Sample records for high conversion rate

  1. Great majority of recombination events in Arabidopsis are gene conversion events

    PubMed Central

    Yang, Sihai; Yuan, Yang; Wang, Long; Li, Jing; Wang, Wen; Liu, Haoxuan; Chen, Jian-Qun; Hurst, Laurence D.; Tian, Dacheng

    2012-01-01

    The evolutionary importance of meiosis may not solely be associated with allelic shuffling caused by crossing-over but also have to do with its more immediate effects such as gene conversion. Although estimates of the crossing-over rate are often well resolved, the gene conversion rate is much less clear. In Arabidopsis, for example, next-generation sequencing approaches suggest that the two rates are about the same, which contrasts with indirect measures, these suggesting an excess of gene conversion. Here, we provide analysis of this problem by sequencing 40 F2 Arabidopsis plants and their parents. Small gene conversion tracts, with biased gene conversion content, represent over 90% (probably nearer 99%) of all recombination events. The rate of alteration of protein sequence caused by gene conversion is over 600 times that caused by mutation. Finally, our analysis reveals recombination hot spots and unexpectedly high recombination rates near centromeres. This may be responsible for the previously unexplained pattern of high genetic diversity near Arabidopsis centromeres. PMID:23213238

  2. Evaluation of correlation between glucan conversion and degree of delignification depending on pretreatment strategies using Jabon Merah.

    PubMed

    Jang, Soo-Kyeong; Jeong, Hanseob; Kim, Ho-Yong; Choi, June-Ho; Kim, Jong-Hwa; Koo, Bon-Wook; Choi, In-Gyu

    2017-07-01

    The main purpose of this study was to investigate the glucan conversion rate after enzymatic hydrolysis depending on the treatment methods and conditions with changes in the chemical composition of treated solid fraction of Jabon Merah. The glucan conversion rate (17.4%) was not significantly improved after liquid hot water treatment (1st step) even though most of the hemicellulose was dissolved into liquid hydrolysate. Subsequently, dilute acid, organosolv, and peracetic acid treatment (2nd step) was conducted under various conditions to enhance glucan conversion. Among the 2nd step treatment, the glucan conversion rate of organosolv (max. 46.0%) and peracetic acid treatment (max. 65.9%) was increased remarkably through decomposition of acid-insoluble lignin (AIL). Finally, the glucan conversion rate and AIL content were highly correlated, which was revealed by the R-squared value (0.84), but inhibitory factors including cellulose crystallinity must be considered for advanced glucan conversion from highly recalcitrant biomasses, such as Jabon Merah. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  4. Highly Efficient Spin-to-Charge Current Conversion in Strained HgTe Surface States Protected by a HgCdTe Layer

    NASA Astrophysics Data System (ADS)

    Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.

    2018-04-01

    We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.

  5. Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, S.G.; Converse, A.O.

    1997-12-20

    In an effort to better understand the role of the substrate in the rapid fall off in the rate of enzymatic hydrolysis of cellulose with conversion, substrate reactivity was measured as a function of conversion. These measurements were made by interrupting the hydrolysis of pretreated wood at various degrees of conversion; and, after boiling and washing, restarting the hydrolysis in fresh butter with fresh enzyme. The comparison of the restart rate per enzyme adsorbed with the initial rate per enzyme adsorbed, both extrapolated back to zero conversion, provides a measurement of the substrate reactivity without the complications of product inhibitionmore » or cellulase inactivation. The results indicate that the substrate reactivity falls only modestly as conversion increases. However, the restart rate is still higher than the rate of the uninterrupted hydrolysis, particularly at high conversion. Hence the authors conclude that the loss of substrate reactivity is not the principal cause for the long residence time required for complete conversion.« less

  6. Method and apparatus for optical encoding with compressible imaging

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  7. Converting positive and negative symptom scores between PANSS and SAPS/SANS.

    PubMed

    van Erp, Theo G M; Preda, Adrian; Nguyen, Dana; Faziola, Lawrence; Turner, Jessica; Bustillo, Juan; Belger, Aysenil; Lim, Kelvin O; McEwen, Sarah; Voyvodic, James; Mathalon, Daniel H; Ford, Judith; Potkin, Steven G; Fbirn

    2014-01-01

    The Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative Symptoms (SANS), and the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) are the most widely used schizophrenia symptom rating scales, but despite their co-existence for 25 years no easily usable between-scale conversion mechanism exists. The aim of this study was to provide equations for between-scale symptom rating conversions. Two-hundred-and-five schizophrenia patients [mean age±SD=39.5±11.6, 156 males] were assessed with the SANS, SAPS, and PANSS. Pearson's correlations between symptom scores from each of the scales were computed. Linear regression analyses, on data from 176 randomly selected patients, were performed to derive equations for converting ratings between the scales. Intraclass correlations, on data from the remaining 29 patients, not part of the regression analyses, were performed to determine rating conversion accuracy. Between-scale positive and negative symptom ratings were highly correlated. Intraclass correlations between the original positive and negative symptom ratings and those obtained via conversion of alternative ratings using the conversion equations were moderate to high (ICCs=0.65 to 0.91). Regression-based equations may be useful for conversion between schizophrenia symptom severity as measured by the SANS/SAPS and PANSS, though additional validation is warranted. This study's conversion equations, implemented at http:/converteasy.org, may aid in the comparison of medication efficacy studies, in meta- and mega-analyses examining symptoms as moderator variables, and in retrospective combination of symptom data in multi-center data sharing projects that need to pool symptom rating data when such data are obtained using different scales. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. High repetition rate laser induced fluorescence applied to Surfatron Induced Plasmas

    NASA Astrophysics Data System (ADS)

    van der Mullen, J. J. A. M.; Palomares, J. M.; Carbone, E. A. D.; Graef, W.; Hübner, S.

    2012-05-01

    The reaction kinetics in the excitation space of Ar and the conversion space of Ar-molecule mixtures are explored using a combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable Surfatron Induced Plasma set-up. Applying the method of Saturation Time Resolved Laser Induced Fluorescence (SaTiRe-LIF), we could trace excitation and conversion channels and determine rates of electron and heavy particle excitation kinetics. The time resolved density disturbances observed in the Ar excitation space, which are initiated by the laser, reveal the excitation channels and corresponding rates; responses of the molecular radiation in Ar-molecule mixtures corresponds to the presence of conversion processes induced by heavy particle excitation kinetics.

  9. T-SPOT.TB Interferon-γ Release Assay Performance in Healthcare Worker Screening at Nineteen U.S. Hospitals.

    PubMed

    King, Thomas C; Upfal, Mark; Gottlieb, Andrew; Adamo, Philip; Bernacki, Edward; Kadlecek, Chris P; Jones, Jeffrey G; Humphrey-Carothers, Frances; Rielly, Albert F; Drewry, Pamela; Murray, Kathy; DeWitt, Marcie; Matsubara, Janet; O'Dea, Louis; Balser, John; Wrighton-Smith, Peter

    2015-08-01

    Interferon-γ release assays have significant advantages over tuberculin skin testing in many clinical situations. However, recent studies have called into question their reliability in serial testing of healthcare workers because of reportedly high rates of positivity and high conversion/reversion rates on retesting. To define the performance characteristics of the T-SPOT.TB test, an interferon-γ release assay, during serial screening programs of healthcare workers at 19 U.S. hospitals. A total of 42,155 T-SPOT.TB test results from healthcare workers at 19 geographically diverse hospitals obtained for routine tuberculosis screening programs were analyzed to determine the rates of positivity, reversion, and conversion in serial testing data. In 19,630 evaluable serial pairs from 16,076 healthcare workers, the mean test positivity rate was 2.3% (range, 0.0-27.4%). The mean conversion rate was 0.8% (range, 0.0-2.5%), and the mean reversion rate was 17.6%. Positivity and conversion rates correlated with known tuberculosis risk factors including age and sex. The observed specificity of the T-SPOT.TB test was at least 98.6%. The high concordance and test completion rates in this study suggest that the T-SPOT.TB test is a reliable tool for healthcare worker serial screening. As expected, the observed positivity rates were lower compared with the tuberculin skin test, likely reflecting the higher specificity of this test. Furthermore, the observed rates of conversion were low and significantly correlated with the geographic incidence of tuberculosis. Our findings suggest that the T-SPOT.TB test is an accurate and reliable way to screen healthcare workers.

  10. Acoustic and Perceptual Measurement of Expressive Prosody in High-Functioning Autism: Increased Pitch Range and What it Means to Listeners

    ERIC Educational Resources Information Center

    Nadig, Aparna; Shaw, Holly

    2012-01-01

    Are there consistent markers of atypical prosody in speakers with high functioning autism (HFA) compared to typically-developing speakers? We examined: (1) acoustic measurements of pitch range, mean pitch and speech rate in conversation, (2) perceptual ratings of conversation for these features and overall prosody, and (3) acoustic measurements of…

  11. Predictive models for conversion of prediabetes to diabetes.

    PubMed

    Yokota, N; Miyakoshi, T; Sato, Y; Nakasone, Y; Yamashita, K; Imai, T; Hirabayashi, K; Koike, H; Yamauchi, K; Aizawa, T

    2017-08-01

    To clarify the natural course of prediabetes and develop predictive models for conversion to diabetes. A retrospective longitudinal study of 2105 adults with prediabetes was carried out with a mean observation period of 4.7years. Models were developed using multivariate logistic regression analysis and verified by 10-fold cross-validation. The relationship between [final BMI minus baseline BMI] (δBMI) and incident diabetes was analyzed post hoc by comparing the diabetes conversion rate for low (< -0.31kg/m 2 ) and high δBMI (≥ -0.31kg/m 2 ) subjects after matching the two groups for the covariates. Diabetes developed in 252 (2.5%/year), and positive family history, male sex, higher systolic blood pressure, plasma glucose (fasting and 1h- and 2h-values during 75g OGTT), hemoglobin A1c (HbA1c) and alanine aminotransferase were significant, independent predictors for the conversion. By using a risk score (RS) that took account of all these variables, incident diabetes was predicted with an area under the ROC curve (95% CI) of 0.80 (0.70-0.87) and a specificity of prediction of 61.8% at 80% sensitivity. On division of the participants into high- (n=248), intermediate- (n=336) and low-risk (n=1521) populations, the conversion rates were 40.1%, 18.5% and 5.9%, respectively. The conversion rate was lower in subjects with low than high δBMI (9.2% vs 14.4%, p=0.003). Prediabetes conversion to diabetes could be predicted with accuracy, and weight reduction during the observation was associated with lowered conversion rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Biorefinery of instant noodle waste to biofuels.

    PubMed

    Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2014-05-01

    Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors.

    PubMed

    Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K

    2007-11-26

    We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.

  14. Brief Report: A Scale for Rating Conversational Impairment in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    de Villiers, Jessica; Fine, Jonathan; Ginsberg, Gary; Vaccarella, Liezanne; Szatmari, Peter

    2007-01-01

    There are few well-standardized measures of conversational breakdown in Autism Spectrum Disorders (ASD). The study's objective was to develop a scale for measuring pragmatic impairments in conversations of individuals with ASD. We analyzed 46 semi-structured conversations of children and adolescents with high-functioning ASD using a functional…

  15. Multicenter Trial of the VenaTech Convertible Vena Cava Filter.

    PubMed

    Hohenwalter, Eric J; Stone, James R; O'Moore, Paul V; Smith, Steven J; Selby, J Bayne; Lewandowski, Robert J; Samuels, Shaun; Kiproff, Paul M; Trost, David W; Madoff, David C; Handel, Jeremy; Gandras, Eric J; Vlahos, Athanasios; Rilling, William S

    2017-10-01

    To demonstrate rates of successful filter conversion and 6-month major device-related adverse events in subjects with converted caval filters. An investigational device exemption multicenter, prospective, single-arm study was performed at 11 sites enrolling 149 patients. The VenaTech Convertible Vena Cava Filter (B. Braun Interventional Systems, Inc, Bethlehem, Pennsylvania) was implanted in 149 patients with venous thromboembolism and contraindication to or failure of anticoagulation (n = 119), with high-risk trauma (n = 14), and for surgical prophylaxis (n = 16). When the patient was no longer at risk for pulmonary embolism as determined by clinical assessment, an attempt at filter conversion was made. Follow-up of converted patients (n = 93) was conducted at 30 days, 3 months, and 6 months after conversion. Patients who did not undergo a conversion attempt (n = 53) had follow-up at 6 months after implant. All implants were successful. One 7-day migration to the right atrium required surgical removal. Technical success rate for filter conversion was 92.7% (89/96). Mean time from placement to conversion was 130.7 days (range, 15-391 d). No major conversion-related events were reported. The mean conversion procedure time was 30.7 minutes (range, 7-135 min). There were 89 converted and 32 unconverted patients who completed 6-month follow-up with no delayed complications. The VenaTech Convertible filter has a high conversion rate and low 6-month device-related adverse event rate. Further studies are necessary to determine long-term safety and efficacy in both converted and unconverted patients. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  16. Plasma Accelerator and Energy Conversion Research

    DTIC Science & Technology

    1982-10-29

    performance tests have been accomplished. A self-contained recirculating AMTEC device with a thermal to electric conversion efficiency of 19% has been...combined efficiency . These two match up particularly well, because thermionic conversion is a high temperature technique, whereas AMTEC is limited to...EXPERIENTAL: Samples: The samples were prepared with a high rate DC magnetron sputtering apparatus ( SFI model 1 ). The sample set consisted of four

  17. Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility.

    PubMed

    Park, Min-Gu; Lee, Dong-Hun; Jung, Heechul; Choi, Jeong-Hee; Park, Cheol-Min

    2018-03-27

    To design an easily manufactured, large energy density, highly reversible, and fast rate-capable Li-ion battery (LIB) anode, Co-Sn intermetallics (CoSn 2 , CoSn, and Co 3 Sn 2 ) were synthesized, and their potential as anode materials for LIBs was investigated. Based on their electrochemical performances, CoSn 2 was selected, and its C-modified nanocomposite (CoSn 2 /C) as well as Ti- and C-modified nanocomposite (CoSn 2 / a-TiC/C) was straightforwardly prepared. Interestingly, the CoSn 2 , CoSn 2 /C, and CoSn 2 / a-TiC/C showed conversion/nonrecombination, conversion/partial recombination, and conversion/full recombination during Li insertion/extraction, respectively, which were thoroughly investigated using ex situ X-ray diffraction and extended X-ray absorption fine structure analyses. As a result of the interesting conversion/full recombination mechanism, the easily manufactured CoSn 2 / a-TiC/C nanocomposite for the Sn-based Li-ion battery anode showed large energy density (first reversible capacity of 1399 mAh cm -3 ), high reversibility (first Coulombic efficiency of 83.2%), long cycling behavior (100% capacity retention after 180 cycles), and fast rate capability (appoximately 1110 mAh cm -3 at 3 C rate). In addition, degradation/enhancement mechanisms for high-capacity and high-performance Li-alloy-based anode materials for next-generation LIBs were also suggested.

  18. Joint DoD versus Navy Specific Lead Generation Advertising: Comparison of Conversion Rates to Quality Enlistments and Marginal Costs.

    DTIC Science & Technology

    1984-09-01

    7D-Rt46 982 JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION j/j ADVERTISING : COMPARISON OF..(U) J B FUGUR SCHOOL OF N BUSINESS DURHAM NC R C MOREY...REPORT I PEPIO0 COV9cO JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION Technical Report ADVERTISING : Comparison of Conversion Rates to (0 Quality...block number) . Upper-Mental, High School Degree, enlistment contracts, national leads, Z Joint DOD advertising , Service Specific Advertising , conversion

  19. Estimation of the Adenoma Detection Rate From the Polyp Detection Rate by Using a Conversion Factor in a Predominantly Hispanic Population.

    PubMed

    Elhanafi, Sherif; Ortiz, Arleen M; Yarlagadda, Anita; Tsai, Cindy; Eloliby, Mohamed; Mallawaarachchi, Indika; Dwivedi, Alok; Zuckerman, Marc J; Othman, Mohamed O

    2015-08-01

    Calculating the adenoma detection rate (ADR) is a complex process in contrast to the polyp detection rate (PDR) that can be easily calculated. The average adenoma to polyp detection rate quotient (APDRQ) was proposed as a conversion factor to estimate the ADR for individual endoscopists from the endoscopist's PDR. However, this conversion factor was not validated in different practice settings. To validate the use of the proposed conversion factor in a practice setting with a predominantly Hispanic population. We conducted a retrospective, cross-sectional study (December 2007 to November 2012) of screening colonoscopies at a university practice setting with an 86.9% Hispanic population. The actual ADR and PDR were calculated for all endoscopists. The weighted average of ADR to PDR ratio for each endoscopist was used to obtain APDRQ. The APDRQ was used as a conversion multiplier to estimate each endoscopist's ADR using the single endoscopist's PDR. A total of 2148 screening colonoscopies were included. The average PDR for the whole group was 36.9% (range, 11% to 49%). The actual ADR was estimated as 25.5% (range, 11% to 37%). The average APDRQ for our group was 0.68. The estimated ADR was 25.48% (range, 8% to 33%). There was a high correlation between actual ADR and the estimated ADR (Pearson correlation=0.92). In a practice setting with a predominantly Hispanic population, a conversion factor can be used to estimate ADR from PDR providing a high degree of correlation with the actual ADR.

  20. Conversational Behaviors in Youth with High-Functioning ASD and Asperger Syndrome

    ERIC Educational Resources Information Center

    Paul, Rhea; Orlovski, Stephanie Miles; Marcinko, Hillary Chuba; Volkmar, Fred

    2009-01-01

    Twenty-nine youth with autism spectrum disorders and 26 with typical development between 12 and 18 years of age were engaged in structured interviews (ADOS). The interviews were videotaped and rated for atypical conversational behaviors by trained raters, using the Pragmatic Rating Scale (Landa et al. "Psychol Med" 22:245-254, 1992). The ASD group…

  1. Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides.

    PubMed

    Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2011-06-20

    We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.

  2. Retrospective Conversion at a Two-Year College.

    ERIC Educational Resources Information Center

    Krieger, Michael T.

    1982-01-01

    Findings of a project to convert a single LC class from cards to machine readable tapes at a two-year college suggest that an in-house retrospective conversion is feasible for academic libraries. A high conversion hit rate, implying minimal original cataloging, will keep project costs and duration low. There are five references. (RAA)

  3. Long-Term Climate Implications of Persistent Loss of Tropical Peat Carbon Following Land Use Conversion

    NASA Astrophysics Data System (ADS)

    Frolking, S. E.; Dommain, R.; Glaser, P. H.; Joos, F.; Jeltsch-Thommes, A.

    2016-12-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian tropical peat swamp forests are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a simple force-restore model to represent the perturbation to the atmospheric CO2 and CH4 burdens, and net radiative forcing, resulting from long-term conversion of tropical peat swamp forests to oil palm or acacia plantations. Drainage ditches are installed in land-use conversion to both oil palm and acacia, leading to a persistent change in the system greenhouse gas balance with the atmosphere. Drainage causes the net CO2 exchange to switch from a weak sink (removal from the atmosphere) in the accumulating peat of a swamp forest to a relatively strong source as the peat is oxidized. CH4 emissions increase due to relatively high emissions from the ditches themselves. For these systems, persistent CO2 fluxes have a much stronger impact on atmospheric radiative forcing than do the CH4 fluxes. Prior to conversion, slow peat accumulation (net CO2 uptake) over millennia establishes a slowly increasing net radiative cooling perturbation to the atmosphere. Upon conversion, CO2 loss rates are 16-32 times higher than pre-conversion CO2 uptake rates. Rapid loss rates cause the net radiative forcing perturbation to quickly (decades) become a net warming, which can persist for many centuries after the peat has all been oxidized.

  4. New ortho-para conversion mechanism in dense solid hydrogen.

    PubMed

    Strzhemechny, M A; Hemley, R J

    2000-12-25

    Analysis of recent measurements of striking changes in the rate of ortho-para conversion of solid H(2) up to 58 GPa shows that the conversion mechanism must differ from that at ambient pressure. A new conversion mechanism is identified in which the emerging excitations are coupled to the converting molecules via electric quadrupole-quadrupole rather than nuclear spin-spin interactions. The latter only initiates conversion while the coupling enhancement associated with the new mechanism is ensured by high compression and a gap closing, with the conversion energy diminishing strongly with increasing pressure.

  5. Property evolution during vitrification of dimethacrylate photopolymer networks

    PubMed Central

    Abu-Elenain, Dalia; Lewis, Steven H.; Stansbury, Jeffrey W.

    2013-01-01

    Objectives This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. Methods An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7–600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. Results The varied irradiation conditions produced final conversion ranging from 6 % to more than 60 %. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40 % conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45–50 % conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Significance Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. PMID:24080378

  6. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  7. Pharmacologic Conversion during Dofetilide Treatment for Persistent Atrial Fibrillation.

    PubMed

    Steinberg, Jonathan S; Shah, Yash; Szepietowska, Barbara

    2017-06-01

    Dofetilide is a pure I Kr blocker and is one of the few drugs specifically studied and approved in the United States for the management of persistent atrial fibrillation (AF). Dofetilide has been noted to have a high rate of pharmacologic conversion during initial dosing in prior smaller studies. The intent of the study was to examine the safety of an inpatient loading strategy, and the incidence and patterns of pharmacologic conversion by dofetilide during the treatment of persistent AF in a large consecutive cohort. This is a retrospective analysis of 308 consecutive patients with persistent AF electively admitted for inpatient dofetilide loading. The initiation dose of dofetilide was determined by the creatinine clearance. Overall, 88% (n = 271) successfully completed initiation of dofetilide and were discharged in sinus rhythm. The most common reason for failure to complete initiation of dofetilide loading was QTc prolongation in 24 patients (7.8%), and torsade de pointes occurred in three patients (1%). Pharmacologic conversion was observed in 56% (n = 151) after a median of two doses. The rate of pharmacologic conversion based on the final dose was 75%, 9%, and 0% for 500 mcg, 250 mcg, and 125 mcg, respectively (P < 0.05). Dofetilide is a well-tolerated antiarrhythmic drug with a low incidence of proarrhythmia and an especially high rate of pharmacologic conversion in patients with persistent AF. © 2017 Wiley Periodicals, Inc.

  8. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  9. Efficient electrochemical CO2 conversion powered by renewable energy.

    PubMed

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.

  10. Boundary layer measurements of the OH radical in the vicinity of an isolated power plant plume - SO2 and NO2 chemical conversion times

    NASA Technical Reports Server (NTRS)

    Davis, D. D.; Philen, D.; Mcgee, T.; Heaps, W.

    1979-01-01

    Direct measurements of the OH radical in the vicinity of an isolated power plant plume are reported. These measurements were used to estimate the conversion time of SO2 to H2SO4-sulfate aerosol via the initiating step OH + SO2 + M yields HSO3. Using the near-high-noon measured value of OH (9.5 million per cu cm), resulted in a 1/e conversion time of 1.4 days. The latter lifetime would correspond to a conversion rate of about 2%/hr. When the lifetime calculation was modified to take into consideration the OH diurnal cycle, the 1/e conversion time for SO2 was found to be 4.4 days, giving an apparent overall rate of conversion of about 0.7%/hr. Similar calculations carried out for the conversion of NO2 to NHO3 resulted in 1/e lifetimes for NO2 of 2-3 h for midday time periods.

  11. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    PubMed

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transient desorption of water vapor - A potential source of error in upper atmosphere rocket experiments

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.; Weeks, J. O.

    1974-01-01

    Results of measurements of the outgassing rates of samples of materials and surface finishes used on the outer skins of rocket-borne experiment packages in simulated rocket ascents. The results showed outgassing rates for anodized aluminum in the second minute of flight which are two to three orders of magnitude higher than those given in typical tables of outgassing rates. The measured rates for aluminum with chromate conversion surface coatings were also abnormally high. These abnormally high initial rates fell quickly after about five to ten minutes to values comparable with those in the published literature. It is concluded that anodized and chromate conversion coatings on the aluminum outer surfaces of a sounding rocket experiment package will cause gross distortion of the true water vapor environment.

  13. I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip; Black, John H.

    1988-01-01

    Observations of emission in the J = 1-0 rotational transition of interstellar CO are used to obtain column densities and masses of hydrogen. By taking into account the effects of variations in molecular cloud parameters on conversion factors between integrated CO intensity and molecular hydrogen column density, it is shown that conversion factors are very sensitive to the kinetic temperature of the emitting gas. Results indicate that the gas temperatures in systems with high star formation rates can be quite high, and it is suggested that use of a standard conversion factor will lead to systematic overestimation of the amount of molecular gas.

  14. Property evolution during vitrification of dimethacrylate photopolymer networks.

    PubMed

    Abu-elenain, Dalia A; Lewis, Steven H; Stansbury, Jeffrey W

    2013-11-01

    This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7-600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. The varied irradiation conditions produced final conversion ranging from 6% to more than 60%. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40% conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45-50% conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Children’s Empathy Responses and their Understanding of Mother’s Emotions

    PubMed Central

    Tully, Erin C.; Donohue, Meghan Rose; Garcia, Sarah E.

    2014-01-01

    This study investigated children’s empathic responses to their mother’s distress to provide insight about child factors that contribute to parental socialization of emotions. Four- to six-year-old children (N=82) observed their mother’s sadness and anger during a simulated emotional phone conversation. Children’s facial negative affect was rated and their heart rate variability was recorded during the conversation, and their emotion understanding of the conversation was measured through their use of negative emotion words and perspective-taking themes (i.e., discussing the causes or resolution of mother’s emotions) in narrative accounts of the conversation. There were positive quadratic relationships between HRV and ratings of facial affect, narrative references to mother’s negative emotions, and perspective-taking themes. High and low HRV were associated with high facial negative affect, suggesting well-regulated sympathy and poorly regulated personal distress empathic responses, respectively. Moderate HRV was associated with low facial negative affect, suggesting minimal empathic engagement. High and low HRV were associated with the highest probabilities of both emotion understanding indicators, suggesting both sympathy and personal distress responses to mother’s distress facilitate understanding of mother’s emotions. Personal distress may motivate attempts to understand mother’s emotions as a self-soothing strategy, whereas sympathy-related attempts to understand may be motivated by altruism. PMID:24650197

  16. Children's empathy responses and their understanding of mother's emotions.

    PubMed

    Tully, Erin C; Donohue, Meghan Rose; Garcia, Sarah E

    2015-01-01

    This study investigated children's empathic responses to their mother's distress to provide insight about child factors that contribute to parental socialisation of emotions. Four- to six-year-old children (N = 82) observed their mother's sadness and anger during a simulated emotional phone conversation. Children's facial negative affect was rated and their heart rate variability (HRV) was recorded during the conversation, and their emotion understanding of the conversation was measured through their use of negative emotion words and perspective-taking themes (i.e., discussing the causes or resolution of mother's emotions) in narrative accounts of the conversation. There were positive quadratic relationships between HRV and ratings of facial affect, narrative references to mother's negative emotions and perspective-taking themes. High and low HRV was associated with high facial negative affect, suggesting well-regulated sympathy and poorly regulated personal distress empathic responses, respectively. Moderate HRV was associated with low facial negative affect, suggesting minimal empathic engagement. High and low HRV were associated with the highest probabilities of both emotion understanding indicators, suggesting both sympathy and personal distress responses to mother's distress facilitate understanding of mother's emotions. Personal distress may motivate attempts to understand mother's emotions as a self-soothing strategy, whereas sympathy-related attempts to understand may be motivated by altruism.

  17. Use of Hip Arthroscopy and Risk of Conversion to Total Hip Arthroplasty: A Population-Based Analysis.

    PubMed

    Schairer, William W; Nwachukwu, Benedict U; McCormick, Frank; Lyman, Stephen; Mayman, David

    2016-04-01

    To use population-level data to (1) evaluate the conversion rate of total hip arthroplasty (THA) within 2 years of hip arthroscopy and (2) assess the influence of age, arthritis, and obesity on the rate of conversion to THA. We used the State Ambulatory Surgery Databases and State Inpatient Databases for California and Florida from 2005 through 2012, which contain 100% of patient visits. Hip arthroscopy patients were tracked for subsequent primary THA within 2 years. Out-of-state patients and patients with less than 2 years follow-up were excluded. Multivariate analysis identified risks for subsequent hip arthroplasty after arthroscopy. We identified 7,351 patients who underwent hip arthroscopy with 2 years follow-up. The mean age was 43.9 ± 13.7 years, and 58.8% were female patients. Overall, 11.7% of patients underwent THA conversion within 2 years. The conversion rate was lowest in patients aged younger than 40 years (3.0%) and highest in the 60- to 69-year-old group (35.0%) (P < .001). We found an increased risk of THA conversion in older patients and in patients with osteoarthritis or obesity at the time of hip arthroscopy. Patients treated at high-volume hip arthroscopy centers had a lower THA conversion rate than those treated at low-volume centers (15.1% v 9.7%, P < .001). Hip arthroscopy is performed in patients of various ages, including middle-aged and elderly patients. Older patients have a higher rate of conversion to THA, as do patients with osteoarthritis or obesity. Level III, retrospective comparative study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Gasification Characteristics of Coal/Biomass Mixed Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Reginald

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less

  19. Direct digital conversion detector technology

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  20. Premorbid functional development and conversion to psychosis in clinical high-risk youths

    PubMed Central

    Tarbox, Sarah I.; Addington, Jean; Cadenhead, Kristin S.; Cannon, Tyrone D.; Cornblatt, Barbara A.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming T.; Walker, Elaine F.; Heinssen, Robert; Mcglashan, Thomas H.; Woods, Scott W.

    2014-01-01

    Deterioration in premorbid functioning is a common feature of schizophrenia, but sensitivity to psychosis conversion among clinical high-risk samples has not been examined. This study evaluates premorbid functioning as a predictor of psychosis conversion among a clinical high-risk sample, controlling for effects of prior developmental periods. Participants were 270 clinical high-risk individuals in the North American Prodrome Longitudinal Study—I, 78 of whom converted to psychosis over the next 2.5 years. Social, academic, and total maladjustment in childhood, early adolescence, and late adolescence were rated using the Cannon–Spoor Premorbid Adjustment Scale. Early adolescent social dysfunction significantly predicted conversion to psychosis (hazard ratio = 1.30, p = .014), independently of childhood social maladjustment and independently of severity of most baseline positive and negative prodromal symptoms. Baseline prodromal symptoms of disorganized communication, social anhedonia, suspiciousness, and diminished ideational richness mediated this association. Early adolescent social maladjustment and baseline suspiciousness together demonstrated moderate positive predictive power (59%) and high specificity (92.1%) in predicting conversion. Deterioration of academic and total functioning, although observed, did not predict conversion to psychosis. Results indicate early adolescent social dysfunction to be an important early predictor of conversion. As such, it may be a good candidate for inclusion in prediction algorithms and could represent an advantageous target for early intervention. PMID:24229556

  1. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  2. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  3. Sexy gene conversions: locating gene conversions on the X-chromosome.

    PubMed

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  4. Efficient electrochemical CO 2 conversion powered by renewable energy

    DOE PAGES

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...

    2015-06-29

    Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less

  5. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    NASA Astrophysics Data System (ADS)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  6. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGES

    Li, Jing; He, Kai; Meng, Qingping; ...

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  7. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; He, Kai; Meng, Qingping

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  8. High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation-Extrusion Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xiulin; Hu, Enyuan; Ji, Xiao

    Iron fluoride, an intercalation-conversion cathode for lithium ion batteries, promises a high theoretical energy density of 1922 Wh Kg –1. However, poor electrochemical reversibility due to repeated breaking/reformation of metal-fluoride bonds poses a grand challenge for its practical application. Here we report that both a high reversibility over 1000 cycles and a high capacity of 420 mAh g –1 can be realized by concerted doping of cobalt and oxygen into iron fluoride. In the doped nanorods, an energy density of ~1000 Wh Kg –1 with a decay rate of 0.03% per cycle is achieved. The anion and cation’s co-substitutions thermodynamicallymore » reduce conversion-reaction potential and shift the reaction from less reversible intercalation-conversion reaction in iron fluoride to a highly reversible intercalation-extrusion reaction in doped material. Furthermore, the co-substitution strategy to tune the thermodynamic features of the reactions could be extended to other high energy conversion materials for improved performance.« less

  9. High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation-Extrusion Reaction

    DOE PAGES

    Fan, Xiulin; Hu, Enyuan; Ji, Xiao; ...

    2018-05-30

    Iron fluoride, an intercalation-conversion cathode for lithium ion batteries, promises a high theoretical energy density of 1922 Wh Kg –1. However, poor electrochemical reversibility due to repeated breaking/reformation of metal-fluoride bonds poses a grand challenge for its practical application. Here we report that both a high reversibility over 1000 cycles and a high capacity of 420 mAh g –1 can be realized by concerted doping of cobalt and oxygen into iron fluoride. In the doped nanorods, an energy density of ~1000 Wh Kg –1 with a decay rate of 0.03% per cycle is achieved. The anion and cation’s co-substitutions thermodynamicallymore » reduce conversion-reaction potential and shift the reaction from less reversible intercalation-conversion reaction in iron fluoride to a highly reversible intercalation-extrusion reaction in doped material. Furthermore, the co-substitution strategy to tune the thermodynamic features of the reactions could be extended to other high energy conversion materials for improved performance.« less

  10. CT Evaluation of the progression of hypoattenuating nodular lesions in virus-related chronic liver disease.

    PubMed

    Takayasu, Kenichi; Muramatsu, Yukio; Mizuguchi, Yasunori; Okusaka, Takuji; Shimada, Kazuaki; Takayama, Tadatoshi; Sakamoto, Michiie

    2006-08-01

    The purpose of this study was to clarify the natural outcomes of hypoattenuating nodular lesions in patients with virus-related chronic liver disease depicted on dynamic CT. Sixty lesions (mean size, 1.3 cm) exhibiting hypoattenuation or isoattenuation in the arterial and delayed phases of dynamic CT were retrospectively evaluated with additional CT (mean, six examinations) for a mean period of 838 days. The primary end point was emergence of hyperattenuating areas within hypoattenuating lesions, a phenomenon called attenuation conversion. Cumulative attenuation conversion rates suggesting rates of malignant transformation were calculated with the Kaplan-Meier method, and factors affecting attenuation conversion rate were analyzed with the Cox proportional hazard model. Thirty-six (60%) of 60 hypoattenuating lesions developed to hyperattenuating lesions, 21 were unchanged, and three disappeared spontaneously. The 36 lesions that became hyperattenuating were divided into two subgroups according to lesion enhancement pattern: hyper-in-hypoattenuating (n = 25) and entirely hyperattenuating (n = 11). The cumulative attenuation conversion rates for the 60 hypoattenuating lesions were 15.8%, 44.3%, and 58.7% at 1, 2, and 3 years. The hyper-in-hypoattenuating lesions showed more rapid progression to entirely enhanced lesions. Positive results for hepatitis C viral antibody (p = 0.028) and initial lesion size (p = 0.007) showed a positive correlation with attenuation conversion rate. Hypoattenuating hepatic nodular lesions in chronic liver disease depicted on dynamic CT have high malignant potential and should be followed with special attention to conversion from hypoattenuation to hyperattenuation to determine the optimal timing of treatment.

  11. Poly(n-hexyl methacrylate) polymerization in three-component microemulsion stabilized by a cationic surfactant.

    PubMed

    Katime, Issa; Arellano, Jesús; Schulz, Pablo

    2006-04-15

    The polymerization of n-hexyl methacrylate (n-HMA) in three-component microemulsion stabilized with dodecyltrimethylammonium bromide (DTAB) is reported as a function of monomer and initiator concentrations and temperature. The obtained latices were bluish, transparent, and translucent. Particle sizes and molar masses were on the order of 20 nm and 3 x 10(6) g/mol, respectively. In all cases, high reaction rates and final conversions of 98% were obtained. Polymerization temperature has a strong effect on reaction rate and conversion.

  12. Enhancing conversation skills in patients with Alzheimer's disease using a prosthetic memory aid.

    PubMed

    Bourgeois, M S

    1990-01-01

    The effectiveness of teaching Alzheimer's disease subjects to use a prosthetic memory aid when conversing with familiar partners was evaluated. Effects of the training of three topics by caregivers was assessed in daily probes with the experimenter and twice weekly probes with a familiar conversational partner. All 3 subjects learned to use the memory aid with both conversational partners and improved the quality of their conversational content. Subjects made significantly more statements of fact and fewer ambiguous utterances after training on each topic according to a multiple baseline design. All subjects also generated novel, untrained statements in conversations with both partners. Treatment effects were maintained at high levels throughout training and at 3- and 6-week follow-up sessions. Naive judges rated baseline and posttreatment conversational samples as significantly improved on all eight conversational dimensions.

  13. Preparation and characterization of mesoporous ZnO-ZrO2 doped by Cr, Nd and Dy as a catalyst for conversion of coumarin using ultrasensitive fluorometric method

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.

    2017-04-01

    Doping of mesoporous ZnO-ZrO2 nanoparticles with transition metal and lanthanides (Cr, Nd, Dy) were used as a catalyst to develop an ultrasensitive fluorometric method for the conversion of non fluorescent coumarin to highly fluorescent 7-hydroxycoumarin using H2O2 or light. It was found that doped- ZnO-ZrO2 mixed oxide can catalyze the decomposition of H2O2 to produce •OH radicals, which in turn convert coumarin to 7-hydroxycoumarin. At contrast, the doping has deleterious effect on conversion of coumarin by light due to high band gap and high concentrations of doping increase the recombination rate of electron and holes. Doped mixed oxides prepared by impregnation method and characterized by studying their structural, surface and optical properties. Chromium doped ZnO-ZrO2 had the highest rate of formation of hydroxyl radical due to decomposition of H2O2 and therefore 7-hydroxycoumarin due to surface area, small crystal size and high redox potential.

  14. Effects of conversation interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Key, K. F.; Powell, C. A.

    1980-01-01

    The annoyance and interference effects of aircraft flyover noise on face to face conversation were investigated. Twenty 5 minute sessions, each composed of three flyovers, were presented to each of 20 pairs of female subjects in a simulated living room. Flyovers varied in peak noise level (55-79 dB, A-weighted) and spectrum (low or high frequency components). Subjects engaged in conversation for 10 sessions and in reverie for the other 10 sessions, and completed subjective ratings following every session. Annoyance was affected by noise level, but was not significantly different for the two activities of reverie and conversation. A noise level of 77 db was found unacceptable for conversation by 50 percent of the subjects. Conversation interference was assessed by incidence of increased vocal effort and/or interruption of conversation during flyovers. Although conversation interference increased with noise level, the conversation interference measures did not improve prediction of individual annoyance judgments.

  15. Silicon-Mediated Resistance in a Susceptible Rice Variety to the Rice Leaf Folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae)

    PubMed Central

    Han, Yongqiang; Lei, Wenbin; Wen, Lizhang; Hou, Maolin

    2015-01-01

    The rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most destructive rice pests in Asian countries. Rice varieties resistant to the rice leaf folder are generally characterized by high silicon content. In this study, silicon amendment, at 0.16 and 0.32 g Si/kg soil, enhanced resistance of a susceptible rice variety to the rice leaf folder. Silicon addition to rice plants at both the low and high rates significantly extended larval development and reduced larval survival rate and pupation rate in the rice leaf folder. When applied at the high rate, silicon amendment reduced third-instars’ weight gain and pupal weight. Altogether, intrinsic rate of increase, finite rate of increase and net reproduction rate of the rice leaf folder population were all reduced at both the low and high silicon addition rates. Although the third instars consumed more in silicon-amended treatments, C:N ratio in rice leaves was significantly increased and food conversion efficiencies were reduced due to increased silicon concentration in rice leaves. Our results indicate that reduced food quality and food conversion efficiencies resulted from silicon addition account for the enhanced resistance in the susceptible rice variety to the rice leaf folder. PMID:25837635

  16. Evaluating the Impacts of Grassland Conversions to Experimental Forest on Groundwater Recharge in the Nebraska Sand Hills

    NASA Astrophysics Data System (ADS)

    Adane, Zablon A.

    The Nebraska Sand Hills grasslands provide the greatest groundwater recharge rates in the High Plains Aquifer. However, the grasslands and their ecological services have become vulnerable to land use change and degradation. This study used a series of field data to investigate the effects of grassland conversions to forest on recharge rates in a century-old experimental forest in the Sand Hills. The results show that the impact of grassland conversion on recharge was dependent on the species and plantation density. Estimated recharge rates beneath the dense plantations represent reductions of 86-94% relative to the native grassland. Results of 1H Nuclear Magnetic Resonance spectral analysis suggested that the surface soil organic carbon beneath pine plantations also contain up to 3 times the ratio of hydrophobic components than the native grasslands and may alter the soil hydraulic properties. This investigation further uncovered a previously overlooked feedback between the effect of soil organic carbon chemical shift generated by the ponderosa pine needle litter decomposition; namely that the alteration may have a link to reduced groundwater recharge rates. Thus, a global optimizer algorithm was used to estimate the effective soil hydraulic parameters from monthly soil moisture contents and recharge rates were then estimated through HYDRUS 1-D numerical modeling for grassland and pine forest soils. The impact of grassland conversion to pine was an overall reduction of groundwater recharge by nearly 100%. These outcomes highlight the significance of the grasslands for recharge, in the Sand Hills and the sustainability of the High Plains Aquifer.

  17. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE PAGES

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  18. Predictors of delayed culture conversion among Ugandan patients.

    PubMed

    Atwine, Daniel; Orikiriza, Patrick; Taremwa, Ivan; Ayebare, Arnold; Logoose, Suzan; Mwanga-Amumpaire, Juliet; Jindani, Amina; Bonnet, Maryline

    2017-04-24

    Estimates of month-2 culture conversion, a proxy indicator of tuberculosis (TB) treatment efficacy in phase-2 trials can vary by culture-type and geographically with lower rates reported among African sites. The sub-study aimed at comparing TB detection rates of different culture media, within and across rifampicin-based regimens (R10, 15 and 20 mg/Kg) over a 6-month treatment follow-up period, and to establish predictors of month-2 culture non-conversion among HIV-negative TB patients enrolled at RIFATOX trial site in Uganda. Unlike in other Rifatox Trial sites, it is only in Uganda were Lowenstein-Jensen (LJ) and Mycobacteria growth indicator tube (MGIT) were used throughout 6-months for treatment monitoring. Conversion rates were compared at month-2, 4 and 6 across cultures and treatment-type. Binomial regression analysis performed for predictors of month-2 non-conversion. Of the 100 enrolled patients, 45% had converted based on combined LJ and MGIT by month-2, with no significant differences across treatment arms, p = 0.721. LJ exhibited higher conversion rates than MGIT at month-2 (58.4% vs 56.0%, p = 0.0707) and month-4 (98.9% vs 88.4%, p = 0.0391) respectively, more so within the high-dose rifampicin arms. All patients had converted by month-6. Time-to-TB detection (TTD) on MGIT and social service jobs independently predict month-2 non-conversion. The month-2 culture conversion used in phase 2 clinical trials as surrogate marker of treatment efficacy is influenced by the culture method used for monitoring mycobacterial response to TB treatment. Therefore, multi-centric TB therapeutic trials using early efficacy endpoint should use the same culture method across sites. The Time-to-detection of MTB on MGIT prior to treatment and working in Social service jobs bear an increased risk of culture non-conversion at month-2. ISRCTN ISRCTN55670677 . Registered 09th November 2010. Retrospectively registered.

  19. LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes

    PubMed Central

    Cossu, Rosa Maria; Casola, Claudio; Giacomello, Stefania; Vidalis, Amaryllis

    2017-01-01

    Abstract The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content. PMID:29228262

  20. Surgical volume and conversion rate in laparoscopic hysterectomy: does volume matter? A multicenter retrospective cohort study.

    PubMed

    Keurentjes, José H M; Briët, Justine M; de Bock, Geertruida H; Mourits, Marian J E

    2018-02-01

    A multicenter, retrospective, cohort study was conducted in the Netherlands. The aim was to evaluate whether surgical volume of laparoscopic hysterectomies (LHs) performed by proven skilled gynecologists had an impact on the conversion rate from laparoscopy to laparotomy. In 14 hospitals, all LHs performed by 19 proven skilled gynecologists between 2007 and 2010 were included in the analysis. Surgical volume, conversion rate and type of conversion (reactive or strategic) were retrospectively assessed. To estimate the impact of surgical volume on the conversion rate, logistic regressions were performed. These regressions were adjusted for patient's age, Body Mass Index (BMI), ASA classification, previous abdominal surgery and the indication (malignant versus benign) for the LH. During the study period, 19 proven skilled gynecologists performed a total of 1051 LHs. Forty percent of the gynecologists performed over 20 LHs per year (median 17.3, range 5.4-49.5). Conversion to laparotomy occurred in 5.0% of all LHs (53 of 1051); 38 (3.6%) were strategic and 15 (1.4%) were reactive conversions. Performing over 20 LHs per year was significantly associated with a lower overall conversion rate (OR adjusted 0.43, 95% CI 0.24-0.77), a lower strategic conversion rate (OR adjusted 0.32, 95% CI 0.16-0.65), but not with a lower reactive conversion rate (OR adjusted 0.96, 95% CI 0.33-2.79). A higher annual surgical volume of LHs by proven skilled gynecologists is inversely related to the conversion rate to laparotomy, and results in a lower strategic conversion rate.

