis-based prescription medicines by 2004, but is now planning for a launch in the UK towards the end of 2003. Several trials for GW's cannabis derivatives have also been completed, including four randomised, double-blind, placebo-controlled phase III clinical trials conducted in the UK. The trials were initiated by GW in April 2002, to investigate the use of a sublingual spray containing THC:CBD (narrow ratio) in the following medical conditions: pain in spinal cord injury, pain and sleep in MS and spinal cord injury, neuropathic pain in MS and general neuropathic pain (presented as allodynia). Results from these trials show that THC:CBD (narrow ratio) caused statistically significant reductions in neuropathic pain in patients with MS and other conditions. In addition, improvements in other MS symptoms were observed as well. Phase II studies of THC:CBD (narrow ratio) have also been completed in patients with MS, spinal cord injury, neuropathic pain and a small number of patients with peripheral neuropathy secondary to diabetes mellitus or AIDS. A phase II trial of THC:CBD (broad ratio) has also been completed in a small number of patients with rheumatoid arthritis, as has a trial of High CBD in patients with neurogenic symptoms. A phase II trial has also been evaluated with High THC in small numbers of patients for the treatment of perioperative pain. The phase II trials provided positive results and confirmed an excellent safety profile for cannabis-based medicines. GW Pharmaceuticals received an IND approval to commence phase II clinical trials in Canada in patients with chronic pain, multiple sclerosis and spinal cord injury in 2002. Following meetings with the US FDA, Drug Enforcement Agency (DEA), the Office for National Drug Control Policy, and National Institute for Drug Abuse, GW was granted an import license from the DEA and has imported its first cannabis extracts into the US. Preclinical research with these extracts in the US is ongoing.

  13. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20°C, although the film thickness was over 1 mum. Lithium titanate with the spinel structure is also an important anode material for high power applications. It has a unique feature of zero volume change during lithium ion intercalation, which gives its excellent performance when as nanoparticles. Our results show that a slight reduction of the titanium using hydrogen leads to a high capacity at a high rate even at moderate particle size. Silicon is currently of considerable interest as an anode for lithium secondary electrochemical batteries. The Li-Si alloy system, having average operating voltages below 500 mV versus lithium, can take up to 3.4 lithium ions during intercalation. It is also well known that a 300% volume dilatation is associated with alloying 3.4 lithium atoms per silicon atom. M-Si (M = Fe, Co, and Ni) alloys with nano-silicon domains were introduced as the anode materials for lithium ion batteries. An improved electrochemical performance was found.

  14. The influence on response of axial rotation of a six-group local-conductance probe in horizontal oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Weihang, Kong; Lingfu, Kong; Lei, Li; Xingbin, Liu; Tao, Cui

    2017-06-01

    Water volume fraction is an important parameter of two-phase flow measurement, and it is an urgent task for accurate measurement in horizontal oil field development and optimization of oil production. The previous ring-shaped conductance water-cut meter cannot obtain the response values corresponding to the oil field water conductivity for oil-water two-phase flow in horizontal oil-producing wells characterized by low yield liquid, low velocity and high water cut. Hence, an inserted axisymmetric array structure sensor, i.e. a six-group local-conductance probe (SGLCP), is proposed in this paper. Firstly, the electric field distributions generated by the exciting electrodes of SGLCP are investigated by the finite element method (FEM), and the spatial sensitivity distributions of SGLCP are analyzed from the aspect of different separations between two electrodes and different axial rotation angles respectively. Secondly, the numerical simulation responses of SGLCP in horizontal segregated flow are calculated from the aspect of different water cut and heights of the water layer, respectively. Lastly, an SGLCP-based well logging instrument was developed, and experiments were carried out in a horizontal pipe with an inner diameter of 125 mm on the industrial-scale experimental multiphase flow setup in the Daqing Oilfield, China. In the experiments, the different oil-water two-phase flow, mineralization degree, temperature and pressure were tested. The results obtained from the simulation experiments and simulation well experiments demonstrate that the designed and developed SGLCP-based instrument still has a good response characteristic for measuring water conductivity under the different conditions mentioned above. The validity and reliability of obtaining the response values corresponding to the water conductivity through the designed and developed SGLCP-based instrument are verified by the experimental results. The significance of this work can provide an effective technology for measuring the water volume fraction of oil-water two-phase flow in horizontal oil-producing wells.

  15. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    NASA Astrophysics Data System (ADS)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  16. Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    McLean, J. D.; Crouch, J. D.; Stoner, R. C.; Sakurai, S.; Seidel, G. E.; Feifel, W. M.; Rush, H. M.

    1999-01-01

    This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.

  17. Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Liang; Liu, Chengyan; Miao, Lei; Gao, Jie; Zheng, Yan-yan; Wang, Xiaoyang; Lu, Jiacai; Shu, Mingzheng

    2018-06-01

    With excellent high-temperature stability (up to 1000 K) and favorable electrical properties for thermoelectric application, TiNiSn-based half-Heusler (HH) alloys are expected to be promising thermoelectric materials for the recovery of waste heat in the temperature ranging from 700 K to 900 K. However, their thermal conductivity is always relatively high (5-10 W/mK), making it difficult to further enhance their thermoelectric figure-of-merit ( ZT). In the past decade, introducing nano-scale secondary phases into the HH alloy matrix has been proven to be feasible for optimizing the thermoelectric performance of TiNiSn. In this study, a series of TiNiSn-based alloys have been successfully synthesized by a simple solid-state reaction. The content and composition of the heterogeneous phase (TiNi2Sn and Sn) is accurately regulated and, as a result, the thermal conductivity successfully reduced from 4.9 W m-1 K-1 to 3.0 Wm-1 K-1 (750 K) due to multi-scale phonon scattering. Consequently, a ZT value of 0.49 is achieved at 750 K in our TiNiSn-based thermoelectric materials. Furthermore, the thermal stability of TiNiSn alloys is enhanced through reducing the Sn substance phase.

  18. Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Liang; Liu, Chengyan; Miao, Lei; Gao, Jie; Zheng, Yan-yan; Wang, Xiaoyang; Lu, Jiacai; Shu, Mingzheng

    2017-12-01

    With excellent high-temperature stability (up to 1000 K) and favorable electrical properties for thermoelectric application, TiNiSn-based half-Heusler (HH) alloys are expected to be promising thermoelectric materials for the recovery of waste heat in the temperature ranging from 700 K to 900 K. However, their thermal conductivity is always relatively high (5-10 W/mK), making it difficult to further enhance their thermoelectric figure-of-merit (ZT). In the past decade, introducing nano-scale secondary phases into the HH alloy matrix has been proven to be feasible for optimizing the thermoelectric performance of TiNiSn. In this study, a series of TiNiSn-based alloys have been successfully synthesized by a simple solid-state reaction. The content and composition of the heterogeneous phase (TiNi2Sn and Sn) is accurately regulated and, as a result, the thermal conductivity successfully reduced from 4.9 W m-1 K-1 to 3.0 Wm-1 K-1 (750 K) due to multi-scale phonon scattering. Consequently, a ZT value of 0.49 is achieved at 750 K in our TiNiSn-based thermoelectric materials. Furthermore, the thermal stability of TiNiSn alloys is enhanced through reducing the Sn substance phase.

  19. A geometrical shift results in erroneous appearance of low frequency tissue eddy current induced phase maps.

    PubMed

    Mandija, Stefano; van Lier, Astrid L H M W; Katscher, Ulrich; Petrov, Petar I; Neggers, Sebastian F W; Luijten, Peter R; van den Berg, Cornelis A T

    2016-09-01

    Knowledge on low frequency (LF) tissue conductivity is relevant for various biomedical purposes. To obtain this information, LF phase maps arising from time-varying imaging gradients have been demonstrated to create a LF conductivity contrast. Essential in this methodology is the subtraction of phase images acquired with opposite gradient polarities to separate LF and RF phase effects. Here we demonstrate how sensitive these subtractions are with respect to geometrical distortions. The effect of geometrical distortions on LF phase maps is mathematically defined. After quantifying typical geometrical distortions, their effects on LF phase maps are evaluated using conductive phantoms. For validation, electromagnetic simulations of LF phase maps were performed. Even sub-voxel distortions of 10% of the voxel size, measured for a typical LF MR sequence, cause leakage of RF phase into LF phase of several milli-radians, leading to a misleading pattern of LF phase maps. This leakage is mathematically confirmed, while simulations indicate that the expected LF phase should be in order of micro-radians. The conductivity scaling of LF phase maps is attributable to the RF phase leakage, thus dependent on the RF conductivity. In fact, simulations show that the LF phase is not measurable. Magn Reson Med 76:905-912, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Design of compact dispersion interferometer with a high efficiency nonlinear crystal and a low power CO2 laser

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.

    2017-12-01

    When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.

  1. High thermoelectric performances of monolayer SnSe allotropes.

    PubMed

    Hu, Zi-Yu; Li, Kai-Yue; Lu, Yong; Huang, Yan; Shao, Xiao-Hong

    2017-10-26

    α-SnSe is one of the most promising thermoelectric materials with low thermal conductivity and a high power factor. Since the thermoelectric properties of a material have a strong dependence on its crystal structure, we study the energetic and thermoelectric properties of four new monolayer phases of SnSe (β, γ, δ and ε) together with α-SnSe using the ab initio density functional theory method. The calculated electronic structures show that all five phases are semiconductors with different band gaps. The α, β, γ, and δ phases have an indirect band gap with the hybridization of sp 2 orbitals, whereas the ε phase has a direct band with the hybridization of sp 3 orbitals. The thermoelectric transport properties and coefficients are obtained from the electronic structure using semi-classical Boltzmann theory, and the results indicate that the four new phases of SnSe (β, γ, δ and ε) all have better thermoelectric properties compared with the reported α phase. The predicted ZT value for the β-SnSe phase is 2.06 at 300 K, suggesting that it has great potential for novel thermoelectric applications.

  2. Depositing High-T(sub c) Superconductors On Normal-Conductor Wires

    NASA Technical Reports Server (NTRS)

    Kirlin, Peter S.

    1994-01-01

    Experiments have demonstrated feasibility of depositing thin layers of high-T(sub c) superconductor on normally electrically conductive wires. Superconductivity evident at and below critical temperature (T{sub c}) of 71 K. OMCVD, organometallic vapor deposition, apparatus coats Ag wire with layer high-T(sub c) superconductor. Superconductive phase of this material formed subsequently by annealing under controlled conditions.

  3. Transport properties of Cu-doped bismuth selenide single crystals at high magnetic fields up to 60 Tesla: Shubnikov-de Haas oscillations and π-Berry phase

    NASA Astrophysics Data System (ADS)

    Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.

    2018-05-01

    We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.

  4. Phase diagram of URu 2-xFe xSi 2 in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, S.; Jeon, I.; Kanchanavatee, N.

    2017-03-01

    The search for the order parameter of the hidden order (HO) phase in URu 2Si 2 has attracted an enormous amount of attention for the past three decades. Measurements in high magnetic fields H up to 45~T reveal that URu 2Si 2 displays behavior that is consistent with quantum criticality at a field near 35~T, where a cascade of novel quantum phases was found at and around the quantum critical point, suggesting the existence of competing order parameters. Experiments at high pressure P reveal that a first order transition from the HO phase to a large moment antiferromagnetic (LMAFM) phasemore » occurs under pressure at a critical pressure Pc. We have recently demonstrated that tuning URu 2Si 2 by substitution of Fe for Ru offers an opportunity to study the HO and LMAFM phases at atmospheric pressure. In this study, we conducted electrical resistance measurements on URu 2-xFe xSi 2 for H < 65 T using the pulsed field facility at the NHMFL in Los Alamos, in order to establish the temperature T vs. H phase diagram of URu 2-xFe xSi 2 under magnetic fields.« less

  5. Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images

    NASA Astrophysics Data System (ADS)

    Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.

    2017-12-01

    Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.

  6. Next-generation foundations for special trackwork phase III : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    Transportation Technology Center, Inc. (TTCI) conducted a series of tests, funded by the Federal Railroad Administration, which evaluated the potential beneficial effects of various configurations of high angle frogs and frog foundations on wheel-rai...

  7. Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhu, Dongming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-03-01

    Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  8. The integration of technology into the middle and high school science curriculum

    NASA Astrophysics Data System (ADS)

    Corbin, Jan Frederic

    This study was to determine the level of technology implementation into the middle and high school science curriculum by beginning teachers. Research was conducted in two phases. The first phase was a survey that provided demographic data and determined the Level of Technology Implementation, Personal Computer Use, and Current Instructional Practice. Dr. Christopher Moersch developed the survey, Level of Technology Implementation (LoTi(c) ). The data provided insight into what technology teachers use, barriers associated with technology integration, teacher training and development, and technical support. Follow-up interviews were conducted to gather additional qualitative data and information. Analysis of the data found beginning teachers have not received enough technology training to integrate technology seamlessly into the science curriculum. Conclusions cite the need for more technology courses during preservice education, more time during the day for beginning teachers to learn to use the technology available at their schools, consolidation of inservice staff development offerings, and more technical support staff readily available. Recommendations were made to expand the study group to all science teachers, assess the technology capacity of all schools, and conduct needs assessment of inservice staff development.

  9. Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  10. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  11. Feasible metabolisms in high pH springs of the Philippines

    PubMed Central

    Cardace, Dawn; Meyer-Dombard, D'Arcy R.; Woycheese, Kristin M.; Arcilla, Carlo A.

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization. PMID:25713561

  12. Feasible metabolisms in high pH springs of the Philippines.

    PubMed

    Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

  13. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  14. Informatics Tools to Improve Clinical Research

    PubMed Central

    Argraves, S; Brandt, CA; Money, R; Nadkarni, P

    2005-01-01

    During the conduct of complex clinical trials, there are numerous sources and types of data collection and project coordination problems. Methods and approaches to address the conduct of a trial vary in both the cost and time to perform and the potential benefit. Informatics tools can help trial coordinators and investigators ensure the collection of high quality research data during all phases of a clinical trial. PMID:16779170

  15. High-pressure phases transitions in SnO2 to 117 GPa: Implications for silica

    NASA Astrophysics Data System (ADS)

    Shieh, S. R.; Kubo, A.; Duffy, T. S.; Prakapenka, V. B.; Shen, G.

    2005-12-01

    Cassiterite (SnO2) is regarded to be a good analog material for silica as both SnO2 and SiO2 are group IV-B metal dioxides. The high-pressure behavior of SnO2 has been the subject of many previous investigations extending up to 49 GPa and in addition to the rutile structure, three high-pressure phases, CaCl2-type, α-PbO2-type, and pyrite-type were observed. Better knowledge of high-pressure phases of SnO2 will be useful to understand the behavior of silica at deep mantle conditions. In addition, high-pressure metal dioxide phases may qualify as superhard solids. Our study will also provide insights into interpretation of shock compression data. Pure natural cassiterite (SnO2) powder was compressed in a diamond anvil cell using an argon medium. Pressure was determined from the equation of state of platinum. In situ monochromatic x-ray diffraction at high pressure was carried out at the GSECARS, Advanced Photon Source. High temperatures were achieved using double-sided laser heating . Three heating cycles were conducted with total heating times up to 30 minutes. Our diffraction results on SnO2 demonstrate the existence of four phase transitions to 117 GPa. The observed sequence of high-pressure phases for SnO2 is rutile-type, CaCl2-type, pyrite-type, ZrO2 orthorhombic phase I (Pbca), cotunnite-type. Our observations of the first three phases are generally in agreement with earlier studies. The orthorhombic phase I and cotunnite-type structures were observed in SnO2 for the first time. The Pbca phase is found at 50-74 GPa during room-temperature compression. The cotunnite-type structure was synthesized when SnO2 was heated at 74 GPa and 1200 K. The cotunnite-type form was observed during compression between 54-117 GPa. Fitting the pressure-volume data for the high-pressure phases to the second-order Birch-Murnaghan equation of state yields a bulk modulus of 259(26) GPa for the Pbca phase and 417(7) GPa for the cotunnite-type phase. Rietveld profile refinements were also carried out successfully for these two phases.

  16. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  17. Experimental and numerical study of a dual configuration for a flapping tidal current generator.

    PubMed

    Kim, Jihoon; Quang Le, Tuyen; Hwan Ko, Jin; Ebenezer Sitorus, Patar; Hartarto Tambunan, Indra; Kang, Taesam

    2015-07-30

    In this study, we conduct experimental and consecutive numerical analyses of a flapping tidal current generator with a mirror-type dual configuration with front-swing and rear-swing flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted by means of two-dimensional computational fluid dynamics simulations with an in-house code. An experimental study with a controller to determine the target arm angle shows that the resultant arm angle is dependent on the input arm angle, the frequency, and the applied load, while a high pitch is obtained simply with a high input arm angle. Through a parametric analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. Moreover, the optimal reduced frequency was found to be 0.125 in terms of the power extraction. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90° phase difference between the two. The high contribution stems from the high power generated by the rear-swing flapper, which mimics the tail fin movement of a dolphin along a flow, compared to a plunge system or a front-swing system, which mimics the tail fin movement of a dolphin against a flow. It is also due to the fact that the shed vorticities of the front-swing flapper slightly affect negatively or even positively the power performance of the rear-swing system at a given distance and phase angle.

  18. Process for analyzing CO[sub 2] in air and in water

    DOEpatents

    Atwater, J.E.; Akse, J.R.; DeHart, J.

    1999-06-08

    The process of this invention comprises providing a membrane for separating CO[sub 2] into a first CO[sub 2] sample phase and a second CO[sub 2] analyte phase. CO[sub 2] is then transported through the membrane thereby separating the CO[sub 2] with the membrane into a first CO[sub 2] sample phase and a second CO[sub 2] analyte liquid phase including an ionized, conductive, dissociated CO[sub 2] species. Next, the concentration of the ionized, conductive, dissociated CO[sub 2] species in the second CO[sub 2] analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO[sub 2] to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO[sub 2] in the first CO[sub 2] sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO[sub 2] species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO[sub 2] species are detected using the conductivity measuring instrument. 43 figs.

  19. Process for analyzing CO.sub.2 in air and in water

    DOEpatents

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey

    1999-01-01

    The process of this invention comprises providing a membrane for separating CO.sub.2 into a first CO.sub.2 sample phase and a second CO.sub.2 analyte phase. CO.sub.2 is then transported through the membrane thereby separating the CO.sub.2 with the membrane into a first CO.sub.2 sample phase and a second CO.sub.2 analyte liquid phase including an ionized, conductive, dissociated CO.sub.2 species. Next, the concentration of the ionized, conductive, dissociated CO.sub.2 species in the second CO.sub.2 analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO.sub.2 to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO.sub.2 in the first CO.sub.2 sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO.sub.2 species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO.sub.2 species are detected using the conductivity measuring instrument.

  20. Process for analyzing CO{sub 2} in seawater

    DOEpatents

    Atwater, J.E.; Akse, J.R.; DeHart, J.

    1997-07-01

    The process of this invention comprises providing a membrane for separating CO{sub 2} into a first CO{sub 2} sample phase and a second CO{sub 2} analyte phase. CO{sub 2} is then transported through the membrane thereby separating the CO{sub 2} with the membrane into a first CO{sub 2} sample phase and a second CO{sub 2} analyte liquid phase including an ionized, conductive, dissociated CO{sub 2} species. Next, the concentration of the ionized, conductive, dissociated CO{sub 2} species in the second CO{sub 2} analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO{sub 2} to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO{sub 2} in the first CO{sub 2} sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO{sub 2} species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO{sub 2} species are detected using the conductivity measuring instrument. 43 figs.

