Thermophotovoltaic energy conversion system having a heavily doped n-type region
DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.
2000-01-01
A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.
Wingad, Richard L; Bergström, Emilie J E; Everett, Matthew; Pellow, Katy J; Wass, Duncan F
2016-04-14
Catalysts based on ruthenium diphosphine complexes convert methanol/ethanol mixtures to the advanced biofuel isobutanol, with extremely high selectivity (>99%) at good (>75%) conversion via a Guerbet-type mechanism.
NASA Astrophysics Data System (ADS)
Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis
2017-06-01
The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.
NASA Astrophysics Data System (ADS)
Roth, G.; Flessa, H.; Helfrich, M.; Well, R.
2012-04-01
Conversion of grassland to arable land often causes a decrease of soil organic matter stocks and it increases nitrate leaching and the emission of the greenhouse gases CO2 and N2O. Conversion methods which minimize the mechanical impact on the surface soil may reduce mineralization rates and greenhouse gas emissions. We determined the effect of two different types of grassland to maize conversion (a) plowing of the sward followed by seeding of maize and (b) chemical killing of the sward by glyphosate followed by direct seed of maize) on the mineralization of grassland derived organic matter, the release of nitrate and the emission of N2O. The field experiment was carried out at the research station Kleve which is located in North Rhine-Westphalia, Germany. A four times replicated plot experiment with the following treatments was set up in April 2010: (i) mechanical conversion of grassland to maize (ii) chemical conversion grassland to maize and (iii) continuous grassland as reference. Nitrogen fertilization was 137 kg N ha-1 for maize and 250 kg N ha-1 for grassland. Soil respiration and emission of N2O were measured weekly for one year using manual closed chambers and gas chromatography. Emission of CO2 from mineralization of grassland-derived organic matter was determined from the δ13C signature of soil respiration. Soil respiration was mainly fueled by mineralization of grassland-derived organic carbon. There was no effect of the type of grassland conversion on total mineralization of organic matter originating from grassland. Both grassland to maize conversion treatments exhibited very high soil nitrate concentrations one year after grassland conversion (about 250 kg NO3-N in 0 - 90 cm). Total N2O emission decreased in the order chemical conversion of grassland (25.5) > mechanical conversion of grassland (20.1) > permanent grassland (10.8). Emissions were highest after harvest of maize when soil moisture increased. The results show that both types of grassland-to-maize conversion resulted in a large surplus of soil nitrate which promotes nitrate leaching to the groundwater and indirect N2O emissions. In addition, it caused high direct N2O emissions. We found no evidence that grassland conversion without mechanical plowing is an option to reduce groundwater contamination and greenhouse gas emission to the atmosphere.
NASA Astrophysics Data System (ADS)
Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi
2018-05-01
Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).
Refractory materials for high-temperature thermoelectric energy conversion
NASA Technical Reports Server (NTRS)
Wood, C.; Emin, D.
1983-01-01
Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT 1 is realizable. These materials are divided into two classes: (1) the rare-earth chalcogenides which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (2) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.
NASA Astrophysics Data System (ADS)
Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka
2018-04-01
In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.
Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.
2018-05-01
Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.
Yim, Eunice; O’Connell, Karen E.; St. Charles, Jordan; Petes, Thomas D.
2014-01-01
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution. PMID:24990991
NASA Astrophysics Data System (ADS)
Lukowski, Michal L.
Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I second harmonic generation in a V- cavity is presented. Tens of watts of output power for both blue and green wavelengths prove the viability for VECSELs to replace the other types of lasers currently used for applications in laser light shows, for Ti:Sapphire pumping, and for medical applications such as laser skin resurfacing. The novel, recently patented, two-chip T-cavity configuration allowing for spatial overlap of two, separate VECSEL cavities is described in detail. This type of setup is further used to demonstrate type II sum frequency generation to green with multi-watt output, and the full potential of the T-cavity is utilized by achieving type II difference frequency generation to the mid-IR spectral region. The tunable output around 5.4 microm with over 10 mW power is showcased. In the same manner the first attempts to generate THz radiation are discussed. Finally, a slightly modified T-cavity VECSEL is used to reach the UV spectral regions thanks to type I fourth harmonic generation. Over 100 mW at around 265 nm is obtained in a setup which utilizes no stabilization techniques. The dissertation demonstrates the flexibility of the VECSEL in achieving broad spectral coverage and thus its potential for a wide range of applications.
NASA Astrophysics Data System (ADS)
Abadier, Mina; Song, Haizheng; Sudarshan, Tangali S.; Picard, Yoosuf N.; Skowronski, Marek
2015-05-01
Transmission electron microscopy (TEM) and KOH etching were used to analyze the motion of dislocations after the conversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) during 4H-SiC epitaxy. The locations of TED etch pits on the epilayer surface were shifted compared to the original locations of BPD etch pits on the substrate surface. The shift of the TED etch pits was mostly along the BPD line directions towards the up-step direction. For converted screw type BPDs, the conversion points were located below the substrate/epilayer interface. The shift distances in the step-flow direction were proportional to the depths of the BPD-TED conversion points below the substrate/epilayer interface. For converted mixed type BPDs, the conversion points were exactly at the interface. Through TEM analysis, it was concluded that the dislocation shift is caused by a combined effect of H2 etching prior to growth and glide of the threading segments during high temperature epitaxy. The TED glide is only possible for converted pure screw type BPDs and could present a viable means for eliminating BPDs from the epilayer during growth by moving the conversion point below the substrate/epilayer interface.
Red laser based on intra-cavity Nd:YAG/CH4 frequency doubled Raman lasers
NASA Astrophysics Data System (ADS)
Wang, Yanchao; Wang, Pengyuan; Liu, Jinbo; Liu, Wanfa; Guo, Jingwei
2017-01-01
Stimulated Raman scattering (SRS) is a powerful tool for the extension of the spectral range of lasers. To obtain efficient Raman conversion in SRS, many researchers have studied different types of Raman laser configurations. Among these configurations, the intra-cavity type is particularly attractive. Intra-cavity SRS has the advantages of high intra-cavity laser intensity, low-SRS threshold, and high Raman conversion efficiency. In this paper, An Q-switched intra-cavity Nd: YAG/CH4 frequency-doubled Raman lasers is reported. A negative branch confocal resonator with M= 1.25 is used for the frequency-doubling of Nd: YAG laser. The consequent 532nm light is confined in intra- cavity SRS with travelling wave resonator, and the focal of one mirror of cavity is overlap with the center of the other mirror of the cavity. We found this design is especially efficient to reduce the threshold of SRS, and increase conversion efficiency. The threshold is measured to be 0.62 MW, and at the pump energy of 16.1 mJ, the conversion efficiency is 34%. With the smaller magnification M, the threshold could further decrease, and the conversion efficiency could be improved further. This is a successful try to extend the spectral range of a laser to the shorter wavelength by SRS, and this design may play an important role in the fulfillment of high power red lasers.
Ryan B. Walker; Jonathan D. Coop; Sean A. Parks; Laura Trader
2018-01-01
Extensive high-severity wildfires have driven major losses of ponderosa pine and mixed-conifer forests in the southwestern United States, in some settings catalyzing enduring conversions to nonforested vegetation types. Management interventions to reduce the probability of stand-replacing wildfire have included mechanical fuel treatments, prescribed fire, and wildfire...
Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan
2018-06-18
Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.
Liquid-crystal-based switchable polarizers for sensor protection.
Wu, C S; Wu, S T
1995-11-01
Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately ±10°. In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.
Liquid-crystal-based switchable polarizers for sensor protection
NASA Astrophysics Data System (ADS)
Wu, Chiung-Sheng; Wu, Shin-Tson
1995-11-01
Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately +/-10 deg In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.
Young, Victoria; Rochon, Elizabeth; Mihailidis, Alex
2016-11-14
The purpose of this study was to derive data from real, recorded, personal emergency response call conversations to help improve the artificial intelligence and decision making capability of a spoken dialogue system in a smart personal emergency response system. The main study objectives were to: develop a model of personal emergency response; determine categories for the model's features; identify and calculate measures from call conversations (verbal ability, conversational structure, timing); and examine conversational patterns and relationships between measures and model features applicable for improving the system's ability to automatically identify call model categories and predict a target response. This study was exploratory and used mixed methods. Personal emergency response calls were pre-classified according to call model categories identified qualitatively from response call transcripts. The relationships between six verbal ability measures, three conversational structure measures, two timing measures and three independent factors: caller type, risk level, and speaker type, were examined statistically. Emergency medical response services were the preferred response for the majority of medium and high risk calls for both caller types. Older adult callers mainly requested non-emergency medical service responders during medium risk situations. By measuring the number of spoken words-per-minute and turn-length-in-words for the first spoken utterance of a call, older adult and care provider callers could be identified with moderate accuracy. Average call taker response time was calculated using the number-of-speaker-turns and time-in-seconds measures. Care providers and older adults used different conversational strategies when responding to call takers. The words 'ambulance' and 'paramedic' may hold different latent connotations for different callers. The data derived from the real personal emergency response recordings may help a spoken dialogue system classify incoming calls by caller type with moderate probability shortly after the initial caller utterance. Knowing the caller type, the target response for the call may be predicted with some degree of probability and the output dialogue could be tailored to this caller type. The average call taker response time measured from real calls may be used to limit the conversation length in a spoken dialogue system before defaulting to a live call taker.
Sadarzanska-Terzieva, Behidhe; Tzvetanov, Plamen; Hegde, Vishwajit; Al-Hashel, Jasem Y; Rousseff, Rossen Т; Haralanov, Lubomir; Stamenov, Boyko; Atanassova, Milena; Marinova, Iveta; Marinova, Anna; Rousseva, Adelaida
2015-06-01
To investigate anti-collagen-type-IV serum antibodies (ACIVAbs) levels in patients with clinically isolated syndrome (CIS), and to determine their predictive value for conversion into multiple sclerosis (MS). Serum levels of IgM and IgG ACIVAbs in 40 untreated patients with CIS (13 male, mean age 34.85±11.4 years, range 16-58 years) were compared to those of 27 gender- and age-matched healthy controls. ACIVAbs were quantified using ELISA. Patients were followed for 5 years by clinical examination and MRI studies. Thirty two patients (80%) converted to MS (converted CIS, C-CIS group) while the rest 8 (20%) did not (non-converted CIS, NC-CIS). The C-CIS patients had significantly higher levels of IgG ACIVAb compared to NC-CIS while the IgM levels did not differ between C-CIS and NC-CIS. Conversion to MS occurred in 66% of patients with IgG ACIVAbs levels exceeding the 95th percentile found in controls. IgG ACIVAbs levels correlated positively with the serum levels of matrix metalloproteinases type 9 (r = 0.37; p = 0.003) and inversely with those of tissue inhibitor of metalloproteinases type 1 (r = -0.43; p = 0.0008). High serum levels of IgG ACIVAbs in patients with CIS correlate strongly with increased risk of conversion to MS. Copyright © 2015 Elsevier B.V. All rights reserved.
The Intergradation, Genetic Interchangeability and Interpretation of Gene Conversion Spectrum Types
Lamb, Bernard C.; Ghikas, Aglaia
1979-01-01
In the Pasadena strains of Ascobolus immersus, the gene conversion propperties of 29 induced (nine UV, nine NG, and 11 ICR-170) and nine spontaneous white-ascospore mutations have been studied. Each mutant was crossed to three types of derived wild-type strains; single mutants often gave very different conversion results in the three types of crosses, with any or all of the following changes in: percentage with post-meiotic segregation among aberrant-ratio asci; percentage with conversion to wild type among aberrant-ratio asci; and in total conversion frequency. — These results are compared with those of Leblon (1972 a, b) from Ascobolus immersus and Yu-Sun, Wickramaratne and Whitehouse (1977) from Sordaria brevicollis. It is shown that conversion spectrum types are not necessarily distinct, but can completely intergrade, on the criteria of both post-meiotic segregation frequency and direction of correction. Genetic differences between strains in the present work resulted in much interchangeability of spectrum types for the same mutation in different crosses; e.g., from type C in one cross to type B/D type in another cross, although the mutation is presumably of the same molecular type (addition or deletion frame shift, or base substitution) in each cross. These changes of conversion properties for a given mutation in different crosses mean that previous interpretations of spectrum types in terms of specific conversion properties for various molecular types of mutation are inapplicable, or inadequate on their own, to explain the present data. Other factors, such as heterozygous cryptic mutations or conversion control genes, are probably involved. Because of asymmetric hybrid DNA formation, correction properties may differ from observed conversion properties. PMID:17248926
2011-01-01
Background During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. Methods A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Results Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. Conclusions The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study. Please see Commentary: http://www.biomedcentral.com/1741-7015/9/13/abstract. PMID:21291537
Ross, Kenneth Andrew
2011-02-03
During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun
2018-01-01
Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.
Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Zhang, Xiao
The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…
Improvement of force factor of magnetostrictive vibration power generator for high efficiency
NASA Astrophysics Data System (ADS)
Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi
2015-05-01
We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
7 CFR 3560.506 - Conversion of single family type REO property to MFH use.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...
7 CFR 3560.506 - Conversion of single family type REO property to MFH use.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...
7 CFR 3560.506 - Conversion of single family type REO property to MFH use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...
7 CFR 3560.506 - Conversion of single family type REO property to MFH use.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...
7 CFR 3560.506 - Conversion of single family type REO property to MFH use.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...
5 CFR 317.304 - Conversion of career and career-type appointees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conversion of career and career-type... REGULATIONS EMPLOYMENT IN THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.304 Conversion of career and career-type appointees. (a) Coverage. This section covers employees serving under...
NASA Astrophysics Data System (ADS)
Widayatno, W. B.
2017-04-01
This paper reports the surface modification of high silica ZSM-5 zeolite, particularly emphasizing the effect of cation type on selective conversion of biomass-derived oil. XRD spectra of the NaOH-treated HZSM-5 showed notable crystallinity decrease at specific crystal plane orientation. The N2-physisorption tests confirmed mesoporosity evolution as NaOH concentration was increased. NH3-desorption tests revealed a significant change on surface acidity which involved realumination and cation replacement processes. The utilization of untreated HZSM-5 as well as hierarchical NaZSM-5 for catalytic conversion of bio-oil showed the effect of cation type and mesoporosity on chemicals distribution. The untreated HZSM-5 showed high selectivity to aromatics, which degraded gradually due to deactivation and poisoning of the acid sites. Meanwhile, hierarchical NaZSM-5 showed high selectivity to phenolic compound, which became more stable for 0.4M NaOH-treated zeolite (Na04). The current findings provide an additional insight on the potentials of NaZSM-5 for bio-oil valorization.
NASA Astrophysics Data System (ADS)
Kauffman, J. B.; Bhomia, R. K.
2014-12-01
Mangroves provide a number of ecosystem services including habitats for many species of fish and shellfish, storm protection, influences on water quality, wood, aesthetics, and a source of nutrients and energy for adjacent marine ecosystems. C stocks of mangroves are among the highest of any forest type on Earth. We have measured the ecosystem carbon stocks in mangroves across the world and found them to range from 250 to >2000 Mg C/ha which is a CO2 equivalence of 917 to 7340 Mg/ha. Because the numerous values of mangroves are well known, it is ironic that rates of deforestation largely relating to land use/land cover change are among the highest of any forest type on earth exceeding that of tropical rain forests. Dominant causes of deforestation include conversion to aquaculture (shrimp), agricultural conversion, and coastal development. The carbon emissions arising from conversion of mangroves to other uses is exceptionally high. This is because vulnerability of the soil carbon stocks to losses with conversion. Emissions from conversion of mangrove to shrimp ponds range from about 800 to over 3000 Mg CO2e/ha. This places the carbon footprint of shrimp arising from such ponds as among the highest of any food product available. Of great interest is the potential value of mangroves in carbon marketing strategies and other financial incentives that are derived from the conservation of standing forests. This is because of the combination of high carbon stocks in intact mangroves, the high greenhouse gas emissions arising from their conversion, and the conservation of other valuable ecosystem services provided by intact mangroves.
Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar
2018-03-01
The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent Progress on Integrated Energy Conversion and Storage Systems.
Luo, Bin; Ye, Delai; Wang, Lianzhou
2017-09-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.
Recent Progress on Integrated Energy Conversion and Storage Systems
Luo, Bin; Ye, Delai
2017-01-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673
Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.
Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo
2015-11-01
Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2014-01-01
The purpose of this testing is to determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. This project will evaluate the ability of coated aluminum to form adequate EMI seals. Testing will assess performance of the trivalent chromium coatings against the known control hexavalent chromium MIL-DTL-5541 Type I Class 3 before and after they have been exposed to a set of environmental conditions. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings.
NASA Astrophysics Data System (ADS)
Qiu, Jianbei; Kawamoto, Yoji; Zhang, Junjie
2002-11-01
Oxyfluoride glasses were developed with composition 30SiO2[middle dot]15AlO1.5[middle dot]28PbF2[middle dot]22CdF2[middle dot](4.8-x)GdF3[middle dot]0.1NdF3[middle dot]0.1HoF3[middle dot]xYbF3 (x=0, 0.1, 0.2, 0.5, 1, 2, 3, 4, and 4.8) in mole percent. Powder x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses at 450 degC for 0.5 h cause the precipitation of Nd3+-Yb3+-Ho3+ codoped fluorite-type nanocrystals of about 16.3 nm in diameter in the glass matrix. These transparent glass ceramics exhibited very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2)[right arrow]5I8 transition under 800 nm excitation. The intensity of the green up-conversion luminescence in a 1 mol % YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ up-conversion luminescence in the oxyfluoride glass ceramics is discussed. An up-conversion mechanism is also proposed.
NASA Astrophysics Data System (ADS)
Yakovenko, Victor
2010-03-01
We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).
Landscape scale vegetation-type conversion and fire hazard in the San Francisco bay area open spaces
Russell, W.H.; McBride, J.R.
2003-01-01
Successional pressures resulting from fire suppression and reduced grazing have resulted in vegetation-type conversion in the open spaces surrounding the urbanized areas of the San Francisco bay area. Coverage of various vegetation types were sampled on seven sites using a chronosequence of remote images in order to measure change over time. Results suggest a significant conversion of grassland to shrubland dominated by Baccharis pilularison five of the seven sites sampled. An increase in Pseudotsuga menziesii coverage was also measured on the sites where it was present. Increases fuel and fire hazard were determined through field sampling and use of the FARSITE fire area simulator. A significant increase in biomass resulting from succession of grass-dominated to shrub-dominated communities was evident. In addition, results from the FARSITE simulations indicated significantly higher fire-line intensity, and flame length associated with shrublands over all other vegetation types sampled. These results indicate that the replacement of grass dominated with shrub-dominated landscapes has increased the probability of high intensity fires. ?? 2003 Elsevier Science B.V. All rights reserved.
Mode conversion in cold low-density plasma with a sheared magnetic field
Dodin, I. Y.; Ruiz, D. E.; Kubo, S.
2017-12-19
Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less
Mode conversion in cold low-density plasma with a sheared magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodin, I. Y.; Ruiz, D. E.; Kubo, S.
Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less
Childhood trauma and dissociation in women with pseudoseizure-type conversion disorder.
Ozcetin, Adnan; Belli, Hasan; Ertem, Umit; Bahcebasi, Talat; Ataoglu, Ahmet; Canan, Fatih
2009-11-01
Conversion disorder is thought to be associated with psychological factors because of the presence of conflict and other stressors prior to the condition. The aim of this study is to compare adult patients with pseudoseizure-type conversion disorder with healthy control group in terms of childhood trauma, dissociative disorder and family history of psychiatric disorders. 56 female patients were admitted to the general psychiatry hospital outpatient clinic between January and July 2005. All patients had a negative experience about their families just before having the conversion. Diagnosis was made according to the DSM-IV criteria. A control group consisting of similar patient demographics of the disease group has been selected. Socio-demographic information forms, the Childhood Trauma Questionnaire (CTQ) and Dissociation Questionnaire (DIS-Q), were completed on the patients. CTQ total (t=12.12, P<0.001) and subscales, emotional abuse and emotional neglect (EA-EN) (t=12.74, P<0.001), physical abuse (PA) (t=10.05, P<0.001), and sexual abuse (SA) (t=7.69, P<0.001) were significantly high in the conversion group. DIS-Q mean points were statistically higher in the conversion group (t=11.05, P<0.001). The findings suggest that pseudoseizures (conversion disorder) should be included within dissociative disorders in DSM system as in ICD. It is usually uncommon for the patient to tell about childhood trauma without being specially questioned about this issue. Thus, it would be helpful to uncover these experiences by using related scales in conversion disorder patients.
Fukumaru, Takahiro; Fujigaya, Tsuyohiko; Nakashima, Naotoshi
2015-01-01
Direct conversion from heat to electricity is one of the important technologies for a sustainable society since large quantities of energy are wasted as heat. We report the development of a single-walled carbon nanotube (SWNT)-based high conversion efficiency, air-stable and flexible thermoelectric material. We prepared cobaltocene-encapsulated SWNTs (denoted CoCp2@SWNTs) and revealed that the material showed a negative-type (n-type) semiconducting behaviour (Seebeck coefficient: −41.8 μV K−1 at 320 K). The CoCp2@SWNT film was found to show a high electrical conductivity (43,200 S m−1 at 320 K) and large power factor (75.4 μW m−1 K−2) and the performance was remarkably stable under atmospheric conditions over a wide range of temperatures. The thermoelectric figure of merit (ZT) value of the CoCp2@SWNT film (0.157 at 320 K) was highest among the reported n-type organic thermoelectric materials due to the large power factor and low thermal conductivity (0.15 W m−1 K−1). These characteristics of the n-type CoCp2@SWNTs allowed us to fabricate a p-n type thermoelectric device by combination with an empty SWNT-based p-type film. The fabricated device exhibited a highly efficient power generation close to the calculated values even without any air-protective coating due to the high stability of the SWNT-based materials under atmospheric conditions. PMID:25608478
Comparative study of biological activity of four botulinum toxin type A preparations in mice.
Chung, Myung Eun; Song, Dae Heon; Park, Joo Hyun
2013-01-01
Units of available botulinum toxin preparations are not interchangeable, and the dose-conversion ratios between such preparations remain controversial. To compare the efficacy and safety of four botulinum toxin type A preparations. Murine gastrocnemius compound muscle action potentials (CMAPs) were recorded before and after injecting the four botulinum toxin preparations (onabotulinumtoxinA, abobotulinumtoxinA, new botulinum toxin, and incobotulinumtoxinA). In all preparations, CMAP amplitudes decreased until 4 days after receiving the injection and then gradually recovered. On postinjection day 84, the amplitudes returned to baseline in all groups except the high-dose groups. CMAP amplitude in the contralateral limb also decreased up to postinjection days 4 to 7 and then gradually returned to baseline by postinjection day 28. The dose-conversion ratio between onabotulinumtoxinA and abobotulinumtoxinA was determined to be 1:2.6; previous reports of 1:3 were considered too high. A dose-conversion ratio between onabotulinumtoxinA and new botulinum toxin of 1:1 was deemed appropriate. OnabotulinumtoxinA and incobotulinumtoxinA demonstrated a dose-conversion ratio of 1:1.07. The efficacy of incobotulinumtoxinA was slightly lower than that of onabotulinumtoxinA. These dose-conversion ratios are applicable solely from an efficacy standpoint and not for safety. This study was conducted in mice, so it may not translate perfectly to human applications. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick
2014-04-01
Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (< 3 m) were relatively high due to the presence of carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important functions and services they provide, their inclusion in climate-change mitigation strategies is warranted.
Yuan, Shuai; Chen, Xue-li; Li, Wei-feng; Liu, Hai-feng; Wang, Fu-chen
2011-11-01
Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH(3) yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH(3)+HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH(3) formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite. Copyright © 2011 Elsevier Ltd. All rights reserved.
Recent advances in the ITO/InP solar cell
NASA Technical Reports Server (NTRS)
Gessert, T. A.; Li, X.; Wanlass, M. W.; Coutts, T. J.
1991-01-01
It was demonstrated that Indium Tin Oxide (ITO)/InP solar cells can now be made on as-received p(-) bulk substrates which are of nearly equal quality to those which could previously only be made on epitaxially grown p(-) InP base layers. Although this advancement is due in part to both increases in substrate quality and a better understanding of back contact formation, it appears that the passivation/compensation effects resulting from having H2 in the sputtering gas tends to reduce significantly the performance differences previously observed between these two substrates. It is shown that since high efficiency ITO/InP cells can be made from as-received substrates, and since the type conversion process is not highly spatially dependent, large area ITO/InP cells (4 sq cm) with efficiencies approaching 17 percent (Global) can be made. Furthermore, the measured open circuit voltages (V sub OC) and quantum efficiencies (QEs) from these large cells suggest that, when they are processed using optimum grid designs, the efficiencies will be nearly equal to that of the smaller cells thus far produced. It has been shown, through comparative experiments involving ITO/InP and IO/InP cells, that Sn may not be the major cause of type conversion of the InP surface and thus further implies that the ITO may not be an essential element in this type of device. Specifically, very efficient photovoltaic solar cells were made by sputtering (Sn free) In2O3 showing that type conversion and subsequent junction formation will occur even in the absence of the sputtered SN species. The result suggests that sputter damage may indeed be the important mechanism(s) of type conversion. Finally, an initial study of the stability of the ITO/InP cell done over the course of about one year has indicated that the J(sub SC) (short circuit current) and the fill factor (FF) are measurably stable within experimental certainty.
Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylon, Rebecca A.; Sun, Junming; Wang, Yong
2016-01-01
Despite numerous studies on different oxide catalysts for the ethanol to 1,3-butadiene reaction, few have identified active sites (i.e., type of acidity) correlated to the catalytic performances. In this work, the type of acidity needed for ethanol to 1,3-butadiene conversion has been studied over Zn/Zr mixed oxide catalysts. Specifically, synthesis method, Zn/Zr ratio, and Na doping have been used to control the surface acid-base properties, as confirmed by characterizations such as NH3-TPD and IR-Py techniques. The 2000 ppm Na doped Zn1Zr10Oz-H with balanced base and weak Bronsted acid sites was found to give not only high selectivity to 1,3-butadiene (47%)more » at near complete ethanol conversion (97%), but also exhibited a much higher 1,3-butadiene productivity than other mixed oxides studied.« less
NASA Astrophysics Data System (ADS)
Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat
2017-09-01
Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.
Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo
2018-05-01
The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of Different Types of Small-Group Activities on Students' Conversations
ERIC Educational Resources Information Center
Young, Krista K.; Talanquer, Vicente
2013-01-01
Teaching reform efforts in chemistry education often involve engaging students in small-group activities of different types. This study focused on the analysis of how activity type affected the nature of group conversations. In particular, we analyzed the small-group conversations of students enrolled in a chemistry course for nonscience majors.…
Hwang, Soyoun; Greenlee, Justin J; Nicholson, Eric M
2017-01-01
Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.
High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell
NASA Technical Reports Server (NTRS)
Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville
2009-01-01
A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.
Conversion of the high-mode solitons in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhang, Xiaping
2017-01-01
The conversion of high-mode solitons propagating in Strongly Nonlocal Nonlinear Media (SNNM) in three coordinate systems, namely, the elliptic coordinate system, the rectangular coordinate system and the cylindrical coordinate system, based on the Snyder-Mitchell Model that describes the paraxial beam propagating in SNNM, is discussed. Through constituting the trial solution with modulating the Gaussian beam by Ince polynomials, the closed-solution of Gaussian beams in elliptic coordinate is accessed. The Ince-Gaussian (IG) beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian (LG) beams, which is controlled by the elliptic parameter. The conditions of conversion in the three types of solitons are given in relation to the Gouy phase invariability in stable propagation. The profiles of the IG breather at a different propagating distance are numerically obtained, and the conversions of a few IG solitons are illustrated. The difference between the IG soliton and the corresponding LG soliton is remarkable from the Poynting vector and phase plots at their profiles along the propagating axis.
Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.
Zhou, Rifeng; Zhou, Yaling
2014-01-01
The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.
Tague, Christina L.; Moritz, Max A.
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592
Bart, Ryan R; Tague, Christina L; Moritz, Max A
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.
High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller
NASA Astrophysics Data System (ADS)
Li, Yaoling; Wu, Zhong
2018-03-01
The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.
Inverted thermal conversion - GaAs, a new alternative material for integrated circuits
NASA Technical Reports Server (NTRS)
Lagowski, J.; Gatos, H. C.; Kang, C. H.; Skowronski, M.; Ko, K. Y.
1986-01-01
A new type of GaAs is developed which exhibits inverted thermal conversion (ITC); i.e., it converts from conducting to semiinsulating upon annealing at about 850 C. In device fabrication, its low resistivity prior to high-temperature processing differentiates ITC GaAs from the standard semiinsulating GaAs. The ITC characteristics are obtained through control of the concentration of the midgap donor EL2 based on heat treatment and crystal-growth modification. Thus EL2 does not exist in the conducting state of ITC GaAs. Conversion to the semiinsulating state during 850 C annealing is caused by the formation of EL2.
Tomeš, Petr; Trottmann, Matthias; Suter, Clemens; Aguirre, Myriam Heidi; Steinfeld, Aldo; Haueter, Philipp; Weidenkaff, Anke
2010-01-01
The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM). These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p- (La1.98Sr0.02CuO4) and two n-type (CaMn0.98Nb0.02O3) thermoelements electrically in series and thermally in parallel. The temperature gradient ΔT was applied by a High–Flux Solar Simulator source (HFSS) which generates a spectrum similar to solar radiation. The influence of the graphite layer coated on the hot side of the Al2O3 substrate compared to the uncoated surface on ΔT, Pmax and η was studied in detail. The measurements show an almost linear temperature profile along the thermoelectric legs. The maximum output power of 88.8 mW was reached for a TOM with leg length of 5 mm at ΔT = 622 K. The highest conversion efficiency η was found for a heat flux of 4–8 W cm-2 and the dependence of η on the leg length was investigated.
Padmanabhan, Jaya L; Shah, Jai L; Tandon, Neeraj; Keshavan, Matcheri S
2017-03-01
Young relatives of individuals with schizophrenia (i.e. youth at familial high-risk, FHR) are at increased risk of developing psychotic disorders, and show higher rates of psychiatric symptoms, cognitive and neurobiological abnormalities than non-relatives. It is not known whether overall exposure to environmental risk factors increases risk of conversion to psychosis in FHR subjects. Subjects consisted of a pilot longitudinal sample of 83 young FHR subjects. As a proof of principle, we examined whether an aggregate score of exposure to environmental risk factors, which we term a 'polyenviromic risk score' (PERS), could predict conversion to psychosis. The PERS combines known environmental risk factors including cannabis use, urbanicity, season of birth, paternal age, obstetric and perinatal complications, and various types of childhood adversity, each weighted by its odds ratio for association with psychosis in the literature. A higher PERS was significantly associated with conversion to psychosis in young, familial high-risk subjects (OR=1.97, p=0.009). A model combining the PERS and clinical predictors had a sensitivity of 27% and specificity of 96%. An aggregate index of environmental risk may help predict conversion to psychosis in FHR subjects. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, W.H.; Oblad, A.G.
1995-04-01
An objective of the Department of Energy in funding research in coal liquefaction, is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline-burning transportation vehicles of today. To meet this second objective, research was proposed for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B). Experimental coal liquefaction studiesmore » conducted in a batch microreactor have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly one may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. A continuous-flow reactor system is to be designed, constructed and operated. The system is to be computer-operated for process control and data logging, and is to be fully instrumented. The primary liquid products will be characterized by GC, FTIR, and GC/MS, to determine the types and quantities of the principal components produced under conditions of high liquids production with high ratios of liquids/HC gases. From these analyses, together with GC analyses of the HC gases, hydrogen consumption for the conversion to primary liquids will be calculated. Conversion of the aromatics of this liquid product to isoparaffins will be investigated. Results to date on both tasks are presented.« less
Randolph, Luc D; Steinhaus, Johannes; Möginger, Bernhard; Gallez, Bernard; Stansbury, Jeffrey; Palin, William M; Leloup, Gaëtane; Leprince, Julian G
2016-02-01
The use of a Type I photoinitiator (monoacylphosphine oxide, MAPO) was described as advantageous in a model formulation, as compared to the conventional Type II photoinitiator (Camphorquinone, CQ). The aim of the present work was to study the kinetics of polymerization of various composite mixtures (20-40-60-80 mol%) of bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (BisGMA/TegDMA) containing either CQ or MAPO, based on real-time measurements and on the characterization of various post-cure characteristics. Polymerization kinetics were monitored by Fourier-transform near-infrared spectroscopy (FT-NIRS) and dielectric analysis (DEA). A range of postcure properties was also investigated. FT-NIRS and DEA proved complementary to follow the fast kinetics observed with both systems. Autodecceleration occurred after ≈1 s irradiation for MAPO-composites and ≈5-10 s for CQ-composites. Conversion decreased with increasing initial viscosity for both photoinitiating systems. However despite shorter light exposure (3s for MAPO vs 20s for CQ-composites), MAPO-composites yielded higher conversions for all co-monomer mixtures, except at 20 mol% BisGMA, the less viscous material. MAPO systems were associated with increased amounts of trapped free radicals, improved flexural strength and modulus, and reduced free monomer release for all co-monomer ratios, except at 20 mol% BisGMA. This work confirms the major influence of the initiation system both on the conversion and network cross-linking of highly-filled composites, and further highlights the advantages of using MAPO photoinitiating systems in highly-filled dimethacrylate-based composites provided that sufficient BisGMA content (>40 mol%) and adapted light spectrum are used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.