  1. Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments.

    PubMed

    Khan, Imran; Maldonado, Emanuel; Vasconcelos, Vítor; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2014-09-10

    Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation. We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the "hairless" dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair. We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.

  2. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cyclesmore » are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.« less

  3. Effect of the Molecular Nature of Mutation on the Efficiency of Intrachromosomal Gene Conversion in Mouse Cells

    PubMed Central

    Letsou, Anthea; Liskay, R. Michael

    1987-01-01

    With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159

  4. Conversion therapy for inoperable advanced gastric cancer patients by docetaxel, cisplatin, and S-1 (DCS) chemotherapy: a multi-institutional retrospective study.

    PubMed

    Sato, Yasushi; Ohnuma, Hiroyuki; Nobuoka, Takayuki; Hirakawa, Masahiro; Sagawa, Tamotsu; Fujikawa, Koshi; Takahashi, Yasuo; Shinya, Minami; Katsuki, Shinich; Takahashi, Minoru; Maeda, Masahiro; Okagawa, Yutaka; Naoki, Uemura; Kikuch, Syouhei; Okamoto, Koichi; Miyamoto, Hiroshi; Shimada, Mitsuo; Takemasa, Ichiro; Kato, Junji; Takayama, Tetsuji

    2017-05-01

    Conversion therapy is an option for unresectable metastatic gastric cancer when distant metastases are controlled by chemotherapy; however, the feasibility and efficacy remain unclear. This study aimed to assess the feasibility and efficacy of conversion therapy in patients with initially unresectable gastric cancer treated with docetaxel, cisplatin, and S-1 (DCS) chemotherapy by evaluating clinical outcomes. One hundred unresectable metastatic gastric cancer patients, enrolled in three DCS chemotherapy clinical trials, were retrospectively evaluated. The patients received oral S-1 (40 mg/m 2 b.i.d.) on days 1-14 and intravenous cisplatin (60 mg/m 2 ) and docetaxel (50-60 mg/m 2 ) on day 8 every 3 weeks. Conversion therapy was defined when the patients could undergo R0 resection post-DCS chemotherapy and were able to tolerate curative surgery. Conversion therapy was achieved in 33/100 patients, with no perioperative mortality. Twenty-eight of the 33 patients (84.8 %) achieved R0 resection, and 78.8 % were defined as histological chemotherapeutic responders. The median overall survival (OS) of patients who underwent conversion therapy was 47.8 months (95 % CI 28.0-88.5 months). Patients who underwent R0 resection had significantly longer OS than those who underwent R1 and R2 resections (P = 0.0002). Of the patients with primarily unresectable metastases, 10 % lived >5 years. Among patients who underwent conversion therapy, multivariate analysis showed that the pathological response was a significant independent predictor for OS. DCS safely induced a high conversion rate, with very high R0 and pathological response rates, and was associated with a good prognosis; these findings warrant further prospective investigations.

  5. Smear Conversion, Treatment Outcomes and the Time of Default in Registered Tuberculosis Patients on RNTCP DOTS in Puducherry, Southern India

    PubMed Central

    Jayakumar, Niranjana; Gnanasekaran, Dhivyalakshmi

    2014-01-01

    Background: Revised National Tuberculosis Control Programme (RNTCP) in India has achieved improved cure rates. Objectives: This study describes the achievements under RNTCP in terms of conversion rates, treatment outcomes and pattern of time of default in patients on directly observed short-course treatment for Tuberculosis in Puducherry, Southern India. Settings: Retrospective cohort study; Tuberculosis Unit in District Tuberculosis Centre, Puducherry, India. Materials and Methods: Cohort analysis of patients of registered at the Tuberculosis Unit during 1st and 2nd quarter of the year 2011. Details about sputum conversion, treatment outcome and time of default were obtained from the tuberculosis register. Statistical Analysis: Kaplan-Meier plots & log rank tests. Results: RNTCP targets with respect to success rate (85.7%), death rate (2.7%) and failure rate (2.1%) in new cases have been achieved but the sputum conversion rate (88%) and default rate (5.9%) targets have not been achieved. The overall default rate for all registered TB patients was 7.4%; significantly higher in category II. In retreatment cases registered as treatment after default, the default rate was high (9%). The cumulative default rate; though similar in the initial two months of treatment; was consistently higher in category II as compared to that in category I. Nearly 40% of all defaulters interrupted treatment between the second and fourth month after treatment initiation. Conclusion: Defaulting from treatment is more common among the retreatment cases and usually occurs during the transition phase from intensive phase to continuation phase. PMID:25478371

  6. A cross-country Exchange Market Pressure (EMP) dataset.

    PubMed

    Desai, Mohit; Patnaik, Ila; Felman, Joshua; Shah, Ajay

    2017-06-01

    The data presented in this article are related to the research article titled - "An exchange market pressure measure for cross country analysis" (Patnaik et al. [1]). In this article, we present the dataset for Exchange Market Pressure values (EMP) for 139 countries along with their conversion factors, ρ (rho). Exchange Market Pressure, expressed in percentage change in exchange rate, measures the change in exchange rate that would have taken place had the central bank not intervened. The conversion factor ρ can interpreted as the change in exchange rate associated with $1 billion of intervention. Estimates of conversion factor ρ allow us to calculate a monthly time series of EMP for 139 countries. Additionally, the dataset contains the 68% confidence interval (high and low values) for the point estimates of ρ 's. Using the standard errors of estimates of ρ 's, we obtain one sigma intervals around mean estimates of EMP values. These values are also reported in the dataset.

  7. Prevalence and conversion to dementia of Mild Cognitive Impairment in an elderly Italian population.

    PubMed

    Limongi, Federica; Siviero, Paola; Noale, Marianna; Gesmundo, Antonella; Crepaldi, Gaetano; Maggi, Stefania

    2017-06-01

    Mild Cognitive Impairment (MCI) represents a significant risk factor for dementia but there are only a few Italian population studies on its prevalence and its rate of conversion to dementia. Aim of this study was to assess the prevalence of MCI, its subtypes, and rates of conversion to dementia 1 year later in an elderly Italian population. The data are based on an Italian multicenter population-based cohort study with both cross-sectional and longitudinal components. Two thousand three hundred thirty-seven individuals over 65 underwent screening, clinical confirmation and 1-year follow-up. The prevalence of MCI was 21.6% and the amnestic multiple domain was the most frequent subtype (63.2%). The conversion rate to dementia was 4.1% and was found only in the amnestic multiple domain and in the unclassifiable subjects, persons with cognitive deficit but neither demented nor with MCI. The prevalence of MCI in this population sample was similar to that found in other population studies using Petersen's modified MCI criteria as well as his original criteria. With regard to conversion to dementia, our results emphasize the importance to better classify the unclassifiable subjects at high risk of progression to dementia and also at risk of being undiagnosed and untreated. MCI is characterized by extreme variability and instability. Data on the prevalence and the rate of conversion from MCI to dementia are difficult to compare given the important differences from study to study especially with regard to the diagnostic criteria utilized and their operationalization.

  8. Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion

    PubMed Central

    Wu, Chung-Shien; Chaw, Shu-Miaw

    2015-01-01

    In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. PMID:26116919

  9. Conversion of NO to NO(2) in air by a micro electric NO(x) converter based on a corona discharge process.

    PubMed

    Yoon, Seung-Il; Heo, Sungmoo; Song, Soonho; Kim, Yong-Jun

    2010-06-01

    A micro-electric-NO(x)-converter based on volume treatment is proposed for the evaluation of NO(x) concentrations in air. It can electrically convert NO(x) mixture from variable mixing rates into a fixed-mixing rate of 25% NO(2) and 75% NO using the corona discharge process with stable conversion efficiency and high throughput (space velocity = 6.3 x 10(4) h(-1)). The micro-electric-NO(x)-converter is based on a volume process. Applying high voltage to the electrodes of the micro-electric-NO(x)-converter generates a corona discharge. This discharge creates high-energy electrons, which collide with gas molecules. After these collisions, NO and O(2) are broken into single atoms, and they are re-combined as a balanced form, NO(2) in this case. The fabricated micro-electric-NO(x)-converter converted NO into NO(2) at conversion efficiency of 25.63%, when 5.5 kV (the applied corona power = 0.196 W) was applied to the micro-electric-NO(x)-converter.

  10. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    PubMed

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  11. Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.

    PubMed

    Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao

    2018-02-01

    Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.

  12. A positive take on schizophrenia negative symptom scales: Converting scores between the SANS, NSA and SDS.

    PubMed

    Preda, Adrian; Nguyen, Dana D; Bustillo, Juan R; Belger, Aysenil; O'Leary, Daniel S; McEwen, Sarah; Ling, Shichun; Faziola, Lawrence; Mathalon, Daniel H; Ford, Judith M; Potkin, Steven G; van Erp, Theo G M

    2018-06-20

    To provide quantitative conversions between commonly used scales for the assessment of negative symptoms in schizophrenia. Linear regression analyses generated conversion equations between symptom scores from the Scale for the Assessment of Negative Symptoms (SANS), the Schedule for the Deficit Syndrome (SDS), the Positive and Negative Syndrome Scale (PANSS), or the Negative Symptoms Assessment (NSA) based on a cross sectional sample of 176 individuals with schizophrenia. Intraclass correlations assessed the rating conversion accuracy based on a separate sub-sample of 29 patients who took part in the initial study as well as an independent sample of 28 additional subjects with schizophrenia. Between-scale negative symptom ratings were moderately to highly correlated (r = 0.73-0.91). Intraclass correlations between the original negative symptom rating scores and those obtained via using the conversion equations were in the range of 0.61-0.79. While there is a degree of non-overlap, several negative symptoms scores reflect measures of similar constructs and may be reliably converted between some scales. The conversion equations are provided at http://www.converteasy.org and may be used for meta- and mega-analyses that examine negative symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Trajectories of Delinquency from Age 14 to 23 in the National Longitudinal Survey of Youth Sample

    PubMed Central

    Murphy, Debra A.; Brecht, Mary-Lynn; Huang, David; Herbeck, Diane M.

    2012-01-01

    This study utilized data from the National Longitudinal Survey of Youth to investigate risk trajectories for delinquency and factors associated with different trajectories, particularly substance use. The sample (N = 8,984) was 49% female. A group-based trajectory model was applied, which identified four distinct trajectories for both males and females: (1) a High group with delinquency rates consistently higher than other groups, with some decrease across the age range; (2) a Decreased group, beginning at high levels with substantial decrease to near zero; (3) a Moderate group experiencing some decline but remaining at moderate rates of delinquency through most of the age range; and (4) a consistently Low group, having low rates of delinquency declining to near zero by mid- to late-teens. The Low group was distinguished by several protective factors, including higher rates of maternal authoritative parenting style, possible lower acculturation (higher rates of non-English spoken at home), higher rates of religious activity, later substance use initiation, lower rates of early delinquent activity, less early experience with neighborhood or personal violence, and higher rates of perceiving penalty for wrongdoing. Conversely, the High group was characterized by several vulnerability factors—essentially the converse of the protective factors above. PMID:23105164

  14. In situ generation of highly dispersed metal nanoparticles on two-dimensional layered SiO2 by topotactic structure conversion and their superior catalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Jia, Da-Shuang; Zhou, Yue; Hao, Jiang; Liang, Yu; Cui, Zhi-Min; Song, Wei-Guo

    2018-03-01

    Metal nanoparticles such as Ag, Cu and Fe are effective catalysts for many reactions, whereas a facile method to prepare metal nanoparticles with high uniformed dispersion is still desirable. Herein, the topotactic structure conversion of layered silicate, RUB-15, was utilized to support metal nanoparticles. Through simple ion-exchange and following calcination step, metal nanoparticles were generated in situ inside the interlayer space of layered silica, and the topotactic structure conversion process assured nano-sized and highly uniformed dispersion of metal nanoparticles. The obtained Ag/SiO2 composite showed superior catalytic activity for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with a rate constant as high as 0.0607 s-1 and 0.0778 s-1. The simple and universal synthesis method as well as high activity of the product composite endow the strategy good application prospect.

  15. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    PubMed

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  16. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  17. The clinical efficacy of a clarithromycin-based regimen for Mycobacterium avium complex disease: A nationwide post-marketing study.

    PubMed

    Kadota, Jun-Ichi; Kurashima, Atsuyuki; Suzuki, Katsuhiro

    2017-05-01

    The revised 2007 American Thoracic Society/Infectious Diseases Society of America statement recommend clarithromycin-based combination therapy for treatment of Mycobacterium avium complex lung disease and stipulates approximately 1 year of continuous treatment after bacilli negative conversion. However, supporting data are insufficient. Our objective was to obtain data on the clinical outcome of clarithromycin-based daily regimens by conducting a nationwide retrospective post-marketing study of M. avium complex lung disease. In accordance with the Japanese guidelines, patients were enrolled in this survey according to their chest radiographic findings and microbiologic test results. They were treated with a multidrug regimen including clarithromycin, rifampicin, and ethambutol (clarithromycin-based regimen) until bacilli negative conversion, and the treatment was continued for approximately 1 year after the initial conversion. Data were collected before administration, at the time of bacilli negative conversion, at the end of treatment, and at 6 months after the end of treatment. Of the 466 subjects enrolled in the study, 271 patients who received clarithromycin at 800 mg/day underwent evaluation for M. avium complex disease. The final bacilli negative conversion rate in those patients was 94.7%. The bacteriological relapse rate was 5.0% (5/100 patients). Bacteriological relapse was noted in patients treated for less than 15 months after conversion. No life-threatening or serious adverse drug reactions were observed. This study demonstrated that a clarithromycin-based daily regimen can yield a high bacteriological conversion rate in M. avium complex disease. After conversion, treatment for less than 15 months might be insufficient to prevent bacteriological relapse. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. High temperature pre-digestion of corn stover biomass for improved product yields

    DOE PAGES

    Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E.; ...

    2014-12-03

    Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.more » Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. In conclusion, Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.« less

  19. Calculation Methods and Conversions for Pesticide Application.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.

    This agriculture extension service publication from Pennsylvania State University consists of conversion tables and formulas for determining concentration and rate of application of pesticides. Contents include: (1) Area and volume conversions; (2) Important conversion formulae; (3) Conversions for rates of application; (4) Quantities of pesticide…

  20. Performance analysis of 60-min to 1-min integration time rain rate conversion models in Malaysia

    NASA Astrophysics Data System (ADS)

    Ng, Yun-Yann; Singh, Mandeep Singh Jit; Thiruchelvam, Vinesh

    2018-01-01

    Utilizing the frequency band above 10 GHz is in focus nowadays as a result of the fast expansion of radio communication systems in Malaysia. However, rain fade is the critical factor in attenuation of signal propagation for frequencies above 10 GHz. Malaysia is located in a tropical and equatorial region with high rain intensity throughout the year, and this study will review rain distribution and evaluate the performance of 60-min to 1-min integration time rain rate conversion methods for Malaysia. Several conversion methods such as Segal, Chebil & Rahman, Burgeono, Emiliani, Lavergnat and Gole (LG), Simplified Moupfouma, Joo et al., fourth order polynomial fit and logarithmic model have been chosen to evaluate the performance to predict 1-min rain rate for 10 sites in Malaysia. After the completion of this research, the results show that Chebil & Rahman model, Lavergnat & Gole model, Fourth order polynomial fit and Logarithmic model have shown the best performances in 60-min to 1-min rain rate conversion over 10 sites. In conclusion, it is proven that there is no single model which can claim to perform the best across 10 sites. By averaging RMSE and SC-RMSE over 10 sites, Chebil and Rahman model is the best method.

  1. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  2. Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization.

    PubMed

    Sajjadi, Shahriar

    2015-05-01

    Conventional batch and semicontinuous emulsion copolymerizations often produce large particles whose size cannot be easily correlated with the comonomer feed compositions, and are to some degree susceptible to composition drift. In contrast, we found that copolymer nanolatexes made via semicontinuous monomer-starved emulsion copolymerizations are featured with an average nanoparticle size being controlled by the feed composition, a high conversion achieved, and a high degree of particle composition uniformity. This was achieved because the rate of particle growth, during nucleation, was controlled by the rate of comonomer addition, and the copolymer composition, surfactant parking area on the particles, and nucleation efficiency determined by the comonomer feed composition. Two model systems, methyl methacrylate/styrene and vinyl acetate/butyl acrylate, with significant differences in water solubility were studied. Monomers were added to the aqueous solution of sodium dodecylsulfate and potassium persulfate at a low rate to achieve high instantaneous conversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa.

    PubMed

    Eggert, J H; Karmon, E; Hemley, R J; Mao, A; Goncharov, A F

    1999-10-26

    We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway.

  4. Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.

    PubMed

    Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki

    2016-10-05

    Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.

  5. Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion.

    PubMed

    Wu, Chung-Shien; Chaw, Shu-Miaw

    2015-06-27

    In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.

    PubMed

    Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-22

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  7. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    NASA Astrophysics Data System (ADS)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  8. Speech Rate Entrainment in Children and Adults With and Without Autism Spectrum Disorder.

    PubMed

    Wynn, Camille J; Borrie, Stephanie A; Sellers, Tyra P

    2018-05-03

    Conversational entrainment, a phenomenon whereby people modify their behaviors to match their communication partner, has been evidenced as critical to successful conversation. It is plausible that deficits in entrainment contribute to the conversational breakdowns and social difficulties exhibited by people with autism spectrum disorder (ASD). This study examined speech rate entrainment in children and adult populations with and without ASD. Sixty participants including typically developing children, children with ASD, typically developed adults, and adults with ASD participated in a quasi-conversational paradigm with a pseudoconfederate. The confederate's speech rate was digitally manipulated to create slow and fast speech rate conditions. Typically developed adults entrained their speech rate in the quasi-conversational paradigm, using a faster rate during the fast speech rate conditions and a slower rate during the slow speech rate conditions. This entrainment pattern was not evident in adults with ASD or in children populations. Findings suggest that speech rate entrainment is a developmentally acquired skill and offers preliminary evidence of speech rate entrainment deficits in adults with ASD. Impairments in this area may contribute to the conversational breakdowns and social difficulties experienced by this population. Future work is needed to advance this area of inquiry.

  9. Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa

    PubMed Central

    Eggert, Jon H.; Karmon, Eran; Hemley, Russell J.; Mao, Ho-kwang; Goncharov, Alexander F.

    1999-01-01

    We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway. PMID:10535910

  10. Responses of biomass briquetting and pelleting to water-involved pretreatments and subsequent enzymatic hydrolysis.

    PubMed

    Li, Yang; Li, Xiaotong; Shen, Fei; Wang, Zhanghong; Yang, Gang; Lin, Lili; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2014-01-01

    Although lignocellulosic biomass has been extensively regarded as the most important resource for bioethanol, the wide application was seriously restricted by the high transportation cost of biomass. Currently, biomass densification is regarded as an acceptable solution to this issue. Herein, briquettes, pellets and their corresponding undensified biomass were pretreated by diluted-NaOH and hydrothermal method to investigate the responses of biomass densification to these typical water-involved pretreatments and subsequent enzymatic hydrolysis. The densified biomass auto-swelling was initially investigated before pretreatment. Results indicated pellets could be totally auto-swollen in an hour, while it took about 24 h for briquettes. When diluted-NaOH pretreatment was performed, biomass briquetting and pelleting improved sugar conversion rate by 20.1% and 5.5% comparing with their corresponding undensified biomass. Pelleting improved sugar conversion rate by 7.0% after hydrothermal pretreatment comparing with the undensified biomass. However, briquetting disturbed hydrothermal pretreatment resulting in the decrease of sugar conversion rate by 15.0%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Detoxification system for inorganic arsenic: transformation of As2O3 into TMAO by vitamin B12 derivatives and conversion of TMAO into arsenobetaine.

    PubMed

    Nakamura, Koichiro; Hisaeda, Yoshio; Pan, Ling; Yamauchi, Hiroshi

    2008-11-07

    A new two-step synthetic pathway developed for the transformation of arsenic trioxide [iAs(III); As(2)O(3)] into arsenobetaine (AB; Me(3)As(+)CH(2)CO(2)(-)) involves treatment of iAs(III) with native B(12) or biomimetic B(12) in the presence of glutathione (GSH) to give TMAO with a high selectivity and a high conversion rate; subsequent treatment of TMAO with iodoacetic acid in the presence of GSH gives arsenobetaine.

  12. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Culik, J.; Wrigley, C.

    1980-01-01

    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.

  13. Pharmacological conversion of recent-onset atrial fibrillation: a systematic review.

    PubMed

    Heldal, Magnus; Atar, Dan

    2013-02-01

    Recent-onset (duration ≤ 1 week) atrial fibrillation (AF) has a high rate of spontaneous conversion to sinus rhythm (SR); still anti-arrhythmic drugs (AAD) are given for conversion purposes. We assessed the effect of AADs by reviewing the literature regarding conversion rates of available drugs in a systematic manner. PubMed searches were performed using the terms "drug name", "atrial fibrillation", and "clinical study/RCT", and a list of 1302 titles was generated. These titles, including abstracts or complete papers when needed, were reviewed for recent-onset of AF, the use of a control group, and the endpoint of SR within 24 hours. Postoperative and intensive care settings were excluded. Five AADs were demonstrated to have an effect, and these were Amiodarone, Ibutilide (only one study and risk of torsade de pointes), Flecainide and Propafenone (only to be used in patients without structural heart disease) and Vernakalant. The time taken for conversion differed markedly; Vernakalant converted after 10 minutes, while Amiodarone converted only after 24 hours; Propafenone and Flecainide had conversion times in-between. For a rapid response in a broad group of patients, Vernakalant appears to be a reasonable first choice, while Flecainide and Propafenone can be used in patients without structural heart disease.

  14. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    PubMed

    Pendleton, Linwood; Donato, Daniel C; Murray, Brian C; Crooks, Stephen; Jenkins, W Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W; Kauffman, J Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  15. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER28JA02.074 ER10JY02.000 ER28JA02...

  16. Insecticidal activity of certain medicinal plants.

    PubMed

    Pavela, Roman

    2004-12-01

    The methanol extracts of eight species of medicinal plants were tested for insecticidal activity in third instar larvae of Egyptian cottonworm (Spodoptera littoralis). All extracts showed a certain degree of larval toxicity. The extracts of Ocimum basilicum, Origanum majorana and Salvia officinalis appeared to be highly toxic. The extracts significantly affected the growth indexes [relative growth rate (RGR), efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD)].

  17. Methane combustion reactivity during the metal→metallic oxide transformation of Pd-Pt catalysts: Effect of oxygen pressure

    NASA Astrophysics Data System (ADS)

    Qi, Wenjie; Ran, Jingyu; Zhang, Zhien; Niu, Juntian; Zhang, Peng; Fu, Lijuan; Hu, Bo; Li, Qilai

    2018-03-01

    Density functional theory combined with kinetic models were used to probe different kinetics consequences by which methane activation on different oxygen chemical potential surfaces as oxygen pressure increased. The metallic oxide → metal transformation temperature of Pd-Pt catalysts increased with the increase of the Pd content or/and O2 pressure. The methane conversion rate on Pt catalyst increased and then decreased to a constant value when increasing the O2 pressure, and Pd catalyst showed a poor activity performance in the case of low O2 pressure. Moreover, its activity increased as the oxygen chemical potential for O2 pressure increased in the range of 2.5-10 KPa. For metal clusters, the Csbnd H bond and Odbnd O bond activation steps occurred predominantly on *-* site pairs. The methane conversion rate was determined by O2 pressure because the adsorbed O atoms were rapidly consumed by other adsorbed species in this kinetic regime. As the O2 pressure increased, the metallic active sites for methane activation were decreased and there was no longer lack of adsorbed O atoms, resulting in the decrease of the methane conversion rate. Furthermore, when the metallic surfaces were completely covered by adsorbed oxygen atoms at higher oxygen chemical potentials, Pt catalyst showed a poor activity due to a high Csbnd H bond activation barrier on O*sbnd O*. In the case of high O2 pressure, Pd atoms preferred to segregate to the active surface of Pd-Pt catalysts, leading to the formation of PdO surfaces. The increase of Pd segregation promoted a subsequent increase in active sites and methane conversion rate. The PdO was much more active than metallic and O* saturated surfaces for methane activation, inferred from the theory and experimental study. Pd-rich bimetallic catalyst (75% molar Pd) showed a dual high methane combustion activity on O2-poor and O2-rich conditions.

  18. Electro-catalytic biodiesel production from canola oil in methanolic and ethanolic solutions with low cost stainless steel and hybrid ion-exchange resin grafted electrodes

    NASA Astrophysics Data System (ADS)

    Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.

    2017-07-01

    Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  19. Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Palmieri, Alessandro; He, Junkai; Meng, Yongtao; Beauregard, Nicole; Suib, Steven L.; Mustain, William E.

    2016-05-01

    The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C.

  20. Kinetic aspects of chain growth in Fischer-Tropsch synthesis.

    PubMed

    Filot, Ivo A W; Zijlstra, Bart; Broos, Robin J P; Chen, Wei; Pestman, Robert; Hensen, Emiel J M

    2017-04-28

    Microkinetics simulations are used to investigate the elementary reaction steps that control chain growth in the Fischer-Tropsch reaction. Chain growth in the FT reaction on stepped Ru surfaces proceeds via coupling of CH and CR surface intermediates. Essential to the growth mechanism are C-H dehydrogenation and C hydrogenation steps, whose kinetic consequences have been examined by formulating two novel kinetic concepts, the degree of chain-growth probability control and the thermodynamic degree of chain-growth probability control. For Ru the CO conversion rate is controlled by the removal of O atoms from the catalytic surface. The temperature of maximum CO conversion rate is higher than the temperature to obtain maximum chain-growth probability. Both maxima are determined by Sabatier behavior, but the steps that control chain-growth probability are different from those that control the overall rate. Below the optimum for obtaining long hydrocarbon chains, the reaction is limited by the high total surface coverage: in the absence of sufficient vacancies the CHCHR → CCHR + H reaction is slowed down. Beyond the optimum in chain-growth probability, CHCR + H → CHCHR and OH + H → H 2 O limit the chain-growth process. The thermodynamic degree of chain-growth probability control emphasizes the critical role of the H and free-site coverage and shows that at high temperature, chain depolymerization contributes to the decreased chain-growth probability. That is to say, during the FT reaction chain growth is much faster than chain depolymerization, which ensures high chain-growth probability. The chain-growth rate is also fast compared to chain-growth termination and the steps that control the overall CO conversion rate, which are O removal steps for Ru.

  1. Do conversations with virtual avatars increase feelings of social anxiety?

    PubMed

    Powers, Mark B; Briceno, Nicole F; Gresham, Robert; Jouriles, Ernest N; Emmelkamp, Paul M G; Smits, Jasper A J

    2013-05-01

    Virtual reality (VR) technology provides a way to conduct exposure therapy with patients with social anxiety. However, the primary limitation of current technology is that the operator is limited to pre-programed avatars that cannot be controlled to interact/converse with the patient in real time. The current study piloted new technology allowing the operator to directly control the avatar (including speaking) during VR conversations. Using an incomplete repeated measures (VR vs. in vivo conversation) design and random starting order with rotation counterbalancing, participants (N = 26) provided ratings of fear and presence during both VR and in vivo conversations. Results showed that VR conversation successfully elevated fear ratings relative to baseline (d = 2.29). Participants also rated their fear higher during VR conversation than during in vivo conversation (d = 0.85). However, in vivo conversation was rated as more realistic than VR conversation (d = 0.74). No participants dropped out and 100% completed both VR and in vivo conversations. Qualitative participant comments suggested that the VR conversations would be more realistic if they did not meet the actor/operator and if they were not in the same room as the participant. Overall, the data suggest that the novel technology allowing real time interaction/conversation in VR may prove useful for the treatment of social anxiety in future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Conversational fluency and executive function in adolescents with conduct disorder

    PubMed Central

    Turkstra, Lyn S.; Fuller, Tracy; Youngstrom, Eric; Green, Kristen; Kuegeler, Elizabeth

    2017-01-01

    SUMMARY Background EF impairments are known to occur among adolescents with conduct disorder (CD) but their influence on communication ability is not well-understood. The purpose of this study was to relate scores on a clinical EF questionnaire to performance on a communication task. Extemporaneous conversation was chosen as the target task, because it places a high demand on EFs and it is a critical medium for adolescent social development. Material and Methods The participants were 18 incarcerated adolescents with conduct disorder (I-CD), 12 incarcerated adolescents without CD (I-NCD), and 26 typically developing (TD) non-incarcerated adolescents. Participants completed the Self-Report form of the Behavior Rating Inventory of Executive Function (BRIEF) and extemporaneous conversations. Results The I-CD and I-NCD groups produced four times more dysfluencies in conversation than the TD group. There was also a significant group effect on BRIEF subscores for executive memory (TD vs. I-CD), but not for planning and organization. Fluency data correlated significantly with BRIEF scores for executive memory, and the combination of fluency and BRIEF data accounted for 65% of the variance in group membership between TD adolescents and their incarcerated peers, regardless of CD diagnosis. Conclusions BRIEF scores seem to be related to performance on communication tasks relevant for adolescents in daily living. Our results also revealed very high dysfluency rates among incarcerated juveniles. The EF and conversation measures differentiated incarcerated vs. non-incarcerated juveniles, but were less sensitive to CD. PMID:29213294

  3. Reframing Retention Strategy: A Focus on Process

    ERIC Educational Resources Information Center

    Schroeder, Charles C.

    2013-01-01

    When institutions engage in discussions regarding improving retention and graduation rates, invariably the conversation focuses on entering student characteristics, especially ACT and SAT scores and high school grades. Clearly, attracting and enrolling well-prepared and motivated high-ability students will certainly improve institutional measures…

  4. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria.

    PubMed

    Xiao, Xiaopeng; Mazza, Lorenzo; Yu, Yongqiang; Cai, Minmin; Zheng, Longyu; Tomberlin, Jeffery K; Yu, Jeffrey; van Huis, Arnold; Yu, Ziniu; Fasulo, Salvatore; Zhang, Jibin

    2018-07-01

    A chicken manure management process was carried out through co-conversion of Hermetia illucens L. larvae (BSFL) with functional bacteria for producing larvae as feed stuff and organic fertilizer. Thirteen days co-conversion of 1000 kg of chicken manure inoculated with one million 6-day-old BSFL and 10 9  CFU Bacillus subtilis BSF-CL produced aging larvae, followed by eleven days of aerobic fermentation inoculated with the decomposing agent to maturity. 93.2 kg of fresh larvae were harvested from the B. subtilis BSF-CL-inoculated group, while the control group only harvested 80.4 kg of fresh larvae. Chicken manure reduction rate of the B. subtilis BSF-CL-inoculated group was 40.5%, while chicken manure reduction rate of the control group was 35.8%. The weight of BSFL increased by 15.9%, BSFL conversion rate increased by 12.7%, and chicken manure reduction rate increased by 13.4% compared to the control (no B. subtilis BSF-CL). The residue inoculated with decomposing agent had higher maturity (germination index >92%), compared with the no decomposing agent group (germination index ∼86%). The activity patterns of different enzymes further indicated that its production was more mature and stable than that of the no decomposing agent group. Physical and chemical production parameters showed that the residue inoculated with the decomposing agent was more suitable for organic fertilizer than the no decomposing agent group. Both, the co-conversion of chicken manure by BSFL with its synergistic bacteria and the aerobic fermentation with the decomposing agent required only 24 days. The results demonstrate that co-conversion process could shorten the processing time of chicken manure compared to traditional compost process. Gut bacteria could enhance manure conversion and manure reduction. We established efficient manure co-conversion process by black soldier fly and bacteria and harvest high value-added larvae mass and biofertilizer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Meiotic gene-conversion rate and tract length variation in the human genome.

    PubMed

    Padhukasahasram, Badri; Rannala, Bruce

    2013-02-27

    Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.

  6. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE PAGES

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  7. Virtual Conversation Partner for Adults with Autism

    PubMed Central

    Trepagnier, Cheryl Y.; Olsen, Dale E.; Bell, Corinne A.

    2011-01-01

    Abstract Autistic Spectrum Disorder (ASD) is notable for severely impaired reciprocal social interaction skills relative to language and intellectual abilities, presenting a major barrier to social integration and vocational success. Evidence-based interventions to address these needs are lacking. We report on the development of a small, prototype conversation simulation to teach conversational skills to adolescents and adults with ASD and average to superior intellectual abilities. We also report on a test of the feasibility and acceptability of the simulation approach with a sample of the target population. The simulation engages the user in a virtual conversation with an on-screen partner whose reactions provide naturalistic feedback geared to the appropriateness of the learner's response choices. The prototype simulation, which provides for up to 12 potentially unique multi-turn conversations, was used over a period of 2 weeks by 16 adolescents and adults who then rated statements about the system on a linear scale of 1 (disagreement) to 5 (high agreement). The participants highly endorsed the majority of positive statements about the quality and credibility of the interaction and the virtual conversation partner. In contrast, agreement with positive statements about instructional features external to the conversation was moderate. Unexpectedly, most participants strongly agreed that using the simulation had been helpful to them. Further development and testing in the context of a controlled study with randomized assignment to control and experimental groups are needed to determine whether this approach is effective in improving real-world pragmatic language behavior of high-functioning adults with ASD. PMID:21329439

  8. Quasistatic and Dynamic Growth of Microscale Spherical Voids (Preprint)

    DTIC Science & Technology

    2008-01-01

    function of gro\\ VIh rate. Eq. (56) is solved numerically for specified material data. Results of crossover growlh rate, v·, and pressure, P’, are shown...At a pressure P < p’, (or v < v"), growth rate is lower for materials with high yield stress. Conversely. at a pressure P > p •. (or v > v·), gro\\ VIh

  9. Conversation Game Effectively Engages Groups of Individuals in Discussions about Death and Dying.

    PubMed

    Van Scoy, Lauren Jodi; Reading, Jean M; Scott, Allison M; Green, Michael J; Levi, Benjamin H

    2016-06-01

    Discussions about end-of-life (EOL) values, wishes, and beliefs are critical for effective advance care planning (ACP). New strategies are needed to engage individuals in EOL conversations. The study objective was to test the feasibility of using a conversation game to engage individuals in EOL discussions. This study used a mixed-methods approach. Participants played a conversation game that prompts players to answer and discuss 20 questions about death, dying, and EOL care. Participants completed pre- and postgame questionnaires and participated in postgame focus groups. Subjects were 70 healthy volunteers (18 groups of families, friends, or strangers). Demographics, emotional state, and perceived relational closeness were measured using preintervention questionnaires. Postintervention questionnaires measured conversation satisfaction, realism, self-rated quality, and emotional state. Postgame focus groups evaluated players' experiences playing the game. Using a seven-point Likert scale (1 = low score, 7 = high score), players rated game conversations as satisfying (mean [M] = 6.1, SD = 0.9), realistic (M = 5.6, SD = 0.8), and of high quality (M = 5.7, SD = 0.9). There were no negative effects on emotional state immediately postgame (M = 1.3, SD = 0.5). A thematic analysis of participants' experiences (n = 55) revealed that (1) playing the game was an enjoyable, positive experience; (2) a game is a good framing for EOL discussions; and (3) there were mixed opinions about ideal game group composition. This study established that healthy volunteers enjoyed engaging in a two-hour discussion about EOL issues when framed as a game. The game experience was a positive, satisfying, and enjoyable activity for participants. Further studies are needed to determine if health games can promote effective ACP.

  10. Conversational Behaviors in Youth with High-functioning ASD and Asperger Syndrome

    PubMed Central

    Orlovski, Stephanie Miles; Marcinko, Hillary Chuba; Volkmar, Fred

    2010-01-01

    Twenty-nine youth with autism spectrum disorders and 26 with typical development between 12 and 18 years of age were engaged in structured interviews (ADOS). The interviews were videotaped and rated for atypical conversational behaviors by trained raters, using the Pragmatic Rating Scale (Landa et al. Psychol Med 22:245–254, 1992). The ASD group was divided into AS and HFA/PDD-NOS subgroups. Significant differences were found among groups on approximately one-third of the PRS items. These items involved primarily the management of topics and information, reciprocity, intonation, and gaze management. The only differences to reach significance between the AS and HFA/PDD-NOS group were a greater tendency for overly formal speech on the part of the AS group, and more difficulty with gaze management on the part of the group with HFA/PDD-NOS. The implications of these findings for understanding and treating conversational deficits in ASD are discussed. PMID:18607708

  11. Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Ren, Guoqing; Wang, Guiru; Mei, Hua; Xu, Yan; Huang, Ling

    2018-07-01

    Furfural is a key biomass-derived chemical to produce important biofuels, such as 2-methylfuran. The furfural conversion over Cu(1 1 1)/ZnO catalyst has been investigated by the catalytic evaluation experiments. In order to elucidate the reaction temperature-oriented selectivity, density functional theory calculations were used to study the furfural conversion over Cu(1 1 1) surface. Furfural alcohol forms via F-CHO + 2H → F-CH2O + H → F-CH2OH, and 2-methylfuran forms via dehydration of furfuryl alcohol (F-CH2OH + 2H → F-CH2 + OH + 2H → F-CH3 + OH + H → F-CH3 + H2O). Furthermore, the reaction rates at different temperature (403, 453 and 503 K) have been calculated. As a result, high temperature plays a significant role in enhancing the reaction rate and prompting the reaction selectivity towards 2-methylfuran.

  12. Psychometric properties of Conversion Disorder Scale- Revised (CDS) for children.

    PubMed

    Ijaz, Tazvin; Nasir, Attikah; Sarfraz, Naema; Ijaz, Shirmeen

    2017-05-01

    To revise conversion disorder scale and to establish the psychometric properties of the revised scale. This case-control study was conducted from February to June, 2014, at the Government College University, Lahore, Pakistan, and comprised schoolchildren and children with conversion disorder. In order to generate items for revised version of conversion disorder scale, seven practising mental health professionals were consulted. A list of 42 items was finalised for expert ratings. After empirical validation, a scale of 40 items was administered on the participants and factor analysis was conducted. Of the240 participants, 120(50%) were schoolchildren (controls group) and 120(50%)were children with conversion disorder (clinical group).The results of factor analysis revealed five factors (swallowing and speech symptoms, motor symptoms, sensory symptoms, weakness and fatigue, and mixed symptoms) and retention of all 40 items of revised version of conversion disorder scale. Concurrent validity of the revised scale was found to be 0.81 which was significantly high. Similarly, discriminant validity of the scale was also high as both clinical and control groups had significant difference (p<0.001) in scores. Cronbach's alpha of scale was a=0.91 while item total correlation ranged from 0.50 to 0.80. The sensitivity and specificity analysis indicated that the revised conversion disorder scale was 76% sensitive to predicting conversion disorder while specificity showed that the scale was 73% accurate in specifying participants of the control group. The revised version of conversion disorder scale was a reliable and valid tool to be used for screening of children with conversion disorder.

  13. Conversion of microwave pyrolysed ASR's char using high temperature agents.

    PubMed

    Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer

    2011-01-15

    Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. 5 CFR 534.406 - Conversion to the SES pay system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conversion to the SES pay system. 534.406... UNDER OTHER SYSTEMS Pay and Performance Awards Under the Senior Executive Service § 534.406 Conversion... senior executive's converted rate of basic pay. Conversion to a new SES rate of basic pay is not...

  15. The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    PubMed Central

    Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.

    2012-01-01

    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079

  16. Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.

    PubMed

    Liu, Yafeng; Wan, Jingjing; Han, Sheng; Zhang, Shicheng; Luo, Gang

    2016-02-01

    A new method for the conversion of CO to H2 was developed by anaerobic mixed culture in the current study. Higher CO consumption rate was obtained by anaerobic granular sludge (AGS) compared to waste activated sludge (WAS) at 55 °C and pH 7.5. However, H2 was the intermediate and CH4 was the final product. Fermentation at pH 5.5 by AGS inhibited CH4 production, while the lower CO consumption rate (50% of that at pH 7.5) and the production of acetate were found. Fermentation at pH 7.5 with the addition of chloroform achieved efficient and selective conversion of CO to H2. Stable and efficient H2 production was achieved in a continuous reactor inoculated with AGS, and gas recirculation was crucial to increase the CO conversion efficiency. Microbial community analysis showed that high abundance (44%) of unclassified sequences and low relative abundance (1%) of known CO-utilizing bacteria Desulfotomaculum were enriched in the reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Catalytical Conversion of Carbohydrates into Lactic Acid via Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Wei, Zhen; Jin, Fangming; Zhang, Guangyi; Zhang, Shiping; Yao, Guodong

    2010-11-01

    This paper focuses on catalytical conversion of carbohydrates into lactic acid, under the hydrothermal conditions, which may have a promising future for its high speediness and effectiveness. The catalysis of ZnO was investigated to improve the lactic acid yields. The results showed that the lactic acid yields increased immensely by the addition of ZnO. The effects of the reaction time and the addition amount of ZnO on the conversion of carbohydrates to lactic acid were studied. The highest lactic acid yields reached up to 28% starting from glucose after the reaction time of 60 s under the conditions of 0.2 mmol ZnO, 300° C, the filling rate of 35%, and over 30% starting from fructose at the same temperature and filling rate when the reaction time of 40 s and 2.0 mmol ZnO were employed. The collaborative effects of ZnO and NaOH used as the catalysts together at the same time were also studied. Furthermore, the catalytic mechanism of ZnO in the hydrothermal conversion of carbohydrates into lactic acid was discussed.

  18. Photonic-Assisted mm-Wave and THz Wireless Transmission towards 100 Gbit/s Data Rate

    NASA Astrophysics Data System (ADS)

    Freire Hermelo, Maria; Chuenchom, Rattana; Rymanov, Vitaly; Kaiser, Thomas; Sheikh, Fawad; Czylwik, Andreas; Stöhr, Andreas

    2017-09-01

    This paper presents photonic-assisted 60 GHz mm-wave and 325 GHz system approaches that enable the transmission of spectral-efficient and high data rate signals over fiber and over air. First, we focus on generic channel characteristics within the mm-wave 60 GHz band and at the terahertz (THz) band around 325 GHz. Next, for generating the high data rate baseband signals, we present a technical solution for constructing an extreme bandwidth arbitrary waveform generator (AWG). We then report the development of a novel coherent photonic mixer (CPX) module for direct optic-to-RF conversion of extreme wideband optical signals, with a>5 dB higher conversion gain compared to conventional photodiodes. Finally, we experimentally demonstrate record spectral efficient wireless transmission for both bands. The achieved spectral efficiencies reach 10 bit/s/Hz for the 60 GHz band and 6 bit/s/Hz for the 325 GHz band. The maximum data rate transmitted at THz frequencies in the 325 GHz band is 59 Gbit/s using a 64-QAM-OFDM modulation format and a 10 GHz wide data signal.

  19. Generation of µW level plateau harmonics at high repetition rate.

    PubMed

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  20. Examination and evaluation of the use of screen heaters for the measurement of the high temperature pyrolysis kinetics of polyethene and polypropene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.

    1997-08-01

    A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less

  1. Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production.

    PubMed

    Meng, Xianguang; Wang, Tao; Liu, Lequan; Ouyang, Shuxin; Li, Peng; Hu, Huilin; Kako, Tetsuya; Iwai, Hideo; Tanaka, Akihiro; Ye, Jinhua

    2014-10-20

    The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h(-1) g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h(-1) g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of melter feed foaming on heat flux to the cold cap

    NASA Astrophysics Data System (ADS)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  3. Effect of melter feed foaming on heat flux to the cold cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolvedmore » gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.« less

  4. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  5. The "polyenviromic risk score": Aggregating environmental risk factors predicts conversion to psychosis in familial high-risk subjects.

    PubMed

    Padmanabhan, Jaya L; Shah, Jai L; Tandon, Neeraj; Keshavan, Matcheri S

    2017-03-01

    Young relatives of individuals with schizophrenia (i.e. youth at familial high-risk, FHR) are at increased risk of developing psychotic disorders, and show higher rates of psychiatric symptoms, cognitive and neurobiological abnormalities than non-relatives. It is not known whether overall exposure to environmental risk factors increases risk of conversion to psychosis in FHR subjects. Subjects consisted of a pilot longitudinal sample of 83 young FHR subjects. As a proof of principle, we examined whether an aggregate score of exposure to environmental risk factors, which we term a 'polyenviromic risk score' (PERS), could predict conversion to psychosis. The PERS combines known environmental risk factors including cannabis use, urbanicity, season of birth, paternal age, obstetric and perinatal complications, and various types of childhood adversity, each weighted by its odds ratio for association with psychosis in the literature. A higher PERS was significantly associated with conversion to psychosis in young, familial high-risk subjects (OR=1.97, p=0.009). A model combining the PERS and clinical predictors had a sensitivity of 27% and specificity of 96%. An aggregate index of environmental risk may help predict conversion to psychosis in FHR subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Do Teacher Absences Impact Student Achievement? Longitudinal Evidence from One Urban School District. NBER Working Paper No. 13356

    ERIC Educational Resources Information Center

    Miller, Raegen T.; Murnane, Richard J.; Willett, John B.