  1. Incoherent-to-coherent crossover of optical spectra in La0.825Sr0.175MnO3: Temperature-dependent reflectivity spectra measured on cleaved surfaces

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Sawaki, Y.; Sugai, S.

    1999-11-01

    Optical reflectivity spectra were measured on cleaved surfaces of La0.825Sr0.175MnO3 single crystals (TC=283 K) over a temperature range 10-295 K. The optical conductivity σ(ω) shows incoherent-to-coherent crossover with decreasing temperature. The minimum metallic conductivity σmin of this compound was determined by the dc resistivity ρ(T) measurements of Al-substituted crystals (La0.825Sr0.175)(Mn1-zAlz)O3 and was found to be 2000-3000 Ω-1 cm-1. This indicates that the dc conductivity of La0.825Sr0.175MnO3 is smaller than σmin over a wide temperature range below TC even though ρ(T) is metallic (dρ/dT>0). The present results suggest that there are two types of the ferromagnetic-metallic phase below TC-a ``high-temperature incoherent'' metallic (HIM) and a ``low-temperature coherent'' metallic phase. ``Colossal magnetoresistance'' is a characteristic of the HIM phase.

  2. Experimental investigation of thermal characteristics of lithium ion battery using phase change materials combined with metallic foams and fins

    NASA Astrophysics Data System (ADS)

    Deng, Y. C.; Zhang, H. Y.; Xia, X.

    2016-08-01

    Phase change materials are of great interest in energy storage and energy management applications due to their high latent heat and excellent cycling stability. In this paper, the thermal characteristics of phase change materials (PCM) for thermal management of cylindrical 18650 lithium-ion battery (LIB) were experimentally investigated. A commercial paraffin wax with a melting temperaturerange between 47 - 53.8oC was used in this study. A metal cylinder with a heater was used to emulate the heat generation from a battery, which was surrounded with the paraffin PCM and containted in a metal housing. The experiment was conducted in an environmental test chamber with controlled ambient temperatures and power inputs. Both the battery temperature and the housing wall temperature were measured during steady-state heating and cyclic heating conditions. Since PCM has low thermal conductivity, thermal enhancement techniques were investigated by adding metal foams (MFs) or combining metallic foam and fins into the PCM to enhance the thermal conductivity. The battery temperatures were measured for all the cases and the results were analyzed and discussed.

  3. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  4. In situ observation of stishovite formation in shock-compressed fused silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.

  5. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  6. Mixed conduction and grain boundary effect in lithium niobate under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qinglin; Center for High Pressure Science and Technology Advanced Research, Changchun 130012; Liu, Cailong

    2015-03-30

    The charge transport behavior of lithium niobate has been investigated by in situ impedance measurement up to 40.6 GPa. The Li{sup +} ionic conduction plays a dominant role in the transport process. The relaxation process is described by the Maxwell-Wagner relaxation arising at the interfaces between grains and grain boundaries. The grain boundary microstructure rearranges after the phase transition, which improves the bulk dielectric performance. The theoretical calculations show that the decrease of bulk permittivity with increasing pressure in the Pnma phase is caused by the pressure-induced enhancement of electron localization around O atoms, which limits the polarization of Nb-O electricmore » dipoles.« less

  7. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  8. Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Nath, Rupa

    Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization of high latent heat storage capability of phase change materials is one of the keys to an efficient way to store thermal energy. However, some of the limitations of the existing technology are the high volumetric expansion and low thermal conductivity of phase change materials (PCMs), low energy density, low operation temperatures and high cost. The present work deals with encapsulated PCM system, which operates at temperatures above 500°C and takes advantage of the heat transfer modes at such high temperatures to overcome the aforementioned limitations of PCMs. Encapsulation with sodium silicate coating on preformed PCM pellets were investigated. A low cost, high temperature metal, carbon steel has been used as a capsule for PCMs with a melting point above 500° C. Sodium silicate and high temperature paints were used for oxidation protection of steel at high temperatures. The emissivity of the coatings to enhance heat transfer was investigated.

  9. Cycom 977-2 Composite Material: Impact Test Results (workshop presentation)

    NASA Technical Reports Server (NTRS)

    Engle, Carl; Herald, Stephen; Watkins, Casey

    2005-01-01

    Contents include the following: Ambient (13A) tests of Cycom 977-2 impact characteristics by the Brucenton and statistical method at MSFC and WSTF. Repeat (13A) tests of tested Cycom from phase I at MSFC to expended testing statistical database. Conduct high-pressure tests (13B) in liquid oxygen (LOX) and GOX at MSFC and WSTF to determine Cycom reaction characteristics and batch effect. Conduct expended ambient (13A) LOX test at MSFC and high-pressure (13B) testing to determine pressure effects in LOX. Expend 13B GOX database.

  10. Functional Spectral Domain Optical Coherence Tomography imaging

    NASA Astrophysics Data System (ADS)

    Bower, Bradley A.

    Spectral Domain Optical Coherence Tomography (SDOCT) is a high-speed, high resolution imaging modality capable of structural and functional characterization of tissue microstructure. SDOCT fills a niche between histology and ultrasound imaging, providing non-contact, non-invasive backscattering amplitude and phase from a sample. Due to the translucent nature of the tissue, ophthalmic imaging is an ideal space for SDOCT imaging. Structural imaging of the retina has provided new insights into ophthalmic disease. The phase component of SDOCT images remains largely underexplored, though. While Doppler SDOCT has been explored in a research setting, it has yet to gain traction in the clinic. Other, functional exploitations of the phase are possible and necessary to expand the utility of SDOCT. Spectral Domain Phase Microscopy (SDPM) is an extension of SDOCT that is capable of resolving sub-wavelength displacements within a focal volume. Application of sub-wavelength displacement measurement imaging could provide a new method for non-invasive optophysiological measurement. This body of work encompasses both hardware and software design and development for implementation of SDOCT. Structural imaging was proven in both the lab and the clinic. Coarse phase changes associated with Doppler flow frequency shifts were recorded and a study was conducted to validate Doppler measurement. Fine phase changes were explored through SDPM applications. Preliminary optophysiology data was acquired to study the potential of sub-wavelength measurements in the retina. To remove the complexity associated with in-vivo human retinal imaging, a first principles approach using isolated nerve samples was applied using standard SDPM and a depthencoded technique for measuring conduction velocity. Results from amplitude as well as both coarse and fine phase processing are presented. In-vivo optophysiology using SDPM is a promising avenue for exploration, and projects furthering or extending this body of work are discussed.

  11. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  12. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less

  13. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure

    PubMed Central

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin

    2017-01-01

    Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields. PMID:28276479

  14. Micrometer-Scale Ballistic Transport of Electron Pairs in LaAlO_{3}/SrTiO_{3} Nanowires.

    PubMed

    Tomczyk, Michelle; Cheng, Guanglei; Lee, Hyungwoo; Lu, Shicheng; Annadi, Anil; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2016-08-26

    High-mobility complex-oxide heterostructures and nanostructures offer new opportunities for extending the paradigm of quantum transport beyond the realm of traditional III-V or carbon-based materials. Recent quantum transport investigations with LaAlO_{3}/SrTiO_{3}-based quantum dots reveal the existence of a strongly correlated phase in which electrons form spin-singlet pairs without becoming superconducting. Here, we report evidence for the micrometer-scale ballistic transport of electron pairs in quasi-1D LaAlO_{3}/SrTiO_{3} nanowire cavities. In the paired phase, Fabry-Perot-like quantum interference is observed, in sync with conductance oscillations observed in the superconducting regime (at a zero magnetic field). Above a critical magnetic field B_{p}, the electron pairs unbind and the conductance oscillations shift with the magnetic field. These experimental observations extend the regime of ballistic electronic transport to strongly correlated phases.

  15. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  16. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  17. Resolution of anisotropic and shielded highly conductive layers using 2-D electromagnetic modelling in the Rhine Graben and Black Forest

    NASA Astrophysics Data System (ADS)

    Tezkan, Bülent; Červ, Václav; Pek, Josef

    1992-12-01

    Anisotropy in magnetotelluric (MT) data has been found very often and has been explained as the result of local structures of different conductivities. In this paper, an observed anisotropy in MT data is not interpreted qualitatively in terms of local structures but is modelled quantitatively by a quasi-anisotropic layer. Besides the MT transfer functions, measurements of the vertical magnetic component are required. The second goal of this paper is to describe a method which permits the resolution of mid-crustal conductive layers in the presence of an additional high-conductivity layer at the surface. This method is possible in a two-dimensional (2-D) situation that limits the spatial extension of the surface structure. Again, vertical magnetic field recordings are necessary, but the phase of the E-polarization with respect to the 2-D structure is the most sensitive parameter. Using two field sites in Southern Germany, it has been possible to give a quantitative explanation of anisotropy and an improved depth resolution, and to derive an integrated conductivity of the highly conductive mid-crustal layers using MT and geomagnetic depth sounding data. The anisotropic highly conductive layer is located 12 km beneath the poorly conductive Black Forest crystalline rocks, whereas it is at a depth of 6 km beneath the highly conductive Rhine Graben sediments.

  18. Persistence of a surface state arc in the topologically trivial phase of MoTe2

    NASA Astrophysics Data System (ADS)

    Crepaldi, A.; Autès, G.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cilento, F.; Vobornik, I.; Fujii, J.; Bugnon, Ph.; Magrez, A.; Berger, H.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.

    2017-01-01

    The prediction of Weyl fermions in the low-temperature noncentrosymmetric 1 T' phase of MoTe2 still awaits clear experimental confirmation. Here, we report angle-resolved photoemission (ARPES) data and ab initio calculations that reveal a surface state arc dispersing between the valence and the conduction band, as expected for a Weyl semimetal. However, we find that the arc survives in the high-temperature centrosymmetric 1 T'' phase. Therefore, a surface Fermi arc is not an unambiguous fingerprint of a topologically nontrivial phase. We have also investigated the surface state spin texture of the 1 T' phase by spin-resolved ARPES, and identified additional topologically trivial spin-split states within the projected band gap at higher binding energies.

  19. Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations

    DOE PAGES

    Pierleoni, Carlo; Morales, Miguel A.; Rillo, Giovanni; ...

    2016-04-20

    The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron-ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measuredmore » in diamond anvil cell experiments but at 25-30 GPa higher pressure. Here, the transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization.« less

  20. Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    DTIC Science & Technology

    2008-03-01

    cavity or in an external amplifier. Since pumping is never a perfectly efficient process, some heat will be introduced, and for very high pump powers...modes it supports, and the incident pump power. While theoretical investigations of SBS PCMs have been conducted by a num- ber of authors, the model...predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical

  1. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells

    DOE PAGES

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; ...

    2017-11-10

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb xMA 1-x)PbI 3) films and the photovoltaic performance of (Rb xMA 1-x)PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc) and the short circuit photocurrent density (J sc) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the singlemore » tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05MA 0.95)PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0). The optimized (Rb xMA 1-x)PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.« less

  2. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb xMA 1-x)PbI 3) films and the photovoltaic performance of (Rb xMA 1-x)PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc) and the short circuit photocurrent density (J sc) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the singlemore » tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05MA 0.95)PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0). The optimized (Rb xMA 1-x)PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.« less

  3. Catalyst characterization in the presence of solvent: development of liquid phase structure–activity relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Nicholas S.; Xu, Bingjun

    Due to the low volatility and highly oxygenated nature of biomass derived feedstocks, biomass upgrade reactions are frequently conducted in the presence of solvent to improve substrate mass transfer to the catalyst surface.

  4. Catalyst characterization in the presence of solvent: development of liquid phase structure–activity relationships

    DOE PAGES

    Gould, Nicholas S.; Xu, Bingjun

    2018-01-01

    Due to the low volatility and highly oxygenated nature of biomass derived feedstocks, biomass upgrade reactions are frequently conducted in the presence of solvent to improve substrate mass transfer to the catalyst surface.

  5. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Pascal J.; Institut Interdisciplinaire d'Innovation Technologique; Canut, Bruno

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first timemore » such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.« less

  6. Thermal characteristic investigation of eutectic composite fatty acid as heat storage material for solar heating and cooling application

    NASA Astrophysics Data System (ADS)

    Thaib, R.; Fauzi, H.; Ong, H. C.; Rizal, S.; Mahlia, T. M. I.; Riza, M.

    2018-03-01

    A composite phase change material (CPCM) of myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and of myristic acid/palmitic acid/sodium laurate (MA/PA/SL) were impregnated with purified damar gum as called Shorea Javanica (SJ) to improve the thermal conductivity of CPCM. The thermal properties, thermal conductivity, and thermal stability of both CPCM have investigated by using a Differential Scanning Calorimetry (DSC) thermal analysis, hot disc thermal conductivity analyzer, and Simultaneous Thermal Analyzer (STA), simultaneously. However, a chemical compatibility between both fatty acid eutectic mixtures and SJ in composite mixtures measured by Fourier Transform Infra-Red (FT-IR) spectrophotometer. The results were obtained that the thermal conductivity of MA/PA/SM/SJ and MA/PA/SL/SJ eutectic composite phase change material (CPCM) were improved by addition 3 wt.% and 2 wt.% of Shorea javanica (SJ), respectively, without occur a significant change on thermal properties of CPCM. Moreover, the absorbance spectrum of FT-IR shows the good compatibility of SJ with both MA/PA/SM and MA/PA/SL eutectic mixtures, the composite PCM also present good thermal performance and good thermal stability. Therefore, it can be noted that the purified Shorea Javanica proposed, the as high conductive material in this study was able to improve the thermal conductivity of eutectic PCM without any significant reduction on its thermo-physical and chemical properties and can be recommended as novelty composite phase change material for thermal energy storage application.

  7. Dynamic conductivity and partial ionization in dense fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  8. Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels.

    PubMed

    Yu, Zhi-Long; Yang, Ning; Apostolopoulou-Kalkavoura, Varvara; Qin, Bing; Ma, Zhi-Yuan; Xing, Wei-Yi; Qiao, Chan; Bergström, Lennart; Antonietti, Markus; Yu, Shu-Hong

    2018-04-16

    Energy efficient buildings require materials with a low thermal conductivity and a high fire resistance. Traditional organic insulation materials are limited by their poor fire resistance and inorganic insulation materials are either brittle or display a high thermal conductivity. Herein we report a mechanically resilient organic/inorganic composite aerogel with a thermal conductivity significantly lower than expanded polystyrene and excellent fire resistance. Co-polymerization and nanoscale phase separation of the phenol-formaldehyde-resin (PFR) and silica generate a binary network with domain sizes below 20 nm. The PFR/SiO 2 aerogel can resist a high-temperature flame without disintegration and prevents the temperature on the non-exposed side from increasing above the temperature critical for the collapse of reinforced concrete structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhancement of thermoelectric properties in the Nb–Co–Sn half-Heusler/Heusler system through spontaneous inclusion of a coherent second phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffon, Malinda L. C., E-mail: mandibuffon@mrl.ucsb.edu; Verma, Nisha; Lamontagne, Leo

    Half-Heusler XYZ compounds with an 18 valence electron count are promising thermoelectric materials, being thermally and chemically stable, deriving from relatively earth-abundant components, and possessing appropriate electrical transport properties. The typical drawback with this family of compounds is their high thermal conductivity. A strategy for reducing thermal conductivity is through the inclusion of secondary phases designed to minimize negative impact on other properties. Here, we achieve this through the addition of excess Co to half-Heusler NbCoSn, which introduces precipitates of a semi-coherent NbCo{sub 2}Sn Heusler phase. A series of NbCo{sub 1+x}Sn materials are characterized here using X-ray and neutron diffractionmore » studies and electron microscopy. Electrical and thermal transport measurements and electronic structure calculations are used to understand property evolution. We find that annealing has an important role to play in determining antisite ordering and properties. Antisite disorder in the as-prepared samples improves thermoelectric performance through the reduction of thermal conductivity, but annealing during the measurement degrades properties to resemble those of the annealed samples. Similar to the more widely studied TiNi{sub 1+x}Sn system, Co addition to the NbCoSn phase results in improved thermoelectric performance through a decrease in thermal conductivity which results in a 20% improvement in the thermoelectric figure of merit, zT.« less

  10. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior

    PubMed Central

    da Cunha, C. R.; Mineharu, M.; Matsunaga, M.; Matsumoto, N.; Chuang, C.; Ochiai, Y.; Kim, G.-H.; Watanabe, K.; Taniguchi, T.; Ferry, D. K.; Aoki, N.

    2016-01-01

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene. PMID:27609184

  11. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior.

    PubMed

    da Cunha, C R; Mineharu, M; Matsunaga, M; Matsumoto, N; Chuang, C; Ochiai, Y; Kim, G-H; Watanabe, K; Taniguchi, T; Ferry, D K; Aoki, N

    2016-09-09

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  12. Electronic transport in low dimensions: Carbon nanotubes and mesoscopic silver wires

    NASA Astrophysics Data System (ADS)

    Ghanem, Tarek Khairy

    This thesis explores the physics of low-dimensional electronic conductors using two materials systems, carbon nanotubes (CNTs) and lithographically-defined silver nanowires. In order to understand the intrinsic electronic properties of CNTs, it is important to eliminate the contact effects from the measurements. Here, this is accomplished by using a conductive-tip atomic force microscope cantilever as a local electrode in order to obtain length dependent transport properties. The CNT-movable electrode contact is fully characterized, and is largely independent of voltage bias conditions, and independent of the contact force beyond a certain threshold. The contact is affected by the fine positioning of the cantilever relative to the CNT due to parasitic lateral motion of the cantilever during the loading cycle, which, if not controlled, can lead to non-monotonic behavior of contact resistance vs. force. Length dependent transport measurements are reported for several metallic and semiconducting CNTs. The resistance versus length R(L) of semiconducting CNTs is linear in the on state. For the depleted state R(L) is linear for long channel lengths, but non-linear for short channel lengths due to the long depletion lengths in one-dimensional semiconductors. Transport remains diffusive under all depletion conditions, due to both low disorder and high temperature. The study of quantum corrections to classical conductivity in mesoscopic conductors is an essential tool for understanding phase coherence in these systems. A long standing discrepancy between theory and experiment regards the phase coherence time, which is expected theoretically to grow as a power law at low temperatures, but is experimentally found to saturate. The origins of this saturation have been debated for the last decade, with the main contenders being intrinsic decoherence by zero-point fluctuations of the electrons, and decoherence by dilute magnetic impurities. Here, the phase coherence time in quasi-one-dimensional silver wires is measured. The phase coherence times obtained from the weak localization correction to the conductivity at low magnetic field show saturation, while those obtained from universal conductance fluctuations at high field do not. This indicates that, for these samples, the origin of phase coherence time saturation obtained from weak localization is extrinsic, due to the presence of dilute magnetic impurities.

  13. Phase conjugation of high energy lasers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugatemore » tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.« less

  14. Thermal design and test of a high power spacecraft transponder platform

    NASA Technical Reports Server (NTRS)

    Stipandic, E. A.; Gray, A. M.; Gedeon, L.

    1975-01-01

    The high power transponder subsystem on board the Communications Technology Satellite (CTS) requires some unique thermal control techniques to maintain the required temperature limits throughout all mission phases. The transponder subsystem includes redundant 20-W output travelling wave tubes and a single 200-W output TWT with highly concentrated thermal dissipations of 70 W and 143 W, respectively. A thermal control system which maintains all components within the required temperature ranges has been designed and verified in thermal balance testing. Included in the design are second surface quartz mirrors on an aluminum honeycomb platform, high thermal conductivity aluminum doubler plates, commandable thermal control heaters and a Variable Conductance Heat Pipe System (VCHPS).