2015-11-01
Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.
Narula, Chaitanya K; Li, Zhenglong; Casbeer, Erik M; Geiger, Robert A; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V; Davison, Brian H
2015-11-03
Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.
Who takes risks in high-risk sports? A typological personality approach.
Castanier, Carole; Le Scanff, Christine; Woodman, Tim
2010-12-01
We investigated the risk-taking behaviors of 302 men involved in high-risk sports (downhill skiing mountaineering rock climbing, paragliding, or skydiving). The sportsmen were classified using a typological approach to personality based on eight personality types, which were constructed from combinations of neuroticism, extraversion, and conscientiousness. Results showed that personality types with a configuration of low conscientiousness combined with high extraversion and/or high neuroticism (impulsive, hedonistic, insecure) were greater risk-takers. Conversely, personality types with a configuration of high conscientiousness combined with low extraversion and/or high extraversion (skeptic, brooder, entrepreneur) were lower risk-takers. Results are discussed in the context of typology and other approaches to understanding who takes risks in high-risk domains.
NASA Astrophysics Data System (ADS)
Zhang, Jun-Jie; Kawamoto, Yoji; Dai, Shi-Xun; Zhang, Li-Yan; Hu, Li-Li
2004-06-01
New oxyfluoride glasses and glass ceramic codoped with Nd3+, Yb3+ and Ho3+ were prepared. The x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses could cause the precipitation of (Nd3+, Yb3+, Ho3+)-doped fluorite-type crystals. Very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2)rightarrow5I8 transition under 800-nm excitation was observed in these transparent glass ceramics. The intensity of the green up-conversion luminescence in a 1-mol% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ up-conversion luminescence in the oxyfluoride glass ceramics is discussed.
Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua
2018-05-09
The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Shota, E-mail: happiest3.7@gmail.com; Ueno, Toshiyuki; Yamada, Sotoshi
We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversionmore » efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.« less
Advanced high temperature thermoelectrics for space power
NASA Technical Reports Server (NTRS)
Lockwood, A.; Ewell, R.; Wood, C.
1981-01-01
Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.
Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition
Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin
2017-01-01
Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964
15 CFR 995.25 - Quality management system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...
15 CFR 995.25 - Quality management system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...
15 CFR 995.25 - Quality management system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...
15 CFR 995.25 - Quality management system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...
Development of high intensity X-ray sources at the National Ignition Facility
NASA Astrophysics Data System (ADS)
May, M. J.; Colvin, J. D.; Kemp, G. E.; Barrios, M. A.; Widmann, K.; Benjamin, R.; Thorn, D.; Poole, P.; Blue, B.
2018-05-01
Laser heated plasmas have provided recently some of the most powerful and energetic nanosecond length laboratory sources of x-ray photons (Ephoton = 1-30 keV). The highest x-ray to laser conversion is currently accessible by using underdense (ne ˜ 0.25 nc) plasmas since optimal laser coupling is obtained in millimeter scale targets. The targets can have conversion efficiencies of up to 10%. Several types of targets can be used to produce underdense plasmas: metal lined cylindrical cavities, gas pipes, and most recently nano-wire foams. Both the experimental and simulation details of these high intensity x-ray sources are discussed.
High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%
NASA Astrophysics Data System (ADS)
Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.
2018-06-01
We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.
Fraga, Hugo Pacheco de Freitas; Agapito-Tenfen, Sarah Zanon; Caprestano, Clarissa Alves; Nodari, Rubens Onofre; Guerra, Miguel Pedro
2013-09-01
Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Communication Patterns in Normal and Disturbed Families.
ERIC Educational Resources Information Center
Angermeyer, Matthias C.; Hecker, Hartmut
A study of formal communication in 30 families each with a schizophrenic son and 28 families, each with a "normal" son was conducted in Germany. By means of factor analysis four types of formal speech behavior were identified using musical terminology: "staccato," a highly fragmented flow of conversation with high turnover rate; "solo" in which…
Thermoelectric Properties of n-type SnSe Single Crystal
NASA Astrophysics Data System (ADS)
Nguyen, Phuong; Duong, Anh Tuan; Rhim, S. H.; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Cho, Sunglae; Kwon, Suyong; Song, Jae Yong; Park, Hyun Min
Although thermoelectric materials are well known for their reliability and have been used for many years, even in the field of space engineering, their performance is quite small due to low energy conversion efficiency. Dimensionless figure of merit, ZT = S2. σ.T.κ-1 (where S, σ, T, κ are Seebeck coefficient, electrical conductivity, absolute temperature and thermal conductivity, respectively) is conveniently used to evaluate the conversion efficiency of a thermoelectric materials. Recently, the highest value of ZT to date has been reported for single crystal SnSe, ZT = 2.6 along the b axis of unit cell at 923 K. This temperature is rather high and the range of temperature for high reported ZT is quite narrow. Here we report an attempt to modify the thermoelectric properties of SnSe by using group V and VII as n-type dopant. A negative value of Seebeck coefficient was observed and the power factor reached a peak of 10 μW.K-2.cm-1 at around 600 K. The maximum n-type ZT was 0.57 at 650 K. We will discuss on dopant dependent thermoelectric properties of n-type SnSe single crystals.
The Impact of Natural Hazards such as Turbulent Wind Gusts on the Wind Energy Conversion Process
NASA Astrophysics Data System (ADS)
Wächter, M.; Hölling, M.; Milan, P.; Morales, A.; Peinke, J.
2012-12-01
Wind turbines operate in the atmospheric boundary layer, where they are exposed to wind gusts and other types of natural hazards. As the response time of wind turbines is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. We show evidence that basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. Intermittent statistics include high probabilities of extreme events which can be related to wind gusts and other types of natural hazards. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features and quantify their effects on all stages of wind energy conversion.
Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
Yu, Seung-Ho; Feng, Xinran; Zhang, Na; Seok, Jeesoo; Abruña, Héctor D
2018-02-20
The need/desire to lower the consumption of fossil fuels and its environmental consequences has reached unprecedented levels in recent years. A global effort has been undertaken to develop advanced renewable energy generation and especially energy storage technologies, as they would enable a dramatic increase in the effective and efficient use of renewable (and often intermittent) energy sources. The development of electrical energy storage (EES) technologies with high energy and power densities, long life, low cost, and safe use represents a challenge from both the fundamental science and technological application points of view. While the advent and broad deployment of lithium-ion batteries (LIBs) has dramatically changed the EES landscape, their performance metrics need to be greatly enhanced to keep pace with the ever-increasing demands imposed by modern consumer electronics and especially the emerging automotive markets. Current battery technologies are mostly based on the use of a transition metal oxide cathode (e.g., LiCoO 2 , LiFePO 4 , or LiNiMnCoO 2 ) and a graphite anode, both of which depend on intercalation/insertion of lithium ions for operation. While the cathode material currently limits the battery capacity and overall energy density, there is a great deal of interest in the development of high-capacity cathode materials as well as anode materials. Conversion reaction materials have been identified/proposed as potentially high-energy-density alternatives to intercalation-based materials. However, conversion reaction materials react during lithiation to form entirely new products, often with dramatically changed structure and chemistry, by reaction mechanisms that are still not completely understood. This makes it difficult to clearly distinguish the limitations imposed by the mechanism and practical losses from initial particle morphology, synthetic approaches, and electrode preparations. Transition metal compounds such as transition metal oxides, sulfides, fluorides, phosphides, and nitrides can undergo conversion reactions yielding materials with high theoretical capacity (generally from 500 to 1500 mA h g -1 ). In particular, a number of transition metal oxides and sulfides have shown excellent electrochemical properties as high-capacity anode materials. In addition, some transition metal fluorides have shown great potential as cathode materials for Li rechargeable batteries. In this Account we present mechanistic studies, with emphasis on the use of operando methods, of selected examples of conversion-type materials as both potentially high-energy-density anodes and cathodes in EES applications. We also include examples of the conceptually similar conversion-type reactions involving chalcogens and halogens, with emphasis on the Li-S system. In this case we focus on the problems arising from the low electrical conductivities of elemental sulfur and Li 2 S and the "redox shuttle" phenomena of polysulfides. In addition to mechanistic insights from the use of operando methods, we also cover several key strategies in electrode materials design such as controlling the size, morphology, composition, and architecture.
NASA Astrophysics Data System (ADS)
Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping
2014-12-01
High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.
Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP
NASA Technical Reports Server (NTRS)
Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.
1988-01-01
Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.
Order and Disorder in Conversation: Encounters with Dementia of the Alzheimer's Type
ERIC Educational Resources Information Center
Muller, Nicole; Guendouzi, Jacqueline A.
2005-01-01
After a brief introduction to Dementia of the Alzheimer's Type (DAT), its behavioral diagnostic symptom complex and a summary of communicative implications, we present data from two conversations involving participants with and without DAT. We discuss the concept of "order" in conversation, and the central importance of interactional monitoring.…
Tomaru, Yohei; Yoshioka, Tomokazu; Sugaya, Hisashi; Shimizu, Yukiyo; Aoto, Katsuya; Wada, Hiroshi; Akaogi, Hiroshi; Yamazaki, Masashi; Mishima, Hajime
2018-04-28
We had previously established concentrated autologous bone marrow aspirate transplantation (CABMAT), a one-step, low-invasive, joint-preserving surgical technique for treating osteonecrosis of the femoral head (ONFH). This study aimed to evaluate the effects of CABMAT as a hip-preserving surgical approach, preventing conversion to total hip arthroplasty (THA) and femoral head collapse in patients with systemic lupus erythematosus (SLE). Since 2003, 52 SLE patients (8 male, 44 female, 92 hips, mean age 35.3 (16-77) (years) were treated with CABMAT. The mean follow-up period was 5.5 (0.7-14) years. Conversion rate to THA and its predicting factors were analyzed. The overall conversion rate to THA was 29% (27/92). Conversion rate to THA was 0% (0/3), 0% (0/4), 22% (9/41), and 41% (18/44) in types A, B, C1, and C2, respectively. Conversion rate to THA was 26% (5/19), 26% (6/23), 28% (11/39), 44% (4/9), and 50% (1/2) in stages 1, 2, 3A, 3B, and 4, respectively. In multivariate logistic regression analysis, sex, body mass index (BMI), pre-operative type, and pre-operative stage were significantly correlated with conversion to THA. The conversion rate to THA was lower than that in the natural course and core decompression, but was higher than that seen in other bone marrow transplantation and osteotomy. Since sex, pre-operative type, and pre-operative stage were significantly correlated with conversion to THA, it is suggested that the higher proportion of women, advanced stage (stage 3A or above), and advanced type (type C or above) in this study affected the THA conversion rate.
Supported organometallic catalysts for hydrogenation and Olefin Polymerization
Marks, Tobin J.; Ahn, Hongsang
2001-01-01
Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.
Pinna, Antonio; Masala, Speranza; Blasetti, Francesco; Maiore, Irene; Cossu, Davide; Paccagnini, Daniela; Mameli, Giuseppe; Sechi, Leonardo A
2014-01-01
MAP3865c, a Mycobacterium avium subspecies paratuberculosis (MAP) cell membrane protein, has a relevant sequence homology with zinc transporter 8 (ZnT8), a beta-cell membrane protein involved in Zn++ transportation. Recently, antibodies recognizing MAP3865c epitopes have been shown to cross-react with ZnT8 in type 1 diabetes patients. The purpose of this study was to detect antibodies against MAP3865c peptides in patients with high-risk proliferative diabetic retinopathy and speculate on whether they may somehow be involved in the pathogenesis of this severe retinal disorder. Blood samples were obtained from 62 type 1 and 80 type 2 diabetes patients with high-risk proliferative diabetic retinopathy and 81 healthy controls. Antibodies against 6 highly immunogenic MAP3865c peptides were detected by indirect ELISA. Type 1 diabetes patients had significantly higher rates of positive antibodies than controls. Conversely, no statistically significant differences were found between type 2 diabetes patients and controls. After categorization of type 1 diabetes patients into two groups, one with positive, the other with negative antibodies, we found that they had similar mean visual acuity (∼ 0.6) and identical rates of vitreous hemorrhage (28.6%). Conversely, Hashimoto's thyroiditis prevalence was 4/13 (30.7%) in the positive antibody group and 1/49 (2%) in the negative antibody group, a statistically significant difference (P = 0.016). This study confirmed that type 1 diabetes patients have significantly higher rates of positive antibodies against MAP/ZnT8 peptides, but failed to find a correlation between the presence of these antibodies and the severity degree of high-risk proliferative diabetic retinopathy. The significantly higher prevalence of Hashimoto's disease among type 1 diabetes patients with positive antibodies might suggest a possible common environmental trigger for these conditions.
Mickelsen, Reid A.; Chen, Wen S.
1983-01-01
Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.
Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.
2015-01-01
Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX. PMID:26526963
Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; ...
2015-11-03
Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C 2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C 2 (<13%) as compared to that over H-ZSM-5. Experiments with C 2H 5OD and in situ DRIFT suggest that most of the productsmore » come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.« less
Predictors of delayed culture conversion among Ugandan patients.
Atwine, Daniel; Orikiriza, Patrick; Taremwa, Ivan; Ayebare, Arnold; Logoose, Suzan; Mwanga-Amumpaire, Juliet; Jindani, Amina; Bonnet, Maryline
2017-04-24
Estimates of month-2 culture conversion, a proxy indicator of tuberculosis (TB) treatment efficacy in phase-2 trials can vary by culture-type and geographically with lower rates reported among African sites. The sub-study aimed at comparing TB detection rates of different culture media, within and across rifampicin-based regimens (R10, 15 and 20 mg/Kg) over a 6-month treatment follow-up period, and to establish predictors of month-2 culture non-conversion among HIV-negative TB patients enrolled at RIFATOX trial site in Uganda. Unlike in other Rifatox Trial sites, it is only in Uganda were Lowenstein-Jensen (LJ) and Mycobacteria growth indicator tube (MGIT) were used throughout 6-months for treatment monitoring. Conversion rates were compared at month-2, 4 and 6 across cultures and treatment-type. Binomial regression analysis performed for predictors of month-2 non-conversion. Of the 100 enrolled patients, 45% had converted based on combined LJ and MGIT by month-2, with no significant differences across treatment arms, p = 0.721. LJ exhibited higher conversion rates than MGIT at month-2 (58.4% vs 56.0%, p = 0.0707) and month-4 (98.9% vs 88.4%, p = 0.0391) respectively, more so within the high-dose rifampicin arms. All patients had converted by month-6. Time-to-TB detection (TTD) on MGIT and social service jobs independently predict month-2 non-conversion. The month-2 culture conversion used in phase 2 clinical trials as surrogate marker of treatment efficacy is influenced by the culture method used for monitoring mycobacterial response to TB treatment. Therefore, multi-centric TB therapeutic trials using early efficacy endpoint should use the same culture method across sites. The Time-to-detection of MTB on MGIT prior to treatment and working in Social service jobs bear an increased risk of culture non-conversion at month-2. ISRCTN ISRCTN55670677 . Registered 09th November 2010. Retrospectively registered.
Status of photoelectrochemical production of hydrogen and electrical energy
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Walker, G. H.
1976-01-01
The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.
Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs
NASA Astrophysics Data System (ADS)
Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.
2013-12-01
Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low input, and d) subsistence management intensities. All remaining vegetated land is represented in grey, while barren land is represented in white. Globally, agricultural land cover conversion has reduced natural primary production by 3.0 × 0.68 Pg C y-1 (i.e., a ~7% reduction in biospheric NPP), with a disproportionately large percentage of this reduction attributable to the conversion of temperate (~44%) and tropical (~50%) ecosystems.
You Are What You Write: Improving the Quality of Your Written Communication
ERIC Educational Resources Information Center
Robertson, Rachel
2012-01-01
Good and plentiful communication often lands high on the list of priorities for families participating in child care programs. Conversely, poor and scarce communication often lands high on the list of reasons parents leave a particular child care program. There are many types of communication to consider when meeting families' needs. While in most…
NASA Astrophysics Data System (ADS)
Huang, Zhi Xiang; Wang, Ye; Liu, Bo; Kong, Dezhi; Zhang, Jun; Chen, Tupei; Yang, Hui Ying
2017-01-01
The alloying-dealloying reactions of SnS2 proceeds with the initial conversion reaction of SnS2 with lithium that produces Li2S. Unfortunately, due to the electrochemical inactivity of Li2S, the conversion reaction of SnS2 is irreversible, which significantly limit its potential applications in lithium-ion batteries. Herein, a systematic understanding of transition metal molybdenum (Mo) as a catalyst in SnS2 anode is presented. It is found that Mo catalyst is able to efficiently promote the reversible conversion of Sn to SnS2. This leads to the utilization of both conversion and alloying reactions in SnS2 that greatly increases lithium storage capability of SnS2. Mo catalyst is introduced in the form of MoS2 grown directly onto self-assembled vertical SnS2 nanosheets that anchors on three-dimensional graphene (3DG) creating a hierarchal nanostructured named as SnS2/MoS2/3DG. The catalytic effect results in a significantly enhanced electrochemical properties of SnS2/MoS2/3DG; a high initial Coulombic efficiency (81.5%) and high discharge capacities of 960.5 and 495.6 mA h g-1 at current densities of 50 and 1000 mA g-1, respectively. Post cycling investigations using ex situ TEM and XPS analysis verifies the successful conversion reaction of SnS2 mediated by Mo. The successful integration of catalyst on alloying type metal sulfide anode creates a new avenue towards high energy density lithium anodes.
Huang, Zhi Xiang; Wang, Ye; Liu, Bo; Kong, Dezhi; Zhang, Jun; Chen, Tupei; Yang, Hui Ying
2017-01-19
The alloying-dealloying reactions of SnS 2 proceeds with the initial conversion reaction of SnS 2 with lithium that produces Li 2 S. Unfortunately, due to the electrochemical inactivity of Li 2 S, the conversion reaction of SnS 2 is irreversible, which significantly limit its potential applications in lithium-ion batteries. Herein, a systematic understanding of transition metal molybdenum (Mo) as a catalyst in SnS 2 anode is presented. It is found that Mo catalyst is able to efficiently promote the reversible conversion of Sn to SnS 2 . This leads to the utilization of both conversion and alloying reactions in SnS 2 that greatly increases lithium storage capability of SnS 2 . Mo catalyst is introduced in the form of MoS 2 grown directly onto self-assembled vertical SnS 2 nanosheets that anchors on three-dimensional graphene (3DG) creating a hierarchal nanostructured named as SnS 2 /MoS 2 /3DG. The catalytic effect results in a significantly enhanced electrochemical properties of SnS 2 /MoS 2 /3DG; a high initial Coulombic efficiency (81.5%) and high discharge capacities of 960.5 and 495.6 mA h g -1 at current densities of 50 and 1000 mA g -1 , respectively. Post cycling investigations using ex situ TEM and XPS analysis verifies the successful conversion reaction of SnS 2 mediated by Mo. The successful integration of catalyst on alloying type metal sulfide anode creates a new avenue towards high energy density lithium anodes.
Grassland Management and Conversion into Grassland: Effects on Soil Carbon
Conant, Richard T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Paustian, Keith [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Elliott, Edward T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA)
2003-01-01
Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 y after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 to 3.04 Mg C · ha–1 y–1, with a mean of 0.54 Mg C · ha –1 · y–1, and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.
NASA Astrophysics Data System (ADS)
Bijlani, Bhavin J.
2011-07-01
This thesis explored the theory, design, fabrication and characterization of AlGaAs Bragg reflection waveguides (BRW) towards the goal of a platform for monolithic integration of active and optically nonlinear devices. Through integration of a diode laser and nonlinear phase-matched cavity, the possibility of on-chip nonlinear frequency generation was explored. Such integrated devices would be highly useful as a robust, alignment free, small footprint and electrically injected alternative to bulk optic systems. A theoretical framework for modal analysis of arbitrary 1-D photonic crystal defect waveguides is developed. This method relies on the transverse resonance condition. It is then demonstrated in the context of several types of Bragg reflection waveguides. The framework is then extended to phase-match second-order nonlinearities and incorporating quantum-wells for diode lasers. Experiments within a slab and ridge waveguide demonstrated phase-matched Type-I second harmonic generation at fundamental wavelength of 1587 and 1600 nm, respectively; a first for this type of waveguide. For the slab waveguide, conversion efficiency was 0.1 %/W. In the more strongly confined ridge waveguides, efficiency increased to 8.6 %/W owing to the increased intensity. The normalized conversion efficiency was estimated to be at 600 %/Wcm2. Diode lasers emitting at 980 nm in the BRW mode were also fabricated. Verification of the Bragg mode was performed through imaging the near- field of the mode. Propagation loss of this type of mode was measured directly for the first time at ≈ 14 cm-1. The lasers were found to be very insensitive with characteristic temperature at 215 K. Two designs incorporating both laser and phase-matched nonlinearity within the same cavity were fabricated, for degenerate and non-degenerate down-conversion. Though the lasers were sub-optimal, a parametric fluorescence signal was readily detected. Fluorescence power as high as 4 nW for the degenerate design and 5 nW for the non-degenerate design were detected. The conversion efficiency was 4176 %/Wcm2 and 874 %/Wcm2, respectively. Neither design was found to emit near the design wavelength. In general, the signal is between 1600-1800 nm and the idler is between 2200-2400 nm. Improvements in laser performance are expected to drastically increase the conversion efficiency.
Ruan, Xiaofeng; Qiu, Feng; Dyck, Miles
2016-08-01
Various environmental and socioeconomic issues have been attributed to land-use changes, and therefore, the underlying mechanisms merit investigation and quantification. This study assesses a comprehensive series of land-use conversions that were implemented over a recent 12-year period in the province of Alberta, Canada, where rapid economic and population growth has occurred. Spatial autocorrelation models are applied to identify the comprehensive effects of environmental and socioeconomic factors in each conversion case. The empirical results show that the impacts of key environmental and socioeconomic factors varied in intensity depending on the type of land-use conversion involved. Overall, land suitability for agricultural uses, road density, elevation, and population growth were found to be significant predictors of land-use changes. High land suitability, low elevation, and moderate road density were associated with land conversion for agricultural purposes.
Power conversion process in magnetoelectric gyrators
NASA Astrophysics Data System (ADS)
Zhuang, X.; Leung, C. M.; Li, J.; Viehland, D.
2017-09-01
We have investigated the power conversion and loss processes in magnetoelectric gyrators. Two types of loss mechanisms were identified by using a transformer-gyrator structure, which transfers power between magnetic and magnetomechanical forms. A missing portion of the power in a gyrator was then identified to be a returned power from the load resistor under low drive conditions. Under high drive conditions, decreases in both the magnetostriction and mechanical quality factor resulted in additional inefficiencies. Power transfer efficiencies of greater than 70% and 50% were achieved for magnetoelectric (ME) gyrators based on Metglas/Pb(Zr,Ti)O3 laminated composites under low power drive and high power density drive (60 W/in.3) conditions, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki
2007-01-15
A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.
Toyomizu, Masaaki; Kikusato, Motoi; Kawabata, Yusuke; Azad, Md Abul Kalam; Inui, Eriko; Amo, Taku
2011-05-01
Meat-type chickens show high feed efficiency and have a very rapid growth rate compared with laying-type chickens. To clarify whether the type-specific difference in feed conversion efficiency is involved in mitochondrial bioenergetics, modular kinetic analysis was applied to oxidative phosphorylation in skeletal muscle mitochondria of both type chickens. Mitochondria from skeletal muscle of meat-type chickens showed greater substrate oxidation and phosphorylating activities, and less proton leak than those of the laying-type, resulting in a higher efficiency of oxidative phosphorylation. Gene expression and protein content of uncoupling protein (avUCP) but not adenine nucleotide translocase (avANT) gene expression were lower in skeletal muscle mitochondria of meat-type chickens than the laying-type. The current results regarding a higher efficiency of oxidative phosphorylation and UCP content may partially support the high feed efficiency of meat-type chickens. Copyright © 2011 Elsevier Inc. All rights reserved.
Catalytic conversion of cellulose to levulinic acid by metal chlorides.
Peng, Lincai; Lin, Lu; Zhang, Junhua; Zhuang, Junping; Zhang, Beixiao; Gong, Yan
2010-08-02
The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl(3), FeCl(3) and CuCl(2) and a group IIIA metal chloride (AlCl(3)), exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 degrees C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.
Conversion between parallel and antiparallel β -sheets in wild-type and Iowa mutant Aβ40 fibrils
NASA Astrophysics Data System (ADS)
Xi, Wenhui; Hansmann, Ulrich H. E.
2018-01-01
Using a variant of Hamilton-replica-exchange, we study for wild type and Iowa mutant Aβ40 the conversion between fibrils with antiparallel β-sheets and such with parallel β-sheets. We show that wild type and mutant form distinct salt bridges that in turn stabilize different fibril organizations. The conversion between the two fibril forms leads to the release of small aggregates that in the Iowa mutant may shift the equilibrium from fibrils to more toxic oligomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro
2016-01-01
In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 atmore » 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.« less
NASA Astrophysics Data System (ADS)
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-01
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h
Brooks, Eric; Wu, Xiang; Hanel, Art; Nguyen, Shaun; Wang, Jing; Zhang, Jeffrey H; Harrison, Amanda; Zhang, Wentao
2014-09-01
Recurrent genetic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have been identified in multiple tumor types. The most frequent mutation, IDH1 R132H, is a gain-of-function mutation resulting in an enzyme-catalyzing conversion of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). A high-throughput assay quantifying consumption of NADPH by IDH1 R132H has been optimized and implemented to screen 3 million compounds in 1536-well formats. The primary high-throughput screening hits were further characterized by RapidFire-mass spectrometry measuring 2-HG directly. Multiple distinct chemotypes were identified with nanomolar potencies (6-300 nM). All inhibitors were found to be inactive against the wild-type IDH1 homodimers. An IDH1 heterodimer between wild-type and R132H mutant is capable of catalyzing conversion of α-KG to 2-HG and isocitrate to α-KG. Interestingly, one of the inhibitors, EXEL-9324, was found to inhibit both conversions by the IDH1 heterodimer. This indicates the R132H/WT heterodimer may adopt conformations distinct from that of the R132H/R132H homodimer. Further enzymatic studies support this conclusion as the heterodimer exhibited a significantly lower apparent Michaelis-Menten constant for α-KG (K(m)=110 µM) compared with the R132H homodimer (K(m)= 1200 µM). The enhanced apparent affinity for α-KG suggests R132H/WT heterodimeric IDH1 can produce 2-HG more efficiently at normal intracellular levels of α-KG (approximately 100 µM). © 2014 Society for Laboratory Automation and Screening.
Implementing New Non-Chromate Coatings Systems (Briefing Charts)
2011-02-09
Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium. YES NO • Approval of...Aluminum and magnesium anodizing • Hard Chrome Plating • Type II conversion coating on aluminum alloys under chromated primer • Type II conversion coating...Elimination of Hexavalent Chromium 80% 5% 14% 1% Type II Type III Type IC Type IC Fatigue Critical 50% 50% Type II Type IC FRC-SE (JAX) Fully Integrated FRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, J. A.; Feldman, E. E.; Wilson, E. H.
This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains themore » results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo (U-10Mo).« less
Letsou, Anthea; Liskay, R. Michael
1987-01-01
With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159
Kyle, Leah M.; John, Theodore R.; Schätzl, Hermann M.; Lewis, Randolph V.
2013-01-01
Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids. PMID:23825561
Zhang, Lin; Zhou, Ying; Wu, Wangjun; Hou, Liming; Chen, Hongxing; Zuo, Bo; Xiong, Yuanzhu; Yang, Jinzeng
2017-01-01
Individual skeletal muscles in the animal body are heterogeneous, as each is comprised of different fiber types. Type I muscle fibers are rich with mitochondria, and have high oxidative metabolisms while type IIB fibers have few mitochondria and high glycolytic metabolic capacity. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a transcriptional co-activator that regulates mitochondrial biogenesis and respiratory function, is implicated in muscle fiber-type switching. Over-expression of PGC-1α in transgenic mice increased the proportion of red/oxidative type I fiber. During pig muscle growth, an increased number of type I fibers can give meat more red color. To explore the roles of PGC-1α in regulation of muscle fiber type conversion, we generated skeletal muscle-specific PGC-1α transgenic mice and pig. Ectopic over-expression of PGC-1α was detected in both fast and slow muscle fibers. The transgenic animals displayed a remarkable amount of red/oxidative muscle fibers in major skeletal muscle tissues. Skeletal muscles from transgenic mice and pigs have increased expression levels of oxidative fiber markers such as MHC1, MHC2x, myoglobin and Tnni1, and decreased expressions of glycolytic fiber genes (MHC2a, MHC2b, CASQ-1 and Tnni2). The genes responsible for the TCA cycle and oxidative phosphorylation, cytochrome coxidase 2 and 4, and citrate synthase were also increased in the transgenic mice and pigs. These results suggested that transgenic over-expressed PGC-1α significantly increased muscle mitochondrial biogenesis, resulting in qualitative changes from glycolytic to oxidative energy generation. The transgenic animals also had elevated levels of PDK4 and PPARγ proteins in muscle tissue, which can lead to increased glycogen deposition and fatty acid oxidation. Therefore, the results support a significant role of PGC-1α in conversion of fast glycolytic fibers to slow and oxidative fiber through enhanced mitochondrial respiration and fatty acid oxidation, and transgenic over-expression of PGC-1α in skeletal muscle leads to more red meat production in pigs.
ERIC Educational Resources Information Center
Fowler, Dottie; Parker, Emelie; Cuda, Suzanne
1999-01-01
Three highly acclaimed teachers from Virginia elementary schools reflect on how they have put research into practice to the benefit of their students, discussing their experiences in teaching reading and presenting information on how their school encourages the type of professional-development activities that provide for the careful examination of…
Zebedin, Eva; Sandtner, Walter; Galler, Stefan; Szendroedi, Julia; Just, Herwig; Todt, Hannes; Hilber, Karlheinz
2004-08-01
Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.
NASA Astrophysics Data System (ADS)
Aikawa, Shinya; Kim, Sungjin; Thurakitseree, Theerapol; Einarsson, Erik; Inoue, Taiki; Chiashi, Shohei; Tsukagoshi, Kazuhito; Maruyama, Shigeo
2018-01-01
We present that the electrical conduction type in carbon nanotube field-effect transistors (CNT-FETs) can be converted by induced charges in a polyvinyl alcohol (PVA) insulator. When the CNT channels are covered with pure PVA, the FET characteristics clearly change from unipolar p-type to ambipolar. The addition of ammonium ions (NH4+) in the PVA leads to further conversion to unipolar n-type conduction. The capacitance - voltage characteristics indicate that a high density of positive charges is induced at the PVA/SiO2 interface and within the bulk PVA. Electrons are electrostatically accumulated in the CNT channels due to the presence of the positive charges, and thus, stable n-type conduction of PVA-coated CNT-FETs is observed, even under ambient conditions. The mechanism for conversion of the conduction type is considered to be electrostatic doping due to the large amount of positive charges in the PVA. A blue-shift of the Raman G-band peak was observed for CNTs coated with NH4+-doped PVA, which corresponds to unipolar n-type CNT-FET behavior. These results confirm that carrier polarity engineering in CNT-FETs can be achieved with a charged PVA passivation layer.
Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin
2012-07-09
The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sahin, Mehmet
2018-05-01
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Matsuura, Tetsuya; Li, Yong; Giacobino, Jean-Paul; Fu, Freddie H; Huard, Johnny
2007-11-01
We used a mouse model of cardiotoxin injury to examine fiber type conversion during muscle repair. We evaluated the soleus muscles of 37 wild-type mice at 2, 4, 8, and 12 weeks after injury. We also used antibodies (fMHC and sMHC) against fast and slow myosin heavy chain to classify the myofibers into three categories: fast-, slow-, and mixed (hybrid)-type myofibers (myofibers expressing both fMHC and sMHC). Our results revealed an increase in the percentage of slow-type myofibers and a decrease in the percentage of fast-type myofibers during the repair process. The percentage of hybrid-type myofibers increased 2 weeks after injury, then gradually decreased over the following 6 weeks. Similarly, our analysis of centronucleated myofibers showed an increase in the percentage of slow-type myofibers and decreases in the percentages of fast- and hybrid-type myofibers. We also investigated the relationship between myofiber type conversion and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The expression of both PGC-1alpha protein, which is expressed in both the nucleus and the cytoplasm of regenerating myofibers, and sMHC protein increased with time after cardiotoxin injection, but we observed no significant differential expression of fMHC protein in regenerating muscle fibers during muscle repair. PGC-1alpha-positive myofibers underwent fast to slow myofiber type conversion during the repair process. These results suggest that PGC-1alpha contributes to myofiber type conversion after muscle injury and that this phenomenon could influence the recovery of the injured muscle. (c) 2007 Orthopaedic Research Society.
Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas
2017-01-01
Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type.
Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas
2017-01-01
Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type. PMID:28154576
ERIC Educational Resources Information Center
Salzman, Ann
1989-01-01
The degree to which television conversations follow the rules of naturally occurring conversation is investigated. The occurrences of 1 type of pragmatic behavior (the dispreferred behavior of refusing social invitations) in 25 television conversations are compared with a theoretical description of such conversational strategies. (seven…
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; Kim, Ju Seong; Seo, Se Won; Kim, Dong Hoe; Zhu, Kai; Park, Taiho; Kim, Jin Young
2017-06-22
Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1 cm 2 . It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1 cm 2 ) without showing hysteresis effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-efficiency thin-film GaAs solar cells, phase2
NASA Technical Reports Server (NTRS)
Yeh, Y. C. M.
1981-01-01
Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.
Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu
2016-09-01
Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.
Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.
Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis
2013-09-15
This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy conversion by the herd was less evident. Partitioning the total on-farm gross energy produced among animal co-products (milk, meat and manure) highlights the major functions of SM herds, which are managed to produce organic crop fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Xiao-Feng; Koyama, Yasushi; Kitao, Osamu; Wada, Yuji; Sasaki, Shin-Ich; Tamiaki, Hitoshi; Zhou, Haoshen
2010-04-15
Dye-sensitized solar cells (DSSCs) are similar to natural photosynthesis in the initial processes involving in light-harvesting and charge separation. In order to mimic those natural photosynthetic systems mainly containing multiple pigments, six different chlorophyllous sensitizers have been isolated from natural photosynthetic organism or synthesized based on natural photosynthetic precursors, and used for fabricating DSSCs. These dye sensitizers can be placed into three classes, i.e., a-type, b-type, or c-type, based on the structural similarity to their analogs of the natural photosynthesis pigments chlorophylls a, b, and c. We succeeded in demonstrating homogeneous co-sensitization among these analogues when these were present together on mesoporous TiO2 films, and we measured the photovoltaic performance of the resulting chlorophyll-sensitized solar cells. Significantly enhanced power-conversion efficiencies (eta) were achieved with DSSCs based on co-sensitization of a chlorophyll a derivative with a chlorophyll b or c derivative. A highest power-conversion efficiency of up to 5.4% has been obtained. These results suggest that it is possible to apply multiple pigments and the energy transfer mechanism from natural photosynthetic systems in fabricating high-efficiency DSSCs. 2010 Elsevier B.V. All rights reserved.
Frequency Up-Conversion Photon-Type Terahertz Imager.
Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C
2016-05-05
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.
Frequency Up-Conversion Photon-Type Terahertz Imager
Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.
2016-01-01
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281
Quasi-perpetual discharge behaviour in p-type Ge-air batteries.
Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung
2014-11-07
Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan
2017-01-01
We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.
Duration, Pitch, and Loudness in Kunqu Opera Stage Speech.
Han, Qichao; Sundberg, Johan
2017-03-01
Kunqu is a special type of opera within the Chinese tradition with 600 years of history. In it, stage speech is used for the spoken dialogue. It is performed in Ming Dynasty's mandarin language and is a much more dominant part of the play than singing. Stage speech deviates considerably from normal conversational speech with respect to duration, loudness and pitch. This paper compares these properties in stage speech conversational speech. A famous, highly experienced female singer's performed stage speech and reading of the same lyrics in a conversational speech mode. Clear differences are found. As compared with conversational speech, stage speech had longer word and sentence duration and word duration was less variable. Average sound level was 16 dB higher. Also mean fundamental frequency was considerably higher and more varied. Within sentences, both loudness and fundamental frequency tended to vary according to a low-high-low pattern. Some of the findings fail to support current opinions regarding the characteristics of stage speech, and in this sense the study demonstrates the relevance of objective measurements in descriptions of vocal styles. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Xu, Qiqi; Zhao, Jianwen; Pecunia, Vincenzo; Xu, Wenya; Zhou, Chunshan; Dou, Junyan; Gu, Weibing; Lin, Jian; Mo, Lixin; Zhao, Yanfei; Cui, Zheng
2017-04-12
The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 10 6 , effective mobility up to 30 cm 2 V -1 s -1 , small hysteresis, and small subthreshold swing (90-140 mV dec -1 ), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 V dd = 1 V) and a voltage gain as high as 30 (at V dd = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 μW at V dd = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.
Qing, Qing; Guo, Qi; Zhou, Linlin; Wan, Yilun; Xu, Youqing; Ji, Huilong; Gao, Xiaohang; Zhang, Yue
2017-02-01
Catalytic conversion of corncob pretreatment hydrolysate and raw corncob into furfural in a modified biphasic system by SO 4 2- /SnO 2 - MMT solid catalyst has been developed. The influence of the organic solvent type, organic to water phase ratio, sodium chloride concentration, reaction temperature and time on the furfural production were comparatively evaluated. The results showed that furfural yields of 81.7% and 66.1% were achieved at 190°C for 15mins and 190°C for 20mins, respectively, for corncob pretreatment hydrolysate and raw corncob by this solid catalyst. The solid catalyst used in this study exhibited good stability and high efficiency applied in the modified biphasic system in addition to excellent recyclability. The proposed catalytic system displayed high performance for catalytic conversion of lignocellulosic biomass into important platform chemicals and has great potential in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mode conversion at density irregularities in the LAPD
NASA Astrophysics Data System (ADS)
Kersten, Kristopher; Cattell, Cynthia; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Steve
2010-11-01
Mode conversion of electrostatic plasma oscillations to electromagnetic radiation is commonly observed in space plasmas as Type II and III radio bursts. Much theoretical work has addressed the phenomenon, but due to the transient nature and generation location of the bursts, experimental verification via in situ observation has proved difficult. The Large Plasma Device (LAPD) provides a reproducible plasma environment that can be tailored for the study of space plasma phenomena. A highly configurable axial magnetic field and flexible diagnostics make the device well suited for the study of plasma instabilities at density gradients. We present preliminary results of mode conversion studies performed at the LAPD. The studies employed an electron beam source configured to drive Langmuir waves towards high density plasma near the cathode discharge. Internal floating potential probes show the expected plasma oscillations ahead of the beam cathode, and external microwave antenna signals reveal a strong band of radiation near the plasma frequency that persists into the low density plasma afterglow.
NASA Astrophysics Data System (ADS)
Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu
2017-08-01
The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.
Bortnik, Bartosz J; Fetterman, Harold R
2008-10-01
A more simple photonically assisted analog-to-digital conversion system utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwavelength source is launched into a dispersive device (such as a single-mode fiber). This fiber creates a pulse train, where the central wavelength of each pulse corresponds to a spectral line of the optical source. The pulses can then be either dispersed again to perform discrete wavelength time stretching or demultiplexed for continuous time analog-to-digital conversion. We experimentally demonstrate the operation of both time stretched and interleaved systems at 38 GHz. The potential of integrating this type of system on a monolithic chip is discussed.
Conversion of deuterium gas to heavy water by catalytic isotopic exchange using wetproof catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaiattini, R.J.; McGauley, M.P.; Burns, D.L.
The invention at Chalk River Nuclear Laboratories of a simple method of wetproofing platinum catalysts allows them to retain their activity in liquid water. High performance catalysts for the hydrogen-water isotope exchange reaction that remain active for years can now be routinely produced. The first commercial application using the ordered-bed-type wetproofed isotope exchange catalyst developed and patented by Atomic Energy of Canada Ltd. has been successfully completed. Approximately 9100 m/sup 3/ of deuterium gas stored at Brookhaven National Laboratory was converted to high grade heavy water. Conversion efficiency exceeded 99.8%. The product D/sub 2/O concentration was 6.7 percentage points highermore » than the feed D/sub 2/ gas.« less
NASA Astrophysics Data System (ADS)
Saito, T.; Noguchi, S.; Matsumoto, T.; Sasaki, M.; Goto, M.
2008-07-01
Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time.
76 FR 13504 - Conversions of Insured Credit Unions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Conversions of Insured Credit Unions AGENCY: National Credit Union Administration (NCUA). ACTION: Final rule... phrase ``Regional Director'' in NCUA's rule on credit union to mutual savings bank conversions. For... for the review and approval of certain types of credit union conversions from the Regional Directors...
Kim, Ye An; Ku, Eu Jeong; Khang, Ah Reum; Hong, Eun Shil; Kim, Kyoung Min; Moon, Jae Hoon; Choi, Sung Hee; Park, Kyong Soo; Jang, Hak Chul; Lim, Soo
2014-11-01
The clinical implications of prediabetes for development of type 2 diabetes may differ for Asian ethnicity. We investigated various indices derived from a 2-h oral glucose tolerance test (OGTT) in people with prediabetes to predict their future risk of diabetes. We recruited 406 consecutive subjects with prediabetes from 2005 to 2006 and followed them up every 3-6 months for up to 9 years. Prediabetes was defined as isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT), combined glucose intolerance (CGI), or isolated elevated HbA1c (5.7-6.4%, 39-46 mmol/mol) without IFG or IGT. The rate of diabetes conversion was compared between prediabetes categories. The association of glycemic indices with development of diabetes was also investigated. Eighty-one patients were diagnosed with diabetes during the 9-year follow-up (median 46.0 months). The rate of diabetes conversion was higher in subjects with CGI (31.9%), or isolated IGT (18.5%) than in those with isolated IFG (15.2%) or isolated elevated HbA1c (10.9%). Surrogate markers reflecting β-cell dysfunction were more closely associated with diabetes conversion than insulin resistance indices. Subjects with a 30-min postload glucose ≥ 165 mg/dL and a 30-min C-peptide < 5 ng/mL had 8.83 times greater risk (95% confidence interval 2.98-26.16) of developing diabetes than other prediabetic subjects. In Asians, at least Koreans, β-cell dysfunction seems to be the major determinant for diabetes conversion. A combination of high glucose and low C-peptide levels at 30 min after OGTT may be a good predictor for diabetes conversion in this population. Copyright © 2014. Published by Elsevier Ireland Ltd.
Nonlinear generation of sum and difference frequency waves by two helicon waves in a semiconductor
NASA Astrophysics Data System (ADS)
Salimullah, M.; Ferdous, T.
1984-05-01
This paper presents a theoretical investigation of the nonlinear generation of electrostatic waves at the sum and the difference frequency when two high amplitude elliptically polarized helicon waves propagate along the direction of the externally applied static magnetic field in an n-type semiconductor. The nonlinearity arises through the ponderomotive force on electrons. It is noticed that the power conversion efficiency of the difference frequency generation is much larger than that of the sum frequency generation. The power conversion efficiency may be easily increased by increasing the density of electrons in the semiconductor.
Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi
2013-01-01
Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090
Sahin, Mehmet
2018-05-23
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Conversion of rat muscle fiber types. A time course study.
Oakley, C R; Gollnick, P D
1985-01-01
Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P less than 0.05) of the total population, four weeks after surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Song
2014-11-18
This project seeks to develop nanostructures of iron pyrite, an earth-abundant semiconductor, to enable their applications in high-performance photovoltaic (PV) devices. Growth of high purity iron pyrite nanostructures (nanowires, nanorods, and nanoplates), as well as iron pyrite thin films and single crystals, has been developed and their structures characterized. These structures have been fundamentally investigated to understand the origin of the low solar energy conversion efficiency of iron pyrite and various passivation strategies and doping approaches have been explored in order to improve it. By taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we fullymore » characterized both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices and show that pyrite is n-type in the bulk and p-type near the surface due to strong inversion, which has important consequences to using nanocrystalline pyrite for efficient solar energy conversion. Furthermore, through a comprehensive investigation on n-type iron pyrite single crystals, we found the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a non-constant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explains the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings suggest new ideas on how to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films to enable them for high performance solar applications.« less
Thermoelectric properties of cerium monopnictides
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.
1987-01-01
Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.
Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling.
Mistry, Neil A; Tadros, Nicholas N; Hedges, Jason C
2017-01-01
Introduction . The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation . We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions . Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure.
47 CFR 80.761 - Conversion graphs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is...
47 CFR 80.761 - Conversion graphs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is...
Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua
2015-11-15
Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test results. Further analysis of the test plates may be done by X-Ray Photoelectron Spectroscopy (XPS) or Electrochemical Impedance Spectroscopy (EIS). Feasibility of this is under review.
Altered water and nitrogen input shifts succession in a southern California coastal sage community.
Kimball, Sarah; Goulden, Michael L; Suding, Katharine N; Parker, Scot
Vegetation-type conversions between grasslands and shrublands have occurred worldwide in semiarid regions over the last 150 years. Areas once covered by drought-deciduous shrubs in Southern California (coastal sage scrub) are converting to grasslands dominated by nonnative species. Increasing fire frequency, drought, and nitrogen deposition have all been hypothesized as causes of this conversion, though there is little direct evidence. We constructed rain-out shelters in a coastal sage scrub community following a wildfire, manipulated water and nitrogen input in a split-plot design, and collected annual data on community composition for four years. While shrub cover increased through time in all plots during the postfire succession, both drought and nitrogen significantly slowed recovery. Four years after the fire, average native shrub cover ranged from over 80% in water addition, ambient-nitrogen plots to 20% in water reduction, nitrogen addition plots. Nonnative grass cover was high following the fire and remained high in the water reduction plots through the third spring after the fire, before decreasing in the fourth year of the study. Adding nitrogen decreased the cover of native plants and increased the cover of nonnative grasses, but also increased the growth of one crown-sprouting shrub species. Our results suggest that extreme drought during postfire succession may slow or alter succession, possibly facilitating vegetation-type conversion of coastal sage scrub to grassland. Nitrogen addition slowed succession and, when combined with drought, significantly decreased native cover and increased grass cover. Fire, drought, and atmospheric N deposition are widespread aspects of environmental change that occur simultaneously in this system. Our results imply these drivers of change may reinforce each other, leading to a continued decline of native shrubs and conversion to annual grassland.
Brady, Michael P.; Leonard, Donovan N.; Meyer, III, Harry M.; ...
2016-03-31
The local metal-coating interface microstructure and chemistry formed on commercial magnesium alloys Mg–3Al–1Zn (AZ31B) and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A, ZEK100 type) were analyzed as-chemical conversion coated with a commercial hexafluoro-titanate/zirconate type + organic polymer based treatment (Bonderite® 5200) and a commercial hexafluoro-zirconate type + trivalent chromium Cr3 + type treatment (Surtec® 650), and after the same conversion coatings followed by electrocoating with an epoxy based coating, Cathoguard® 525. Characterization techniques included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cross-section scanning transmission electron microscopy (STEM). Corrosion behavior was assessed in room temperature saturated aqueous Mg(OH)2 solution with 1 wt.% NaCl. Themore » goal of the effort was to assess the degree to which substrate alloy additions become enriched in the conversion coating, and how the conversion coating was impacted by subsequent electrocoating. Key findings included the enrichment of Al from AZ31B and Zr from ZE10A, respectively, into the conversion coating, with moderate corrosion resistance benefits for AZ31B when Al was incorporated. Varying degrees of increased porosity and modification of the initial conversion coating chemistry at the metal-coating interface were observed after electrocoating. These changes were postulated to result in degraded electrocoating protectiveness. As a result, these observations highlight the challenges of coating Mg, and the need to tailor electrocoating in light of potential degradation of the initial as-conversion coated Mg alloy surface.« less
Wirth, Eva K.; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich
2015-01-01
Background The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). Objective: To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). Methods We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Results Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Conclusions Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated. PMID:26601078
Wirth, Eva K; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich
2015-09-01
The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated.
Critical technology limits to silicon material and sheet production
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1982-01-01
Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.
The Psychology of Curriculum Theorizing: A Conversation.
ERIC Educational Resources Information Center
Wankowski, Janek; Reid, William
1982-01-01
A conversation about the "psychology of curriculum theorizing" is presented. Janek Wankowski and William Reid discuss four types of curriculum theorists: systemic, radical, existential, and deliberative. Works representative of these types, by Mauritz Johnson, Michael Apple, William Pinar, and Joseph Schwab, are also discussed. (CJ)
Container System Hardware Status Report 1990
1990-01-01
class high - speed containerships and their subsequent conversion to a cargo configuration specifically designed for rapid load/unload of military...pump modules though it could be used for general cargo and organizational property. STATUS A procurement contract for 402 shipping frames was conducted...for various cargo heights. The second type of flatrack has a maximum cargo capacity of 72 short-tons and has comer posts 13 feet high . The comer posts
Peng, Zhezhe; Li, Zongyuan; Liu, Yun-Quan; Yan, Shuai; Tong, Jianing; Wang, Duo; Ye, Yueyuan; Li, Shuirong
2017-05-30
A rational design of a Pd catalyst with highly dispersed Pd nanoclusters on an Al doped ceria-based oxide for low temperature selective catalytic reduction of NO x by hydrogen with excess O 2 was achieved. The supported Pd nanocluster shows a high hydrogen spillover ability and a NO x conversion of >84% within 100-300 °C.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li
2010-05-01
CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.
Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K
2014-09-15
We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.
Treating Speech Comprehensibility in Students with Down Syndrome
ERIC Educational Resources Information Center
Yoder, Paul J.; Camarata, Stephen; Woynaroski, Tiffany
2016-01-01
Purpose: This study examined whether a particular type of therapy (Broad Target Speech Recasts, BTSR) was superior to a contrast treatment in facilitating speech comprehensibility in conversations of students with Down syndrome who began treatment with initially high verbal imitation. Method: We randomly assigned 51 5- to 12-year-old students to…
NASA Astrophysics Data System (ADS)
Osakabe, Yuki; Tatsumi, Shota; Kotsubo, Yuichi; Iwanaga, Junpei; Yamasoto, Keita; Munetoh, Shinji; Furukimi, Osamu; Nakashima, Kunihiko
2018-02-01
Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat-electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat-electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8Au x Si46-x clathrate. Single-crystal Ba8Au x Si46-x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.
Saleem, M; Lamb, B C; Nevo, E
2001-01-01
Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II. PMID:11779798
Saleem, M; Lamb, B C; Nevo, E
2001-12-01
Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.
Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A
2014-01-01
Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.
NASA Astrophysics Data System (ADS)
Chen, Menglin L. N.; Jiang, Li Jun; Sha, Wei E. I.
2016-02-01
Orbital angular momentum (OAM) is a promising degree of freedom for fundamental studies in electromagnetics and quantum mechanics. The unlimited state space of OAM shows a great potential to enhance channel capacities of classical and quantum communications. By exploring the Pancharatnam-Berry phase concept and engineering anisotropic scatterers in a metasurface with spatially varying orientations, a plane wave with zero OAM can be converted to a vortex beam carrying nonzero OAM. In this paper, we proposed two types of novel perfect electric conductor-perfect magnetic conductor anisotropic metasurfaces. One is composed of azimuthally continuous loops and the other is constructed by azimuthally discontinuous dipole scatterers. Both types of metasurfaces are mounted on a mushroom-type high impedance surface. Compared to previous metasurface designs for generating OAM, the proposed ones achieve nearly perfect conversion efficiency. In view of the eliminated vertical component of electric field, the continuous metasurface shows very smooth phase pattern at the near-field region, which cannot be achieved by convectional metasurfaces composed of discrete scatterers. On the other hand, the metasurface with discrete dipole scatterers shows a great flexibility to generate OAM with arbitrary topological charges. Our work is fundamentally and practically important to high-performance OAM generation.
Syed, Ayeshah; Mohd Don, Zuraidah; Ng, Chirk Jenn; Lee, Yew Kong; Khoo, Ee Ming; Lee, Ping Yein; Lim Abdullah, Khatijah; Zainal, Azlin
2017-01-01
Objective To investigate whether the use of apatient decision aid (PDA) for insulin initiation fulfils its purpose of facilitating patient-centred decision-making through identifying how doctors and patients interact when using the PDA during primary care consultations. Design Conversation analysis of seven single cases of audio-recorded/video-recorded consultations between doctors and patients with type 2 diabetes, using a PDA on starting insulin. Setting Primary care in three healthcare settings: (1) one private clinic; (2) two public community clinics and (3) one primary care clinic in a public university hospital, in Negeri Sembilan and the Klang Valley in Malaysia. Participants Clinicians and seven patients with type 2 diabetes to whom insulin had been recommended. Purposive sampling was used to select a sample high in variance across healthcare settings, participant demographics and perspectives on insulin. Primary outcome measures Interaction between doctors and patients in a clinical consultation involving the use of a PDA about starting insulin. Results Doctors brought the PDA into the conversation mainly by asking information-focused ‘yes/no’ questions, and used the PDA for information exchange only if patients said they had not read it. While their contributions were limited by doctors’ questions, some patients disclosed issues or concerns. Although doctors’ PDA-related questions acted as a presequence to deliberation on starting insulin, their interactional practices raised questions on whether patients were informed and their preferences prioritised. Conclusions Interactional practices can hinder effective PDA implementation, with habits from ordinary conversation potentially influencing doctors’ practices and complicating their implementation of patient-centred decision-making. Effective interaction should therefore be emphasised in the design and delivery of PDAs and in training clinicians to use them. PMID:28490553
Coaching Conversations: The Nature of Talk between a Literacy Coach and Three Teachers
ERIC Educational Resources Information Center
Belcastro, Elizabeth G.
2009-01-01
This descriptive case study examined the nature of talk a literacy coach used during coaching conversations to guide collaborative inquiry to support teachers' needs. The study provided a rich description of the type of talk used in the coach's conversations with three kindergarten classroom teachers by analyzing the content of conversation,…
NASA Astrophysics Data System (ADS)
Qixing, Chen; Qiyu, Luo
2013-03-01
At present, the architecture of a digital-to-analog converter (DAC) in essence is based on the weight current, and the average value of its D/A signal current increases in geometric series according to its digital signal bits increase, which is 2n-1 times of its least weight current. But for a dual weight resistance chain type DAC, by using the weight voltage manner to D/A conversion, the D/A signal current is fixed to chain current Icha; it is only 1/2n-1 order of magnitude of the average signal current value of the weight current type DAC. Its principle is: n pairs dual weight resistances form a resistance chain, which ensures the constancy of the chain current; if digital signals control the total weight resistance from the output point to the zero potential point, that could directly control the total weight voltage of the output point, so that the digital signals directly turn into a sum of the weight voltage signals; thus the following goals are realized: (1) the total current is less than 200 μA (2) the total power consumption is less than 2 mW; (3) an 18-bit conversion can be realized by adopting a multi-grade structure; (4) the chip area is one order of magnitude smaller than the subsection current-steering type DAC; (5) the error depends only on the error of the unit resistance, so it is smaller than the error of the subsection current-steering type DAC; (6) the conversion time is only one action time of switch on or off, so its speed is not lower than the present DAC.
Scalable 3D image conversion and ergonomic evaluation
NASA Astrophysics Data System (ADS)
Kishi, Shinsuke; Kim, Sang Hyun; Shibata, Takashi; Kawai, Takashi; Häkkinen, Jukka; Takatalo, Jari; Nyman, Göte
2008-02-01
Digital 3D cinema has recently become popular and a number of high-quality 3D films have been produced. However, in contrast with advances in 3D display technology, it has been pointed out that there is a lack of suitable 3D content and content creators. Since 3D display methods and viewing environments vary widely, there is expectation that high-quality content will be multi-purposed. On the other hand, there is increasing interest in the bio-medical effects of image content of various types and there are moves toward international standardization, so 3D content production needs to take into consideration safety and conformity with international guidelines. The aim of the authors' research is to contribute to the production and application of 3D content that is safe and comfortable to watch by developing a scalable 3D conversion technology. In this paper, the authors focus on the process of changing the screen size, examining a conversion algorithm and its effectiveness. The authors evaluated the visual load imposed during the viewing of various 3D content converted by the prototype algorithm as compared with ideal conditions and with content expanded without conversion. Sheffe's paired comparison method was used for evaluation. To examine the effects of screen size reduction on viewers, changes in user impression and experience were elucidated using the IBQ methodology. The results of the evaluation are presented along with a discussion of the effectiveness and potential of the developed scalable 3D conversion algorithm and future research tasks.
Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming
2012-03-01
To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.
A review on plasma-etch-process induced damage of HgCdTe
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun
2018-05-01
Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.
Revealing Land Cover Change in California With Satellite Data
NASA Astrophysics Data System (ADS)
Potter, Christopher; Genovese, Vanessa; Gross, Peggy; Boriah, Shyam; Steinbach, Michael; Kumar, Vipin
2007-06-01
The conversion of natural land cover into human-dominated cover types continues to be a change of global proportions with many unknown environmental consequences. Noteworthy conversions of this type include tree stand harvests in forested regions, urbanization, and agricultural intensification in former woodland and natural grassland areas. Determining where, when, and why natural ecosystem conversions occur is a crucial scientific concern [Foley et al., 2005]. Characteristics of the land cover can have important impacts on local climate, radiation balance, biogeochemistry, hydrology and the diversity and abundance of terrestrial species [Randerson et al., 2006]. Consequently, understanding trends in land cover conversion at local scales is a requirement for making useful numerical predictions about other regional and global changes. It is urgent that accurate, timely, and economical tools be made available to document these conversions and aid in the management of their impacts.
n-hydrocarbons conversions over metal-modified solid acid catalysts
NASA Astrophysics Data System (ADS)
Zarubica, A.; Ranđelović, M.; Momčilović, M.; Radulović, N.; Putanov, P.
2013-12-01
The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.
Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung
2016-06-02
NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.
Flat-plate solar array project. Volume 4: High-efficiency solar cells
NASA Technical Reports Server (NTRS)
Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)
1986-01-01
The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.
Conversion of Deletions during Recombination in Pneumococcal Transformation
Lefevre, J. C.; Mostachfi, P.; Gasc, A. M.; Guillot, E.; Pasta, F.; Sicard, M.
1989-01-01
Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems. PMID:2599365
Format conversion between CAD data and GIS data based on ArcGIS
NASA Astrophysics Data System (ADS)
Xie, Qingqing; Wei, Bo; Zhang, Kailin; Wang, Zhichao
2015-12-01
To make full use of the data resources and realize a sharing for the different types of data in different industries, a method of format conversion between CAD data and GIS data based on ArcGIS was proposed. To keep the integrity of the converted data, some key steps to process CAD data before conversion were made in AutoCAD. For examples, deleting unnecessary elements such as title, border and legend avoided the appearance of unnecessary elements after conversion, as layering data again by a national standard avoided the different types of elements to appear in a same layer after conversion. In ArcGIS, converting CAD data to GIS data was executed by the correspondence of graphic element classification between AutoCAD and ArcGIS. In addition, an empty geographic database and feature set was required to create in ArcGIS for storing the text data of CAD data. The experimental results show that the proposed method avoids a large amount of editing work in data conversion and maintains the integrity of spatial data and attribute data between before and after conversion.
Kirst, Henning; Melis, Anastasios
2014-01-01
The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated. © 2013.
Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440
Guarnieri, Michael T.; Franden, Mary Ann; Johnson, Christopher W.; ...
2017-02-08
The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural andmore » HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans. The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. Furthermore, this approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.« less
Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarnieri, Michael T.; Franden, Mary Ann; Johnson, Christopher W.
The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural andmore » HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans. The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. Furthermore, this approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.« less
Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440.
Guarnieri, Michael T; Ann Franden, Mary; Johnson, Christopher W; Beckham, Gregg T
2017-06-01
The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural and HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans . The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. This approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.
Self-Exciting Point Process Modeling of Conversation Event Sequences
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo
Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.
Types of Informal Learning in Cross-Organizational Collegial Conversations
ERIC Educational Resources Information Center
Wilson, Daniel Gray; Hartung, Kyle
2015-01-01
Purpose: This paper aims to gather empirical evidence for what colleagues from different organizations reported they learned from informal professional learning conversations. Informal learning conversations with colleagues is a powerful yet understudied source of self-directed, professional development. Design/methodology/approach: This study of…
Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system
Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.
1998-01-01
A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eV
Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system
Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.
1998-06-23
A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.
Photosynthetic antenna engineering to improve crop yields.
Kirst, Henning; Gabilly, Stéphane T; Niyogi, Krishna K; Lemaux, Peggy G; Melis, Anastasios
2017-05-01
Evidence shows that decreasing the light-harvesting antenna size of the photosystems in tobacco helps to increase the photosynthetic productivity and plant canopy biomass accumulation under high-density cultivation conditions. Decreasing, or truncating, the chlorophyll antenna size of the photosystems can theoretically improve photosynthetic solar energy conversion efficiency and productivity in mass cultures of algae or plants by up to threefold. A Truncated Light-harvesting chlorophyll Antenna size (TLA), in all classes of photosynthetic organisms, would help to alleviate excess absorption of sunlight and the ensuing wasteful non-photochemical dissipation of excitation energy. Thus, solar-to-biomass energy conversion efficiency and photosynthetic productivity in high-density cultures can be increased. Applicability of the TLA concept was previously shown in green microalgae and cyanobacteria, but it has not yet been demonstrated in crop plants. In this work, the TLA concept was applied in high-density tobacco canopies. The work showed a 25% improvement in stem and leaf biomass accumulation for the TLA tobacco canopies over that measured with their wild-type counterparts grown under the same ambient conditions. Distinct canopy appearance differences are described between the TLA and wild type tobacco plants. Findings are discussed in terms of concept application to crop plants, leading to significant improvements in agronomy, agricultural productivity, and application of photosynthesis for the generation of commodity products in crop leaves.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0149] Agency Information Collection (Application for Conversion) (Government Life Insurance) Activity Under OMB Review AGENCY: Veterans Benefits... Conversion (Government Life Insurance), VA Form 29-0152. OMB Control Number: 2900-0149. Type of Review...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchel, W. C., E-mail: William.Mitchel.1@us.af.mil; Haugan, H. J.; Mou, Shin
2015-09-15
Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overallmore » mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.« less
High-Performance Three-Stage Cascade Thermoelectric Devices with 20% Efficiency
NASA Astrophysics Data System (ADS)
Cook, B. A.; Chan, T. E.; Dezsi, G.; Thomas, P.; Koch, C. C.; Poon, J.; Tritt, T.; Venkatasubramanian, R.
2015-06-01
The use of advanced materials has resulted in a significant improvement in thermoelectric device conversion efficiency. Three-stage cascade devices were assembled, consisting of nano-bulk Bi2Te3-based materials on the cold side, PbTe and enhanced TAGS-85 [(AgSbTe2)15(GeTe)85] for the mid-stage, and half-Heusler alloys for the high-temperature top stage. In addition, an area aspect ratio optimization process was applied in order to account for asymmetric thermal transport down the individual n- and p-legs. The n- and p-type chalcogenide alloy materials were prepared by high-energy mechanical ball-milling and/or cryogenic ball-milling of elementary powders, with subsequent consolidation by high-pressure uniaxial hot-pressing. The low-temperature stage materials, nano-bulk Bi2Te3- x Sb x and Bi2Te3- x Se x , exhibit a unique mixture of nanoscale features that leads to an enhanced Seebeck coefficient and reduced lattice thermal conductivity, thereby achieving an average ZT of ~1.26 and ~1.7 in the 27°C to 100°C range for the n-type and p-type materials, respectively. Also, the addition of small amounts of selected rare earth elements has been shown to improve the ZT of TAGS-85 by 25%, compared with conventional or neat TAGS-85, resulting in a ZT = 1.5 at 400°C. The incorporation of these improved materials resulted in a peak device conversion efficiency of ~20% at a temperature difference of 750°C when corrected for radiation heat losses and thermal conduction losses through the lead wires. These high-efficiency results were shown to be reproducible across multiple cascade devices.