    2007-01-01

    Rates of employee absences and the effects of absences on productivity are topics of conversation in many organizations in many countries. One reason is that high rates of employee absence may signal weak management and poor labor-management relations. A second reason is that reducing rates of employee absence may be an effective way to improve…

  7. Effect of phase assemblage of precursor on the fabrication process and properties of Bi2223 tape sheathed with Ag-alloy

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Shioiri, T.; Kurihara, C.; Machida, T.; Inada, R.; Oota, A.

    2008-09-01

    The use of alloy sheath is effective to increase the strength of Ag-sheathed Bi2223 tapes. However, the Jc value of alloy sheathed tapes was not high enough since the undesired reaction to form impurity phases and the change in formation rate of Bi2223 were disturbed by the microstructure of the filaments . In this study, the effect of 2223 contents in precursor on the formation and property of Bi2223 tapes sheathed with Ag-Mg alloy was investigated. The conversion rate of Bi2223 from Bi2212 was increased by the addition of Bi2223 phase in precursor but the conversion rate in Ag-Mg alloy sheathed tapes was slower than that in the Ag-Cu alloy sheathed tapes. This reduction of conversion speed of Bi2223 may be attributed to the decrease in the growth rate of Bi2223 crystals in Ag-Mg alloy sheath. Since the tapes with small Bi2223 crystals after first sintering showed many outgrowths after final sintering, the formation of outgrowth would be caused in the case of small crystal size. The Jc value of 2.2 × 10 4 A/cm 2 was achieved in the samples using the precursor with 10 wt.% 2223. The high Jc value can be achieved by the proper control of precursor condition including the contents of Bi2223 and corresponding heat treatment pattern in Ag-Mg alloy sheathed tapes.

  8. Cardiothoracic and Vascular Surgeons Achieve High Rates of K-Award Conversion Into R01 Funding.

    PubMed

    Narahari, Adishesh K; Mehaffey, J Hunter; Hawkins, Robert B; Baderdinni, Pranav K; Chandrabhatla, Anirudha S; Tribble, Curtis G; Kron, Irving L; Roeser, Mark E; Walters, Dustin M; Ailawadi, Gorav

    2018-03-14

    Obtaining National Institutes of Health (NIH) R01 funding remains extremely difficult. The utility of career development grants (K awards) for achieving the goal of R01 funding remains debated, particularly for surgeon-scientists. We examined the success rate for cardiothoracic and vascular (CTV) surgeons compared to other specialties in converting K-level grants into R01 equivalents. All K (K08 and K23) grants awarded to surgeons by the NIH between 1992-2017 were identified through NIH RePORTER, an online database combining funding, publications, and patents. Only grants awarded to CTV surgeons were included. Grants active within the past year were excluded. Mann-Whitney U-tests and Chi-squared tests were used to compare groups. A total of 62 K grants awarded to CTV surgeons were identified during this period. Sixteen grants were still active within the last year and excluded from analysis. Twenty-two (48%) of the remaining K awardees successfully transitioned to an R01 or equivalent grant. Awardees with successful conversion published 9 publications per K grant compared to 4 publications for those who did not convert successfully (p=0.01). The median time for successful conversion to an R grant was 5.0 years after the K award start date. Importantly, the 10-year conversion rate to R01 was equal for CTV surgeons compared to other clinician-investigators (52.6% vs 42.5%). CTV surgeons have an equal 10-year conversion rate to first R01 award compared to other clinicians. These data suggest that NIH achieves a good return on investment when funding CTV surgeon-scientists with K-level funding. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  10. Interface design principles for high-performance organic semiconductor devices

    DOE PAGES

    Nie, Wanyi; Gupta, Gautam; Crone, Brian K.; ...

    2015-03-23

    Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic technology. However, a critical bottleneck for OSCs is the electron/hole recombination loss through charge transfer state at the interface, which greatly limits the power conversion efficiency. W. Nie, A. Mohite, and co-workers demonstrate a simple strategy of suppressing the recombination rate by inserting a spacer layer at the donor-acceptor interface, resulting in a dramatic increase in power conversion efficiency.

  11. Management of complicated gallstones: results of an alternative approach to difficult cholecystectomies.

    PubMed

    Lirici, Marco Maria; Califano, Andrea

    2010-10-01

    Laparoscopic cholecystectomy (LC) is the gold standard treatment of gallstones. Nevertheless, the incidence of conversion and injuries to the biliary tract is still high in difficult cholecystectomies. In this study we sought to determine how using operative risk predictive scores (PSs) and the Nassar scale to grade the difficulty of LC would optimize the perioperative management of complicated gallstone patients. We also evaluated whether the "fundus-first" approach to LC combined with ultrasonic dissection minimizes the risk of conversion and biliary injury in difficult cholecystectomies, and avoids routine intraoperative cholangiography. A prospective non-randomized study was carried out from 2005 to 2007 including 237 patients referred for gallbladder diseases. All patients were evaluated using an operative risk PS. The LC grade of difficulty was assessed according to Nassar. Diagnostic accuracy, sensitivity, and specificity of PS were calculated. LC in difficult cases was accomplished with a fundus-first approach. Outcome measures included: Conversion rate, bile duct (BD) injury rate, and postoperative complications according to Clavien. In 178 out of 237 patients, a higher risk of conversion and complication was predicted. In 146 out of these 178 cases, intra-operative grading confirmed the difficulty of the procedure. The PS diagnostic accuracy was 0.865, sensitivity was 100%, and specificity 65%. Positive predictive value and negative predictive value were 0.82 and 1, respectively. Conversion rate was 2.7%. Mean operating time and postoperative length of hospital stay were 75 minutes and 3.5 days. Intra-operative cholangiography was necessary in five cases, and one intraoperative biliary complication occurred with an uneventful postoperative course. Overall, postoperative complications were 2.7% with a mortality rate of 0.68% (1 myocardial infarction). Fundus-first LC by ultrasonic dissection is safe and minimizes the risk of conversion and biliary injuries in difficult cases. Difficult cholecystectomies may be predicted preoperatively; in these cases the fundus-first approach and ultrasound dissection may be advised.

  12. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    PubMed Central

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  13. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed beforemore » isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.« less

  14. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, N.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2015-10-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation at PSII (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific, over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5 fold changes in the conversion factor coupling ETRRCII and carbon fixation (Φe:C / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light, and correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and the conversion factor Φe:C / nPSII has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  15. Method and apparatus for data sampling

    DOEpatents

    Odell, Daniel M. C.

    1994-01-01

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.

  16. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide andmore » 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.« less

  17. Comparison of complication and conversion rates between robotic-assisted and laparoscopic rectal resection for rectal cancer: which patients and providers could benefit most from robotic-assisted surgery?

    PubMed

    Ackerman, Stacey J; Daniel, Shoshana; Baik, Rebecca; Liu, Emelline; Mehendale, Shilpa; Tackett, Scott; Hellan, Minia

    2018-03-01

    To compare (1) complication and (2) conversion rates to open surgery (OS) from laparoscopic surgery (LS) and robotic-assisted surgery (RA) for rectal cancer patients who underwent rectal resection. (3) To identify patient, physician, and hospital predictors of conversion. A US-based database study was conducted utilizing the 2012-2014 Premier Healthcare Data, including rectal cancer patients ≥18 with rectal resection. ICD-9-CM diagnosis and procedural codes were utilized to identify surgical approaches, conversions to OS, and surgical complications. Propensity score matching on patient, surgeon, and hospital level characteristics was used to create comparable groups of RA\\LS patients (n = 533 per group). Predictors of conversion from LS and RA to OS were identified with stepwise logistic regression in the unmatched sample. Post-match results suggested comparable perioperative complication rates (RA 29% vs LS 29%; p = .7784); whereas conversion rates to OS were 12% for RA vs 29% for LS (p < .0001). Colorectal surgeons (RA 9% vs LS 23%), general surgeons (RA 13% vs LS 35%), and smaller bed-size hospitals (RA 14% vs LS 33%) have reduced conversion rates for RA vs LS (p < .0001). Statistically significant predictors of conversion included LS, non-colorectal surgeon, and smaller bed-size hospitals. Retrospective observational study limitations apply. Analysis of the hospital administrative database was subject to the data captured in the database and the accuracy of coding. Propensity score matching limitations apply. RA and LS groups were balanced with respect to measured patient, surgeon, and hospital characteristics. Compared to LS, RA offers a higher probability of completing a successful minimally invasive surgery for rectal cancer patients undergoing rectal resection without exacerbating complications. Male, obese, or moderately-to-severely ill patients had higher conversion rates. While colorectal surgeons had lower conversion rates from RA than LS, the reduction was magnified for general surgeons and smaller bed-size hospitals.

  18. Fermentative production of l-galactonate by using recombinant Saccharomyces cerevisiae containing the endogenous galacturonate reductase gene from Cryptococcus diffluens.

    PubMed

    Matsubara, Takeo; Hamada, Shohei; Wakabayashi, Ayaka; Kishida, Masao

    2016-11-01

    The GAR1 gene, encoding d-galacturonate reductase in Cryptococcus diffluens, was isolated, and the GAR1-expression plasmid was constructed by insertion of GAR1 downstream of the yeast constitutive promoter in the yeast-integrating vector. Recombinant Saccharomyces cerevisiae expressing C. diffluensd-galacturonate reductase from a genome integrated copy of the gene was cultured for use the conversion of d-galacturonic acid to l-galactonic acid. The optimum conditions for l-galactonic acid production were determined in terms of the initial concentration of d-galacturonic acid, fermentation pH, and mixed sugars. The following conditions yielded high efficiency in the conversion of d-galacturonic acid to l-galactonic acid in large-scale cultures: 0.1% initial d-galacturonic acid concentration, pH 3.5, and glucose as additional sugar. The aerobic condition was necessary for the conversion of d-galacturonic acid. Subculture of that recombinant was not showing to decrease of the d-galacturonic acid conversion rate even though it was repeated in ten generations. Culturing in scale-up, the conversion rate of d-galacturonic acid to l-galactonic acid was increased. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  20. [Hydroxylamine conversion by anammox enrichment].

    PubMed

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway model presented by van de Graaf AA.

  1. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  2. Estimating forest conversion rates with annual forest inventory data

    Treesearch

    Paul C. Van Deusen; Francis A. Roesch

    2009-01-01

    The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...

  3. Efficient visible and UV generation by frequency conversion of a mode-filtered fiber amplifier

    NASA Astrophysics Data System (ADS)

    Kliner, Dahv A. V.; Di Teodoro, Fabio; Koplow, Jeffrey P.; Moore, Sean W.; Smith, Arlee V.

    2003-07-01

    We have generated the second, third, fourth, and fifth harmonics of the output of a Yb-doped fiber amplifier seeded by a passively Q-switched Nd:YAG microchip laser. The fiber amplifier employed multimode fiber (25 μm core diameter, V ~ 7.4) to provide high-peak-power pulses, but diffraction-limited beam quality was obtained by use of bend-loss-induced mode filtering. The amplifier output had a pulse duration of 0.97 ns and smooth, transform-limited temporal and spectral profiles (~500 MHz linewidth). We obtained high nonlinear conversion efficiencies using a simple optical arrangement and critically phase-matched crystals. Starting with 320 mW of average power at 1064 nm (86 ´J per pulse at a 3.7 kHz repetition rate), we generated 160 mW at 532 nm, 38 mW at 355 nm, 69 mW at 266 nm, and 18 mW at 213 nm. The experimental results are in excellent agreement with calculations. Significantly higher visible and UV powers will be possible by operating the fiber amplifier at higher repetition rates and pulse energies and by further optimizing the nonlinear conversion scheme.

  4. Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes.

    PubMed

    Hou, Xiaohu; Ge, Xiangyang; Wu, Di; Qian, He; Zhang, Weiguo

    2012-01-01

    Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.

  5. Rate and predictors of conversion from unipolar to bipolar disorder: A systematic review and meta-analysis.

    PubMed

    Kessing, Lars Vedel; Willer, Inge; Andersen, Per Kragh; Bukh, Jens Drachman

    2017-08-01

    For the first time to present a systematic review and meta-analysis of the conversion rate and predictors of conversion from unipolar disorder to bipolar disorder. A systematic literature search up to October 2016 was performed. For the meta-analysis, we only included studies that used survival analysis to estimate the conversion rate. A total of 31 studies were identified, among which 11 used survival analyses, including two register-based studies. The yearly rate of conversion to bipolar disorder decreased with time from 3.9% in the first year after study entry with a diagnosis of unipolar disorder to 3.1% in years 1-2, 1.0% in years 2-5 and 0.8% in years 5-10. A total of eight risk factors were evaluated comprising gender, age at onset of unipolar disorder, number of depressive episodes, treatment resistance to antidepressants, family history of bipolar disorder, the prevalence of psychotic depression, the prevalence of chronic depression, and severity of depression. It was not possible to identify risk factors that were consistently or mainly confirmed to predict conversion across studies. The conversion rate from unipolar to bipolar disorder decreases with time. It was not possible to identify predictors of conversion that were consistently or mainly confirmed across studies, which may be due to variations in methodology across studies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. 5 CFR 531.221 - Maximum payable rate rule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... before the reassignment. (ii) If the rate resulting from the geographic conversion under paragraph (c)(2... previous rate (i.e., the former special rate after the geographic conversion) with the rates on the current... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum payable rate rule. 531.221...

  7. Conversion from bipolar disorder not otherwise specified (BP-NOS) to bipolar I or II in youth with family history as a predictor of conversion.

    PubMed

    Martinez, Molly S; Fristad, Mary A

    2013-06-01

    Bipolar disorder-not otherwise specified (BD-NOS) is an imprecise, heterogeneous diagnosis that is unstable in youth. This study reports rates of conversion from BD-NOS to BD-I or II in children aged 8-12, and investigates the impact of family history of bipolar disorder and depression on conversion. As part of the Multi-Family Psychoeducational Psychotherapy (MF-PEP) study, 27 children (6-12 years of age) diagnosed with BD-NOS at baseline were reassessed every 6 months over an 18-month period. Family history of bipolar disorder and depression was assessed at baseline. One-third of the sample converted from BD-NOS to BD-I or II over 18-months. Having a first-degree relative with symptoms of bipolar disorder and having a loaded pedigree for diagnosis of depression each were associated with conversion from BD-NOS to BD-I or II (odds ratio range: 1.09-3.14; relative risk range: 1.06-2.34). This study had very low power (range: 10-45) given the small sample size, precluding statistical significance of non-parametric Fisher's Exact test findings. This study replicates the previous finding of a high rate of conversion from BD-NOS to BD-I or II among youth, and suggests conversion is related to symptoms of bipolar disorder or depression diagnoses in the family history. Additional research is warranted in a larger sample with a longer follow-up period. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Mid-term results of concentrated autologous bone marrow aspirate transplantation for corticosteroid-associated osteonecrosis of the femoral head in systemic lupus erythematosus.

    PubMed

    Tomaru, Yohei; Yoshioka, Tomokazu; Sugaya, Hisashi; Shimizu, Yukiyo; Aoto, Katsuya; Wada, Hiroshi; Akaogi, Hiroshi; Yamazaki, Masashi; Mishima, Hajime

    2018-04-28

    We had previously established concentrated autologous bone marrow aspirate transplantation (CABMAT), a one-step, low-invasive, joint-preserving surgical technique for treating osteonecrosis of the femoral head (ONFH). This study aimed to evaluate the effects of CABMAT as a hip-preserving surgical approach, preventing conversion to total hip arthroplasty (THA) and femoral head collapse in patients with systemic lupus erythematosus (SLE). Since 2003, 52 SLE patients (8 male, 44 female, 92 hips, mean age 35.3 (16-77) (years) were treated with CABMAT. The mean follow-up period was 5.5 (0.7-14) years. Conversion rate to THA and its predicting factors were analyzed. The overall conversion rate to THA was 29% (27/92). Conversion rate to THA was 0% (0/3), 0% (0/4), 22% (9/41), and 41% (18/44) in types A, B, C1, and C2, respectively. Conversion rate to THA was 26% (5/19), 26% (6/23), 28% (11/39), 44% (4/9), and 50% (1/2) in stages 1, 2, 3A, 3B, and 4, respectively. In multivariate logistic regression analysis, sex, body mass index (BMI), pre-operative type, and pre-operative stage were significantly correlated with conversion to THA. The conversion rate to THA was lower than that in the natural course and core decompression, but was higher than that seen in other bone marrow transplantation and osteotomy. Since sex, pre-operative type, and pre-operative stage were significantly correlated with conversion to THA, it is suggested that the higher proportion of women, advanced stage (stage 3A or above), and advanced type (type C or above) in this study affected the THA conversion rate.

  9. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  10. Herbicide treatment effects on properties of mountain big sagebrush soils after fourteen years

    NASA Technical Reports Server (NTRS)

    Burke, I. C.; Reiners, W. A.; Sturges, D. L.; Matson, P. A.

    1987-01-01

    The effects of sagebrush conversion on the soil properties of a high-elevation portion of the Western Intermountain Sagebrush Steppe (West, 1983) are described. Changes were found in only a few soil chemical properties after conversion to grassland. It was found that surface concentrations of N were lower under grass vegetation than under undisturbed vegetation. Undershrub net N mineralization rates were higher under shrubs in the sagebrush vegetation than under former shrubs in the grass vegetation.

  11. Effect of Previous Abdominal Surgery on Laparoscopic Liver Resection: Analysis of Feasibility and Risk Factors for Conversion.

    PubMed

    Cipriani, Federica; Ratti, Francesca; Fiorentini, Guido; Catena, Marco; Paganelli, Michele; Aldrighetti, Luca

    2018-03-28

    Previous abdominal surgery has traditionally been considered an additional element of difficulty to later laparoscopic procedures. The aim of the study is to analyze the effect of previous surgery on the feasibility and safety of laparoscopic liver resection (LLR), and its role as a risk factor for conversion. After matching, 349 LLR in patients known for previous abdominal surgery (PS group) were compared with 349 LLR on patients with a virgin abdomen (NPS group). Subgroup analysis included 161 patients with previous upper abdominal surgery (UPS subgroup). Feasibility and safety were evaluated in terms of conversion rate, reasons for conversion and outcomes, and risk factors for conversion assessed via uni/multivariable analysis. Conversion rate was 9.4%, and higher for PS patients compared with NPS patients (13.7% versus 5.1%, P = .021). Difficult adhesiolysis resulted the commonest reason for conversion in PS group (5.7%). However, operative time (P = .840), blood loss (P = .270), transfusion (P = .650), morbidity rate (P = .578), hospital stay (P = .780), and R1 rate (P = .130) were comparable between PS and NPS group. Subgroup analysis confirmed higher conversion rates for UPS patients (23%) compared with both NPS (P = .015) and PS patients (P = .041). Previous surgery emerged as independent risk factor for conversion (P = .033), alongside the postero-superior location and major hepatectomy. LLR are feasible in case of previous surgery and proved to be safe and maintain the benefits of LLR carried out in standard settings. However, a history of surgery should be considered a risk factor for conversion.

  12. Unplanned Robotic-Assisted Conversion-to-Open Colorectal Surgery is Associated with Adverse Outcomes.

    PubMed

    Lee, Yongjin F; Albright, Jeremy; Akram, Warqaa M; Wu, Juan; Ferraro, Jane; Cleary, Robert K

    2018-06-01

    Laparoscopic conversion-to-open colorectal surgery is associated with worse outcomes when compared to operations completed without conversion. Consequences of robotic conversion have not yet been determined. The purpose of this study is to compare short-term outcomes of converted robotic colorectal cases with those that are completed without conversion, as well as with cases done by the open approach. The ACS-NSQIP database was queried for patients who underwent robotic completed, robotic converted-to-open, and open colorectal resection between 2012 and 2015. Propensity scores were estimated using gradient-boosted machines and converted to weights. Generalized linear models were fit using propensity score-weighted data. A total of 25,253 patients met inclusion criteria-21,356 (84.5%) open, 3663 (14.5%) robotic completed, and 234 (0.9%) conversions. Conversion rate was 6.0%. Converted cases had significantly higher 30-day mortality rate, higher complication rate, and longer hospital length of stay than completed cases. Converted patients also had significantly higher rates of the following complications: surgical site infections, cardiac complications, deep venous thrombosis, postoperative ileus, postoperative re-intubation, renal failure, and 30-day reoperation. Compared to the open approach, converted patients had significantly more cardiac complications, postoperative reintubation, and longer operating times with no significant difference in 30-day mortality. Unplanned robotic conversion-to-open is associated with worse outcomes than completed cases and outcomes that more closely resemble traditional open colorectal surgery. Patients should be counseled with regard to minimally invasive conversion rates and outcomes. The continued pursuit of technological advancements that decrease the risk for conversion in minimally invasive colorectal surgery is clearly warranted.

  13. Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study.

    PubMed

    Wellons, John C; Shannon, Chevis N; Holubkov, Richard; Riva-Cambrin, Jay; Kulkarni, Abhaya V; Limbrick, David D; Whitehead, William; Browd, Samuel; Rozzelle, Curtis; Simon, Tamara D; Tamber, Mandeep S; Oakes, W Jerry; Drake, James; Luerssen, Thomas G; Kestle, John

    2017-07-01

    OBJECTIVE Previous Hydrocephalus Clinical Research Network (HCRN) retrospective studies have shown a 15% difference in rates of conversion to permanent shunts with the use of ventriculosubgaleal shunts (VSGSs) versus ventricular reservoirs (VRs) as temporization procedures in the treatment of hydrocephalus due to high-grade intraventricular hemorrhage (IVH) of prematurity. Further research in the same study line revealed a strong influence of center-specific decision-making on shunt outcomes. The primary goal of this prospective study was to standardize decision-making across centers to determine true procedural superiority, if any, of VSGS versus VR as a temporization procedure in high-grade IVH of prematurity. METHODS The HCRN conducted a prospective cohort study across 6 centers with an approximate 1.5- to 3-year accrual period (depending on center) followed by 6 months of follow-up. Infants with premature birth, who weighed less than 1500 g, had Grade 3 or 4 IVH of prematurity, and had more than 72 hours of life expectancy were included in the study. Based on a priori consensus, decisions were standardized regarding the timing of initial surgical treatment, upfront shunt versus temporization procedure (VR or VSGS), and when to convert a VR or VSGS to a permanent shunt. Physical examination assessment and surgical technique were also standardized. The primary outcome was the proportion of infants who underwent conversion to a permanent shunt. The major secondary outcomes of interest included infection and other complication rates. RESULTS One hundred forty-five premature infants were enrolled and met criteria for analysis. Using the standardized decision rubrics, 28 infants never reached the threshold for treatment, 11 initially received permanent shunts, 4 were initially treated with endoscopic third ventriculostomy (ETV), and 102 underwent a temporization procedure (36 with VSGSs and 66 with VRs). The 2 temporization cohorts were similar in terms of sex, race, IVH grade, head (orbitofrontal) circumference, and ventricular size at temporization. There were statistically significant differences noted between groups in gestational age, birth weight, and bilaterality of clot burden that were controlled for in post hoc analysis. By Kaplan-Meier analysis, the 180-day rates of conversion to permanent shunts were 63.5% for VSGS and 74.0% for VR (p = 0.36, log-rank test). The infection rate for VSGS was 14% (5/36) and for VR was 17% (11/66; p = 0.71). The overall compliance rate with the standardized decision rubrics was noted to be 90% for all surgeons. CONCLUSIONS A standardized protocol was instituted across all centers of the HCRN. Compliance was high. Choice of temporization techniques in premature infants with IVH does not appear to influence rates of conversion to permanent ventricular CSF diversion. Once management decisions and surgical techniques are standardized across HCRN sites, thus minimizing center effect, the observed difference in conversion rates between VSGSs and VRs is mitigated.

  14. High temperature gasification of high heating-rate chars using a flat-flame reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tian; Niu, Yanqing; Wang, Liang

    The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less

  15. High temperature gasification of high heating-rate chars using a flat-flame reactor

    DOE PAGES

    Li, Tian; Niu, Yanqing; Wang, Liang; ...

    2017-08-25

    The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less

  16. Communication Patterns in Normal and Disturbed Families.

    ERIC Educational Resources Information Center

    Angermeyer, Matthias C.; Hecker, Hartmut

    A study of formal communication in 30 families each with a schizophrenic son and 28 families, each with a "normal" son was conducted in Germany. By means of factor analysis four types of formal speech behavior were identified using musical terminology: "staccato," a highly fragmented flow of conversation with high turnover rate; "solo" in which…

  17. Effects of Classroom Cell Phone Use on Expected and Actual Learning

    ERIC Educational Resources Information Center

    Froese, Arnold D.; Carpenter, Christina N.; Inman, Denyse A.; Schooley, Jessica R.; Barnes, Rebecca B.; Brecht, Paul W.; Chacon, Jasmin D.

    2012-01-01

    Studies of driving indicate that the conversational aspects of using cell phones generate high risks from divided attention. Prior surveys document high rates at which students carry phones to and use them during class. Some experiments have demonstrated that cell phones distract students from learning. The present studies combined survey and…

  18. Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO2 to CH4.

    PubMed

    Long, Ran; Li, Yu; Liu, Yan; Chen, Shuangming; Zheng, Xusheng; Gao, Chao; He, Chaohua; Chen, Nanshan; Qi, Zeming; Song, Li; Jiang, Jun; Zhu, Junfa; Xiong, Yujie

    2017-03-29

    Photocatalytic conversion of CO 2 to CH 4 , a carbon-neutral fuel, represents an appealing approach to remedy the current energy and environmental crisis; however, it suffers from the large production of CO and H 2 by side reactions. The design of catalytic sites for CO 2 adsorption and activation holds the key to address this grand challenge. In this Article, we develop highly selective sites for photocatalytic conversion of CO 2 to CH 4 by isolating Cu atoms in Pd lattice. According to our synchrotron-radiation characterizations and theoretical simulations, the isolation of Cu atoms in Pd lattice can play dual roles in the enhancement of CO 2 -to-CH 4 conversion: (1) providing the paired Cu-Pd sites for the enhanced CO 2 adsorption and the suppressed H 2 evolution; and (2) elevating the d-band center of Cu sites for the improved CO 2 activation. As a result, the Pd 7 Cu 1 -TiO 2 photocatalyst achieves the high selectivity of 96% for CH 4 production with a rate of 19.6 μmol g cat -1 h -1 . This work provides fresh insights into the catalytic site design for selective photocatalytic CO 2 conversion, and highlights the importance of catalyst lattice engineering at atomic precision to catalytic performance.

  19. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.

    PubMed

    Schäfer, Pascal M; Fuchs, Martin; Ohligschläger, Andreas; Rittinghaus, Ruth; McKeown, Paul; Akin, Enver; Schmidt, Maximilian; Hoffmann, Alexander; Liauw, Marcel A; Jones, Matthew D; Herres-Pawlis, Sonja

    2017-09-22

    New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl 2 (DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (M w =69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant k p . Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a.

    PubMed

    Takeuchi, M; Kishino, S; Park, S-B; Hirata, A; Kitamura, N; Saika, A; Ogawa, J

    2016-05-01

    This study aims to produce hydroxy fatty acids efficiently. Escherichia coli overexpressing linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a was employed to produce hydroxy fatty acids with industrial potential. We found that 280 g l(-1) of linoleic acid (1 mol l(-1)) was converted into (S)-10-hydoxy-cis-12-octadecenoic acid (HYA) with a high conversion rate of 98% (mol/mol) and more than 99·9% enantiomeric excess (e.e.) by recombinant E. coli cells in the presence of FAD and NADH. In the same way, many kinds of C18 unsaturated fatty acids with Δ9 carbon double bond (280 g l(-1)) were converted into corresponding 10-hydroxy fatty acids with the conversion rates over 95% (mol/mol). We also produced HYA at a high rate of accumulation (289 g l(-1) ) with a high yield (97 mol%) in a reaction mixture that contained glucose instead of NADH. We developed a process for producing several types of hydroxy fatty acids with high accumulation rates and high yields. Hydroxy fatty acids are important materials for the chemical, food, cosmetic and pharmaceutical industries, and thus they have recently attracted much interest in a variety of research fields. However, the mass production of hydroxy fatty acids has been limited. This method of hydroxy fatty acids production will facilitate the widespread application of hydroxy fatty acids in various industries. © 2016 The Society for Applied Microbiology.

  1. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    PubMed

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  2. Form and Function of Clostridium thermocellum Biofilms

    PubMed Central

    Dumitrache, Alexandru; Allen, Grant; Liss, Steven N.; Lynd, Lee R.

    2013-01-01

    The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h−1) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion. PMID:23087042

  3. Form and function of Clostridium thermocellum biofilms.

    PubMed

    Dumitrache, Alexandru; Wolfaardt, Gideon; Allen, Grant; Liss, Steven N; Lynd, Lee R

    2013-01-01

    The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h(-1)) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion.

  4. Peracetic acid-ionic liquid pretreatment to enhance enzymatic saccharification of lignocellulosic biomass.

    PubMed

    Uju; Abe, Kojiro; Uemura, Nobuyuki; Oshima, Toyoji; Goto, Masahiro; Kamiya, Noriho

    2013-06-01

    To enhance enzymatic saccharification of pine biomass, the pretreatment reagents peracetic acid (PAA) and ionic liquid (IL) were validated in single reagent pretreatments or combination pretreatments with different sequences. In a 1h saccharification, 5-25% cellulose conversion was obtained from the single pretreatment of PAA or IL. In contrast, a marked enhancement in conversion rates was achieved by PAA-IL combination pretreatments (45-70%). The PAA followed by IL (PAA+IL) pretreatment sequence was the most effective for preparing an enzymatic digestible regenerated biomass with 250-fold higher glucose formation rates than untreated biomass and 2- to 12-fold higher than single pretreatments with PAA or IL alone. Structural analysis confirmed that this pretreatment resulted in biomass with highly porous structural fibers associated with the reduction of lignin content and acetyl groups. Using the PAA+IL sequence, biomass loading in the pretreatment step can be increased from 5% to 15% without significant decrease in cellulose conversion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. [Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].

    PubMed

    Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia

    2014-01-01

    Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.

  6. Method and apparatus for data sampling

    DOEpatents

    Odell, D.M.C.

    1994-04-19

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

  7. Recent rates of forest harvest and conversion in North America

    Treesearch

    Jeffrey G. Masek; Warren B. Cohen; Donald Leckie; Michael A. Wulder; Rodrigo Vargas; Ben de Jong; Sean Healey; Beverly Law; Richard Birdsey; R. A. Houghton; David Mildrexler; Samuel Goward; W. Brad Smith

    2011-01-01

    Incorporating ecological disturbance into biogeochemical models is critical for estimating current and future carbon stocks and fluxes. In particular, anthropogenic disturbances, such as forest conversion and wood harvest, strongly affect forest carbon dynamics within North America. This paper summarizes recent (2000-2008) rates of extraction, including both conversion...

  8. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  9. Effect of temperature and high pressure on the activity and mode of action of fungal pectin methyl esterase.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Clynen, Elke; Schoofs, Liliane; Schols, Henk; Hendrickx, Marc; Van Loey, Ann

    2006-01-01

    Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.

  10. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.

    PubMed

    Allan, Guy; Delerue, Christophe

    2011-09-27

    We present calculations of impact ionization rates, carrier multiplication yields, and solar-power conversion efficiencies in solar cells based on quantum dots (QDs) of a semimetal, α-Sn. Using these results and previous ones on PbSe and PbS QDs, we discuss a strategy to select QDs with the highest carrier multiplication rate for more efficient solar cells. We suggest using QDs of materials with a close to zero band gap and a high multiplicity of the bands in order to favor the relaxation of photoexcited carriers by impact ionization. Even in that case, the improvement of the maximum solar-power conversion efficiency appears to be a challenging task. © 2011 American Chemical Society

  11. Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.

    PubMed

    Chan, Wen Ning; Holtzapple, Mark T

    2003-11-01

    The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.

  12. Heterogeneous chemical reactions: Preparation of monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.

    1977-01-01

    It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.

  13. Characterization of detector-systems based on CeBr3, LaBr3, SrI2 and CdZnTe for the use as dosemeters

    NASA Astrophysics Data System (ADS)

    Kessler, P.; Behnke, B.; Dombrowski, H.; Neumaier, S.

    2017-11-01

    For the upgrade of existing dosimetric early warning networks in Europe spectrometric detectors based on CeBr3, LaBr3, SrI2, and CdZnTe are investigated as possible substitutes for the current detector generation which is mainly based on gas filled detectors. The additional information on the nuclide vector which can be derived from the spectra of γ-radiation is highly useful for an appropriate response in case of a nuclear or radiological accident. The measured γ-spectra will be converted into ambient dose equivalent H* (10) using a method where the spectrum is subdivided into multiple energy bands. For each band the conversion coefficients from count rate to dose rate is determined. The derivation of these conversion coefficients is explained in this work. Both experimental and simulative approaches are investigated using quasi-mono-energetic γ-sources and synthetic spectra from Monte-Carlo simulations to determine the conversion coefficients for each detector type. Finally, precision of the obtained characterization is checked by irradiation of the detectors in different well-known photon fields with traceable dose rates.

  14. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOEpatents

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  15. Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs

    NASA Astrophysics Data System (ADS)

    Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.

    2013-12-01

    Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low input, and d) subsistence management intensities. All remaining vegetated land is represented in grey, while barren land is represented in white. Globally, agricultural land cover conversion has reduced natural primary production by 3.0 × 0.68 Pg C y-1 (i.e., a ~7% reduction in biospheric NPP), with a disproportionately large percentage of this reduction attributable to the conversion of temperate (~44%) and tropical (~50%) ecosystems.

  16. Studies on biomass char gasification and dynamics

    NASA Astrophysics Data System (ADS)

    You, Zhanping; You, Shijun; Ma, Xiaoyan

    2018-01-01

    The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.

  17. All‐optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI

    PubMed Central

    Sha, Fern; Johenning, Friedrich W.; Schreiter, Eric R.; Looger, Loren L.; Larkum, Matthew E.

    2016-01-01

    Key points The genetically encoded fluorescent calcium integrator calcium‐modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium.The rate of conversion – the sensitivity to activity – is tunable and depends on the intensity of violet light.Synaptic activity and action potentials can independently initiate significant CaMPARI conversion.The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength.When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all‐optical method to map synaptic connectivity. Abstract The calcium‐modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user‐specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all‐optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo‐like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin‐2‐expressing long‐range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network‐wide, tunable, all‐optical functional circuit mapping that captures supra‐ and subthreshold depolarization. PMID:27861906

  18. Conversion to Silodosin in Men on Conventional α1 -Blockers for Symptomatic Benign Prostatic Hyperplasia.

    PubMed

    Tanaka, Masahiko; Niimi, Aya; Tomita, Kyoichi; Homma, Yukio

    2010-04-01

    α1 -blockers have commonly been used as first-line medical therapy for symptomatic benign prostatic hyperplasia (BPH). Recently, a highly selective α1A -adrenoceptor antagonist, silodosin, was developed in Japan. We examined the efficacy and safety of conversion from conventional α1 -blockers to silodosin in men with BPH. Conversion to silodosin was proposed to consecutive patients on conventional α1 -blockers for symptomatic BPH for at least 6 months. The effects of conversion were examined by the International Prostate Symptom Score, quality of life index, overactive bladder symptom score, peak flow rate, residual urine volume, and adverse events at 12 weeks. The efficacy of silodosin was also evaluated by patients' impression. Eighty-one men underwent conversion, for the most part because of dissatisfaction with the efficacy of their current treatment in improving nocturia or weak stream. The International Prostate Symptom Score total score significantly improved from 12.7 ± 5.9 at baseline to 10.6 ± 5.4 at 4 weeks (P < 0.001) and 10.9 ± 5.8 at 12 weeks (P < 0.01). The progress was mostly due to improvement in voiding symptoms, although reduction of storage symptoms was also significant. The quality of life index also significantly decreased with conversion to silodosin. Efficacy as judged by patients' impression was 76% (37/49) at 12 weeks of treatment. None of the overactive bladder symptom score, peak flow rate, and residual urine volume exhibited significant change. No serious adverse events were observed during the study period. Conversion to silodosin may be beneficial in men who are dissatisfied with conventional α1 -blockers for BPH, and be particularly useful in improving voiding symptoms. © 2010 Blackwell Publishing Asia Pty Ltd.

  19. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes

    PubMed Central

    2011-01-01

    Background During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. Methods A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Results Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. Conclusions The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study. Please see Commentary: http://www.biomedcentral.com/1741-7015/9/13/abstract. PMID:21291537

  20. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes.

    PubMed

    Ross, Kenneth Andrew

    2011-02-03

    During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.

  1. Role of 2-month sputum smears in predicting culture conversion in pulmonary tuberculosis.

    PubMed

    Su, W-J; Feng, J-Y; Chiu, Y-C; Huang, S-F; Lee, Y-C

    2011-02-01

    Sputum smears and culture conversion are frequently used to evaluate treatment response in pulmonary tuberculosis patients. Limited data are available on the evaluation of the correlation between under-treatment sputum smear results and culture conversion. This prospective study included sputum culture-proven pulmonary tuberculosis patients at six hospitals in Taiwan. At least two sets of sputum were collected at the completion of 8 weeks of TB treatment. The sensitivities and specificities of 2-month sputum smears were estimated based on culture conversion status. A total of 371 patients were enrolled for analysis. Factors associated with culture conversion included having a smear positive before treatment, presence of a cavity on radiography, rifampicin resistance and usage of the DOTS (directly observed therapy, short course) strategy. The sensitivities of 2-month sputum smears for culture conversion among all patients, initially smear-positive patients and initially smear-negative patients were 64.3, 71.4 and 38%, respectively, and the specificities were 81.6, 69.9 and 92.8%, respectively. In patients who were 2-month sputum smear-positive, the 2-month culture conversion rate was 80% if the patients were under DOTS and without cavitary lesions in radiograms. The predictive value of 2-month sputum smears in culture conversion was limited and highly influenced by clinical factors in pulmonary tuberculosis patients.

  2. Flat-plate solar array project. Task 1: Silicon material. Investigation of the hydrochlorination of SiC14

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1982-01-01

    A two inch diameter stainless steel reactor was designed and built to operate at pressures up to 500 psig for the experimental studies on the hydrochlorination of SiCl4 and metallurgical grade (m.g.) silicon metal to SiHCl3. In order to clearly see the effect of pressure, the experiments were carried out at low reactor pressures of 73 psig and 150 psig, respectively. A large pressure effect on the hydrochlorination reaction was observed between the results of the low pressure experiments and the results of the high pressure experiments. In general, higher pressure produces a higher conversion of SiHCl3, but at a lower reaction rate. The effect of temperature on the reaction rate was studied at 73 psig. Higher reaction temperature gave a higher conversion and a higher reaction rate. Samples of the materials used to construct the hydrochlorination reactor were prepared for corrosion tests.

  3. Enhancement of Energy Conversion Efficiency for Dye Sensitized Solar Cell Using Zinc Oxide Photoanode

    NASA Astrophysics Data System (ADS)

    Jamalullail, N.; Smohamad, I.; Nnorizan, M.; Mahmed, N.

    2018-06-01

    Dye sensitized solar cell (DSSC) is a third generation solar cell that is well known for its low cost, simple fabrication process and promised reasonable energy conversion efficiency. Basic structure of DSSC is composed of photoanode, dye sensitizer, electrolyte that is sandwiched together in between two transparent conductive oxide (TCO) glasses. Each of the components in the DSSC contributes important role that affect the energy conversion efficiency. In this research, the commonly used titanium dioxide (TiO2) photoanode has previously reported to have high recombination rate and low electron mobility which caused efficiency loss had been compared with the zinc oxide (ZnO) photoanode with high electron mobility (155 cm2V-1s-1). Both of these photoanodes had been deposited through doctor blade technique. The electrical performance of the laboratory based DSSCs were tested using solar cell simulator and demonstrated that ZnO is a better photoanode compared to TiO2 with the energy conversion efficiency of 0.34% and 0.29% respectively. Nanorods shape morphology was observed in ZnO photoanode with average particle size of 41.60 nm and average crystallite size of 19.13 nm. This research proved that the energy conversion efficiency of conventional TiO2 based photoanode can be improved using ZnO material.

  4. Conversion from depression to bipolar disorder in a cohort of young people in England, 1999-2011: A national record linkage study.

    PubMed

    James, Anthony; Wotton, Clare J; Duffy, Anne; Hoang, Uy; Goldacre, Michael

    2015-10-01

    To estimate the conversion rate from unipolar depression (ICD10 codes F32-F33) to bipolar disorder (BP) (ICD10 codes F31) in an English national cohort. It was hypothesised that early-onset BP (age <18 years) is a more severe form of the disorder, with a more rapid, and higher rate of conversion from depression to BP. This record linkage study used English national Hospital Episode Statistics (HES) covering all NHS inpatient and day case admissions between 1999 and 2011. The overall rate of conversion from depression to BP for all ages was 5.65% (95% CI: 5.48-5.83) over a minimum 4-year follow-up period. The conversion rate from depression to BP increased in a linear manner with age from 10-14 years - 2.21% (95% C: 1.16-4.22) to 30-34 years - 7.06% (95% CI: 6.44-7.55) (F1,23=77.6, p=0.001, R(2)=0.77). The time to conversion was constant across the age range. The rate of conversion was higher in females (6.77%; 95% CI: 6.53-7.02) compared to males, (4.17%; 95% CI: 3.95-4.40) (χ(2)=194, p<0.0001), and in those with psychotic depression 8.12% (95% CI: 7.65-8.62) compared to non-psychotic depression 5.65% (95% CI: 5.48-5.83) (χ(2)=97.0, p<0.0001). The study was limited to hospital discharges and diagnoses were not standardised. Increasing conversion rate from depression to bipolar disorder with age, and constant time for conversion across the age range does not support the notion that early-onset BP is a more severe form of the disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Conversion of laser energy to gas kinetic energy

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.

    1975-01-01

    Techniques for the gas phase absorption of laser radiation for conversion to gas kinetic energy are discussed. Absorption by inverse Bremsstrahlung, in which laser energy is converted at a gas kinetic rate in a spectrally continuous process, is briefly described, and absorption by molecular vibrational rotation bands is discussed at length. High pressure absorption is proposed as a means of minimizing gas bleaching and dissociation, the major disadvantages of the molecular absorption process. A band model is presented for predicting the molecular absorption spectra in the high pressure absorption region and is applied to the CO molecule. Use of a rare gas seeded with Fe(CO)5 for converting vibrational modes to translation modes is described.

  6. Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates.

    PubMed

    van der Heijden, R T; Heijnen, J J; Hellinga, C; Romein, B; Luyben, K C

    1994-01-05

    Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons, Inc.

  7. Improving Donor Conversion Rates at a Level One Trauma Center: Impact of Best Practice Guidelines.

    PubMed

    Alban, Rodrigo F; Gibbons, Bobby L; Bershad, Vanessa L

    2016-11-22

    Organ availability is a consistently limiting factor in transplant surgery. A primary driver of this limitation is donor conversion rate, which is defined as the percentage of eligible donors for whom procurement is actually performed. An alternative way to increase organ availability is through improved utilization of organs from donors after cardiac death (DCD). Recently, a concerted, multidisciplinary effort has been made within our system to improve conversion rates and DCD utilization, thus increasing organ availability. Retrospective analysis of a prospectively collected database from TransLife, our local organ procurement organization (OPO), as well as the Orlando Regional Medical Center (ORMC) trauma registry, from 2009-2012 (up to 2013 for DCD). During which time, this organization implemented best practice guidelines to improve conversions and DCD utilization. We analyzed yearly conversion rates, DCD donations and population demographics before and after implementation of these policies. During the study period, donor conversion rates significantly improved from 58% in 2009 to 82% percent in 2012 hospital-wide (P<0.05); and from 50% in 2009 to 81% in 2012 among trauma patients alone (P<0.05). In addition, total organs transplanted increased from 13 to 31 organs (P<0.05) after implementation of best practice guidelines. No significant differences in trauma population demographics were noted during the study period. Based on our experience, the establishment of best practice policies for referral of potential donors, coupled with programs to educate hospital staff on the existence and importance of these policies, leads to significant improvement in donor conversion rates and increased utilization of DCD donors.

  8. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).