  15. Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Ding, Y. C.; Xiao, B.; Cheng, Y. H.

    2016-11-01

    Electrical conductivities of Cr2TiAlC2 and Mo2TiAlC2 in a and c directions are calculated from semi-classic Boltzmann transport theory. The values are found to be σa = 5.68 ×105 S /m (6.56 ×105 S /m) and σc = 2.15 ×105 S /m (2.69 ×105 S /m) for Cr2TiAlC2 (Mo2TiAlC2) at 300 K. Using the phonon-mode Debye temperature and Slack-model, the lattice thermal conductivities in the two directions are also evaluated, and the values are κa = 18.71 W /m K (16.11 W/m K) and κc = 0.48 W /m K (0.25 W /m K) for Cr2TiAlC2 (Mo2TiAlC2) at room temperature. The anisotropy in lattice thermal conductivity is found to be stronger than that of electrical conductivity. The predicted Seebeck coefficients and thermoelectric figure of merit (ZT) indicate that they are poor thermoelectric materials. Due to the relatively high conductivities, they might be used to fabricate high temperature conductive components in aerospace industry. In addition, our results in a direction have the direct implications for the relevant properties of MXenes (Cr2TiC2 and Mo2TiC2), produced from their bulk phases.

  16. Electrical conductivity of (Mg,Fe)SiO3 Perovskite and a Perovskite-dominated assemblage at lower mantle conditions

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1987-01-01

    Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.

  17. Thermoelectric Properties of Complex Zintl Phases

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey

    2008-03-01

    Complex Zintl phases make ideal thermoelectric materials because they can exhibit the necessary ``electron-crystal, phonon-glass'' properties required for high thermoelectric efficiency. Complex crystal structures can lead to high thermoelectric figure of merit (zT) by having extraordinarily low lattice thermal conductivity. A recent example is the discovery that Yb14MnSb11, a complex Zintl compound, has twice the zT as the SiGe based material currently in use at NASA. The high temperature (300K - 1300K) electronic properties of Yb14MnSb11 can be understood using models for heavily doped semiconductors. The free hole concentration, confirmed by Hall effect measurements, is set by the electron counting rules of Zintl and the valence of the transition metal (Mn^+2). Substitution of nonmagnetic Zn^+2 for the magnetic Mn^+2 reduces the spin-disorder scattering and leads to increased zT (10%). The reduction of spin-disorder scattering is consistent with the picture of Yb14MnSb11 as an underscreened Kondo lattice as derived from low temperature measurements. The hole concentration can be reduced by the substitution of Al^+3 for Mn^+2, which leads to an increase in the Seebeck coefficient and electrical resistivity consistent with models for degenerate semiconductors. This leads to further improvements (about 25%) in zT and a reduction in the temperature where the zT peaks. The peak in zT is due to the onset of minority carrier conduction and can be correlated with reduction in Seebeck coefficient, increase in electrical conductivity and increase in thermal conductivity due to bipolar thermal conduction.

  18. Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2015-08-01

    Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.

  19. Optical Computing, 1991, Technical Digest Series, Vol. 6

    DTIC Science & Technology

    1992-05-22

    lasers). Compound semiconductors may satisfy these requirements. For example, optical signal amplification by two-beam coupling and amplified phase... compound semiconductors can provide this type of implementationi. This paper presents results from a detailed investigation on potentials of the...conductivity to achieve high multichannel cell performance. We describe several high performance Gallium Phosphide multichannel Bragg cells which employ these

  20. Physical Activity, Dietary Practices, and Other Health Behaviors of At-Risk Youth Attending Alternative High Schools

    ERIC Educational Resources Information Center

    Kubik, Martha Y.; Lytle, Leslie; Fulkerson, Jayne A.

    2004-01-01

    This study assessed the interest of alternative high school staff in intervention research on students' eating and physical activity habits and the feasibility of conducting such research in alternative school settings. A two-phase descriptive design incorporated both quantitative and qualitative methods. In fall/winter 2001-2002, alternative high…

  1. Model for visualizing high energy laser (HEL) damage

    NASA Astrophysics Data System (ADS)

    Erten, Gail

    2017-11-01

    This paper describes and presents results from a model created in MATLAB® to calculate and display the time dependent temperature profile on a target aimpoint as it is being engaged by a high energy laser (HEL) beam. The model uses public domain information namely physics equations of heat conduction and phase changes and material properties such as thermal conductivity/diffusivity, latent heat, specific heat, melting and evaporation points as well as user input material type and thickness. The user also provides time varying characteristics of the HEL beam on the aimpoint, including beam size and intensity distribution (in Watts per centimeter square). The model calculates the temperature distribution at and around the aimpoint and also shows the phase changes of the aimpoint with the material first melting and then evaporating. User programmable features (selecting materials and thickness, erosion rates for melting) make the model highly versatile. The objective is to bridge the divide between remaining faithful to theoretical formulations such as the partial differential equations of heat conduction and at the same time serving practical concerns of the model user who needs to rapidly evaluate HEL thermal effects. One possible use of the tool is to assess lethality values of different aimpoints without costly (as well as often dangerous and destructive) experiments.

  2. Diffusion of lithium ions in amorphous and crystalline PEO3:LiCF3SO3 polymer electrolytes: ab initio calculations and simulations

    NASA Astrophysics Data System (ADS)

    Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel; Wang, Sanwu

    The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline phase can conduct ions. In this work, we use ab initio molecular dynamics simulations to obtain the amorphous structure of PEO3:LiCF3SO3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO3:LiCF3SO3 are determined with first-principles density functional theory. In crystalline PEO3:LiCF3SO3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO3:LiCF3SO3has higher ionic conductivity than the crystalline phase. This work was supported by NASA Grant No. NNX13AN01A and by Tulsa Institute of Alternative Energy and Tulsa Institute of Nanotechnology. This research used resources of XSEDE, NERSC, and the Tandy Supercomputing Center.

  3. The Synthesis and Thermoelectric Properties of p-Type Li1- x NbO2-Based Compounds

    NASA Astrophysics Data System (ADS)

    Rahman, Jamil Ur; Meang, Eun-Ji; Van Nguyen, Du; Seo, Won-Seon; Hussain, Ali; Kim, Myong Ho; Lee, Soonil

    2017-03-01

    We investigated the thermoelectric (TE) properties of a p-type oxide material (Li1- x NbO2, with x = 0-0.6). The composition was synthesized via a solid-state reaction method under a reducing atmosphere. The charge transport properties were determined through the electrical conductivity and Seebeck coefficient measurements. The electrical conductivity was non-monotonically varied with x value and showed metallic behavior with increased temperature and above 650 K temperature independent behavior dominated by extrinsic conduction. On the other hand, the Seebeck coefficient was increased with an increase in the temperature, and decreased gradually with an increase in the Li vacancy concentration by both synthesis and gradual phase transition to a Li-rich Li3NbO4 phase with temperature and appeared as an n-type TE at x = 0.6 under high temperatures, which was attributed to an Nb substitution into the Li site. The thermal conductivity was monotonically reduced with the increase in temperature due to the cation disorder defects and second phases. The Li vacancy induced Li1- x NbO2-based compounds under low oxygen partial pressure show promise as a candidate p-type material for thermoelectric applications, particularly for co-processing with n-type oxide thermoelectric materials fabricated under conditions of low oxygen partial pressure.

  4. Gas-Permeable Membrane-Based Conductivity Probe Capable of In Situ Real-Time Monitoring of Ammonia in Aquatic Environments.

    PubMed

    Li, Tianling; Panther, Jared; Qiu, Yuan; Liu, Chang; Huang, Jianyin; Wu, Yonghong; Wong, Po Keung; An, Taicheng; Zhang, Shanqing; Zhao, Huijun

    2017-11-21

    Aquatic ammonia has toxic effects on aquatic life. This work reports a gas-permeable membrane-based conductivity probe (GPMCP) developed for real-time monitoring of ammonia in aquatic environments. The GPMCP innovatively combines a gas-permeable membrane with a boric acid receiving phase to selectively extract ammonia from samples and form ammonium at the inner membrane interface. The rate of the receiving phase conductivity increase is directly proportional to the instantaneous ammonia concentration in the sample, which can be rapidly and sensitively determined by the embedded conductivity detector. A precalibration strategy was developed to eliminate the need for an ongoing calibration. The analytical principle and GPMCP performance were systematically validated. The laboratory results showed that ammonia concentrations ranging from 2 to 50 000 μg L -1 can be detected. The field deployment results demonstrated the GPMCP's ability to obtain high-resolution continuous ammonia concentration profiles and the absolute average ammonia concentration over a prolonged deployment period. By inputting the temperature and pH data, the ammonium concentration can be simultaneously derived from the corresponding ammonia concentration. The GPMCP embeds a sophisticated analytical principle with the inherent advantages of high selectivity, sensitivity, and accuracy, and it can be used as an effective tool for long-term, large-scale, aquatic-environment assessments.

  5. The role of superheating in the formation of Glass Mountain obsidians (Long Valley, CA) inferred through crystallization of sanidine

    NASA Astrophysics Data System (ADS)

    Waters, Laura E.; Andrews, Benjamin J.

    2016-10-01

    The Glass Mountain obsidians (Long Valley, CA) are crystal poor (<8 vol%) and highly evolved (high SiO2, low Sr), and therefore, their formation required extremely efficient separation of melts from a crystal-rich source. A petrologic and experimental investigation of the mineral phases in Glass Mountain lavas identifies conditions under which phenocrysts grew and the driving mechanism for crystallization, which places constraints on the possible processes that generated the obsidians. The obsidian in this study (GM-11) is saturated in nine phases (sanidine + quartz + plagioclase + titanomagnetite + ilmenite + zircon + apatite + allanite + biotite), and results of high-resolution SEM compositional mapping and electron microprobe analysis reveal that individual sanidine crystals are normally zoned and span a range of compositions (Or40-78). Sanidines have a "granophyric" texture, characterized by intergrowths of quartz and sanidine. Mineral phases in the natural sample are compared to H2O-saturated phase equilibrium experiments conducted in cold-seal pressure vessels, over a range of conditions (700-850 °C; 75-225 MPa), and all are found to be plausible phenocrysts. Comparison of sanidine compositions from the natural sample with those grown in phase equilibrium experiments demonstrates that sanidine in the natural sample occurs in a reduced abundance. Further comparison with phase equilibrium experiments suggests that sanidine compositions track progressive loss of dissolved melt water (±cooling), suggesting that crystallization in the natural obsidian was driven predominantly by degassing resulting from decompression. It is paradoxical that an effusively (slowly) erupted lava should contain multiple phenocryst phases, including sanidine crystals that span a range of compositions with granophyric textures, and yet remain so crystal poor. To resolve this paradox, it is necessary that the solidification mechanism (degassing or cooling) that produced the sanidine crystals (and other mineral phases) must have an associated kinetic effect(s) that efficiently hinders crystal nucleation and growth. Decompression experiments conducted in this study and from the literature collectively demonstrate that the simplest way to inhibit nucleation during degassing-induced crystallization is to initiate degassing ± cooling from superliquidus conditions, and therefore, the Glass Mountain obsidians were superheated prior to crystallization.

  6. Overview of the DARPA/AFRL/NASA Smart Wing Phase II program

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim

    2001-06-01

    The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of the Phase 2 effort is presented here; detailed discussions of the wind tunnel testing, model design and fabrication, and actuation system development are given in companion papers.

  7. An emergency department registration kiosk can increase HIV screening in high risk patients.

    PubMed

    Hsieh, Yu-Hsiang; Gauvey-Kern, Megan; Peterson, Stephen; Woodfield, Alonzo; Deruggiero, Katherine; Gaydos, Charlotte A; Rothman, Richard E

    2014-12-01

    We evaluated the feasibility and the patient acceptability of integrating a kiosk into routine emergency department (ED) practice for offering HIV testing. The work was conducted in four phases: phase 1 was a baseline, in which external testing staff offered testing at the bedside; phase 2 was a pilot assessment of a prototype kiosk; phase 3 was a pilot implementation and phase 4 was the full implementation with automated login. Feasibility was assessed by the proportion of offering HIV tests, acceptance, completion and result reporting. During the study period, the number of ED patients and eligible patients for screening were similar in the three main phases. However, the number and proportion of patients offered testing of those eligible for screening increased significantly from phase 1 (32%) to phase 3 (37%) and phase 4 (40%). There were slightly higher prevalences of newly diagnosed HIV with kiosk versus bedside testing (phase 1, 0%; phase 3, 0.2%; phase 4, 0.5%). Compared to patients tested at the bedside, patients tested via the kiosk were significantly younger, more likely to be female, to be black, and to report high risk behaviours. ED-based HIV screening via a registration-based kiosk was feasible, yielded similar proportions of testing, and increased the proportion of engagement of higher-risk patients in testing. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Results of a phase II trial for high-risk neuroblastoma treatment protocol JN-H-07: a report from the Japan Childhood Cancer Group Neuroblastoma Committee (JNBSG).

    PubMed

    Hishiki, Tomoro; Matsumoto, Kimikazu; Ohira, Miki; Kamijo, Takehiko; Shichino, Hiroyuki; Kuroda, Tatsuo; Yoneda, Akihiro; Soejima, Toshinori; Nakazawa, Atsuko; Takimoto, Tetsuya; Yokota, Isao; Teramukai, Satoshi; Takahashi, Hideto; Fukushima, Takashi; Kaneko, Takashi; Hara, Junichi; Kaneko, Michio; Ikeda, Hitoshi; Tajiri, Tatsuro; Nakagawara, Akira

    2018-04-26

    The Japanese Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG) conducted a phase II clinical trial for high-risk neuroblastoma treatment. We report the result of the protocol treatment and associated genomic aberration studies. JN-H-07 was a single-arm, late phase II trial for high-risk neuroblastoma treatment with open enrollment from June 2007 to February 2009. Eligible patients underwent five courses of induction chemotherapy followed by high-dose chemotherapy with hematopoietic stem cell rescue. Surgery for the primary tumor was scheduled after three or four courses of induction chemotherapy. Radiotherapy was administered to the primary tumor site and to any bone metastases present at the end of induction chemotherapy. The estimated 3-year progression-free and overall survival rates of the 50 patients enrolled were 36.5 ± 7.0 and 69.5 ± 6.6%, respectively. High-dose chemotherapy caused severe toxicity including three treatment-related deaths. In response to this, the high-dose chemotherapy regimen was modified during the trial by infusing melphalan before administering carboplatin and etoposide. The modified high-dose chemotherapy regimen was less toxic. Univariate analysis revealed that patients younger than 547 days and patients whose tumor showed a whole chromosomal gains / losses pattern had a significantly poor prognosis. Notably, the progression-free survival of cases with MYCN amplification were not inferior to those without MYCN amplification. The outcome of patients treated with the JN-H-07 protocol showed improvement over the results reported by previous studies conducted in Japan. Molecular and genetic profiling may enable a more precise stratification of the high-risk cohort.

  9. Phase transitions in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arko, A.J.; Beers, C.J.; van Deursen, A.P.J.

    1982-08-01

    The purpose of this paper is to summarize some of the research activities recently performed at the Laboratorium voor Hoge Magneetvelden at the University of Nijmegen. The scope here and unifying aspect is magnetically induced phase transitions. Here we summarize transitions in the settling velocity of paramagnetic aggregates, suppression of spin fluctuations in UAl/sub 2/, the phase diagram of a ferroelectric chiral smectic liquid crystal near the Lifshitz point and the transition from 3D to 2D conduction in a GaAs FET. In no way does this represent a complete review of transitions, but rather a summary of phase transitions observedmore » at the magnet laboratory during the past year. 6 figures.« less

  10. Thermoelectric properties of AMg 2X 2, AZn 2Sb 2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba 2ZnX 2 (X = Sb, Bi) Zintl compounds

    DOE PAGES

    Sun, Jifeng; Singh, David J.

    2017-04-03

    In this paper, we report a theoretical investigation of the electronic structure and transport properties of eleven Zintl compounds including nine 122 phases (AMg 2X 2, AZn 2Sb 2 (A = Ca, Sr, Ba; X = Sb, Bi)) and two 212 phases (Ba 2ZnX 2 (X = Sb, Bi)). The electronic structures and electrical transport properties are studied using ab initio calculations and semi-classical Boltzmann theory within the constant relaxation time approximation. All the compounds are semiconducting. We find that the n-type 122 phases with the CaAl 2Si 2 structure type show better performance than p-type materials due to themore » multi-valley degeneracy with anisotropic carrier pockets at and near the conduction band minimum. The pocket anisotropy is beneficial in achieving high conductivity and Seebeck coefficient simultaneously. This mechanism yields substantial improvement in the power factor. Finally, the general performance of 212 phases is inferior to that of the 122 phases, with the Ba 2ZnSb 2 compound showing better performance.« less

  11. Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlinger, C.; Belloni, L.; Zemb, T.

    1999-03-30

    Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions,more » modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits.« less

  12. Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong

    2015-03-01

    As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.

  13. The role of disclinations on the organization and conductivity in liquid crystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Martinez-Miranda, Luz J.; Romero-Hasler, P.; Meneses-Franco, A.; Soto-Bustamante, E. A.

    The structure of TiO2 nanoparticles in a liquid crystal nanocomposite was found to be an oblique structure due to the alignment of the TiO2 with respect to the liquid crystals. This order is anisotropic due to the ordering of the liquid crystals. The particles are highly localized in the nanocomposite, which has consequences in the electrical percolation. We want to obtain an understanding of how the nanoparticles organize in this highly localized fashion. The nanoparticles and the liquid crystals phase separate, with the nanoparticles accumulating in the defects exhibited by the liquid crystal even after being sonicated initially. The liquid crystal is polymerized by the process of electropolymerization that takes place in the isotropic phase of the monomers. The nanoparticles are free to move away from the defects where they phase separate since the defects disappear in the isotropic. We believe the polymerization imposes a limitation in the movement of the nanoparticles. The combination of the accumulation in the disclinations, the polymerization in the isotropic and the formation of the liquid crystal unit side chains can affect the conductivity of the nanocomposite. NSF-OISE-1157589; Fondecyt Project 1130187; CONICYT scholarships 21130413 and 21090713.

  14. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.

    PubMed

    D'Angelo, M Fernanda Neira; Ordomsky, Vitaly; Paunovic, Violeta; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander

    2013-09-01

    Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating method to deposit a Pt-based catalyst on the microchannel walls is selected and optimized. APR reactivity tests are performed by using ethylene glycol as the model compound. Optimum results are achieved with a static washcoating technique; a highly uniform and well adhered 5 μm layer is deposited on the walls of a 320 μm internal diameter (ID) microchannel in one single step. During APR of ethylene glycol, the catalyst layer exhibits high stability over 10 days after limited initial deactivation. The microchannel presents higher conversion and selectivity to hydrogen than a fixed-bed reactor. The benefits of using a microreactor for APR can be further enhanced by utilizing increased Pt loadings, higher reaction temperatures, and larger carbohydrates (e.g., glucose). The use of microtechnology for aqueous-phase reforming will allow for a great reduction in the reformer size, thus rendering it promising for distributed hydrogen production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F.