The Effects of Cell Phone and Text Message Conversations on Simulated Street Crossing.
Banducci, Sarah E; Ward, Nathan; Gaspar, John G; Schab, Kurt R; Crowell, James A; Kaczmarski, Henry; Kramer, Arthur F
2016-02-01
A fully immersive, high-fidelity street-crossing simulator was used to examine the effects of texting on pedestrian street-crossing performance. Research suggests that street-crossing performance is impaired when pedestrians engage in cell phone conversations. Less is known about the impact of texting on street-crossing performance. Thirty-two young adults completed three distraction conditions in a simulated street-crossing task: no distraction, phone conversation, and texting. A hands-free headset and a mounted tablet were used to conduct the phone and texting conversations, respectively. Participants moved through the virtual environment via a manual treadmill, allowing them to select crossing gaps and change their gait. During the phone conversation and texting conditions, participants had fewer successful crossings and took longer to initiate crossing. Furthermore, in the texting condition, smaller percentage of time with head orientation toward the tablet, fewer number of head orientations toward the tablet, and greater percentage of total characters typed before initiating crossing predicted greater crossing success. Our results suggest that (a) texting is as unsafe as phone conversations for street-crossing performance and (b) when subjects completed most of the texting task before initiating crossing, they were more likely to make it safely across the street. Sending and receiving text messages negatively impact a range of real-world behaviors. These results may inform personal and policy decisions. © 2015, Human Factors and Ergonomics Society.
Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian
2017-11-01
Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δ pox mutant, while those of POX increased significantly in the Δ pdh mutant. More lactate but less acetate was produced in the Δ pdh mutant than in the wild-type and Δ pox mutant strains, and more H 2 O 2 (a product of the POX pathway) was produced in the Δ pdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB. Copyright © 2017 American Society for Microbiology.
Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying
2017-01-01
ABSTRACT Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB. PMID:28842545
Lehnert, M; Laurer, H; Maier, B; Frank, J; Marzi, I; Steudel, W-I; Mautes, A
2007-01-01
Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL) is comprised only of two fiber types after birth, type slow-oxidative (SO) and type SDH-intermediate (SDH-INT), the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing cross-sectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05). At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05). These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.
Sato, Shunsuke; Arai, Takeo; Morikawa, Takeshi; Uemura, Keiko; Suzuki, Tomiko M; Tanaka, Hiromitsu; Kajino, Tsutomu
2011-10-05
Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which H(2)O was used as both an electron donor and a proton source. The so-called Z-scheme (or two-step photoexcitation) system operated with no external electrical bias. The selectivity for HCOO(-) production was >70%, and the conversion efficiency of solar energy to chemical energy was 0.03-0.04%.
Phase matching in RT KTP crystal for down-conversion into the THz range
NASA Astrophysics Data System (ADS)
Huang, J.-G.; Huang, Z.-M.; Nikolaev, N. A.; Mamrashev, A. A.; Antsygin, V. D.; Potaturkin, O. I.; Meshalkin, A. B.; Kaplun, A. B.; Lanskii, G. V.; Andreev, Yu M.; Ezhov, D. M.; Svetlichnyi, V. A.
2018-07-01
Dispersion of refractive index and absorption coefficients in flux-grown high-resistivity KTiOPO4 crystals between 0.2–2.5 THz are verified at room temperature by a THz-TDS. Measured dispersion components n x , n y and n z are approximated for the first time in the form of Sellmeier equations. Phase matching for down-conversion into the THz range under a visible and near IR pump is found possible only in the principle plane by and types of three-wave interactions. Low frequency THz generation is favorable due to the low absorption coefficient down to 0.2 cm‑1, below 0.5 THz.
Potential effects of tree-to-shrub type conversion on streamflow in California's Sierra Nevada
NASA Astrophysics Data System (ADS)
Baguskas, S. A.; Bart, R.; Molinari, N.; Tague, C.; Moritz, M.
2014-12-01
There is widespread concern that changes in climate and fire regime may lead to vegetation change across California, which in turn may influence watershed hydrology. Although plant cover is known to affect numerous hydrological processes, sensitivities to vegetation type and spatial arrangement of species within watersheds are not well understood. The primary objective of our research was to generate mechanistically-based projections of how potential type conversion from forested to shrub dominated systems may affect streamflow. During the 2014 growing season, we measured ecophysiological responses (plant water status and leaf gas exchange rates) of two dominant tree and shrub species to changes in seasonal water availability at two sites within the southern Sierra Nevada Critical Zone Observatory. Plant physiological observations were used to parameterize a process-based eco-hydrological model, RHESSys. This model was used to evaluate the impact of changes in seasonal water availability and vegetation type-conversion on streamflow. Based on our field observations, shrubs and trees had similar access to water through the early part of the growing season (April-early June); however, by late July, available water to shrubs was twice that of trees (shrubs, -0.55 ± 0.08 MPa; trees, -1.07 ± 0.08 MPa, p<0.05). Likewise, maximum transpiration (E) and carbon assimilation (A) rates per unit leaf area were twice as high for shrubs then trees in July (shrubs, A= 21 ± 2.3 μmol m-2 s-1, E=6.6 ± 1.8 mmol m-2 s-1; trees, A=8.2 ± 1.9 μmol m-2 s-1, E=2.4 ± 0.3 mmol m-2 s-1). Preliminary modeled changes in streamflow following simulated vegetation conversion were found to affect both the timing and amount of discharge. Controls on pre vs. post-conversion streamflow included changes in interception, rooting depth, energy balance, and plant response to changes in seasonal water availability. Our research demonstrates how linking strategic field data collection and mechanistic ecohydrologic models can be used as a robust tool for assessing the potential impact of vegetation change on the water balance of an ecosystem. This is an increasingly valuable approach to inform management decisions focused on adapting strategies based on projected changes in climate.
Special involuntary conversion situations involving timberland
William C. Siegal
2001-01-01
If standing timber is destroyed or stolen, or if forest land is condemned for public use, the owner may be entitled to take a deduction on his or her income tax return. These types of losses are called involuntary conversions. In previous National Woodlands articles I've discussed in detail casualty losses, which represent the major type of timber involuntary...
Conversational Coherency. Technical Report No. 95.
ERIC Educational Resources Information Center
Reichman, Rachel
To analyze the process involved in maintaining conversational coherency, the study described in this paper used a construct called a "context space" that grouped utterances referring to a single issue or episode. The paper defines the types of context spaces, parses individual conversations to identify the underlying model or structure,…
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry.
Carrad, D J; Mostert, A B; Ullah, A R; Burke, A M; Joyce, H J; Tan, H H; Jagadish, C; Krogstrup, P; Nygård, J; Meredith, P; Micolich, A P
2017-02-08
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types-electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high-density integrated bioelectronic circuitry.
NASA Astrophysics Data System (ADS)
Hua, Yi-Lin; Zhou, Zong-Quan; Liu, Xiao; Yang, Tian-Shu; Li, Zong-Feng; Li, Pei-Yun; Chen, Geng; Xu, Xiao-Ye; Tang, Jian-Shun; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can
2018-01-01
A photon pair can be entangled in many degrees of freedom such as polarization, time bins, and orbital angular momentum (OAM). Among them, the OAM of photons can be entangled in an infinite-dimensional Hilbert space which enhances the channel capacity of sharing information in a network. Twisted photons generated by spontaneous parametric down-conversion offer an opportunity to create this high-dimensional entanglement, but a photon pair generated by this process is typically wideband, which makes it difficult to interface with the quantum memories in a network. Here we propose an annual-ring-type quasi-phase-matching (QPM) crystal for generation of the narrowband high-dimensional entanglement. The structure of the QPM crystal is designed by tracking the geometric divergences of the OAM modes that comprise the entangled state. The dimensionality and the quality of the entanglement can be greatly enhanced with the annual-ring-type QPM crystal.
Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo
2016-01-01
The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427
Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo
2016-05-01
The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. © The Author 2016. Published by Oxford University Press.
Shen, Chih-Lung; Liou, Heng
2017-11-15
In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.
Shen, Chih-Lung; Liou, Heng
2017-01-01
In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282
Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji
2015-11-16
The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.
Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji
2015-01-01
The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides. PMID:28793674
Two-Photon Entanglement and EPR Experiments Using Type-2 Spontaneous Parametric Down Conversion
NASA Technical Reports Server (NTRS)
Sergienko, A. V.; Shih, Y. H.; Pittman, T. B.; Rubin, M. H.
1996-01-01
Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in type-2 spontaneous parametric down-conversion is demonstrated by the observation of quantum interference with 98% visibility in a simple beam-splitter (Hanburry Brown-Twiss) anticorrelation experiment. The nonlocal cancellation of two-photon probability amplitudes as a result of this double entanglement allows us to demonstrate two different types of Bell's inequality violations in one experimental setup.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
Shrub removal in reforested post-fire areas increases native plant species richness
Gabrielle N. Bohlman; Malcolm North; Hugh D. Safford
2016-01-01
Large, high severity fires are becoming more prevalent in Sierra Nevada mixed-conifer forests, largely due to heavy fuel loading and forest densification caused by past and current management practices. In post-fire areas distant from seed trees, conifers are often planted to re-establish a forest and to prevent a potential type-conversion to shrub fields. Typical...
E.B. Allen; L.E. Rao; G. Tonnesen; R.F. Johnson; M.E. Fenn; A. Bytnerowicz
2014-01-01
Southern California deserts and coastal sage scrub (CSS) are undergoing vegetation-type conversion to exotic annual grassland, especially in regions downwind of urban areas that receive high nitrogen (N), primarily as dry deposition. To determine critical loads (CLs) of N that cause negative impacts, we measured plant and soil responses along N deposition gradients,...
Metal oxide-carbon composites for energy conversion and storage
NASA Astrophysics Data System (ADS)
Perera, Sanjaya Dulip
The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.
Bonatti, S; Cancedda, F D
1982-04-01
Cytoplasmic extracts prepared from Sindbis virus-infected chicken embryo fibroblasts pulse-chase-labeled with [35S]methionine 6 h postinfection were analyzed on a highly resolving sodium dodecyl sulfate-gel either directly or after various treatments. The results we obtained suggest that (i) the proteolytic cleavage which converts PE2 to E2 glycoprotein takes place intracellularly, before or at least during the formation of complex-type oligosaccharide side chains; and (ii) E1 glycoprotein undergoes a complex maturation pattern. Newly synthesized E1 has a molecular weight of 53,000: shortly thereafter, this 53,000 (53K) form was converted to a 50K form. Subsequently, the 50K form decreased its apparent molecular weight progressively and eventually comigrated with E1 glycoprotein present in the extracellular virus, which displays a molecular weight of 51,000 to 52,000. The conversion of the 53K to the 50K form was not the result of a proteolytic processing and did not depend on glycosylation or disulfide bridge formation and exchange. The possible mechanisms of this conversion are discussed. The second conversion step (from the 50K to the 51-52K form) was due to the formation of complex-type oligosaccharide and was reversed by incubating the cellular extracts with neuraminidase before electrophoretic analysis.
High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging
NASA Astrophysics Data System (ADS)
Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.
2015-06-01
Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation <4% in the electrical resistance of batches of ten pellets of both types was indicative of high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (<3 nΩ m2). A test bench was developed for measuring the performance of TE modules at high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature difference was increased to 500°C, electrical power output increased to >3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically. The TEG was tested under vacuum on a hot-air test bench. The measured output power was 45 W for an air flow of 16 g/s at 750°C. The hot surface of the TE module reached 550°C under these conditions. Silicon-germanium TE modules can survive such temperatures, in contrast with commercial modules based on bismuth telluride, which are limited to 400°C.
Point Defects and p -Type Doping in ScN from First Principles
NASA Astrophysics Data System (ADS)
Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu
2018-03-01
Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.
Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush; Michael McKellar
2012-06-01
The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less
Fiber transformation and replacement in low-frequency stimulated rabbit fast-twitch muscles.
Schuler, M; Pette, D
1996-08-01
The fast-to-slow conversion of rabbit skeletal muscles by chronic low-frequency (10 Hz, 12 h daily) stimulation involves (1) sequential fast-to-slow fiber-type transitions in the order of type IID-->type IIA-->type I, and (2) the replacement of deteriorating fast-twitch glycolytic fibers by new fibers derived from satellite cells and myotubes. These two processes were analyzed in 30- and 60-day stimulated extensor digitorum longus and tibialis anterior muscles. Fast-to-slow transforming fibers were identified by myofibrillar actomyosin histochemistry as type C fibers and immunohistochemically by their reaction with monoclonal antibodies specific to slow and fast myosin heavy chain isoforms. In situ hybridization of mRNA specific to the myosin heavy chain I isoform identified all fibers expressing slow myosin, i.e., type I and C fibers. The fraction of transforming fibers ranged between 35% and 50% in 30-day stimulated muscles. The percentage of type I fibers (20%) was threefold elevated in extensor digitorum longus muscle, but unaltered (3.5%) in tibialis anterior muscle, suggesting that fast-to-slow fiber conversion was more advanced in the former than in the latter. Fiber replacement was indicated by the finding that the fiber populations of both muscles contained 15% myotubes or small fibers with central nuclei. In situ hybridization revealed that myotubes and small regenerating fibers uniformly expressed myosin heavy chain I mRNA. Similarly, high percentages of slow-myosin-expressing myotubes and small fibers were found in 60-day stimulated muscles.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2014-03-01
A novel mechanism of importance for the transfusion medicine[2] is proposed. The interaction of ultrashort wavelength multilaser beams with the flowing blood thin films can lead to a conversion of blood types A, B, and AB into O type.[3] The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation),[4] upon the antigen protein molecule must exceed its weight. Supported by Nikola Tesla Labs, La Jolla, CA.
Biochemical And Genetic Modification Of Polysaccharides
NASA Technical Reports Server (NTRS)
Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.
1993-01-01
Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.
NASA Astrophysics Data System (ADS)
Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru
2015-12-01
P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.
Antifouling property of highly oleophobic substrates for solar cell surfaces
NASA Astrophysics Data System (ADS)
Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei
2014-03-01
Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.
Evaluation of plant biomass resources available for replacement of fossil oil
Henry, Robert J
2010-01-01
The potential of plants to replace fossil oil was evaluated by considering the scale of production required, the area of land needed and the types of plants available. High yielding crops (50 tonnes/ha) that have a high conversion efficiency (75%) would require a global land footprint of around 100 million ha to replace current (2008) oil consumption. Lower yielding or less convertible plants would require a larger land footprint. Domestication of new species as dedicated energy crops may be necessary. A systematic analysis of higher plants and their current and potential uses is presented. Plant biotechnology provides tools to improve the prospects of replacing oil with plant-derived biomass by increasing the amount of biomass produced per unit area of land and improving the composition of the biomass to increase the efficiency of conversion to biofuel and biomaterials. Options for the production of high value coproducts and the expression of processing aids such as enzymes in the plant may add further value to plants as bioenergy resources. PMID:20070873
Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspani, L.; Brambilla, E.; Gatti, A.
2010-03-15
We investigate the spatiotemporal structure of the biphoton entangled state produced by parametric down-conversion (PDC) at the output face of the nonlinear crystal. We analyze the geometry of biphoton correlation for different gain regimes (from ultralow to high), different crystal lengths, and different tuning angles of the crystal. While for collinear or quasicollinear phase matching a X-shaped geometry, nonfactorizable in space and time, dominates, in the highly noncollinear conditions we observe a remarkable transition to a factorizable geometry. We show that the geometry of spatiotemporal correlation is a consequence of the angle-frequency relationship imposed by phase matching and that themore » fully spatiotemporal analysis provides a key to control the spatiotemporal properties of the PDC entangled state and in particular to access a biphoton localization in time and space in the femtosecond and micrometer range, respectively.« less
Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.
Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki
2016-10-05
Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.
Rare earth phosphors and phosphor screens
Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.
1981-01-01
This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.
Silicon Carbide Radioisotope Batteries
NASA Technical Reports Server (NTRS)
Rybicki, George C.
2005-01-01
The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.
High performance a-Si solar cells and new fabrication methods for a-Si solar cells
NASA Astrophysics Data System (ADS)
Nakano, S.; Kuwano, Y.; Ohnishi, M.
1986-12-01
The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.
Performance of Skutterudite-Based Modules
NASA Astrophysics Data System (ADS)
Nie, G.; Suzuki, S.; Tomida, T.; Sumiyoshi, A.; Ochi, T.; Mukaiyama, K.; Kikuchi, M.; Guo, J. Q.; Yamamoto, A.; Obara, H.
2017-05-01
Due to their excellent thermoelectric (TE) performance, skutterudite materials have been selected by many laboratories and companies for development of TE modules to recover power from waste heat at high temperatures (300°C to 600°C). After years of effort, we have developed reliable n- and p-type skutterudite materials showing maximum figure of merit ( ZT) of 1.0 at 550°C and 0.75 at 450°C, respectively. In this work, we systematically investigated the performance of a module made using these two kinds of skutterudite. We demonstrate ˜7.2% conversion efficiency for temperature of 600°C at the hot side of the module and 50°C at the cold side, and show that the module had excellent stability in the high-temperature environment. Further improving the TE performance of our skutterudites, the conversion efficiency reached ˜8.5% under the same condition.
Conversion of Arylboronic Acids to Tetrazoles Catalyzed by ONO Pincer-Type Palladium Complex.
Vignesh, Arumugam; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy
2017-01-20
A convenient synthesis of a library of tetrazoles through a novel and operationally simple protocol effecting the direct conversion of arylboronic acids catalyzed by a new ONO pincer-type Pd(II) complex under mild reaction conditions using the readily available reagents is reported. The palladium complex was reused up to four cycles in an open-flask condition.
ERIC Educational Resources Information Center
Carragher, Marcella; Sage, Karen; Conroy, Paul
2015-01-01
Background: Capturing evidence of the effects of therapy within everyday communication is the holy grail of aphasia treatment design and evaluation. Whilst impaired sentence production is a predominant symptom of Broca's-type aphasia, the effects of sentence production therapy on everyday conversation have not been investigated. Given the…
High yields of hydrogen production from methanol steam reforming with a cross-U type reactor
Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei
2017-01-01
This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067
High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei
2017-01-01
This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.
Directly converting CO2 into a gasoline fuel
Wei, Jian; Ge, Qingjie; Yao, Ruwei; Wen, Zhiyong; Fang, Chuanyan; Guo, Lisheng; Xu, Hengyong; Sun, Jian
2017-01-01
The direct production of liquid fuels from CO2 hydrogenation has attracted enormous interest for its significant roles in mitigating CO2 emissions and reducing dependence on petrochemicals. Here we report a highly efficient, stable and multifunctional Na–Fe3O4/HZSM-5 catalyst, which can directly convert CO2 to gasoline-range (C5–C11) hydrocarbons with selectivity up to 78% of all hydrocarbons while only 4% methane at a CO2 conversion of 22% under industrial relevant conditions. It is achieved by a multifunctional catalyst providing three types of active sites (Fe3O4, Fe5C2 and acid sites), which cooperatively catalyse a tandem reaction. More significantly, the appropriate proximity of three types of active sites plays a crucial role in the successive and synergetic catalytic conversion of CO2 to gasoline. The multifunctional catalyst, exhibiting a remarkable stability for 1,000 h on stream, definitely has the potential to be a promising industrial catalyst for CO2 utilization to liquid fuels. PMID:28462925
Experimental comparison of MCFC performance using three different biogas types and methane
NASA Astrophysics Data System (ADS)
Bove, Roberto; Lunghi, Piero
Biogas recovery is an environmentally friendly and cost-effective practice that is getting consensus in both the scientific and industrial community, as the growing number of projects demonstrate. The use of fuel cells as energy conversion systems increases the conversion efficiency, as well as the environmental benefits. Molten carbonate fuel cells (MCFC) operate at a temperature of about 650 °C, thus presenting a high fuel flexibility, compared to low temperature fuel cells. Aim of the present study is to compare the performance of an MCFC single cell, fuelled with different biogas types as well as methane. The biogases considered are derived from the following processes: (1) steam gasification in an entrained flow gasifier; (2) steam gasification in a duel interconnect fluidized bed gasifier; (3) biogas from an anaerobic digestion process. The performances are evaluated for different fuel utilization and current densities. The results are an essential starting point for a complete system design and demonstration.
Directly converting CO2 into a gasoline fuel.
Wei, Jian; Ge, Qingjie; Yao, Ruwei; Wen, Zhiyong; Fang, Chuanyan; Guo, Lisheng; Xu, Hengyong; Sun, Jian
2017-05-02
The direct production of liquid fuels from CO 2 hydrogenation has attracted enormous interest for its significant roles in mitigating CO 2 emissions and reducing dependence on petrochemicals. Here we report a highly efficient, stable and multifunctional Na-Fe 3 O 4 /HZSM-5 catalyst, which can directly convert CO 2 to gasoline-range (C 5 -C 11 ) hydrocarbons with selectivity up to 78% of all hydrocarbons while only 4% methane at a CO 2 conversion of 22% under industrial relevant conditions. It is achieved by a multifunctional catalyst providing three types of active sites (Fe 3 O 4 , Fe 5 C 2 and acid sites), which cooperatively catalyse a tandem reaction. More significantly, the appropriate proximity of three types of active sites plays a crucial role in the successive and synergetic catalytic conversion of CO 2 to gasoline. The multifunctional catalyst, exhibiting a remarkable stability for 1,000 h on stream, definitely has the potential to be a promising industrial catalyst for CO 2 utilization to liquid fuels.
NASA Astrophysics Data System (ADS)
Gritzali, M.
1982-12-01
As conventional, nonrenewable energy sources are rapidly depleted and it was necessary to search for alternative sources of energy. It was increasingly apparent that biomass and waste are alternatives well worth exploring. The sources of biomass and wastes that considered for conversion to useful products are quite diverse, but the most abundant constituent of almost every type is cellulose. Cellulose is cleanly converted to soluble fermentable sugars enzymatically, and cellulose enzymes were isolated from a number of microbial sources. It is generally agreed that the most effective system of enzymes for the conversion of cellulose to glucose is produced by species of the imperfect fungus Trichoderma. The mutant organism Trichoderma reesei QM 9414 is among the best producers of high levels of enzymes; these are extracellular and have carbonhydrate covalently bound to the peptide. Trichoderma produces three types of enzymes which, in a sequential and cooperative manner, convert cellulose to soluble oligosaccharides and glucose.
Studies in Dialogue and Discourse: An Exponential Law of Successive Questioning
ERIC Educational Resources Information Center
Mishler, Elliot G.
1975-01-01
The structure of natural conversations in first-grade classrooms is the focus of this inquiry. Analyses of a particular type of discourse, namely, connected conversations initiated and sustained by questioning, suggest that the probability that a conversation will be continued may be expressed as a simple exponential function. (Author/RM)
Intimacy and Distancing: Young Men's Conversations about Romantic Relationships
ERIC Educational Resources Information Center
Korobov, Neill; Thorne, Avril
2006-01-01
This study examined how 32 pairs of 19-to 22-year-old Euro-American male friends constructed intimacy when telling romantic-relationship stories in casual conversations. Analyses centered on the emergence of two types of conversational positions: intimate positions and distancing positions. Intimate positions constructed young men as warm, caring,…
Secondary fermentation in the runen of a sheep given a diet based on molasses.
Rowe, J B; Loughnan, M L; Nolan, J V; Leng, R A
1979-03-01
1. The extent of conversion of acetate-carbon to carbon dioxide in the rumen of a 40 kg wether consuming 1 kg molasses/d was estimated using isotope-tracer-dilution techniques. 2. There was a high rate of conversion of acetate to CO2 (6.0 g C/d) in the rumen. There were high concentrations in the rumen of Methanosarcina approximately 6 x 10(9)/ml which represents a significant proportion of the rumen bacterial biomass. These organisms are usually found in mud and sludge and are capable of oxidizing acetate. 3. The most likely explanation of these results was that there was an extensive secondary or sludge-type fermentation occurring in the rumen which results in volatile fatty acids being converted to CO2 and methane. In similar studies with sheep given lucerne (Medicago sativa) diets, conversion of acetate-C to CO2 within the rumen was not evident. 4. It is suggested that a major effect of the presence of secondary fermentation processes in the rumen may be to reduce availability of energy nutrients to the animal, and to alter the ratio protein:energy in the absorbed nutrients.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1978-01-01
A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.
Li, Yantao; Hu, Weida; Ye, Zhenhua; Chen, Yiyu; Chen, Xiaoshuang; Lu, Wei
2017-04-01
Mercury cadmium telluride is the standard material to fabricate high-performance infrared focal plane array (FPA) detectors. However, etch-induced damage is a serious obstacle for realizing highly uniform and damage-free FPA detectors. In this Letter, the high signal-to-noise ratio and high spatial resolution scanning photocurrent microscopy (SPCM) is used to characterize the dry etch-induced inversion layer of vacancy-doped p-type Hg1-xCdxTe (x=0.22) material under different etching temperatures. It is found that the peak-to-peak magnitude of the SPCM profile decreases with a decrease in etching temperature, showing direct proof of controlling dry etch-induced type conversion. Our work paves the way toward seeking optimal etching processes in large-scale infrared FPAs.
San Pedro, Tània; Gammoudi, Najet; Peiró, Rosa; Olmos, Antonio; Gisbert, Carmina
2017-11-29
Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airén, Cabernet Franc, Cabernet Sauvignon, Mencía, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valencí Blanc infected by GLRaV-3, GFkV and/or GFLV. Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in some of the regenerated plants showed that both viruses are seed-transmitted. The regeneration of true-to-type virus-free plants from all infected varieties indicates that this methodology may represent an alternative procedure for virus cleaning in grapevine.
Lin, Chensheng; Cheng, Wendan; Guo, Zhengxiao; Chai, Guoliang; Zhang, Hao
2017-08-30
Efficient thermoelectric energy conversion is both crucial and challenging, and requires new material candidates by design. From first principles simulations, we identify that a "star-like" SnSe nanotube - with alternating dense and loose rings along the tube direction - gives rise to an ultra-low lattice thermal conductivity, 0.18 W m -1 K -1 at 750 K, and a large Seebeck coefficient, compared with single crystal SnSe. The power factor of the p-type SnSe nanotube reaches its maximum value of 235 μW cm -1 K -2 at a moderate doping level of around 10 20 -10 21 cm -3 . The p-type nanotube shows better thermoelectric properties than the n-type one. The phonon anharmonic scattering rate of the SnSe nanotube is larger than that of the SnSe crystal. All of these factors lead to an exceptional figure-of-merit (ZT) value of 3.5-4.6 under the optimal conditions, compared to 0.6-2.6 for crystalline SnSe. Such a large ZT value should lead to a six-fold increase in the energy conversion efficiency to about 30%.
van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M
2007-10-01
The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.
Energy storage management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2015-12-08
An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.
ERIC Educational Resources Information Center
Savage, Meghan C.; Donovan, Neila J.
2017-01-01
Background: Efficacy studies have demonstrated the benefit of group conversation therapy for a person with aphasia (PWA). However, a PWA typically participates in individual therapy prior to group therapy. Stimulation therapy (ST) is the most common type of individual aphasia therapy. Ultimately, the outcome of therapy is to enable the PWA to…
ERIC Educational Resources Information Center
Thomas, Earl E.; Bell, David L.; Spelman, Maureen; Briody, Jennifer
2015-01-01
Instructional coaching that supports teachers' with revising teaching practices is not understood. This study sought to understand the impact of the instructional coaching experience by recording coaching conversations/interactions with teachers. The purpose was to determine if the type of coaching conversations changed overtime during three…
Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.
2014-01-01
Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785
Electronic Band Structure Tuning of Highly-Mismatched-Alloys for Energy Conversion Applications
NASA Astrophysics Data System (ADS)
Ting, Min
Highly-mismatched alloys: ZnO1-xTe x and GaN1-xSb x are discussed within the context of finding the suitable material for a cost-effective Si-based tandem solar cell (SBTSC). SBTSC is an attractive concept for breaking through the energy conversion efficiency theoretical limit of a single junction solar cell. Combining with a material of 1.8 eV band gap, SBTSC can theoretically achieve energy conversion efficiency > 45%. ZnO and GaN are wide band gap semiconductors. Alloying Te in ZnO and alloying Sb in GaN result in large band gap reduction to < 2 eV from 3.3 eV and 3.4 eV respectively. The band gap reduction is majorly achieved by the upward shift of valence band (VB). Incorporating Te in ZnO modifies the VB of ZnO through the valence-band anticrossing (VBAC) interaction between localized Te states and ZnO VB delocalized states, which forms a Te-derived VB at 1 eV above the host VB. Similar band structure modification is resulted from alloying Sb in GaN. Zn1-xTex and GaN 1-xSbx thin films are synthesized across the whole composition range by pulsed laser deposition (PLD) and low temperature molecular beam epitaxy (LT-MBE) respectively. The electronic band edges of these alloys are measured by synchrotron X-ray absorption, emission, and the X-ray photoelectron spectroscopies. Modeling the optical absorption coefficient with the band anticrossing (BAC) model revealed that the Te and Sb defect levels to be at 0.99 eV and 1.2 eV above the VB of ZnO and GaN respectively. Electrically, Zn1-xTex is readily n-type conductive and GaN1-xSbx is strongly p-type conductive. A heterojunction device of p-type GaN 0.93Sb0.07 with n-type ZnO0.77Te0.93 upper cell (band gap at 1.8 eV) on Si bottom cell is proposed as a promising SBTSC device.
Chan, Wei Ping; Wang, Jing-Yuan
2016-08-01
Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei
2017-03-01
In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conversion of the Aerodynamic Preliminary Analysis System (APAS) to an IBM PC Compatible Format
NASA Technical Reports Server (NTRS)
Kruep, John M.
1995-01-01
The conversion of the Aerodynamic Preliminary Analysis System (APAS) software from a Silicon Graphics UNIX-based platform to a DOS-based IBM PC compatible is discussed. Relevant background information is given, followed by a discussion of the steps taken to accomplish the conversion and a discussion of the type of problems encountered during the conversion. A brief comparison of aerodynamic data obtained using APAS with data from another source is also made.
Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.
Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie
2017-06-22
Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Torres-Knoop, Ariana; Kryven, Ivan; Schamboeck, Verena; Iedema, Piet D
2018-05-02
In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed. For the conditions of our simulations, we found the gel point to be around 0.18 bond conversion. A detailed analysis of the network topology showed, unexpectedly, that the flexibility of the HDDA molecules plays an important role in increasing the conversion of double bonds, while delaying the gel point. This is due to a back-biting type of reaction mechanism that promotes the formation of small cycles. The glass transition temperature for several degrees of curing was obtained from the change in the thermal expansion coefficient. For a bond conversion close to experimental values we obtained a glass transition temperature around 400 K. For the same bond conversion we estimate a Young's modulus of 3 GPa. Both of these values are in good agreement with experiments.
NASA Astrophysics Data System (ADS)
Ozturk, H.; Altinpinar, M.
2017-07-01
The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.
NASA Technical Reports Server (NTRS)
Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.
1979-01-01
The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.
Considerations in pharmaceutical conversion: focus on antihistamines.
Garbus, S B; Moulton, B W; Meltzer, E O; Reich, P R; Weinreb, L F; Friedman, J A; Orland, B I
1997-04-01
The practice of pharmaceutical conversion, which encompasses three types of drug interchange (generic, brand, and therapeutic substitution), is increasing in managed care settings. Pharmaceutical conversion has numerous implications for managed care organizations, their healthcare providers, and their customers. Although drug cost may be a driving consideration in pharmaceutical conversion, a number of other considerations are of equal or greater importance in the decision-making process may affect the overall cost of patient care. Among these considerations are clinical, psychosocial, and safety issues; patient adherence; patient satisfaction; and legal implications of pharmaceutical conversion. Patient-centered care must always remain central to decisions about pharmaceutical conversion. This article discusses the issues related to, and implications of, pharmaceutical conversion utilizing the antihistamines class of drugs as the case situation.
Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun
2015-01-01
Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability. PMID:26330371
Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun
2015-09-02
Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron-phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm(-2) at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.
Biot-type scattering effects in gas hydrate-bearing sediments
NASA Astrophysics Data System (ADS)
Rubino, J. GermáN.; Ravazzoli, Claudia L.; Santos, Juan E.
2008-06-01
This paper studies the energy conversions that take place at discontinuities within gas hydrate-bearing sediments and their influence on the attenuation of waves traveling through these media. The analysis is based on a theory recently developed by some of the authors, to describe wave propagation in multiphasic porous media composed of two solids saturated by a single-phase fluid. Real data from the Mallik 5L-38 Gas Hydrate Research well are used to calibrate the physical model, allowing to obtain information about the characteristics of the cementation between the mineral grains and gas hydrates for this well. Numerical experiments show that, besides energy conversions to reflected and transmitted classical waves, significant fractions of the energy of propagating waves may be converted into slow-waves energy at plane heterogeneities within hydrated sediments. Moreover, numerical simulations of wave propagation show that very high levels of attenuation can take place in the presence of heterogeneous media composed of zones with low and high gas hydrate saturations with sizes smaller or on the order of the wavelengths of the fast waves at sonic frequencies. These attenuation levels are in very good agreement with those measured at the Mallik 5L-38 Gas Hydrate Research Well, suggesting that these scattering-type effects may be a key-parameter to understand the high sonic attenuation observed at gas hydrate-bearing sediments.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.
Zhang, Mingji; Or, Siu Wing
2018-02-14
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression
2018-01-01
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920
Isotopic micro generators 1 volt; Les microgenerateurs radioisotopiques 1 volt (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bomal, R.; Devin, B.; Delaquaize, P.
1969-07-01
Various configurations for electrical isotopic generators in the milliwatt range are investigated; these generators are not of the classical thermoelectric type. The four following energy conversion method are examined : thermionic, thermo-photovoltaic, radio-voltaic, wired thermoelectric. The calculus has been conducted having in view not the best energy conversion efficiency, but the need to attain directly 1 volt output voltage. High temperature {sup 238}Pu sources (T above 1000 ) are isolated by multi layer thermal insulation material of the Moly/Alumina type. Optimised application is given for number 1 and 2 here above. Thermionic is interesting by its compactness and Wired-thermoelectric ismore » cheap, simple and rugged. Both method do not allow to extend output voltage range far above 1 volt. TPV and RV, can be designed for multi volt application. Radio-voltaic is 1 per cent efficient but irradiation defects in the semiconductor induced by high energy radiations can strongly limit the lifetime of the generator. Isotope sources technology is the determining factor for these micro generators. (author) [French] Cette etude examine les types de generateurs electriques realisables a partir de sources isotopiques en dehors du procede thermoelectrique classique. Les quatre procedes suivants sont examines: thermoionique, thermophoto-voltaique, radiovoltaique, thermoelectrique a fils. Les calculs sont conduits sans souci exagere du rendement de conversion pour aboutir a une puissance electrique delivree de 0,2 a 1 mW sous une tension au moins egale a 1 volt. Le probleme des sources thermiques de {sup 238}Pu a haute temperature (T > 1000 C) est resolu avec une isolation a structure multi-couche moly-alumine. L'optimalisation est calculee en vue d'une utilisation dans les procedes 1 et 2. Le procede 1 est interessant par sa compacite et le procede 4 par sa simplicite, sa robustesse et son prix de revient; mais avec ces deux generateurs on ne peut obtenir plus d'un volt en charge. Les procedes 2 et 3 peuvent delivrer des tensions de plusieurs volts. Le radiovoltaique donne des rendements de 1 pour cent, mais la creation de defauts dans le reseau cristallin du semiconducteur avec les particules de grande energie peut limiter son utilisation. Les performances de ces differents modes de conversion sont conditionnees avant tout par les technologies des sources isotopiques. (auteur)« less
Matharu, Avtar S; Ahmed, Suleiman; Almonthery, Badriya; Macquarrie, Duncan J; Lee, Yoon-Sik; Kim, Yohan
2018-02-22
Iron-N-heterocyclic carbene complexes (Fe-NHCs) have come to prominence because of their applicability in diverse catalytic reactions, ranging from C-C cross-coupling and C-X bond formation to substitution, reduction, polymerization, and dehydration reactions. The detailed synthesis, characterization, and application of novel heterogeneous Fe-NHC catalysts immobilized on mesoporous expanded high-amylose corn starch (HACS) and Starbon 350 (S350) for facile fructose conversion into 5-hydroxymethylfurfural (HMF) is reported. Both catalyst types showed good performance for the dehydration of fructose to HMF when the reaction was tested at 100 °C with varying time (10 min, 20 min, 0.5 h, 1 h, 3 h and 6 h). For Fe-NHC/S350, the highest HMF yield was 81.7 % (t=0.5 h), with a TOF of 169 h -1 , fructose conversion of 95 %, and HMF selectivity of 85.7 %, whereas for Fe-NHC/expanded HACS, the highest yield was 86 % (t=0.5 h), with a TOF of 206 h -1 , fructose conversion of 87 %, and HMF selectivity of 99 %. Iron loadings of 0.26 and 0.30 mmol g -1 were achieved for Fe-NHC/expanded starch and Fe-NHC/S350, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi
2018-01-17
Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.
USDA-ARS?s Scientific Manuscript database
Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from normal cellular prion protein to pathogenic misfolded conformation. This conversion has been used for in vitro assays including serial protein misfolding amplification...
Talking about Animals: Studies of Young Children Visiting Zoos, a Museum and a Farm.
ERIC Educational Resources Information Center
Tunnicliffe, Susan Dale
The purpose of this study was to identify the content and form of the conversations and recognize the variables that are acting during visits to animal exhibits, and the influence on conversational content of both different types of locations and animal exhibits and visit rationales. Conversations of children between the ages of 3 and 12 years and…
Conversational behaviour of children with Asperger syndrome and conduct disorder.
Adams, Catherine; Green, Jonathan; Gilchrist, Anne; Cox, Anthony
2002-07-01
Social communication problems in individuals who have Asperger syndrome constitute one of the most significant problems in the syndrome. This study makes a systematic analysis of the difficulties demonstrated with the use of language (pragmatics) in adolescents who have Asperger syndrome. Recent advances in discourse analysis were applied to conversational samples from a group of children with Asperger syndrome and a matched control group of children with severe conduct disorder. Two types of conversation were sampled from each group, differing in emotional content. The results showed that in these contexts children with Asperger syndrome were no more verbose as a group than controls, though they showed a tendency to talk more in more emotion-based conversations. Children with Asperger syndrome, as a group, performed similarly to control subjects in ability to respond to questions and comments. However, they were more likely to show responses which were problematic in both types of conversation. In addition, individuals with Asperger syndrome showed more problems in general conversation than during more emotionally and socially loaded topics. The group with Asperger syndrome was found to contain a small number of individuals with extreme verbosity but this was not a reliable characteristic of the group as a whole.
Hello, Who is Calling?: Can Words Reveal the Social Nature of Conversations?
Stark, Anthony; Shafran, Izhak; Kaye, Jeffrey
2012-01-01
This study aims to infer the social nature of conversations from their content automatically. To place this work in context, our motivation stems from the need to understand how social disengagement affects cognitive decline or depression among older adults. For this purpose, we collected a comprehensive and naturalistic corpus comprising of all the incoming and outgoing telephone calls from 10 subjects over the duration of a year. As a first step, we learned a binary classifier to filter out business related conversation, achieving an accuracy of about 85%. This classification task provides a convenient tool to probe the nature of telephone conversations. We evaluated the utility of openings and closing in differentiating personal calls, and find that empirical results on a large corpus do not support the hypotheses by Schegloff and Sacks that personal conversations are marked by unique closing structures. For classifying different types of social relationships such as family vs other, we investigated features related to language use (entropy), hand-crafted dictionary (LIWC) and topics learned using unsupervised latent Dirichlet models (LDA). Our results show that the posteriors over topics from LDA provide consistently higher accuracy (60-81%) compared to LIWC or language use features in distinguishing different types of conversations.
NASA Astrophysics Data System (ADS)
Paneva, D.; Dimitrov, M.; Velinov, N.; Kolev, H.; Kozhukharov, V.; Tsoncheva, T.; Mitov, I.
2010-03-01
La-Sr-Fe perovskite-type oxides were prepared by the nitrate-citrate method. The basic object of this study is layered Ruddlesden-Popper phase LaSr3Fe3O10. The phase composition and structural properties of the obtained materials are investigated by Mössbauer spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and temperature programmed reduction (TPR). The preliminary catalytic tests show a high potential of these materials for volatile organic compounds (VOCs) elimination as they possess high conversion ability and selectivity to total oxidation of ethyl acetate. Catalytic performance of LaSr3Fe3O10 is depended on the stability of structure and Fe4+-oxidation state.
Broadband working-waveband-tunable polarization converter based on anisotropic metasurface
NASA Astrophysics Data System (ADS)
Lin, Yu; Wang, Lei; Gao, Jun; Lu, Yichao; Jiang, Suhua; Zeng, Wei
2017-03-01
We experimentally and theoretically demonstrate an ultrathin, broadband, and highly efficient metamaterial-based polarization converter with a metasurface/insulator/metal (MIM) configuration. In such a system, the resonance undergoes a transition from a vertical Fabry-Pérot type to a transverse type as the spacer thickness decreases. By changing the spacer thickness from 1 to 15 mm, the working waveband of this device could be tuned from 10.9-12.9 to 6-8 GHz without compromising the polarization conversion efficiency. Equivalent circuit theory and the transfer matrix method are used for demonstrating the physical mechanism of our device.
Sun, Caili; Liu, Guobin; Xue, Sha
2016-01-01
Analyzing the dynamics of soil particle-size distributions (PSDs), soil nutrients, and erodibility are very important for understanding the changes of soil structure and quality after long-term land-use conversion. We applied multifractal Rényi spectra (Dq) and singularity spectra (f(α)) to characterize PSDs 35 years after conversions from cropland to shrubland with Caragana microphylla (shrubland I), shrubland with Hippophae rhamnoides (shrubland II), forested land, and grassland on the Loess Plateau of China. Multifractal parameters (capacity dimension (D0), entropy dimension (D1), D1/D0, correlation dimension (D2), and Hölder exponent of order zero (α0)) were used to analyze the changes of PSDs. Dq and f(α) characterized the PSDs well and sensitively represented the changes in PSDs after conversion. All types of land-use conversion significantly improved the properties of the topsoil (0–10 cm), but the effect of shrubland I and even forested land decreased with depth. All types of land-use conversion significantly increased D1 and D2 in the topsoil, and D1 and D2 in the 10–50 cm layers of shrubland II, forested land, and grassland and D1 in the 50–100 cm layers of shrubland II were significantly higher relative to the control. Both D1 and D2 were positively correlated with the contents of soil nutrients and fine particles and were negatively correlated with soil erosion, indicating that D1 and D2 were potential indices for quantifying changes in soil properties and erosion. In conclusion, all types of land-use conversion significantly improved the conditions of the topsoil, but conversion from cropland to shrubland II, forested land, and grassland, especially shrubland II and grassland, were more effective for improving soil conditions in deeper layers. PMID:27527201
Muir, B; Rogers, D; McEwen, M
2012-07-01
When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.
Li, Pei; Liu, Qing; Luo, Hongyan; Liang, Kang; Yi, Jie; Luo, Ying; Hu, Yunlong; Han, Yue; Kong, Qingke
2017-01-01
Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S . Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S . Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion-insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S . Typhimurium vaccine S738 (Δ crp Δ cya ) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD 50 ) of wild-type S . Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S . Typhimurium, S . Enteritidis, and S . Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S . Typhimurium vaccines against NTS infections.
Harschneck, Tobias; Zhou, Nanjia; Manley, Eric F; Lou, Sylvia J; Yu, Xinge; Butler, Melanie R; Timalsina, Amod; Turrisi, Riccardo; Ratner, Mark A; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J
2014-04-21
The influence of solubilizing substituents on the photovoltaic performance and thin-film blend morphology of new benzo[1,2-b:6,5-b']dithiophene (bBDT) based small molecule donor semiconductors is investigated. Solar cells based on bBDT(TDPP)2-PC71BM with two different types of side chains exhibit high power conversion efficiencies, up to 5.53%.
Communicating in organizations, part I: general principles of high-stakes discussions.
Harolds, Jay A
2012-03-01
Communication skills are important for all members in an organization, and especially the leaders. Leaders must be proficient in many different types of conversations, such as one-on-one dialogue, group meetings, speeches, electronic exchanges of messages, newsletters, question and answer sessions with various stakeholders and the media, and so forth. This series of articles will review some important aspects of communication within an organization.
NASA Astrophysics Data System (ADS)
Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph
2011-03-01
We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.
Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian
2012-01-01
Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501
Lee, Joo Hyung; Oh, Se Young
2014-08-01
In the previous work, we have reported that organic photovoltaic (OPV) cells using DMDCNQI as an n-type second dopant material showed a high power conversion efficiency (PCE). In the present work, we have synthesized a novel DHDCNQI with long alkyl chains to improve the compatibility between the DHDCNQI dopant molecule and host P3HT polymer. We have fabricated OPV cells consisting of ITO/PEDOT:PSS/P3HT:PCBM:DHDCNQI/Al. We have investigated the characteristics of theses OPV cells using DCNQI derivative dopants from the measurements of the incident photon-to-current collection efficiency and photocurrent. The OPV cell using 3 wt% DHDCNQI exhibited a high PCE of 3.29% due to the high charge separation efficiency, good compatibility and low trap site effect.
Meng, Bin; Ren, Yi; Liu, Jun; Jäkle, Frieder; Wang, Lixiang
2018-02-19
p-π conjugation with embedded heteroatoms offers unique opportunities to tune the electronic structure of conjugated polymers. An approach is presented to form highly electron-deficient p-π conjugated polymers based on triarylboranes, demonstrate their n-type behavior, and explore device applications. By combining alternating [2,4,6-tris(trifluoromethyl)phenyl]di(thien-2-yl)borane (FBDT) and electron-deficient isoindigo (IID)/pyridine-flanked diketopyrrolopyrrole (DPPPy) units, we achieve low-lying lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, high electron mobilities, and broad absorptions in the visible region. All-polymer solar cells with these polymers as electron acceptors exhibit encouraging photovoltaic performance with power conversion efficiencies of up to 2.83 %. These results unambiguously prove the n-type behavior and demonstrate the photovoltaic applications of p-π conjugated polymers based on triarylborane. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compact 151 W green laser with U-type resonator for prostate surgery
NASA Astrophysics Data System (ADS)
Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza
2013-04-01
We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.
Howard, Siobhán; Hughes, Brian M
2012-01-01
The Type D personality, identified by high negative affectivity paired with high social inhibition, has been associated with a number of health-related outcomes in (mainly) cardiac populations. However, despite its prevalence in the health-related literature, how this personality construct fits within existing personality theory has not been directly tested. Using a sample of 134 healthy university students, this study examined the Type D personality in terms of two well-established personality traits; introversion and neuroticism. Construct, concurrent and discriminant validity of this personality type was established through examination of the associations between the Type D personality and psychometrically assessed anxiety, depression and stress, as well as measurement of resting cardiovascular function. Results showed that while the Type D personality was easily represented using alternative measures of both introversion and neuroticism, associations with anxiety, depression and stress were mainly accounted for by neuroticism. Conversely, however, associations with resting cardiac output were attributable to the negative affectivity-social inhibition synergy, explicit within the Type D construct. Consequently, both the construct and concurrent validity of this personality type were confirmed, with discriminant validity evident on examination of physiological indices of well-being.
Li, Dejun; Liu, Jing; Chen, Hao; Zheng, Liang; Wang, Kelin
2018-04-15
Gross nitrogen (N) transformations can provide important information for assessing indigenous soil N supply capacity and soil nitrate leaching potential. The current study aimed to assess the variation of gross N transformations in response to conversion of maize-soybean fields to sugarcane, mulberry, and forage grass fields in a subtropical karst region of southwest China. Mature forests were included for comparison. Gross rates of N mineralization (GNM) were highest in the forests, intermediate in the maize-soybean and forage grass fields, and lowest in the sugarcane and mulberry fields, suggesting capacity of indigenous soil N supply derived from organic N mineralization was lowered after conversion to sugarcane and mulberry fields. The relative high indigenous soil N supply capacity in the maize-soybean fields was obtained at the cost of soil organic N depletion. Gross nitrification (GN) rates were highest in the forests, intermediate in the forage grass fields and lowest in the other three agricultural land use types. The nitrate retention capacity (24.1 ± 2.0% on average) was similar among the five land use types, implying that nitrate leaching potential was not changed after land use conversion. Microbial biomass N exerted significant direct effects on the rates of N mineralization, nitrification, ammonium immobilization and nitrate immobilization. Soil organic carbon, total N and exchangeable magnesium had significant indirect effects on these N transformation rates. Our findings suggest that forage grass cultivation instead of other agricultural land uses should be recommended from the perspective of increasing indigenous soil N supply while not depleting soil organic N pool. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Jinquan; Sng, Waihong; Yi, Guangshun; Zhang, Yugen
2015-08-04
A new type of imidazolium salt-modified porous hypercrosslinked polymer (BET surface area up to 926 m(2) g(-1)) was reported. These porous materials exhibited good CO2 capture capacities (14.5 wt%) and catalytic activities for the conversion of CO2 into various cyclic carbonates under metal-free conditions. The synergistic effect of CO2 capture and conversion was observed.
NASA Astrophysics Data System (ADS)
Savenkov, G. G.; Kardo-Sysoev, A. F.; Zegrya, A. G.; Os'kin, I. A.; Bragin, V. A.; Zegrya, G. G.
2017-10-01
The first findings concerning the initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds via the electrical explosion of a semiconductor bridge are presented. The obtained results indicate that the energy parameters of an explosive conversion depend on the mass of a combustible agent—namely, nanoporous silicon—and the silicon-doping type.
Thermophotovoltaic Energy Conversion for Personal Power Sources
2012-02-01
FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) February 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) November 2010 to September...accepted power source to date . 3 2. Thermophotovoltaic Energy Conversion 2.1 Thermophotovoltaic Overview Figure 1 describes the primary...photovoltaic material systems for thermophotovoltaic conversion to date are gallium antimonide (GaSb)-related materials (homogeneous: 0.72 eV
NASA Astrophysics Data System (ADS)
Kuz'mina, M. S.; Khazanov, E. A.
2015-05-01
We consider the methods for enhancing the temporal contrast of super-high-power laser pulses, based on the conversion of radiation polarisation in a medium with cubic nonlinearity. For a medium with weak birefringence and isotropic nonlinearity, we propose a new scheme to enhance the temporal contrast. For a medium with anisotropic nonlinearity, the efficiency of the temporal contrast optimisation is shown to depend not only on the spatial orientation of the crystal and B-integral, but also on the type of the crystal lattice symmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-09-01
NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.
Liu, Chao; Xu, Yueqing; Sun, Piling; Huang, An; Zheng, Weiran
2017-09-14
Land use/cover change (LUCC), a local environmental issue of global importance, and its driving forces have been crucial issues in geography and environmental research. Previous studies primarily focused on major driving factors in various land use types, with few explorations of differences between driving forces of mutual land use type conversions, especially in fragile eco-environments. In this study, Zhangjiakou City, in a farming-pastoral ecotone in Northern China, was taken as an example to analyze land use change between 1989 and 2015, and explore the driving forces of mutual land use type conversions using canonical correlation analysis. Satellite images and government statistics, including social-economic and natural data, were used as sources. Arable land, forestland, and grassland formed the main land use structure. From 1989 to 2015 forestland, orchard land, and construction land significantly increased, while arable land, grassland, unused land, and water areas decreased. Conversions from grassland to forestland; from arable land to orchard land, forestland and construction land; and from unused land to grassland and forestland were the primary land use changes. Among these, the conversion from grassland to forestland had the highest ranking. Average annual precipitation and per capita net income of rural residents positively affected the conversion of arable land to forestland and unused land to grassland. GDP, total population, and urbanization rate contributed most significantly to converting arable land to construction land; total retail sales of social consumer goods, average annual temperature, and GDP had important positive influences in converting arable land to orchard land.
Does engagement predict research use? An analysis of The Conversation Annual Survey 2016.
Zardo, Pauline; Barnett, Adrian G; Suzor, Nicolas; Cahill, Tim
2018-01-01
The impact of research on the world beyond academia has increasingly become an area of focus in research performance assessments internationally. Impact assessment is expected to incentivise researchers to increase engagement with industry, government and the public more broadly. Increased engagement is in turn expected to increase translation of research so decision-makers can use research to inform development of policies, programs, practices, processes, products, and other mechanisms, through which impact can be realised. However, research has shown that various factors affect research use, and evidence on 'what works' to increase decision-makers' use of research is limited. The Conversation is an open access research communication platform, published under Creative Commons licence, which translates research into news articles to engage a general audience, aiming to improve understanding of current issues and complex social problems. To identify factors that predict use of academic research and expertise reported in The Conversation, regression analyses were performed using The Conversation Australia 2016 Annual Survey data. A broad range of factors predicted use, with engagement actions being the most common. Interestingly, different types of engagement actions predicted different types of use. This suggests that to achieve impact through increased engagement, a deeper understanding of how and why different engagement actions elicit different types of use is needed. Findings also indicate The Conversation is overcoming some of the most commonly identified barriers to the use of research: access, relevance, actionable outcomes, and timeliness. As such, The Conversation offers an effective model for providing access to and communicating research in a way that enables use, a necessary precursor to achieving research impact.
Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-).
Ohta, Hiromichi; Sugiura, Kenji; Koumoto, Kunihito
2008-10-06
Thermoelectric energy conversion technology to convert waste heat into electricity has received much attention. In addition, metal oxides have recently been considered as thermoelectric power generation materials that can operate at high temperatures on the basis of their potential advantages over heavy metallic alloys in chemical and thermal robustness. We have fabricated high-quality epitaxial films composed of oxide thermoelectric materials that are suitable for clarifying the intrinsic "real" properties. This review focuses on the thermoelectric properties of two representative oxide epitaxial films, p-type Ca 3Co 4O 9 and n-type SrTiO 3, which exhibit the best thermoelectric figures of merit, ZT (= S (2)sigma Tkappa (-1), S = Seebeck coefficient, sigma = electrical conductivity, kappa = thermal conductivity, and T = absolute temperature) among oxide thermoelectric materials reported to date. In addition, we introduce the recently discovered giant S of two-dimensional electrons confined within a unit cell layer thickness ( approximately 0.4 nm) of SrTiO 3.
Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids.
Oliver, Dominik; Lien, Cheng-Chang; Soom, Malle; Baukrowitz, Thomas; Jonas, Peter; Fakler, Bernd
2004-04-09
Voltage-gated potassium (Kv) channels control action potential repolarization, interspike membrane potential, and action potential frequency in excitable cells. It is thought that the combinatorial association between distinct alpha and beta subunits determines whether Kv channels function as non-inactivating delayed rectifiers or as rapidly inactivating A-type channels. We show that membrane lipids can convert A-type channels into delayed rectifiers and vice versa. Phosphoinositides remove N-type inactivation from A-type channels by immobilizing the inactivation domains. Conversely, arachidonic acid and its amide anandamide endow delayed rectifiers with rapid voltage-dependent inactivation. The bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.
NASA Astrophysics Data System (ADS)
Saucke, Gesine; Populoh, Sascha; Thiel, Philipp; Xie, Wenjie; Funahashi, Ryoji; Weidenkaff, Anke
2015-07-01
New ceramic Ca3Co3.9O9+δ /CaMn0.97W0.03O3-δ thermoelectric generators with different cross section areas A p and A n of the p- and the n-type leg are fabricated, characterized, and tested at high temperatures in long-term tests. The variation of the measured power output and the efficiency with changing A p / A n ratio is discussed and compared with calculations based on the measured material properties. The highest conversion efficiencies are reached for ratios close to the one predicted by the compatibility approach, whereas an improper choice of A p / A n leads to a strong reduction of the efficiency. A volume power density of 1.4 W/cm3 and an efficiency of 1.08% are found for the most promising generator (temperature difference Δ T = 734 K and A p / A n = 1.12). The results reveal the major importance of the A p / A n ratio for the conversion efficiency and subsequently cost and weight reduction issues, both crucial for a large scale application of thermoelectric converters. Additionally, the oxide generators proved to be very reliable, as after more than 110 h of high temperature energy conversion, no degradation is observable.
2016-01-01
Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li–S systems in high energy-density batteries. PMID:27818575
Lewis, Daniel R; Miller, Nathan D; Splitt, Bessie L; Wu, Guosheng; Spalding, Edgar P
2007-06-01
Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.
Differing types of cellular phone conversations and dangerous driving.
Dula, Chris S; Martin, Benjamin A; Fox, Russell T; Leonard, Robin L
2011-01-01
This study sought to investigate the relationship between cell phone conversation type and dangerous driving behaviors. It was hypothesized that more emotional phone conversations engaged in while driving would produce greater frequencies of dangerous driving behaviors in a simulated environment than more mundane conversation or no phone conversation at all. Participants were semi-randomly assigned to one of three conditions: (1) no call, (2) mundane call, and, (3) emotional call. While driving in a simulated environment, participants in the experimental groups received a phone call from a research confederate who either engaged them in innocuous conversation (mundane call) or arguing the opposite position of a deeply held belief of the participant (emotional call). Participants in the no call and mundane call groups differed significantly only on percent time spent speeding and center line crossings, though the mundane call group consistently engaged in more of all dangerous driving behaviors than did the no call participants. Participants in the emotional call group engaged in significantly more dangerous driving behaviors than participants in both the no call and mundane call groups, with the exception of traffic light infractions, where there were no significant group differences. Though there is need for replication, the authors concluded that whereas talking on a cell phone while driving is risky to begin with, having emotionally intense conversations is considerably more dangerous. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effect of thermal-convection-induced defects on the performance of perovskite solar cells
NASA Astrophysics Data System (ADS)
Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan
2017-07-01
Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.
NASA Technical Reports Server (NTRS)
Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.
2017-01-01
We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.
Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate
2010-01-01
We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.
Schwarz, Jean-Marc; Clearfield, Michael; Mulligan, Kathleen
2017-08-01
Epidemiologic studies suggest a link between excess sugar consumption and obesity, fatty liver disease, metabolic syndrome, and type 2 diabetes mellitus. One important pathway that may link these metabolic diseases to sugar consumption is hepatic conversion of sugar to fat, a process known as de novo lipogenesis (DNL). Mechanistic studies have shown that diets high in simple sugars increase both DNL and liver fat. Importantly, removal of sugar from diets of children with obesity for only 9 days consistently reduced DNL and liver fat and improved glucose and lipid metabolism. Although the sugar and beverage industries continue to question the scientific evidence linking high-sugar diets to metabolic diseases, major health organizations now make evidence-based recommendations to limit consumption of simple sugars to no more than 5% to 10% of daily intake. Clear recommendation about moderating sugar intake to patients may be an important nonpharmacologic tool to include in clinical practice.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J
2006-08-01
In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.
Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian
2017-11-23
Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ito, Hajime; Kunii, Shun; Sawamura, Masaya
2010-11-01
Asymmetric reactions that transform racemic mixtures into enantio-enriched products are in high demand, but classical kinetic resolution produces enantiopure compounds in <50% yield even in an ideal case. Many deracemization processes have thus been developed including dynamic kinetic resolution and dynamic kinetic asymmetric transformation, which can provide enantio-enriched products even after complete conversion of the racemic starting materials. However, these dynamic processes require racemization or symmetrization of the substrates or intermediates. We demonstrate a direct chemical enantio-convergent transformation without a racemization or symmetrization process. Copper(I)-catalysed asymmetric allylic substitution of a racemic allylic ether afforded a single enantiomer of an α-chiral allylboronate with complete conversion and high enantioselectivity (up to 98% enantiomeric excess). One enantiomer of the substrate undergoes an anti-SN2'-type reaction whereas the other enantiomer reacts via a syn-SN2' pathway. The products, which cannot be prepared by dynamic procedures, have been used to construct all-carbon quaternary stereocentres.
Conceptual design of free-piston Stirling conversion system for solar power units
NASA Astrophysics Data System (ADS)
Loktionov, Iu. V.
A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012; Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn
High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow fullmore » width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.« less
NASA Astrophysics Data System (ADS)
Shi, Guangsha
Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the theoretical upper limit of the figure of merit. I also determined the electronic structures and thermoelectric properties of Mg2Si, Mg2Ge, and Mg2Sn, a family of Earth-abundant thermoelectric compounds. I uncovered the importance of quasiparticle corrections and the proper treatment of pseudopotentials in the determination of the band gaps and the thermoelectric transport properties at high temperatures. The methods and codes I developed in my research form a general predictive toolbox for the design and optimization of the functional properties of materials for energy applications.
ERIC Educational Resources Information Center
Khalfaoui, Mouez
2011-01-01
The common understanding of Islam tends to consider religious conversion as a matter of individual and rational belief and consisting, first and foremost, of attesting to the oneness of God ("shahada"). In this paper I argue that divergences exist among schools of Islamic Law concerning the modes and types of conversion. Contrary to…
Conversion of microwave pyrolysed ASR's char using high temperature agents.
Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer
2011-01-15
Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. Copyright © 2010 Elsevier B.V. All rights reserved.
Roylance, John J.; Kim, Tae Woo; Choi, Kyoung-Shin
2016-02-17
Reductive biomass conversion has been conventionally conducted using H 2 gas under high-temperature and-pressure conditions. Here, efficient electrochemical reduction of 5-hydroxymethylfurfural (HMF), a key intermediate for biomass conversion, to 2,5-bis(hydroxymethyl)furan (BHMF), an important monomer for industrial processes, was demonstrated using Ag catalytic electrodes. This process uses water as the hydrogen source under ambient conditions and eliminates the need to generate and consume H 2 for hydrogenation, providing a practical and efficient route for BHMF production. By systematic investigation of HMF reduction on the Ag electrode surface, BHMF production was achieved with the Faradaic efficiency and selectivity nearing 100%, and plausiblemore » reduction mechanisms were also elucidated. Furthermore, construction of a photoelectrochemical cell (PEC) composed of an n-type BiVO 4 semiconductor anode, which uses photogenerated holes for water oxidation, and a catalytic Ag cathode, which uses photoexcited electrons from BiVO 4 for the reduction of HMF to BHMF, was demonstrated to utilize solar energy to significantly decrease the external voltage necessary for HMF reduction. This shows the possibility of coupling electrochemical HMF reduction and solar energy conversion, which can provide more efficient and environmentally benign routes for reductive biomass conversion.« less
De Backer, Benjamin; Maebe, Kevin; Verstraete, Alain G; Charlier, Corinne
2012-07-01
In Europe, authorities frequently ask forensic laboratories to analyze seized cannabis plants to prove that cultivation was illegal (drug type and not fiber type). This is generally done with mature and flowering plants. However, authorities are often confronted with very young specimens. The aim of our study was to evaluate when the chemotype of cannabis plantlets can be surely determined through analysis of eight major cannabinoids content during growth. Drug-type seedlings and cuttings were cultivated, sampled each week, and analyzed by high-performance liquid chromatography with diode array detection. The chemotype of clones was recognizable at any developmental stage because of high total Δ(9)-tetrahydrocannabinol (THC) concentrations even at the start of the cultivation. Conversely, right after germination seedlings contained a low total THC content, but it increased quickly with plant age up, allowing chemotype determination after 3 weeks. In conclusion, it is not necessary to wait for plants' flowering to identify drug-type cannabis generally cultivated in Europe. © 2012 American Academy of Forensic Sciences.
High resolution A/D conversion based on piecewise conversion at lower resolution
Terwilliger, Steve [Albuquerque, NM
2012-06-05
Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.
Conversion efficiency of skutterudite-based thermoelectric modules.
Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A
2014-06-28
Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-05-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Summarizes the quantitative relationships pertaining to the operation of electrochemical cells. Energy conversion efficiency, cycle efficiency, battery power, and energy/power density of two types of zinc-silver oxide cells are discussed. (YP)
Quantification and characterization of grouped type I myofibers in human aging.