  9. Expressed parental concern regarding childhood stuttering and the Test of Childhood Stuttering.

    PubMed

    Tumanova, Victoria; Choi, Dahye; Conture, Edward G; Walden, Tedra A

    The purpose of the present study was to determine whether the Test of Childhood Stuttering observational rating scales (TOCS; Gillam et al., 2009) (1) differed between parents who did versus did not express concern (independent from the TOCS) about their child's speech fluency; (2) correlated with children's frequency of stuttering measured during a child-examiner conversation; and (3) correlated with the length and complexity of children's utterances, as indexed by mean length of utterance (MLU). Participants were 183 young children ages 3:0-5:11. Ninety-one had parents who reported concern about their child's stuttering (65 boys, 26 girls) and 92 had parents who reported no such concern (50 boys, 42 girls). Participants' conversational speech during a child-examiner conversation was analyzed for (a) frequency of occurrence of stuttered and non-stuttered disfluencies, and (b) MLU. Besides expressing concern or lack thereof about their child's speech fluency, parents completed the TOCS observational rating scales documenting how often they observe different disfluency types in speech of their children, as well as disfluency-related consequences. There were three main findings. First, parents who expressed concern (independently from the TOCS) about their child's stuttering reported significantly higher scores on the TOCS Speech Fluency and Disfluency-Related Consequences rating scales. Second, children whose parents rated them higher on the TOCS Speech Fluency rating scale produced more stuttered disfluencies during a child-examiner conversation. Third, children with higher scores on the TOCS Disfluency-Related Consequences rating scale had shorter MLU during child-examiner conversation, across age and level of language ability. Findings support the use of the TOCS observational rating scales as one documentable, objective means to determine parental perception of and concern about their child's stuttering. Findings also support the notion that parents are reasonably accurate, if not reliable, judges of the quantity and quality (i.e., stuttered vs. non-stuttered) of their child's speech disfluencies. Lastly, findings that some children may decrease their verbal output in attempts to minimize instances of stuttering - as indexed by relatively low MLU and a high TOCS Disfluency-Related Consequences scores - provides strong support for sampling young children's speech and language across various situations to obtain the most representative index possible of the child's MLU and associated instances of stuttering. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted inmore » an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.« less

  11. Serious Illness Conversations in ESRD

    PubMed Central

    Bernacki, Rachelle E.; Block, Susan D.

    2017-01-01

    Dialysis-dependent ESRD is a serious illness with high disease burden, morbidity, and mortality. Mortality in the first year on dialysis for individuals over age 75 years old approaches 40%, and even those with better prognoses face multiple hospitalizations and declining functional status. In the last month of life, patients on dialysis over age 65 years old experience higher rates of hospitalization, intensive care unit admission, procedures, and death in hospital than patients with cancer or heart failure, while using hospice services less. This high intensity of care is often inconsistent with the wishes of patients on dialysis but persists due to failure to explore or discuss patient goals, values, and preferences in the context of their serious illness. Fewer than 10% of patients on dialysis report having had a conversation about goals, values, and preferences with their nephrologist, although nearly 90% report wanting this conversation. Many nephrologists shy away from these conversations, because they do not wish to upset their patients, feel that there is too much uncertainty in their ability to predict prognosis, are insecure in their skills at broaching the topic, or have difficulty incorporating the conversations into their clinical workflow. In multiple studies, timely discussions about serious illness care goals, however, have been associated with enhanced goal-consistent care, improved quality of life, and positive family outcomes without an increase in patient distress or anxiety. In this special feature article, we will (1) identify the barriers to serious illness conversations in the dialysis population, (2) review best practices in and specific approaches to conducting serious illness conversations, and (3) offer solutions to overcome barriers as well as practical advice, including specific language and tools, to implement serious illness conversations in the dialysis population. PMID:28031417

  12. Factors Affecting Time to Sputum Culture Conversion in Adults with Pulmonary Tuberculosis: A Historical Cohort Study without Censored Cases.

    PubMed

    Kanda, Rie; Nagao, Taishi; Tho, Nguyen Van; Ogawa, Emiko; Murakami, Yoshitaka; Osawa, Makoto; Saika, Yoshinori; Doi, Kenji; Nakano, Yasutaka

    2015-01-01

    In patients with pulmonary tuberculosis (TB), shortening the time to sputum culture conversion is desirable to reduce the likelihood of mycobacterial transmission. A persistent positive sputum culture after 2 months of treatment is reported to be associated with the presence of cavitation and the extent of disease on chest X-ray, high colony count, diabetes mellitus, and smoking. However, little is known about factors affecting the time to sputum culture conversion. This study was conducted to evaluate factors affecting the time to sputum culture conversion throughout the course of treatment in adults with pulmonary TB. This study was performed using a database of the medical records of patients with active pulmonary TB who were treated at Hirakata Kohsai Hospital in Hirakata City, Osaka, Japan, from October 2000 to October 2002. Cox proportional-hazards analysis was used to evaluate factors affecting the time to sputum culture conversion after adjusting for potential confounders. The data of 86 patients with pulmonary TB were analyzed. The median time to sputum culture conversion was 39 days, and the maximum time was 116 days. The Cox proportional-hazards analysis showed that a higher smear grading (HR, 0.40; 95%CI, 0.23-0.71) and a history of ever smoking (HR, 0.48; 95%CI, 0.25-0.94) were associated with delayed sputum culture conversion. High smear grading and smoking prolonged the time to sputum culture conversion in adults with pulmonary TB. To effectively control TB, measures to decrease the cigarette smoking rate should be implemented, in addition to early detection and timely anti-TB treatment.

  13. When should we expect microbial phenotypic traits to predict microbial abundances?

    PubMed

    Fox, Jeremy W

    2012-01-01

    Species' phenotypic traits may predict their relative abundances. Intuitively, this is because locally abundant species have traits making them well-adapted to local abiotic and biotic conditions, while locally rare species are not as well-adapted. But this intuition may not be valid. If competing species vary in how well-adapted they are to local conditions, why doesn't the best-adapted species simply exclude the others entirely? But conversely, if species exhibit niche differences that allow them to coexist, then by definition there is no single best adapted species. Rather, demographic rates depend on species' relative abundances, so that phenotypic traits conferring high adaptedness do not necessarily confer high abundance. I illustrate these points using a simple theoretical model incorporating adjustable levels of "adaptedness" and "niche differences." Even very small niche differences can weaken or even reverse the expected correlation between adaptive traits and abundance. Conversely, adaptive traits confer high abundance when niche differences are very strong. Future work should be directed toward understanding the link between phenotypic traits and frequency-dependence of demographic rates.

  14. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.

    PubMed

    Ebrahimi, S; Fernández Morales, F J; Kleerebezem, R; Heijnen, J J; van Loosdrecht, M C M

    2005-05-20

    In this study, the feasibility and engineering aspects of acidophilic ferrous iron oxidation in a continuous biofilm airlift reactor inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria were investigated. Specific attention was paid to biofilm formation, competition between both types of bacteria, ferrous iron oxidation rate, and gas liquid mass transfer limitations. The reactor was operated at a constant temperature of 30 degrees C and at pH values of 0-1.8. Startup of the reactor was performed with basalt carrier material. During the experiments the basalt was slowly removed and the ferric iron precipitates formed served as a biofilm carrier. These precipitates have highly suitable characteristics as a carrier material for the immobilization of ferrous iron-oxidizing bacteria and dense conglomerates were observed. Lowering the pH (0.6-1) resulted in dissolution of the ferric precipitates and induced granular sludge formation. The maximum ferrous iron oxidation rate achieved in this study was about 145 molFe(2+)/m(3).h at a hydraulic residence time of 0.25 h. Optimal treatment performance was obtained at a loading rate of 100 mol/m(3).h at a conversion efficiency as high as 98%. Fluorescent in situ hybridization (FISH) studies showed that when the reactor was operated at high ferrous iron conversion (>85%) for 1 month, the desirable L. ferrooxidans species could out-compete A. ferrooxidans due to the low Fe(2+) and high Fe(3+) concentrations. (c) 2005 Wiley Periodicals, Inc.

  15. When Partial Nephrectomy is Unsuccessful: Understanding the Reasons for Conversion from Robotic Partial to Radical Nephrectomy at a Tertiary Referral Center.

    PubMed

    Kara, Önder; Maurice, Matthew J; Mouracade, Pascal; Malkoç, Ercan; Dagenais, Julien; Nelson, Ryan J; Chavali, Jaya Sai S; Stein, Robert J; Fergany, Amr; Kaouk, Jihad H

    2017-07-01

    We sought to identify the preoperative factors associated with conversion from robotic partial nephrectomy to radical nephrectomy. We report the incidence of this event. Using our institutional review board approved database, we abstracted data on 1,023 robotic partial nephrectomies performed at our center between 2010 and 2015. Standard and converted cases were compared in terms of patients and tumor characteristics, and perioperative, functional and oncologic outcomes. Logistic regression analysis was done to identify predictors of radical conversion. The overall conversion rate was 3.1% (32 of 1,023 cases). The most common reasons for conversion were tumor involvement of hilar structures (8 cases or 25%), failure to achieve negative margins on frozen section (7 or 21.8%), suspicion of advanced disease (5 or 15.6%) and failure to progress (5 or 15.6%). Patients requiring conversion were older and had a higher Charlson score (both p <0.01), including an increased prevalence of chronic kidney disease (p = 0.02). Increasing tumor size (5 vs 3.1 cm, p <0.01) and R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines and hilar location) score (9 vs 8, p <0.01) were also associated with an increased risk of conversion. Worse baseline renal function (OR 0.98, 95% CI 0.96-0.99, p = 0.04), large tumor size (OR 1.44, 95% CI 1.22-1.7, p <0.01) and increasing R.E.N.A.L. score (p = 0.02) were independent predictors of conversion. Compared to converted cases, at latest followup standard robotic partial nephrectomy cases had similar short-term oncologic outcomes but better renal functional preservation (p <0.01). At a high volume center the rate of robotic partial nephrectomy conversion to radical nephrectomy was 3.1%, including 2.2% of preoperatively anticipated nephrectomy cases. Increasing tumor size and complexity, and poor preoperative renal function are the main predictors of conversion. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. The Red Queen model of recombination hot-spot evolution: a theoretical investigation.

    PubMed

    Latrille, Thibault; Duret, Laurent; Lartillot, Nicolas

    2017-12-19

    In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright-Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.

  17. The Red Queen model of recombination hot-spot evolution: a theoretical investigation

    PubMed Central

    Latrille, Thibault; Duret, Laurent

    2017-01-01

    In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright–Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109226

  18. Metabolic Conversion of Ceramides in HeLa Cells - A Cholesteryl Phosphocholine Delivery Approach

    PubMed Central

    Kjellberg, Matti A.; Lönnfors, Max; Slotte, J. Peter; Mattjus, Peter

    2015-01-01

    Ceramides can be delivered to cultured cells without solvents in the form of complexes with cholesteryl phosphocholine. We have analysed the delivery of three different radiolabeled D-erythro-ceramides (C6-Cer, C10-Cer and C16-Cer) to HeLa cells, and followed their metabolism as well as the cell viability. We found that all three ceramides were successfully taken up by HeLa cells when complexed to CholPC in an equimolar ratio, and show that the ceramides show different rates of cellular uptake and metabolic fate. The C6-Cer had the highest incorporation rate, followed by C10-Cer and C16-Cer, respectively. The subsequent effect on cell viability strongly correlated with the rate of incorporation, where C6-Cer had the strongest apoptotic effects. Low-dose (1 μM) treatment with C6-Cer favoured conversion of the precursor to sphingomyelin, whereas higher concentrations (25–100 μM) yielded increased conversion to C6-glucosylceramide. Similar results were obtained for C10-Cer. In the lower-dose C16-Cer experiments, most of the precursor was degraded, whereas at high-dose concentrations the precursor remained un-metabolized. Using this method, we demonstrate that ceramides with different chain lengths clearly exhibit varying rates of cellular uptake. The cellular fate of the externally delivered ceramides are clearly connected to their rate of incorporation and their subsequent effects on cell viability may be in part determined by their chain length. PMID:26599810

  19. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts

    DOE PAGES

    Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.; ...

    2017-02-03

    Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less

  20. Exploring between the extremes: conversion-dependent kinetics of phosphite-modified hydroformylation catalysis.

    PubMed

    Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin

    2012-07-09

    The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water.

    PubMed

    Ventura, Maria; Aresta, Michele; Dibenedetto, Angela

    2016-05-23

    A simple, cheap, and selective catalyst based on copper/cerium oxides is described for the oxidation of 5-(hydroxymethyl)furfural (5-HMF) in water. An almost quantitative conversion (99 %) with excellent (90 %) selectivity towards the formation of 5-formyl-2-furancarboxylic acid, a platform molecule for other high value chemicals, is observed. The catalyst does not require any pretreatment or additives, such as bases, to obtain high yield and selectivity in water as solvent and using oxygen as oxidant. When a physical mixture of the oxides is used, low conversion and selectivity are observed. Air can be used instead of oxygen, but a lower conversion rate is observed if the same overall pressure is used, and the selectivity remains high. The catalyst can be recovered almost quantitatively and reused. Deactivation of the catalyst, observed in repeated runs, is due to the deposition of humins on its surface. Upon calcination the catalyst almost completely recovers its activity and selectivity, proving that the catalyst is robust. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGES

    Lu, Yongwu; Yu, Fei; Hu, Jin; ...

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  3. Home Is Where You Make It: Hmong Refugees in Georgia.

    ERIC Educational Resources Information Center

    Duchon, D. A.

    1997-01-01

    Studies the successful adaptation of Hmong refugees in the Atlanta (Georgia) area using a sample of 81 adults and 101 children. Findings highlight prevailing economic conditions, the strategies taken by local Hmong leadership, and a high rate of conversion to Christianity. (SLD)

  4. L'expression orale apres treize ans d'immersion francaise (Oral Expression After Thirteen Years of French Immersion).

    ERIC Educational Resources Information Center

    Pellerin, Micheline; Hammerly, Hector

    1986-01-01

    Conversations with six twelfth graders who had been in French immersion since kindergarten found a high rate of incorrect sentences, suggesting a faulty interlanguage fossilized at grade six and a need for immersion program revision. (MSE)

  5. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  6. The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry

    NASA Astrophysics Data System (ADS)

    Ross, David S.

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  7. Safety Model for the Introduction of Robotic Surgery in Gynecology.

    PubMed

    Gomes, Mariano Tamura Vieira; Costa Porto, Beatriz Taliberti da; Parise Filho, Jose Pedro; Vasconcelos, Ana Luiz; Bottura, Bruna Fernanda; Marques, Renato Moretti

    2018-05-18

     To analyze the perioperative results and safety of performing gynecological surgeries using robot-assisted laparoscopy during implementation of the technique in a community hospital over a 6-year period.  This was a retrospective observational study in which the medical records of 274 patients who underwent robotic surgery from September 2008 to December 2014 were analyzed. We evaluated age, body mass index (BMI), diagnosis, procedures performed, American Society of Anesthesiologists (ASA) classification, the presence of a proctor (experienced surgeon with at least 20 robotic cases), operative time, transfusion rate, perioperative complications, conversion rate, length of stay, referral to the intensive care unit (ICU), and mortality. We compared transfusion rate, perioperative complications and conversion rate between procedures performed by experienced and beginner robotic surgeons assisted by an experienced proctor.  During the observed period, 3 experienced robotic surgeons performed 187 surgeries, while 87 surgeries were performed by 20 less experienced teams, always with the assistance of a proctor. The median patient age was 38 years, and the median BMI was 23.3 kg/m 2 . The most frequent diagnosis was endometriosis (57%) and the great majority of the patients were classified as ASA I or ASA II (99.6%). The median operative time was 225 minutes, and the median length of stay was 2 days. We observed a 5.8% transfusion rate, 0.8% rate of perioperative complications, 1.1% conversion rate to laparoscopy or laparotomy, no patients referred to ICU, and no deaths. There were no differences in transfusion, complications and conversion rates between experienced robotic surgeons and beginner robotic surgeons assisted by an experienced proctor.  In our casuistic, robot-assisted laparoscopy demonstrated to be a safe technique for gynecological surgeries, and the presence of an experienced proctor was considered a highlight in the safety model adopted for the introduction of the robotic gynecological surgery in a high-volume hospital and, mainly, for its extension among several surgical teams, assuring patient safety. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  8. Development of a Standardized Kalamazoo Communication Skills Assessment Tool for Radiologists: Validation, Multisource Reliability, and Lessons Learned.

    PubMed

    Brown, Stephen D; Rider, Elizabeth A; Jamieson, Katherine; Meyer, Elaine C; Callahan, Michael J; DeBenedectis, Carolynn M; Bixby, Sarah D; Walters, Michele; Forman, Sara F; Varrin, Pamela H; Forbes, Peter; Roussin, Christopher J

    2017-08-01

    The purpose of this study was to develop and test a standardized communication skills assessment instrument for radiology. The Delphi method was used to validate the Kalamazoo Communication Skills Assessment instrument for radiology by revising and achieving consensus on the 43 items of the preexisting instrument among an interdisciplinary team of experts consisting of five radiologists and four nonradiologists (two men, seven women). Reviewers assessed the applicability of the instrument to evaluation of conversations between radiology trainees and trained actors portraying concerned parents in enactments about bad news, radiation risks, and diagnostic errors that were video recorded during a communication workshop. Interrater reliability was assessed by use of the revised instrument to rate a series of enactments between trainees and actors video recorded in a hospital-based simulator center. Eight raters evaluated each of seven different video-recorded interactions between physicians and parent-actors. The final instrument contained 43 items. After three review rounds, 42 of 43 (98%) items had an average rating of relevant or very relevant for bad news conversations. All items were rated as relevant or very relevant for conversations about error disclosure and radiation risk. Reliability and rater agreement measures were moderate. The intraclass correlation coefficient range was 0.07-0.58; mean, 0.30; SD, 0.13; and median, 0.30. The range of weighted kappa values was 0.03-0.47; mean, 0.23; SD, 0.12; and median, 0.22. Ratings varied significantly among conversations (χ 2 6 = 1186; p < 0.0001) and varied significantly by viewing order, rater type, and rater sex. The adapted communication skills assessment instrument is highly relevant for radiology, having moderate interrater reliability. These findings have important implications for assessing the relational competencies of radiology trainees.

  9. Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region.

    PubMed

    Li, Dejun; Liu, Jing; Chen, Hao; Zheng, Liang; Wang, Kelin

    2018-04-15

    Gross nitrogen (N) transformations can provide important information for assessing indigenous soil N supply capacity and soil nitrate leaching potential. The current study aimed to assess the variation of gross N transformations in response to conversion of maize-soybean fields to sugarcane, mulberry, and forage grass fields in a subtropical karst region of southwest China. Mature forests were included for comparison. Gross rates of N mineralization (GNM) were highest in the forests, intermediate in the maize-soybean and forage grass fields, and lowest in the sugarcane and mulberry fields, suggesting capacity of indigenous soil N supply derived from organic N mineralization was lowered after conversion to sugarcane and mulberry fields. The relative high indigenous soil N supply capacity in the maize-soybean fields was obtained at the cost of soil organic N depletion. Gross nitrification (GN) rates were highest in the forests, intermediate in the forage grass fields and lowest in the other three agricultural land use types. The nitrate retention capacity (24.1 ± 2.0% on average) was similar among the five land use types, implying that nitrate leaching potential was not changed after land use conversion. Microbial biomass N exerted significant direct effects on the rates of N mineralization, nitrification, ammonium immobilization and nitrate immobilization. Soil organic carbon, total N and exchangeable magnesium had significant indirect effects on these N transformation rates. Our findings suggest that forage grass cultivation instead of other agricultural land uses should be recommended from the perspective of increasing indigenous soil N supply while not depleting soil organic N pool. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    NASA Astrophysics Data System (ADS)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  11. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  12. How Can a Little Shrimp Do so Much Damage?: Ecosystem Service Losses Associated with Land Cover Change in Mangroves

    NASA Astrophysics Data System (ADS)

    Kauffman, J. B.; Bhomia, R. K.

    2014-12-01

    Mangroves provide a number of ecosystem services including habitats for many species of fish and shellfish, storm protection, influences on water quality, wood, aesthetics, and a source of nutrients and energy for adjacent marine ecosystems. C stocks of mangroves are among the highest of any forest type on Earth. We have measured the ecosystem carbon stocks in mangroves across the world and found them to range from 250 to >2000 Mg C/ha which is a CO2 equivalence of 917 to 7340 Mg/ha. Because the numerous values of mangroves are well known, it is ironic that rates of deforestation largely relating to land use/land cover change are among the highest of any forest type on earth exceeding that of tropical rain forests. Dominant causes of deforestation include conversion to aquaculture (shrimp), agricultural conversion, and coastal development. The carbon emissions arising from conversion of mangroves to other uses is exceptionally high. This is because vulnerability of the soil carbon stocks to losses with conversion. Emissions from conversion of mangrove to shrimp ponds range from about 800 to over 3000 Mg CO2e/ha. This places the carbon footprint of shrimp arising from such ponds as among the highest of any food product available. Of great interest is the potential value of mangroves in carbon marketing strategies and other financial incentives that are derived from the conservation of standing forests. This is because of the combination of high carbon stocks in intact mangroves, the high greenhouse gas emissions arising from their conversion, and the conservation of other valuable ecosystem services provided by intact mangroves.

  13. Communication—Electrolysis at High Efficiency with Remarkable Hydrogen Production Rates

    DOE PAGES

    Wood, Anthony; He, Hongpeng; Joia, Tahir; ...

    2016-01-20

    Solid Oxide Electrolysis (SOE) can be used to produce hydrogen with very high efficiencies at remarkable hydrogen production rates. Through microstructural and compositional modification, conventional low cost Solid Oxide Fuel Cell (SOFC) materials have been used to create a Solid Oxide Electrolysis Cell (SOEC) that can achieve remarkable current density at cell voltages allowing higher conversion efficiency than current commercial electrolysers. Current densities in excess of 6 A/cm2 have been achieved at 800°C with a cell voltage of < 1.67 V. This cell shows a more than 3-fold increase in hydrogen production rate at higher efficiency than established commercial electrolysers.

  14. LanzaTech- Capturing Carbon. Fueling Growth.

    ScienceCinema

    NONE

    2018-01-16

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  15. 5 CFR 536.305 - Adjusting an employee's retained rate when a pay schedule is adjusted.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conversion under § 536.303(b) or any other simultaneous pay action. The retained rate adjustment under... new retained rate must be determined under the geographic conversion rule in § 536.303(b). (4... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Adjusting an employee's retained rate...

  16. Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions.

    PubMed

    Yang, Tao; Zhou, Yi-Han; Zhu, Sheng-Zhen; Pan, Hui; Huang, Yao-Bing

    2017-10-23

    A simple and efficient biphasic system with an earth-abundant metal salt catalyst was used to produce furfural from xylan with a high yield of up to 87.8 % under microwave conditions. Strikingly, the metal salt Al 2 (SO 4 ) 3 exhibited excellent catalytic activity for xylan conversion, owing to a combination of Lewis and Brønsted acidity and its ability to promote good phase separation. The critical role of the SO 4 2- anion was first analyzed, which resulted in the aforementioned characteristics when combined with the Al 3+ cation. The mixed solvent system with γ-valerolactone (GVL) as the organic phase provided the highest furfural yield, resulting from its good dielectric properties and dissolving capacity, which facilitated the absorption of microwave energy and promoted mass transfer. Mechanistic studies suggested that the xylan-to-furfural conversion proceeded mainly through a hydrolysis-isomerization-dehydration pathway and the hexa-coordinated Lewis acidic [Al(OH) 2 (aq)] + species were the active sites for xylose-xylulose isomerization. Detailed kinetic studies of the subreaction for the xylan conversion revealed that GVL regulates the reaction rates and pathways by promoting the rates of the key steps involved for furfural production and suppressing the side reactions for humin production. Finally, the Al 2 (SO 4 ) 3 catalyst was used for the production of furfural from several lignocellulosic feedstocks, revealing its great potential for other biomass conversions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Kilianová, Martina; Yang, Bing

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the startingmore » nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.« less

  18. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    PubMed

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  19. Improving Donor Conversion Rates at a Level One Trauma Center: Impact of Best Practice Guidelines

    PubMed Central

    Gibbons, Bobby L; Bershad, Vanessa L

    2016-01-01

    Background Organ availability is a consistently limiting factor in transplant surgery. A primary driver of this limitation is donor conversion rate, which is defined as the percentage of eligible donors for whom procurement is actually performed. An alternative way to increase organ availability is through improved utilization of organs from donors after cardiac death (DCD). Recently, a concerted, multidisciplinary effort has been made within our system to improve conversion rates and DCD utilization, thus increasing organ availability. Study design Retrospective analysis of a prospectively collected database from TransLife, our local organ procurement organization (OPO), as well as the Orlando Regional Medical Center (ORMC) trauma registry, from 2009-2012 (up to 2013 for DCD). During which time, this organization implemented best practice guidelines to improve conversions and DCD utilization. We analyzed yearly conversion rates, DCD donations and population demographics before and after implementation of these policies. Results During the study period, donor conversion rates significantly improved from 58% in 2009 to 82% percent in 2012 hospital-wide (P<0.05); and from 50% in 2009 to 81% in 2012 among trauma patients alone (P<0.05). In addition, total organs transplanted increased from 13 to 31 organs (P<0.05) after implementation of best practice guidelines. No significant differences in trauma population demographics were noted during the study period. Conclusions Based on our experience, the establishment of best practice policies for referral of potential donors, coupled with programs to educate hospital staff on the existence and importance of these policies, leads to significant improvement in donor conversion rates and increased utilization of DCD donors. PMID:28018761

  20. Effects of vacuum and ageing on Zr4/Cr3 based conversion coatings on aluminium alloys

    NASA Astrophysics Data System (ADS)

    Thirupathi, Kalaivanan; Bárczy, Pál; Vad, Kálmán; Csik, Attila; Somosvári, Béla Márton

    2018-05-01

    In this study, we investigate the impact of ageing and high vacuum on existing environmentally friendly Zr4/Cr3-based conversion coatings. The freshly formed coating undergoes several changes during ageing and exposure to high vacuum. Based on the present data, we propose that the coating formed over AA6082 and AA7075 alloys is sol-gel in nature, confirmed by secondary neutral mass spectroscopy (SNMS) using the depth profiling technique. Our findings reveal that there are elemental level changes that result in shrinkage of the coating. Most Zr ions in the coating are in the solute form, with lesser number of Cr and Al ions that disappear under high vacuum over a certain period of time. The remaining Cr, Zr and O atoms exist in a gelatinous state. During ageing, there is a continuous transition of ions from solute to gelatinous state. In addition, the deposition of coating ions is directly influenced by the substrates and their constituents. The extent of dissolution of aluminium in the conversion bath determines both Zr and Cr ion deposition. For a highly alloyed metal like AA7075, the dissolution rate is disturbed by copper and zinc.

  1. Retrospective Conversion of Three Library Collections.

    ERIC Educational Resources Information Center

    Johnson, Carolyn A.

    1982-01-01

    Reports on the retrospective conversion via OCLC of cataloging for three library collections at the University of South Carolina--the main, rare book, and historical collections. Backgrounds of the collections, conversion procedures, determinants of conversion rates, and cost factors are discussed. (Author/JL)

  2. A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.

    The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.

  3. Conversion of solid organic wastes into oil via Boettcherisca peregrine (Diptera: Sarcophagidae) larvae and optimization of parameters for biodiesel production.

    PubMed

    Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo

    2012-01-01

    The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H(2)SO(4) reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production.

  4. Conversion of Solid Organic Wastes into Oil via Boettcherisca peregrine (Diptera: Sarcophagidae) Larvae and Optimization of Parameters for Biodiesel Production

    PubMed Central

    Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo

    2012-01-01

    The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H2SO4 reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production. PMID:23029331

  5. Influence of light-curing sources on polymerization reaction kinetics of a restorative system.

    PubMed

    D'Alpino, Paulo H P; Svizero, Nádia R; Pereira, José C; Rueggeberg, Frederick A; Carvalho, Ricardo M; Pashley, David H

    2007-02-01

    To determine the effect of using a variety of commercial light-curing units on polymerization of a dentin-bonding agent (Adper Single Bond) and of a resin composite (Filtek Z250). Infrared (IR) spectra were obtained kinetically at one scan/second at 2 cm(-1) resolution for a period of 5 minutes and were analyzed for: maximum conversion rate (%/s), time into exposure when maximum rate occurred (seconds), conversion at maximum rate (%), and total conversion (%) at 300 seconds by comparison of aliphatic-to-aromatic absorption IR peak ratios, before and after polymerization. Light units used were: QTH 540 mW/cm2 (XL3000); LED 750 mW/cm2 (Elipar FreeLight 2); PAC 2,130 mW/cm2 (ARC II). Exposure followed manufacturers' recommendations: dentin bonding agent for 10 seconds, RC for 20 seconds (QTH), and 10 seconds (LED and PAC). Polymerization kinetics was evaluated at the bottom surface (2.5 mm thick) for the resin composite and as a thin film for the dentin bonding agent on the diamond surface of an attenuated total reflectance accessory in the IR spectrometer. Values (n = 5) were compared using ANOVA and Tukey's pairwise post-hoc test: pre-set alpha 0.05. PAC produced the highest total conversion and conversion rate for the resin composite (P < 0.05). Total conversion was lower for dentin bonding adhesive using PAC than with LED or QTH (P < 0.05). LED provided the highest proportion of conversion at the maximum rate with respect to conversion at 300 seconds for both materials. QTH demonstrated the lowest maximum rate value that occurred at a longer time into exposure (P < 0.05). Polymerization kinetic parameters varied greatly between the restorative materials as well as among light-curing unit types when compared to values observed when using a QTH light as control.

  6. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation energy of 23.49 kJ/mol for acrylate and 57 kJ/mol for epoxide moeities. Then, hybrid systems pairing hydroxyl-containing acrylates with epoxides were formulated to promote the faster AM mechanism. Monomer composition was changed in the presence of hydroxyl-containing acrylate, and initiators were carefully selected in order to control phase separation. The conversion of acrylate and epoxide was monitored in real time by Raman spectroscopy. The physical and mechanical properties were monitored using dynamic mechanical analysis. Epoxide conversion and rate of polymerization in epoxide-acrylate hybrid monomer systems were shown to increase through the introduction of a hydroxyl group on the meth/acrylate monomer, taking advantage of the faster AM mechanism. In addition, this covalent bond linking the epoxide network to the meth/acrylate polymer chains resulted in little or no phase separation and a reduction of the Tg for the hybrid polymer compared to the neat epoxide. Fundamental knowledge gained from this research will enable the use of epoxy-acrylate hybrid resins in variety of applications. For instance, shrinkage may be reduced in dental fillings, noise and vibration problems in aircraft and other machinery may be controlled, and photopolymerization cost could be reduced in thin film applications.

  7. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA report no. 6

    NASA Astrophysics Data System (ADS)

    Engen, I. A.

    1981-11-01

    This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.

  8. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization.

    PubMed

    Sai, Liman; Liu, Siqi; Qian, Xuexue; Yu, Yahui; Xu, Xiaofeng

    2018-05-21

    In this study, water-soluble fluorescent carbon nanodots (CNDs) were directly injected into the leaf of nicotiana tabacum. With the help of UV-to-blue light conversion nanomaterial, the photosynthetic rate of the leaf was improved 18% upon additional 6 W UV irradiation. The photostability and toxicity of different kinds of CNDs were discussed. The results showed that CNDs functionalized with NH 2 -groups on their surfaces could maintain good fluorescence in plant leaf, and CNDs with complex surface groups tended to have high toxicity to the plant. The NH 2 -functionalized CNDs with non-toxicity and good photostability were used as in vivo light conversion material for direct utilization of UV light in the solar energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Shi, Hui; Szanyi, János

    Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. We performed operando FTIR/SSITKA experiments to understand the correlation between the kinetics of product formation and that of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. We found that the rate-determining step for CO formation is the conversion of adsorbed formate, while that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivitiesmore » to CH4 and CO. We demonstrated how this knowledge can be used to design catalysts to achieve high selectivities to desired products.« less

  11. CH4 and N2O emissions from China's beef feedlots with ad libitum and restricted feeding in fall and spring seasons.

    PubMed

    Lin, Zhi; Liao, Wenhua; Yang, Yuanyuan; Gao, Zhiling; Ma, Wenqi; Wang, Dianwu; Cao, Yufeng; Li, Jianguo; Cai, Zhenjiang

    2015-04-01

    Accurately quantifying methane (CH4) and nitrous oxide (N2O) emissions from beef operations in China is necessary to evaluate the contribution of beef cattle to greenhouse gas budgets at the national and global level. Methane and N2O emissions from two intensive beef feedlots in the North China Plain, one with a restricted feeding strategy and high manure collection frequency and the other with an ad libitum feeding strategy and low manure collection frequency, were quantified in the fall and spring seasons using an inverse dispersion technique. The diel pattern of CH4 from the beef feedlot with an ad libitum feed strategy (single peak during a day) differed from that under a restricted feeding condition (multiple peaks during a day), but little difference in the diel pattern of N2O emissions between two feeding strategies was observed. The two-season average CH4 emission rates of the two intensive feedlots were 230 and 198gCH4animal(-1)d(-1) and accounted for 6.7% and 6.8% of the gross energy intake, respectively, indicating little impact of the feeding strategy and manure collection frequency on the CH4 conversion factor at the feedlot level. However, the average N2O emission rates (21.2g N2Oanimal(-1)d(-1)) and conversion factor (8.5%) of the feedlot with low manure collection frequency were approximately 131% and 174% greater, respectively, than the feedlot under high frequency conditions, which had a N2O emission rate and conversion factor of 9.2g N2Oanimal(-1)d(-1) and 3.1%, respectively, indicating that increasing manure collection frequency played an important role in reducing N2O emissions from beef feedlots. In addition, comparison indicated that China's beef and dairy cattle in feedlots appeared to have similar CH4 conversion factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Development of factors to convert frequency to rate for β-cell replication and apoptosis quantified by time-lapse video microscopy and immunohistochemistry

    PubMed Central

    Saisho, Yoshifumi; Manesso, Erica; Gurlo, Tatyana; Huang, Chang-jiang; Toffolo, Gianna M.; Cobelli, Claudio; Butler, Peter C.

    2009-01-01

    An obstacle to development of methods to quantify β-cell turnover from pancreas tissue is the lack of conversion factors for the frequency of β-cell replication or apoptosis detected by immunohistochemistry to rates of replication or apoptosis. We addressed this obstacle in islets from 1-mo-old rats by quantifying the relationship between the rate of β-cell replication observed directly by time-lapse video microscopy (TLVM) and the frequency of β-cell replication in the same islets detected by immunohistochemistry using antibodies against Ki67 and insulin in the same islets fixed immediately after TLVM. Similarly, we quantified the rate of β-cell apoptosis by TLVM and then the frequency of apoptosis in the same islets using TdT-mediated dUTP nick-end labeling and insulin. Conversion factors were developed by regression analysis. The conversion factor from Ki67 labeling frequency (%) to actual replication rate (%events/h) is 0.025 ± 0.003 h−1. The conversion factor from TdT-mediated dUTP nick-end labeling frequency (%) to actual apoptosis rate (%events/h) is 0.41 ± 0.05 h−1. These conversion factors will permit development of models to evaluate β-cell turnover in fixed pancreas tissue. PMID:18940937

  13. Skylab

    NASA Image and Video Library

    1972-08-21

    Rockford, Illinois high school student, Vincent Converse, discussed his proposed Skylab experiment with Dr. Robert Head (right) and Gene Greshman of Marshall Space Flight Center (MSFC). His experiment, “Zero Gravity Mass Measurement” used a simple leaf spring with the mass to be weighed attached to the end. The electronic package oscillated the spring at a specific rate and the results were recorded electronically. Converse was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of equipment, such as that of Converse’s experiment.

  14. The Kirkendall effect towards oxynitride nanotubes with improved visible light driven conversion of CO2 into CH4.

    PubMed

    Zhou, P; Gao, H L; Yan, S C; Zou, Z G

    2016-02-28

    Functional hollow nanomaterials are of great interest due to their unique physical-chemical properties. Oxynitride photocatalysts are a kind of promising material for solar energy conversion. However, nanoscale design of hollow oxynitrides was difficult to achieve due to the thermal instability of oxide precursors at high temperature. Here, single crystal zinc gallium oxynitride nanotubes were successfully synthesized via the Kirkendall effect with ZnO nanorods and Ga2O3 nanosheets as precursors, which can be attributed to the high diffusion rate of ZnO and the high melting point of oxynitride. Enhanced photocatalytic performance in CO2 reduction was achieved over the as-prepared ZnGaNO nanotubes, due to their higher specific surface area and less recombination of the photogenerated carriers. These results are expected to provide new guidance in the design and preparation of highly efficient nano-scaled oxynitride photocatalysts.

  15. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  16. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet

    PubMed Central

    Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2018-01-01

    Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA’s in vivo kinetics might elucidate these effects. [1-14C] EPA was infused i.v. for 5 min in unanesthetized male rats fed a standard EPA–DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5 min, 31–48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA–CoA pools into lipids, mainly phospholipids, were 36 and 2529 nmol/s/g × 10−4, insignificant for heart. Deacylation–reacylation half-lives were 22 h and 38–128 min. Conversion rates to DHA equaled 0.65 and 25.1 nmol/s/g × 10−4, respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. PMID:24209500

  17. Freeboard reactions in fluidized coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, P.M.; Dutta, A.; Beer, J.M.

    1984-05-11

    The objective of this study was to determine the contribution of freeboard combustion to overall fixed carbon conversion during atmospheric pressure fluidized bed combustion of Kentucky No. 9 high volatile bituminous coal. The progress of the O/sub 2//char reaction in the freeboard was inferred from O/sub 2/ profiles determined by gas sampling. The rates of O/sub 2/ consumption were in good agreement with the O/sub 2//char rate expression of Sergeant and Smith (1973), except at the lowest temperature investigated (964 K). The discrepancy in this case might be due to catalysis of the O/sub 2//char reaction by lime, since thismore » was the first run of the series. Extrapolation of the O/sub 2/ profile to the bed surface using the rate expression of Sergeant and Smith showed that approximately all of the fixed carbon conversion could be accounted for by freeboard combustion. A simple model is proposed in which devolatilization, fragmentation, attrition, and volatile combustion are limited to the bed; with combustion of the finely ground char occurring only in the freeboard. This model predicts O/sub 2/ at the combustor outlet within 60% of the measured values, except in the low temperature/high lime case.« less

  18. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet.

    PubMed

    Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2013-01-01

    Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. © 2013 Published by Elsevier Ltd.

  19. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng

    Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermalmore » temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.« less

  1. Gravity flow rate of solids through orifices and pipes

    NASA Technical Reports Server (NTRS)

    Gardner, J. F.; Smith, J. E.; Hobday, J. M.

    1977-01-01

    Lock-hopper systems are the most common means for feeding solids to and from coal conversion reactor vessels. The rate at which crushed solids flow by gravity through the vertical pipes and valves in lock-hopper systems affects the size of pipes and valves needed to meet the solids-handling requirements of the coal conversion process. Methods used to predict flow rates are described and compared with experimental data. Preliminary indications are that solids-handling systems for coal conversion processes are over-designed by a factor of 2 or 3.

  2. Mycobacterium tuberculosis transmission rates in a sanatorium: implications for new preventive guidelines.

    PubMed

    Jernigan, J A; Adal, K A; Anglim, A M; Byers, K E; Farr, B M

    1994-12-01

    In 1990, the Centers for Disease Control and Prevention recommended substituting dust-mist particulate respirators for simple isolation masks in acid-fast bacillus isolation rooms, reasoning that air leaks around the simple masks could result in a higher rate of purified protein derivative skin-test conversion. In 1993, a Centers for Disease Control and Prevention draft guideline proposed that high-efficiency particulate air filter respirators be used instead of dust-mist particulate respirators. Epidemiologic data were not available to assess the importance of these changes or their cost-effectiveness. The University of Virginia was affiliated with a tuberculosis hospital from 1979 until 1987. We surveyed physicians who had served as residents in internal medicine during this period regarding purified protein derivative skin-test history. duration of work at the tuberculosis sanatorium, and any history of unprotected exposures to patients with active pulmonary or laryngeal tuberculosis. Patients with active tuberculosis at the sanatorium were isolated in negative-pressure rooms with UV lights. Physicians wore simple isolation masks in these rooms. Responses were received from 83 former resident physicians. Fifty-two physicians had worked on the tuberculosis wards for a total of 420 weeks, with no subsequent skin-test conversions (95% CI 0 to 1 conversion/8 physician-years). These data document a low risk of occupational transmission of Mycobacterium tuberculosis to physicians who wear simple isolation masks in negative-pressure ventilation rooms with UV lights. This low rate predicts that the additional protective efficacy and cost-effectiveness of the more expensive high-efficiency particulate air filter respirators and the respiratory protection program will be low.

  3. The rate of meiotic gene conversion varies by sex and age

    PubMed Central

    Halldorsson, Bjarni V.; Hardarson, Marteinn T.; Kehr, Birte; Styrkarsdottir, Unnur; Gylfason, Arnaldur; Thorleifsson, Gudmar; Zink, Florian; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sulem, Patrick; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Kong, Augustine; Gudbjartsson, Daniel F.; Stefansson, Kari

    2016-01-01

    Meiotic recombination involves a combination of gene conversion and crossover events that along with mutations produce germline genetic diversity. Here, we report the discovery of 3,176 SNP and 61 indel gene conversions. Our estimate of the non-crossover (NCO) gene conversion rate (G) is 7.0 for SNPs and 5.8 for indels per Mb per generation, and the GC bias is 67.6%. For indels we demonstrate a 65.6% preference for the shorter allele. NCO gene conversions from mothers are longer than those from fathers and G is 2.17 times greater in mothers. Notably, G increases with the age of mothers, but not fathers. A disproportionate number of NCO gene conversions in older mothers occur outside double strand break (DSB) regions and in regions with relatively low GC content. This points to age-related changes in the mechanisms of meiotic gene conversions in oocytes. PMID:27643539

  4. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    PubMed

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-07

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".

  5. Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR

    PubMed Central

    2014-01-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226

  6. Role of various indices derived from an oral glucose tolerance test in the prediction of conversion from prediabetes to type 2 diabetes.

    PubMed

    Kim, Ye An; Ku, Eu Jeong; Khang, Ah Reum; Hong, Eun Shil; Kim, Kyoung Min; Moon, Jae Hoon; Choi, Sung Hee; Park, Kyong Soo; Jang, Hak Chul; Lim, Soo

    2014-11-01

    The clinical implications of prediabetes for development of type 2 diabetes may differ for Asian ethnicity. We investigated various indices derived from a 2-h oral glucose tolerance test (OGTT) in people with prediabetes to predict their future risk of diabetes. We recruited 406 consecutive subjects with prediabetes from 2005 to 2006 and followed them up every 3-6 months for up to 9 years. Prediabetes was defined as isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT), combined glucose intolerance (CGI), or isolated elevated HbA1c (5.7-6.4%, 39-46 mmol/mol) without IFG or IGT. The rate of diabetes conversion was compared between prediabetes categories. The association of glycemic indices with development of diabetes was also investigated. Eighty-one patients were diagnosed with diabetes during the 9-year follow-up (median 46.0 months). The rate of diabetes conversion was higher in subjects with CGI (31.9%), or isolated IGT (18.5%) than in those with isolated IFG (15.2%) or isolated elevated HbA1c (10.9%). Surrogate markers reflecting β-cell dysfunction were more closely associated with diabetes conversion than insulin resistance indices. Subjects with a 30-min postload glucose ≥ 165 mg/dL and a 30-min C-peptide < 5 ng/mL had 8.83 times greater risk (95% confidence interval 2.98-26.16) of developing diabetes than other prediabetic subjects. In Asians, at least Koreans, β-cell dysfunction seems to be the major determinant for diabetes conversion. A combination of high glucose and low C-peptide levels at 30 min after OGTT may be a good predictor for diabetes conversion in this population. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. High-Fidelity Down-Conversion Source for Secure Communications Using On-Demand Single Photons

    NASA Technical Reports Server (NTRS)

    Roberts, Tony

    2015-01-01

    AdvR, Inc., has built an efficient, fully integrated, waveguide-based source of spectrally uncorrelated photon pairs that will accelerate research and development (R&D) in the emerging field of quantum information science. Key to the innovation is the use of submicron periodically poled waveguides to produce counter propagating photon pairs, which is enabled by AdvR's patented segmented microelectrode poling technique. This novel device will provide a high brightness source of down-conversion pairs with enhanced spectral properties and low attenuation, and it will operate in the visible to the mid-infrared spectral region. A waveguide-based source of spectrally and spatially pure heralded photons will contribute to a wide range of NASA's advanced technology development efforts, including on-demand single photon sources for high-rate spaced-based secure communications.

  8. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  9. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis.