    1990-09-01

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of variousmore » processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.« less

  16. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    PubMed

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  17. Understanding AlN Obtaining Through Computational Thermodynamics Combined with Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2017-06-01

    Basic material concept, technology and some results of studies on aluminum matrix composite with dispersive aluminum nitride reinforcement was shown. Studied composites were manufactured by „in situ” technique. Aluminum nitride (AlN) has attracted large interest recently, because of its high thermal conductivity, good dielectric properties, high flexural strength, thermal expansion coefficient matches that of Si and its non-toxic nature, as a suitable material for hybrid integrated circuit substrates. AlMg alloys are the best matrix for AlN obtaining. Al2O3-AlMg, AlN-Al2O3, and AlN-AlMg binary diagrams were thermodynamically modelled. The obtained Gibbs free energies of components, solution parameters and stoichiometric phases were used to build a thermodynamic database of AlN- Al2O3-AlMg system. Obtaining of AlN with Liquid-phase of AlMg as matrix has been studied and compared with the thermodynamic results. The secondary phase microstructure has a significant effect on the final thermal conductivity of the obtained AlN. Thermodynamic modelling of AlN-Al2O3-AlMg system provided an important basis for understanding the obtaining behavior and interpreting the experimental results.

  18. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    PubMed Central

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545

  19. Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian

    2015-01-01

    Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.

  20. First principles investigation of high pressure behavior of FeOOH-AlOOH-phase H (MgSiO4H2) system.

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Thompson, E. C.; Tsuchiya, T.; Nishi, M.; Kuwayama, Y.

    2017-12-01

    It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) in the descending cold plate. A numbers of researches have been conducted so far about the high pressure behaviors of DHMSs. In recent years, we found new DHMS, phase H, at lower mantle pressure condition and the solid solution between phase H and d-AlOOH has been proposed as the most important carrier of water in the deepest part of Earth's mantle (Tsuchiya 2013 GRL, Nishi et al. 2014 Nature Geo., Ohira et al. 2014 EPSL). However, those hydrous minerals are actually not denser than surrounding (dry) mantle minerals (Tsuchiya and Mookherjee 2015 Scientific Reports) and the gravitational stability in deeper part of the Earth is questionable. Therefore, the effects of denser element such as Fe on the stability of DHMS are intimately connected to the ability of transportation of water into Earth's deep interiors. In order to assess the effect of Fe on the phase relation of phase H and d-AlOOH, we first investigated the high pressure behavior of the end-member composition of this system, the e-FeOOH. We have found the new high pressure transformation of FeOOH in the lower mantle conditions both theoretically and experimentally(Nishi et al. 2017 Nature). Here we show high pressure structures and the physical properties of FeOOH-AlOOH-phase H system using first principles calculation and discuss the possible geophysical implications of these phases.

  1. Transformation from insulating p-type to semiconducting n-type conduction in CaCu3Ti4O12-related Na(Cu5/2Ti1/2)Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Ming; Sinclair, Derek C.

    2013-07-01

    A double doping mechanism of Na+ + 1/2 Ti4+ → Ca2+ + 1/2 Cu2+ on the general formula Ca1-xNax(Cu3-x/2Tix/2)Ti4O12 has been used to prepare a series of isostructural CaCu3Ti4O12 (CCTO)-type perovskites. A complete solid solution exists for 0 ≤ x ≤ 1 and all compositions exhibit incipient ferroelectric behaviour with higher than expected intrinsic relative permittivity. Although CCTO ceramics typically exhibit n-type semiconductivity (room temperature, RT, resistivity of ˜10-100 Ω cm), Na(Cu5/2Ti1/2)Ti4O12 (NCTO) ceramics sintered at 950 °C consist of two insulating bulk phases (RT resistivity > 1 GΩ cm), one p-type and the other n-type. With increasing sintering temperature/period, the p-type phase transforms into the n-type phase. During the transformation, the resistivity and activation energy for electrical conduction (Ea ˜ 1.0 eV) of the p-type phase remain unchanged, whereas the n-type phase becomes increasingly conductive with Ea decreasing from ˜ 0.71 to 0.11 eV with increasing sintering temperature. These changes are attributed to small variations in stoichiometry that occur during high temperature ceramic processing with oxygen-loss playing a crucial role.

  2. Thermoelectric properties of Sn doped BiCuSeO

    NASA Astrophysics Data System (ADS)

    Das, Sayan; Chetty, Raju; Wojciechowski, Krzysztof; Suwas, Satyam; Mallik, Ramesh Chandra

    2017-10-01

    BiCuSeO and Bi1-xSnxCuSeO (x = 0.02, 0.04, 0.06, 0.08) were prepared by a two-step solid state synthesis. The phase purity and the crystal structure were investigated by the X-Ray Diffraction (XRD) and confirmed by Energy Dispersive Spectroscopy (EDS). The volatilization of Bi and Bi2O3 lead to off-stoichiometry of the main phase and the formation of CuSe2 secondary phase in the undoped sample. SnO2 secondary phases were found in the doped samples. Both the Seebeck coefficient and the electrical resistivity, measured from the room temperature to 773 K linearly increases with the temperature, which indicates that the sample have metallic like behavior. The origin of such a behavior is due to high hole concentration originating from the Bi and the O vacancies. The Sn +4 valence state was confirmed from the X-Ray Photoelectron Spectroscopy (XPS) and from the reduction of lattice parameter 'a' with doping. The substitution of Sn+4 in the place of Bi+3 leads to the higher Seebeck coefficient and electrical resistivity in the doped samples. Highest power-factor (∼1 mW/m-K2 at 773 K), was obtained for the undoped sample and the 4% Sn doped sample (Bi0.96Sn0.04CuSeO). The lowest thermal conductivity was obtained for the undoped sample, from the room temperature to 773 K. The presence of thermally-conducting SnO2 secondary phases in the doped samples increases the thermal conductivity in comparison with the undoped sample. The zTs of the doped samples were lower compared to the undoped sample, owing to their higher thermal conductivity. The oxygen vacancies as well as the all-length scale phonon scattering, lowers the thermal conductivity of the undoped sample and, as a result, a maximum zT of 1.09 was achieved at 773 K.

  3. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  4. Ultra high temperature ceramics for hypersonic vehicle applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.

    2006-01-01

    HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2}more » ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.« less

  5. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti-Ni-Hf high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kim, Jeoung Han; Kim, Kyong Min; Yeom, Jong Taek; Young, Sung

    2016-03-01

    The effect of yttrium (< 5.5 at%) on the martensite-austenite phase transformation temperatures, microstructural evolution, and hot workability of Ti-Ni-Hf high-temperature shape memory alloys is investigated. For these purposes, differential scanning calorimetry, hot compression, and thermo-gravimetric tests are conducted. The phase transformation temperatures are not noticeably influenced by the addition of yttrium up to 4.5 at%. Furthermore, the hot workability is not significantly affected by the yttrium addition up to 1.0 at%. However, when the amount of yttrium addition exceeds 1.0 at%, the hot workability deteriorates significantly. In contrast, remarkable improvement in the high temperature oxidation resistance due to the yttrium addition is demonstrated. The total thickness of the oxide layers is substantially thinner in the Y-added specimen. In particular, the thickness of (Ti,Hf) oxide layer is reduced from 200 µm to 120 µm by the addition of 0.3 at% Y.

  6. Colossal change in thermopower with temperature-driven p-n-type conduction switching in La x Sr2-x TiFeO6 double perovskites

    NASA Astrophysics Data System (ADS)

    Roy, Pinku; Maiti, Tanmoy

    2018-02-01

    Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0  ⩽  x  ⩽  0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x  =  0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.

  7. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  8. Order–Disorder Transitions and Superionic Conductivity in the Sodium nido -Undeca(carba)borates

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Stavila, Vitalie; ...

    2017-11-20

    The salt compounds NaB 11H 14, Na-7-CB10H13, Li-7-CB 10H 13, Na-7,8-C 2B 9H 12, and Na-7,9-C 2B 9H 12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B-H} + {C-H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order-disordermore » phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ~10 10 jumps s -1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB 9H 10- and CB 11H 12- closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.« less

  9. An experimental and theoretical evaluation of increased thermal diffusivity phase change devices

    NASA Technical Reports Server (NTRS)

    White, S. P.; Golden, J. O.; Stermole, F. J.

    1972-01-01

    This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

  10. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  11. The origin of the residual conductivity of GaN films on ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Keun; Cai, Zhuhua; Ziemer, Katherine; Doolittle, William Alan

    2009-08-01

    In this paper, the origin of the conductivity of GaN films grown on ferroelectric materials was investigated using XPS, AES, and XRD analysis tools. Depth profiles confirmed the existence of impurities in the GaN film originating from the substrates. Bonding energy analysis from XPS and AES verified that oxygen impurities from the substrates were the dominant origin of the conductivity of the GaN film. Furthermore, Ga-rich GaN films have a greater chance of enhancing diffusion of lithium oxide from the substrates, resulting in more substrate phase separation and a wider inter-mixed region confirmed by XRD. Therefore, the direct GaN film growth on ferroelectric materials causes impurity diffusion from the substrates, resulting in highly conductive GaN films. Future work needs to develop non-conductive buffer layers for impurity suppression in order to obtain highly resistive GaN films.

  12. Systems and methods for creation of conducting networks of magnetic particles through dynamic self-assembly process

    DOEpatents

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Downers Grove, IL

    2011-01-25

    Self-assembly of magnetic microparticles in AC magnetic fields. Excitation of the system by an AC magnetic field provides a variety of patterns that can be controlled by adjusting the frequency and the amplitude of the field. At low particle densities the low-frequency magnetic excitation favors cluster phase formation, while high frequency excitation favors chains and netlike structures. For denser configurations, an abrupt transition to the network phase was obtained.

  13. Preparation Of Strong, Dense Potassium Beta''-Alumina Ceramic

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Kikkert, Stanley J.; Losey, Robert; Suitor, Jerry W.

    1995-01-01

    Improved process for making mechanically strong, dense, phase-pure potassium beta''-alumina solid electrolyte (K-BASE) results in material superior to all previous K-BASE preparations and similar to commercial Na-BASE in strength, phase purity and high-temperature ionic conductivity. Potassium-based alkali-metal thermal-to-electric conversion (AMTEC) cells expected to operate efficiently at lower heat-input temperatures and lower rejection temperatures than sodium-based AMTEC cells, making them appropriate for somewhat different applications.

  14. New Oxide Materials for an Ultra High Temperature Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perepezko, John H.

    In this project, a new oxide material, Hf 6Ta 2O 17 has been successfully synthesized by the controlled oxidization of Hf-Ta alloys. This oxide exhibits good oxidation resistance, high temperature phase stability up to more than 2000°C, low thermal conductivity and thus could serve as a component or a coating material in an ultrahigh temperature environment. We have examined the microstructure evolution and phase formation sequence during the oxidation exposure of Hf-Ta alloys at 1500°C and identified that the oxidation of a Hf-26.7atomic %Ta alloy leads to the formation of a single phase adherent Hf 6Ta 2O 17 with amore » complex atomic structure i.e. superstructure. The overall reactive diffusion pathway is consistent with the calculated Hf-Ta-O ternary phase diagram. Besides the synthesis of Hf 6Ta 2O 17 superstructure by oxidizing Hf-Ta alloys, we have also developed a synthesis method based upon the reactive sintering of the correct ratios of mixed powders of HfO 2 and Ta 2O 5 and verified the low thermal conductivity of Hf 6Ta 2O 17 superstructure on these samples. We have completed a preliminary analysis of the oxidation kinetics for Hf 6Ta 2O 17, which shows an initial parabolic oxidation kinetics.« less

  15. HOST turbine heat transfer subproject overview

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.

    1986-01-01

    The experimental part of the turbine heat transfer subproject consists of six large experiments, which are highlighted in this overview, and three of somewhat more modest scope. One of the initial efforts was the stator airfoil heat transfer program. The non-film cooled and the showerhead film cooled data have already been reported. The gill region film cooling effort is currently underway. The investigation of secondary flows in a 90 deg curved duct, was completed. The first phase examined flows with a relatively thin inlet boundary layer and low free stream turbulence. The second phase studied a thicker inlet boundary layer and higher free stream turbulence. A comparison of analytical and experimental cross flow velocity vectors is shown for the 60 deg plane. Two experiments were also conducted in the high pressure facility. One examined full coverage film cooled vanes, and the other, advanced instrumentation. The other three large experimental efforts were conducted in a rotation reference frame. An experiment to obtain gas path airfoil heat transfer coefficients in the large, low speed turbine was completed. Single-stage data with both high and low-inlet turbulence were taken. The second phase examined a one and one-half stage turbine and focused on the second vane row. Under phase 3 aerodynamic quantities such as interrow time-averaged and rms values of velocity, flow angle, inlet turbulence, and surface pressure distribution were measured.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min Ho; Rhyee, Jong-Soo, E-mail: jsrhyee@khu.ac.kr

    We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeckmore » coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.« less

  17. Intertwined Orders in Heavy-Fermion Superconductor CeCoIn 5

    DOE PAGES

    Kim, Duk Young; Lin, Shi-Zeng; Weickert, Franziska; ...

    2016-12-20

    The appearance of spin-density-wave (SDW) magnetic order in the low-temperature and high-field corner of the superconducting phase diagram of CeCoIn 5 is unique among unconventional superconductors. The nature of this magnetic $Q$ phase is a matter of current debate. Here, we present the thermal conductivity of CeCoIn 5 in a rotating magnetic field, which reveals the presence of an additional order inside the $Q$ phase that is intimately intertwined with the superconducting d-wave and SDW orders. A discontinuous change of the thermal conductivity within the $Q$ phase, when the magnetic field is rotated about antinodes of the superconducting d-wave ordermore » parameter, demands that the additional order must change abruptly, together with the recently observed switching of the SDW. Lastly, a combination of interactions, where spin-orbit coupling orients the SDW, which then selects the secondary p -wave pair-density-wave component (with an average amplitude of 20% of the primary d-wave order parameter), accounts for the observed behavior.« less

  18. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiulu; Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan; Liu, Zhongli

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of themore » longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.« less

  19. Low threshold field emission from high-quality cubic boron nitride films

    NASA Astrophysics Data System (ADS)

    Teii, Kungen; Matsumoto, Seiichiro

    2012-05-01

    Field emission performance of materials with mixed sp2/sp3 phases often depends upon the phase composition at the surface. In this study, the emission performance of high-quality cubic boron nitride (cBN) films is studied in terms of phase purity. Thick cBN films consisting of micron-sized grains are prepared from boron trifluoride gas by chemical vapor deposition in a plasma jet and an inductively coupled plasma. Both the bulk and surface phase purities as well as crystallinities of cBN evaluated by visible and ultraviolet Raman spectroscopy, glancing-angle x-ray diffraction, and x-ray photoelectron spectroscopy are the highest when the film is deposited in a plasma jet under an optimized condition. The emission turn-on field decreases with increasing the phase purity, down to around 5 V/μm for the highest cBN purity, due to the larger field enhancement, while it is higher than 14 V/μm without cBN (sp2-bonded hexagonal BN only). The results indicate that the total field enhancement for the high phase purity film is governed by the internal field amplification related to the surface coverage of more conductive cBN, rather than the external one related to the surface topology or roughness.

  20. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  1. Effects of UCS intensity and duration of exposure of nonreinforced CS on conditioned electrodermal responses: an experimental analysis of the incubation theory of anxiety.

    PubMed

    Chorot, P; Sandín, B

    1993-12-01

    Eysenck's incubation theory of fear or anxiety was examined in a human Pavlovian conditioning experiment with skin-conductance responses as the dependent variable. The conditioned stimuli (CSs) were fear-relevant slides (snakes and spiders) and the unconditioned stimuli (UCSs) were aversive tones. Different groups of subjects were presented two tone intensities during the acquisition phase and three durations of nonreinforced CS (extinction phase) in a delay differential conditioning paradigm. Resistance to extinction of conditioned skin-conductance responses (conditioned fear responses) exhibited was largest for high intensity of tone and short presentations of the nonreinforced CS (CS+presented alone). The result tends to support Eysenck's incubation theory of anxiety.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, Oleg V.; N.S. Enikolopov Institute of Synthetic Polymer Materials of RAS, Profsoyuznaya st., Moscow, 117393; Kechek’yan, Alexander S.

    Electrically conductive oriented polymer nano-composites of different compositions, based on the reactor powder of ultra-high-molecular-weight polyethylene (UHMWPE) with a special morphology, filled with particles of nanostructured graphite (NG), multi-walled carbon nanotubes (MWCNTs), and electrically conductive carbon black (CB), were investigated. Polymer composites were obtained via compaction of the mechanical mixture of the polymer and filler powder, followed by uniaxial deformation of the material under homogeneous shear (HS) conditions (all of the processing stages were conducted at room temperature). Resulted composites possess a high tensile strength, high level of the electrical conductivity and low percolation threshold, owing it to the formationmore » of the segregated conductive structure, The influence of the type of nanosized carbon filler, degree of the deformation under HS condition, temperature and etc. on the electrical conductivity and mechanical properties of strengthened conductive composites oriented under homogeneous shear conditions was investigated. Changes in the electrical conductivity of oriented composite materials during reversible “tension–shrinkage” cycles along the orientation axis direction were studied. A theoretical approach, describing the process of transformation of the conductive system as a response on polymer phase deformation and volume change, was proposed, based on the data received from the analysis of the conductivity behavior during the uniaxial deformation and thermal treatment of composites.« less

  3. Pipe Overpack Container Fire Testing: Phase I II & III.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Victor G.; Ammerman, Douglas J.; Lopez, Carlos

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the firemore » environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016 were done in three phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. The goal of the third phase was to see if surrogate aerosol gets released from the PC when the drum lid is off. This report will describe the various tests conducted in phase I, II, and III, present preliminary results from these tests, and discuss implications for the POCs.« less

  4. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.

  5. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    NASA Astrophysics Data System (ADS)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-04-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  6. Probing ternary solvent effect in high V oc polymer solar cells using advanced AFM techniques

    DOE PAGES

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...

    2016-01-25

    This work describes a simple method to develop a high V oc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C 60 buffer layer, a bulk heterojunction PSC with V oc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM)more » and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  7. Conventional and phase contrast x-ray imaging techniques and ultrasound imaging method in breast tumor detection: initial comparison studies using phantom

    NASA Astrophysics Data System (ADS)

    Guo, Yuran; Wu, Di; Omoumi, Farid H.; Li, Yuhua; Wong, Molly Donovan; Ghani, Muhammad U.; Zheng, Bin; Liu, Hong

    2018-02-01

    The objective of this study was to demonstrate the capability of the high-energy in-line phase contrast imaging in detecting the breast tumors which are undetectable by conventional x-ray imaging but detectable by ultrasound. Experimentally, a CIRS multipurpose breast phantom with heterogeneous 50% glandular and 50% adipose breast tissue was imaged by high-energy in-line phase contrast system, conventional x-ray system and ultrasonography machine. The high-energy in-line phase contrast projection was acquired at 120 kVp, 0.3 mAs with the focal spot size of 18.3 μm. The conventional x-ray projection was acquired at 40 kVp, 3.3 mAs with the focal spot size of 22.26 μm. Both of the x-ray imaging acquisitions were conducted with a unique mean glandular dose of 0.08 mGy. As the result, the high-energy in-line phase contrast system was able to detect one lesion-like object which was also detected by the ultrasonography. This object was spherical shape with the length of about 12.28 mm. Also, the conventional x-ray system was not able to detect any objects. This result indicated the advantages provided by high-energy in-line phase contrast over conventional x-ray system in detecting lesion-like object under the same radiation dose. To meet the needs of current clinical strategies for high-density breasts screening, breast phantoms with higher glandular densities will be employed in future studies.

  8. Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui

    2017-03-01

    The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity ( σ) and temperature ( T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.