Kelly, Neil A; Hammond, Kelley G; Stec, Michael J; Bickel, C Scott; Windham, Samuel T; Tuggle, S Craig; Bamman, Marcas M
2018-01-01
Myofiber type grouping is a histological hallmark of age-related motor unit remodeling. Despite the accepted concept that denervation-reinnervation events lead to myofiber type grouping, the completeness of those conversions remains unknown. Type I myofiber grouping was assessed in vastus lateralis biopsies from Young (26 ± 4 years; n = 27) and Older (66 ± 4 years; n = 91) adults. Grouped and ungrouped type I myofibers were evaluated for phenotypic differences. Higher type I grouping in Older versus Young was driven by more myofibers per group (i.e., larger group size) (P < 0.05). In Older only, grouped type I myofibers displayed larger cross-sectional area, more myonuclei, lower capillary supply, and more sarco(endo)plasmic reticulum calcium ATPase I (SERCA I) expression (P < 0.05) than ungrouped type I myofibers. Grouped type I myofibers retain type II characteristics suggesting that conversion during denervation-reinnervation events is either progressive or incomplete. Muscle Nerve 57: E52-E59, 2018. © 2017 Wiley Periodicals, Inc.
Ahn, Do Young; Lee, Deok Yeon; Shin, Chan Yong; Bui, Hoa Thi; Shrestha, Nabeen K; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan
2017-04-19
This work reports on designing of first successful MOF-sensitizer based solid-state photovoltaic device, perticularly with a meaningful output power conversion efficiency. In this study, an intrinsically conductive cobalt-based MOFs (Co-DAPV) formed by the coordination between Co (II) ions and a redox active di(3-diaminopropyl)-viologen (i.e., DAPV) ligand is investigated as sensitizer. Hall-effect measurement shows p-type conductivity of the Co-DAPV film with hole mobility of 0.017 cm 2 V -1 s -1 , suggesting its potential application as hole transporting sensitizer. Further, the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Co-DAPV are well-matched to be suitably employed for sensitizing TiO 2 . Thus, by layer-by-layer deposition of hole conducting MOF-sensitizer onto mesoporous TiO 2 film, a power conversion efficiency of as high as 2.1% is achieved, which exceeds the highest efficiency values of MOF-sensitized liquid-junction solar cells reported so far.
Li, Yan; Wang, Dengchao; Kvetny, Maksim M; Brown, Warren; Liu, Juan; Wang, Gangli
2015-01-01
The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current-potential ( I - V ) measurements and theoretical analyses. First, a unique non-zero I - V cross-point and pinched I - V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.
Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...
2014-08-20
The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; ...
2017-05-10
Here, given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22%, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-typemore » planar PSC with a large active area of >1 cm 2. It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x, and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0% (19.2% for 0.1 cm 2) without showing hysteresis effects.« less
Land use changing SOC pool: A field investigation from four catchments on the Loess Plateau in China
NASA Astrophysics Data System (ADS)
Guo, Shengli; Wang, Rui; Hu, Yaxian
2017-04-01
The Loess Plateau in China has long been known for severe erosion, a degraded ecosystem and heavy sediment delivery to the Yellow River. Apart from, the highly erodible loess soil and the hilly geomorphology, intensive cultivation has been caused such most destructive human activities. This made the Loess Plateau once the least fertile region in China with extreme poverty. To restore soil fertility and ecosystem sustainability, a national-level project was launched in 1990s to encourage land use changes via afforestation or conversion of cropland back to grassland or woodland. After nearly three decades of land use conversion, the SOC pool in the soil can be expected to have substantially changed. However, climate conditions, geomorphic types and soil properties were spatially distinctive across the Loess Plateau. Their individual as well interactive impacts on changes of soil carbon pool during land use conversions must thus be properly accounted for. In this study, four watersheds distributed over the Loess Plateau were investigated. The four watersheds mainly consisted of three geomorphic types: wide gully, loess ridge, and round knoll. On each geomorphic feature, three land use types prevailed: cropland, grassland and woodland. In total, 695 soil samples were taken from the top 20 cm of the four watersheds during 2010 and 2011. Our results show: 1) Degrees of erosion hugely differed among the four watersheds, with Catchment A (hilly) having three times more erosion modulus than the least eroded Catchment D (gully) (12000 vs. 1800 Mg per km2 per year). 2) The increasing SOC content from 4 mg g-1 at Catchment A to 8.1 mg g-1 at Catchment D agreed well with their decreasing erosion, suggesting that geomorphology induced erosion history was the predominant factor to set the general level of watershed-scale SOC reservoir. 3) Within each watershed, grassland and woodland consistently had at least 34% more SOC than cropland, demonstrating the influence of land use changes on local SOC pool. Overall, our field investigation suggests that on watershed scale, geomorphic types and the associated erosion are the decisive factor regulating the local SOC reservoir. Within each watershed, land use conversions from cropland to grassland and woodland had significantly improved SOC pool.
Land Use Changing SOC pool: A Field Investigation from Six Catchments on the Loess Plateau in China
NASA Astrophysics Data System (ADS)
Guo, S.; Wang, R.; Hu, Y.
2016-12-01
The Loess Plateau in China has long been known for severe erosion, degraded ecosystem and heavy sediment delivery to the Yellow River. Besides the highly erodible loess soil and the hilly geomorphology nature, intensive cultivation has been accused as one of the most destructive anthropogenic activities undermining erosion situation on the Loess Plateau. This made the Loess Plateau once the least fertile region in China with extreme poverty. To preserve soil fertility and ecosystem sustainability, a magnificent national-level project was launched in 1990s to encourage land use changes via afforestation or conversion cropland back to grassland or woodland. After nearly three decades, SOC pool must have been substantially changed following land use conversions. However, climate conditions, geomorphic types and soil properties were spatially distinctive across the Loess Plateau. Their individual as well interactive impacts on changes of soil carbon pool during land use conversions must be properly accounted for. In this study, six watersheds well distributed on the Loess Plateau were investigated. The six watersheds mainly represented three geomorphic types (wide gully, loess ridge, and round knoll), each with three land use types (cropland, grassland and woodland). In total, 695 soil samples were taken from the top 20 cm of the six watersheds during 2010 and 2011. Our results show: 1) Degrees of erosion hugely differed among the six watersheds, with Huangfuchuan having three times more erosion modulus than the least eroded Gaoquangou (21000 vs. 6120 t km-2 per year). 2) The increasing SOC content from 4 mg g-1 at Huangfuchuan to 8.1 mg g-1 at Gaoquangou agreed well with their decreasing erosion modulus, suggesting that geomorphology induced erosion history was the predominant factor to set the general level of watershed-scale SOC reservoir. 3) Within each watershed, grassland and woodland consistently had at least 34% more SOC than cropland, demonstrating the influence of land use changes on local SOC pool. Overall, our field investigation suggests that in watershed scale, geomorphic types and the thus induced erosion degrees are the decisive factor to regulate local SOC reservoir. Within each watershed, land use conversions from cropland to grassland and woodland had significantly improved SOC pool.
[Updates on rickets and osteomalacia: vitamin D dependency].
Kitanaka, Sachiko
2013-10-01
Vitamin D dependency was first termed for patients resembling vitamin D-deficiency but require high doses of vitamin D administration. Now this disease is known to be caused by defective conversion of 25OHD to 1,25 (OH) 2D, which is termed vitamin D-dependent rickets type 1 or 1α-hydroxylase deficiency, or by end-organ unresponsiveness to 1,25 (OH) 2D, which is called vitamin D-dependent rickets type 2 or hereditary vitamin D-resistant rickets. Recent advance in the molecular analysis of these diseases revealed variety in the presentation and in the inheritance patterns. Molecular diagnosis would be preferable for some atypical cases for adequate therapy.
Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth
Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.
2014-01-01
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920
Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.
Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2014-06-24
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.
Analyses of conversion efficiency in high-speed clock recovery based on Mach-Zehnder modulator
NASA Astrophysics Data System (ADS)
Dong, H.; Sun, H.; Zhu, G.; Dutta, N. K.
2006-09-01
In this paper, detailed analyses of the conversion efficiency in high-speed clock recovery based on Mach-Zehnder (MZ) modulator has been carried out. The theoretical results show the conversion efficiency changes with RF driving power and the mixing order. For high order clock recovery, the cascaded MZ modulator provides higher conversion efficiency. A study of clock recovery at 160 Gb/s using the cascaded MZ modulator has been carried out. The experimental results agree with the results of the analysis.
Land-use legacies regulate decomposition dynamics following bioenergy crop conversion
Kallenbach, Cynthia M.; Stuart Grandy, A.
2014-07-14
Land-use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land-use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land-use legacies with current management and litter quality. To evaluate how land-use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape-scale litterbag decomposition experiment. We proposed land-use legacies regulate decomposition, but their effects are weakened under higher quality litter andmore » when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.« less
Huang, Yingyan; Ho, Seng-Tiong
2008-10-13
We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.
Sacred changes: Spiritual conversion and transformation.
Mahoney, Annette; Pargament, Kenneth I
2004-05-01
We use Pargament's (1997) definition of religion-"the search for significance in ways related to the sacred"-as a framework to understand spiritual conversion. Like other life-changing transformations, spiritual conversion alters the destinations that clients perceive to be of greatest importance in life (significance) and the pathways by which clients discover what is most significant in life (search). Unlike other transformative experiences, however, spiritual conversion incorporates the third element of religion, "the sacred," into the content of change. To illustrate these points, we discuss two theological models of spiritual conversion rooted in Christianity: a traditional model based on classic western theology and an alternative model based on feminist theology. We then compare processes of spiritual conversion to nonreligious models of transformation. We also highlight the importance for clinical work of the fit between the context of a client's life and the type of spiritual conversion experienced. Copyright 2004 Wiley Periodicals, Inc.
Overheard cell-phone conversations: when less speech is more distracting.
Emberson, Lauren L; Lupyan, Gary; Goldstein, Michael H; Spivey, Michael J
2010-10-01
Why are people more irritated by nearby cell-phone conversations than by conversations between two people who are physically present? Overhearing someone on a cell phone means hearing only half of a conversation--a "halfalogue." We show that merely overhearing a halfalogue results in decreased performance on cognitive tasks designed to reflect the attentional demands of daily activities. By contrast, overhearing both sides of a cell-phone conversation or a monologue does not result in decreased performance. This may be because the content of a halfalogue is less predictable than both sides of a conversation. In a second experiment, we controlled for differences in acoustic factors between these types of overheard speech, establishing that it is the unpredictable informational content of halfalogues that results in distraction. Thus, we provide a cognitive explanation for why overheard cell-phone conversations are especially irritating: Less-predictable speech results in more distraction for a listener engaged in other tasks.
Layered recognition networks that pre-process, classify, and describe
NASA Technical Reports Server (NTRS)
Uhr, L.
1971-01-01
A brief overview is presented of six types of pattern recognition programs that: (1) preprocess, then characterize; (2) preprocess and characterize together; (3) preprocess and characterize into a recognition cone; (4) describe as well as name; (5) compose interrelated descriptions; and (6) converse. A computer program (of types 3 through 6) is presented that transforms and characterizes the input scene through the successive layers of a recognition cone, and then engages in a stylized conversation to describe the scene.
MODIS Vegetative Cover Conversion and Vegetation Continuous Fields
NASA Astrophysics Data System (ADS)
Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl
Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).
Ladero, Victor; Ramos, Ana; Wiersma, Anne; Goffin, Philippe; Schanck, André; Kleerebezem, Michiel; Hugenholtz, Jeroen; Smid, Eddy J.; Hols, Pascal
2007-01-01
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed. PMID:17261519
Tang, Y B; Chen, Z H; Song, H S; Lee, C S; Cong, H T; Cheng, H M; Zhang, W J; Bello, I; Lee, S T
2008-12-01
Vertically aligned Mg-doped GaN nanorods have been epitaxially grown on n-type Si substrate to form a heterostructure for fabricating p-n heterojunction photovoltaic cells. The p-type GaN nanorod/n-Si heterojunction cell shows a well-defined rectifying behavior with a rectification ratio larger than 10(4) in dark. The cell has a high short-circuit photocurrent density of 7.6 mAlcm2 and energy conversion efficiency of 2.73% under AM 1.5G illumination at 100 mW/cm2. Moreover, the nanorod array may be used as an antireflection coating for solar cell applications to effectively reduce light loss due to reflection. This study provides an experimental demonstration for integrating one-dimensional nanostructure arrays with the substrate to directly fabricate heterojunction photovoltaic cells.
Genetic Effects of Uv Irradiation on Excision-Proficient and -Deficient Yeast during Meiosis
Resnick, Michael A.; Game, John C.; Stasiewicz, Stanley
1983-01-01
The lethal and recombinational responses to ultraviolet light irradiation (UV) by excision-proficient (RAD+) and deficient strains (rad1) of Saccharomyces cerevisiae has been examined in cells undergoing meiosis. Cells that exhibit high levels of meiotic synchrony were irradiated either at the beginning or at various times during meiosis and allowed to proceed through meiosis. Based on survival responses, the only excision repair mechanism for UV damage available during meiosis is that controlled by the RAD1 pathway. The presence of pyrimidine dimers at the beginning of meiosis does not prevent cells from undergoing meiosis; however, the spore products exhibit much lower survival than cells from earlier stages of meiosis. The reduced survival is probably due to effects of UV on recombination. Meiotic levels of gene conversion are reduced only two to three times in these experiments; however, intergenic recombination is nearly abolished after a dose of 4 J/m 2 to the rad1 strain. Exposure to 25 J/m2 had little effect on the wild-type strain. Since normal meiotic reciprocal recombination is generally considered to involve gene conversion-type intermediates, it appears that unrepaired UV damage dissociates the two processes. These results complement those obtained with the mei-9 mutants of Drosophila which also demonstrate a dissociation between gene conversion and reciprocal recombination. These results are consistent with molecular observations on the UV-irradiated rad1 strain in that there is no excision of pyrimidine dimers or exchange of dimers during meiosis. PMID:6352405
High dynamic range CMOS (HDRC) imagers for safety systems
NASA Astrophysics Data System (ADS)
Strobel, Markus; Döttling, Dietmar
2013-04-01
The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.
Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.
Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui
2018-04-25
A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x < 3) with high stability and high performance is first applied in a p-type silicon solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.
NASA Technical Reports Server (NTRS)
Kiess, Thomas E.; Shih, Yan-Hua; Sergienko, A. V.; Alley, Carroll O.
1994-01-01
We report a new two-photon polarization correlation experiment for realizing the Einstein-Podolsky-Rosen-Bohm (EPRB) state and for testing Bell-type inequalities. We use the pair of orthogonally-polarized light quanta generated in Type 2 parametric down conversion. Using 1 nm interference filters in front of our detectors, we observe from the output of a 0.5mm beta - BaB2O4 (BBO) crystal the EPRB correlations in coincidence counts, and measure an associated Bell inequality violation of 22 standard deviations. The quantum state of the photon pair is a polarization analog of the spin-1/2 singlet state.
Microbial Influenced Corrosion (MIC) Study
2012-05-23
DAY 28 Chrome Conversion Coating Coupon Type: A Alodine 1200 (Henkel) Non‐ Chrome Treatment Coupon Type: E Prekote® (Pantheon Chemical... Chrome Conversion Coating + Chrome Primer Coupon Type: B Alodine 1200 (Henkel) MIL PRF 23377H TY 1 CL 2 (Deft‐ ‐ , , ‐ 02Y040A) Non... Chrome Treatment + Non‐ Chrome Primer Coupon Type: F BUSINESS SENSITIVE 23 Prekote® (Pantheon Chemical) MIL‐PRF‐23377H, TY 1, CL N (Deft
Sung, Ji Ho; Heo, Hoseok; Hwang, Inchan; Lim, Myungsoo; Lee, Donghun; Kang, Kibum; Choi, Hee Cheul; Park, Jae-Hoon; Jhi, Seung-Hoon; Jo, Moon-Ho
2014-07-09
Material design for direct heat-to-electricity conversion with substantial efficiency essentially requires cooperative control of electrical and thermal transport. Bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), displaying the highest thermoelectric power at room temperature, are also known as topological insulators (TIs) whose electronic structures are modified by electronic confinements and strong spin-orbit interaction in a-few-monolayers thickness regime, thus possibly providing another degree of freedom for electron and phonon transport at surfaces. Here, we explore novel thermoelectric conversion in the atomic monolayer steps of a-few-layer topological insulating Bi2Te3 (n-type) and Sb2Te3 (p-type). Specifically, by scanning photoinduced thermoelectric current imaging at the monolayer steps, we show that efficient thermoelectric conversion is accomplished by optothermal motion of hot electrons (Bi2Te3) and holes (Sb2Te3) through 2D subbands and topologically protected surface states in a geometrically deterministic manner. Our discovery suggests that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by direct exploiting of quantum nature of TIs, thus providing a new design rule for the compact thermoelectric circuitry at the ultimate size limit.
Mild aphasia: is this the place for an argument?
Armstrong, Elizabeth; Fox, Sarah; Wilkinson, Ray
2013-05-01
Individuals with mild aphasia often report significant disruption to their communication despite seemingly minor impairment. This study explored this phenomenon through examining conversations of a person with mild aphasia engaging in argumentation--a skill she felt had significantly deteriorated after her stroke. A person with mild aphasia and her husband recorded 4 conversations involving topical issues. The discourse dynamics and lexical-grammatical content were analyzed using systemic functional linguistic (Halliday & Matthiessen, 2004) and conversation analysis (Sacks, Schegloff, & Jefferson, 1974) frameworks. The couple demonstrated similarities in the types of conversational moves, but the language of the person with aphasia was more nonspecific and simplified, manifesting in difficulties developing a logical argument and responding to the partner's line of argument. In addition, the nonaphasic speaker recurrently overlapped the aphasic speaker in order to request clarification of particular points, highlighting the types of behaviors that can occur in this form of higher level language activity. The complex argument task and the multilevel and multi-approach analysis are useful tools for examining persons with mild aphasia, revealing aspects that are often overlooked in standard tests. Treatment could incorporate more complex notions such as evaluative language and the role of overlap in complex conversations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Feng R.; Meng, Ran; Huang, Chengquan
Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less
Zhao, Feng R.; Meng, Ran; Huang, Chengquan; ...
2016-10-29
Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less
Conversion coefficients from fluence to effective dose for heavy ions with energies up to 3 GeV/A.
Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K
2003-01-01
Radiological protection against high-energy heavy ions has been an essential issue in the planning of long-term space missions. The fluence to effective dose conversion coefficients have been calculated for heavy ions using the particle and heavy ion transport code system PHITS coupled with an anthropomorphic phantom of the MIRD5 type. The calculations were performed for incidences of protons and typical space heavy ions--deuterons, tritons, 3He, alpha particles, 12C, 20Ne, 40Ar, 40Ca and 56Fe--with energies up to 3 GeV/A in the isotropic and anterior-posterior irradiation geometries. A simple fitting formula that can predict the effective dose from almost all kinds of space heavy ions below 3 GeV/A within an accuracy of 30% is deduced from the results.
Stimulated low-frequency Raman scattering in plant virus suspensions
NASA Astrophysics Data System (ADS)
Donchenko, E. K.; Karpova, O. V.; Kudryavtseva, A. D.; Pershin, S. M.; Savichev, V. I.; Strokov, M. A.; Tcherniega, N. V.; Zemskov, K. I.
2017-11-01
The study deals with laser pulse interaction with plant viruses: we investigated tobacco mosaic virus (TMV) and two types of potato viruses (PVX and PVA) in Tris-HCl pH7.5 buffer and in water. We used 20 ns ruby laser pulses for excitation. We employed Fabry-Pérot interferometers to record spectra of the light passing through the sample and reflected from it. For TMV and PVX in Tris-HCl pH7.5 buffer, same as for PVA in water, we observed additional spectral lines corresponding to the stimulated low-frequency Raman scattering (SLFRS). We believe we were the first to measure SLFRS frequency shifts, conversion efficiency and threshold. High conversion efficiency of the scattered light is evidence of laser pulses efficiently exciting gigahertz vibrations in viruses. SLFRS can be used to identify and affect biological nanoparticles.
Chen, Changsong; Wang, Na; Zhou, Peng; San, Haisheng; Wang, Kaiying; Chen, Xuyuan
2016-09-21
We report a novel betavoltaic device with significant conversion efficiency by using electrochemically reduced graphene oxide (ERGO) on TiO2 nanotube arrays (TNTAs) for enhancing the absorption of beta radiation as well as the transportation of carriers. ERGO on TNTAs (G-TNTAs) were prepared by electrochemical anodization and subsequently cyclic voltammetry techniques. A 10 mCi of (63)Ni/Ni source was assembled to G-TNTAs to form the sandwich-type betavoltaic devices (Ni/(63)Ni/G-TNTAs/Ti). By I-V measurements, the optimum betavoltaic device exhibits a significant effective energy conversion efficiency of 26.55% with an open-circuit voltage of 2.38 V and a short-circuit current of 14.69 nAcm(-2). The experimental results indicate that G-TNTAs are a high-potential nanocomposite for developing betavoltaic batteries.
NASA Astrophysics Data System (ADS)
Bellaredj, Mohamed L. F.; Mueller, Sebastian; Davis, Anto K.; Mano, Yasuhiko; Kohl, Paul A.; Swaminathan, Madhavan
2017-11-01
High-efficiency integrated voltage regulators (IVRs) require the integration of power inductors, which have low loss and reduced size at very high frequency. The use of a magnetic material core can reduce significantly the inductor area and simultaneously increase the inductance. This paper focuses on the fabrication, characterization and modeling of nickel zinc (NiZn) ferrite and carbonyl iron powder (CIP)-epoxy magnetic composite materials, which are used as the magnetic core materials of embedded inductors in a printed wiring board (PWB) for a system in package (SIP) based buck type IVR. The fabricated composite materials and process are fully compatible with FR4 epoxy resin prepreg and laminate. For 85% weight loading of the magnetic powder (around 100 MHz at room temperature), the composite materials show a relative permeability of 7.5-8.1 for the NiZn ferrite composite and 5.2-5.6 for the CIP composite and a loss tangent value of 0.24-0.28 for the NiZn ferrite composite and 0.09-0.1 for the CIP-composite. The room temperature saturation flux density values are 0.1351 T and 0.5280 T for the NiZn ferrite and the CIP composites, respectively. The frequency dispersion parameters of the magnetic composites are modeled using a simplified Lorentz and Landau-Lifshitz-Gilbert equation for a Debye type relaxation. Embedded magnetic core solenoid inductors were designed based on the composite materials for the output filter of a high-efficiency SIP based buck type IVR. Evaluation of a SIP based buck type IVR with the designed inductors shows that it can reach peak efficiencies of 91.7% at 11 MHz for the NiZn ferrite-composite, 91.6% at 14 MHz for CIP-composite and 87.5% (NiZn ferrite-composite) and 87.3% (CIP-composite) efficiency at 100 MHz for a 1.7 V:1.05 V conversion. For a direct 5 V:1 V conversion using a stacked topology, a peak efficiency of 82% at 10 MHz and 72% efficiency at 100 MHz can be achieved for both materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, R.P.
As part of the DOE-sponsored contract Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas'' experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al[sub 2]O[sub 3] methanol synthesis catalyst, developed in Air Products' laboratories, has the highest performance in terms of rate and selectivity for C[sub 2+]-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, R.P.
As part of the DOE-sponsored contract ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas`` experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst, developed in Air Products` laboratories, has the highest performance in terms of rate and selectivity for C{sub 2+}-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less
Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li
2009-02-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.
Gasification Characteristics of Coal/Biomass Mixed Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Reginald
2014-09-01
A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less
DOT National Transportation Integrated Search
1997-01-01
Conversion of a general-purpose freeway into a high-occupancy-vehicle (HOV) lane is an alternative to infrastructure addition for HOV system implementation. Research indicates that lane conversion is feasible technically if sufficient HOV usage and m...
Parallel Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.
1995-01-01
Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.
Attempted - to -Phase Conversion of Croconic Acid via Ball Milling
2017-05-18
extended milling times may degrade the material. 15. SUBJECT TERMS ball milling, croconic acid, Hertzian stress , C5H2O5, extended solid 16. SECURITY...the motion of the Wig-L-Bug ball mill; from this motion it was possible to determine the velocity parameters needed for Hertzian stress ...Milling Pressures The high pressures achievable in this type of mill result from stresses that develop in the milled material as it is trapped between
2012-01-01
Table 10-4: Selected Birk polyimide heater sizes, resistances and locations [37] ........................ 79 Table 10-5: Final starting tests with (3...damage, and fire are prevalent. Kerosene type fuels are also cheaper and more common than nitromethane-methanol blend fuels. One final note is...diesel fuel was changed to produce lower emissions, the abrasiveness of diesel fuel increased. This was especially problematic for the new high
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Ralph, E-mail: ralph.mueller@ise.fraunhofer.de; Schrof, Julian; Reichel, Christian
2014-09-08
The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implantedmore » phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.« less
High resolution amorphous silicon radiation detectors
Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.
1992-05-26
A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.
High resolution amorphous silicon radiation detectors
Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor
1992-01-01
A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.
Spatiotemporal structure of biphoton entanglement in type-II parametric down-conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambilla, E.; Caspani, L.; Lugiato, L. A.
2010-07-15
We investigate the spatiotemporal structure of the biphoton correlation in type-II parametric down-conversion (PDC). As in type-I PDC [Phys. Rev. Lett. 102, 223601 (2009)], we find that the correlation is nonfactorizable in space and time. Differently from type I, the type-II correlation in the spontaneous regime displays an asymmetric V-shaped structure in any cross section including time and one transverse dimension. This asymmetry along the temporal coordinate originates from the signal-idler group velocity mismatch and tends to disappear as the parametric gain is raised. We observe a progressive transition toward a symmetric X-shaped geometry similar to that found in typemore » I when stimulated PDC becomes dominant. We also give quantitative evaluations of the localization in space and in time of the correlation, analyze its behavior for different crystal tuning angles, and underline qualitative differences with respect to type-I PDC.« less
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-21
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0149] Proposed Information Collection (Application for Conversion (Government Life Insurance)) Activity: Comment Request AGENCY: Veterans Benefits... Life Insurance), VA Form 29-0152. OMB Control Number: 2900-0149. Type of Review: Extension of a...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0149] Proposed Information Collection (Application for Conversion (Government Life Insurance)) Activity: Comment Request AGENCY: Veterans Benefits... Life Insurance), VA Form 29-0152. OMB Control Number: 2900-0149. Type of Review: Extension of a...
40 CFR 98.366 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...
40 CFR 98.366 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...
40 CFR 98.366 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...
40 CFR 98.366 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...
Beach Street: Student's Book 2.
ERIC Educational Resources Information Center
Delaruelle, Susan
The student's textbook contains lessons in intermediate English based on a fictitious community in Australia and its inhabitants. Lessons focus on two types of interaction: those with an interpersonal motivation (e.g., casual conversations), and those with pragmatic motivation (e.g., buying and selling, seeking help). The casual conversations are…
Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN
NASA Astrophysics Data System (ADS)
Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.
2017-06-01
Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.
Berge, Jerica M.; MacLehose, Richard F; Loth, Katie A.; Eisenberg, Marla E.; Fulkerson, Jayne A.; Neumark-Sztainer, Dianne
2015-01-01
This paper aims to describe the prevalence of parent-adolescent conversations about eating, physical activity and weight across sociodemographic characteristics and to examine associations with adolescent BMI, dietary intake, physical activity and sedentary behaviors. Data from two linked epidemiological studies were used for cross-sectional analysis. Parents (n=3,424; 62% females) and adolescents (n=2,182; 53.2% girls) were socioeconomically and racially/ethnically diverse. Fathers reported more parent-adolescent conversations about healthful eating and physical activity with their sons and mothers reported more weight-focused conversations with their daughters. Parents of Hispanic/Latino and Asian/Hmong youth and parents from lower SES categories engaged in more conversations about weight and size. Adolescents whose mothers or fathers had weight-focused conversations with them had higher BMI percentiles. Adolescents who had two parents engaging in weight-related conversations had higher BMI percentiles. Healthcare providers may want to talk about the types of weight-related conversations parents are having with their adolescents and emphasize avoiding conversations about weight specifically. PMID:24997555
Lee, Sangheon; Flanagan, Joseph C.; Kang, Joonhyeon; Kim, Jinhyun; Shim, Moonsub; Park, Byungwoo
2015-01-01
Semiconductor sensitized solar cells, a promising candidate for next-generation photovoltaics, have seen notable progress using 0-D quantum dots as light harvesting materials. Integration of higher-dimensional nanostructures and their multi-composition variants into sensitized solar cells is, however, still not fully investigated despite their unique features potentially beneficial for improving performance. Herein, CdSe/CdSexTe1−x type-II heterojunction nanorods are utilized as novel light harvesters for sensitized solar cells for the first time. The CdSe/CdSexTe1−x heterojunction-nanorod sensitized solar cell exhibits ~33% improvement in the power conversion efficiency compared to its single-component counterpart, resulting from superior optoelectronic properties of the type-II heterostructure and 1-octanethiol ligands aiding facile electron extraction at the heterojunction nanorod-TiO2 interface. Additional ~32% enhancement in power conversion efficiency is achieved by introducing percolation channels of large pores in the mesoporous TiO2 electrode, which allow 1-D sensitizers to infiltrate the entire depth of electrode. These strategies combined together lead to 3.02% power conversion efficiency, which is one of the highest values among sensitized solar cells utilizing 1-D nanostructures as sensitizer materials. PMID:26638994
Different disease-causing mutations in transthyretin trigger the same conformational conversion.
Steward, Robert E; Armen, Roger S; Daggett, Valerie
2008-03-01
Transthyretin (TTR)-containing amyloid fibrils are deposited in cardiac tissue as a natural consequence of aging. A large number of inherited mutations lead to amyloid diseases by accelerating TTR deposition in other organs. Amyloid formation is preceded by a disruption of the quaternary structure of TTR and conformational changes in the monomer. To study conformational changes preceding the formation of amyloid, we performed molecular dynamics simulations of the wild-type monomer, amyloidogenic variants (V30M, L55P, V122I) and a protective variant (T119M) at neutral and low pH. At low pH, the D strand dissociated from the beta-sheet to expose the A strand, consistent with experimental studies. In amyloidogenic variants and in the wild-type at low pH, there was a conformational change in the beta-sheets into alpha-sheet via peptide bond flips that was not observed at neutral pH in the wild-type monomer. The same residues participated in conversion in each amyloidogenic variant simulation, originating in the G strand between residues 106 and 109, with accelerated conversion at low pH. The T119M protective variant changed the local conformation of the H strand and suppressed the conversion observed in amyloidogenic variants.
Generation of diverse neural cell types through direct conversion
Petersen, Gayle F; Strappe, Padraig M
2016-01-01
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications. PMID:26981169
Lee, Sangheon; Flanagan, Joseph C; Kang, Joonhyeon; Kim, Jinhyun; Shim, Moonsub; Park, Byungwoo
2015-12-07
Semiconductor sensitized solar cells, a promising candidate for next-generation photovoltaics, have seen notable progress using 0-D quantum dots as light harvesting materials. Integration of higher-dimensional nanostructures and their multi-composition variants into sensitized solar cells is, however, still not fully investigated despite their unique features potentially beneficial for improving performance. Herein, CdSe/CdSe(x)Te(1-x) type-II heterojunction nanorods are utilized as novel light harvesters for sensitized solar cells for the first time. The CdSe/CdSe(x)Te(1-x) heterojunction-nanorod sensitized solar cell exhibits ~33% improvement in the power conversion efficiency compared to its single-component counterpart, resulting from superior optoelectronic properties of the type-II heterostructure and 1-octanethiol ligands aiding facile electron extraction at the heterojunction nanorod-TiO(2) interface. Additional ~31% enhancement in power conversion efficiency is achieved by introducing percolation channels of large pores in the mesoporous TiO(2) electrode, which allow 1-D sensitizers to infiltrate the entire depth of electrode. These strategies combined together lead to 3.02% power conversion efficiency, which is one of the highest values among sensitized solar cells utilizing 1-D nanostructures as sensitizer materials.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.
El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M
2012-10-01
This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained.
El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.