    PubMed

    Toftgaard Pedersen, Asbjørn; de Carvalho, Teresa Melo; Sutherland, Euan; Rehn, Gustav; Ashe, Robert; Woodley, John M

    2017-06-01

    Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model reaction to study a novel continuous agitated cell reactor (ACR). The ACR consists of ten cells interconnected by small channels. An agitator is placed in each cell, which mixes the content of the cell when the reactor body is shaken by lateral movement. Based on tracer experiments, a hydrodynamic model for the ACR was developed. The model consisted of ten tanks-in-series with back-mixing occurring within and between each cell. The back-mixing was a necessary addition to the model in order to explain the observed phenomenon that the ACR behaved as two continuous stirred tank reactors (CSTRs) at low flow rates, while it at high flow rates behaved as the expected ten CSTRs in series. The performance of the ACR was evaluated by comparing the steady state conversion at varying residence times with the conversion observed in a stirred batch reactor of comparable size. It was found that the ACR could more than double the overall reaction rate, which was solely due to an increased oxygen transfer rate in the ACR caused by the intense mixing as a result of the spring agitators. The volumetric oxygen transfer coefficient, k L a, was estimated to be 344 h -1 in the 100 mL ACR, opposed to only 104 h -1 in a batch reactor of comparable working volume. Interestingly, the large deviation from plug flow behavior seen in the tracer experiments was found to have little influence on the conversion in the ACR, since both a plug flow reactor (PFR) model and the backflow cell model described the data sufficiently well. Biotechnol. Bioeng. 2017;114: 1222-1230. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Can quantum coherent solar cells break detailed balance?

    NASA Astrophysics Data System (ADS)

    Kirk, Alexander P.

    2015-07-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.

  11. Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in nonurban tropospheric clouds

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1983-01-01

    Results are presented from a laboratory study of the kinetics of the S(IV)-O3 reaction in aqueous solution, including measurements of the effects of UV radiation, dissolved transition metals, and an antioxidant (hydroquinone) on the rate. On the basis of the results, relative rates of S(IV) conversion by O3 in tropospheric cloud water are compared with those predicted for H2O2 and for O2. The reaction mechanism is discussed, with an outline given of the elements of a possible reaction scheme. Application of the rate constants obtained to SO2 conversion in cloud water predicts conversion rates by ozone to be competitive with those by H2O2 at pH above about 4.5 and to dominate at pH above about 5.5. It is pointed out that since these pH's are typical for nonurban tropospheric cloud water, ozone is a potentially important contributor to the overall oxidative conversion of SO2 to sulfate in the nonurban troposphere.

  12. Influence of coffee and caffeine consumption on atrial fibrillation in hypertensive patients.

    PubMed

    Mattioli, A V; Farinetti, A; Miloro, C; Pedrazzi, P; Mattioli, G

    2011-06-01

    Coffee and caffeine are widely consumed in Western countries. Little information is available on the influence of coffee and caffeine consumption on atrial fibrillation (AF) in hypertensive patients. We sought to investigate the relationship between coffee consumption and atrial fibrillation with regard to spontaneous conversion of arrhythmia. A group of 600 patients presenting with a first known episode of AF was investigated, and we identified 247 hypertensive patients. The prevalence of nutritional parameters was assessed with a food frequency questionnaire. Coffee and caffeine intake were specifically estimated. Left ventricular hypertrophy was evaluated by electrocardiogram (ECG) and echocardiogram. Coffee consumption was higher in normotensive patients. High coffee consumers were more frequent in normotensive patients compared with hypertensive patients. On the other hand, the intake of caffeine was similar in hypertensive and normotensive patients, owing to a higher intake in hypertensive patients from sources other than coffee. Within normotensive patients, we report that non-habitual and low coffee consumers showed the highest probability of spontaneous conversion (OR 1.93 95%CI 0.88-3.23; p=0.001), whereas, within hypertensive patients, moderate but not high coffee consumers had the lowest probability of spontaneous conversion (OR 1.13 95%CI 0.67-1.99; p=0.05). Coffee and caffeine consumption influence spontaneous conversion of atrial fibrillation. Normotensive non-habitual coffee consumers are more likely to convert arrhythmia within 48h from the onset of symptoms. Hypertensive patients showed a U-shaped relationship between coffee consumption and spontaneous conversion of AF, moderate coffee consumers were less likely to show spontaneous conversion of arrhythmia. Patients with left ventricular hypertrophy showed a reduced rate of spontaneous conversion of arrhythmia. Copyright © 2009 Elsevier B.V. All rights reserved.

  13. Laparoscopic management of retroperitoneal injuries from penetrating abdominal trauma in haemodynamically stable patients.

    PubMed

    Koto, Modise Zacharia; Matsevych, Oleh Y; Mosai, Fusi; Balabyeki, Moses; Aldous, Colleen

    2018-02-27

    Laparoscopy is increasingly utilised in the trauma setting. However, its safety and reliability in evaluating and managing retroperitoneal injuries are not known. The aim of this study was to analyse our experience with laparoscopic management of retroperitoneal injuries due to penetrating abdominal trauma (PAT) and to investigate its feasibility, safety and accuracy in haemodynamically stable patients. Over a 4-year period, patients approached laparoscopically with retroperitoneal injuries were analysed. Mechanism, location and severity of injuries were recorded. Surgical procedures, conversion rate and reasons for conversion and outcomes were described. Of the 284 patients with PAT, 56 patients had involvement of retroperitoneum. Stab wounds accounted 62.5% of patients. The mean Injury Severity Score was 7.4 (4-20). Among retroperitoneal injuries, the colon (27%) was the most commonly involved hollow viscera followed by duodenum (5%). The kidney (5%) and the pancreas (4%) were the injured solid organs. The conversion rate was 19.6% and was mainly due to active bleeding (73%). Significantly more patients with gunshot wound were converted to laparotomy (38% vs. 9%). Therapeutic laparoscopy was performed in 36% of patients. There were no recorded missed injuries or mortality. Five (9%) patients developed the Clavien-Dindo Grade 3 complications, three were managed with reoperation, one with drainage/debridement and one with endovascular technique. Laparoscopic management of retroperitoneal injuries is safe and feasible in haemodynamically stable patients with PAT. However, a high conversion rate indicates difficulties in managing these injuries. The requirements are the dexterity in laparoscopy and readiness to convert in the event of bleeding.

  14. Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.

    2018-03-01

    Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.

  15. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Charles R.

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclearmore » Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.« less

  16. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    PubMed

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  17. Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns.

    PubMed

    Wu, Baojun; Hao, Weilong

    2014-04-16

    Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.

  18. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements.

    PubMed

    Hognon, Céline; Dupont, Capucine; Grateau, Maguelone; Delrue, Florian

    2014-07-01

    This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Not so fast: Fast speech correlates with lower lexical and structural information.

    PubMed

    Cohen Priva, Uriel

    2017-03-01

    Speakers dynamically adjust their speech rate throughout conversations. These adjustments have been linked to cognitive and communicative limitations: for example, speakers speak words that are contextually unexpected (and thus add more information) with slower speech rates. This raises the question whether limitations of this type vary wildly across speakers or are relatively constant. The latter predicts that across speakers (or conversations), speech rate and the amount of information content are inversely correlated: on average, speakers can either provide high information content or speak quickly, but not both. Using two corpus studies replicated across two corpora, I demonstrate that indeed, fast speech correlates with the use of less informative words and syntactic structures. Thus, while there are individual differences in overall information throughput, speakers are more similar in this aspect than differences in speech rate would suggest. The results suggest that information theoretic constraints on production operate at a higher level than was observed before and affect language throughout production, not only after words and structures are chosen. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Widespread Gene Conversion in Centromere Cores

    PubMed Central

    Shi, Jinghua; Wolf, Sarah E.; Burke, John M.; Presting, Gernot G.; Ross-Ibarra, Jeffrey; Dawe, R. Kelly

    2010-01-01

    Centromeres are the most dynamic regions of the genome, yet they are typified by little or no crossing over, making it difficult to explain the origin of this diversity. To address this question, we developed a novel CENH3 ChIP display method that maps kinetochore footprints over transposon-rich areas of centromere cores. A high level of polymorphism made it possible to map a total of 238 within-centromere markers using maize recombinant inbred lines. Over half of the markers were shown to interact directly with kinetochores (CENH3) by chromatin immunoprecipitation. Although classical crossing over is fully suppressed across CENH3 domains, two gene conversion events (i.e., non-crossover marker exchanges) were identified in a mapping population. A population genetic analysis of 53 diverse inbreds suggests that historical gene conversion is widespread in maize centromeres, occurring at a rate >1×10−5/marker/generation. We conclude that gene conversion accelerates centromere evolution by facilitating sequence exchange among chromosomes. PMID:20231874

  1. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure.

    PubMed

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-12-01

    This work studied the anaerobic conversion of neutralized volatile fatty acids (VFA) into biogas under Autogenerative High Pressure Digestion (AHPD) conditions. The effects of the operating conditions on the biogas quality, and the substrate utilisation rates were evaluated using 3 AHPD reactors (0.6 L); feeding a concentration of acetate and VFA (1-10 g COD/L) corresponding to an expected pressure increase of 1-20 bar. The biogas composition improved with pressure up to 4.5 bar (>93% CH4), and stabilized at 10 and 20 bar. Both, acetotrophic and hydrogenotrophic methanogenic activity was observed. Substrate utilisation rates of 0.2, 0.1 and 0.1 g CODCH4/g VSS/d for acetate, propionate and butyrate were found to decrease by up to 50% with increasing final pressure. Most likely increased Na(+)-requirement to achieve CO2 sequestration at higher pressure rather than end-product inhibition was responsible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Impact of two different types of grassland-to-cropland-conversion on dynamics of soil organic matter mineralization and N2O emission

    NASA Astrophysics Data System (ADS)

    Roth, G.; Flessa, H.; Helfrich, M.; Well, R.

    2012-04-01

    Conversion of grassland to arable land often causes a decrease of soil organic matter stocks and it increases nitrate leaching and the emission of the greenhouse gases CO2 and N2O. Conversion methods which minimize the mechanical impact on the surface soil may reduce mineralization rates and greenhouse gas emissions. We determined the effect of two different types of grassland to maize conversion (a) plowing of the sward followed by seeding of maize and (b) chemical killing of the sward by glyphosate followed by direct seed of maize) on the mineralization of grassland derived organic matter, the release of nitrate and the emission of N2O. The field experiment was carried out at the research station Kleve which is located in North Rhine-Westphalia, Germany. A four times replicated plot experiment with the following treatments was set up in April 2010: (i) mechanical conversion of grassland to maize (ii) chemical conversion grassland to maize and (iii) continuous grassland as reference. Nitrogen fertilization was 137 kg N ha-1 for maize and 250 kg N ha-1 for grassland. Soil respiration and emission of N2O were measured weekly for one year using manual closed chambers and gas chromatography. Emission of CO2 from mineralization of grassland-derived organic matter was determined from the δ13C signature of soil respiration. Soil respiration was mainly fueled by mineralization of grassland-derived organic carbon. There was no effect of the type of grassland conversion on total mineralization of organic matter originating from grassland. Both grassland to maize conversion treatments exhibited very high soil nitrate concentrations one year after grassland conversion (about 250 kg NO3-N in 0 - 90 cm). Total N2O emission decreased in the order chemical conversion of grassland (25.5) > mechanical conversion of grassland (20.1) > permanent grassland (10.8). Emissions were highest after harvest of maize when soil moisture increased. The results show that both types of grassland-to-maize conversion resulted in a large surplus of soil nitrate which promotes nitrate leaching to the groundwater and indirect N2O emissions. In addition, it caused high direct N2O emissions. We found no evidence that grassland conversion without mechanical plowing is an option to reduce groundwater contamination and greenhouse gas emission to the atmosphere.

  3. Conversion tables for use with the National Fire-Danger Rating System in the Intermountain area

    Treesearch

    Dwight S. Stockstad; Richard J. Barney

    1964-01-01

    Two tables prepared for use with the National Fire-Danger Rating System replace 10 tables previously used with the Model-8 Fire-Danger Rating System. They provide for the conversion of Spread Index values at various altitudes, aspects, and times of day. A rate of spread table facilitates converting Spread Index values to chains per hour of perimeter increase for...

  4. Steroid conversion with CYP106A2 – production of pharmaceutically interesting DHEA metabolites

    PubMed Central

    2014-01-01

    Background Steroids are lipophilic compounds with a gonane skeleton and play an important role in higher organisms. Due to different functionalizations - mainly hydroxylations - at the steroid molecule, they vary highly in their mode of action. The pharmaceutical industry is, therefore, interested in hydroxysteroids as therapeutic agents. The insertion of hydroxyl groups into a steroid core, however, is hardly accomplishable by classical chemical means; that is because microbial steroid hydroxylations are investigated and applied since decades. CYP106A2 is a cytochrome P450 monooxygenase from Bacillus megaterium ATCC 13368, which was first described in the late 1970s and which is capable to hydroxylate a variety of 3-oxo-delta4 steroids at position 15beta. CYP106A2 is a soluble protein, easy to express and to purify in high amounts, which makes this enzyme an interesting target for biotechnological purposes. Results In this work a focused steroid library was screened in vitro for new CYP106A2 substrates using a reconstituted enzyme assay. Five new substrates were identified, including dehydroepiandrosterone and pregnenolone. NMR-spectroscopy revealed that both steroids are mainly hydroxylated at position 7beta. In order to establish a biotechnological system for the preparative scale production of 7beta-hydroxylated dehydroepiandrosterone, whole-cell conversions with growing and resting cells of B. megaterium ATCC1336 the native host of CYP1062 and also with resting cells of a recombinant B. megaterium MS941 strain overexpressing CYP106A2 have been conducted and conversion rates of 400 muM/h (115 mg/l/h) were obtained. Using the B. megaterium MS941 overexpression strain, the selectivity of the reaction was improved from 0.7 to 0.9 for 7beta-OH-DHEA. Conclusions In this work we describe CYP106A2 for the first time as a regio-selective hydroxylase for 3-hydroxy-delta5 steroids. DHEA was shown to be converted to 7beta-OH-DHEA which is a highly interesting human metabolite, supposed to act as neuroprotective, anti-inflammatory and immune-modulatory agent. Optimization of the whole-cell system using different B. megaterium strains lead to a conversion of DHEA with B. megaterium showing high selectivity and conversion rates and displaying a volumetric yield of 103 mg/l/h 7beta-OH-DHEA. PMID:24903845

  5. Steroid conversion with CYP106A2 - production of pharmaceutically interesting DHEA metabolites.

    PubMed

    Schmitz, Daniela; Zapp, Josef; Bernhardt, Rita

    2014-06-05

    Steroids are lipophilic compounds with a gonane skeleton and play an important role in higher organisms. Due to different functionalizations - mainly hydroxylations - at the steroid molecule, they vary highly in their mode of action. The pharmaceutical industry is, therefore, interested in hydroxysteroids as therapeutic agents. The insertion of hydroxyl groups into a steroid core, however, is hardly accomplishable by classical chemical means; that is because microbial steroid hydroxylations are investigated and applied since decades. CYP106A2 is a cytochrome P450 monooxygenase from Bacillus megaterium ATCC 13368, which was first described in the late 1970s and which is capable to hydroxylate a variety of 3-oxo-delta4 steroids at position 15beta. CYP106A2 is a soluble protein, easy to express and to purify in high amounts, which makes this enzyme an interesting target for biotechnological purposes. In this work a focused steroid library was screened in vitro for new CYP106A2 substrates using a reconstituted enzyme assay. Five new substrates were identified, including dehydroepiandrosterone and pregnenolone. NMR-spectroscopy revealed that both steroids are mainly hydroxylated at position 7beta. In order to establish a biotechnological system for the preparative scale production of 7beta-hydroxylated dehydroepiandrosterone, whole-cell conversions with growing and resting cells of B. megaterium ATCC1336 the native host of CYP1062 and also with resting cells of a recombinant B. megaterium MS941 strain overexpressing CYP106A2 have been conducted and conversion rates of 400 muM/h (115 mg/l/h) were obtained. Using the B. megaterium MS941 overexpression strain, the selectivity of the reaction was improved from 0.7 to 0.9 for 7beta-OH-DHEA. In this work we describe CYP106A2 for the first time as a regio-selective hydroxylase for 3-hydroxy-delta5 steroids. DHEA was shown to be converted to 7beta-OH-DHEA which is a highly interesting human metabolite, supposed to act as neuroprotective, anti-inflammatory and immune-modulatory agent. Optimization of the whole-cell system using different B. megaterium strains lead to a conversion of DHEA with B. megaterium showing high selectivity and conversion rates and displaying a volumetric yield of 103 mg/l/h 7beta-OH-DHEA.

  6. Does quality improvement work? Evaluation of the Organ Donation Breakthrough Collaborative.

    PubMed

    Howard, David H; Siminoff, Laura A; McBride, Virginia; Lin, Monica

    2007-12-01

    The Organ Donation Breakthrough Collaborative is a quality improvement initiative to encourage adoption of "best practices" for identifying potential donors and obtaining consent for deceased organ donation. We evaluate the impact of the first phase on organ donation rates. We study donation rates in the 95 hospitals that participated in the first phase and a control group of 125 hospitals. We use a controlled pre/post design. The preperiod is the year before the start of the Collaborative (September 2002 to August 2003), the postperiod is the final 6 months of the first phase (March 2004 to August 2004). We use administrative data from the Organ Procurement and Transplantation Network to compute the conversion rate in each hospital group and time period. The conversion rate is the proportion of eligible donors who became actual donors. Preperiod conversion rates in Collaborative and control hospitals were similar: 52 and 51 percent, respectively. In the postperiod, the conversion rate increased to 60 percent among Collaborative hospitals and remained at 51 percent among control hospitals. The relative change was 8 percentage points (95 percent confidence interval: 2-13: p<.001). Our findings suggest that the Breakthrough Collaborative led to an increase in donation rates at participating hospitals.

  7. Disposal of Energy by UV-B Sunscreens

    NASA Astrophysics Data System (ADS)

    Nordlund, Thomas; Krishnan, Rajagopal

    2008-03-01

    Ideal sunscreens absorb dangerous UV light and dispose of the energy safely. ``Safe disposal'' usually means conversion to heat. However, efficient absorption entails a high radiative rate, which implies high energy-transfer and other rates, unless some process intervenes to ``defuse'' the excited state. We studied the excited-state kinetics of three UV-B (290-320 nm) sunscreens by absorption, steady-state and time-resolved fluorescence. Excited-state rate analysis suggests that some sunscreens have low radiative-rate ``dark'' states, in addition to normal excited states.* We deduce dark states when sunscreens of high extinction coefficient do not show lifetimes and total emission consistent with such high radiative rates. A high radiative rate, accompanied by efficient fluorescence emission and/or transfer, may be unfavorable for a sunscreen. In spite of its dark excited state, padimate O shows significant re-emission of light in the UV-A (320-400 nm) and energy transfer to a natural component of excised skin, probably collagen. * Krishnan, R. and T.M. Nordlund (2007) J. Fluoresc. DOI 10.1007/s10895-007-0264-3.

  8. Retrospective Conversion: A Question of Time, Standards, and Purpose.

    ERIC Educational Resources Information Center

    Valentine, Phyllis A.; McDonald, David R.

    1986-01-01

    Examines the factors that determine the cost of retrospective conversion (definition of conversion, standards of acceptance, method of conversion, hit rate, standards for creation of machine-readable records for nonhits); reports results of cost study at University of Michigan library; and introduces an alternative strategy for discussion. Seven…

  9. Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents

    NASA Astrophysics Data System (ADS)

    Sarwono, Rakhman; Pusfitasari, Eka Dian

    2017-01-01

    Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.

  10. Communication nonaccommodation in family conversations about end-of-life health decisions.

    PubMed

    Scott, Allison M; Caughlin, John P

    2015-01-01

    Furthering our understanding of how communication can improve end-of-life decision making requires a shift in focus from whether people talk to how people talk about end-of-life health decisions. This study used communication accommodation theory to examine the extent to which communication nonaccommodation distinguished more from less successful end-of-life conversations among family members. We analyzed elicited conversations about end-of-life health decisions from 121 older parent/adult child dyads using outside ratings of communication over- and underaccommodation and self-reported conversational outcomes. Results of multilevel linear modeling revealed that outside ratings of underaccommodation predicted self-reported and partner-reported uncertainty, and ratings of overaccommodation predicted self-reported decision-making efficacy and change in concordance accuracy. We discuss the methodological, theoretical, and practical implications of these findings.

  11. Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates

    PubMed Central

    Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.

    2015-01-01

    The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902

  12. High power high repetition rate diode side-pumped Q-switched Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Lebiush, E.; Lavi, R.; Tzuk, Y.; Jackel, S.; Lallouz, R.; Tsadka, S.

    1998-01-01

    A Q-switched diode side-pumped Nd:YAG rod laser is presented. The design is based on close coupled diodes which are mounted side by side to a laser rod cut at Brewster angle. No intra-cavity optics are needed to compensate for the induced thermal lensing of the rod. This laser produces 10 W average power with 30 ns pulse width and beam quality of 1.3 times diffraction limited at 10 kHz repetition rate. The light to light conversion efficiency is 12%. The same average power and beam quality is kept while operating the laser at repetition rates up to 50 kHz.

  13. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  14. Polymerization development of "low-shrink" resin composites: Reaction kinetics, polymerization stress and quality of network.

    PubMed

    Yamasaki, Lilyan C; De Vito Moraes, André G; Barros, Mathew; Lewis, Steven; Francci, Carlos; Stansbury, Jeffrey W; Pfeifer, Carmem S

    2013-09-01

    To evaluate "low-shrink" composites in terms of polymerization kinetics, stress development and mechanical properties. "Low-shrink" materials (Kalore/KAL, N'Durance/NDUR, and Filtek P90/P90) and one control (Esthet X HD/EHD) were tested. Polymerization stress (PS) was measured using the Instron 5565 tensometer. Volumetric shrinkage (VS) was determined by the ACTA linometer. Elastic modulus (E) and flexural strength (FS) were obtained by a three-point bending test. Degree of conversion (DC) and polymerization rate (Rp) were determined by NIR spectroscopy (6165cm(-1) for dimethacrylates; 4156 and 4071cm(-1) for P90). Photopolymerization was performed at 740mW/cm(2)×27s. Glass transition temperature (Tg), degree of heterogeneity and crosslink density were obtained in a DMA for the fully cured specimens. Analysis of extracts was done by (1)H NMR. Data were analyzed with one-way ANOVA/Tukey's test (α=0.05). The control presented the highest shrinkage and Tg. P90 showed the highest modulus, and NDUR demonstrated the highest conversion. The polymerization rates were comparable for all materials. NDUR and KAL had the highest and the lowest network homogeneity, respectively. The multifunctional P90 had the highest crosslink density, with no difference between other composites. The control had the greatest stress development, similar to NDUR. Crosslinking density and polymer network homogeneity were influenced by degree of conversion and monomer structure. Not all "low-shrink" composites reduced polymerization stress. P90 and NDUR had no leachable monomers, which was also a function of high crosslinking (P90) and high conversion (NDUR). Copyright © 2013 Academy of Dental Materials. All rights reserved.

  15. Duration of attenuated positive and negative symptoms in individuals at clinical high risk: Associations with risk of conversion to psychosis and functional outcome

    PubMed Central

    Carrión, Ricardo E.; Demmin, Docia; Auther, Andrea M.; McLaughlin, Danielle; Olsen, Ruth; Lencz, Todd; Correll, Christoph U.; Cornblatt, Barbara A.

    2016-01-01

    Research in individuals at clinical high-risk (CHR) for psychosis has focused on subjects with no more than 12 months of present or worsened attenuated positive symptoms. However, the impact of long duration attenuated positive and/or negative prodromal symptoms on outcomes is unclear. Seventy-six CHR subjects with attenuated positive symptoms and at least moderate severity level negative symptoms rated on the Scale of Prodromal Symptoms (SOPS) were prospectively followed for a mean of 3.0 ± 1.6 years. Social and Role functioning was assessed with the Global Functioning: Social and Role scales. Correlations between attenuated positive and negative symptom duration and severity and conversion to psychosis and functional outcomes were analyzed. The average onset of SOPS rated negative symptoms (M = 53.24 months, SD = 48.90, median = 37.27) was approximately twelve months prior to the emergence of attenuated positive symptom (M = 40.15 months, SD = 40.33, median = 24.77, P < 0.05). More severe positive symptoms (P = 0.004), but not longer duration of positive (P = 0.412) or negative (P = 0.754) symptoms, predicted conversion to psychosis. Neither positive symptom duration (P = 0.181) nor severity (P = 0.469) predicted role or social functioning at study endpoint. Conversely, longer negative symptom duration predicted poor social functioning (P = 0.004). Overall, our findings suggest that the severity of attenuated positive symptoms at baseline may be more important than symptom duration for determining individuals at increased risk of developing psychosis. In contrast, long-standing negative symptoms may be associated with persistent social difficulties and therefore have an important position in the treatment of disability. PMID:27424062

  16. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3.

    PubMed

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung; Hiramatsu, Keiichi

    2013-12-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10(-6) or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate.

  17. 49 CFR 583.14 - Currency conversion rate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...

  18. 49 CFR 583.14 - Currency conversion rate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...

  19. 49 CFR 583.14 - Currency conversion rate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...

  20. 49 CFR 583.14 - Currency conversion rate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...

  1. 49 CFR 583.14 - Currency conversion rate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...

  2. Front end for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess Brooks (Inventor)

    1999-01-01

    The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.

  3. Exceptionally High Efficient Co-Co2P@N, P-Codoped Carbon Hybrid Catalyst for Visible Light-Driven CO2-to-CO Conversion.

    PubMed

    Fu, Wen Gan

    2018-05-02

    Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantifying risk of early relapse in patients with first demyelinating events: Prediction in clinical practice.

    PubMed

    Spelman, Tim; Meyniel, Claire; Rojas, Juan Ignacio; Lugaresi, Alessandra; Izquierdo, Guillermo; Grand'Maison, Francois; Boz, Cavit; Alroughani, Raed; Havrdova, Eva; Horakova, Dana; Iuliano, Gerardo; Duquette, Pierre; Terzi, Murat; Grammond, Pierre; Hupperts, Raymond; Lechner-Scott, Jeannette; Oreja-Guevara, Celia; Pucci, Eugenio; Verheul, Freek; Fiol, Marcela; Van Pesch, Vincent; Cristiano, Edgardo; Petersen, Thor; Moore, Fraser; Kalincik, Tomas; Jokubaitis, Vilija; Trojano, Maria; Butzkueven, Helmut

    2017-09-01

    Characteristics at clinically isolated syndrome (CIS) examination assist in identification of patient at highest risk of early second attack and could benefit the most from early disease-modifying drugs (DMDs). To examine determinants of second attack and validate a prognostic nomogram for individualised risk assessment of clinical conversion. Patients with CIS were prospectively followed up in the MSBase Incident Study. Predictors of clinical conversion were analysed using Cox proportional hazards regression. Prognostic nomograms were derived to calculate conversion probability and validated using concordance indices. A total of 3296 patients from 50 clinics in 22 countries were followed up for a median (inter-quartile range (IQR)) of 1.92 years (0.90, 3.71). In all, 1953 (59.3%) patients recorded a second attack. Higher Expanded Disability Status Scale (EDSS) at baseline, first symptom location, oligoclonal bands and various brain and spinal magnetic resonance imaging (MRI) metrics were all predictors of conversion. Conversely, older age and DMD exposure post-CIS were associated with reduced rates. Prognostic nomograms demonstrated high concordance between estimated and observed conversion probabilities. This multinational study shows that age at CIS onset, DMD exposure, EDSS, multiple brain and spinal MRI criteria and oligoclonal bands are associated with shorter time to relapse. Nomogram assessment may be useful in clinical practice for estimating future clinical conversion.

  5. The relationship between temperament and character in conversion disorder and comorbid depression.

    PubMed

    Erten, Evrim; Yenilmez, Yelda; Fistikci, Nurhan; Saatcioglu, Omer

    2013-05-01

    The aim of this study was to compare conversion disorder patients with healthy controls in terms of temperament and character, and to determine the effect of these characteristics on comorbid depression, based on the idea that conversion disorder patients may have distinctive temperament and character qualities. The study involved 58 patients diagnosed with conversion disorder, based on the DSM-IV diagnostic criteria, under observation at the Bakırköy Psychiatric and Neurological Disorders Outpatient Center, Istanbul. The patients were interviewed with a Structured Clinical Interview (SCID-I) and 57 healthy volunteers, matched for age, sex and education level, were interviewed with a Structured Clinical Interview for people without a psychiatric disorder (SCID-I/NP). All the participants completed a sociodemographic form, the Hamilton Depression Rating Scale, the Hamilton Anxiety Scale and the Temperament and Character Inventory. The conversion disorder patients displayed more harm avoidance (P<.001), more impulsivity (P<.01) and more sentimentality (P<.01) than the healthy controls, but were less persistent (P<.05). In terms of character qualities, conversion disorder patients had high self-transcendence (P<.05), but were inadequate in terms of self-directedness (P<.001) and took on less responsibility (P<.05) than the healthy controls. Conversion disorder patients are significantly different from healthy controls on temperament and character measures of harm avoidance, persistence, self-transcendence and self-directedness. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A Cooperative Conversion Project from Vertical File Hardcopy to Jacketed Microfiche.

    ERIC Educational Resources Information Center

    Worden, Diane D.

    1981-01-01

    Describes a cooperative project to convert a library's hardcopy materials to microfiche, including the steps involved in conversion, conversion costs, sources of funding, and staff performance rates. Six references are listed. (FM)

  7. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  8. Accelerated Growth Rate Induced by Neonatal High-Protein Milk Formula Is Not Supported by Increased Tissue Protein Synthesis in Low-Birth-Weight Piglets

    PubMed Central

    Jamin, Agnès; Sève, Bernard; Thibault, Jean-Noël; Floc'h, Nathalie

    2012-01-01

    Low-birth-weight neonates are routinely fed a high-protein formula to promote catch-up growth and antibiotics are usually associated to prevent infection. Yet the effects of such practices on tissue protein metabolism are unknown. Baby pigs were fed from age 2 to 7 or 28 d with high protein formula with or without amoxicillin supplementation, in parallel with normal protein formula, to determine tissue protein metabolism modifications. Feeding high protein formula increased growth rate between 2 and 28 days of age when antibiotic was administered early in the first week of life. This could be explained by the occurrence of diarrhea when piglets were fed the high protein formula alone. Higher growth rate was associated with higher feed conversion and reduced protein synthesis rate in the small intestine, muscle and carcass, whereas proteolytic enzyme activities measured in these tissues were unchanged. In conclusion, accelerated growth rate caused by high protein formula and antibiotics was not supported by increased protein synthesis in muscle and carcass. PMID:22315674

  9. Association of Substance Use Disorders With Conversion From Schizotypal Disorder to Schizophrenia.

    PubMed

    Hjorthøj, Carsten; Albert, Nikolai; Nordentoft, Merete

    2018-04-25

    Understanding the role of substance use disorders in conversion from schizotypal disorder to schizophrenia may provide physicians and psychiatrists with important tools for prevention or early detection of schizophrenia. To investigate whether substance use disorders, in particular cannabis use disorder, are associated with conversion to schizophrenia in individuals with schizotypal disorder. This prospective cohort study included a population-based sample of all individuals born in Denmark from January 1, 1981, through August 10, 2014, with an incident diagnosis of schizotypal disorder and without a previous diagnosis of schizophrenia. Follow-up was completed on August 10, 2014, and data were analyzed from March 10, 2017, through February 15, 2018. Information on substance use disorders combined from 5 different registers. Cox proportional hazards regression using time-varying information on substance use disorders and receipt of antipsychotics and adjusted for parental history of mental disorders, sex, birth year, and calendar year were used to estimate hazard ratios (HRs) and 95% CIs for conversion to schizophrenia. A total of 2539 participants with incident schizotypal disorder were identified (1448 men [57.0%] and 1091 women [43.0%]; mean [SD] age, 20.9 [4.4] years). After 2 years, 16.3% (95% CI, 14.8%-17.8%) experienced conversion to schizophrenia. After 20 years, the conversion rate was 33.1% (95% CI, 29.3%-37.3%) overall and 58.2% (95% CI, 44.8%-72.2%) among those with cannabis use disorders. In fully adjusted models, any substance use disorder was associated with conversion to schizophrenia (HR, 1.34; 95% CI, 1.11-1.63). When data were stratified by substance, cannabis use disorders (HR, 1.30; 95% CI, 1.01-1.68), amphetamine use disorders (HR, 1.90; 95% CI, 1.14-3.17), and opioid use disorders (HR, 2.74; 95% CI, 1.38-5.45) were associated with conversion to schizophrenia. These associations were not explained by concurrent use of antipsychotics, functional level before incident schizotypal disorder, or parental history of mental disorders. Substance use disorders, in particular cannabis, amphetamines, and opioids, may be associated with conversion from schizotypal disorder to schizophrenia. However, conversion rates are high even in those without substance use disorders, indicating a need for universal and substance-targeted prevention in individuals with schizotypal disorder.

  10. Efficient Solar Energy Conversion Using CaCu3Ti4O12 Photoanode for Photocatalysis and Photoelectrocatalysis

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Madhar, Niyaz A.; Ilahi, B.; Thomas, P.; Halder, Aditi; Vaish, Rahul

    2016-01-01

    A highly efficient third generation catalyst, CaCu3Ti4O12 (CCTO) shows excellent photoelectrochemical (PEC) and photocatalytic ability. As only 4% part of the solar spectrum covers UV light, thus it is highly desirable to develop visible light active photocatalyst materials like CCTO for effective solar energy conversion. A direct band transition with a narrow band gap (1.5 eV) was observed. Under light irradiation, high photocurrent density was found to be 0.96 mA/cm2, indicating the visible light induced photocatalytic ability of CCTO. Visible light mediated photocatalytic and photoelectrocatalytic degradation efficiency of CaCu3Ti4O12 pellets (CCTO) was investigated for three classes of pharmaceutical waste: erythrosin (dye), ciprofloxacin (antibiotic) and estriol (steroid). It is found that the degradation process follows first order kinetic reaction in electrocatalysis, photocatalysis and photoelectrocatalysis and high kinetic rate constant was observed in photoelectrocatalysis. This was quite high in comparison to previously reported methods.

  11. Efficient Solar Energy Conversion Using CaCu3Ti4O12 Photoanode for Photocatalysis and Photoelectrocatalysis.

    PubMed

    Kushwaha, H S; Madhar, Niyaz A; Ilahi, B; Thomas, P; Halder, Aditi; Vaish, Rahul

    2016-01-04

    A highly efficient third generation catalyst, CaCu3Ti4O12 (CCTO) shows excellent photoelectrochemical (PEC) and photocatalytic ability. As only 4% part of the solar spectrum covers UV light, thus it is highly desirable to develop visible light active photocatalyst materials like CCTO for effective solar energy conversion. A direct band transition with a narrow band gap (1.5 eV) was observed. Under light irradiation, high photocurrent density was found to be 0.96 mA/cm(2), indicating the visible light induced photocatalytic ability of CCTO. Visible light mediated photocatalytic and photoelectrocatalytic degradation efficiency of CaCu3Ti4O12 pellets (CCTO) was investigated for three classes of pharmaceutical waste: erythrosin (dye), ciprofloxacin (antibiotic) and estriol (steroid). It is found that the degradation process follows first order kinetic reaction in electrocatalysis, photocatalysis and photoelectrocatalysis and high kinetic rate constant was observed in photoelectrocatalysis. This was quite high in comparison to previously reported methods.

  12. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles.

    PubMed

    Bai, Shuxing; Shao, Qi; Wang, Pengtang; Dai, Qiguang; Wang, Xingyi; Huang, Xiaoqing

    2017-05-24

    Carbon dioxide (CO 2 ) hydrogenation to ethanol (C 2 H 5 OH) is considered a promising way for CO 2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO 2 hydrogenation to C 2 H 5 OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO 2 hydrogenation to C 2 H 5 OH was well optimized with Pd 2 Cu NPs/P25 exhibiting high selectivity to C 2 H 5 OH of up to 92.0% and the highest turnover frequency of 359.0 h -1 . Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C 2 H 5 OH production and selectivity of Pd 2 Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO 2 hydrogenation to C 2 H 5 OH.

  13. Efficient Solar Energy Conversion Using CaCu3Ti4O12 Photoanode for Photocatalysis and Photoelectrocatalysis

    PubMed Central

    Kushwaha, H. S.; Madhar, Niyaz A; Ilahi, B.; Thomas, P.; Halder, Aditi; Vaish, Rahul

    2016-01-01

    A highly efficient third generation catalyst, CaCu3Ti4O12 (CCTO) shows excellent photoelectrochemical (PEC) and photocatalytic ability. As only 4% part of the solar spectrum covers UV light, thus it is highly desirable to develop visible light active photocatalyst materials like CCTO for effective solar energy conversion. A direct band transition with a narrow band gap (1.5 eV) was observed. Under light irradiation, high photocurrent density was found to be 0.96 mA/cm2, indicating the visible light induced photocatalytic ability of CCTO. Visible light mediated photocatalytic and photoelectrocatalytic degradation efficiency of CaCu3Ti4O12 pellets (CCTO) was investigated for three classes of pharmaceutical waste: erythrosin (dye), ciprofloxacin (antibiotic) and estriol (steroid). It is found that the degradation process follows first order kinetic reaction in electrocatalysis, photocatalysis and photoelectrocatalysis and high kinetic rate constant was observed in photoelectrocatalysis. This was quite high in comparison to previously reported methods. PMID:26725655

  14. Interaction of H2 @C60 and nitroxide through conformationally constrained peptide bridges.

    PubMed

    Garbuio, Luca; Li, Yongjun; Antonello, Sabrina; Gascón, José A; Lawler, Ronald G; Lei, Xuegong; Murata, Yasujiro; Turro, Nicholas J; Maran, Flavio

    2014-01-01

    We synthesized two molecular systems, in which an endofullerene C60 , incarcerating one hydrogen molecule (H2 @C60 ) and a nitroxide radical are connected by a folded 310 -helical peptide. The difference between the two molecules is the direction of the peptide orientation. The nuclear spin relaxation rates and the para → ortho conversion rate of the incarcerated hydrogen molecule were determined by (1) H NMR spectroscopy. The experimental results were analyzed using DFT-optimized molecular models. The relaxation rates and the conversion rates of the two peptides fall in the expected distance range. One of the two peptides is particularly rigid and thus ideal to keep the H2 @C60 /nitroxide separation, r, as large and controlled as possible, which results in particularly low relaxation and conversion rates. Despite the very similar optimized distance, however, the rates measured with the other peptide are considerably higher and thus are compatible with a shorter effective distance. The results strengthen the outcome of previous investigations that while the para → ortho conversion rates satisfactorily obey the Wigner's theory, the nuclear spin relaxation rates are in excellent agreement with the Solomon-Bloembergen equation predicting a 1/r(6) dependence. © 2013 The American Society of Photobiology.

  15. FOLFOXIRI Plus Bevacizumab as Conversion Therapy for Patients With Initially Unresectable Metastatic Colorectal Cancer: A Systematic Review and Pooled Analysis.

    PubMed

    Tomasello, Gianluca; Petrelli, Fausto; Ghidini, Michele; Russo, Alessandro; Passalacqua, Rodolfo; Barni, Sandro

    2017-07-13

    The combination of fluorouracil, oxaliplatin, and irinotecan plus bevacizumab (FOLFOXIRI-Bev) is an established and effective first-line chemotherapy regimen for metastatic colorectal cancer. However, resection rates of metastases and overall survival with this schedule have never been systematically evaluated in published studies including, but not limited to, the TRIBE (TRIplet plus BEvacizumab) trial. To assess the clinical efficacy of FOLFOXIRI-Bev, including outcomes and rates of surgical conversions. A systematic review was conducted in October 2016 in concordance with the PRISMA guidelines of PubMed, the Cochrane Central Register of Controlled Trials, SCOPUS, Web of Science, Google Scholar, CINAHL, Ovid, and EMBASE using the terms FOLFOXIRI and bevacizumab and (colorectal cancer). Clinical trials, retrospective case series, and prospective case series that used FOLFOXIRI-Bev for the treatment of initially unresectable metastatic colorectal cancer in humans were included. Individual case reports and retrospective case series with fewer than 10 patients were excluded. Data were extracted independently by 2 reviewers on a predesigned, standardized form. Ultimately, data were aggregated to obtain the pooled effect size of efficacy, according to the random-effects model and weighted for the number of patients included in each trial. Median overall survival and progression-free survival, overall response rates, and rates of R0 surgical conversions and overall surgical conversions. Eleven FOLFOXIRI-Bev studies published between 2010 and 2016 met the inclusion criteria and were pooled for analysis. The studies included 889 patients, with 877 patients clinically evaluable for overall response rates. The objective response rate to FOLFOXIRI-Bev was 69% (95% CI, 65%-72%; I2 = 25%). The rate of overall surgical conversions was 39.1% (95% CI, 26.9%-52.8%), and the rate of R0 surgical conversions was 28.1% (95% CI, 18.1%-40.8%). Median pooled overall survival was 30.2 months (95% CI, 26.5-33.7 months) in 6 trials with data available, and progression-free survival was 12.4 months (95% CI, 10.0-14.3 months) in 9 trials with data available. In meta-regression analysis, variables significantly associated with conversion surgery were disease limited to the liver and a higher median number of cycles (close to 12). For patients with surgically unresectable metastatic colorectal cancer, FOLFOXIRI-Bev is associated with a significant overall response rate. Such an effective regimen leads to a probability of surgical conversion of distant metastases approaching 40%, with more than one-fourth of patients having an R0 resection.

  16. ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light

    NASA Astrophysics Data System (ADS)

    Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2016-08-01

    We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.

  17. ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light.

    PubMed

    Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2016-08-03

    We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.

  18. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  19. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    PubMed

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (< 3 m) were relatively high due to the presence of carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important functions and services they provide, their inclusion in climate-change mitigation strategies is warranted.

  20. Teaching Medical Students About "The Conversation": An Interactive Value-Based Advance Care Planning Session.

    PubMed

    Lum, Hillary D; Dukes, Joanna; Church, Skotti; Abbott, Jean; Youngwerth, Jean M

    2018-02-01

    Advance care planning (ACP) promotes care consistent with patient wishes. Medical education should teach how to initiate value-based ACP conversations. To develop and evaluate an ACP educational session to teach medical students a value-based ACP process and to encourage students to take personal ACP action steps. Groups of third-year medical students participated in a 75-minute session using personal reflection and discussion framed by The Conversation Starter Kit. The Conversation Project is a free resource designed to help individuals and families express their wishes for end-of-life care. One hundred twenty-seven US third-year medical students participated in the session. Student evaluations immediately after the session and 1 month later via electronic survey. More than 90% of students positively evaluated the educational value of the session, including rating highly the opportunities to reflect on their own ACP and to use The Conversation Starter Kit. Many students (65%) reported prior ACP conversations. After the session, 73% reported plans to discuss ACP, 91% had thought about preferences for future medical care, and 39% had chosen a medical decision maker. Only a minority had completed an advance directive (14%) or talked with their health-care provider (1%). One month later, there was no evidence that the session increased students' actions regarding these same ACP action steps. A value-based ACP educational session using The Conversation Starter Kit successfully engaged medical students in learning about ACP conversations, both professionally and personally. This session may help students initiate conversations for themselves and their patients.

  1. Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters

    DTIC Science & Technology

    2015-12-01

    characteristics for a full-scale WEC based on the collected experimental data. 20 RESULTS AND DISCUSSION Task 1 – Tar-Cracking Reactor...prepared to show the effect of reaching the target throughput rate of 50 lb/hr on conversion efficiency. In scaling up the experimental results , the...Midmoisture Full Moisture Fuel Feed Rate, kg/hr 22.3 22.3 22.3 Results Using the Experimental Recuperator Effectiveness Fuel Energy In, kWth 160 136 121

  2. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  3. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    PubMed

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  4. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers.

    PubMed

    Briber, Brittain M; Hutyra, Lucy R; Reinmann, Andrew B; Raciti, Steve M; Dearborn, Victoria K; Holden, Christopher E; Dunn, Allison L

    2015-01-01

    Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1). As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2) yr(-1). Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1) yr(-1), a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.

  5. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers

    PubMed Central

    Briber, Brittain M.; Hutyra, Lucy R.; Reinmann, Andrew B.; Raciti, Steve M.; Dearborn, Victoria K.; Holden, Christopher E.; Dunn, Allison L.

    2015-01-01

    Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm2 yr-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha-1 yr-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important. PMID:26302444

  6. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.

    PubMed

    Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen

    2018-06-13

    Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.

  7. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Fan; Wang, Ping; Duan, Yuhua

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews themore » progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.« less

  8. Local Structure Evolution and Modes of Charge Storage in Secondary Li–FeS 2 Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butala, Megan M.; Mayo, Martin; Doan-Nguyen, Vicky V. T.

    2017-03-27

    In the pursuit of high-capacity electrochemical energy storage, a promising domain of research involves conversion reaction schemes, wherein electrode materials are fully transformed during charge and discharge. There are, however, numerous difficulties in realizing theoretical capacity and high rate capability in many conversion schemes. Here we employ operando studies to understand the conversion material FeS2, focusing on the local structure evolution of this relatively reversible material. X-ray absorption spectroscopy, pair distribution function analysis, and first-principles calculations of intermediate structures shed light on the mechanism of charge storage in the Li-FeS2 system, with some general principles emerging for charge storage inmore » chalcogenide materials. Focusing on second and later charge/discharge cycles, we find small, disordered domains that locally resemble Fe and Li2S at the end of the first discharge. Upon charge, this is converted to a Li-Fe-S composition whose local structure reveals tetrahedrally coordinated Fe. With continued charge, this ternary composition displays insertion extraction behavior at higher potentials and lower Li content. The finding of hybrid modes of charge storage, rather than simple conversion, points to the important role of intermediates that appear to store charge by mechanisms that more closely resemble intercalation.« less

  9. 24 CFR 972.124 - Standards for identifying public housing developments subject to required conversion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... March 16, 2009, the specified vacancy rate is 15 percent. For a conversion analysis performed after that... housing developments subject to required conversion. 972.124 Section 972.124 Housing and Urban Development... INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED...