  9. Effect of menstrual cycle phase on exercise performance of high-altitude native women at 3600 m.

    PubMed

    Brutsaert, Tom D; Spielvogel, Hilde; Caceres, Esperanza; Araoz, Mauricio; Chatterton, Robert T; Vitzthum, Virginia J

    2002-01-01

    At sea level normally menstruating women show increased ventilation (VE) and hemodynamic changes due to increased progesterone (P) and estrogen (E2) levels during the mid-luteal (L) compared to the mid-follicular (F) phase of the ovarian cycle. Such changes may affect maximal exercise performance. This repeated-measures, randomized study, conducted at 3600 m, tests the hypothesis that a P-mediated increase in VE increases maximal oxygen consumption (V(O(2)max)) during the L phase relative to the F phase in Bolivian women, either born and raised at high altitude (HA), or resident at HA since early childhood. Subjects (N=30) enrolled in the study were aged 27.7 +/- 0.7 years (mean +/- S.E.M.) and non-pregnant, non-lactating, relatively sedentary residents of La Paz, Bolivia, who were not using hormonal contraceptives. Mean salivary P levels at the time of the exercise tests were 63.3 pg ml(-1) and 22.9 pg ml(-1) for the L and F phases, respectively. Subset analyses of submaximal (N=23) and maximal (N=13) exercise responses were conducted only with women showing increased P levels from F to L and, in the latter case, with those also achieving true (V(O(2)max)). Submaximal exercise VE and ventilatory equivalents were higher in the L phase (P<0.001). P levels were significantly correlated to the submaximal exercise VE (r=0.487, P=0.006). Maximal work output (W) was higher (approximately 5 %) during the L phase (P=0.044), but (V(O(2)max)) (l min(-1)) was unchanged (P=0.063). Post-hoc analyses revealed no significant relationship between changes in P levels and changes in (V(O(2)max))) from F to L (P=0.072). In sum, the menstrual cycle phase has relatively modest effects on ventilation, but no effect on (V(O(2)max)) of HA native women.

  10. High altitude induced anorexia: effect of changes in leptin and oxidative stress levels.

    PubMed

    Vats, Praveen; Singh, Vijay Kumar; Singh, Som Nath; Singh, Shashi Bala

    2007-01-01

    High altitude (HA) exposure usually leads to a significant weight loss in non-acclimatized humans. Anorexia is believed to be the main cause of this body weight loss. Appetite regulatory peptides, i.e. leptin and neuropeptide Y play a key role in food intake and energy homeostasis. Recent studies suggests increased oxidative stress during HA exposure. In present study effect of HA exposure on levels of leptin and NPY was evaluated along with N-acetyl cysteine (NAC) and vitamin E supplementation in relation to food intake and body weight changes. The study was conducted on 30 healthy male volunteers (age 19-29 years). Subjects were divided randomly into three groups of 10 each. Group 1 (placebo) supplemented with 400 mg of calcium gluconate, group 2 and 3 were supplemented with 400 mg of NAC and 400 mg vitamin E, respectively per day. The study was conducted at low altitude (320 m, Phase I), at HA 3600 m (Phase II) and at an altitude of 4580 m (Phase III). On HA exposure significant reduction in plasma leptin levels was observed in all the groups on day 2 (Phase II) along with decrease in food intake and reduction in body weight. Statistically significant increase in blood malondialdehyde (MDA) levels was seen in all the groups on HA exposure (Phase II, Day 2), but the maximum increase was in case of placebo group (65.1%) on day 2 (Phase II) in comparison to low altitude values. The decrease in energy intake was almost same in all the groups indicating that antioxidant supplementation did not provide any protection against HA anorexia. From the study, it may be concluded that leptin and oxidative stress possibly are not the key players for HA anorexia.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berastegui, P.; Hull, S., E-mail: stephen.hull@stfc.ac.u; Eriksson, S.G.

    The compound CsSn{sub 2}F{sub 5} has been investigated over the temperature range from ambient to 545 K using differential scanning calorimetry, impedance spectroscopy and neutron powder diffraction methods. A first-order phase transition is observed from DSC measurements at 510(2) K, to a phase possessing a high ionic conductivity ({sigma}{approx}2.5x10{sup -2} {Omega}{sup -1} cm{sup -1} at 520 K). The crystal structure of the high temperature superionic phase (labelled {alpha}) has been determined to be tetragonal (space group I4/mmm, a=4.2606(10) A, c=19.739(5) A and Z=2) in which the cations form layers perpendicular to the [001] direction, with a stacking sequence CsSnSnCsSnSn... Allmore » the anions are located in two partially occupied sites in the gap between the Cs and Sn layers, whilst the space between the Sn cations is empty, due to the orientation of the lone-pair electrons associated with the Sn{sup 2+}. The structure of {alpha}-CsSn{sub 2}F{sub 5} is discussed in relation to two other layered F{sup -} conducting superionic phases containing Sn{sup 2+} cations, {alpha}-RbSn{sub 2}F{sub 5} and {alpha}-PbSnF{sub 4} and, to facilitate this comparison, an improved structural characterisation of the former is also presented. The wider issue of the role of lone-pair cations such as Sn{sup 2+} in promoting dynamic disorder within an anion substructure is also briefly addressed. - Graphical abstract: CsSn{sub 2}F{sub 5} is shown to undergo a first order phase transition at 510(2) K to a superionic phase in which the specific electronic configuration of the Sn{sup 2+} plays a key role in promoting extensive disorder of the anions.« less

  12. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOEpatents

    Gopalan, Srikanth [Westborough, MA; Pal, Uday B [Dover, MA; Karthikeyan, Annamalai [Quincy, MA; Hengdong, Cui [Allston, MA

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  13. Electrical conductivity of the plagioclase-NaCl-water system and its implication for the high conductivity anomalies in the mid-lower crust of Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Ping; Guo, Xinzhuan; Chen, Sibo; Wang, Chao; Yang, Junlong; Zhou, Xingfan

    2018-02-01

    In order to investigate the origin of the high conductivity anomalies geophysically observed in the mid-lower crust of Tibet Plateau, the electrical conductivity of plagioclase-NaCl-water system was measured at 1.2 GPa and 400-900 K. The relationship between electrical conductivity and temperature follows the Arrhenius law. The bulk conductivity increases with the fluid fraction and salinity, but is almost independent of temperature (activation enthalpy less than 0.1 eV). The conductivity of plagioclase-NaCl-water system is much lower than that of albite-NaCl-water system with similar fluid fraction and salinity, indicating a strong effect of the major mineral phase on the bulk conductivity of the brine-bearing system. The high conductivity anomalies of 10-1 and 100 S/m observed in the mid-lower crust of Tibet Plateau can be explained by the aqueous fluid with a volume fraction of 1 and 9%, respectively, if the fluid salinity is 25%. The anomaly value of 10-1 S/m can be explained by the aqueous fluid with a volume fraction of 6% if the salinity is 10%. In case of Southern Tibet where the heat flow is high, the model of a thin layer of brine-bearing aqueous fluid with a high salinity overlying a thick layer of partial melt is most likely to prevail.

  14. Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments

    NASA Astrophysics Data System (ADS)

    Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas

    2018-03-01

    Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.

  15. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    PubMed

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  16. Thermoelectric properties of layered NaSbSe2.

    PubMed

    Putatunda, Aditya; Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Singh, David J

    2018-06-06

    We investigate ordered monoclinic NaSbSe 2 as a thermoelectric using first principles calculations. We find that from an electronic point of view, ordered and oriented n-type NaSbSe 2 is comparable to the best known thermoelectric materials. This phase has a sufficiently large band gap for thermoelectric and solar absorber applications in contrast to the disordered phase which has a much narrower gap. The electronic structure shows anisotropic, non-parabolic bands. The results show a high Seebeck coefficient in addition to direction dependent high conductivity. The electronic structure quantified by an electron fitness function is very favorable, especially in the n-type case.

  17. Thermoelectric properties of layered NaSbSe2

    NASA Astrophysics Data System (ADS)

    Putatunda, Aditya; Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Singh, David J.

    2018-06-01

    We investigate ordered monoclinic NaSbSe2 as a thermoelectric using first principles calculations. We find that from an electronic point of view, ordered and oriented n-type NaSbSe2 is comparable to the best known thermoelectric materials. This phase has a sufficiently large band gap for thermoelectric and solar absorber applications in contrast to the disordered phase which has a much narrower gap. The electronic structure shows anisotropic, non-parabolic bands. The results show a high Seebeck coefficient in addition to direction dependent high conductivity. The electronic structure quantified by an electron fitness function is very favorable, especially in the n-type case.

  18. The Non-Participation Survey: Understanding Why High School Students Choose Not to Eat School Lunch

    ERIC Educational Resources Information Center

    Asperin, Amelia Estepa; Nettles, Mary Frances; Carr, Deborah H.

    2010-01-01

    Purpose/Objectives: The purpose of this project was to develop and validate a survey that will enable school nutrition (SN) directors and managers to identify and address issues affecting the non-participation of high school students in the National School Lunch Program (NSLP). Methods: The research was conducted in two phases. Qualitative data…

  19. Technical Operations Support III (TOPS III). Delivery Order 0081: Novel Pitch Materials for High Thermal Conductivity Carbon Fibers, Foams and Composites - Phase 3

    DTIC Science & Technology

    2011-06-01

    mm Diameter Barrel and (c) a 12-Hole Spinneret with 150 Micrometer Diameter Holes...6  3. A Schematic of a Mounted Specimen for Compressive Testing Using a High-Speed Camera for Capturing...Tension-Recoil Compressive ..................................................................... 8  4. SEM Images of Oxidized 0 wt% ARHP Mesophase Pitch

  20. Crystal structure and high-temperature properties of the Ruddlesden–Popper phases Sr{sub 3−x}Y{sub x}(Fe{sub 1.25}Ni{sub 0.75})O{sub 7−δ} (0≤x≤0.75)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samain, Louise; Amshoff, Philipp; Biendicho, Jordi J.

    2015-07-15

    Ruddlesden–Popper n=2 member phases Sr{sub 3−x}Y{sub x}Fe{sub 1.25}Ni{sub 0.75}O{sub 7−δ}, 0≤x≤0.75, have been investigated by X-ray and neutron powder diffraction, thermogravimetry and Mössbauer spectroscopy. Both samples as-prepared at 1300 °C under N{sub 2}(g) flow and samples subsequently air-annealed at 900 °C were studied. The as-prepared x=0.75 phase is highly oxygen deficient with δ=1, the O1 atom site being vacant, and the Fe{sup 3+}/Ni{sup 2+} ions having a square pyramidal coordination. For as-prepared phases with lower x values, the Mössbauer spectral data are in good agreement with the presence of both 5- and 4-coordinated Fe{sup 3+} ions, implying in addition amore » partial occupancy of the O3 atom sites that form the basal plane of the square pyramid. The air-annealed x=0.75 sample has a δ value of 0.61(1) and the structure has Fe/Ni ions in both square pyramids and octahedra. Mössbauer spectroscopy shows the phase to contain only Fe{sup 3+}, implying that all Ni is present as Ni{sup 3+}. Air-annealed phases with lower x values are found to contain both Fe{sup 3+} and Fe{sup 4+}. For both the as-prepared and the air-annealed samples, the Y{sup 3+} cations are found to be mainly located in the perovskite block. The high-temperature thermal expansion of as-prepared and air-annealed x=0.75 phases were investigated by high-temperature X-ray diffraction and dilatometry and the linear thermal expansion coefficient determined to be 14.4 ppm K{sup −1}. Electrical conductivity measurements showed that the air-annealed samples have higher conductivity than the as-prepared ones. - Highlights: • Ruddlesden–Popper, n=2, Sr{sub 3−x}Y{sub x}Fe{sub 1.25}Ni{sub 0.75}O{sub 7−δ}, 0≤x≤0.75, have been synthesised. • The crystal structures of the phases have been determined. • Sr{sub 2.25}Y{sub 0.75}Fe{sub 1.25}Ni{sub 0.75}O{sub 6}, made in N{sub 2}(g) has Fe{sup 3+}/Ni{sup 2+} in square pyramides. • Sr{sub 2.25}Y{sub 0.75}Fe{sub 1.25}Ni{sub 0.75}O{sub 6.4}, made in air has Fe{sup 3+}/Ni{sup 3+} in square pyramides and octahedra. • Air annealed samples have higher electrical conductivity than N{sub 2}(g) annealed.« less

  1. Development of high strength ferritic steel for interconnect application in SOFCs

    NASA Astrophysics Data System (ADS)

    Froitzheim, J.; Meier, G. H.; Niewolak, L.; Ennis, P. J.; Hattendorf, H.; Singheiser, L.; Quadakkers, W. J.

    High-Cr ferritic model steels containing various additions of the refractory elements Nb and/or W were studied with respect to oxidation behaviour (hot) tensile properties, creep behaviour and high-temperature electrical conductivity of the surface oxide scales. Whereas W additions of around 2 wt.% had hardly any effect on the oxidation rates at 800 and 900 °C, Nb additions of 1% led to a substantially enhanced growth rate of the protective surface oxide scale. It was found that this adverse effect can be alleviated by suitable Si additions. This is related to the incorporation of Si and Nb into Laves phase precipitates which also contribute to increased creep and hot tensile strength. The dispersion of Laves phase precipitates was greatly refined by combined additions of Nb and W. The high-temperature electrical conductivity of the surface oxide scales was similar to that of the Nb/W-free alloys. Thus the combined additions of Nb, W and Si resulted in an alloy with oxidation resistance, ASR contribution and thermal expansion comparable to the commercial alloy Crofer 22 APU, but with creep strength far greater than that of Crofer 22 APU.

  2. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  3. Challenges and Opportunities in Gen3 Embedded Cooling with High-Quality Microgap Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Avram; Robinson, Franklin L.; Deisenroth, David C.

    2018-01-01

    Gen3, Embedded Cooling, promises to revolutionize thermal management of advanced microelectronic systems by eliminating the sequential conductive and interfacial thermal resistances which dominate the present 'remote cooling' paradigm. Single-phase interchip microfluidic flow with high thermal conductivity chips and substrates has been used successfully to cool single transistors dissipating more than 40kW/sq cm, but efficient heat removal from transistor arrays, larger chips, and chip stacks operating at these prodigious heat fluxes would require the use of high vapor fraction (quality), two-phase cooling in intra- and inter-chip microgap channels. The motivation, as well as the challenges and opportunities associated with evaporative embedded cooling in realistic form factors, is the focus of this paper. The paper will begin with a brief review of the history of thermal packaging, reflecting the 70-year 'inward migration' of cooling technology from the computer-room, to the rack, and then to the single chip and multichip module with 'remote' or attached air- and liquid-cooled coldplates. Discussion of the limitations of this approach and recent results from single-phase embedded cooling will follow. This will set the stage for discussion of the development challenges associated with application of this Gen3 thermal management paradigm to commercial semiconductor hardware, including dealing with the effects of channel length, orientation, and manifold-driven centrifugal acceleration on the governing behavior.

  4. Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications

    DOE PAGES

    Giri, Ashutosh; Wee, Sung Hun; Jain, Shikha; ...

    2016-08-26

    Here, we report on the out-of-plane thermal conductivities of tetragonal L1 0 FePt (001) easy-axis and cubic A1 FePt thin films via time-domain thermoreflectance over a temperature range from 133 K to 500 K. The out-of-plane thermal conductivity of the chemically ordered L10 phase with alternating Fe and Pt layers is ~23% greater than the thermal conductivity of the disordered A1 phase at room temperature and below. However, as temperature is increased above room temperature, the thermal conductivities of the two phases begin to converge. Molecular dynamics simulations on model FePt structures support our experimental findings and help shed moremore » light into the relative vibrational thermal transport properties of the L1 0 and A1 phases. Furthermore, unlike the varying temperature trends in the thermal conductivities of the two phases, the electronic scattering rates in the out-of-plane direction of the two phases are similar for the temperature range studied in this work.« less

  5. Preventing Serious Conduct Problems in School-Age Youths: The Fast Track Program

    PubMed Central

    Slough, Nancy M.; McMahon, Robert J.; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Foster, E. Michael; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen E.

    2009-01-01

    Children with early-starting conduct Problems have a very poor prognosis and exact a high cost to society. The Fast Track project is a multisite, collaborative research project investigating the efficacy of a comprehensive, long-term, multicomponent intervention designed to prevent the development of serious conduct problems in high-risk children. In this article, we (a) provide an overview of the development model that serves as the conceptual foundation for the Fast Track intervention and describe its integration into the intervention model; (b) outline the research design and intervention model, with an emphasis on the elementary school phase of the intervention; and (c) summarize findings to dale concerning intervention outcomes. We then provide a case illustration, and conclude with a discussion of guidelines for practitioners who work with children with conduct problems. PMID:19890487

  6. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    PubMed Central

    Yoon, Hyeonseok

    2013-01-01

    Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348

  7. Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al-Mg-Si nanostructured under severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Mavlyutov, A. M.; Kasatkin, I. A.; Murashkin, M. Yu.; Valiev, R. Z.; Orlova, T. S.

    2015-10-01

    The microstructural features, strength, and electrical conductivity of the electrotechnical aluminum alloy 6201 of the Al-Mg-Si system was investigated. The alloy was nanostructured using severe plastic deformation by high pressure torsion at different temperatures and in different deformation regimes. As a result, the samples had an ultrafine-grain structure with nanoinclusions of secondary phases, which provided an excellent combination of high strength (conventional yield strength σ0.2 = 325-410 MPa) and electrical conductivity (55-52% IACS). The contributions from different mechanisms to the strengthening were analyzed. It was experimentally found that the introduction of an additional dislocation density (an increase from 2 × 1013 to 5 × 1013 m-2) with the same basic parameters of the ultrafine-grain structure (grain size, size and distribution of particles of secondary strengthening phases) leads to an increase in the strength of the alloy by ~15%, while the electrical conductivity of the material changes insignificantly. The contribution from grain boundaries to the electrical resistivity of the alloy with an ultrafine-grain structure upon the change in their state, most likely, due to a change in the degree of nonequilibrium was estimated.

  8. Effect of high fluorine on the cell cycle and apoptosis of renal cells in chickens.

    PubMed

    Bai, Caimin; Chen, Tao; Cui, Yun; Gong, Tao; Peng, Xi; Cui, Heng-Min

    2010-12-01

    The experiment was conducted with the objective of evaluating the effect of dietary high fluorine (F) on cell cycle and apoptosis of kidney in chickens by the methods of flow cytometry. Three hundred 1-day-old Avian broilers were divided into four groups and fed on control diet (F 23 mg/kg) and high F diets (400 mg/kg, high F group I; 800 mg/kg, high F group II; 1,200 mg/kg, high F group III) for 6 weeks. As tested by flow cytometry, the percentage of renal cell apoptosis was increased with increasing of dietary F, and it obviously rose in three high F groups when compared with that of control group. Renal cells in G(0)/G(1) phase were much higher, and renal cells in S phase, G(2)+M phase, and proliferation index value were much lower in high F groups I, II, and III than in control group. The results showed that excess dietary F in the range of 400-1,200 mg/kg caused G(0)/G(1) arrest and increased cellular apoptosis in the kidney, which might finally interfere with the excretion and retention of fluoride in chickens.