2012-01-01
This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984
Zakharov, I A; Kasinova, G V; Koval'tsova, S V
1983-01-01
The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutyser, Wouter; Van den Bossche, Gil; Raaffels, Anton
2016-10-03
Recent lignin-first catalytic lignocellulosic biorefineries produce large quantities of two potential platform chemicals, 4-n-propylguaiacol (PG) and 4-n-propylsyringol. Because conversion into 4-n-propylcyclohexanol (PCol), a precursor for novel polymer building blocks, presents a promising valorization route, reductive demethoxylation of PG was examined here in the liquid-phase over three commercial hydrogenation catalysts, viz. 5 wt % Ru/C, 5 wt % Pd/C and 65 wt % Ni/SiO2-Al2O3, at elevated temperatures ranging from 200 to 300 degrees C under hydrogen atmosphere. Kinetic profiles suggest two parallel conversion pathways: Pathway I involves PG hydrogenation to 4-n-propyl-2-methoxycyclohexanol (PMCol), followed by its demethoxylation to PCol, whereas Pathway IImore » constitutes PG hydrodemethoxylation to 4-n-propylphenol (PPh), followed by its hydrogenation into PCol. The slowest step in the catalytic formation of PCol is the reductive methoxy removal from PMCol. Moreover, under the applied reaction conditions, PCol may react further into hydrocarbons. The following criteria are therefore essential to reach a high PCol yield: (i) catalytic pathway II is preferred as this route does not involve stable intermediates; (ii) reactivity of PMCol should be higher than that of PCol, and (iii) the overall carbon balance should be high. Both the catalyst type and the reaction conditions have a substantial impact on the PCol yield. Only the commercial Ni catalyst meets the three criteria, provided the reaction is performed at 250 degrees C in hexadecane. Additional advantages of this solvent choice are a high boiling point (low operational pressure in closed reactor systems), high solubility of PG and derived products, high thermal, reductive stability, and easy derivability from fatty biomass feedstock. This Ni catalyst also showed an excellent stability in recycling runs and is capable of converting highly concentrated (up to 20 wt %) PG in hexadecane. Ru and Pd on carbon showed a low PCol yield, as they are not conform the three criteria. Low hydrogen pressure favors Pathway II, resulting in a very high PCol yield of 85% at 10 bar. Catalytic conversion of guaiacol, 4-methyl- and 4-ethylguaiacol in comparable circumstances showed similarly high yields of the corresponding cyclohexanols.« less
Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY
2007-01-23
This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.
Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY
2010-09-07
This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.
Premorbid functional development and conversion to psychosis in clinical high-risk youths
Tarbox, Sarah I.; Addington, Jean; Cadenhead, Kristin S.; Cannon, Tyrone D.; Cornblatt, Barbara A.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming T.; Walker, Elaine F.; Heinssen, Robert; Mcglashan, Thomas H.; Woods, Scott W.
2014-01-01
Deterioration in premorbid functioning is a common feature of schizophrenia, but sensitivity to psychosis conversion among clinical high-risk samples has not been examined. This study evaluates premorbid functioning as a predictor of psychosis conversion among a clinical high-risk sample, controlling for effects of prior developmental periods. Participants were 270 clinical high-risk individuals in the North American Prodrome Longitudinal Study—I, 78 of whom converted to psychosis over the next 2.5 years. Social, academic, and total maladjustment in childhood, early adolescence, and late adolescence were rated using the Cannon–Spoor Premorbid Adjustment Scale. Early adolescent social dysfunction significantly predicted conversion to psychosis (hazard ratio = 1.30, p = .014), independently of childhood social maladjustment and independently of severity of most baseline positive and negative prodromal symptoms. Baseline prodromal symptoms of disorganized communication, social anhedonia, suspiciousness, and diminished ideational richness mediated this association. Early adolescent social maladjustment and baseline suspiciousness together demonstrated moderate positive predictive power (59%) and high specificity (92.1%) in predicting conversion. Deterioration of academic and total functioning, although observed, did not predict conversion to psychosis. Results indicate early adolescent social dysfunction to be an important early predictor of conversion. As such, it may be a good candidate for inclusion in prediction algorithms and could represent an advantageous target for early intervention. PMID:24229556
Classic Conversational Norms in Modern Computer-Mediated Collaboration
ERIC Educational Resources Information Center
Oeberst, Aileen; Moskaliuk, Johannes
2016-01-01
This paper examines whether conversational norms that have been observed for face-to-face communication also hold in the context of a specific type of computer-mediated communication: collaboration (such as in Wikipedia). Specifically, we tested adherence to Grice's (1975) maxim of relation--the implicit demand to contribute information that is…
USDA-ARS?s Scientific Manuscript database
Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...
Influence of solvent type on microwave-assisted liquefaction of bamboo
Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu
2016-01-01
Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...
A Case Study on the Communication of Older Adolescents
ERIC Educational Resources Information Center
Davis, Lauren; Spencer, Elizabeth; Ferguson, Alison
2011-01-01
This study compared the communication of two older male adolescents (aged 17 and 19 years) with each other (peer interaction) and with a teacher (non-peer interaction) in three different types of activity (casual conversation, providing/listening to a recount and collaborative problem-solving). Conversation analysis, selected analyses from the…
Contextual Information and Verifying Inferences from Conversations.
ERIC Educational Resources Information Center
Dubitsky, Tony
Research was conducted to investigate the effects of contextual information on the speed and accuracy with which two general classes of inferences were verified by readers. These types of inferences were based on information in conversations that were or were not topically ambiguous, depending upon the amount of available contextual information.…
ERIC Educational Resources Information Center
Pratt, Michael W.; And Others
1992-01-01
Investigated relations between certain family context variables and the conversational behavior of 36 parents who were playing with their 3 year olds. Transcripts were coded for types of conversational functions and structure of parent speech. Marital satisfaction was associated with aspects of parent speech. (LB)
The Use of Conversational Repairs by African American Preschoolers
ERIC Educational Resources Information Center
Stockman, Ida J.; Karasinski, Laura; Guillory, Barbara
2008-01-01
Purpose: This study aimed to describe the types and frequency of conversational repairs used by African American (AA) children in relationship to their geographic locations and levels of performance on commonly used speech-language measures. Method: The strategies used to initiate repairs and respond to repair requests were identified in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Steve; Nam, Ji Hyun; Koo, Ja Hoon
2015-03-09
We demonstrate a technique to convert p-type single-walled carbon nanotube (SWNT) network transistor into ambipolar transistor by thermally evaporating C{sub 60} on top. The addition of C{sub 60} was observed to have two effects in enhancing ambipolar characteristics. First, C{sub 60} served as an encapsulating layer that enhanced the ambipolar characteristics of SWNTs. Second, C{sub 60} itself served as an electron transporting layer that contributed to the n-type conduction. Such a dual effect enables effective conversion of p-type into ambipolar characteristics. We have fabricated inverters using our SWNT/C{sub 60} ambipolar transistors with gain as high as 24, along with adaptivemore » NAND and NOR logic gates.« less
Thermoelectric Behavior of Low Thermal Conductivity Cu-based and IV-V Chalcogenides
NASA Astrophysics Data System (ADS)
Olvera, Alan Anthony
In an ever-changing global environment, energy-related issues have become a central feature in the day-to-day conversations of the general public. A niche field that has recently made major advancements in conversion performance is thermoelectric (TE) energy conversion, where progress in material optimization has resulted in the highest efficiency thermoelectric materials to date. This includes superionic copper chalcogenides and IV-VI selenide compounds, such as Cu2Se and PbSe. Hence, this work focuses on the reliable synthesis and characterization of thermoelectric Cu-based and IV-V compounds. The electronic and optical properties of Cu-based energy conversion materials are greatly affected by synthesis-induced defects. To alleviate this issue, a novel method is developed using the topochemical redox reaction of CuSe 2 into the desired material. It is predicted that CuSe2 -serves as a sacrificial structural template for the facile synthesis of structurally related materials. This was specifically verified in the case of CuInSe 2, where CuSe2 is gradually transformed into CuInSe 2 when reacted with elemental indium. Evidently, this synthetic method is a potential avenue for new material prediction and fabrication of novel composite materials. Using the method described, a composite of CuInSe2 and the known TE material, Cu2Se, is formed. Considering the structural similarity of both compounds, the efficiency of Cu2Se is drastically increased due to enhanced carrier mobility provided by tetrahedral indium subunits. These subunits simultaneously disrupt phonon propagation which result in reduced thermal conductivity and increased TE efficiency (ZT ≈ 2.6 at 850K). More significant is the increased chemical stability of Cu2Se while under applied current and temperature. It is observed that 1 mol % indium stabilizes Cu-ion migration, encouraging the commercialization of Cu 2Se. Currently, CuAgSe is the only promising n-type Cu-based superionic TE material. Accordingly, to find a compatible material for p-type Cu2Se at high temperatures, a series of materials with the formula Cu4-xAgxSe2 were synthesized. It was found that the composition of Cu3AgSe2 ( x = 1) is a two-phase mixture at low temperatures but becomes a single-phase p-type superionic material above 440 K. On the other hand, CuAg 3Se2 (x = 3) remains a two-phase n-type mixture throughout the measured temperature range, contrary to reports of CuAg3Se2 as a single-phase high temperature material. The most important finding is the high temperature n-type behavior of CuAgSe (x = 2), which is the first instance of CuAgSe as an n-type superionic material above 470 K. It is proposed that off-stoichiometry leads to p-type behavior of CuAgSe. Moving to IV-V compounds, a detailed experimental and computational study of the material Pb7Bi4Se13 shows excellent thermoelectric properties for a non-optimized system. It behaves as an n-type material with a small band gap of about 0.23 eV, which is confirmed by band structure calculations and experimental results. It demonstrates ultralow thermal conductivity largely due to the complex atomic-scale structure and heavy constituent atoms. This results in a ZT of approximately 0.9 at 775 K, which is a promising value for further optimization. Additional results from CuSe2 structural template reactions show that several composite materials and new materials can be predicted and synthesized. This includes Cu2Se-Cu(Ga,Al)Se2 composites and new materials such as Cu(Zn,Ni)1.5Se2 and CuPb 0.75Se2. Further work in Sn-Bi-Se compounds is discussed due their complex crystal structure that may result in promising thermoelectric properties. Finally, the preliminary results of high entropy chalcogenides are presented with discussion on future development.
Primus, J L; Boersma, M G; Mandon, D; Boeren, S; Veeger, C; Weiss, R; Rietjens, I M
1999-06-01
This study describes the catalytic properties of manganese microperoxidase 8 [Mn(III)MP8] compared to iron microperoxidase 8 [Fe(III)MP8]. The mini-enzymes were tested for pH-dependent activity and operational stability in peroxidase-type conversions, using 2-methoxyphenol and 3,3'-dimethoxybenzidine, and in a cytochrome P450-like oxygen transfer reaction converting aniline to para-aminophenol. For the peroxidase type of conversions the Fe to Mn replacement resulted in a less than 10-fold decrease in the activity at optimal pH, whereas the aniline para-hydroxylation is reduced at least 30-fold. In addition it was observed that the peroxidase type of conversions are all fully blocked by ascorbate and that aniline para-hydroxylation by Fe(III)MP8 is increased by ascorbate whereas aniline para-hydroxylation by Mn(III)MP8 is inhibited by ascorbate. Altogether these results indicate that different types of reactive metal oxygen intermediates are involved in the various conversions. Compound I/II, scavenged by ascorbate, may be the reactive species responsible for the peroxidase reactions, the polymerization of aniline and (part of) the oxygen transfer to aniline in the absence of ascorbate. The para-hydroxylation of aniline by Fe(III)MP8, in the presence of ascorbate, must be mediated by another reactive iron-oxo species which could be the electrophilic metal(III) hydroperoxide anion of microperoxidase 8 [M(III)OOH MP8]. The lower oxidative potential of Mn, compared to Fe, may affect the reactivity of both compound I/II and the metal(III) hydroperoxide anion intermediate, explaining the differential effect of the Fe to Mn substitution on the pH-dependent behavior, the rate of catalysis and the operational stability of MP8.
Thyroid hormone regulates muscle fiber type conversion via miR-133a1.
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-Cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua; Ying, Hao
2014-12-22
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. © 2014 Zhang et al.
Thyroid hormone regulates muscle fiber type conversion via miR-133a1
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua
2014-01-01
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. PMID:25512392
NASA Astrophysics Data System (ADS)
Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit
2018-04-01
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.
Theoretical studies of solar-pumped lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.
1983-01-01
Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.
Kang, Donghyeon; Lee, Dongho; Choi, Kyoung-Shin
2016-10-04
Electrochemical synthesis conditions using nonaqueous solutions were developed to prepare highly transparent (T > 90%) and crystalline ZnO and Al-doped ZnO (AZO) films for use in solar energy conversion devices. A focused effort was made to produce pinhole-free films in a reproducible manner by identifying a key condition to prevent the formation of cracks during deposition. The polycrystalline domains in the resulting films had a uniform orientation (i.e., the c-axis perpendicular to the substrate), which enhanced the electron transport properties of the films. Furthermore, electrochemical Al doping of ZnO using nonaqueous media, which was demonstrated for the first time in this study, effectively increased the carrier density and raised the Fermi level of ZnO. These films were coupled with an electrodeposited p-type Cu 2 O to construct p-n heterojunction solar cells to demonstrate the utilization of these films for solar energy conversion. The resulting n-ZnO/p-Cu 2 O and n-AZO/p-Cu 2 O cells showed excellent performance compared with previously reported n-ZnO/p-Cu 2 O cells prepared by electrodeposition. In particular, replacing ZnO with AZO resulted in simultaneous enhancements in short circuit current and open circuit potential, and the n-AZO/p-Cu 2 O cell achieved an average power conversion efficiency (η) of 0.92 ± 0.09%. The electrodeposition condition reported here will offer a practical and versatile way to produce ZnO or AZO films, which play key roles in various solar energy conversion devices, with qualities comparable to those prepared by vacuum-based techniques.
Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo
2014-11-01
Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lipo, Thomas A.; Sood, Pradeep K.
1987-01-01
Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.
Regulation of contractile protein gene expression in unloaded mouse skeletal muscle
NASA Technical Reports Server (NTRS)
Criswell, D. S.; Carson, J. A.; Booth, F. W.
1996-01-01
Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.
Pump Spectral Bandwidth, Birefringence, and Entanglement in Type-II Parametric Down Conversion
Erenso, Daniel
2009-01-01
The twin photons produced by a type-II spontaneous parametric down conversion are well know as a potential source of photons for quantum teleportation due to the strong entanglement in polarization. This strong entanglement in polarization, however, depends on the spectral composition of the pump photon and the nature of optical isotropy of the crystal. By exact numerical calculation of the concurrence, we have shown that how pump photons spectral width and the birefringence nature of the crystal directly affect the degree of polarization entanglement of the twin photons.
Conversation Compass: A Teacher's Guide to High-Quality Language Learning in Young Children
ERIC Educational Resources Information Center
Curenton, Stephanie M.
2016-01-01
Classroom conversation plays an important role in the development of children's language and reasoning. However, studies show that classroom talk relies too much on directives and close-ended questions. "Conversation Compass" provides the tools to strengthen your language-learning environment: (1) The Compass: guide high-quality…
Liu, Juntai; Friebe, Vincent M; Swainsbury, David J K; Crouch, Lucy I; Szabo, David A; Frese, Raoul N; Jones, Michael R
2018-04-17
Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo.
How do I look? Self-focused attention during a video chat of women with social anxiety (disorder).
Vriends, Noortje; Meral, Yasemin; Bargas-Avila, Javier A; Stadler, Christina; Bögels, Susan M
2017-05-01
We investigated the role of self-focused attention (SFA) in social anxiety (disorder) in an ecologically valid way. In Experiment 1 high (n = 26) versus low (n = 25) socially anxious single women between 18 and 30 years had a video ("Skype") conversation with an attractive male confederate, while seeing themselves and the confederate on-screen. The conversation was divided in four phases: (I) warm-up, (II) positive (confederate was friendly to the participant), (III) critical (confederate was critical to the participant), and (IV) active (participant was instructed to ask questions to the confederate). Participant's SFA was measured by eye-tracked gaze duration at their own image relative to the confederates' video image and other places at the computer screen. Results show that high socially anxious participants were more self-focused in the critical phase, but less self-focused in the active phase than low socially anxious participants. In Experiment 2 women diagnosed with SAD (n = 32) and controls (n = 30) between 18 and 30 years conducted the same experiment. Compared to controls participants with SAD showed increased SFA across all four phases of the conversation, and SFA predicted increased self-rated anxiety during the conversation. In conclusion, in subclinical social anxiety SFA is high only when the interaction partner is critical, whereas instructions to ask questions to the confederate reduces subclinical socially anxious' SFA, while clinical SAD is characterized by heightened self-focused attention throughout the interaction. Results support theories that social anxiety disorder is maintained by SFA, and imply that interventions that lower SFA may help prevent and treat social anxiety disorder, but that SFA can also be adaptive in certain types of interaction, such as when receiving compliments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan
2015-01-01
The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications. PMID:28706626
Dissecting engineered cell types and enhancing cell fate conversion via CellNet
Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.
2014-01-01
SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792
Venkateswar Reddy, M; Mawatari, Yasuteru; Yajima, Yuka; Seki, Chigusa; Hoshino, Tamotsu; Chang, Young-Cheol
2015-09-01
In the present study five different types of alkylphenols, each of the two different types of mono and poly-aromatic hydrocarbons were selected for degradation, and conversion into poly-3-hydroxybutyrate (PHB) using the Bacillus sp. CYR1. Strain CYR1 showed growth with various toxic organic compounds. Degradation pattern of all the organic compounds at 100 mg/l concentration with or without addition of tween-80 were analyzed using high pressure liquid chromatography (HPLC). Strain CYR1 showed good removal of compounds in the presence of tween-80 within 3 days, but it took 6 days without addition of tween-80. Strain CYR1 showed highest PHB production with phenol (51 ± 5%), naphthalene (42 ± 4%), 4-chlorophenol (32 ± 3%) and 4-nonylphenol (29 ± 3%). The functional groups, structure, and thermal properties of the produced PHB were analyzed. These results denoted that the strain Bacillus sp. CYR1 can be used for conversion of different toxic compounds persistent in wastewaters into useable biological polyesters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Land-use changes influence soil bacterial communities in a meadow grassland in Northeast China
NASA Astrophysics Data System (ADS)
Cao, Chengyou; Zhang, Ying; Qian, Wei; Liang, Caiping; Wang, Congmin; Tao, Shuang
2017-10-01
The conversion of natural grassland into agricultural fields is an intensive anthropogenic perturbation commonly occurring in semiarid regions, and this perturbation strongly affects soil microbiota. In this study, the influences of land-use conversion on the soil properties and bacterial communities in the Horqin Grasslands in Northeast China were assessed. This study aimed to investigate (1) how the abundances of soil bacteria changed across land-use types, (2) how the structure of the soil bacterial community was altered in each land-use type, and (3) how these variations were correlated with soil physical and chemical properties. Variations in the diversities and compositions of bacterial communities and the relative abundances of dominant taxa were detected in four distinct land-use systems, namely, natural meadow grassland, paddy field, upland field, and poplar plantation, through the high-throughput Illumina MiSeq sequencing technique. The results indicated that land-use changes primarily affected the soil physical and chemical properties and bacterial community structure. Soil properties, namely, organic matter, pH, total N, total P, available N and P, and microbial biomass C, N, and P, influenced the bacterial community structure. The dominant phyla and genera were almost the same among the land-use types, but their relative abundances were significantly different. The effects of land-use changes on the structure of soil bacterial communities were more quantitative than qualitative.
[Eye stress from work with visual screens].
Läubli, T; Hünting, W; Grandjean, E
1980-09-01
Four groups of office tasks were studied: Data entry terminals, conversational terminals, traditional office work and typing. Eye impairments are observed in every group of office employees, but the impairments are more frequent in VDU operators. The impairments persist during leisure time. High luminance contrasts between screen and source document are associated with an increase of eye troubles. Increased oscillating luminance of characters is associated with lower visual acuity, with a higher incidence of subjective and objective symptoms of eye irritation including more frequent use of eye drops.
Electronic Skin with Multifunction Sensors Based on Thermosensation.
Zhao, Shuai; Zhu, Rong
2017-04-01
A multifunctional electronic skin (e-skin) with multimodal sensing capabilities of perceiving mechanical and thermal stimuli, discriminating matter type, and sensing wind is developed using the thermosensation of a platinum ribbon array, whose temperature varies with conductive or convective heat transfer toward the surroundings. Pressure is perceived by a porous elastomer covering on the heated platinum ribbon, which bears mechanical-thermal conversion to allow high integration with other sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Winkler, Christoph K; Clay, Dorina; Entner, Marcello; Plank, Markus; Faber, Kurt
2014-01-01
To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems. PMID:24382795
Efficiency and weight of voltage multiplier type ultra lightweight dc-dc converters
NASA Technical Reports Server (NTRS)
Harrigill, W. T., Jr.; Myers, I. T.
1975-01-01
An analytical and experimental study was made of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. The dc-dc conversion efficiencies of about 94 percent were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.
Energy harvesting from low frequency applications using piezoelectric materials
Li, Huidong; Tian, Chuan; Deng, Z. Daniel
2014-11-06
This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.
Molecular Barriers to Zoonotic Transmission of Prions
Barria, Marcelo A.; Balachandran, Aru; Morita, Masanori; Kitamoto, Tetsuyuki; Barron, Rona; Manson, Jean; Knight, Richard; Ironside, James W.
2014-01-01
The risks posed to human health by individual animal prion diseases cannot be determined a priori and are difficult to address empirically. The fundamental event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein to its pathologic isoform. We used a rapid molecular conversion assay (protein misfolding cyclic amplification) to test whether brain homogenates from specimens of classical bovine spongiform encephalopathy (BSE), atypical BSE (H-type BSE and L-type BSE), classical scrapie, atypical scrapie, and chronic wasting disease can convert normal human prion protein to the abnormal disease-associated form. None of the tested prion isolates from diseased animals were as efficient as classical BSE in converting human prion protein. However, in the case of chronic wasting disease, there was no absolute barrier to conversion of the human prion protein. PMID:24377702
Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses.
Liu, Wei; Schimpf, Damian N; Eidam, Tino; Limpert, Jens; Tünnermann, Andreas; Kärtner, Franz X; Chang, Guoqing
2015-01-15
We demonstrate a pre-chirp managed Yb-doped fiber laser system that outputs 75 MHz, 130 W spectrally broadened pulses, which are compressed by a diffraction-grating pair to 60 fs with average powers as high as 100 W. Fine tuning the pulse chirp prior to amplification leads to high-quality compressed pulses. Detailed experiments and numerical simulation reveal that the optimum pre-chirp group-delay dispersion increases from negative to positive with increasing output power for rod-type high-power fiber amplifiers. The resulting laser parameters are suitable for extreme nonlinear optics applications such as frequency conversion in femtosecond enhancement cavities.
Cathecol-O-methyl transferase Val158Met genotype is not a risk factor for conversion disorder.
Armagan, E; Almacıoglu, M L; Yakut, T; Köse, A; Karkucak, M; Köksal, O; Görükmez, O
2013-03-19
Alterations in catechol-O-methyltransferase (COMT) activity are involved in various types of neurological disorders. We examined a possible association between the COMT Val158Met polymorphism and conversion disorder in a study of 48 patients with conversion disorder and 48 control patients. In the conversion disorder group, 31 patients were Val/Met heterozygotes, 15 patients were Val/Val homozygotes and 2 patients were Met/Met homozygotes. In the control group, 32 patients were Val/Met heterozygotes and 16 patients were Val/Val homozygotes. There was no significant difference between the groups. We conclude that the COMT Val158Met genotype is quite common in Turkey and that it is not a risk factor for conversion disorder in the Turkish population.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes
NASA Astrophysics Data System (ADS)
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-01
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions.
Cui, Jiabin; Li, Yongjia; Liu, Lei; Chen, Lin; Xu, Jun; Ma, Jingwen; Fang, Gang; Zhu, Enbo; Wu, Hao; Zhao, Lixia; Wang, Leyu; Huang, Yu
2015-10-14
We report a highly efficient photocatalyst comprised of Cu7S4@Pd heteronanostructures with plasmonic absorption in the near-infrared (NIR)-range. Our results indicated that the strong NIR plasmonic absorption of Cu7S4@Pd facilitated hot carrier transfer from Cu7S4 to Pd, which subsequently promoted the catalytic reactions on Pd metallic surface. We confirmed such enhancement mechanism could effectively boost the sunlight utilization in a wide range of photocatalytic reactions, including the Suzuki coupling reaction, hydrogenation of nitrobenzene, and oxidation of benzyl alcohol. Even under irradiation at 1500 nm with low power density (0.45 W/cm(2)), these heteronanostructures demonstrated excellent catalytic activities. Under solar illumination with power density as low as 40 mW/cm(2), nearly 80-100% of conversion was achieved within 2 h for all three types of organic reactions. Furthermore, recycling experiments showed the Cu7S4@Pd were stable and could retain their structures and high activity after five cycles. The reported synthetic protocol can be easily extended to other Cu7S4@M (M = Pt, Ag, Au) catalysts, offering a new solution to design and fabricate highly effective photocatalysts with broad material choices for efficient conversion of solar energy to chemical energy in an environmentally friendly manner.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes.
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-14
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
Choi, Jaeyoo; Jung, Yeonsu; Yang, Seung Jae; Oh, Jun Young; Oh, Jinwoo; Jo, Kiyoung; Son, Jeong Gon; Moon, Seung Eon; Park, Chong Rae; Kim, Heesuk
2017-08-22
As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl 3 , respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 μW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.
NASA Astrophysics Data System (ADS)
Jarret, Guillaume; Martinez, José; Dourmad, Jean-Yves
2011-11-01
In the guideline for the determination of methane (CH 4) emission from animal manure (IPCC) the amount of CH 4 emitted is generally calculated according to an equation combining the amount of organic matter (OM) or volatile solids excreted, the ultimate CH 4 potential ( B0) of excreta and a system-specific methane conversion factor (MCF, %) that reflects the portion of B0 that is really converted into CH 4. The objective of the present study was to investigate the effect of the modification of dietary crude protein and fibre levels on B0 of pig slurry and on subsequent MCF according to different strategies of slurry management. Five experimental diets differing mainly in their crude protein and fibre content were compared. Two types of measurement of CH 4 emission were performed. The first was the measurement of B0 of slurry using biomethanogene potential (BMP) test. The second consisted in a storage simulation, which was performed on different kinds of effluents: fresh slurry (FSl), stored slurry (SSl), and faeces mixed with water (FaW). The type of diet and the type of effluent affected ( P < 0.001) CH 4 production after 30, 50 and 100 days. Moreover, the interaction between type of effluent and type of diet was significant for CH 4 emission and for MCF. CH 4 production was the highest for BMP, the average production of CH 4 during storage from FaW, FSl and SSl samples representing 77%, 58% and 64% of the B0 value. The dynamic of CH 4 production during BMP tests was rather similar for all dietary treatments whereas it differed for storage simulation studies with significant effects of dietary CP and fibre contents. The results from this study indicate that the type of diet has a significant but rather limited effect on B0 value of effluent. The effect of diet is much more marked on MCF, with lower values for high protein diets, and higher values for high fibre diets. MCF is also affected by manure management, the values measured on separated faeces from urine being much higher than for slurry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sari Izumo; Hideo Usui; Mitsuo Tachibana
Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less
Organic and perovskite solar cells: Working principles, materials and interfaces.
Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis
2017-02-15
In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Light Irradiation as Key to Shape and Function of Nano-Assemblies in Solution
NASA Astrophysics Data System (ADS)
Groehn, Franziska
Developing strategies to exploit solar energy become more and more important. Inspired by natural systems it is highly promising to self-assemble functional species into effective tailored supramolecular units. Here we report self-assembled polymer structures in solution, taking advantage of optical properties of hybrid structures and light responsiveness. A new type of photocatalytically active self-assembled polymer structure in aqueous solution consists of supramolecular nano-objects obtained from macroions and multivalent inorganic ``counterions'' such as nanoparticles or clusters. These can exhibit expressed selectivity or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, polyelectrolyte-porphyrin nanoscale assemblies exhibit tunable optical properties including strong fluorescence and an up to 20-fold higher photocatalytic activity than without polymeric template. A different approach is to transfer light energy into mechanical energy. Here, light energy is converted into nanoscale shape changes. This route for the conversion of light is highly promising for applications in drug delivery, nanosensors and solar energy conversion. Membership of DPG, Germany ID 153159-.
Arun, Muthukrishnan; Subramanyam, Kondeti; Theboral, Jeevaraj; Sivanandhan, Ganeshan; Rajesh, Manoharan; Kapil Dev, Gnanajothi; Jaganath, Balusamy; Manickavasagam, Markandan; Girija, Shanmugam; Ganapathi, Andy
2014-02-01
Soybean oil contains high levels of tocopherols which are an important source of vitamin E in human diet. The conversion of γ- to α-tocopherol catalyzed by γ-tocopherol methyltransferase (γ-TMT) is found to be the rate limiting factor in soybean which influences the tocopherol composition. Using Agrobacterium-mediated transformation, we overexpressed the γ-TMT gene of Perilla frutescens under the control of the seed-specific promoter vicillin in cultivar Pusa 16. Transgene integration and expression was confirmed in five independently transformed GUS positive soybean plants by polymerase chain reaction (PCR), Southern hybridization, and reverse transcriptase-PCR (RT-PCR). High-performance liquid chromatography (HPLC) analysis showed that overexpression of Pf-γ-TMT resulted in efficient conversion of γ-tocopherol to α-tocopherol and concomitant increase in seed α-tocopherol content in RT-PCR positive plants. The protocol was successfully applied to three more cultivars PK 416, Gujarat soybean 1, and VL soya 1 in which seeds of transformed plants showed elevated level of α-tocopherol than wild-type seeds.
Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.
Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C
2008-03-15
Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.
Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.
Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali
2015-06-18
To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation.
Sexy gene conversions: locating gene conversions on the X-chromosome.
Lawson, Mark J; Zhang, Liqing
2009-08-01
Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.
NASA Technical Reports Server (NTRS)
Chubb, Donald L. (Inventor)
1992-01-01
This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.
Chemical Looping Technology: Oxygen Carrier Characteristics.
Luo, Siwei; Zeng, Liang; Fan, Liang-Shih
2015-01-01
Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.
Grosche, Christopher; Funk, Helena T.; Maier, Uwe G.; Zauner, Stefan
2012-01-01
RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. PMID:23221608
How children aged 2;6 tailor verbal expressions to interlocutor informational needs.
Abbot-Smith, Kirsten; Nurmsoo, Erika; Croll, Rebecca; Ferguson, Heather; Forrester, Michael
2016-11-01
Although preschoolers are pervasively underinformative in their actual usage of verbal reference, a number of studies have shown that they nonetheless demonstrate sensitivity to listener informational needs, at least when environmental cues to this are obvious. We investigated two issues. The first concerned the types of visual cues to interlocutor informational needs which children aged 2;6 can process whilst producing complex referring expressions. The second was whether performance in experimental tasks related to naturalistic conversational proficiency. We found that 2;6-year-olds used fewer complex expressions when the objects were dissimilar compared to highly similar objects, indicating that they tailor their verbal expressions to the informational needs of another person, even when the cue to the informational need is relatively opaque. We also found a correlation between conversational skills as rated by the parents and the degree to which 2;6-year-olds could learn from feedback to produce complex referring expressions.
The rise and fall of a human recombination hot spot.
Jeffreys, Alec J; Neumann, Rita
2009-05-01
Human meiotic crossovers mainly cluster into narrow hot spots that profoundly influence patterns of haplotype diversity and that may also affect genome instability and sequence evolution. Hot spots also seem to be ephemeral, but processes of hot-spot activation and their subsequent evolutionary dynamics remain unknown. We now analyze the life cycle of a recombination hot spot. Sperm typing revealed a polymorphic hot spot that was activated in cis by a single base change, providing evidence for a primary sequence determinant necessary, though not sufficient, to activate recombination. This activating mutation occurred roughly 70,000 y ago and has persisted to the present, most likely fortuitously through genetic drift despite its systematic elimination by biased gene conversion. Nonetheless, this self-destructive conversion will eventually lead to hot-spot extinction. These findings define a subclass of highly transient hot spots and highlight the importance of understanding hot-spot turnover and how it influences haplotype diversity.
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan
2016-01-01
Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.
NASA Technical Reports Server (NTRS)
Sander, W. A., III
1973-01-01
Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.
H sub 3 PMo sub 12 O sub 40 -doped polyacetylene as a catalyst for ethyl alcohol conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozniczek, J.; Bielanski, A.; Kulszewicz-Bajer, I.