  10. The impacts of inherent soil properties, environmental conditions, and restoration time on ecological benefits during CRP restoration

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) has numerous benefits including reduced soil erosion, increased C sequestration, and biodiversity through the conversion of highly erodible cropland to grasslands. The rate and magnitude of these changes varies and the factors that impact these changes are larg...

  11. On the positronium spin conversion reactions caused by some macrocyclic Co II complexes

    NASA Astrophysics Data System (ADS)

    Fantola-Lazzarini, Anna L.; Lazzarini, Ennio

    2002-08-01

    The rate constants, kCR, of ortho- into para-positronium ( o-Ps→ p-Ps) spin conversion reactions, CR, caused by the high-spin [Co IIsep] 2+, [Co IIdinosar] 2+ and [Co IIdiamsar] 2+ macrocyclic complexes and also by high-spin [Co II sen] 2+ tripod complex were measured at several temperatures. The delocalizations, β, of Co II unpaired electrons, promoted by the mentioned ligands, were determined by using the previously established correlations between kCR and the electron delocalization β of unpaired metal electrons. β is given by the ratio between the Racah inter-electronic repulsion parameters of complexes, B, and that of the free ions, B0. The β values are compared with those of the Co II complexes with en (1,2-ethanediamine), pn (1,2 propanediamine) and dien (2,2' diamino diethylamine) ligands. The kCR rate constants are also compared with those of the Ps oxidation reactions, OR, promoted by the corresponding Co III complexes. It is concluded that, unlike OR's, the CR's do not occur by formation of hepta-coordinate adducts with Ps atoms.

  12. Selling the story: narratives and charisma in adults with TBI.

    PubMed

    Jones, Corinne A; Turkstra, Lyn S

    2011-01-01

    To examine storytelling performance behaviours in adults with traumatic brain injury (TBI) and relate these behaviours to perceived charisma and desirability as a conversation partner. Seven adult males with traumatic brain injury (TBI) told their accident narratives to a male confederate. Ten male undergraduate students rated 1-minute video clips from the beginning of each narrative using the Charismatic Leadership Communication Scale (CLCS). Raters also indicated whether or not they would like to engage in conversation with each participant. Of the performative behaviours analysed, gestures alone significantly influenced CLCS ratings and reported likelihood of engaging in future conversation with the participant. Post-hoc analysis revealed that speech rate was significantly correlated with all of the preceding measures. There was a significant correlation between self- and other-ratings of charisma. The findings suggest that aspects of non-verbal performance, namely gesture use and speech rate, influence how charismatic an individual is perceived to be and how likely someone is to engage in conversation with that person. Variability in these performance behaviours may contribute to the variation in social outcomes seen in the TBI population.

  13. Biomass and Nitrogen Budgets During Larval Development of Lymantria dispar and Choristoneura fumiferana: Allometric Relationships

    Treesearch

    Michael E. Montgomery

    1983-01-01

    Spruce budworm larvae grew faster than gypsy moth larvae both in a temporal and relative sense. The budworm larvae had a higher relative growth rate (RGR), biomass conversion efficiency (EGI), and nitrogen utilization efficiency (NOE) than the gypsy moth larvae. As both species matured, relative growth rates, rates of consumption, and conversion efficiencies declined....

  14. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    NASA Astrophysics Data System (ADS)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  15. Mixed Redox Catalytic Destruction of Chlorinated Solvents in Soils and Groundwater: From the Laboratory to the Field

    PubMed Central

    Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric

    2010-01-01

    A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945

  16. Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz.

    PubMed

    Mörz, Florian; Steinle, Tobias; Steinmann, Andy; Giessen, Harald

    2015-09-07

    We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.

  17. Conversion and matched filter approximations for serial minimum-shift keyed modulation

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Ryan, C. R.; Stilwell, J. H.

    1982-01-01

    Serial minimum-shift keyed (MSK) modulation, a technique for generating and detecting MSK using series filtering, is ideally suited for high data rate applications provided the required conversion and matched filters can be closely approximated. Low-pass implementations of these filters as parallel inphase- and quadrature-mixer structures are characterized in this paper in terms of signal-to-noise ratio (SNR) degradation from ideal and envelope deviation. Several hardware implementation techniques utilizing microwave devices or lumped elements are presented. Optimization of parameter values results in realizations whose SNR degradation is less than 0.5 dB at error probabilities of .000001.

  18. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    PubMed

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  19. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN

    2017-12-01

    Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.

  20. Detailed kinetics of titanium nitride synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, H.; Hlavacek, V.

    1995-02-01

    A thermogravimetric analyzer is used to study the synthesis of TiN from Ti powder over a wide range of temperature, conversion and heating rate, and for two Ti precursor powders with different morphologies. Conversions to TiN up to 99% are obtained with negligible oxygen contamination. Nonisothermal initial rate and isothermal data are used in a nonlinear least-squares minimization to determine the most appropriate rate law. The logarithmic rate law offers an excellent agreement between the experimental and calculated conversions to TiN and can predict afterburning, which is an important experimentally observed phenomenon. Due to the form of the logarithmic ratemore » law, the observed activation energy is a function of effective particle size, extent of conversion, and temperature even when the intrinsic activation energy remains constant. This aspect explains discrepancies among activation energies obtained in previous studies. The frequently used sedimentation particle size is a poor measure of the powder reactivity. The BET surface area indicates the powder reactivity much better.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salminen, S.O.; Streeter, J.G.

    Bradyrhizobium japonicum bacteroids were isolated anaerobically and were supplied with /sup 14/C-labeled trehalose, sucrose, UDP-glucose, glucose, or fructose under low O/sub 2/ (2% in the gas phase). Uptake and conversion of /sup 14/C to CO/sub 2/ were measured at intervals up to 90 minutes. Of the five compounds studied, UDP-glucose was most rapidly absorbed but it was very slowly metabolized. Trehalose was the sugar most rapidly converted to CO/sub 2/, and fructose was respired at a rate of at least double that of glucose. Sucrose and glucose were converted to CO/sub 2/ at a very low but measurable rate (<0.1more » nanomoles per milligram protein per hour). Carbon Number 1 of glucose appeared in CO/sub 2/ at a rate 30 times greater than the conversion of carbon Number 6 to CO/sub 2/, indicating high activity of the pentose phosphate pathway. Enzymes of the Entner-Doudoroff pathway were not detected in bacteroids, but very low activities of sucrose synthase and phosphofructokinase were demonstrated. Although metabolism of sugars by B. japonicum bacteroids was clearly demonstrated, the rate of sugar uptake was only 1/30 to 1/50 the rate of succinate uptake. The overall results support the view that, although bacteroids metabolize sugars, the rates are very low and are inadequate to support nitrogenase.« less

  2. Effects of gender role self-discrepancies and self-perceived attractiveness on social anxiety for women across social situations.

    PubMed

    Howell, Ashley N; Weeks, Justin W

    2017-01-01

    Psychosocial factors, such as gender role norms, may impact how social anxiety disorder (SAD) is experienced and expressed in different social contexts for women. However to date, these factors have not been examined via experimental methodology. This was a cross-sectional, quasi-experimental controlled study. The current study included 48 highly socially anxious (HSA) women (70.9% meeting criteria for SAD) and examined the relationships among psychosocial factors (i.e. gender role self-discrepancies and self-perceived physical attractiveness), self-perceived social performance, and state anxiety, across two in vivo social tasks (i.e. conversation and opinion speech). On average, participants reported belief that they ought to be less feminine for the speech task and more masculine for both the conversation and speech tasks. Also, for the conversation task, only lower self-rated attractiveness predicted poorer self-perceived performance and greater post-task state anxiety, above gender role self-discrepancies and confederate gender. For the speech task, only greater self-discrepancy in prototypical masculine traits predicted poorer performance ratings, and it was related to greater state anxiety in anticipation of the task. For HSA women, psychosocial factors may play different roles in social anxiety across social contexts.

  3. Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes

    NASA Astrophysics Data System (ADS)

    Rani, Sanju; Bao, Ningzhong; Roy, Somnath C.

    2014-01-01

    A viable option for recycling carbon dioxide is through the sunlight-powered photocatalytic conversion of CO2 and water vapor into hydrocarbon fuels over highly active nanocatalysts. With photocatalytic CO2 reduction sunlight, a renewable energy source as durable as the sun, is used to drive the catalytic reaction with the resultant fuel products compatible with the current hydrocarbon-based energy infrastructure. The use of co-catalyst (Cu, Pt)-sensitized TiO2 nanoparticle wafers in the photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, with optimal humidity levels and exposure times established. We also attempted to increase product formation by sputtering both co-catalysts on the nanoparticle wafer's surface, with the resulting product rates significantly higher than that of either the Cu or Pt coated samples. When the TiO2 nanoparticle wafers are used in a flow-through membrane implementation we find a significant increase in product rates of formation, including methane, hydrogen, and carbon monoxide. We believe that nanocatalyst-based flow-through membranes are a viable route for achieving large-scale and low cost photocatalytic solar fuel production.

  4. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    PubMed

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Risk factors associated with conversion of laparoscopic simple closure in perforated duodenal ulcer.

    PubMed

    Kim, Ji-Hyun; Chin, Hyung-Min; Bae, You-Jin; Jun, Kyong-Hwa

    2015-03-01

    Precise patient selection criteria are necessary to guide the surgeon in selecting laparoscopic repair for patients with perforated peptic ulcers. The aims of this study are to report surgical outcomes after surgery for perforated duodenal ulcers and identify risk factors for predicting failure of laparoscopic simple closure for perforated duodenal ulcer. In total, 77 patients who underwent laparoscopic simple closure for perforated duodenal ulcers from January 2007 to September 2013 were retrospectively analyzed. Patients were divided into totally laparoscopic and conversion groups. The characteristics of patients, intraoperative findings, postoperative complications, conversion rates and suture leakage rates of each group were investigated. Laparoscopic repair was completed in 69 (89.6%) of 77 patients, while 8 (10.4%) underwent conversion to open repair. Patients in the conversion group had longer perforation time, larger perforation size, more suture leakage, longer hospital stay, and higher 30-day mortality rate than those in the totally laparoscopic group. The size of perforation was the only risk factor for conversion in multivariable analysis. Patients with an ulcer perforation size of ≥9 mm or with perforation duration of ≥12.5 h had a significantly increased risk for conversion and suture leakage. Ulcer size of ≥9 mm is a significant risk factor for predicting conversion in laparoscopic simple closure. Suture leakage is associated with ulcer size (9 mm) and duration of perforation (12.5 h). Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    DOE PAGES

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.; ...

    2016-11-18

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable,it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application,it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin,glucan,and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) amongmore » parental and hybrid populations,whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age,with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase),and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%,respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass,with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass,respectively),with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate,biomass composition,and further optimization of enzymatic saccharification yield,high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.« less

  7. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology.

    PubMed

    Hoffart, Eugenia; Grenz, Sebastian; Lange, Julian; Nitschel, Robert; Müller, Felix; Schwentner, Andreas; Feith, André; Lenfers-Lücker, Mira; Takors, Ralf; Blombach, Bastian

    2017-09-08

    The productivity of industrial fermentation processes is essentially limited by the biomass specific substrate consumption rate (q S ) of the applied microbial production system. Since q S depends on the growth rate (μ), we highlight the potential of the fastest growing non-pathogenic bacterium, Vibrio natriegens , as novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a μ of up to 4.43 h -1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high q S under aerobic (3.90 ± 0.08 g g -1 h -1 ) and anaerobic (7.81 ± 0.71 g g -1 h -1 ) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine L -1 min -1 (i.e. 34 g L -1 h -1 ). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity. Importance Low conversion rates are one major challenge to realize microbial fermentation processes for the production of commodities operating competitively to existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing superior characteristics to traditionally employed microbial systems. We identified the fast growing Vibrio natriegens which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation to engineer next generation bioprocesses. Copyright © 2017 American Society for Microbiology.

  8. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable,it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application,it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin,glucan,and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) amongmore » parental and hybrid populations,whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age,with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase),and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%,respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass,with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass,respectively),with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate,biomass composition,and further optimization of enzymatic saccharification yield,high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.« less

  9. Consumption and utilization of experimentally altered corn by southern armyworm: Iron, nitrogen, and cyclic hydroxamates.

    PubMed

    Manuwoto, S; Scriber, J M

    1985-11-01

    The effects of differential leaf water, leaf nitrogen and cyclic hydroxamate (DIMBOA) concentrations in corn seedlings were analyzed for a polyphagous insect, the southern armyworm (Spodoptera eridania Cram.). Six different combinations of nutrients and allelochemicals [DIMBOA = 2,4-dihydroxy-7-methoxy(2H)-benzoxazin-3(4H)-one] were generated using two corn genotypes (WF9 and CI3IA) and three fertility regimes (complete nutrient, Fe-deficient, and N-deficient solutions) in the University Biotron. Poorest larval growth was observed in the low-nitrogen treatments (1.2% and 1.7% leaf N) and was the result of both low consumption rates and high metabolic costs (low efficiency of conversion of digested food, ECD). Fastest growth rates were observed forthe larvae fed leaves from the high-nitrogen treatments (4.6% and 4.4% leaf N). It is noteworthy that these treatments also contained the highest concentration of cyclic hydroxamates, which are generally believed to be the primary defensive chemicals mediating resistance against the European corn borer,Ostrinia nubilalis (Hubner). If these hydroxamates do have any deleterious or costly effects (perhaps accounting for a large portion of metabolic expenditures), the high digestibility of the leaf tissue and the increased consumption rates more than compensate, resulting in rapid growth (growth rate = consumption rate × approximate digestibility × efficiency of conversion of the digested food). These studies illustrate that variation in key nutrients and allelochemicals within a single plant species (Zea mays L.) may have significantly different effects upon various potential leaf-chewing caterpillars, such as these armyworms versus corn borers (which cannot handle the cyclic hydroxamates, even if provided with young nutritious leaf tissues).

  10. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa.

    PubMed

    Healey, Adam L; Lee, David J; Lupoi, Jason S; Papa, Gabriella; Guenther, Joel M; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.

  11. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    PubMed Central

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.; Papa, Gabriella; Guenther, Joel M.; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A.; Henry, Robert J.

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production. PMID:27917179

  12. A cure-rate model for the Shuttle filament-wound case

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Islas, A.; Hsu, Ming-Ta

    1987-01-01

    An epoxy and carbon fiber composite has been used to produce a light-weight rocket case for the Space Shuttle. A kinetic model is developed which can predict the extent of epoxy conversion during the winding and curing of the case. The model accounts for both chemical and physical kinetics. In the model, chemical kinetics occur exclusively up to the time the transition temperature equals the reaction temperature. At this point the resin begins to solidify and the rate of this process limits the rate of epoxy conversion. A comparison of predicted and actual epoxy conversion is presented for isothermal and temperature programmed cure schedules.

  13. Conversion to dementia in mild cognitive impairment diagnosed with DSM-5 criteria and with Petersen's criteria.

    PubMed

    Marcos, G; Santabárbara, J; Lopez-Anton, R; De-la-Cámara, C; Gracia-García, P; Lobo, E; Pírez, G; Menchón, J M; Palomo, T; Stephan, B C M; Brayne, C; Lobo, A

    2016-05-01

    In a background of revision of criteria for states of increased risk for progression to dementia, we compare the conversion rate to dementia and Alzheimer's disease (AD) of mild cognitive impairment (MCI) as diagnosed using DSM-5 (DSM-5-MCI) and Petersen's (P-MCI) criteria. A population representative cohort of 4057 dementia-free individuals 55+ years of age was followed up at 2.5 and 4.5 years in Zaragoza, Spain (ZARADEMP). Using the Geriatric Mental State- AGECAT for assessment, research psychiatrists diagnosed DSM-5-MCI and P-MCI following operationalized criteria. 'Conversion rate' (CR), 'annual conversion rate' (ACR), and incidence rate (IR) were calculated along with incidence rate ratio (IRR) to compare the performance of the intermediate cognitive definitions. At 4.5-year follow-up, in individuals aged 65+ years, ACRs for non-cases, P-MCI, and DSM-5-MCI were 0.8, 1.9 and 3.4, respectively, for global dementia. The IRRs were 2.9 and 5.3 for P-MCI and DSM5-MCI, respectively, being the non-cases the reference category. The corresponding values were slightly lower for AD. Conversion rate to dementia and AD was higher using DSM-5-MCI criteria than using Petersen's criteria. However, prediction of the construct still has some way to go, as most MCI individuals did not convert at 4.5-year follow-up. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The quality assurance program of organ donation in Tuscany.

    PubMed

    Bozzi, G; Saviozzi, A; De Simone, P; Filipponi, F

    2008-01-01

    Constant monitoring is paramount in order to detect the criticalities and improve the results of the deceased donation process. Concomitant with the institution of a regional transplantation service authority--Organizzazione Toscana Trapianti--in 2003, Tuscany adopted a program of quality assurance of the deceased donation process by compulsory reporting of all encephalic deaths from local intensive care units to the regional transplant office in Florence. The indicators we adopted were the efficiency of deceased donor (DD) identification, expressed as the ratio of encephalic deaths (ED) to total deaths with encephalic lesions (EL) (ie, ED/EL); the efficiency of DD reporting, expressed as the ratio of reported potential DD (RPDD) to total ED (ie, RPDD/ED); the efficacy of the DD process, as the ratio between actual DD (ADD) to total ED (ie, ADD/ED); the conversion rate; the percent of opposition to donation; and the incidence of DD maintenance failures. Data were collected prospectively, stratified by regional hospital consortia (Aziende Sanitarie Locali) and compared with international benchmarks. In the period 2003-2006 the mean efficiency of DD identification was 48.3%+/-4.4% (range 42.6%-53.2%); the mean efficiency of DD reporting was 95.2%+/-2.5% (range 92.5%-98.5%); the mean efficacy of the deceased donation process was 51.8%+/-2.4% (range 48.6%-54.4%); the mean conversion rate was 59.6%+/-2.2% (range 57.6%-62.7%); the mean opposition rate was 31.9%+/-1.1% (range 30.6%-33.2%); and the incidence of DD maintenance failure was 5%+/-2.9% (range 2.2%-8.7%). The breakdown analysis revealed wide interhospital variability in terms of efficiency of DD identification (from a low of 25% to a high of 80%); efficacy of the donation process (from a low of 22% to a high of 79%); and conversion rate (from a low of 29% to a high of 79%). Our results highlight that the donation process gets started in about 50% of eligible cases. Further strategies are favored to address this critical area.

  15. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.

    PubMed

    Schutyser, Wouter; Van den Bosch, Sander; Dijkmans, Jan; Turner, Stuart; Meledina, Maria; Van Tendeloo, Gustaaf; Debecker, Damien P; Sels, Bert F

    2015-05-22

    Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (>250 °C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (≈80 %) and tin-containing beta zeolite to form 4-alkyl-ε-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2 O2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reduction and conversion of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.

    PubMed

    Qiao, Hua; Wang, He-ling; Feng, Hua-jun; Yao, Jun; Shen, Dong-sheng; Tang, Zhi-jian

    2010-07-15

    To account for the fast disappearance of TNT in anaerobic fermentative liquid, we investigated TNT (TNT(0)=50 mg/L) reduction by Na(2)S at 30+/-1 degrees C in two types of buffer systems, a phosphate buffer (PB, system A) and a CH(3)COOH-NaHCO(3) buffer (system B). The effects of pH, sulfide concentration and buffer system on the conversion and reaction rate of TNT were investigated. The effect of different variables on the conversion of TNT decreased in the following order: Na(2)S concentration>pH>buffer system. A kinetics study showed that TNT reduction by Na(2)S occurred in two stages separated by a change point. The observed rate constants of the first stage K(obs-1) were 1 order of magnitude lower than those of the second stage. The TNT conversion rate increased and the time to reach the change point became shorter with increasing Na(2)S concentration and pH. A 5-fold increase in Na(2)S concentration above the theoretical stoichiometric concentration was optimum. Observed rate constants of the first stage K(obs-1) were proportional to the hydrosulfide ion concentration and the conversion rate of TNT was greater and faster in buffer system B than in system A. 2010 Elsevier B.V. All rights reserved.

  17. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  18. Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440

    DOE PAGES

    Guarnieri, Michael T.; Franden, Mary Ann; Johnson, Christopher W.; ...

    2017-02-08

    The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural andmore » HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans. The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. Furthermore, this approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.« less

  19. Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Franden, Mary Ann; Johnson, Christopher W.

    The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural andmore » HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans. The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. Furthermore, this approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.« less

  20. Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440.

    PubMed

    Guarnieri, Michael T; Ann Franden, Mary; Johnson, Christopher W; Beckham, Gregg T

    2017-06-01

    The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural and HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans . The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. This approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.

  1. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  2. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    PubMed

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Profile of tuberculosis patients with delayed sputum smear conversion in the Pacific island of Vanuatu

    PubMed Central

    Viney, K.; Tarivonda, L.; Roseveare, C.; Tagaro, M.; Marais, B. J.

    2014-01-01

    Setting: National tuberculosis control programme, Vanuatu. Objective: To assess tuberculosis (TB) trends, characterise sputum smear-positive patients with non-conversion at 2 months and assess their treatment outcomes. Design: Evaluation of programme data over a 9-year period (2004–2012), comparing 2-month sputum non-converters (delayed converters) with sputum smear converters diagnosed in 2011 and 2012. Results: Annual TB case numbers were similar over the study period, with an average TB notification rate of 58 per 100 000 population. Of 417 sputum smear-positive cases, 74 (18%) were delayed converters. Delayed converters were more likely than converters (88% vs. 79%) to have had high pre-treatment sputum smear grades (OR 2.5, 95%CI 0.97–6.45). Among delayed converters, treatment adherence was high (99% good adherence), outcomes were generally good (90% treatment success, 85% cure, 4% treatment failure) and no drug resistance was detected. Deaths were unexpectedly common among converters (11/80, 14%), with significantly more deaths in Tafea than in Shefa Province (7/58 vs. 2/80, OR 5.35, 95%CI 1.07–26.79). Tafea Province also had the greatest number of delayed converters (30/74, 40.5%) and the highest TB incidence rate. Conclusion: Delayed sputum conversion was relatively uncommon, and was not associated with adverse outcomes or drug resistance. Regional differences require further investigation to better understand local factors that may compromise patient management. PMID:26477281

  4. A set of observational measures for rating support and participation in conversation between adults with aphasia and their conversation partners.

    PubMed

    Kagan, Aura; Winckel, Joanne; Black, Sandra; Duchan, Judith Felson; Simmons-Mackie, Nina; Square, Paula

    2004-01-01

    Conversation partners of individuals with aphasia, including health care professionals, families, and others, play a role that is as important for communication as the language disorder suffered by individuals with aphasia. Two complementary measures designed to capture elements of conversation between adults with aphasia and their speaking conversation partners have been developed. The first measure provides an index of the conversation partner's skill in providing conversational support. The second provides an index of the level of participation in conversation by the person with aphasia. This article describes the development of the measures, including preliminary psychometric data, and discusses applications.

  5. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  6. [Analysis and publication rate of the presentations at the Turkish National Otorhinolaryngology and Head and Neck Surgery meetings].

    PubMed

    Erdağ, Taner Kemal; Durmuşoğlu, Mehmet; Demir, Ali Oğuz; Doğan, Ersoy; Ikiz, Ahmet Omer

    2014-01-01

    This study aims to evaluate the analysis and publication rates of presentations presented at the Turkish National Otorhinolaryngology and Head & Neck Surgery (TNORL and HNS) meetings. The TNORL and HNS meetings of 2008, 2009 and 2010 were included in the study. The number, subjects, types (clinical study, experimental study, case report) and institutions of the oral presentations and posters were documented using the abstract CD's of the meetings. The conversion rate of presentations into the full-text articles in the peer-reviewed journals were reviewed through the search engines Pubmed for the international indexes and Türk Medline and Ulakbim for the national ones. The time from presentation in the meetings to publication was determined. The distribution of journals according to the publication dates of the articles were evaluated in terms of the Science citation index (SCI), SCI expanded (SCI-E), PubMed and Turkish citation index. The total number of presentations submitted in the three TNORL and HNS meetings was 1,454 and posters accounted for 75.4% of all presentations. While case reports were 53.2% of the total presentations, the ratios were found to be 43% and 3.8% for the research and experimental studies, respectively. Of the oral presentations, 88% included research studies, whereas 70.3% of the posters were case reports. The origin of the presentations was university hospitals, education hospitals, other national institutions, and international institutions with ratios of 51.6%, 44.3%, 3% and 1.1%, respectively. The conversion rate of presentations into the full-text articles was found as 21.9%. The rate was 37.3% for oral presentations and 17% for the posters (p=0.00). For all of the 319 published papers, the overall mean time from presentation to publication was 18.6 months. While 62.7% of the articles were published in international journals, 37.3% were published in national journals. The conversion rate of oral presentations into publications was higher than the posters (p=0.00). The first study related to TNORL and HNS meetings in Turkey revealed that, although the quantity of presentations was high, the rate of conversion into the full-text journal articles was lower compared to the similar international annual meetings held by otorhinolaryngology or other disciplines. The quality and success of our scientific meetings can be enhanced with some particular precautions.

  7. Self-Exciting Point Process Modeling of Conversation Event Sequences

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

    Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

  8. Development of the Contextual Assessment of Social Skills (CASS): a role play measure of social skill for individuals with high-functioning autism.

    PubMed

    Ratto, Allison B; Turner-Brown, Lauren; Rupp, Betty M; Mesibov, Gary B; Penn, David L

    2011-09-01

    This study piloted a role play assessment of conversational skills for adolescents and young adults with high-functioning autism/Asperger syndrome (HFA/AS). Participants completed two semi-structured role plays, in which social context was manipulated by changing the confederate's level of interest in the conversation. Participants' social behavior was rated via a behavioral coding system, and performance was compared across contexts and groups. An interaction effect was found for several items, whereby control participants showed significant change across context, while participants with HFA/AS showed little or no change. Total change across contexts was significantly correlated with related social constructs and significantly predicted ASD. The findings are discussed in terms of the potential utility of the CASS in the evaluation of social skill.

  9. Grassland Management and Conversion into Grassland: Effects on Soil Carbon

    DOE Data Explorer

    Conant, Richard T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Paustian, Keith [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Elliott, Edward T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA)

    2003-01-01

    Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 y after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 to 3.04 Mg C · ha–1 y–1, with a mean of 0.54 Mg C · ha –1 · y–1, and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.

  10. Effect of flow rate and concentration difference on reverse electrodialysis system

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong

    2013-11-01

    Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.

  11. Bee-mediated pollen transfer in two populations of Cypripedium montanum Douglas ex Lindley

    Treesearch

    Peter Bernhardt; Retha Edens-Meier; Eric Westhus; Nan Vance

    2014-01-01

    The conversion rate of flowers into fruit in C. montanum at two sites over four seasons was 52-85%, unusually high for a food mimic orchid. Comparative measurements of the trap-like labellum of C. montanum showed it was intermediate in size compared to measurements of six other Cypripedium spp. found in...

  12. Charting an Alternate Pathway to Reaction Orders and Rate Laws in Introductory Chemistry Courses

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Criswell, Brett A.; McAllister, Nicole D.; Polizzi, Samuel J.; Moore, Lamesha A.; Pierre, Michelle S.

    2014-01-01

    Reaction kinetics is an axiomatic topic in chemistry that is often addressed as early as the high school course and serves as the foundation for more sophisticated conversations in college-level organic, physical, and biological chemistry courses. Despite the fundamental nature of reaction kinetics, students can struggle with transforming their…

  13. Urban ecosystems and the North American carbon cycle

    Treesearch

    D.E. Pataki; R.J. Alig; A.S. Fung; E. Golubiewski; C.A. Kennedy; E.G. McPherson; D.J. Nowak; R.V. Pouyat; P. Romero Lankao

    2006-01-01

    Approximately 75-80% of the population of North America currently lives in urban areas as defined by national census bureaus, and urbanization is continuing to increase. Future trajectories of fossil fuel emissions are associated with a high degree of uncertainty; however, if the activities of urban residents and the rate of urban land conversion can be captured in...

  14. High-speed electrodeposition of copper-tin-zinc stacks from liquid metal salts for Cu2ZnSnSe4 solar cells.

    PubMed

    Steichen, Marc; Malaquias, João C; Arasimowicz, Monika; Djemour, Rabie; Brooks, Neil R; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen; Dale, Phillip J

    2017-01-16

    Cu 2 ZnSnSe 4 -based solar cells with 5.5% power conversion efficiency were fabricated from Cu/Sn/Zn stacks electrodeposited from liquid metal salts. These electrolytes allow metal deposition rates one order of magnitude higher than those of other deposition methods.

  15. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation

    Treesearch

    Jae-Won Lee; Rita C.L.B. Rodrigues; Hyun Joo Kim; In-Gyu Choi; Thomas W. Jeffries

    2010-01-01

    High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 23 full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment...

  16. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities

    PubMed Central

    Rodrigues, Jorge L. M.; Pellizari, Vivian H.; Mueller, Rebecca; Baek, Kyunghwa; Jesus, Ederson da C.; Paula, Fabiana S.; Mirza, Babur; Hamaoui, George S.; Tsai, Siu Mui; Feigl, Brigitte; Tiedje, James M.; Bohannan, Brendan J. M.; Nüsslein, Klaus

    2013-01-01

    The Amazon rainforest is the Earth’s largest reservoir of plant and animal diversity, and it has been subjected to especially high rates of land use change, primarily to cattle pasture. This conversion has had a strongly negative effect on biological diversity, reducing the number of plant and animal species and homogenizing communities. We report here that microbial biodiversity also responds strongly to conversion of the Amazon rainforest, but in a manner different from plants and animals. Local taxonomic and phylogenetic diversity of soil bacteria increases after conversion, but communities become more similar across space. This homogenization is driven by the loss of forest soil bacteria with restricted ranges (endemics) and results in a net loss of diversity. This study shows homogenization of microbial communities in response to human activities. Given that soil microbes represent the majority of biodiversity in terrestrial ecosystems and are intimately involved in ecosystem functions, we argue that microbial biodiversity loss should be taken into account when assessing the impact of land use change in tropical forests. PMID:23271810

  17. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities.

    PubMed

    Rodrigues, Jorge L M; Pellizari, Vivian H; Mueller, Rebecca; Baek, Kyunghwa; Jesus, Ederson da C; Paula, Fabiana S; Mirza, Babur; Hamaoui, George S; Tsai, Siu Mui; Feigl, Brigitte; Tiedje, James M; Bohannan, Brendan J M; Nüsslein, Klaus

    2013-01-15

    The Amazon rainforest is the Earth's largest reservoir of plant and animal diversity, and it has been subjected to especially high rates of land use change, primarily to cattle pasture. This conversion has had a strongly negative effect on biological diversity, reducing the number of plant and animal species and homogenizing communities. We report here that microbial biodiversity also responds strongly to conversion of the Amazon rainforest, but in a manner different from plants and animals. Local taxonomic and phylogenetic diversity of soil bacteria increases after conversion, but communities become more similar across space. This homogenization is driven by the loss of forest soil bacteria with restricted ranges (endemics) and results in a net loss of diversity. This study shows homogenization of microbial communities in response to human activities. Given that soil microbes represent the majority of biodiversity in terrestrial ecosystems and are intimately involved in ecosystem functions, we argue that microbial biodiversity loss should be taken into account when assessing the impact of land use change in tropical forests.

  18. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    PubMed

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system.

    PubMed

    Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora

    2010-04-01

    This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.

  20. Vitamin C supplementation improve the sputum conversion culture rate in pulmonary tuberculosis treatment while rifampicin susceptible

    NASA Astrophysics Data System (ADS)

    Susanto, L.; Siregar, Y.; Kusumawati, L.

    2018-03-01

    The failure of first-line tuberculosis treatment greatly affects multiple drug-resistant tuberculosis. In vitro study of vitamin C induces the death of M. tuberculosis bacteria and accelerates healing of tuberculosis, so the multiple drug-resistant tuberculosis can be avoided. This research aimed to identify the effect of vitamin C as a supportive treatment on the sputum conversion rate. The randomizedand double group with a parallel design by matching pair method was used to collect samples. The first group was treated with standard tuberculosis treatment, and the other was given vitamin C supplementation. Vitamin C plasma level analyzation was performed before and after two months of treatment. Sputum conversion was evaluated every week for eight weeks. The comparison of vitamin C plasma level in pre and post-treatment group was significant (p=0.03) but not in the other group. There was no significant difference in vitamin C plasma level between two groups (p=0.21). The proportion of sputum conversion rate in both group in the first week was 0% vs. 9.6% (p=0.83) and the last week of study was 83.9% vs. 100% (p=0.02). In conclusion, vitamin C supplementation has effects in improving the healing process of tuberculosis patients as indicated by higher in sputum conversion rate.

  1. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    PubMed

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  2. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    PubMed Central

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  3. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    NASA Astrophysics Data System (ADS)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  4. Direct 1H NMR evidence of spin-rotation coupling as a source of para → ortho-H2 conversion in diamagnetic solvents.

    PubMed

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2017-04-21

    At ambient temperature, conversion from 100% enriched para-hydrogen (p-H 2 ; singlet state) to ortho-hydrogen (o-H 2 ; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H 2 and 25% of p-H 2 . When p-H 2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the para→ortho conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the para→ortho conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H 2 (p-H 2 is NMR-silent), one has to account for H 2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d 6 and carbon disulfide. The observed temperature dependence of the para→ortho conversion rate shows that spin-rotation can be the dominant contribution to the p-H 2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the para→ortho conversion which has been searched for several decades.

  5. Selling the story: Narratives and charisma in adults with TBI

    PubMed Central

    JONES, CORINNE A.; TURKSTRA, LYN S.

    2015-01-01

    Objective To examine storytelling performance behaviours in adults with traumatic brain injury (TBI) and relate these behaviours to perceived charisma and desirability as a conversation partner. Design and methods Seven adult males with traumatic brain injury (TBI) told their accident narratives to a male confederate. Ten male undergraduate students rated 1-minute video clips from the beginning of each narrative using the Charismatic Leadership Communication Scale (CLCS). Raters also indicated whether or not they would like to engage in conversation with each participant. Results Of the performative behaviours analysed, gestures alone significantly influenced CLCS ratings and reported likelihood of engaging in future conversation with the participant. Post-hoc analysis revealed that speech rate was significantly correlated with all of the preceding measures. There was a significant correlation between self- and other-ratings of charisma. Conclusions The findings suggest that aspects of non-verbal performance, namely gesture use and speech rate, influence how charismatic an individual is perceived to be and how likely someone is to engage in conversation with that person. Variability in these performance behaviours may contribute to the variation in social outcomes seen in the TBI population. PMID:21714624

  6. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    NASA Astrophysics Data System (ADS)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  7. Prospective study of cannabis use in adolescents at clinical high risk for psychosis: impact on conversion to psychosis and functional outcome.

    PubMed

    Auther, A M; McLaughlin, D; Carrión, R E; Nagachandran, P; Correll, C U; Cornblatt, B A

    2012-12-01

    Clinical and epidemiological studies suggest an association between cannabis use and psychosis but this relationship remains controversial. Clinical high-risk (CHR) subjects (age 12-22 years) with attenuated positive symptoms of psychosis (CHR+, n=101) were compared to healthy controls (HC, n=59) on rates of substance use, including cannabis. CHR+ subjects with and without lifetime cannabis use (and abuse) were compared on prodromal symptoms and social/role functioning at baseline. Participants were followed an average of 2.97 years to determine psychosis conversion status and functional outcome. At baseline, CHR+ subjects had significantly higher rates of lifetime cannabis use than HC. CHR+ lifetime cannabis users (n=35) were older (p=0.015, trend), more likely to be Caucasian (p=0.002), less socially anhedonic (p<0.001) and had higher Global Functioning: Social (GF:Social) scores (p<0.001) than non-users (n=61). CHR+ cannabis users continued to have higher social functioning than non-users at follow-up (p<0.001) but showed no differences in role functioning. A small sample of CHR+ cannabis abusers (n=10) showed similar results in that abusers were older (p=0.008), less socially anhedonic (p=0.017, trend) and had higher baseline GF:Social scores (p=0.006) than non-abusers. Logistic regression analyses revealed that conversion to psychosis in CHR+ subjects (n=15) was not related to lifetime cannabis use or abuse. The current data do not indicate that low to moderate lifetime cannabis use is a major contributor to psychosis or poor social and role functioning in clinical high-risk youth with attenuated positive symptoms of psychosis.

  8. Substitution of ethambutol with linezolid during the intensive phase of treatment of pulmonary tuberculosis: study protocol for a prospective, multicenter, randomized, open-label, phase II trial.

    PubMed

    Lee, Ji Yeon; Kim, Deog Kyeom; Lee, Jung-Kyu; Yoon, Ho Il; Jeong, Ina; Heo, Eunyoung; Park, Young Sik; Lee, Jae Ho; Park, Sung Soo; Lee, Sang-Min; Lee, Chang-Hoon; Lee, Jinwoo; Choi, Sun Mi; Park, Jong Sun; Joh, Joon-Sung; Cho, Young-Jae; Lee, Yeon Joo; Kim, Se Joong; Hwang, Young Ran; Kim, Hyeonjeong; Ki, Jongeun; Choi, Hyungsook; Han, Jiyeon; Ahn, Heejung; Hahn, Seokyung; Yim, Jae-Joon

    2017-02-13

    Linezolid, an oxazolidinone, substantially improves treatment outcomes of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. We started a trial to test whether the use of linezolid instead of ethambutol could increase the rate of sputum culture conversion as of 8 weeks of treatment in patients with drug-susceptible tuberculosis. This is a phase II, multicenter, randomized study with three arms. We are enrolling patients with pulmonary tuberculosis without rifampicin resistance screened by the Xpert MTB/RIF® assay. The standard treatment arm uses isoniazid (6 months), rifampicin (6 months), pyrazinamide (2 months), and ethambutol (2 months). Experimental arm 1 uses linezolid (600 mg/day) for 4 weeks instead of ethambutol. Experimental arm 2 uses linezolid (600 mg/day) for 2 weeks instead of ethambutol. The primary outcome is the sputum culture conversion rate on liquid media after 2 months of treatment. Secondary outcomes include the sputum culture conversion rate on solid media after 2 months of treatment, time to sputum culture conversion on liquid and solid media, cure rate, and treatment success rate. The frequencies of total adverse events (AEs) and serious AEs will be described and documented. Based on an α = 0.05 level of significance, a power of 85%, a 15% difference in the culture conversion rate after 2 months between the control arm and experimental arm 1 (75% vs. 90%), a 10% default (loss to follow-up) rate, and a 10% culture failure, the required number per arm was calculated to be 143 (429 in total). This trial will reveal the effectiveness and safety of 2 or 4 weeks of use of linezolid instead of ethambutol for patients with drug-susceptible pulmonary tuberculosis. If a new regimen including linezolid shows a higher culture conversion rate by week 8, and is safe, it could be tested as a 4-month antituberculosis treatment regimen in the future. ClincalTrials.gov, NCT01994460 . Registered on 13 November 2013.

  9. Social Valence in Children with Specific Language Impairment during Imitation-Based and Conversation-Based Language Intervention.

    ERIC Educational Resources Information Center

    Haley, Katarina L.; And Others

    1994-01-01

    Fifteen preschool children with specific language impairment engaged in typical language intervention activities during conversation-based and imitation-based language programs. A higher number of positive social valence ratings; higher frequency of smiling, laughing, and engagement; and higher rate of verbal initiations were noted within…

  10. 5 CFR 536.302 - Optional pay retention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conversion rule in § 536.303(a) before determining whether an employee's rate of basic pay otherwise would be... entitled to pay retention under § 536.301, but whose payable rate of basic pay otherwise would be reduced (after application of any applicable geographic conversion under § 536.303(a)) as the result of a...

  11. 5 CFR 9901.314 - National security compensation comparability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conversion of such employees to the NSPS; and (2) Adjustments for normal step increases and rates of... disadvantaged in terms of the overall amount of compensation available as a result of conversion to the NSPS.... 5304, special rate supplement under 5 U.S.C. 5305, local market supplement under § 9901.332, or...

  12. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  13. Condensed phase conversion and growth of nanorods instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2005-08-02

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  14. 26 CFR 1.305-6 - Distributions of convertible preferred.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the following conditions exist: (i) The conversion right must be exercised within a relatively short... the dividend rate, the redemption provisions, the marketability of the convertible stock, and the conversion price, it may be anticipated that some shareholders will exercise their conversion rights and some...

  15. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  16. Resolution of enantiopure (S)-1-(1-napthyl) ethanol from racemic mixture by a novel Bacillus cereus isolate.

    PubMed

    Ranjan, Preeti; Pandey, Ashok; Binod, Parameswaran

    2017-09-01

    Chiral intermediates have wide application and high demand in pharmaceutical, agricultural, and other biotechnological industries for the preparation of bulk drug substances or fine chemicals. (S)-1-(1-napthyl) ethanol is an important synthetic intermediate of mevinic acid analog and a potential inhibitor of 3-hydroxy methyl glutaryl coenzyme A reductase enzymes which is rate limiting for cholesterol synthesis. The present study focuses on the resolution of (RS)-1-(1-napthyl) ethanol using whole cell biotransformation approach. The screening of microbial strains for the specific conversion were performed by the enrichment techniques using (RS)-1-(1-napthyl) ethanol. Evaluation of resolution, i.e., the enantioselective conversion of (R)-1-(1-napthyl) ethanol into 1-acetonapthone and production of (S)-1-(1-napthyl) ethanol with high purity were carried out. Among the isolates, a novel strain Bacillus cereus WG3 was found to be potent for the resolution and conversion of (S)-1-(1-napthyl) ethanol. This strain showed 86% conversion of (R)-1-(1-napthyl) ethanol and 95% yield of S-1-(1-napthyl) ethanol with 80% ee after 24 h. Further, the optimization of biotransformation reactions was carried out and the optimal parameters were found to be pH 7.0 and temperature 30 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America

  18. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  19. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries

    PubMed Central

    McNulty, David; Geaney, Hugh; O’Dwyer, Colm

    2017-01-01

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183

  20. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries.

    PubMed

    McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2017-02-10

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li 2 O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.

  1. The cost of conversion in robotic and laparoscopic colorectal surgery.

    PubMed

    Cleary, Robert K; Mullard, Andrew J; Ferraro, Jane; Regenbogen, Scott E

    2018-03-01

    Conversion from minimally invasive to open colorectal surgery remains common and costly. Robotic colorectal surgery is associated with lower rates of conversion than laparoscopy, but institutions and payers remain concerned about equipment and implementation costs. Recognizing that reimbursement reform and bundled payments expand perspectives on cost to include the entire surgical episode, we evaluated the role of minimally invasive conversion in total payments. This is an observational study from a linked data registry including clinical data from the Michigan Surgical Quality Collaborative and payment data from the Michigan Value Collaborative between July 2012 and April 2015. We evaluated colorectal resections initiated with open and minimally invasive approaches, and compared reported risk-adjusted and price-standardized 30-day episode payments and their components. We identified 1061 open, 1604 laparoscopic, and 275 robotic colorectal resections. Adjusted episode payments were significantly higher for open operations than for minimally invasive procedures completed without conversion ($19,489 vs. $15,518, p < 0.001). The conversion rate was significantly higher with laparoscopic than robotic operations (15.1 vs. 7.6%, p < 0.001). Adjusted episode payments for minimally invasive operations converted to open were significantly higher than for those completed by minimally invasive approaches ($18,098 vs. $15,518, p < 0.001). Payments for operations completed robotically were greater than those completed laparoscopically ($16,949 vs. $15,250, p < 0.001), but the difference was substantially decreased when conversion to open cases was included ($16,939 vs. $15,699, p = 0.041). Episode payments for open colorectal surgery exceed both laparoscopic and robotic minimally invasive options. Conversion to open surgery significantly increases the payments associated with minimally invasive colorectal surgery. Because conversion rates in robotic colorectal operations are half of those in laparoscopy, the excess expenditures attributable to robotics are attenuated by consideration of the cost of conversions.