  9. Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghong; Li, Wenjian; Huang, Wen; Cao, Zhiqun; Shao, Kang; Li, Fengjiao; Tang, Chaoyun; Li, Cuihua; He, Chuanxin; Zhang, Qianling; Fan, Liangdong

    2018-05-01

    Highly conductive ceria-carbonate composite represents one type of most promising electrolyte materials for low temperature solid oxide fuel cells (SOFCs). Composites with large oxide-carbonate interface and homogeneous element/phase distribution are desirable to further enhance electrical properties and to study the ionic conduction mechanism. In this work, we report the successful synthesis of element/phase well-distributed, interfacial strongly coupled Sm0.2Ce0.8O2-Na2CO3 (NSDC) nanocomposite with different residual carbonate contents by an in-situ one-pot one-step citric acid-nitrate combustion method. Interestingly, NSDC shows distinct properties over those prepared by conventional methods and improved ionic conductivity. In particular, NSDC9010 nanocomposite displays a proton conductivity of 0.044 S cm-1 at 650 °C, which is 3-5 times higher than the oxide proton conductors. Electrolyte supported SOFCs based on the resultant nanocomposite electrolyte, NSDC9010, give the best power output of 281.5 mW cm-2 at 600 °C with LiNiO2 symmetric electro-catalysts. The excellent ionic conductivity and fuel cell performance are correlated with the unique core-shell structure, good phase distribution and large interfacial area induced by the one-step fabrication method, the strong coupling between oxide and carbonate as verified by the differential thermal and Raman spectroscopy characterization results and the optimal interfacial carbonate layer thickness by intentionally adjusting of carbonate contents.

  10. Dramatic Changes in Thermoelectric Power of Germanium under Pressure: Printing n–p Junctions by Applied Stress

    PubMed Central

    Korobeinikov, Igor V.; Morozova, Natalia V.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2017-01-01

    Controlled tuning the electrical, optical, magnetic, mechanical and other characteristics of the leading semiconducting materials is one of the primary technological challenges. Here, we demonstrate that the electronic transport properties of conventional single-crystalline wafers of germanium may be dramatically tuned by application of moderate pressures. We investigated the thermoelectric power (Seebeck coefficient) of p– and n–type germanium under high pressure to 20 GPa. We established that an applied pressure of several GPa drastically shifts the electrical conduction to p–type. The p–type conduction is conserved across the semiconductor-metal phase transition at near 10 GPa. Upon pressure releasing, germanium transformed to a metastable st12 phase (Ge-III) with n–type semiconducting conductivity. We proposed that the unusual electronic properties of germanium in the original cubic-diamond-structured phase could result from a splitting of the “heavy” and “light” holes bands, and a related charge transfer between them. We suggested new innovative applications of germanium, e.g., in technologies of printing of n–p and n–p–n junctions by applied stress. Thus, our work has uncovered a new face of germanium as a ‘smart’ material. PMID:28290495

  11. Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1-x Pb x FeO3 (0 ≤ x ≤ 0.3) ceramics

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Aftab, M.; Samad, Abdus; Mumtaz, Fiza; Awan, M. S.; Shah, S. Ismat

    2018-01-01

    Bi1-x Pb x FeO3 (0 ≤ x ≤ 0.3) has been characterized in detail with an aim to identify role of defect such as dopant, various vacancies, grain boundaries etc, and their effect on structural, optical and multiferroic properties. Structural analysis revealed that Pb substitution transforms the rhombohedral phase of BiFeO3 to the pseudocubic phase for x ≥ 0.15, consistently all vibrational Raman modes associated with the rhombohedral phase are found disappeared. Optical response revealed weakening of the d-d transitions with Pb addition indicating change in the Fe atoms environment consistent with the transition from non-centrosymmetric to the centrosymmetric structure. Transport and dielectric responses are explained in terms of hopping due to the presence of defects like oxygen vacancies and grain boundary conduction. In the high temperature regime, grain boundary conduction led to decrease in resistivity with the presence of a hump that is associated with hopping conduction. Extrinsic contributions in the transport properties correlate well with dielectric response. Magnetic and ferroelectric responses are also presented where role of oxygen vacancies defects has been clearly identified.

  12. Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions

    NASA Astrophysics Data System (ADS)

    Longeot, Matthieu J.; Best, Frederick R.

    1995-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.

  13. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less

  14. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    PubMed

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solidification of high temperature molten salts for thermal energy storage systems

    NASA Technical Reports Server (NTRS)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  16. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    DOE PAGES

    Wu, D.; Zhao, L. -D.; Tong, X.; ...

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe) 1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM)more » observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.« less

  17. Electrical properties of methane hydrate + sediment mixtures

    USGS Publications Warehouse

    Du Frane, Wyatt L.; Stern, Laura A.; Constable, Steven; Weitemeyer, Karen A.; Smith, Megan M; Roberts, Jeffery J.

    2015-01-01

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. Toward this goal, we built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. Here we report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. These results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.

  18. Constraints on Io's interior from auroral spot oscillations

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D.; Blöcker, Aljona; Strobel, Darrell F.; Feldman, Paul D.

    2017-02-01

    The morphology of Io's aurora is dominated by bright spots near the equator that oscillate up and down in approximate correlation with the oscillating orientation of the Jovian magnetospheric field. Analyzing Hubble Space Telescope images, we find that the auroral spots oscillate in phase with the time-variable Jovian magnetic field at Io and that the amplitude of the spot oscillations is reduced by 15% (±5%) with respect to the amplitude of the magnetic field oscillation. We investigate the effects of Io's plasma interaction and magnetic induction in the moon's interior on the magnetic field topology and the aurora oscillations using a magnetohydrodynamic (MHD) simulation and an analytical induction model. The results from the MHD simulation suggest that the plasma interaction has minor effects on the oscillations, while the magnetic induction generally reduces magnetic field oscillations near the surface. However, the analytical model shows that induction in any near-surface layer for which the skin depth is larger than the thickness—like a conductive magma ocean—would induce a phase shift, in conflict with the observations. Under the assumption that the spot oscillations represent the magnetic field oscillation, we constrain the conductance of a near-surface layer to 1 × 103 S or lower. A magma ocean with conductances of 104 S or higher as derived from Galileo magnetometer measurements would cause overly strong attenuation of the amplitude in addition to the irreconcilable phase shift. The observed weakly attenuated, in-phase spot oscillation is consistent with induction in a deep, highly conductive layer like Io's metallic core.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Stavila, Vitalie

    The salt compounds NaB 11H 14, Na-7-CB10H13, Li-7-CB 10H 13, Na-7,8-C 2B 9H 12, and Na-7,9-C 2B 9H 12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B-H} + {C-H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order-disordermore » phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ~10 10 jumps s -1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB 9H 10- and CB 11H 12- closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.« less

  20. Bounds on strong field magneto-transport in three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Briane, Marc; Milton, Graeme W.

    2011-10-01

    This paper deals with bounds satisfied by the effective non-symmetric conductivity of three-dimensional composites in the presence of a strong magnetic field. On the one hand, it is shown that for general composites the antisymmetric part of the effective conductivity cannot be bounded solely in terms of the antisymmetric part of the local conductivity, contrary to the columnar case studied by Briane and Milton [SIAM J. Appl. Math. 70(8), 3272-3286 (2010), 10.1137/100798090]. Thus a suitable rank-two laminate, the conductivity of which has a bounded antisymmetric part together with a high-contrast symmetric part, may generate an arbitrarily large antisymmetric part of the effective conductivity. On the other hand, bounds are provided which show that the antisymmetric part of the effective conductivity must go to zero if the upper bound on the antisymmetric part of the local conductivity goes to zero, and the symmetric part of the local conductivity remains bounded below and above. Elementary bounds on the effective moduli are derived assuming the local conductivity and the effective conductivity have transverse isotropy in the plane orthogonal to the magnetic field. New Hashin-Shtrikman type bounds for two-phase three-dimensional composites with a non-symmetric conductivity are provided under geometric isotropy of the microstructure. The derivation of the bounds is based on a particular variational principle symmetrizing the problem, and the use of Y-tensors involving the averages of the fields in each phase.

  1. Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions

    PubMed Central

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445

  2. Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions.

    PubMed

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.

  3. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  4. Method for the production of ultrafine particles by electrohydrodynamic micromixing

    DOEpatents

    DePaoli, David W.; Hu, Zhong Cheng; Tsouris, Constantinos

    2001-01-01

    The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.

  5. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  6. VLBI phase-referencing for observations of weak radio sources

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.

    1991-01-01

    Phase-referencing is a technique used in VLBI to extend the signal coherence time from a few minutes to a few hours in order to enhance significantly its sensitivity. With this technique, VLBI observations of milliJansky radio sources can be conducted for high-accuracy differential astrometry as well as imaging. We describe the technique in some details and present, as an example, a submilliarcsecond differential astrometric experiment design to identify the star responsible for the weak radio emission in the binary system Algol.

  7. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less

  8. Safety Profile of Biologic Drugs in the Therapy of Ulcerative Colitis: A Systematic Review and Network Meta-Analysis.

    PubMed

    Moćko, Paweł; Kawalec, Paweł; Pilc, Andrzej

    2016-08-01

    We compared the safety profile of biologic drugs in patients with moderately to severely active ulcerative colitis (UC). A systematic literature search was performed using Medline (PubMed), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases through February 9, 2016. We included randomized controlled trials (RCTs) that compared the safety of biologic drugs (infliximab, adalimumab, golimumab, and vedolizumab) with one another or with placebo in patients with UC. Two reviewers independently conducted the search and selection of studies and rated the risk of bias in each trial. The network meta-analysis (NMA) was conducted for an induction phase (6-8 weeks) and maintenance phase (52-54 weeks) with a Bayesian hierarchical random effects model in Aggregate Data Drug Information System (ADDIS) software. The PROSPERO registration number was CRD42016032607. Seven RCTs were included in the systematic review with NMA. In the case of the induction phase, the NMA could be conducted for the assessment of the relative safety profile of adalimumab, golimumab, and vedolizumab, and in the case of the maintenance phase of infliximab, adalimumab, golimumab, and vedolizumab. The methodological quality of the included RCTs was evaluated as low risk of bias, but high risk of bias in the case of attrition bias (incomplete outcome data) according to the Cochrane criteria. No significant differences were found in the rate of adverse events in patients treated with the reviewed biologics. Vedolizumab was most likely to have the most favorable safety profile in the induction phase as was infliximab for the maintenance phase. The assessment of the relative safety profile revealed no significant differences between the biologic drugs. Further studies are needed to confirm our findings including head-to-head comparisons between the analyzed biologics. © 2016 Pharmacotherapy Publications, Inc.

  9. Thermophysical properties of gas phase uranium tetrafluoride

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Anghaie, Samim

    1993-01-01

    Thermophysical data of gaseous uranium tetrafluoride (UF4) are theoretically obtained by taking into account dissociation of molecules at high temperatures (2000-6000 K). Determined quantities include specific heat, optical opacity, diffusion coefficient, viscosity, and thermal conductivity. A computer program is developed for the calculation.

  10. Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)

    EPA Science Inventory

    Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...

  11. Highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hertkorn, J.; Thapa, S. B.; Wunderer, T.; Scholz, F.; Wu, Z. H.; Wei, Q. Y.; Ponce, F. A.; Moram, M. A.; Humphreys, C. J.; Vierheilig, C.; Schwarz, U. T.

    2009-07-01

    In this study, we present theoretical and experimental results regarding highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures. Based on simulation results, several multiheterostructures were grown by metalorganic vapor phase epitaxy. Using high resolution x-ray diffraction and x-ray reflectometry, the abruptness of the AlGaN/AlN/GaN interfaces could be determined. Using electron holography, the energetic profile of the valence band could be measured, yielding important information about the vertical carrier transport in such multiheterostructures. The electrical properties of the samples were investigated by measuring the lateral (σL) and vertical (σV) conductivity, respectively. The free hole concentration of a sample optimized in terms of lateral conductivity was measured to be 1.2×1019 cm-3 (295 K) with a mobility of 7 cm2/V s, yielding a record σL of 13.7 (Ω cm)-1. Low temperature Hall measurements (77 K) proved the existence of a two-dimensional hole gas at the AlN/GaN interface, as the lateral conductivity could be increased to 30 (Ω cm)-1 and no carrier freeze out was observable. By substituting the p-GaN layer in a light emitting diode (LED) with an AlGaN/GaN multiheterostructure, the overall voltage drop could be reduced by more than 100 mV (j =65 A/cm2). Furthermore improved current spreading on the p-side of LEDs with integrated AlGaN/AlN/GaN multiheterostructures could be proved by μ-electroluminescence, respectively.

  12. Magnetic phase investigations on fluorine (F) doped LiFePO4

    NASA Astrophysics Data System (ADS)

    Radhamani, A. V.

    2018-03-01

    LiFePO4 (LFP) is a very promising cathode material for Li-ion batteries due to its high thermal stability, less toxicity and high theoretical capacity (170 mAh g-1). Anion doping, especially fluorine (F) at the oxygen site is one way to improve the low electronic conductivity of the material. In this line, fluorine doped LFP was prepared at different fluorine concentrations (1 to 40 mol%) to study the structural, spectroscopic and magnetic properties in view of the material property optimization for battery applications. The investigation of the magnetic properties was found to be successful for the determination of small amounts of magnetic impurities which were not noticeably observed from structural characterizations. Determination of conducting magnetic impurities has its own relevance in the current scenario of Li-ion based battery applications. Systematic characterization studies along with the implications of magnetic phases on the material activity of fluorine doped LiFePO4 nanoparticles will be discussed in detail.

  13. Design and development of advanced castable refractory materials

    NASA Astrophysics Data System (ADS)

    Davis, Robert Bruce

    New formulations of castable refractory composite materials were studied. This technology is used to produce low cost composite concrete structures designed for high temperature stability, superior wear resistance and improved strength. An in situ fired, castable cement installation is a heterogeneous structure divided into three zones according to the temperature history and microstructure. The properties of each zone depend on the predominant bonding mode between constituents. Each zone has a characteristic microstructure that influences the integrity of the monolith. The hot side may have a highly dense and developed network of ceramic bonds between constituent particles while the cold side may never reach temperatures sufficient to drive off free water. The thermal, structural and tribological properties depend on the microstructure and the type of bonding that holds the monolith together. The phase distributions are defined by sets of metastable phase conditions driven by the local hydrated chemistry, nearest neighbor oxide compounds, impurities and sintering temperature. Equilibrium phase diagrams were used to select optimum compositions based on higher melting point phases. The phase diagrams were also used to target high temperature phase fields that are stable over wide temperature and stoichiometric ranges. Materials selection of candidate hydraulic clinkers, high temperature oxides, and reinforcement phases were based on requirements for high temperature stability. The calcium aluminate (CaO-Al2O3) and calcium dialuminate (CaO-(Al2O3)2) are common refractory clinkers used in castable refractory cements. The thermodynamics and kinetics of cement hydrate formation are well studied and suited to become the building block of a design for a superior refractory castable cement. The inert oxides mixed with the calcium aluminate clinkers are magnesia (MgO), alumina (Al 2O3), spinel (MgAl2O4) and chromic (Cr2O3). The bulk of the experiments concentrated in the Al2O3--MgO--CaO ternary system. Materials selection criteria for reinforcement materials was based on improved high temperature stability, increased strength, reduced thermal expansion mismatch, low thermal conductivity and increasing wear resistance. The reinforcement phases selected for this investigation are zircon (ZrSiO4), zirconia (ZrO2), spinel (MgAl2O4) and dead burnt magnesia (MgO). Batches of the formulations were tested for thermal conductivity, wear resistance and mechanical strength. Relative rankings of the formulations against commercial products indicate improved or similar performance with increased maximum temperature limits and improved thermal insulating power. The new cement formulations proved to exhibit superior high temperature stability with an increasing volume fraction of high temperature oxides. The addition of reinforcement aggregates and powder sizing to offset the loss of strength. The room temperature compression strength and wear resistance of the optimized formulations exceeded the properties of conventional refractory, brick and castable cement tested concurrently.

  14. 25 CFR 1000.175 - What is the process for conducting the negotiation phase?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false What is the process for conducting the negotiation phase...-DETERMINATION AND EDUCATION ACT Negotiation Process for Annual Funding Agreements Negotiation of Initial Annual Funding Agreements § 1000.175 What is the process for conducting the negotiation phase? (a) Within 30 days...

  15. 25 CFR 1000.175 - What is the process for conducting the negotiation phase?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What is the process for conducting the negotiation phase...-DETERMINATION AND EDUCATION ACT Negotiation Process for Annual Funding Agreements Negotiation of Initial Annual Funding Agreements § 1000.175 What is the process for conducting the negotiation phase? (a) Within 30 days...

  16. 25 CFR 1000.175 - What is the process for conducting the negotiation phase?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What is the process for conducting the negotiation phase...-DETERMINATION AND EDUCATION ACT Negotiation Process for Annual Funding Agreements Negotiation of Initial Annual Funding Agreements § 1000.175 What is the process for conducting the negotiation phase? (a) Within 30 days...

  17. 25 CFR 1000.175 - What is the process for conducting the negotiation phase?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false What is the process for conducting the negotiation phase...-DETERMINATION AND EDUCATION ACT Negotiation Process for Annual Funding Agreements Negotiation of Initial Annual Funding Agreements § 1000.175 What is the process for conducting the negotiation phase? (a) Within 30 days...

  18. 25 CFR 1000.175 - What is the process for conducting the negotiation phase?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What is the process for conducting the negotiation phase...-DETERMINATION AND EDUCATION ACT Negotiation Process for Annual Funding Agreements Negotiation of Initial Annual Funding Agreements § 1000.175 What is the process for conducting the negotiation phase? (a) Within 30 days...

  19. Thermal Control and Enhancement of Heat Transport Capacity of Two-Phase Loops With Electrohydrodynamic Conduction Pumping

    NASA Technical Reports Server (NTRS)

    Seyed-Yagoobi, J.; Didion, J.; Ochterbeck, J. M.; Allen, J.

    2000-01-01

    There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force: induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping relies on the generation of induced charges. This charge induction in the presence of an electric field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be caused by a non-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous liquid. In order to generate Coulomb force, a space charge must be generated. There are two main mechanisms for generating a space charge in an isothermal liquid. The first one is associated with the ion injection at a metal/liquid interface and the related pumping is referred to as ion-drag pumping. Ion-drag pumping is not desirable because it can deteriorate the electrical properties of the working fluid. The second space charge generation mechanism is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge layers result from dissociation of the neutral electrolytic species and recombination of the generated ions. This type of pumping is referred to as pure conduction pumping. This project investigates the EHD pumping through pure conduction phenomenon. Very limited work has been conducted in this field and the majority of the published papers in this area have mistakenly assumed that the electrostriction force was responsible for the net flow generated in an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction pump for a two-phase loop to be operated in the microgravity environment. The pump is installed in the liquid return passage (isothermal liquid) from the condenser section to the evaporator section. Unique high voltage and ground electrodes have been designed that generate sufficient pressure heads with very low electric power requirements making the EHD conduction pumping attractive to applications such as two-phase systems (e.g. capillary pumped loops and heat pipes). Currently, the EHD conduction pump performance is being tested on a two-phase loop under various operating conditions in the laboratory environment. The simple non-mechanical and lightweight design of the EHD pump combined with the rapid control of performance by varying the applied electric field, low power consumption, and reliability offer significant advantages over other pumping mechanisms; particularly in reduced gravity applications.

  20. Structures and phase transitions in a new ferroelectric -- pyridinium chlorochromate -- studied by X-ray diffraction, DSC and dielectric methods.

    PubMed

    Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław

    2012-04-01

    Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).

  1. A study of enhancing critical current densities (J(sub c)) and critical temperature (T(sub c)) of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1992-01-01

    The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The pre-heat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and Bismuth 2223, 2212, and 2201 phases. This orientation is conductive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.