  2. Geographic Differences in Time to Culture Conversion in Liquid Media: Tuberculosis Trials Consortium Study 28. Culture Conversion Is Delayed in Africa

    PubMed Central

    Mac Kenzie, William R.; Heilig, Charles M.; Bozeman, Lorna; Johnson, John L.; Muzanye, Grace; Dunbar, Denise; Jost, Kenneth C.; Diem, Lois; Metchock, Beverly; Eisenach, Kathleen; Dorman, Susan; Goldberg, Stefan

    2011-01-01

    Background Tuberculosis Trials Consortium Study 28, was a double blind, randomized, placebo-controlled, phase 2 clinical trial examining smear positive pulmonary Mycobacterium tuberculosis. Over the course of intensive phase therapy, patients from African sites had substantially delayed and lower rates of culture conversion to negative in liquid media compared to non-African patients. We explored potential explanations of this finding. Methods In TBTC Study 28, protocol-correct patients (n = 328) provided spot sputum specimens for M. tuberculosis culture in liquid media, at baseline and weeks 2, 4, 6 and 8 of study therapy. We compared sputum culture conversion for African and non-African patients stratified by four baseline measures of disease severity: AFB smear quantification, extent of disease on chest radiograph, cavity size and the number of days to detection of M. tuberculosis in liquid media using the Kaplan-Meier product-limit method. We evaluated specimen processing and culture procedures used at 29 study laboratories serving 27 sites. Results African TB patients had more extensive disease at enrollment than non-African patients. However, African patients with the least disease by the 4 measures of disease severity had conversion rates on liquid media that were substantially lower than conversion rates in non-African patients with the greatest extent of disease. HIV infection, smoking and diabetes did not explain delayed conversion in Africa. Some inter-site variation in laboratory processing and culture procedures within accepted practice for clinical diagnostic laboratories was found. Conclusions Compared with patients from non-African sites, African patients being treated for TB had delayed sputum culture conversion and lower sputum conversion rates in liquid media that were not explained by baseline severity of disease, HIV status, age, smoking, diabetes or race. Further investigation is warranted into whether modest variation in laboratory processes substantially influences the efficacy outcomes of phase 2 TB treatment trials or if other factors (e.g., nutrition, host response) are involved. Trial Registration ClinicalTrials.gov NCT00144417 PMID:21494548

  3. Linking FRRF Derived Photophysiology with Carbon-based Primary Productivity: Insights from Concepts of Cellular Energy Allocation

    NASA Astrophysics Data System (ADS)

    Schuback, N.; Schallenberg, C.; Duckham, C.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in photosystem II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides important physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. We present data from a series of experiments during which we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific. Our results show significant variability of the derived conversion factor (Ve:C/nPSII), with highest values observed under conditions of excess excitation pressure at the level of photosystem II, caused by high light and/or low iron. Our results will be discussed in the context of metabolic plasticity, which evolved in phytoplankton to simultaneously maximize growth and provide photoprotection under fluctuating light and limiting nutrient availabilities. Because the derived conversion factor is associated with conditions of excess light, it correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, also derived from FRRF measurements. Our results demonstrate a significant correlation between NPQ and the conversion factor Ve:C/nPSII, and the potential of this relationship to improve FRRF-based estimates of phytoplankton carbon fixation rates is discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economicmore » analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.« less

  5. VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)

    NASA Astrophysics Data System (ADS)

    Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.

    2016-10-01

    The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).

  6. Comparison of Effects Produced by Nicotine and the α4β2-Selective Agonist 5-I-A-85380 On Intracranial Self-Stimulation in Rats

    PubMed Central

    Freitas, Kelen; Carroll, F. Ivy; Negus, S. Stevens

    2015-01-01

    Intracranial self-stimulation (ICSS) is one type of preclinical procedure for research on pharmacological mechanisms that mediate abuse potential of drugs acting at various targets including nicotinic acetylcholine receptors (nAChRs). This study compared effects of the non-selective nAChR agonist nicotine (0.032-1.0 mg/kg) and the α4β2-selective nAChR agonist 5-I-A-85380 (0.01-1.0 mg/kg) on ICSS in male Sprague-Dawley rats. Rats were implanted with electrodes targeting the medial forebrain bundle at the level of the lateral hypothalamus and trained to respond under a fixed-ratio 1 schedule for a range of brain stimulation frequencies (158-56 Hz). A broad range of 5-I-A-85380 doses produced an abuse-related increase (or “facilitation”) of low ICSS rates maintained by low brain-stimulation frequencies, and this effect was blocked by both the nonselective nAChR antagonist mecamylamine and the selective α4β2 antagonist dihyrdo-ß-erythroidine (DHßE). Conversely, nicotine produced weaker ICSS facilitation across a narrower range of doses, and higher nicotine doses decreased high rates of ICSS maintained by high brain- stimulation frequencies. The rate-decreasing effects of a high nicotine dose were blocked by mecamylamine but not DHßE. Chronic nicotine treatment produced selective tolerance to rate-decreasing effects of nicotine but did not alter ICSS rate-increasing effects of nicotine. These results suggest that α4β2 receptors are sufficient to mediate abuse-related rate-increasing effects of nAChR agonists in this ICSS procedure. Conversely, nicotine effects at non-α4β2 nAChRs appear to oppose and limit abuse-related effects mediated by α4β2 receptors, although tolerance can develop to these non-α4β2 effects. Selective α4β2 agonists may have higher abuse potential than nicotine. PMID:26461167

  7. Systematic review on mentoring and simulation in laparoscopic colorectal surgery.

    PubMed

    Miskovic, Danilo; Wyles, Susannah M; Ni, Melody; Darzi, Ara W; Hanna, George B

    2010-12-01

    To identify and evaluate the influence of mentoring and simulated training in laparoscopic colorectal surgery (LCS) and define the key components for learning advanced technical skills. Laparoscopic colorectal surgery is a complex procedure, often being self-taught by senior surgeons. Educational issues such as inadequate training facilities or a shortfall of training fellowships may result in a slow uptake of LCS. The effectiveness of mentored and simulated training, however, remains unclear. We conducted a systematic search, using Ovid databases. Four study categories were identified: mentored versus nonmentored cases, training case selection, simulation, and assessment. We performed a meta-analysis and a mixed model regression on the difference of the main outcome measures (conversion rates, morbidity, and mortality) for mentored trainees and expert surgeons. We also compared conversion rates of mentored and nonmentored. Meta-analysis of risk factors for conversion was performed using published and unpublished data sets requested from various investigators. For studies on simulation, we compared scores of surveys on the perception of different training courses. Thirty-seven studies were included. Pooled weighted outcomes of mentored cases (n = 751) showed a lower conversion rate (13.3% vs 20.5%, P = 0.0332) compared with nonmentored cases (n = 695). Compared to expert case series (n = 5313), there was no difference in conversion (P = 0.2835), anastomotic leak (P = 0.8342), or mortality (P = 0.5680). A meta-analysis of training case selection data (n = 4444) revealed male sex (P < 0.0001), previous abdominal surgery (P = 0.0200), a BMI greater than 30 (P = 0.0050), an ASA of less than 2 (P < 0.0001), colorectal cancer (P < 0.0001) and intra-abdominal fistula (P < 0.0001), but not older than 64 years (P = 0.4800), to significantly increase conversion risk. Participants on cadaveric courses were highly satisfied with the teaching value yet trainees on an animal course gave less positive feedback. Structured assessment for LCS has been partially implemented. This review and meta-analysis supports evidence that trainees can obtain similar clinical results like expert surgeons in laparoscopic colorectal surgery if supervised by an experienced trainer. Cadaveric models currently provide the best value for training in a simulated environment. There remains a need for further research into technical skills assessment and the educational value of simulated training.

  8. Compact 200 kHz HHG source driven by a few-cycle OPCPA

    NASA Astrophysics Data System (ADS)

    Harth, Anne; Guo, Chen; Cheng, Yu-Chen; Losquin, Arthur; Miranda, Miguel; Mikaelsson, Sara; Heyl, Christoph M.; Prochnow, Oliver; Ahrens, Jan; Morgner, Uwe; L'Huillier, Anne; Arnold, Cord L.

    2018-01-01

    We present efficient high-order harmonic generation (HHG) based on a high-repetition rate, few-cycle, near infrared (NIR), carrier-envelope phase stable, optical parametric chirped pulse amplifier (OPCPA), emitting 6 fs pulses with 9 μJ pulse energy. In krypton, we reach conversion efficiencies from the NIR to the extreme ultraviolet (XUV) radiation pulse energy on the order of ˜10-6 with less than 3 μJ driving pulse energy. This is achieved by optimizing the OPCPA for a spatially and temporally clean pulse and by a specially designed high-pressure gas target. In the future, the high efficiency of the HHG source will be beneficial for high-repetition rate two-colour (NIR-XUV) pump-probe experiments, where the available pulse energy from the laser has to be distributed economically between pump and probe pulses.

  9. Urban ecosystems and the North American carbon cycle

    Treesearch

    D.E. Pataki; R.J. Alig; A.S. Fung; N.E. Golubiewski; C.A. Kennedy; E.G. McPherson; D.J. Nowak; R.V. Pouyat; P.R. Lankao

    2006-01-01

    Approximately 75–80% of the population of North America currently lives in urban areas as defined by national census bureaus, and urbanization is continuing to increase. Future trajectories of fossil fuel emissions are associated with a high degree of uncertainty; however, if the activities of urban residents and the rate of urban land conversion can be captured in...

  10. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating.

    PubMed

    Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N

    2014-03-01

    A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Renewable energy for the aeration of wastewater ponds.

    PubMed

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d < 1.5 m) corresponding to a high oxygen production of algae. For the layout of the individual components: photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  12. Effects of Appropriate Prolonged Sacral Neuromodulation Testing in Improving Implantation Rate of a Permanent Implantable Pulse Generator in Patients with Refractory Lower Urinary Tract Dysfunctions in Mainland China.

    PubMed

    Zhang, Peng; Zhang, Jian-Zhong; Wu, Li-Yang; Zhang, Xiao-Dong

    2017-02-20

    Sacral neuromodulation (SNM) has become an effective method for treating lower urinary tract voiding dysfunction during the past 20 years. Because of the expensive cost, the number of implantable pulse generator (IPG) implantations per year in China is far lower than that in Western developed countries since 2012. This study was to summarize the effects of the appropriate prolonged SNM testing time in improving the implantation rate of a permanent IPG in patients with refractory lower urinary tract symptoms (LUTS) in mainland China. From January 2013 to June 2016, 51 patients with refractory LUTS received SNM therapy. In this study, we compared the conversion rate 2 weeks after the Stage I test and final actual conversion rate. We also observed the complications (such as pain, infection, and electrode displacement) and effectiveness. We tried to improve an appropriate prolonged test time which was favorable for improving the SNM conversion rate while ensuring safety and effectiveness. Among 51 patients receiving SNM therapy, 19 patients (mean age 45.0 ± 16.9 years) had poor Stage I test results, and on an average, the electrode was removed 27.4 ± 9.6 days after the surgery. In one patient, the electrode was removed within 2 weeks; when the remaining 18 patients were questioned 2 weeks after testing, none of the patients wanted to terminate the test, and all the 18 patients desired to prolong the testing time to further observe the treatment effect. The remaining 32 patients (mean age 46.7 ± 15.3 years) received Stage II permanent implantation at 19.6 ± 10.4 days after the surgery. The overall Stage I-II conversion was 62.7% (32/51) in this study. Within 2 weeks after the surgery, only eight patients received Stage II permanent implantation, and the conversion rate was only 15.7% (8/51), which was much lower than the overall conversion rate of 62.7%. Nearly 84.4% (27/32) of the patients received Stage II implantation within 4 weeks. None of the patients had incision infections. In one patient, the entire system was removed 1 month after Stage II implantation due to pain in the implantation site. Appropriate extension of the Stage I testing time of an SNM-barbed electrode could significantly improve the Stage II permanent implantation rate in Chinese refractory LUTS patients; there were no wound infections, and the postoperative complication rate was low. This study recommended that Stage I period of SNM therapy should be 4 weeks according to safety and successful conversion rate.

  13. Probing nuclear matter with jet conversions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Fries, R. J.

    2008-05-01

    We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum pT. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum pT that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/λ while energy loss probes the average squared momentum transfer μ2/λ. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-pT identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects.

  14. Potentialities of TEC topping: A simplified view of parametric effects

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1980-01-01

    An examination of the benefits of thermionic-energy-conversion (TEC)-topped power plants and methods of increasing conversion efficiency are discussed. Reductions in the cost of TEC modules yield direct decreases in the cost of electricity (COE) from TEC-topped central station power plants. Simplified COE, overall-efficiency charts presented illustrate this trend. Additional capital-cost diminution results from designing more compact furnaces with considerably increased heat transfer rates allowable and desirable for high temperature TEC and heat pipes. Such improvements can evolve of the protection from hot corrosion and slag as well as the thermal expansion compatibilities offered by silicon-carbide clads on TEC-heating surfaces. Greater efficiencies and far fewer modules are possible with high-temperature, high-power-density TEC: This decreases capital and fuel costs much more and substantially increases electric power outputs for fixed fuel inputs. In addition to more electricity, less pollution, and lower costs, TEC topping used directly in coal-combustion products contributes balance-of-payment gains.

  15. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    PubMed

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains

    PubMed Central

    Unrean, Pornkamol; Srienc, Friedrich

    2010-01-01

    We have developed highly efficient ethanologenic E. coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition. PMID:20699108

  17. Pixel-based characterisation of CMOS high-speed camera systems

    NASA Astrophysics Data System (ADS)

    Weber, V.; Brübach, J.; Gordon, R. L.; Dreizler, A.

    2011-05-01

    Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.

  18. Effect of feeding silkworm on growth performance and feed efficiency of snakehead (Channa striata)

    NASA Astrophysics Data System (ADS)

    Firmani, U.; Lono

    2018-04-01

    The snakehead, Chana striata is a carnivorous freshwater fish and widely distributed in Asia. High demand of this fish has been triggering many aquaculturist to culture C. stiata. Feed was the important factor for fish growth. Silkworm has high protein content, low fat and can be used as natural feed for finfish. This study investigate the silkworm feed in C. striata. The treatment of this research were A (100 % pellet); B (100 % silkworm); C (combination of 75 % pellet and 25 % silkworm); D (combination of 50 % pellet and 50 % silkworm); and E (combination of 25 % pellet and 75 % silkworm). The variables measured in this study were relatif growth, specific growth rate, feed efficiency, feed conversion ratio, and survival rate. The result show that silkworm gave the high growth performance, feed efficiency and survival rate of the snakehead (Channa striata) compared with the control.

  19. Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Q.L.; Xiao, R.; Deng, Z.Y.

    2008-12-15

    Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. Themore » sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.« less

  20. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    PubMed Central

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  1. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents.

    PubMed

    Sagnella, Sharon M; Gong, Xiaojuan; Moghaddam, Minoo J; Conn, Charlotte E; Kimpton, Kathleen; Waddington, Lynne J; Krodkiewska, Irena; Drummond, Calum J

    2011-03-01

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  2. Teaching Medical Students About “The Conversation”: An Interactive Value-Based Advance Care Planning Session

    PubMed Central

    Lum, Hillary D.; Dukes, Joanna; Church, Skotti; Abbott, Jean; Youngwerth, Jean M.

    2017-01-01

    Background Advance care planning (ACP) promotes care consistent with patient wishes. Medical education should teach how to initiate value-based ACP conversations. Objective To develop and evaluate an ACP educational session to teach medical students a value-based ACP process and to encourage students to take personal ACP action steps. Design Groups of third-year medical students participated in a 75-minute session using personal reflection and discussion framed by The Conversation Starter Kit. The Conversation Project is a free resource designed to help individuals and families express their wishes for end-of-life care. Setting and Participants One hundred twenty-seven US third-year medical students participated in the session. Measurements Student evaluations immediately after the session and 1 month later via electronic survey. Results More than 90% of students positively evaluated the educational value of the session, including rating highly the opportunities to reflect on their own ACP and to use The Conversation Starter Kit. Many students (65%) reported prior ACP conversations. After the session, 73% reported plans to discuss ACP, 91% had thought about preferences for future medical care, and 39% had chosen a medical decision maker. Only a minority had completed an advance directive (14%) or talked with their health-care provider (1%). One month later, there was no evidence that the session increased students’ actions regarding these same ACP action steps. Conclusion A value-based ACP educational session using The Conversation Starter Kit successfully engaged medical students in learning about ACP conversations, both professionally and personally. This session may help students initiate conversations for themselves and their patients. PMID:28273761

  3. Gasification of refinery sludge in an updraft reactor for syngas production

    NASA Astrophysics Data System (ADS)

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama

    2014-10-01

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.

  4. Secondary fermentation in the runen of a sheep given a diet based on molasses.

    PubMed

    Rowe, J B; Loughnan, M L; Nolan, J V; Leng, R A

    1979-03-01

    1. The extent of conversion of acetate-carbon to carbon dioxide in the rumen of a 40 kg wether consuming 1 kg molasses/d was estimated using isotope-tracer-dilution techniques. 2. There was a high rate of conversion of acetate to CO2 (6.0 g C/d) in the rumen. There were high concentrations in the rumen of Methanosarcina approximately 6 x 10(9)/ml which represents a significant proportion of the rumen bacterial biomass. These organisms are usually found in mud and sludge and are capable of oxidizing acetate. 3. The most likely explanation of these results was that there was an extensive secondary or sludge-type fermentation occurring in the rumen which results in volatile fatty acids being converted to CO2 and methane. In similar studies with sheep given lucerne (Medicago sativa) diets, conversion of acetate-C to CO2 within the rumen was not evident. 4. It is suggested that a major effect of the presence of secondary fermentation processes in the rumen may be to reduce availability of energy nutrients to the animal, and to alter the ratio protein:energy in the absorbed nutrients.

  5. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

    PubMed

    Tan, Tien Chye; Spadiut, Oliver; Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.

  6. Structural Basis for Binding of Fluorinated Glucose and Galactose to Trametes multicolor Pyranose 2-Oxidase Variants with Improved Galactose Conversion

    PubMed Central

    Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts. PMID:24466218

  7. Age-Related Trends in Hip Arthroscopy: A Large Cross-Sectional Analysis.

    PubMed

    Sing, David C; Feeley, Brian T; Tay, Bobby; Vail, Thomas P; Zhang, Alan L

    2015-12-01

    To analyze a large national private payer population in the United States for trends over time in hip arthroscopy by age groups and to determine the rate of conversion to total hip arthroplasty (THA) after hip arthroscopy. We performed a retrospective analysis using the PearlDiver private insurance patient record database from 2007 through 2011. Hip arthroscopy procedures including newly introduced codes such as osteochondroplasty of cam and pincer lesions and labral repair were queried. Hip arthroscopy incidence and conversion rates to THA were stratified by age. Chi-squared analysis was used for statistical comparison. Conversion to THA was evaluated using Kaplan-Meier analysis. From 2007 through 2011, 20,484,172 orthopaedic patients were analyzed. Hip arthroscopy was performed in 8,227 cases (mean annual incidence, 2.7 cases per 10,000 orthopaedic patients). The incidence of hip arthroscopies increased over 250% from 1.6 cases per 10,000 in 2007 to 4.0 cases per 10,000 in 2011 (P < .0001). Patients in the 40 to 49 age group made up 28% of cases, followed by patients ages 30 to 39 (22%) and 50 to 59 (19%). Patients under 30 years old showed the greatest increase in incidence from 2007 to 2011 (335%), but patients over 60 still had over a 200% increase. Labral debridement was the most common procedure (6,031 cases), and approximately 1.6 procedural codes were billed for every case performed. Labral repair was more common in patients under 30, while labral debridement was more common in older age groups (P = .046). Within 24 months of hip arthroscopy, 17% of patients older than 50 required conversion to THA, compared with <1% of patients under 30 (P < .0001). Hip arthroscopy procedures are increasing in popularity across all age groups, with patients ages 40 to 49 having the highest incidence in this large cross-sectional population, despite a high rate of early conversion to THA within 2 years in patients over 50. IV, cross-sectional study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  8. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    NASA Astrophysics Data System (ADS)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.

    2012-08-01

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ˜6%-8% for titanium, ˜2% for copper, and ˜0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  9. [Effect of biological pretreatment with Trametes vesicolor on the enzymatic hydrolysis of softwood and hardwood].

    PubMed

    Yu, Hongbo; Zhang, Xiaoyu

    2009-07-01

    We evaluated the effect of biological pretreatment with white rot fungus Trametes vesicolor on the enzymatic hydrolysis of two wood species, Chinese willow (Salix babylonica, hardwood) and China-fir (Cunninghamia lanceolata, softwood). The result indicated that the pretreated woods showed significant increases in the final conversion ratios of enzymatic hydrolysis (4.78-fold for hardwood and 4.02-fold for softwood). In order to understand the role of biological pretreatment we investigated the enzyme-substrate interactions. Biological pretreatment enhanced the substrate accessibility to cellulase but not always correlated with the initial conversion rate. However, the change of the conversion rate decreased dramatically with increased desorption values after biological pretreatment. Thus, the biological pretreatment slowed down the declines in conversion rates during enzymatic hydrolysis by reducing the irreversible adsorption of cellulase and then improved the enzymatic hydrolysis. Moreover, the decreases of the irreversible adsorption may be attributed to the partial lignin degradation and alteration in lignin structure after biological pretreatment.

  10. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    PubMed

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  11. Duration of attenuated positive and negative symptoms in individuals at clinical high risk: Associations with risk of conversion to psychosis and functional outcome.

    PubMed

    Carrión, Ricardo E; Demmin, Docia; Auther, Andrea M; McLaughlin, Danielle; Olsen, Ruth; Lencz, Todd; Correll, Christoph U; Cornblatt, Barbara A

    2016-10-01

    Research in individuals at clinical high-risk (CHR) for psychosis has focused on subjects with no more than 12 months of present or worsened attenuated positive symptoms. However, the impact of long duration attenuated positive and/or negative prodromal symptoms on outcomes is unclear. Seventy-six CHR subjects with attenuated positive symptoms and at least moderate severity level negative symptoms rated on the Scale of Prodromal Symptoms (SOPS) were prospectively followed for a mean of 3.0 ± 1.6 years. Social and Role functioning was assessed with the Global Functioning: Social and Role scales. Correlations between attenuated positive and negative symptom duration and severity and conversion to psychosis and functional outcomes were analyzed. The average onset of SOPS rated negative symptoms (M = 53.24 months, SD = 48.90, median = 37.27) was approximately twelve months prior to the emergence of attenuated positive symptom (M = 40.15 months, SD = 40.33, median = 24.77, P < 0.05). More severe positive symptoms (P = 0.004), but not longer duration of positive (P = 0.412) or negative (P = 0.754) symptoms, predicted conversion to psychosis. Neither positive symptom duration (P = 0.181) nor severity (P = 0.469) predicted role or social functioning at study endpoint. Conversely, longer negative symptom duration predicted poor social functioning (P = 0.004). Overall, our findings suggest that the severity of attenuated positive symptoms at baseline may be more important than symptom duration for determining individuals at increased risk of developing psychosis. In contrast, long-standing negative symptoms may be associated with persistent social difficulties and therefore have an important position in the treatment of disability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comprehensive Identification of Mutations Responsible for Heterogeneous Vancomycin-Intermediate Staphylococcus aureus (hVISA)-to-VISA Conversion in Laboratory-Generated VISA Strains Derived from hVISA Clinical Strain Mu3

    PubMed Central

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung

    2013-01-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10−6 or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate. PMID:24018261

  13. Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium.

    PubMed

    Gerber, Adrian; Kleser, Michael; Biedendieck, Rebekka; Bernhardt, Rita; Hannemann, Frank

    2015-07-29

    Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism's PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the biggest groups of drugs for the treatment of a wide variety of diseases.

  14. Fusion of Deep Learning and Compressed Domain features for Content Based Image Retrieval.

    PubMed

    Liu, Peizhong; Guo, Jing-Ming; Wu, Chi-Yi; Cai, Danlin

    2017-08-29

    This paper presents an effective image retrieval method by combining high-level features from Convolutional Neural Network (CNN) model and low-level features from Dot-Diffused Block Truncation Coding (DDBTC). The low-level features, e.g., texture and color, are constructed by VQ-indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features (DL-TLCF) is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate (APR) and average recall rate (ARR), are employed to examine various datasets. As documented in the experimental results, the proposed schemes can achieve superior performance compared to the state-of-the-art methods with either low- or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.

  15. 1Mbps NLOS solar-blind ultraviolet communication system based on UV-LED array

    NASA Astrophysics Data System (ADS)

    Sun, Zhaotian; Zhang, Lijun; Li, Ping'an; Qin, Yu; Bai, Tingzhu

    2018-01-01

    We proposed and demonstrated a high data rate ultraviolet communication system based on a 266nm UV LED array with 50mW luminous power. The emitting source is driven by a three outputs constant-current control circuit, whose driving speed is up to 2Mbps. At the receiving side, in order to achieve the amplification for high-speed signal, a two-stage differential preamplifier is designed to make I-V conversion. The voltage-current gain is up to 140dB and bandwidth is 1.9MHz. An experiment is conducted to test the performance of the UV communication system. The effects of elevation angles and transmission distance are analyzed. It is shown that the ultraviolet communication system has high data rate of up to 921.6kbps and bit error rate of less than 10-7 in 150m, which can beat the best record created by UV-LED communication system in terms of the transmission rate.

  16. Risk factors for failed conversion of labor epidural analgesia to cesarean delivery anesthesia: a systematic review and meta-analysis of observational trials.

    PubMed

    Bauer, M E; Kountanis, J A; Tsen, L C; Greenfield, M L; Mhyre, J M

    2012-10-01

    This systematic review and meta-analysis evaluates evidence for seven risk factors associated with failed conversion of labor epidural analgesia to cesarean delivery anesthesia. Online scientific literature databases were searched using a strategy which identified observational trials, published between January 1979 and May 2011, which evaluated risk factors for failed conversion of epidural analgesia to anesthesia or documented a failure rate resulting in general anesthesia. 1450 trials were screened, and 13 trials were included for review (n=8628). Three factors increase the risk for failed conversion: an increasing number of clinician-administered boluses during labor (OR=3.2, 95% CI 1.8-5.5), greater urgency for cesarean delivery (OR=40.4, 95% CI 8.8-186), and a non-obstetric anesthesiologist providing care (OR=4.6, 95% CI 1.8-11.5). Insufficient evidence is available to support combined spinal-epidural versus standard epidural techniques, duration of epidural analgesia, cervical dilation at the time of epidural placement, and body mass index or weight as risk factors for failed epidural conversion. The risk of failed conversion of labor epidural analgesia to anesthesia is increased with an increasing number of boluses administered during labor, an enhanced urgency for cesarean delivery, and care being provided by a non-obstetric anesthesiologist. Further high-quality studies are needed to evaluate the many potential risk factors associated with failed conversion of labor epidural analgesia to anesthesia for cesarean delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Module Hipot and ground continuity test results

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1984-01-01

    Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.

  18. Analysis of Outcomes for High Tibial Osteotomies Performed With Cartilage Restoration Techniques.

    PubMed

    Kahlenberg, Cynthia A; Nwachukwu, Benedict U; Hamid, Kamran S; Steinhaus, Michael E; Williams, Riley J

    2017-02-01

    To evaluate reported medium- to long-term outcomes after high tibial osteotomy (HTO) with associated cartilage restoration procedures. A review of the MEDLINE database was performed. The inclusion criteria were English language, clinical outcome study with HTO as the primary procedure, use of a form of cartilage repair included, and the mean follow-up period of at least 2 years. Each identified study was reviewed for study design, patient demographics, type of procedures performed, clinical outcomes, progression to total knee arthroplasty, and complications. Eight hundred and twenty-seven patients (839 knees) were included. The most common cartilage preservation technique used in conjunction with HTO was microfracture (4 studies; 22.2%). The mean Lyscholm scores, reported in 50% of the studies, ranged from 40 to 65.7 preoperatively and improved to a range of 67 to 94.6 postoperatively. Four studies (22.2%) used a visual analog scale for evaluation of pain and all had a mean visual analog scale of less than 3 postoperatively. Among studies evaluating conversion to arthroplasty, the rate of conversion was 6.8% and the range of mean number of years from HTO to conversion was 4.9 to 13.0. The overall reported complication rate was 10.3%. HTO with cartilage restoration procedures provides reliable improvement in functional status in the medium- to long-term period after surgery and has potential to delay or avoid the need for knee arthroplasty surgery. Level IV, systematic review of Level I to IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. 5 CFR 531.217 - Special conversion rules for certain non-GS employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...

  20. 5 CFR 531.217 - Special conversion rules for certain non-GS employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...

  1. 5 CFR 531.217 - Special conversion rules for certain non-GS employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...

  2. 5 CFR 531.217 - Special conversion rules for certain non-GS employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...

  3. 5 CFR 531.217 - Special conversion rules for certain non-GS employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...

  4. Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion.

    PubMed

    Buntkowsky, G; Walaszek, B; Adamczyk, A; Xu, Y; Limbach, H-H; Chaudret, B

    2006-04-28

    In this paper a quantitative explanation for a diamagnetic ortho/para H2 conversion is given. The description is based on the quantum-mechanical density matrix formalism originally developed by Alexander and Binsch for studies of exchange processes in NMR spectra. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a three spin system, the reactions of the hydrogen gas with the catalysts are treated as a phenomenological rate process, described by a rate constant. Numerical calculations reveal that for nearly all possible geometrical arrangements of the three spin system an efficient spin conversion is obtained. Only in the chemically improbable case of a linear group H-X-H no spin conversion is obtained. The efficiency of the spin conversion depends strongly on the lifetime of the H-X-H complex and on the presence of exchange interactions between the two hydrogens. Even moderate exchange couplings cause a quench of the spin conversion. Thus a sufficiently strong binding of the dihydrogen to the S spin is necessary to render the quenching by the exchange interaction ineffective.

  5. Electrogenerative oxidation of lower alcohols to useful products

    DOEpatents

    Meshbesher, Thomas M.

    1987-01-01

    In the disclosed electrogenerative process for converting alcohols such as ethanol to aldehydes such as acetaldehyde, the alcohol starting material is an aqueous solution containing more than the azeotropic amount of water. Good first-pass conversions (<40% and more typically <50%) are obtained at operating cell voltages in the range of about 80 to about 350 millivolts at ordinary temperatures and pressures by using very high flow rates of alcohol to the exposed anode surface (i.e. the "gas" side of an anode whose other surface is in contact with the electrolyte). High molar flow rates of vaporized aqueous alcohol also help to keep formation of undesired byproducts at a low level.

  6. In situ synchrotron XRD analysis of the kinetics of spodumene phase transitions.

    PubMed

    L Moore, Radhika; Mann, Jason P; Montoya, Alejandro; Haynes, Brian S

    2018-04-25

    The phase transition by thermal activation of natural α-spodumene was followed by in situ synchrotron XRD in the temperature range 896 to 940 °C. We observed both β- and γ-spodumene as primary products in approximately equal proportions. The rate of the α-spodumene inversion is first order and highly sensitive to temperature (apparent activation energy ∼800 kJ mol-1). The γ-spodumene product is itself metastable, forming β-spodumene, with the total product mass fraction ratio fγ/fβ decreasing as the conversion of α-spodumene continues. We found the relationship between the product yields and the degree of conversion of α-spodumene to be the same at all temperatures in the range studied. A model incorporating first order kinetics of the α- and γ-phase inversions with invariant rate constant ratio describes the results accurately. Theoretical phonon analysis of the three phases indicates that the γ phase contains crystallographic instabilities, whilst the α and β phases do not.

  7. D-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longum L-arabinose isomerase.

    PubMed

    Salonen, Noora; Salonen, Kalle; Leisola, Matti; Nyyssölä, Antti

    2013-04-01

    Bifidobacterium longum NRRL B-41409 L-arabinose isomerase (L-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum L-AI were used for production of D-tagatose from D-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of D-galactose to D-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L⁻¹ substrate and at 37.5 °C after 5 days. The D-tagatose production rate of 185 g L⁻¹ day ⁻¹ was obtained at 300 g L⁻¹ galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial D-tagatose production rate was 290 g L⁻¹ day⁻¹ under these conditions.

  8. Kinetic analysis of the combustion synthesis of molybdenum and titanium silicides

    NASA Astrophysics Data System (ADS)

    Wang, Lily L.; Munir, Z. A.

    1995-05-01

    The temperature profiles associated with the passage of self-propagating combustion waves during the synthesis of MoSi2 and Ti5Si3 were determined. From these profiles, kinetic analyses of the combustion synthesis process for these two silicides were made. The synthesis is associated with high heating rates: 1.3 × 104 and 4.9 × 104 K·s-1 for MoSi2 and Ti5Si3, respectively. The width of the combustion zone was determined as 1.3 and 1.8 mm for the silicides of Mo and Ti, respectively. The degree of conversion, η, and its spatial distribution and the conversion rate, ∂η/∂t, were determined. However, because of the inherent characteristics of wave propagation in MoSi2, only in the case of Ti5Si3 could the activation energy be calculated. An average value of 190 kJ µ mol-1 was determined for titanium suicide.

  9. pH Triggered Recovery and Reuse of Thiolated Poly(acrylic acid) Functionalized Gold Nanoparticles with Applications in Colloidal Catalysis.

    PubMed

    Ansar, Siyam M; Fellows, Benjamin; Mispireta, Patrick; Mefford, O Thompson; Kitchens, Christopher L

    2017-08-08

    Thiolated poly(acrylic acid) (PAA-SH) functionalized gold nanoparticles were explored as a colloidal catalyst with potential application as a recoverable catalyst where the PAA provides pH-responsive dispersibility and phase transfer capability between aqueous and organic media. This system demonstrates complete nanoparticle recovery and redispersion over multiple reaction cycles without changes in nanoparticle morphology or reduction in conversion. The catalytic activity (rate constant) was reduced in subsequent reactions when recovery by aggregation was employed, despite unobservable changes in morphology or dispersibility. When colloidal catalyst recovery employed a pH induced phase transfer between two immiscible solvents, the catalytic activity of the recovered nanoparticles was unchanged over four cycles, maintaining the original rate constant and 100% conversion. The ability to recover and reuse colloidal catalysts by aggregation/redispersion and phase transfer methods that occur at low and high pH, respectively, could be used for different gold nanoparticle catalyzed reactions that occur at different pH conditions.

  10. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.

  11. Regional dynamics of grassland change in the western Great Plains

    USGS Publications Warehouse

    Drummond, M.A.

    2007-01-01

    This paper examines the contemporary land-cover changes in two western Great Plains ecoregions between 1973 and 2000. Agriculture and other land uses can have a substantial effect on grassland cover that varies regionally depending on the primary driving forces of change. In order to better understand change, the rates, types, and causes of land conversion were examined for 1973, 1980, 1986, 1992, and 2000 using Landsat satellite data and a statistical sampling strategy. The overall estimated rate of land-cover change between 1973 and 2000 was 7.4% in the Northwestern Great Plains and 11.5% in the Western High Plains. Trends in both ecoregions have similarities, although the dynamics of change differ temporally depending on driving forces. Between 1973 and 1986, grassland cover declined when economic opportunity drove an expansion of agriculture. Between 1986 and 2000, grassland expanded as public policy and a combination of socioeconomic factors drove a conversion from agriculture to grassland. ?? 2007 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  12. Synthesis of illite-smectite from smectite at earth surface temperatures and high pH

    USGS Publications Warehouse

    Eberl, D.D.; Velde, Bruce; McCormick, T.C.

    1993-01-01

    It is well known that illite-smectite can form from smectite at elevated temperatures in natural and experimental systems. However, the conversion of smectite to illite-smectite is also found in some natural systems that have never been heated. The present experiments show that illite layers can form from smectite by chemical reaction at 35° and 60°C at high solution pH. The rate of this reaction is accelerated by wetting and drying.

  13. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    PubMed

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  14. Mother-child conversations about safety: implications for socializing safety values in children.

    PubMed

    O'Neal, Elizabeth E; Plumert, Jodie M

    2014-05-01

    This study examined how mothers socialize their children about safety through conversations about potentially unsafe activities. Mothers and their 8- and 10-year-old children discussed and rated the safety of 12 photographs depicting another same-gender child engaged in potentially dangerous activities. Conversations usually unfolded with children giving the first rating or rationale, followed by additional discussion between the mother and child. Mothers and children relied on 2 main types of rationales to justify their ratings: potential outcomes of the activity and specific features of the situation (dangerous and nondangerous). Mothers (but not children) used dangerous feature rationales more often than dangerous outcome rationales. When disagreements arose, mothers typically guided children to adopt their own rating rather than the child's rating. Additionally, children who used more nondangerous feature and outcome rationales had experienced more injuries requiring medical attention. Mothers' focus on dangerous features appears to reflect their efforts to help children make causal connections between dangerous elements of the situation and adverse outcomes that might result.

  15. Framing the conversation: use of PRECIS-2 ratings to advance understanding of pragmatic trial design domains.

    PubMed

    Lipman, Paula Darby; Loudon, Kirsty; Dluzak, Leanora; Moloney, Rachael; Messner, Donna; Stoney, Catherine M

    2017-11-10

    There continues to be debate about what constitutes a pragmatic trial and how it is distinguished from more traditional explanatory trials. The NIH Pragmatic Trials Collaborative Project, which includes five trials and a coordinating unit, has adopted the Pragmatic-Explanatory Continuum Indicator Summary (PRECIS-2) instrument. The purpose of the study was to collect PRECIS-2 ratings at two points in time to assess whether the tool was sensitive to change in trial design, and to explore with investigators the rationale for rating shifts. A mixed-methods design included sequential collection and analysis of quantitative data (PRECIS-2 ratings) and qualitative data. Ratings were collected at two annual, in-person project meetings, and subsequent interviews conducted with investigators were recorded, transcribed, and coded using NVivo 11 Pro for Windows. Rating shifts were coded as either (1) actual change (reflects a change in procedure or protocol), (2) primarily a rating shift reflecting rater variability, or (3) themes that reflect important concepts about the tool and/or pragmatic trial design. Based on PRECIS-2 ratings, each trial was highly pragmatic at the planning phase and remained so 1 year later in the early phases of trial implementation. Over half of the 45 paired ratings for the nine PRECIS-2 domains indicated a rating change from Time 1 to Time 2 (N = 24, 53%). Of the 24 rating changes, only three represented a true change in the design of the trial. Analysis of rationales for rating shifts identified critical themes associated with the tool or pragmatic trial design more generally. Each trial contributed one or more relevant comments, with Eligibility, Flexibility of Adherence, and Follow-up each accounting for more than one. PRECIS-2 has proved useful for "framing the conversation" about trial design among members of the Pragmatic Trials Collaborative Project. Our findings suggest that design elements assessed by the PRECIS-2 tool may represent mostly stable decisions. Overall, there has been a positive response to using PRECIS-2 to guide conversations around trial design, and the project's focus on the use of the tool by this group of early adopters has provided valuable feedback to inform future trainings on the tool.

  16. Rates and Predictors of Conversion to Schizophrenia or Bipolar Disorder Following Substance-Induced Psychosis.

    PubMed

    Starzer, Marie Stefanie Kejser; Nordentoft, Merete; Hjorthøj, Carsten

    2018-04-01

    The authors investigated the rates of conversion to schizophrenia and bipolar disorder after a substance-induced psychosis, as well as risk factors for conversion. All patient information was extracted from the Danish Civil Registration System and the Psychiatric Central Research Register. The study population included all persons who received a diagnosis of substance-induced psychosis between 1994 and 2014 (N=6,788); patients were followed until first occurrence of schizophrenia or bipolar disorder or until death, emigration, or August 2014. The Kaplan-Meier method was used to obtain cumulative probabilities for the conversion from a substance-induced psychosis to schizophrenia or bipolar disorder. Cox proportional hazards regression models were used to calculate hazard ratios for all covariates. Overall, 32.2% (95% CI=29.7-34.9) of patients with a substance-induced psychosis converted to either bipolar or schizophrenia-spectrum disorders. The highest conversion rate was found for cannabis-induced psychosis, with 47.4% (95% CI=42.7-52.3) converting to either schizophrenia or bipolar disorder. Young age was associated with a higher risk of converting to schizophrenia. Self-harm after a substance-induced psychosis was significantly linked to a higher risk of converting to both schizophrenia and bipolar disorder. Half the cases of conversion to schizophrenia occurred within 3.1 years after a substance-induced psychosis, and half the cases of conversion to bipolar disorder occurred within 4.4 years. Substance-induced psychosis is strongly associated with the development of severe mental illness, and a long follow-up period is needed to identify the majority of cases.

  17. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes

    NASA Astrophysics Data System (ADS)

    Lu, Na; Sun, Danfeng; Zhang, Chuke; Jiang, Nan; Shang, Kefeng; Bao, Xiaoding; Li, Jie; Wu, Yan

    2018-03-01

    Carbon dioxide conversion at atmosphere pressure and low temperature has been studied in a cylindrical dielectric barrier discharge (DBD) reactor. Pure CO2 feed flows to the discharge zone and typical filamentary discharges were obtained in each half-cycle of the applied voltage. The gas temperature increased with discharge time and discharge power, which was found to affect the CO2 decomposition deeply. As the DBD reactor was cooled to ambient temperature, both the conversion of CO2 and the CO yield were enhanced. Especially the energy efficiencies changed slightly with the increase of discharge power and were much higher in cooling condition comparing to those without cooling. At a discharge power of 40 W, the energy efficiency under cooling condition was approximately six times more than that without cooling. Gas flow rate was observed to affect CO2 conversion and 0.1 L min-1 was obtained as optimum gas flow rate under cooling condition. In addition, the CO2 conversion rate in plasma/g-C3N4 catalyst hybrid system was twice times as that in plasma-alone system. In case of cooling, the existence of g-C3N4 catalyst contributed to a 47% increase of CO2 conversion compared to the sole plasma process. The maximum energy-efficiency with g-C3N4 was 0.26 mmol kJ-1 at 20 W, which increased by 157% compared to that without g-C3N4. The synergistic effect of DBD plasma with g-C3N4 on pure CO2 conversion was verified.

  18. Application of an enthalpy balance model of the relation between growth and respiration to temperature acclimation of Eucalyptus globulus seedlings.

    PubMed Central

    Macfarlane, Craig; Adams, Mark A; Hansen, Lee D

    2002-01-01

    The enthalpy balance model of growth uses measurements of the rates of heat and CO(2) production to quantify rates of decarboxylation, oxidative phosphorylation and net anabolism. Enthalpy conversion efficiency (eta(H)) and the net rate of conservation of enthalpy in reduced biosynthetic products (R(SG)DeltaH(B)) can be calculated from metabolic heat rate (q) and CO(2) rate (R(CO2)). eta(H) is closely related to carbon conversion efficiency and the efficiency of conservation of available electrons in biosynthetic products. R(SG)DeltaH(B) and eta(H) can be used, together with biomass composition, to describe the rate and efficiency of growth of plant tissues. q is directly related to the rate of O(2) consumption and the ratio q:R(CO2) is inversely related to the respiratory quotient. We grew seedlings of Eucalyptus globulus at 16 and 28 degrees C for four to six weeks, then measured q and R(CO2) using isothermal calorimetry. Respiratory rate at a given temperature was increased by a lower growth temperature but eta(H) was unaffected. Enthalpy conversion efficiency - and, therefore, carbon conversion efficiency - decreased with increasing temperature from 15 to 35 degrees C. The ratio of oxidative phosphorylation to oxygen consumption (P/O ratio) was inferred in vivo from eta(H) and by assuming a constant ratio of growth to maintenance respiration with changing temperature. The P/O ratio decreased from 2.1 at 10-15 degrees C to less than 0.3 at 35 degrees C, suggesting that decreased efficiency was not only due to activity of the alternative oxidase pathway. In agreement with predictions from non-equilibrium thermodynamics, growth rate was maximal near 25 degrees C, where the calculated P/O ratio was about half maximum. We propose that less efficient pathways, such as the alternative oxidase pathway, are necessary to satisfy the condition of conductance matching whilst maintaining a near constant phosphorylation potential. These conditions minimize entropy production and maximize the efficiency of mitochondrial energy conversions as growing conditions change, while maintaining adequate finite rates of energy processing. PMID:12137581

  19. An oscillator model of the timing of turn-taking.

    PubMed

    Wilson, Margaret; Wilson, Thomas P

    2005-12-01

    When humans talk without conventionalized arrangements, they engage in conversation--that is, a continuous and largely nonsimultaneous exchange in which speakers take turns. Turn-taking is ubiquitous in conversation and is the normal case against which alternatives, such as interruptions, are treated as violations that warrant repair. Furthermore, turn-taking involves highly coordinated timing, including a cyclic rise and fall in the probability of initiating speech during brief silences, and involves the notable rarity, especially in two-party conversations, of two speakers' breaking a silence at once. These phenomena, reported by conversation analysts, have been neglected by cognitive psychologists, and to date there has been no adequate cognitive explanation. Here, we propose that, during conversation, endogenous oscillators in the brains of the speaker and the listeners become mutually entrained, on the basis of the speaker's rate of syllable production. This entrained cyclic pattern governs the potential for initiating speech at any given instant for the speaker and also for the listeners (as potential next speakers). Furthermore, the readiness functions of the listeners are counterphased with that of the speaker, minimizing the likelihood of simultaneous starts by a listener and the previous speaker. This mutual entrainment continues for a brief period when the speech stream ceases, accounting for the cyclic property of silences. This model not only captures the timing phenomena observed inthe literature on conversation analysis, but also converges with findings from the literatures on phoneme timing, syllable organization, and interpersonal coordination.

  20. Montreal Cognitive Assessment Memory Index Score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer's disease.

    PubMed

    Julayanont, Parunyou; Brousseau, Mélanie; Chertkow, Howard; Phillips, Natalie; Nasreddine, Ziad S

    2014-04-01

    To assess the usefulness of the Montreal Cognitive Assessment (MoCA) total score (MoCA-TS) and Memory Index Score (MoCA-MIS) in predicting conversion to Alzheimer's disease (AD) in individuals with mild cognitive impairment (MCI). Retrospective chart review. Community-based memory clinic. Individuals meeting Petersen's MCI criteria (N = 165). Baseline MoCA scores at MCI diagnosis were collected from charts of eligible individuals with MCI, and MoCA-TS, MoCA-MIS, and a cognitive domain index score were calculated to assess their prognostic value in predicting conversion to AD. One hundred fourteen participants progressed to AD (MCI-AD), and 51 did not (nonconverters; MCI-NC); 90.5% of participants with MCI with a MoCA-TS less than 20/30 and a MoCA-MIS less than 7/15 at baseline converted to AD within the average follow-up period of 18 months, compared with 52.7% of participants with MCI above the cutoffs on both scores. Individuals with multiple-domain amnestic MCI had the highest AD conversion rates (73.9%). Identifying individuals with MCI at high risk of conversion to AD is important clinically and for selecting appropriate subjects for therapeutic trials. Individuals with MCI with a low MoCA-TS and a low newly devised memory index score (MoCA-MIS) are at greater risk of short-term conversion to AD. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  1. D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity.

    PubMed

    Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H

    2000-04-14

    For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.

  2. Guar meal germ and hull fractions differently affect growth performance and intestinal viscosity of broiler chickens.

    PubMed

    Lee, J T; Bailey, C A; Cartwright, A L

    2003-10-01

    High concentrations of guar meal in poultry diets deleteriously affect growth, feed intake, and digesta viscosity. These effects are attributed to residual gum in the meal. A 2 x 5 factorial experiment investigated the impacts of two guar meal fractions (germ and hull) at five inclusion levels (0, 2.5, 5.0, 7.5, and 10.0%) on intestinal viscosity, measures of growth, and feed conversion in broiler chickens fed to 20 d of age. Growth and feed conversion ratio were not affected by inclusion of as much as 7.5% of the germ fraction into poultry diets, while inclusion of the hull fraction reduced growth at all concentrations. The hull fraction increased intestinal viscosity at all inclusion levels fed, although feed conversion was not affected until the inclusion rate exceeded 5.0%. The germ fraction significantly increased intestinal viscosity at 7.5 and 10% inclusion rates. When germ fraction was fed, relative organ weights remained constant through all concentrations except for the ventriculus and duodenum at 7.5 and 10% inclusion levels. Relative pancreas weight was significantly increased at the 10% level of the hull fraction. Increases in intestinal viscosity corresponded with growth depression. These results suggest that residual gum was responsible for some deleterious effects seen when guar meal was fed. The germ fraction was a superior ingredient when compared with the hull fraction. The guar meal germ fraction constituting as much as 7.5% of the diet supported growth and feed conversion measures similar to those observed with a typical corn-soybean poultry ration.

  3. Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S

    NASA Astrophysics Data System (ADS)

    Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.

    2017-08-01

    The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.

  4. 12 CFR Appendix B to Subpart A of... - Conversion of Scorecard Measures into Score

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 327—Conversion of Scorecard Measures into Score 1. Weighted Average CAMELS Rating Weighted average CAMELS ratings between 1 and 3.5 are assigned a score between 25 and 100 according to the following equation: S = 25 + [(20/3) * (C 2 −1)], where: S = the weighted average CAMELS score; and C = the weighted...

  5. 12 CFR Appendix B to Subpart A of... - Conversion of Scorecard Measures into Score

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 327—Conversion of Scorecard Measures into Score 1. Weighted Average CAMELS Rating Weighted average CAMELS ratings between 1 and 3.5 are assigned a score between 25 and 100 according to the following equation: S = 25 + [(20/3) * (C 2 −1)], where: S = the weighted average CAMELS score; and C = the weighted...

  6. 12 CFR Appendix B to Subpart A of... - Conversion of Scorecard Measures into Score

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 327—Conversion of Scorecard Measures into Score 1. Weighted Average CAMELS Rating Weighted average CAMELS ratings between 1 and 3.5 are assigned a score between 25 and 100 according to the following equation: S = 25 + [(20/3) * (C 2 −1)], where: S = the weighted average CAMELS score; and C = the weighted...

  7. Negotiation of Meaning as a Tool for Evaluating Conversational Skills in the OPI

    ERIC Educational Resources Information Center

    Kitajima, Ryu

    2009-01-01

    Though the oral proficiency interview (OPI) rates the examinee's overall language proficiency in face-to-face interaction, the rating is based solely upon the evaluation of the examinee's contribution in isolation. No attempt is made to evaluate conversational skills in interaction. A criticism that has been made of the OPI is that the format is…

  8. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM.

    PubMed

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-04-20

    Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l(-1)) and high productivity (2.3 g l(-1) h(-1)) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.

  9. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems.

    PubMed

    Brinques, Graziela Brusch; do Carmo Peralba, Maria; Ayub, Marco Antônio Záchia

    2010-02-01

    Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett-Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l(-1) (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l(-1) (dw), with conversion rates of 0.10 g of cell g(-1) lactose and 1.08 g lactic acid g(-1) lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.

  10. High-speed real-time image compression based on all-optical discrete cosine transformation

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Chen, Hongwei; Wang, Yuxi; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2017-02-01

    In this paper, we present a high-speed single-pixel imaging (SPI) system based on all-optical discrete cosine transform (DCT) and demonstrate its capability to enable noninvasive imaging of flowing cells in a microfluidic channel. Through spectral shaping based on photonic time stretch (PTS) and wavelength-to-space conversion, structured illumination patterns are generated at a rate (tens of MHz) which is three orders of magnitude higher than the switching rate of a digital micromirror device (DMD) used in a conventional single-pixel camera. Using this pattern projector, high-speed image compression based on DCT can be achieved in the optical domain. In our proposed system, a high compression ratio (approximately 10:1) and a fast image reconstruction procedure are both achieved, which implicates broad applications in industrial quality control and biomedical imaging.

  11. Providing views of the driving scene to drivers' conversation partners mitigates cell-phone-related distraction.

    PubMed

    Gaspar, John G; Street, Whitney N; Windsor, Matthew B; Carbonari, Ronald; Kaczmarski, Henry; Kramer, Arthur F; Mathewson, Kyle E

    2014-12-01

    Cell-phone use impairs driving safety and performance. This impairment may stem from the remote partner's lack of awareness about the driving situation. In this study, pairs of participants completed a driving simulator task while conversing naturally in the car and while talking on a hands-free cell phone. In a third condition, the driver drove while the remote conversation partner could see video of both the road ahead and the driver's face. We tested the extent to which this additional visual information diminished the negative effects of cell-phone distraction and increased situational awareness. Collision rates for unexpected merging events were high when participants drove in a cell-phone condition but were reduced when they were in a videophone condition, reaching a level equal to that observed when they drove with an in-car passenger or drove alone. Drivers and their partners made shorter utterances and made longer, more frequent traffic references when they spoke in the videophone rather than the cell-phone condition. Providing a view of the driving scene allows remote partners to help drivers by modulating their conversation and referring to traffic more often. © The Author(s) 2014.

  12. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors.

    PubMed

    Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L

    2003-01-01

    In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.

  14. A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst.

    PubMed

    Yun, Danim; Park, Dae Sung; Lee, Kyung Rok; Yun, Yang Sik; Kim, Tae Yong; Park, Hongseok; Lee, Hyunjoo; Yi, Jongheop

    2017-09-22

    The conversion of CO 2 into useful chemicals is an attractive method to reduce greenhouse gas emissions and to produce sustainable chemicals. However, the thermodynamic stability of CO 2 means that a lot of energy is required for its conversion into chemicals. Here, we suggest a new catalytic system with an alternative heating system that allows minimal energy consumption during CO 2 conversion. In this system, electrical energy is transferred as heat energy to the carbon-supported metal catalyst. Fast ramping rates allow high operating temperatures (T app =250 °C) to be reached within 5 min, which leads to an 80-fold decrease of energy consumption in methane reforming using CO 2 (DRM). In addition, the consumed energy normalized by time during the DRM reaction in this current-assisted catalysis is sixfold lower (11.0 kJ min -1 ) than that in conventional heating systems (68.4 kJ min -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CMOS Rad-Hard Front-End Electronics for Precise Sensors Measurements

    NASA Astrophysics Data System (ADS)

    Sordo-Ibáñez, Samuel; Piñero-García, Blanca; Muñoz-Díaz, Manuel; Ragel-Morales, Antonio; Ceballos-Cáceres, Joaquín; Carranza-González, Luis; Espejo-Meana, Servando; Arias-Drake, Alberto; Ramos-Martos, Juan; Mora-Gutiérrez, José Miguel; Lagos-Florido, Miguel Angel

    2016-08-01

    This paper reports a single-chip solution for the implementation of radiation-tolerant CMOS front-end electronics (FEE) for applications requiring the acquisition of base-band sensor signals. The FEE has been designed in a 0.35μm CMOS process, and implements a set of parallel conversion channels with high levels of configurability to adapt the resolution, conversion rate, as well as the dynamic input range for the required application. Each conversion channel has been designed with a fully-differential implementation of a configurable-gain instrumentation amplifier, followed by an also configurable dual-slope ADC (DS ADC) up to 16 bits. The ASIC also incorporates precise thermal monitoring, sensor conditioning and error detection functionalities to ensure proper operation in extreme environments. Experimental results confirm that the proposed topologies, in conjunction with the applied radiation-hardening techniques, are reliable enough to be used without loss in the performance in environments with an extended temperature range (between -25 and 125 °C) and a total dose beyond 300 krad.

  16. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Direct 1H NMR evidence of spin-rotation coupling as a source of para → ortho-H2 conversion in diamagnetic solvents

    NASA Astrophysics Data System (ADS)

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2017-04-01

    At ambient temperature, conversion from 100% enriched para-hydrogen (p-H2; singlet state) to ortho-hydrogen (o-H2; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H2 and 25% of p-H2. When p-H2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the p a r a →o r t h o conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the p a r a →o r t h o conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H2 (p-H2 is NMR-silent), one has to account for H2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d6 and carbon disulfide. The observed temperature dependence of the p a r a →o r t h o conversion rate shows that spin-rotation can be the dominant contribution to the p-H2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the p a r a →o r t h o conversion which has been searched for several decades.

  18. Talking Less during Social Interactions Predicts Enjoyment: A Mobile Sensing Pilot Study

    PubMed Central

    Sandstrom, Gillian M.; Tseng, Vincent Wen-Sheng; Costa, Jean; Okeke, Fabian; Choudhury, Tanzeem; Dunn, Elizabeth W.

    2016-01-01

    Can we predict which conversations are enjoyable without hearing the words that are spoken? A total of 36 participants used a mobile app, My Social Ties, which collected data about 473 conversations that the participants engaged in as they went about their daily lives. We tested whether conversational properties (conversation length, rate of turn taking, proportion of speaking time) and acoustical properties (volume, pitch) could predict enjoyment of a conversation. Surprisingly, people enjoyed their conversations more when they spoke a smaller proportion of the time. This pilot study demonstrates how conversational properties of social interactions can predict psychologically meaningful outcomes, such as how much a person enjoys the conversation. It also illustrates how mobile phones can provide a window into everyday social experiences and well-being. PMID:27438475

  19. Comparison of reconnection in magnetosphere and solar corona

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  20. Risk factors influencing the early outcome results after laparoscopic repair of perforated duodenal ulcer and their predictive value.

    PubMed

    Lunevicius, Raimundas; Morkevicius, Matas

    2005-09-01

    Clear patient selection criteria and indications for laparoscopic repair of perforated duodenal ulcers are necessary. The aims of our study are to report the early outcome results after operation and to define the predictive values of risk factors influencing conversion rate and genesis of suture leakage. Sixty nonrandomly selected patients operated on laparoscopically in a tertiary care academic center between October 1996 and May 2004 for perforated duodenal ulcers were retrospectively analyzed. The primary outcome measures included the duration of symptoms, shock, underlying medical illness, ulcer size, age, Boey score, and the collective predictive value of these variables for conversion and suture leakage rates. Laparoscopic repair was completed in 46 patients (76.7%). Fourteen patients (23.3%) underwent conversion to open repair. Eight patients (13.3%) had postoperative complications. Suture leakage was confirmed in four patients (6.7%). Hospital stay was 7.8+/-5.3 days. There was no mortality. Patients with an ulcer perforation size of >8 mm had a significantly increased risk for conversion to open repair (p<0.05): positive predictive value (PPV) 75%, sensitivity 27%, specificity 98%, and negative predictive value (NPV) 85%. The significance of ulcer perforation size was confirmed by a stepwise logistic regression test (p=0.0201). All patients who developed suture leakage had acute symptoms for >9 h preoperatively (p<0.001): PPV 31%, specificity 84%, sensitivity 100%, and NPV 100%. Conversions happened with surgeons whose previous experience involved 1.8+/-2.3 cases compared to 3.9+/-2.9 cases in successful laparoscopic repair (p=0.039, t test). Ulcer perforation size of >8 mm is a significant risk factor influencing the conversion rate. An increase in the suture leakage rate is predicted by delayed presentation of >9 h.

  1. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    NASA Astrophysics Data System (ADS)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  2. Directional amorphization of boron carbide subjected to laser shock compression.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  3. Synthesis of Nitrogen-Doped Mesoporous Carbon for the Catalytic Oxidation of Ethylbenzene

    NASA Astrophysics Data System (ADS)

    Wang, Ruicong; Yu, Yifeng; Zhang, Yue; Lv, Haijun; Chen, Aibing

    2017-06-01

    Nitrogen-doped ordered mesoporous carbon (NOMC) was fabricated via a simple hard-template method by functionalized ionic liquids as carbon and nitrogen source, SBA-15 as a hard-template. The obtained NOMC materials have a high nitrogen content of 5.55 %, a high surface area of 446.2 m2 g-1, and an excellent performance in catalysing oxidation of ethylbenzene. The conversion rate of ethylbenzene can be up to 84.5% and the yield of acetophenone can be up to 69.9%, the results indicated that the NOMC materials have a faster catalytic rate and a higher production of acetophenone than catalyst-free and CMK-3, due to their uniform pore size, high surface area and rich active sites in the carbon pore walls.

  4. Empirical Leucine-to-Carbon Conversion Factors for Estimating Heterotrophic Bacterial Production: Seasonality and Predictability in a Temperate Coastal Ecosystem▿

    PubMed Central

    Calvo-Díaz, Alejandra; Morán, Xosé Anxelu G.

    2009-01-01

    Leucine-to-carbon conversion factors (CFs) are needed for converting substrate incorporation into biomass production of heterotrophic bacteria. During 2006 we performed 20 dilution experiments for determining the spatiotemporal variability of empirical CFs in temperate Atlantic coastal waters. Values (0.49 to 1.92 kg C mol Leu−1) showed maxima in autumn to early winter and minima in summer. Spatially averaged CFs were significantly negatively correlated with in situ leucine incorporation rates (r = −0.91) and positively correlated with phosphate concentrations (r = 0.76). These relationships, together with a strong positive covariation between cell-specific leucine incorporation rates and carbon contents (r = 0.85), were interpreted as a strategy to maximize survival through protein synthesis and low growth rates under nutrient limitation (low CFs) until favorable conditions stimulate cell division relative to protein synthesis (high CFs). A multiple regression with in situ leucine incorporation rates and cellular carbon contents explained 96% of CF variance in our ecosystem, suggesting their potential prediction from more easily measurable routine variables. The use of the theoretical CF of 1.55 kg C mol Leu−1 would have resulted in a serious overestimation (73%) of annual bacterial production rates. Our results emphasize the need for considering the temporal scale in CFs for bacterial production studies. PMID:19304821

  5. Reading and Acting in the World: Conversations about Empathy

    ERIC Educational Resources Information Center

    Holland, Chris

    2009-01-01

    We live in a world of normalised violence. New Zealand has high statistics of child abuse and child deaths and in 2003 had one of the highest child-death rates in the OECD. To take serious note of these statistics is to recognise that children in many New Zealand classrooms are likely to have experienced violence directly, or to have witnessed it,…

  6. High Frequency Alternator, Power Frequency Conversion (HFA-PFC) Technology for Lightweight Tactical Power Generation

    DTIC Science & Technology

    1995-09-22

    Modules 345-800 Amperes/400-3000 Votts - Current and Thermal Ratings of Module * Circuit Currents Element Data Model* Current Thermal Units...IGBTs modules (Powerex) 56 Main components for rectifiers, Diode Bridge modules (Powerex) 65 Heat Sinks (Aavid Engineering) 85 Westinghouse...exciter circuit , are not reliable enough for military applications, and they were replaced by brushless alternators. The brushless AC alternator

  7. Reframing the Conversation about Students with Limited or Interrupted Formal Education: From Achievement Gap to Cultural Dissonance

    ERIC Educational Resources Information Center

    DeCapua, Andrea; Marshall, Helaine W.

    2015-01-01

    U.S. schools face increasing pressure to ensure that all students succeed, yet the dropout rate for English learners is alarmingly high, especially for those with limited or interrupted formal schooling (SLIFE). Serving SLIFE can be challenging because they not only need to master language and content but also need to develop literacy skills and…

  8. The Value of Clinical Teachers for EMR Implementations and Conversions

    PubMed Central

    Pantaleoni, J.L.; Longhurst, C.A.

    2015-01-01

    Summary Effective physician training is an essential aspect of EMR implementation. However, it can be challenging to find instructors who can present the material in a clinically relevant manner. The authors describe a unique physician-training program, utilizing medical students as course instructors. This approach resulted in high learner satisfaction rates and provided significant cost-savings compared to alternative options. PMID:25848414

  9. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  10. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors.

    PubMed

    Su, Qingxian; Ma, Chun; Domingo-Félez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F

    2017-10-15

    Nitrous oxide (N 2 O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N 2 O production were quantified in two lab-scale sequencing batch reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N 2 O production was low (∼2% of the oxidized ammonium). Net N 2 O production rates transiently increased with a rise in pH after each feeding, suggesting a potential effect of pH on N 2 O production. In situ application of 15 N labeled substrates revealed nitrifier denitrification as the dominant pathway of N 2 O production. Our study highlights operational conditions that minimize N 2 O emission from two-stage autotrophic nitrogen removal systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Community-based game intervention to improve South Asian Indian Americans' engagement with advanced care planning.

    PubMed

    Radhakrishnan, Kavita; Van Scoy, Lauren Jodi; Jillapalli, Regina; Saxena, Shubhada; Kim, Miyong T

    2017-07-27

    Advance care planning (ACP) allows individuals to express their preferences for medical treatment in the event that they become incapable of making their own decisions. This study assessed the efficacy of a conversation game intervention for increasing South Asian Indian Americans' (SAIAs') engagement in ACP behaviors as well as the game's acceptability and cultural appropriateness among SAIAs. Eligible community-dwelling SAIAs were recruited at SAIA cultural events held in central Texas during the summer of 2016. Pregame questionnaires included demographics and the 55-item ACP Engagement Survey. Played in groups of 3-5, the game consists of 17 open-ended questions that prompt discussions of end-of-life issues. After each game session, focus groups and questionnaires were used to examine the game's cultural appropriateness and self-rated conversation quality. Postintervention responses on the ACP Engagement Survey and rates of participation in ACP behaviors were collected after 3 months through phone interviews or online surveys. Data were analyzed using descriptive statistics, frequencies, and paired t-tests comparing pre/post averages at a .05 significance level. Of the 47 participants, 64% were female, 62% had graduate degrees, 92% had lived in the U.S. for >10 years, 87% were first-generation immigrants, and 74% had no advance directive prior to the game. At the 3-month follow-up, 58% of participants had completed at least one ACP behavior, 42% had discussed end-of-life issues with loved ones, 15% did so with their healthcare providers, and 18% had created an advanced directive. ACP Engagement Survey scores increased significantly on all four of the process subscales by 3 months postgame. SAIA individuals who played a conversation game had a relatively high rate of performing ACP behaviors 3 months after the intervention. These findings suggest that conversation games may be useful tools for motivating people from minority communities to engage in ACP behaviors.

  12. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.

    PubMed

    Hodgson, A T; Destaillats, H; Sullivan, D P; Fisk, W J

    2007-08-01

    Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.

  13. Degradation of volatile organic compounds in the gas phase by heterogeneous photocatalysis with titanium dioxide/ultraviolet light.

    PubMed

    Rochetto, Ursula Luana; Tomaz, Edson

    2015-07-01

    This work presents an overview over heterogeneous photocatalysis performed in gas phase towards the degradation of o-xylene, n-hexane, n-octane, n-decane, methylcyclohexane and 2,2,4-trimethylpentane. The experimental set-up composed by a titanium plug flow reactor vessel contained a quartz tube with a 100 W UV lamp placed at center position from 1.7 cm to the quartz wall. A titanium dioxide film was immobilized on the internal walls of the reactor and used as catalyst. All measurements were taken after reaching steady state condition and evaluated at the inlet and outlet of the system. Conversion rates were studied in a wide range of residence times yielding to a 90% or above conversion as from 20 seconds of residence time. During experiments the temperature of reactor's wall was monitored and remained between 52 and 62 °C. Temperature influence over degradation rates was negligible once a control experiment performed at 15 °C did not modify outgoing results. Humidity effect was also evaluated showing an ideal working range of 10-80% with abrupt conversion decay outside the range. By varying inlet concentration between 60 and 110 ppmv the VOC degradation curves remained unchanged. Loss over catalytic activity was only observed for o-xylene after 30 minutes of reaction, the catalyst was reactivated with a solution of hydrogen peroxide and UV light followed by additional deposition of the catalytic layer. The kinetic study suggests a first order reaction rate. The study of effective and economically viable techniques on the treatment of volatile organic compounds (VOCs) has being highlighted as an important parameter on the environmental research. The heterogeneous photocatalysis in gas phase was proved to be an effective process for the degradation of the nonaromatic VOCs tested, yielding high conversion values for the optimized systems.

  14. 5 CFR 9901.372 - Conversion or movement out of NSPS pay system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... worksite, and pay as of the day immediately before the date of conversion or movement out of NSPS. An... employee's pay band. If the employee's adjusted salary equals or exceeds the step 4 rate of the second... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Conversion or movement out of NSPS pay...

  15. Adding moxifloxacin is associated with a shorter time to culture conversion in pulmonary tuberculosis.

    PubMed

    Wang, J-Y; Wang, J-T; Tsai, T-H; Hsu, C-L; Yu, C-J; Hsueh, P-R; Lee, L-N; Yang, P-C

    2010-01-01

    To investigate whether adding moxifloxacin (MXF) to the standard anti-tuberculosis regimen can shorten the time to sputum culture conversion in pulmonary tuberculosis (PTB). Adults with culture-positive PTB were divided into two treatment groups by their choice: standard regimen alone (HERZ group) and standard regimen plus daily 400 mg MXF in the first 2 months (MXF group). Sputum samples were collected thrice weekly in the first 8 weeks. The propensity score was calculated to estimate the conditional probability of entering the MXF group. Factors influencing time to culture conversion were investigated using Cox proportional hazards regression analysis stratified by propensity score. Sixty-two patients were enrolled in the MXF group and 88 in the HERZ group; respectively 51 and 72 completed the study. The regimen was modified before culture conversion in respectively 6 (12%) and 12 (16%; P = 0.47) patients, due to adverse effects. The time to culture conversion was shorter in the MXF group (HR 2.1, 95%CI 1.4-3.2). The culture conversion rate after 6 weeks of treatment was respectively 82% and 61% (P = 0.011, <0.05/4, calculated using the modified Bonferroni method). Adding MXF to the standard anti-tuberculosis regimen in the first 2 months was associated with a shorter time to culture conversion, a higher 6-week culture conversion rate and reduced transmission of tuberculosis.

  16. Benefits from Tween during enzymic hydrolysis of corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaar, W.E.; Holtzapple, M.T.

    1998-08-20

    Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tweenmore » loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.« less

  17. Modulation of homocysteine toxicity by S-nitrosothiol formation: a mechanistic approach.

    PubMed

    Morakinyo, Moshood K; Strongin, Robert M; Simoyi, Reuben H

    2010-08-05

    The metabolic conversion of homocysteine (HCYSH) to homocysteine thiolactone (HTL) has been reported as the major cause of HCYSH pathogenesis. It was hypothesized that inhibition of the thiol group of HCYSH by S-nitrosation will prevent its metabolic conversion to HTL. The kinetics, reaction dynamics, and mechanism of reaction of HCYSH and nitrous acid to produce S-nitrosohomocysteine (HCYSNO) was studied in mildly to highly acidic pHs. Transnitrosation of this non-protein-forming amino acid by S-nitrosoglutathione (GSNO) was also studied at physiological pH 7.4 in phosphate buffer. In both cases, HCYSNO formed quantitatively. Copper ions were found to play dual roles, catalyzing the rate of formation of HCYSNO as well as its rate of decomposition. In the presence of a transition-metal ions chelator, HCYSNO was very stable with a half-life of 198 h at pH 7.4. Nitrosation by nitrous acid occurred via the formation of more powerful nitrosating agents, nitrosonium cation (NO(+)) and dinitrogen trioxide (N(2)O(3)). In highly acidic environments, NO(+) was found to be the most effective nitrosating agent with a first-order dependence on nitrous acid. N(2)O(3) was the most relevant nitrosating agent in a mildly acidic environment with a second-order dependence on nitrous acid. The bimolecular rate constants for the direct reactions of HCYSH and nitrous acid, N(2)O(3), and NO(+) were 9.0 x 10(-2), 9.50 x 10(3), and 6.57 x 10(10) M(-1) s(-1), respectively. These rate constant values agreed with the electrophilic order of these nitrosating agents: HNO(2) < N(2)O(3) < NO(+). Transnitrosation of HCYSH by GSNO produced HCYSNO and other products including glutathione (reduced and oxidized) and homocysteine-glutathione mixed disulfide. A computer modeling involving eight reactions gave a good fit to the observed formation kinetics of HCYSNO. This study has shown that it is possible to modulate homocysteine toxicity by preventing its conversion to a more toxic HTL by S-nitrosation.

  18. Latent Profile Analysis and Conversion to Psychosis: Characterizing Subgroups to Enhance Risk Prediction.

    PubMed

    Healey, Kristin M; Penn, David L; Perkins, Diana; Woods, Scott W; Keefe, Richard S E; Addington, Jean

    2018-02-15

    Groups at clinical high risk (CHR) of developing psychosis are heterogeneous, composed of individuals with different clusters of symptoms. It is likely that there exist subgroups, each associated with different symptom constellations and probabilities of conversion. Present study used latent profile analysis (LPA) to ascertain subgroups in a combined sample of CHR (n = 171) and help-seeking controls (HSCs; n = 100; PREDICT study). Indicators in the LPA model included baseline Scale of Prodromal Symptoms (SOPS), Calgary Depression Scale for Schizophrenia (CDSS), and neurocognitive performance as measured by multiple instruments, including category instances (CAT). Subgroups were further characterized using covariates measuring demographic and clinical features. Three classes emerged: class 1 (mild, transition rate 5.6%), lowest SOPS and depression scores, intact neurocognitive performance; class 2 (paranoid-affective, transition rate 14.2%), highest suspiciousness, mild negative symptoms, moderate depression; and class 3 (negative-neurocognitive, transition rate 29.3%), highest negative symptoms, neurocognitive impairment, social cognitive impairment. Classes 2 and 3 evidenced poor social functioning. Results support a subgroup approach to research, assessment, and treatment of help-seeking individuals. Class 3 may be an early risk stage of developing schizophrenia.

  19. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plantmore » operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.« less

  20. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates

    DOE PAGES

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; ...

    2015-10-28

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economicmore » analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.« less

  1. [Results and experiences of conversion of hip arthrodesis ].

    PubMed

    Schuh, A; Zeiler, G; Werber, S

    2005-03-01

    With the predictably good outcome of total hip arthroplasty today (THA), hip arthrodesis currently has limited indications. Over the long term, however, most patients develop secondary degenerative arthritis in the spine, contralateral hip, and ipsilateral knee due to overloading. The deteriorating condition of these joints eventually causes the onset of pain, which often requires conversion of a fused hip to a THA. The results and experiences of conversions of a hip arthrodesis into a THA are reported. Between 1 January 1985 and 31 December 2001 conversion of a previously performed arthrodesis of the hip to THA was carried out in a total of 45 patients; 34 patients could be followed up after the conversion to THA after a mean of 77.5 months (min.: 24, max.: 208). The primary indications for the conversion were low back pain (n=21) and ipsilateral knee pain (n=13). The mean age at the time of THA was 75.3 years (min.: 32, max.: 74). The mean time interval between the arthrodesis and the conversion to THA was 30.4 years (min.: 5, max.: 66). Of 34 hips, 29 (85%) were either pain free or had minimal pain. Complications included one persisting sciatic nerve palsy, two superficial infections, two periprosthetic fractures, and two heterotopic ossifications IV degrees with one recurrence of ankylosis and one marked reduction of motion. Revision arthroplasty was performed in four hips. Postoperatively 7 patients showed no limping, 11 showed a slight limp, and 17 a pronounced limp. Recurrent dislocations occurred in one patient. We conclude that this operation can lead to satisfactory results even after a long duration of the arthrodesis. There is a high rate of complications after conversion of a hip arthrodesis to a total hip arthroplasty. These issues must be carefully considered and discussed with the patient before any conversion procedure.

  2. Continuous Hydrolysis of Pectate by Immobilized Endo-polygalacturonase in a Continuously Stirred Tank Reactor.

    PubMed

    Iwasaki, K; Inoue, M; Matsubara, Y

    1998-01-01

    Enzymatic hydrolysis of pectate was carried out continuously to produce pectate oligosaccharides by immobilized endo-polygalacturonase in a continuous stirred tank reactor (CSTR) with high efficiency. The enzyme was immobilized on to chitosan beads by the absorption method, and the reaction was performed with an initial pectate concentration of 10 gl(-1) at 35°C and pH 4.0 at a dilution rate of 0.87-2.8 h(-1). The hydrolysis products mainly consisted of mono-, di-, tri-, tetra-, penta-, hexa- and heptasaccharides, with the highest conversion being 0.78. A higher volumetric production rate of the total hydrolyzate, which was dependent on the dilution rate, was obtained than that by a batch reaction. The hydrolysis process was mathematically modeled from the basic material balance and rate equations, and showed agreement between the simulated and experimental results. This reactor system was found to be effective for obtaining pectate oligosaccharides with a high production rate.

  3. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  4. 40 CFR 63.626 - Performance tests and compliance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...

  5. 40 CFR 63.626 - Performance tests and compliance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...

  6. 40 CFR 63.626 - Performance tests and compliance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...

  7. Expanding Learning and Social Interaction through Intelligent Systems Design: Implementing a Reputation and Recommender System for the Claremont Conversation Online

    ERIC Educational Resources Information Center

    Thoms, Brian

    2009-01-01

    In this dissertation I examine the design, construction and implementation of an online blog ratings and user recommender system for the Claremont Conversation Online (CCO). In line with constructivist learning models and practical information systems (IS) design, I implemented a blog ratings system (a system that can be extended to allow for…

  8. Talker Differences in Clear and Conversational Speech: Perceived Sentence Clarity for Young Adults with Normal Hearing and Older Adults with Hearing Loss

    ERIC Educational Resources Information Center

    Ferguson, Sarah Hargus; Morgan, Shae D.

    2018-01-01

    Purpose: The purpose of this study is to examine talker differences for subjectively rated speech clarity in clear versus conversational speech, to determine whether ratings differ for young adults with normal hearing (YNH listeners) and older adults with hearing impairment (OHI listeners), and to explore effects of certain talker characteristics…

  9. Hip Arthroscopy in Patients Age 40 or Older: A Systematic Review.

    PubMed

    Horner, Nolan S; Ekhtiari, Seper; Simunovic, Nicole; Safran, Marc R; Philippon, Marc J; Ayeni, Olufemi R

    2017-02-01

    To (1) report clinical outcomes, complication rates, and total hip arthroplasty (THA) conversion rates for patients age 40 or older who underwent hip arthroscopy, and (2) report any age-related predictors of outcome identified in the literature. MEDLINE, EMBASE, and PubMed were searched for relevant studies and pertinent data were abstracted from eligible studies. No meta-analysis was performed because of heterogeneity amongst studies. Seventeen studies were included in this review comprising 16,327 patients, including 9,954 patients age 40 or older. All studies reported statistically significant improvements in outcomes after hip arthroscopy for femoral osteochondroplasty, labral repair, or unspecified indications. In patients 40 or older who underwent labral debridement, these improvements were not clinically significant. Obesity and osteoarthritic changes predicted poorer outcomes. Only 1 of 3 studies directly comparing the 2 groups found that patients 40 or older had a significantly less improvement in a standardized hip outcome score than patients under 40 after hip arthroscopy, but all found that patients 40 or older had significantly higher rates of THA conversion. The rate of conversion to THA was 18.1% for patients 40 or older, 23.1% for patients over 50, and 25.2% for patients over 60 with a mean of 25.0 months to THA. Indications for hip arthroscopy including femoral osteochondroplasty and labral repair resulted in clinically significant improvements in patients 40 or older in most research studies examined in this review, whereas labral debridement did not produce clinically significant improvements postoperatively in the same studies. In these studies, the rate of conversion to THA is higher than in patients under 40 and increases with each decade of life, with many individual studies showing a significant increase in the rate of THA conversion. Hip arthroscopy may be suitable for some patients 40 or older, but patient selection is key and patients should be informed of the higher risk of conversion to THA. Level IV, systematic review of Level III and IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. Passenger and cell phone conversations in simulated driving.

    PubMed

    Drews, Frank A; Pasupathi, Monisha; Strayer, David L

    2008-12-01

    This study examines how conversing with passengers in a vehicle differs from conversing on a cell phone while driving. We compared how well drivers were able to deal with the demands of driving when conversing on a cell phone, conversing with a passenger, and when driving without any distraction. In the conversation conditions, participants were instructed to converse with a friend about past experiences in which their life was threatened. The results show that the number of driving errors was highest in the cell phone condition; in passenger conversations more references were made to traffic, and the production rate of the driver and the complexity of speech of both interlocutors dropped in response to an increase in the demand of the traffic. The results indicate that passenger conversations differ from cell phone conversations because the surrounding traffic not only becomes a topic of the conversation, helping driver and passenger to share situation awareness, but the driving condition also has a direct influence on the complexity of the conversation, thereby mitigating the potential negative effects of a conversation on driving. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  11. Reduced Effectiveness of Interruptive Drug-Drug Interaction Alerts after Conversion to a Commercial Electronic Health Record.

    PubMed

    Wright, Adam; Aaron, Skye; Seger, Diane L; Samal, Lipika; Schiff, Gordon D; Bates, David W

    2018-05-15

    Drug-drug interaction (DDI) alerts in electronic health records (EHRs) can help prevent adverse drug events, but such alerts are frequently overridden, raising concerns about their clinical usefulness and contribution to alert fatigue. To study the effect of conversion to a commercial EHR on DDI alert and acceptance rates. Two before-and-after studies. 3277 clinicians who received a DDI alert in the outpatient setting. Introduction of a new, commercial EHR and subsequent adjustment of DDI alerting criteria. Alert burden and proportion of alerts accepted. Overall interruptive DDI alert burden increased by a factor of 6 from the legacy EHR to the commercial EHR. The acceptance rate for the most severe alerts fell from 100 to 8.4%, and from 29.3 to 7.5% for medium severity alerts (P < 0.001). After disabling the least severe alerts, total DDI alert burden fell by 50.5%, and acceptance of Tier 1 alerts rose from 9.1 to 12.7% (P < 0.01). Changing from a highly tailored DDI alerting system to a more general one as part of an EHR conversion decreased acceptance of DDI alerts and increased alert burden on users. The decrease in acceptance rates cannot be fully explained by differences in the clinical knowledge base, nor can it be fully explained by alert fatigue associated with increased alert burden. Instead, workflow factors probably predominate, including timing of alerts in the prescribing process, lack of differentiation of more and less severe alerts, and features of how users interact with alerts.

  12. Asymptomatic Alzheimer disease: Defining resilience.

    PubMed

    Hohman, Timothy J; McLaren, Donald G; Mormino, Elizabeth C; Gifford, Katherine A; Libon, David J; Jefferson, Angela L

    2016-12-06

    To define robust resilience metrics by leveraging CSF biomarkers of Alzheimer disease (AD) pathology within a latent variable framework and to demonstrate the ability of such metrics to predict slower rates of cognitive decline and protection against diagnostic conversion. Participants with normal cognition (n = 297) and mild cognitive impairment (n = 432) were drawn from the Alzheimer's Disease Neuroimaging Initiative. Resilience metrics were defined at baseline by examining the residuals when regressing brain aging outcomes (hippocampal volume and cognition) on CSF biomarkers. A positive residual reflected better outcomes than expected for a given level of pathology (high resilience). Residuals were integrated into a latent variable model of resilience and validated by testing their ability to independently predict diagnostic conversion, cognitive decline, and the rate of ventricular dilation. Latent variables of resilience predicted a decreased risk of conversion (hazard ratio < 0.54, p < 0.0001), slower cognitive decline (β > 0.02, p < 0.001), and slower rates of ventricular dilation (β < -4.7, p < 2 × 10 -15 ). These results were significant even when analyses were restricted to clinically normal individuals. Furthermore, resilience metrics interacted with biomarker status such that biomarker-positive individuals with low resilience showed the greatest risk of subsequent decline. Robust phenotypes of resilience calculated by leveraging AD biomarkers and baseline brain aging outcomes provide insight into which individuals are at greatest risk of short-term decline. Such comprehensive definitions of resilience are needed to further our understanding of the mechanisms that protect individuals from the clinical manifestation of AD dementia, especially among biomarker-positive individuals. © 2016 American Academy of Neurology.

  13. 1.5- μm single photon counting using polarization-independent up-conversion detector

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.

  14. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.

    PubMed

    Zhang, Mingji; Or, Siu Wing

    2018-02-14

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.

  15. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression

    PubMed Central

    2018-01-01

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920

  16. Hepatitis B and C infection in haemodialysis patients in Libya: prevalence, incidence and risk factors.

    PubMed

    Alashek, Wiam A; McIntyre, Christopher W; Taal, Maarten W

    2012-10-20

    Patients receiving maintenance haemodialysis (HD) are at higher risk for acquiring Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) infections than the general population. Strict infection control measures are essential to prevent nosocomial transmission. We aimed to investigate the incidence and prevalence of HBV and HCV infection in the HD population of Libya as well as risk factors for infection. All adult patients receiving maintenance HD (n=2382) in Libyan dialysis centres (n=39) were studied between May 2009 and October 2010. Testing for Hepatitis B surface antigen (HBsAg) and anti-HCV antibodies was performed at initiation of dialysis and every 3-6 months thereafter. Patients who were sero-negative for HBV and HCV (n=1160) were followed up for 1 year to detect sero-conversions. Participant median age was 49 years and 58% were male. 831 patients (34.9%) were sero-positive for HBV and/or HCV (anti-HCV positive 31.1%; HBsAg positive 2.6%; both positive 1.2%). Of the sero-positive patients 4.7% were known to be infected before the initiation of HD. The prevalence of HBV±HCV infection varied widely between HD centres from 0% to 75.9%. Sero-positive patients were younger, had longer time on dialysis and more previous blood transfusions. Prospective follow-up revealed an incidence of sero-conversion of 7.7% during 1 year (7.1% HCV; 0.6% HBV). Wide variation in rates of newly acquired infections was observed between dialysis centres. All new HBV cases were referred from centres already treating HBV infected patients. New HCV infections were reported in most centres but the rate of HCV sero-conversion varied widely from 1.5% to 31%. Duration of dialysis, history of previous renal transplant and history of receiving HD in another centre in Libya were significantly associated with sero-conversion. Patients on maintenance HD in Libya have a high incidence and prevalence of HCV infection and lower rates of HBV infection. The factors associated with HBV and HCV infection are highly suggestive of nosocomial transmission within HD units. Urgent action is required to improve infection control measures in HD centres and to reduce dependence on blood transfusions for the treatment of anaemia.

  17. Comparing the Daily Versus the Intermittent Regimens of the Anti-Tubercular Chemotherapy in the Initial Intensive Phase in Non-HIV, Sputum Positive, Pulmonary Tuberculosis Patients.

    PubMed

    Mandal, Pranab Kumar; Mandal, Abhijit; Bhattacharyya, Sujit Kumar

    2013-02-01

    Tuberculosis (TB) is a major health problem in the universe and India is no longer exempted from this crisis .The emergence of HIV and MDRTB (Multi Drug Resistant Tuberculosis) have further made the situation critical. Our aim was to compare the efficacy of the daily and the intermittent doses of the Anti Tubercular Drug (ATD) therapy which is under the Revised National Tuberculosis Control Programme, amongst the sputum positive pulmonary tuberculosis in terms of the sputum conversion rate at the end of the initial phase , the default rate and the adverse drug reactions. This was an observational prospective study. Eighty three patients were selected from the out patient and the inpatient departments of a tertiary medical centre in India. Forty three cases received an intermittent regimen, where the major age group belonged to the under 40 years age group, the default rate to the therapy was 9.3%, the sputum conversion rate was 94.87% and adverse drug reactions were found in 25.58% of the patients. In the daily regimen, there was an equal proportion of the age group of the patients, both above and below 40 yrs, the sputum conversion rate was 94.74%, a default rate was found in 5% cases and adverse reactions were found in 35% of the cases. Both the intermittent and the daily regimens showed equal sputum conversion rates and the drug default cases were found more in the intermittent group. However, the adverse reactions were found more in the daily regimen category.

  18. In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?

    PubMed Central

    Lepoittevin, Camille; Frigerio, Jean-Marc; Garnier-Géré, Pauline; Salin, Franck; Cervera, María-Teresa; Vornam, Barbara; Harvengt, Luc; Plomion, Christophe

    2010-01-01

    Background There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C). Methodology/Principal Findings A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). Conclusions/Significance This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome. PMID:20543950

  19. Two-Stage Variable Sample-Rate Conversion System

    NASA Technical Reports Server (NTRS)

    Tkacenko, Andre

    2009-01-01

    A two-stage variable sample-rate conversion (SRC) system has been pro posed as part of a digital signal-processing system in a digital com munication radio receiver that utilizes a variety of data rates. The proposed system would be used as an interface between (1) an analog- todigital converter used in the front end of the receiver to sample an intermediatefrequency signal at a fixed input rate and (2) digita lly implemented tracking loops in subsequent stages that operate at v arious sample rates that are generally lower than the input sample r ate. This Two-Stage System would be capable of converting from an input sample rate to a desired lower output sample rate that could be var iable and not necessarily a rational fraction of the input rate.

  20. Laparoscopic colon resection trends in utilization and rate of conversion to open procedure: a national database review of academic medical centers.

    PubMed

    Simorov, Anton; Shaligram, Abhijit; Shostrom, Valerie; Boilesen, Eugene; Thompson, Jon; Oleynikov, Dmitry

    2012-09-01

    This study aims to examine trends of utilization and rates of conversion to open procedure for patients undergoing laparoscopic colon resections (LCR). This study is a national database review of academic medical centers and a retrospective analysis utilizing the University HealthSystem Consortium administrative database-an alliance of more than 300 academic and affiliate hospitals. A total of 85,712 patients underwent colon resections between October 2008 and December 2011. LCR was attempted in 36,228 patients (42.2%), with 5751 patients (15.8%) requiring conversion to an open procedure. There was a trend toward increasing utilization of LCR from 37.5% in 2008 to 44.1% in 2011. Attempted laparoscopic transverse colectomy had the highest rate of conversion (20.8%), followed by left (20.7%), right (15.6%), and sigmoid (14.3%) colon resections. The rate of utilization was highest in the Mid-Atlantic region (50.5%) and in medium- to large-sized hospitals (47.0%-49.0%).Multivariate logistic regression has shown that increasing age [odds ratio (OR) = 4.8, 95% confidence interval (CI) = 3.6-6.4], male sex (OR = 1.2, 95% CI = 1.1-1.3), open as compared with laparoscopic approach (OR = 2.6, 95%, CI = 2.3-3.1), and greater severity of illness category (OR = 27.1, 95% CI = 23.0-31.9) were all associated with increased mortality and morbidity and prolonged length of hospital stay. There is a trend of increasing utilization of LCR, with acceptable conversion rates, across hospitals in the United States over the recent years. When feasible, attempted LCR had better outcomes than open colectomy in the immediate perioperative period.

Top