  2. Theoretical study of superionic phase transition in Li2S.

    PubMed

    Jand, Sara Panahian; Zhang, Qian; Kaghazchi, Payam

    2017-07-19

    We have studied temperature-induced superionic phase transition in Li 2 S, which is one of the most promising Li-S battery cathode material. Concentration of ionic carriers at low and high temperature was evaluated from thermodynamics of defects (using density functional theory) and detailed balance condition (using ab initio molecular dynamics (AIMD)), respectively. Diffusion coefficients were also obtained using AIMD simulations. Calculated ionic conductivity shows that superionic phase transition occurs at T = 900 K, which is in agreement with reported experimental values. The superionic behavior of Li 2 S is found to be due to thermodynamic reason (i.e. a large concentration of disordered defects).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemer, Matthew; Quey, Romain; Dawson, Paul

    Discussed is a computational study of the influence of the microstructure’s geometric morphology on the yield strength and ductility of Ti-6Al-4V. Uniaxial tension tests were conducted on physical specimens to determine the macroscopic yield strength and ductility of two microstructural variations (mill annealed and β annealed) to establish comparisons of macroscopic properties. A multi-experimental approach was utilized to gather two dimensional and three dimensional data, which were used to inform the construction of representative β annealed polycrystals. A highly parallelized crystal plasticity finite element framework was employed to model the deformation response of the generated polycrystals subjected to uniaxial tension.more » To gauge the macroscopic response’s sensitivity to the morphology of the geometry, the key geometrical features - namely the number of high temperature β phase grains, α phase colonies, and size of remnant secondary β phase lamellae - were altered systematically in a suite of simulations. Both single phase and dual phase aggregates were studied. Presented are the calculated yield strengths and ductilities, and the resulting trends as functions of geometric parameters are examined in light of the heterogeneity in deformation at the crystal scale.« less

  4. A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

  5. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  6. CRREL Technical Publications. Supplement 1976-1990

    DTIC Science & Technology

    1990-01-01

    course and water heading, and ship speed on the airborne detection of high resistivity areas The longed wastewater application at the sites No...enplsTes by rered-phase high - performance iq- MILITARY OPERATION, SNOW COVER EF- 14 and 21 days at -10 C A field test was conducted uid chromato;raphy...effects of thawing and freezing soil. deep snow, irplines freezing front. Temperature sensors were placed within overlay files into a high - speed graphical

  7. Colossal dielectric response in all-ceramic percolative composite 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3-Pb2Ru2O6.5

    NASA Astrophysics Data System (ADS)

    Bobnar, V.; Hrovat, M.; Holc, J.; Filipič, C.; Levstik, A.; Kosec, M.

    2009-02-01

    An exceptionally high dielectric constant was obtained by making use of the conductive percolative phenomenon in all-ceramic composite, comprising of Pb2Ru2O6.5 with high electrical conductivity denoted as the conductive phase and ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) perovskite systems. Structural analysis revealed a uniform distribution of conductive ceramic grains within the PMN-PT matrix. Consequently, the dielectric response in the PMN-PT-Pb2Ru2O6.5 composite follows the predictions of the percolation theory. Thus, close to the percolation point exceptionally high values of the dielectric constant were obtained—values higher than 105 were detected at room temperature at 1 kHz. Fit of the data, obtained for samples of different compositions, revealed critical exponent and percolation point, which reasonably agree with the theoretically predicted values.

  8. Thermoelectric and phonon transport properties of two-dimensional IV-VI compounds.

    PubMed

    Shafique, Aamir; Shin, Young-Han

    2017-03-30

    We explore the thermoelectric and phonon transport properties of two-dimensional monochalcogenides (SnSe, SnS, GeSe, and GeS) using density functional theory combined with Boltzmann transport theory. We studied the electronic structures, Seebeck coefficients, electrical conductivities, lattice thermal conductivities, and figures of merit of these two-dimensional materials, which showed that the thermoelectric performance of monolayer of these compounds is improved in comparison compared to their bulk phases. High figures of merit (ZT) are predicted for SnSe (ZT = 2.63, 2.46), SnS (ZT = 1.75, 1.88), GeSe (ZT = 1.99, 1.73), and GeS (ZT = 1.85, 1.29) at 700 K along armchair and zigzag directions, respectively. Phonon dispersion calculations confirm the dynamical stability of these compounds. The calculated lattice thermal conductivities are low while the electrical conductivities and Seebeck coefficients are high. Thus, the properties of the monolayers show high potential toward thermoelectric applications.

  9. Discovery of Emergent Photon and Monopoles in a Quantum Spin Liquid

    NASA Astrophysics Data System (ADS)

    Tokiwa, Yoshifumi; Yamashita, Takuya; Terazawa, Daiki; Kimura, Kenta; Kasahara, Yuichi; Onishi, Takafumi; Kato, Yasuyuki; Halim, Mario; Gegenwart, Philipp; Shibauchi, Takasada; Nakatsuji, Satoru; Moon, Eun-Gook; Matsuda, Yuji

    2018-06-01

    Quantum spin liquid (QSL) is an exotic quantum phase of matter whose ground state is quantum-mechanically entangled without any magnetic ordering. A central issue concerns emergent excitations that characterize QSLs, which are hypothetically associated with quasiparticle fractionalization and topological order. Here we report highly unusual heat conduction generated by the spin degrees of freedom in a QSL state of the pyrochlore magnet Pr2Zr2O7, which hosts spin-ice correlations with strong quantum fluctuations. The thermal conductivity in high temperature regime exhibits a two-gap behavior, which is consistent with the gapped excitations of magnetic (M-) and electric monopoles (E-particles). At very low temperatures below 200 mK, the thermal conductivity unexpectedly shows a dramatic enhancement, which well exceeds purely phononic conductivity, demonstrating the presence of highly mobile spin excitations. This new type of excitations can be attributed to emergent photons (ν-particle), coherent gapless spin excitations in a spin-ice manifold.

  10. Development of high performance refractory fibers with enhanced insulating properties and longer service lifetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.C.; DePoorter, G.L.; Munoz, D.R.

    1991-02-01

    We have initiated a three phase investigation of the development of high performance refractory fibers with enhanced insulating properties and longer usable lifetimes. This report presents the results of the first phase of the study, performed from Aug. 1989 through Feb. 1991, which shows that significant energy saving are possible through the use of high temperature insulating fibers that better retain their efficient insulating properties during the service lifetime of the fibers. The remaining phases of this program include the pilot scale development and then full scale production feasibility development and evaluation of enhanced high temperature refractory insulting fibers. Thismore » first proof of principle phase of the program presents a summary of the current use patterns of refractory fibers, a laboratory evaluation of the high temperature performance characteristics of selected typical refractory fibers and an analysis of the potential energy savings through the use of enhanced refractory fibers. The current use patterns of refractory fibers span a wide range of industries and high temperature furnaces within those industries. The majority of high temperature fiber applications are in furnaces operating between 2000 and 26000{degrees}F. The fibers used in furnaces operating within this range provide attractive thermal resistance and low thermal storage at reasonable cost. A series of heat treatment studies performed for this phase of the program has shown that the refractory fibers, as initially manufactured, have attractive thermal conductivities for high temperature applications but the fibers go through rapid devitrification and subsequent crystal growth upon high temperature exposure. Development of improved fibers, maintaining the favorable characteristics of the existing as-manufactured fibers, could save between 1 and 4% of the energy consumed in high temperature furnaces using refractory fibers.« less

  11. Enhancement of thermoelectric figure of merit in β-Zn{sub 4}Sb{sub 3} by indium doping control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Pai-Chun, E-mail: pcwei68@gmail.com, E-mail: cheny2@phys.sinica.edu.tw; Hsu, Chia-Hao; Chang, Chung-Chieh

    2015-09-21

    We demonstrate the control of phase composition in Bridgman-grown β-Zn{sub 4}Sb{sub 3} crystals by indium doping, an effective way to overcome the difficulty of growing very pure β-Zn{sub 4}Sb{sub 3} thermoelectric material. The crystal structures are characterized by Rietveld refinement with synchrotron X-ray diffraction data. The results show an anisotropic lattice expansion in In-doped β-Zn{sub 4}Sb{sub 3} wherein the zinc atoms are partially substituted by indium ones at 36f site of R-3c symmetry. Through the elimination of ZnSb phase, all the three individual thermoelectric properties are simultaneously improved, i.e., increasing electrical conductivity and Seebeck coefficient while reducing thermal conductivity. Undermore » an optimal In concentration (x = 0.05), pure phase β-Zn{sub 4}Sb{sub 3} crystal can be obtained, which possesses a high figure of merit (ZT) of 1.4 at 700 K.« less

  12. Early phase clinical trials with human immunodeficiency virus-1 and malaria vectored vaccines in The Gambia: frontline challenges in study design and implementation.

    PubMed

    Afolabi, Muhammed O; Adetifa, Jane U; Imoukhuede, Egeruan B; Viebig, Nicola K; Kampmann, Beate; Bojang, Kalifa

    2014-05-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) and malaria are among the most important infectious diseases in developing countries. Existing control strategies are unlikely to curtail these diseases in the absence of efficacious vaccines. Testing of HIV and malaria vaccines candidates start with early phase trials that are increasingly being conducted in developing countries where the burden of the diseases is high. Unique challenges, which affect planning and implementation of vaccine trials according to internationally accepted standards have thus been identified. In this review, we highlight specific challenges encountered during two early phase trials of novel HIV-1 and malaria vectored vaccine candidates conducted in The Gambia and how some of these issues were pragmatically addressed. We hope our experience will be useful for key study personnel involved in day-to-day running of similar clinical trials. It may also guide future design and implementation of vaccine trials in resource-constrained settings.

  13. Structural, electrical conductivity and dielectric behavior of Na2SO4-LDT composite solid electrolyte.

    PubMed

    Iqbal, Mohd Z; Rafiuddin

    2016-01-01

    A series of composite materials of general molecular formula (1 - x) Na2SO4 - (x) LDT was prepared by solid state reaction method. The phase structure and functionalization of these materials were defined by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) respectively. Differential thermal analysis (DTA) revealed that the hump of phase transition at 250 °C has decreased while its thermal stability was enhanced. Scanning electron microscopy signifies the presence of improved rigid surfaces and interphases that are accountable for the high ionic conduction due to dispersion of LDT particles in the composite systems. Arrhenius plots of the conductance show the maximum conductivity, σ = 4.56 × 10(-4) S cm(-1) at 500 °C for the x = 0.4 composition with the lowest activation energy 0.34 eV in the temperature range of 573-773 K. The value of dielectric constant was decreased with increasing frequency and follows the usual trend.

  14. Variation of Ionic Conductivity with Annealing Temperature in Argyrodite Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Rao, R. Prasada; Chen, Maohua; Adams, Stefan

    2013-07-01

    In situ neutron diffraction studies of argyrodite-type Li6PS5X (X = Cl, Br, I) were conducted for mechanically milled sample to reveal the formation and growth of crystalline phases. These studies indicated the formation of crystals in all the compounds started from as low as 80°C. The Rietveld refinements of the resulting crystalline phases at 150°C indicate the formation of the argyrodite structure. Structure refinements using high-intensity neutron diffraction provide insight into the influence of disorder on the fast ionic conductivity. Besides the disorder in the lithium distribution, it is the disorder in the S2-/Cl- or S2-/Br- distribution that we find to promote ion mobility. Among the samples studied Li6PS5Br, annealed at 250°C, exhibited the highest ionic conductivity, 1.05 × 10-3 S/cm at room temperature. An all solid state battery with Li4Ti5O12/Li6PS5Br/Li exhibited 57 mAh/g first discharge capacity at 75°C with 91% coulombic efficiency after 60 cycles.

  15. Three Dimensional Visualization of Human Cardiac Conduction Tissue in Whole Heart Specimens by High-Resolution Phase-Contrast CT Imaging Using Synchrotron Radiation.

    PubMed

    Shinohara, Gen; Morita, Kiyozo; Hoshino, Masato; Ko, Yoshihiro; Tsukube, Takuro; Kaneko, Yukihiro; Morishita, Hiroyuki; Oshima, Yoshihiro; Matsuhisa, Hironori; Iwaki, Ryuma; Takahashi, Masashi; Matsuyama, Takaaki; Hashimoto, Kazuhiro; Yagi, Naoto

    2016-11-01

    The feasibility of synchrotron radiation-based phase-contrast computed tomography (PCCT) for visualization of the atrioventricular (AV) conduction axis in human whole heart specimens was tested using four postmortem structurally normal newborn hearts obtained at autopsy. A PCCT imaging system at the beamline BL20B2 in a SPring-8 synchrotron radiation facility was used. The PCCT imaging of the conduction system was performed with "virtual" slicing of the three-dimensional reconstructed images. For histological verification, specimens were cut into planes similar to the PCCT images, then cut into 5-μm serial sections and stained with Masson's trichrome. In PCCT images of all four of the whole hearts of newborns, the AV conduction axis was distinguished as a low-density structure, which was serially traceable from the compact node to the penetrating bundle within the central fibrous body, and to the branching bundle into the left and right bundle branches. This was verified by histological serial sectioning. This is the first demonstration that visualization of the AV conduction axis within human whole heart specimens is feasible with PCCT. © The Author(s) 2016.

  16. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers

    PubMed Central

    Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197

  17. Effects of diet on population development of the rotifer Brachionus plicatilis in culture

    NASA Astrophysics Data System (ADS)

    Planas, M.; Estévez, A.

    1989-06-01

    Experiments were conducted in order to observe the effect of five diets on the population development of the rotifer Brachionus plicatilis Müller under laboratory conditions. Diets were based on baker’s yeast ( Saccharomyces cerevisiae) and the algae Tetraselmis suecica and Isochrysis galbana, mixed, or as simple diets. Growth rates, fecundity and biometric parameters were studied for 15 days. The cultures were divided in a logarithmic phase and a harvesting phase. Rotifers fed on Tetraselmis, alone or mixed with yeast or Isochrysis, gave good performances with the best results in all the parameters studied. Average growth rates in all diets were similar during the exponential phase, with values ranging from 0.72 ( Tetraselmis and Tetraselmis + yeast) to 0.47 (yeast). During the harvesting phase there were high differences between diets, with rates highly reduced in the yeast-group (0.17) and good rates when Tetraselmis was ingested (0.65 0.51). This alga had a positive influence on the rotifers, increasing individual growth and fecundity.

  18. Determination of the continuous cooling transformation diagram of a high strength low alloyed steel

    NASA Astrophysics Data System (ADS)

    Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong

    2016-11-01

    The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.

  19. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  20. Synchrotron radiation study on the phase relations of KAlSi3O8

    NASA Astrophysics Data System (ADS)

    Urakawa, Satoru; Ohno, Hideo; Igawa, Naoki; Kondo, Tadashi; Shimomura, Osamu

    1994-07-01

    The equilibrium phase relations of KAlSi3O8 have been determined by in situ X-ray diffraction method using synchrotron radiation at Photon Factory, Natl. Lab. for High Energy Physics. Experiments were conducted by using the cubic type high pressure apparatus, MAX90, equipped with sintered diamond anvils. The temperature region was extended to 2000 °C up to 10 GPa in this study. Sanidine, the low pressure phase of KAlSi3O8, decomposes into three phases, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2), at 6.5 GPa and 1200˜1300 °C. The hollandite-type KAlSi3O8 is made up of three phases at 9.2 GPa and 1300˜1400 °C. The melting points of sanidine and the hollandite-type KAlSi3O8 are 1600 °C at 6.7 GPa and 1800 °C at 11.2 GPa, respectively. In three phases coexisting field, wadeite-type K2Si4O9 first melts at the temperature between 1400 °C and 1500 °C.

  1. Influence of Strain on Thermal Conductivity of Silicon Nitride Thin Films

    DTIC Science & Technology

    2012-03-02

    free path of amorphous materials is of the same order as the structural disorder [46], rendering thermal conductivity size independent. Here, the phases...16] Manninen A J, Leivo M M and Pekola J P 1997 Refrigeration of a dielectric membrane by superconductor /insulator/ normal-metal/insulator... superconductor tunneling Appl. Phys. Lett. 70 1885–7 [17] Olson E A et al 2003 The design and operation of a MEMS differential scanning nanocalorimeter for high

  2. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  3. High H⁻ ionic conductivity in barium hydride.

    PubMed

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  4. Spontaneous magnetization-induced phonons stability in γ‧-Fe4N crystalline alloys and high-pressure new phase

    NASA Astrophysics Data System (ADS)

    Cheng, Tai-min; Yu, Guo-liang; Su, Yong; Zhu, Lin; Li, Lin

    2018-04-01

    The stability of lattice dynamics and the magnetism of the ordered γ‧-Fe4N crystalline alloy at high pressures were studied by first-principle calculations based on density-functional theory. The dynamical stable new phase P2/m-Fe4N at high pressures was found by conducting the softening phenomenon at the point M (0.5 0.5 0) of the acoustic phonon at 10 GPa in the γ‧-Fe4N via soft-mode phase transition theory. Compared to the phonon spectrum of γ‧-Fe4N without considering electronic spin polarization, the ground-state lattice dynamical stability of the ferromagnetic phase γ‧-Fe4N is induced by the spontaneous magnetization at pressures below 1 GPa. However, P2/m-Fe4N is more thermodynamically stable than γ‧-phase at pressures below 1 GPa, and the magnetic moments of the two phases are almost the same. The ground-state structure of P2/m phase is more stable than that of γ‧-phase in the pressure range from 2.9 to 19 GPa. The magnetic moments of the two phases are almost the same in the pressure range from 20 to 214 GPa, but the ground-state structure of γ‧-phase is more stable than that of P2/m phase in the pressure range from 143.8 to 214 GPa. On the contrary, the ground-state structure of P2/m phase is more stable when the pressure is above 214 GPa. In the pressure range from 214 to 300 GPa, the magnetic moment of P2/m phase is lower than that of γ‧-phase, and the magnetic moments of the two phase tend to be consistent when the pressure exceeds 300 GPa.

  5. Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content

    NASA Astrophysics Data System (ADS)

    Rai, Amarendra K.; Schmitt, Michael P.; Dorfman, Mitchell R.; Zhu, Dongming; Wolfe, Douglas E.

    2018-04-01

    Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd2Zr2O7 (GZO) combined with 70 wt.% of a tougher t' low-k material (ZrO2-2Y2O3-1Gd2O3-1Yb2O3; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.

  6. Effects of Rapid Solidification on Phase Formation and Microstructure Evolution of AgSbTe₂-Based Thermoelectric Compounds.

    PubMed

    Castellero, Alberto; Fiore, Gianluca; Evenstein, Eliran; Baricco, Marcello; Amouyal, Yaron

    2017-03-01

    We report on rapid solidification of an Ag(16.7)Sb(30.0)Te(53.3) compound using planar flow casting to stabilize the δ-AgSbTe₂ single phase and avoid precipitation of the interconnected Sb₂Te₃ phase, which leads to deterioration of thermoelectric properties. Rapidly solidified samples are in form of flakes with different thickness (60–400 μm). Precipitation of Sb2Te₃ phase is fully inhibited in thin flakes (thickness below 100 μm), which consist of an homogeneous δ-AgSbTe₂ matrix, whereas isolated Sb₂Te₃ precipitates, dispersed throughout the δ-AgSbTe₂ matrix, were found in thick flakes (thickness above 100 μm). The lattice parameter of the δ-AgSbTe₂ phase progressively increases with the cooling rate, indicating progressive supersaturation of the matrix for high degree of supercooling. Bulk specimens were prepared by hot pressing of the rapidly solidified flakes to evaluate thermoelectric properties. After sintering of the rapidly solidified flakes, the differential scanning calorimetry (DSC) traces indicates partial decomposition of the non equilibrium δ-AgSbTe₂ into the stable phases. Measurements of the thermoelectric transport properties indicate the positive effects of rapid solidification on thermal conductivity and Seebeck coefficient and its negative effect on electrical conductivity, suggesting an operative way to improve thermoelectric performance.

  7. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  8. Sustained phase separation and spin glass in Co-doped K x Fe 2 - y Se 2 single crystals

    DOE PAGES

    Ryu, Hyejin; Wang, Kefeng; Opacic, M.; ...

    2015-11-19

    We describe Co substitution effects in K xFe 2-y-zCo zSe 2 (0.06 ≤ z ≤ 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K 2Fe 4Se 5 and superconducting/metallic K xFe 2Se 2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident withmore » changes of the unit cell, arrangement and connectivity of stripe conducting phase.« less

  9. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  10. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2014-06-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  11. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  12. Interplay between the Dzyaloshinskii-Moriya term and external fields on spin transport in the spin-1/2 one-dimensional antiferromagnet

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-05-01

    We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.

  13. Modeling Mass and Thermal Transport in Thin Porous Media of PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Konduru, Vinaykumar

    Water transport in the Porous Transport Layer (PTL) plays an important role in the efficient operation of polymer electrolyte membrane fuel cells (PEMFC). Excessive water content as well as dry operating conditions are unfavorable for efficient and reliable operation of the fuel cell. The effect of thermal conductivity and porosity on water management are investigated by simulating two-phase flow in the PTL of the fuel cell using a network model. In the model, the PTL consists of a pore-phase and a solid-phase. Different models of the PTLs are generated using independent Weibull distributions for the pore-phase and the solid-phase. The specific arrangement of the pores and solid elements is varied to obtain different PTL realizations for the same Weibull parameters. The properties of PTL are varied by changing the porosity and thermal conductivity. The parameters affecting operating conditions include the temperature, relative humidity in the flow channel and voltage and current density. In addition, a novel high-speed capable Surface Plasmon Resonance (SPR) microscope was built based on Kretschmann's configuration utilizing a collimated Kohler illumination. The SPR allows thin film characterization in a thickness of approximately 0-200nm by measuring the changes in the refractive index. Various independent experiments were run to measure film thickness during droplet coalescence during condensation.

  14. Cermet anode with continuously dispersed alloy phase and process for making

    DOEpatents

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions and methods for making are disclosed which comprise NiO--NiFe.sub.2 O.sub.4 --Cu--Ni. Addition of an effective amount of a metallic catalyst/reactant to a composition of a nickel/iron/oxide, NiO, copper, and nickel produces a stable electrode having significantly increased electrical conductivity. The metallic catalyst functions to disperse the copper and nickel as an alloy continuously throughout the oxide phase of the cermet to render the electrode compositon more highly electrically conductive than were the third metal not present in the base composition. The third metal is preferably added to the base composition as elemental metal and includes aluminum, magnesium, sodium and gallium. The elemental metal is converted to a metal oxide during the sintering process.

  15. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current

    PubMed Central

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  16. Crystal structure, electrical transport and phase transition in 2-methoxyanilinium hexachlorido stannate(IV) dehydrate

    NASA Astrophysics Data System (ADS)

    Karoui, Sahel; Chouaib, Hassen; Kamoun, Slaheddine

    2017-04-01

    A new organic-inorganic (C7H10NO)2[SnCl6]2H2O compound was synthesized and characterized by X-ray diffraction, thermal analysis, NMR spectroscopy and dielectric measurements. The crystal structure refinement shows that this compound crystallizes at 298 K in the monoclinic system (P21/a space group (Z = 2)). The structure was solved by Patterson method and refined to a final value of R = 0.034 for 2207 independent observed reflections. The cohesion and stability of the atomic arrangement result from the establishment of Nsbnd H⋯Cl, O(W)sbnd H(W)⋯Cl and Nsbnd H⋯O(W) hydrogen bonds between (C7H10NO)+ cations, isolated (SnCl6)2- anions and water molecules. This compound exhibits a phase transition at 305 K which was characterized by differential scanning calorimetry (DSC), X-rays powder diffraction and dielectric measurements. At high frequency, the electrical σTot.(ω,T) conductivity obey to the Jonscher's power law σTot.(ω,T) = σDC(T) + B(T) ωS(T). DC and AC conductivity in (C7H10NO)2[SnCl6]2H2O was investigated revealing that the phase transition from the monoclinic P21/a (phase I) to the monoclinic C2/c (phase II) which occurs at 305 K is characterized by a change of the mechanism of the electric transport: SPT in phase I and CBH in phase II.

  17. Metal-like electrical conductivity in LaxSr2-xTiMoO6 oxides for high temperature thermoelectric power generation.

    PubMed

    Saxena, Mandvi; Maiti, Tanmoy

    2017-05-09

    Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency. In the present work, environmentally friendly non-toxic double perovskite La x Sr 2-x TiMoO 6 (LSTM) ceramics were synthesized using a solid-state reaction route by optimizing the sintering temperature and atmosphere for high temperature thermoelectric applications. Rietveld refinement of XRD data confirmed a single-phase solid solution with a cubic structure in these double perovskites with the space-group Pm3[combining macron]m. SEM studies showed a highly dense microstructure in these ceramics. High electrical conductivity on the order of 10 5 S m -1 and large carrier concentration (∼10 22 cm -3 ) were obtained in these materials. The temperature-dependent electrical conductivity measurement showed that the LSTM ceramics exhibit a semiconductor to metal transition. Thermopower (S) measurements demonstrated the conductivity switching from a p-type to n-type behavior at higher temperature. A temperature dependent Seebeck coefficient was further explained using a model for coexistence of both types of charge carriers in these oxides. A conductivity mechanism of these double perovskites was found to be governed by a small polaron hopping model.

  18. Modeling diffusion in foamed polymer nanocomposites.

    PubMed

    Ippalapalli, Sandeep; Ranaprathapan, A Dileep; Singh, Sachchida N; Harikrishnan, G

    2013-04-15

    Two-way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady-state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas-transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect-ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamic Conductivity and Partial Ionization in Warm, Dense Hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, M.; Silvera, I. F.

    2017-10-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electron transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in the atomic polarizability, resulting from increased ionization; whereas in the highly degenerate limit, the Ziman weak-scattering model better describes the observed saturation of reflectance. In the highly degenerate region, the inclusion of partial ionization effects provides excellent agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. These results provide a crucial benchmark for ab initio calculations as well as an important guide for future experiments. Research supported by DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  20. Lead Paint Exposure Assessment in High Bays of Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stanch, Penney; Plaza, Angel; Keprta, Sean

    2008-01-01

    This slide presentation reviews the program to assess the possibility of lead paint exposure in the high bays of some of the Johnson Space Center buildings. Some of the buildings in the Manned Space Flight Center (MSC) were built in 1962 and predate any considerations to reduce lead in paints and coatings. There are many of these older buildings that contain open shops and work areas that have open ceilings, These shops include those that had operations that use leaded gasoline, batteries, and lead based paints. Test were planned to be conducted in three phases: (1) Surface Dust sampling, (2) personal exposure montioring, and (3) Ceiling paint Sampling. The results of the first two phases were reviewed. After considering the results of the first two phases, and the problems associated with the retrieval of samples from high ceilings, it was determined that the evaluation of ceiling coatings would be done on a project by project and in response to a complaint.

  1. Study of high viscous multiphase phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.

    2018-03-01

    Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.

  2. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  3. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  4. Thermal energy storage for smart grid applications

    NASA Astrophysics Data System (ADS)

    Al-Hallaj, Said; Khateeb, Siddique; Aljehani, Ahmed; Pintar, Mike

    2018-01-01

    Energy consumption for commercial building cooling accounts for 15% of all commercial building's electricity usage [1]. Electric utility companies charge their customers time of use consumption charges (/kWh) and additionally demand usage charges (/kW) to limit peak energy consumption and offset their high operating costs. Thus, there is an economic incentive to reduce both the electricity consumption charges and demand charges by developing new energy efficient technologies. Thermal energy storage (TES) systems using a phase change material (PCM) is one such technology that can reduce demand charges and shift the demand from on-peak to off-peak rates. Ice and chilled water have been used in thermal storage systems for many decades, but they have certain limitations, which include a phase change temperature of 0 degrees Celsius and relatively low thermal conductivity in comparison to other materials, which limit their applications as a storage medium. To overcome these limitations, a novel phase change composite (PCC) TES material was developed that has much higher thermal conductivity that significantly improves the charge / discharge rate and a customizable phase change temperature to allow for better integration with HVAC systems. Compared to ice storage, the PCC TES system is capable of very high heat transfer rate and has lower system and operational costs. Economic analysis was performed to compare the PCC TES system with ice system and favorable economics was proven. A 4.5 kWh PCC TES prototype system was also designed for testing and validation purpose.

  5. A discrete fracture model for two-phase flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Gläser, Dennis; Helmig, Rainer; Flemisch, Bernd; Class, Holger

    2017-12-01

    A discrete fracture model on the basis of a cell-centered finite volume scheme with multi-point flux approximation (MPFA) is presented. The fractures are included in a d-dimensional computational domain as (d - 1)-dimensional entities living on the element facets, which requires the grid to have the element facets aligned with the fracture geometries. However, the approach overcomes the problem of small cells inside the fractures when compared to equi-dimensional models. The system of equations considered is solved on both the matrix and the fracture domain, where on the prior the fractures are treated as interior boundaries and on the latter the exchange term between fracture and matrix appears as an additional source/sink. This exchange term is represented by the matrix-fracture fluxes, computed as functions of the unknowns in both domains by applying adequate modifications to the MPFA scheme. The method is applicable to both low-permeable as well as highly conductive fractures. The quality of the results obtained by the discrete fracture model is studied by comparison to an equi-dimensional discretization on a simple geometry for both single- and two-phase flow. For the case of two-phase flow in a highly conductive fracture, good agreement in the solution and in the matrix-fracture transfer fluxes could be observed, while for a low-permeable fracture the discrepancies were more pronounced. The method is then applied two-phase flow through a realistic fracture network in two and three dimensions.

  6. Crystal structure of the non-stoichiometric argyrodite compound Ag 7- xGeSe 5I 1- x ( x=0.31). A highly disordered silver superionic conducting material

    NASA Astrophysics Data System (ADS)

    Belin, Renaud; Aldon, Laurent; Zerouale, Abdel; Belin, Claude; Ribes, Michel

    2001-03-01

    Single crystals of the Ag 6.69GeSe 5I 0.69 phase have been obtained by iodine transport of the iodine-partially substituted stoichiometric argyrodite compound Ag 7GeSe 5I. This phase crystallizes in the cubic space group F4¯3 m (argyrodite γ-phase, a=10.921(2) Å at -100°C, a=10.972(3) Å at 25°C, Z=4). It is highly disordered both at anion and cation sites. Crystal structure refinements were completed by an anharmonic Gram-Charlier development of the atomic displacement factors of iodine and silver atoms. The structure of Ag 6.69GeSe 5I 0.69 was determined at -100°C and +25°C and was refined to R( F) values of 5.80 and 6.51%, respectively. Both iodine and selenium (Se1) anions have been found disordered and iodine is slightly defective on its crystallographic site. This is correlated to the disorder observed for the two Ag1 and Ag2 cations that provides this material with superionic conducting properties. Analysis of the joint probability density function allowed the visualization of the Ag + diffusion paths within the anionic framework.

  7. Structure, dielectric and electric properties of diisobutylammonium hydrogen sulfate crystal

    NASA Astrophysics Data System (ADS)

    Bednarchuk, Tamara J.; Kinzhybalo, Vasyl; Markiewicz, Ewa; Hilczer, Bożena; Pietraszko, Adam

    2018-02-01

    Diisobutylammonium hydrogen sulfate, a new organic-inorganic hybrid compound, was successfully synthesized and three structural phases in 298-433 K temperature range were revealed by differential scanning calorimetry and X-ray powder diffraction studies. Single crystal X-ray diffraction data were used to describe the crystal structures in each particular case. In phase III (below 336/319 K on heating/cooling) the crystal arrangement appears to be within the triclinic symmetry with P-1 space group. During heating in the 336-339 K region (and 319-337 K on cooling) the crystal exists in the phase II, characterized by monoclinic symmetry with P21/c space group. Consequently, above 339 K (during heating, and 337 K during cooling temperature sequences), i.e. in phase I the crystal exhibits orthorhombic symmetry (Cmce space group). Ferroelastic domain structure was observed in phase III. These phase boundaries (III→II and II→I) were accompanied by the presence of small anomalies, apparent in the dielectric permittivity and electric conductivity experimental data. Fast proton transport with activation energy of 0.23 eV was observed in the high temperature phase I and related to phonon assisted proton diffusion conditioned by disorder of diisobutylammonium (diba) cations, as well as by high thermal displacements of oxygen and sulfur atoms of hydrogen sulfate anion (hs).

  8. Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley

    PubMed Central

    Alqudah, Ahmad M.; Sharma, Rajiv; Pasam, Raj K.; Graner, Andreas; Kilian, Benjamin; Schnurbusch, Thorsten

    2014-01-01

    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley. PMID:25420105

  9. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  10. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  11. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  12. Phase stability of iron germanate, FeGeO3, to 127 GPa

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Tracy, S. J.; Stan, C. V.; Prakapenka, V. B.; Cava, R. J.; Duffy, T. S.

    2018-04-01

    The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO3, are limited. Here, we have examined the behavior of FeGeO3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO3 (II)] at 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO3 (III) occurs above 54 GPa at room temperature. Laser-heating experiments ( 1200-2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO2 polymorphs. In all cases, we observe that FeGeO3 dissociates into GeO2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO3, which also dissociates into a mixture of the oxides (FeO + SiO2) at least up to 149 GPa.

  13. Chromospheric Response during the Precursor and the Main Phase of a B6.4 Flare on 2005 August 20

    NASA Astrophysics Data System (ADS)

    Awasthi, Arun Kumar; Rudawy, Pawel; Falewicz, Robert; Berlicki, Arkadiusz; Liu, Rui

    2018-05-01

    Solar flare precursors depict a constrained rate of energy release, in contrast to the imminent rapid energy release, which calls for a different regime of plasma processes to be at play. Due to the subtle emission during the precursor phase, its diagnostics remain delusive, revealing either nonthermal electrons (NTEs) or thermal conduction to be the driver. In this regard, we investigate the chromospheric response during various phases of a B6.4 flare on 2005 August 20. Spatiotemporal investigation of flare ribbon enhancement during the precursor phase, carried out using spectra images recorded in several wavelength positions on the Hα line profile, revealed its delayed response (180 s) compared to the X-ray emission, as well as a sequential increment in the width of the line profile, which are indicative of a slow heating process. However, the energy contained in the Hα emission during the precursor phase can reach as high as 80% of that estimated during the main phase. Additionally, the plasma hydrodynamics during the precursor phase, resulting from the application of a single-loop one-dimensional model, revealed the presence of a power-law extension in the model-generated X-ray spectra, with a flux lower than the RHESSI background. Therefore, our multiwavelength diagnostics and hydrodynamical modeling of the precursor emission indicates the role of a two-stage process. First, reconnection-triggered NTEs, although too small in flux to overcome the observational constraints, thermalize in the upper chromosphere. This leads to the generation of a slow conduction front, which causes plasma heating during the precursor phase.

  14. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events.

    PubMed

    Affonso, A G; Queiroz, H L; Novo, E M L M

    2015-11-01

    This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems, especially during the low water phase. Aquatic systems in Mamirauá floodplain represent limnological patterns of almost undisturbed areas and can be used as future reference for comparison with disturbed areas, such as those of the Lower Amazon, and as a baseline for studies on the effects of anthropogenic influences and climate change and on Amazon aquatic ecosystem.

  15. Low lattice thermal conductivity of stanene

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuchen; Zhang, Xiangchao; Zhu, Heyuan

    2016-02-01

    A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency over other 2D materials. The contributions of acoustic and optical phonons to the lattice thermal conductivity are evaluated. Detailed analysis of phase space for three-phonon processes shows that phonon scattering channels LA + LA/TA/ZA ↔ TA/ZA are restricted, leading to the dominant contributions of high-group-velocity LA phonons to the thermal conductivity. The size dependence of thermal conductivity is investigated as well for the purpose of the design of thermoelectric nanostructures.

  16. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters either by mixing inorganic gels or solutions with Nafion solution followed by membrane casting or by blending inorganic powders with Nafion solution. The membrane properties, such as acidity, swelling, water uptake, thermostability, proton conductivity, and electrochemical performance, were explored in depth. We characterized the inorganic phase inside composite membranes and its interaction with the Nafion matrix by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Furthermore, we discussed the effect of these inorganic conductors' properties, such as particle size, conductivity, and interaction between functional groups and the Nafion, on the membrane conductivity. The contribution of hydrophilic inorganic particles in improving the membrane fuel cell performance was numerically analyzed by Tafel plot. Finally, the proton conductivity phenomena in composite membranes were simulated with two proton-transport models; one was based on the rule of mixtures, and the other was described by generalized Stefan-Maxwell equations. In the simulation, we proposed a new route in rational design of high proton-conductive composite membranes.

  17. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, M. R.; Schwen, D.; Zhang, Y.

    2015-04-01

    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics,more » and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.« less

  18. Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides

    PubMed Central

    Zhang, Wei

    2005-01-01

    The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439

  19. Mechanism of Properties of Noble ZnS-SiO2 Protection Layer for Phase Change Optical Disk Media

    NASA Astrophysics Data System (ADS)

    Tsu, David V.; Ohta, Takeo

    2006-08-01

    A ZnS-SiO2 composite dielectric is widely used in the optical stack designs of rewritable optical recording media as an index-matching medium and as a protection layer for the high-index chalcogenide (compound with sixth group element of S, Se, Te) phase change material used in these media. The addition of Si and O to ZnS is primarily intended to stabilize against crystalline grain growth of ZnS with high numbers of direct overwriting cycles. In this study, we carry out infrared (IR) spectroscopy to clarify the role of Si in this stabilization process. IR spectroscopy is performed on sputter as-deposited and annealed ZnS-SiO2 dielectric protection layers. We find that Si exists not in the SiO2 oxide phase but as [SiS4-nOn] tetrahedrons. Moreover, zinc and sulfur do not exist as ZnS, but in highly chemically disordered ZnS:O crystallites. The highly directional and rigid covalent bonds in the [SiS4-nOn] tetrahedrons are key to establishing thermal stability against the coalescence of ZnS. The importance of the Si-S bond also extends into a more thorough understanding of the low thermal conductivity of the ZnS-SiO2 material. The consideration of elastic implications allows us to predict an average phonon velocity less than 50% compared to that in SiO2. With this, we predict a thermal conductivity of 0.0067 W cm-1 K-1 for this material, which is in complete agreement with measured values.

  20. Relation between secondary doping and phase separation in PEDOT:PSS films

    NASA Astrophysics Data System (ADS)

    Donoval, Martin; Micjan, Michal; Novota, Miroslav; Nevrela, Juraj; Kovacova, Sona; Pavuk, Milan; Juhasz, Peter; Jagelka, Martin; Kovac, Jaroslav; Jakabovic, Jan; Cigan, Marek; Weis, Martin

    2017-02-01

    Conductive copolymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative to transparent conductive oxides because of its flexibility, transparency, and low-cost production. Four different secondary dopants, namely N,N-dimethylformamide, ethyleneglycol, sorbitol, and dimethyl sulfoxide, have been used to improve the conductivity. The relation between the structure changes and conductivity enhancement is studied in detail. Atomic force microscopy study of the thin film surface reveals the phase separation of PEDOT and PSS. We demonstrate that secondary doping induces the phase separation as well as the conductivity enhancement.

Top