1991-12-01
A new and highly efficient catalyst was obtained by exploiting the unique ability of polyacetylene to incorporate heteropolyanions (HPA) of the Keggin type via oxidative doping. 12-Molybdophosphoric acid, 20.8 wt%, was introduced into the polymer. A uniform distribution of HPA over the cross section of the polymer film was found. However, the concentration of HPA seemed to be higher at the surface of the polymer fibers than in their bulk. The conversion of ethyl alcohol was used as a catalytic test reaction. The catalyst exhibited both acid-base activity (formation of ethylene and diethyl ether) as well as redox activity (formationmore » of acetaldehyde). The acid-base activity was 10 times higher than that of unsupported H{sub 3}PMo{sub 12}O{sub 40}, and the redox activity was about 40 times higher.« less
Perovskite- and Heusler based materials for thermoelectric converters
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2015-03-01
The broad application of thermoelectric converters in future energy technologies requires the development of active, stable, low cost and sustainable materials. Semiconductors based on perovskite and heusler structures show substantial potential for thermoelectric energy conversion processes. Their good performance can be explained based on their suitable band structure, adjusted charge carrier density, mass and mobility, limited phonon transport, electron filtering possibilities, strongly correlated electronic systems, etc. These properties are widely tuneable by following theoretical concepts and a deep composition-structure-property understanding to change the composition, structure and size of the crystallites in innovative scalable synthesis procedures. Improved thermoelectric materials are developed, synthesised and tested in diverse high temperature applications to improve the efficiency and energy density of the thermoelectric conversion process. The lecture will provide a summary on the field of advanced perovskite-type ceramics and Heusler compounds gaining importance for a large number of future energy technologies.
Pursuing Information: A Conversation Analytic Perspective on Communication Strategies
ERIC Educational Resources Information Center
Burch, Alfred R.
2014-01-01
Research on second language (L2) communication strategies over the past three decades has concerned itself broadly with defining their usage in terms of planning and compensation, as well as with the use of taxonomies for coding different types of strategies. Taking a Conversation Analytic (CA) perspective, this article examines the fine-grained…
Advising Older Homeowners on Home Equity Conversion: A Guide for Attorneys.
ERIC Educational Resources Information Center
Schimeall, Kent M.; Ernst, Trudy A.
This manual is intended to introduce attorneys to the concept of home equity conversion (HEC) so that they can knowledgeably advise elderly homeowners who may be considering this type of transaction. It is directed to attorneys representing the elderly rather than to attorneys representing lenders or investors in home equity conversion…
Children's Understanding of Ambiguous Idioms and Conversational Perspective-Taking
ERIC Educational Resources Information Center
Le Sourn-Bissaoui, Sandrine; Caillies, Stephanie; Bernard, Stephane; Deleau, Michel; Brule, Lauriane
2012-01-01
The aim of this study was to test the hypothesis that conversational perspective-taking is a determinant of unfamiliar ambiguous idiom comprehension. We investigated two types of ambiguous idiom, decomposable and nondecomposable expressions, which differ in the degree to which the literal meanings of the individual words contribute to the overall…
Restarts in Conversation and Literature.
ERIC Educational Resources Information Center
Person, Raymond F., Jr.
1996-01-01
Analyzes restarts, a common feature of conversation, in literary discourse. The term "restart" refers to the repetition of a word or words within an utterance by the same speaker. Restarts in literary discourse are of two types: (1) those produced by the characters in their "real" narrative world and (2) those produced by the narrators themselves.…
Anne Black; James Saveland; Dave Thomas
2011-01-01
There are many reasons to hold a conversation, among them: information download, information exchange, selection of a course of action, consensus-building, and exploration. Dialogue is a particular type of conversation that seeks to explore a subject in order to generate new ideas and insights. It is based on the recognitions that (1) the critical issues of today are...
5 CFR 315.712 - Conversion based on service as a Federal Career Intern.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career Intern... employment, a career intern who: (1) Has successfully completed a Federal Career Intern Program, under § 213...
5 CFR 315.712 - Conversion based on service as a Federal Career Intern.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career Intern... employment, a career intern who: (1) Has successfully completed a Federal Career Intern Program, under § 213...
5 CFR 315.712 - Conversion based on service as a Federal Career Intern.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career Intern... employment, a career intern who: (1) Has successfully completed a Federal Career Intern Program, under § 213...
Range management in the chaparral type and its ecological basis: The status of our knowledge
Dwight R. Cable
1975-01-01
Chaparral in Arizona is used far below its potential. Conversions to grass can greatly increase water and grass production, and improve wildlife habitat. Management options include conversion to grass, maintaining shrubs in a sprout stage, changing shrub composition, reseeding, and using goats to harvest shrub forage.
Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells
Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787
Carey, Kate B.; Lust, Sarah A.; Reid, Allecia E.; Kalichman, Seth C.; Carey, Michael P.
2015-01-01
Relatively little research has examined how peer communication influences alcohol consumption. In a sample of mandated college students, we differentiate conversations about drinking among from conversations about harm prevention and provide evidence for the validity of these communication constructs. Students who violated campus alcohol policies and were referred for alcohol sanctions (N = 345) reported on drinking patterns, use of protective behavioral strategies, perceived descriptive norms for close friends and serving as social leader among their friends; they also reported on the frequency of conversations about drinking, about drinking safety, and about risk reduction efforts. Predicted correlations were found among types of communication and conceptually related variables. General communication was related to consumption but not protective behavioral strategies, whereas safety/risk reduction conversations correlated positively with all protective behavioral strategies. Both types of communication were associated with social leadership. Safety communication moderated the relationship between peer descriptive norms and drinks per week; more frequent talking about safety attenuated the norms-consumption relationship. Peer communication about both drinking and safety may serve as targets for change in risk reduction interventions for mandated college students. PMID:26861808
Schutyser, Wouter; Van den Bosch, Sander; Dijkmans, Jan; Turner, Stuart; Meledina, Maria; Van Tendeloo, Gustaaf; Debecker, Damien P; Sels, Bert F
2015-05-22
Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (>250 °C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (≈80 %) and tin-containing beta zeolite to form 4-alkyl-ε-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2 O2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Ananya; Ghosh, Semanti; Bagchi, Angshuman
Protein-Protein Interactions (PPIs) are crucial in most of the biological processes and PPI dysfunctions are known to be associated with the onsets of various diseases. One of such diseases is the auto-immune disease. Auto-immune diseases are one among the less studied group of diseases with very high mortality rates. Thus, we tried to correlate the appearances of mutations with their probable biochemical basis of the molecular mechanisms leading to the onset of the disease phenotypes. We compared the effects of the Single Amino Acid Variants (SAVs) in the wild type and mutated proteins to identify any structural deformities that mightmore » lead to altered PPIs leading ultimately to disease onset. For this we used Relative Solvent Accessibility (RSA) as a spatial parameter to compare the structural perturbation in mutated and wild type proteins. We observed that the mutations were capable to increase intra-chain PPIs whereas inter-chain PPIs would remain mostly unaltered. This might lead to more intra-molecular friction causing a deleterious alteration of protein's normal function. A Lyapunov exponent analysis, using the altered RSA values due to polymorphic and disease causing mutations, revealed polymorphic mutations have a positive mean value for the Lyapunov exponent while disease causing mutations have a negative mean value. Thus, local spatial stochasticity has been lost due to disease causing mutations, indicating a loss of structural fluidity. The amino acid conversion plot also showed a clear tendency of altered surface patch residue conversion propensity than polymorphic conversions. So far, this is the first report that compares the effects of different kinds of mutations (disease and non-disease causing polymorphic mutations) in the onset of autoimmune diseases. - Highlights: • Protein-Protein Interaction. • Changes in Relative Solvent Accessibility (RSA). • Amino acid conversion matrix. • Polymorphic mutations. • Disease causing mutations.« less
NASA Astrophysics Data System (ADS)
Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.
2018-04-01
We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.
Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating
NASA Astrophysics Data System (ADS)
Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.
2018-06-01
Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type- n and type- p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire ( d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.
Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating
NASA Astrophysics Data System (ADS)
Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.
2018-04-01
Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.
Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco
2014-01-01
Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.
Goal setting dynamics that facilitate or impede a client-centered approach.
Kessler, Dorothy; Walker, Ian; Sauvé-Schenk, Katrine; Egan, Mary
2018-04-19
Client-centred goal setting is central to the process of enabling occupation. Yet, there are multiple barriers to incorporating client-centred goal setting in practice. We sought to determine what might facilitate or impede the formation of client-centred goals in a context highly supportive of client-centred goal setting Methods: We used conversational analysis to examine goal-setting conversations that took place during a pilot trial of Occupational Performance Coaching for stroke survivors. Twelve goal-setting sessions were purposively selected, transcribed, and analyzed according to conventions for conversation analysis. Two main types of interactions were observed: introductory actions and goal selection actions. Introductory actions set the context for goal setting and involved sharing information and seeking clarification related to goal requirements and clients' occupational performance competencies. Goal selection actions were a series of interactions whereby the goals were explored, endorsed or dropped. Client-centred occupational performance goals may be facilitated through placing goal-setting in the context of life changes and lifelong development of goals, and through listening to clients' stories. Therapists may improve consistency in adoption of client-suggested goals through clarifying meaning attached to goals and being attuned to power dynamics and underlying values and beliefs around risk and goal attainability.
Mishra, Abha; Debnath Das, Meera
2002-01-01
pH and temperature play critical roles in multistep enzymatic conversions. In such conversions, the optimal pH for individual steps differs greatly. In this article, we describe the production of glucoamylase (from Aspergillus oryzae MTCC152 in solid-state fermentation) and glucose isomerase (from Streptomyces griseus NCIM2020 in submerged fermentation), used in industries for producing high-fructose syrup. Optimum pH for glucoamylase was found to be 5.0. For glucose isomerase, the optimum pH ranged between 7.0 and 8.5, depending on the type of buffer used. Optimum temperature for glucoamylase and glucose isomerase was 50 and 60 degrees C, respectively. When both the enzymatic conversions were performed simultaneously at a compromised pH of 6.5, both the enzymes showed lowered activity. We also studied the kinetics at different pHs, which allows the two-step reaction to take place simultaneously. This was done by separating two steps by a thin layer of urease. Ammonia generated by the hydrolysis of urea consumed the hydrogen ions, thereby allowing optimal activity of glucose isomerase at an acidic pH of 5.0.
NASA Astrophysics Data System (ADS)
Kessler, P.; Behnke, B.; Dombrowski, H.; Neumaier, S.
2017-11-01
For the upgrade of existing dosimetric early warning networks in Europe spectrometric detectors based on CeBr3, LaBr3, SrI2, and CdZnTe are investigated as possible substitutes for the current detector generation which is mainly based on gas filled detectors. The additional information on the nuclide vector which can be derived from the spectra of γ-radiation is highly useful for an appropriate response in case of a nuclear or radiological accident. The measured γ-spectra will be converted into ambient dose equivalent H* (10) using a method where the spectrum is subdivided into multiple energy bands. For each band the conversion coefficients from count rate to dose rate is determined. The derivation of these conversion coefficients is explained in this work. Both experimental and simulative approaches are investigated using quasi-mono-energetic γ-sources and synthetic spectra from Monte-Carlo simulations to determine the conversion coefficients for each detector type. Finally, precision of the obtained characterization is checked by irradiation of the detectors in different well-known photon fields with traceable dose rates.
Paths from meso to submesoscale processes in the western Mediterranean Sea
NASA Astrophysics Data System (ADS)
Capó, Esther; Mason, Evan; Hernández-Carrasco, Ismael; Orfila, Alejandro
2017-04-01
In this work we characterize the mesoscale dynamics in the western Mediterranean (WMed) by analyzing the different contributions to the kinetic energy budgets using a 20 year high-resolution numerical model. The length of the numerical solution allows us to consider statistically stationary state of the ocean, a necessary condition for using the quantification of energy budgets as a tool for analyzing dynamical processes. To identify and characterize the different submesoscale processes, we isolate the terms in the energy balance equations (the Lorenz Energy Cycle, LEC, equations) responsible for the production (conversion and generation) of the eddy kinetic energy (EKE). Firstly, by comparing the predominance of each conversion term among the others, three different submesoscale instabilities can be identified in a certain region: baroclinic, barotropic and Kelvin-Helmholtz type. Conversely, given the crucial role of the wind forcing in the dynamics of this area, the generation of kinetic energy by surface winds has been also considered. Finally, a regional analysis of the EKE production terms permits the identification of the areas dominated by submesoscale activity. As will be shown in this work those areas are located near the main currents, and submesoscale processes are strongly influenced by sharp bathymetry-flow interaction.
A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio
NASA Astrophysics Data System (ADS)
Chao, Kuei-Hsiang; Jheng, Yi-Cing
2018-01-01
A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.
Pajo, Kati
2013-01-01
Even though research has increasingly focused on the qualitative features of natural conversations, which have improved the communication therapy for hearing-impaired individuals (HI) and familiar partners (FP), very little is known about the interactions that occur outside clinical settings. This study investigated qualitatively how both HI and FP initiated repair due to misperceptions or to a difficulty in understanding during conversations conducted at home. The HI participant's multimodal production style was adopted in the present analysis, and the frequencies were calculated for the different types of verbal repair initiations. Participants with acquired hearing loss (43-69 years) and their familiar partners (24-67 years) were video recorded (total time approximately 9 h) in their homes. The data consisted of eight conversational dyads. The transcription and analysis utilized Conversation Analysis. A total of 209 (HI 164/FP 45) verbal repair initiations were identified. The five major types of initiations found in the data (used by both HI and FP) were: open repair initiation, targeting question word, question word with repetition, repetition, and candidate understanding. HI participants rarely explicitly verbalized their difficulty to hear, but the production style, which included a fast speech rate and 'trouble posture', indicated a sensitive routine that was visible particularly in clear misperceptions. Furthermore, the alerting action of overlapping turn taking with the FP participant's turn could be seen to reveal the depth of misperception. The individual differences between HI participants were found predominantly in the frequency of their repair initiations, but also in how they used the different types of repair initiation. Through a deeper qualitative analysis, conversational research can provide extended knowledge of the occurrence and style of ordinary repair initiations and highlight their relationship in certain conversational environments. A robust starting point in communication therapy is increasing the awareness of HI individuals' existing skills. © 2012 Royal College of Speech and Language Therapists.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191
Initiating decision-making conversations in palliative care: an ethnographic discourse analysis.
Bélanger, Emmanuelle; Rodríguez, Charo; Groleau, Danielle; Légaré, France; Macdonald, Mary Ellen; Marchand, Robert
2014-01-01
Conversations about end-of-life care remain challenging for health care providers. The tendency to delay conversations about care options represents a barrier that impedes the ability of terminally-ill patients to participate in decision-making. Family physicians with a palliative care practice are often responsible for discussing end-of-life care preferences with patients, yet there is a paucity of research directly observing these interactions. In this study, we sought to explore how patients and family physicians initiated decision-making conversations in the context of a community hospital-based palliative care service. This qualitative study combined discourse analysis with ethnographic methods. The field research lasted one year, and data were generated through participant observation and audio-recordings of consultations. A total of 101 consultations were observed longitudinally between 18 patients, 6 family physicians and 2 pivot nurses. Data analysis consisted in exploring the different types of discourses initiating decision-making conversations and how these discourses were affected by the organizational context in which they took place. The organization of care had an impact on decision-making conversations. The timing and origin of referrals to palliative care shaped whether patients were still able to participate in decision-making, and the decisions that remained to be made. The type of decisions to be made also shaped how conversations were initiated. Family physicians introduced decision-making conversations about issues needing immediate attention, such as symptom management, by directly addressing or eliciting patients' complaints. When decisions involved discussing impending death, decision-making conversations were initiated either indirectly, by prompting the patients to express their understanding of the disease and its progression, or directly, by providing a justification for broaching a difficult topic. Decision-making conversations and the initiation thereof were framed by the organization of care and the referral process prior to initial encounters. While symptom management was taken for granted as part of health care professionals' expected role, engaging in decisions regarding preparation for death implicitly remained under patients' control. This work makes important clinical contributions by exposing the rhetorical function of family physicians' discourse when introducing palliative care decisions.
NEGATIVE EMOTIONS IN CANCER CARE: DO ONCOLOGISTS’ RESPONSES DEPEND ON SEVERITY AND TYPE OF EMOTION?
Kennifer, Sarah L.; Alexander, Stewart C.; Pollak, Kathryn I.; Jeffreys, Amy S.; Olsen, Maren K.; Rodriguez, Keri L.; Arnold, Robert M.; Tulsky, James A.
2009-01-01
Objective To examine how type and severity of patients’ negative emotions influence oncologists’ responses and subsequent conversations. Methods We analyzed 264 audio-recorded conversations between advanced cancer patients and their oncologists. Conversations were coded for patients’ expressions of negative emotion, which were categorized by type of emotion and severity. Oncologists’ responses were coded as using either empathic language or blocking and distancing approaches. Results Patients presented fear more often than anger or sadness; severity of disclosures was most often moderate. Oncologists responded to 35% of these negative emotional disclosures with empathic language. They were most empathic when patients presented intense emotions. Responding empathically to patients’ emotional disclosures lengthened discussions by an average of only 21 seconds. Conclusion Greater response rates to severe emotions suggest oncologists may recognize negative emotions better when patients express them more intensely. Oncologists were least responsive to patient fear and responded with greatest empathy to sadness. Practice Implications Oncologists may benefit from additional training to recognize negative emotions, even when displayed without intensity. Teaching cancer patients to better articulate their emotional concerns may also enhance patient-oncologist communication. PMID:19041211
Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump
NASA Astrophysics Data System (ADS)
Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.
2013-07-01
A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.
Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.
Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min
2018-01-17
Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.
NASA Astrophysics Data System (ADS)
Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun
2018-05-01
We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Measuring parameters of large-aperture crystals used for generating optical harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, R. E.; Hibbard, R. L.; Michie, R. B.
1999-02-23
The purpose of this project was to develop tools for understanding the influence of crystal quality and crystal mounting on harmonic-generation efficiency at high irradiance. Measuring the homogeneity of crystals interferometrically, making detailed physics calculations of conversion efficiency, performing finite- element modeling of mounted crystals, and designing a new optical metrology tool were key elements in obtaining that understanding. For this work, we used the following frequency-tripling scheme: type I second- harmonic generation followed by type II sum-frequency mixing of the residual fundamental and the second harmonic light. The doubler was potassium dihydrogen phosphate (KDP), and the tripler was deuteratedmore » KDP (KD*P). With this scheme, near-infrared light (1053 nm) can be frequency tripled (to 351 nm) at high efficiency (theoretically >90%) for high irradiance (>3 GW/cm²). Spatial variations in the birefringence of the large crystals studied here (37 to 41 cm square by about 1 cm thick) imply that the ideal phase-matching orientation of the crystal with respect to the incident laser beam varies across the crystal. We have shown that phase-measuring interferometry can be used to measure these spatial variations. We observed transmitted wavefront differences between orthogonally polarized interferograms of {lambda}/50 to {lambda}/100, which correspond to index variations of order 10 -6. On some plates that we measured, the standard deviation of angular errors is 22-23 µrad; this corresponds to a 1% reduction in efficiency. Because these conversion crystals are relatively thin, their surfaces are not flat (deviate by k2.5 urn from flat). A crystal is mounted against a precision-machined surface that supports the crystal on four edges. This mounting surface is not flat either (deviates by +2.5 µm from flat). A retaining flange presses a compliant element against the crystal. The load thus applied near the edges of the crystal surface holds it in place. We performed detailed finite-element modeling to predict the resulting shape of the mounted crystal. The prediction agreed with measurements of mounted crystals. We computed the physics of the frequency-conversion process to better quantify the effects on efficiency of variation in the crystal' s axis, changes in the shape of the crystal, and mounting-induced stress. We were able to accurately predict the frequency-conversion performance of 37-cm square crystals on Beamlet, a one-beam scientific prototype of the NIF laser architecture, using interferometric measurements of the mounted crystals and the model. In a 2{omega} measurement campaign, the model predicted 64.9% conversion efficiency; 64.1% was observed. When detuned by 640 µrad, the model and measurement agreement is even better (both were 10.4%). Finally, we completed the design and initial testing of a new optical metrology tool to measure the spatial variation of frequency conversion. This system employs a high-power subaperture beam from a commercial laser oscillator and rod amplifier. The beam interrogates the crystal' s aperture by moving the crystal horizontally on a translation stage and translating the laser beam vertically on an optical periscope. Precision alignment is maintained by means of a full-aperture reference mirror, a precision-machined surface on the crystal mount, and autocollimators (the goal for angular errors is 10 µrad). The autocollimators track the mounting angle of the crystal and the direction of the laser beam with respect to the reference mirror. The conversion efficiency can be directly measured by recording l{omega}, 2{omega}, 3{omega} energy levels during the scan and by rocking (i.e., tilting) the crystal mount over an angular range.« less
NASA Astrophysics Data System (ADS)
Fuchs, R.; Herold, M.; Verburg, P. H.; Clevers, J. G. P. W.
2012-10-01
Currently, up to 30% of global carbon emission is estimated to originate from land use and land changes. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG) and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modeling techniques and the integration of land conversion types allow us to create accurate, high resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011), Ramankutty and Foley (1999), Pongratz et al. (2008) and Hurtt et al. (2006). The results indicate that almost 700 000 km2 (15.5%) of land cover in Europe changes over the period 1950 to 2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%). Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicate that the main drivers of land change over the studied period were urbanization, the reforestation program after the timber shortage since the Second World War, the fall of the Iron Curtain, Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method takes stock of the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristic allow the data to be used to support and improve ongoing GHG inventories and climate research.
NASA Astrophysics Data System (ADS)
Fuchs, R.; Herold, M.; Verburg, P. H.; Clevers, J. G. P. W.
2013-03-01
Human-induced land use changes are nowadays the second largest contributor to atmospheric carbon dioxide after fossil fuel combustion. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG) and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modelling techniques, and the integration of land conversion types allow us to create accurate, high-resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011), Ramankutty and Foley (1999), Pongratz et al. (2008) and Hurtt et al. (2006). The results indicate that almost 700 000 km2 (15.5%) of land cover in Europe has changed over the period 1950-2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%). Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicates that the main drivers of land change over the studied period were urbanization, the reforestation program resulting from the timber shortage after the Second World War, the fall of the Iron Curtain, the Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method considers the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristics allow the data to be used to support and improve ongoing GHG inventories and climate research.
Gupta, Y; Kapoor, D; Desai, A; Praveen, D; Joshi, R; Rozati, R; Bhatla, N; Prabhakaran, D; Reddy, P; Patel, A; Tandon, N
2017-01-01
To investigate the distribution of and risk factors for dysglycaemia (Type 2 diabetes and prediabetes) in women with previous gestational diabetes mellitus in India. All women (n = 989) from two obstetric units in New Delhi and Hyderabad with a history of gestational diabetes were invited to participate, of whom 366 (37%) agreed. Sociodemographic, medical and anthropometric data were collected and 75-g oral glucose tolerance test were carried out. Within 5 years (median 14 months) of the pregnancy in which they were diagnosed with gestational diabetes, 263 (72%) women were dysglycaemic, including 119 (32%) and 144 (40%) with Type 2 diabetes and prediabetes, respectively. A higher BMI [odds ratio 1.16 per 1-kg/m 2 greater BMI (95% CI 1.10, 1.28)], presence of acanthosis nigricans [odds ratio 3.10, 95% CI (1.64, 5.87)], postpartum screening interval [odds ratio 1.02 per 1 month greater screening interval 95% CI (1.01, 1.04)] and age [odds ratio 1.10 per 1-year older age 95% CI (1.04, 1.16)] had a higher likelihood of having dysglycaemia. The American Diabetes Association-recommended threshold HbA 1c value of ≥ 48 mmol/mol (6.5%) had a sensitivity and specificity of 81.4 and 90.7%, respectively, for determining the presence of Type 2 diabetes postpartum. The high post-pregnancy conversion rates of gestational diabetes to diabetes reported in the present study reinforce the need for mandatory postpartum screening and identification of strategies for preventing progression to Type 2 diabetes. Use of the American Diabetes Association-recommended HbA 1c threshold for diabetes may lead to significant under-diagnosis. © 2016 Diabetes UK.
NASA Astrophysics Data System (ADS)
Ponomarenko, Sergey A.; Surin, Nikolay M.; Borshchev, Oleg V.; Skorotetcky, Maxim S.; Muzafarov, Aziz M.
2015-10-01
Nanostructured organosilicon luminophores (NOLs) are branched molecular structures having two types of covalently bonded via silicon atoms organic luminophores with efficient Förster energy transfer between them. They combine the best properties of organic luminophores and inorganic quantum dots: high absorption cross-section, excellent photoluminescence quantum yield, fast luminescence decay time, good processability and low toxicity. A smart choice of organic luminophores allowed us to design and synthesize a library of NOLs, absorbing from VUV to visible region and emitting at the desired wavelengths from 390 to 650 nm. They can be used as unique wavelength shifters in plastic scintillators and other applications.
Fundamentals of electric power conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size from the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from an applications, marketing, motormore » planning, or managerial perspective.« less
Fundamentals of electric power conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size fro the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from applications, marketing, motor planning,more » or managerial perspective.« less
NASA Astrophysics Data System (ADS)
Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da
2018-04-01
X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.
Laser source with high pulse energy at 3-5 μm and 8-12 μm based on nonlinear conversion in ZnGeP2
NASA Astrophysics Data System (ADS)
Lippert, Espen; Fonnum, Helge; Haakestad, Magnus W.
2014-10-01
We present a high energy infrared laser source where a Tm:fiber laser is used to pump a high-energy 2-μm cryogenically cooled Ho:YLF laser. We have achieved 550 mJ of output energy at 2.05 μm, and through non-linear conversion in ZnGeP2 generated 200 mJ in the 3-5-μm range. Using a numerical simulation tool we have also investigated a setup which should generate more than 70 mJ in the 8-12-μm range. The conversion stage uses a master-oscillator-power-amplifier architecture to enable high conversion efficiency and good beam quality.
Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.
2016-01-01
Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.
Piscopo, Sara-Pier; Drouin, Guy
2014-05-01
Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.
Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}
Mickelsen, R.A.; Chen, W.S.
1985-08-13
An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.
Methods for forming thin-film heterojunction solar cells from I-III-VI[sub 2
Mickelsen, R.A.; Chen, W.S.
1982-06-15
An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (1) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI[sub 2] chalcopyrite ternary materials which is vacuum deposited in a thin composition-graded'' layer ranging from on the order of about 2.5 microns to about 5.0 microns ([approx equal]2.5[mu]m to [approx equal]5.0[mu]m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (2), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, is allowed.
Maki, Yuta; Okamoto, Ryo; Izumi, Masayuki; Murase, Takefumi; Kajihara, Yasuhiro
2016-03-16
Attachment of oligosaccharides to proteins is a major post-translational modification. Chemical syntheses of oligosaccharides have contributed to clarifying the functions of these oligosaccharides. However, syntheses of oligosaccharide-linked proteins are still challenging because of their inherent complicated structures, including diverse di- to tetra-antennary forms. We report a highly efficient strategy to access the representative two types of triantennary oligosaccharides through only 9- or 10-step chemical conversions from a biantennary oligosaccharide, which can be isolated in exceptionally homogeneous form from egg yolk. Four benzylidene acetals were successfully introduced to the terminal two galactosides and two core mannosides of the biantennary asialononasaccharide bearing 24 hydroxy groups, followed by protection of the remaining hydroxy groups with acetyl groups. Selective removal of one of the benzylidene acetals gave two types of suitably protected glycosyl acceptors. Glycosylation toward the individual acceptors with protected Gal-β-1,4-GlcN thioglycoside and subsequent deprotection steps successfully yielded two types of complex-type triantennary oligosaccharides.
Liquid-phase-deposited siloxane-based capping layers for silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja
2015-02-02
We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies ofmore » up to 19.8% on p-type Czochralski silicon.« less
DOT National Transportation Integrated Search
2007-09-01
This primer presents key issues and challenges related to the conversion of high occupancy vehicle (HOV) lanes to high occupancy toll (HOT) lanes. The primer is intended for community leaders, administrators, : the public, and other stakeholders resp...
Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Chen, Ranbin; San, Haisheng; Liu, Guohua; Wang, Kaiying
2015-05-01
We report the fabrication of sandwich-type metal/TiO2 nanotube (TNT) array/metal structures as well as their betavoltaic effects under build-in voltage through contact potential difference. The sandwiched structure is integrated by immobilized TNT arrays on Ti foil with radioisotope 63Ni planar source on Ni substrate (Ni-63Ni/TNT array/Ti). Under irradiation of the 63Ni source with activity of 8 mCi, the structure (TNT diameter ∼ 130 nm, length ∼ 11 μm) presents optimum energy conversion efficiency of 7.30% with open-circuit voltage of 1.54 V and short-circuit current of 12.43 nA. The TNT arrays exhibit a highly potential for developing betavoltaic batteries due to its wide band gap and nanotube array configuration. The TNT-betavoltaic concept offers a facile solution for micro/nano electronics with high efficiency and long life-time instead of conventional planar junction-type batteries.
High temperature ceramic-tubed reformer
NASA Astrophysics Data System (ADS)
Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.
1990-03-01
The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.K.
A Mather-type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high-energy, short-wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control,more » a nitrogen-pumped tunable dye-laser system, a high-speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer-based data-acquisition system.« less
Evaluation of a Low Temperature Cure Powder Coating
2008-05-01
4”x6”x1/4” Al 2024-T3 panels were chromate conversion coated by NDCEE per MIL-DTL-5514F Type 1 Class A Reserved for LTCPC 27 – 4”x6”x1/4” Al...2024-T3 panels were chromate conversion coated by FRC Southeast per MIL-DTL- 5514F Type 1 Class A Reserved for baseline coating JSEM - May...conducted under contract W74V8H- 04-D-0005 Task 427. DISCLAIMER: The contents of this document are not to be used for advertising , publication, or
Experimental Research of a New Wave Energy Conversion Device
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei
2018-01-01
With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.
Hernández-Sacristán, Carlos; Rosell-Clari, Vicent
2009-10-01
Oral conversational data are deemed to be a relevant empirical source when it comes to formulating and supporting hypotheses about cognitive processes involved in aphasic linguistic production. With this assumption in mind, free conversational uses of the Spanish and Catalan connector QUE by fluent and non-fluent aphasic speakers are examined by contrasting them with normal speakers' (i.e. conversational partners') productions. Strictly ungrammatical uses in aphasic speakers are practically non-existent in free conversation. Nevertheless, this data permits one to characterize the aphasic production of the morpheme QUE as restrictive--to different degrees--with respect to normal production. Moreover, this restriction, selectively affecting the types of syntactic environments examined, can be considered strategic in nature: it is guided by some kind of knowledge about the administration of remnant linguistic resources.
Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A
1992-11-01
Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.
Mali, Aniket V; Bhise, Sunita S; Katyare, Surendra S; Hegde, Mahabaleshwar V
2018-01-01
Recent studies have been noted that the erythrocytes from Type II diabetic patients show significantly altered structural and functional characteristics along with the changed intracellular concentrations of glycolytic intermediates. More recent studies from our laboratory have shown that the activities of enzymes of glycolytic pathway changed significantly in RBCs from Type II diabetic patients. In particular the levels of lactate dehydrogenase (LDH) increased significantly. Lactic acidosis is an established feature of diabetes and LDH plays a crucial role in conversion of pyruvate to lactate and reportedly, the levels of lactate are significantly high which is consistent with our observation on increased levels of LDH. Owing to this background, we examined the role of erythrocyte LDH in lactic acidosis by studying its kinetics properties in Type II diabetic patients. Km, Vmax and apparent catalytic efficiency were determined using pyruvate and NADH as the substrates. With pyruvate as the substrate the Km values were comparable but Vmax increased significantly in the diabetic group. With NADH as the substrate the enzyme activity of the diabetic group resolved in two components as against a single component in the controls. The Apparent Kcat and Kcat/Km values for pyruvate increased in the diabetic group. The Ki for pyruvate increased by two fold for the enzyme from diabetic group with a marginal decrease in Ki for NADH. The observed changes in catalytic attributes are conducive to enable the enzyme to carry the reaction in forward direction towards conversion of pyruvate to lactate leading to lactic acidosis.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P
2016-05-31
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.
2016-01-01
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916
ERIC Educational Resources Information Center
Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.
2013-01-01
Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…
"A Hundred Times We Learned from One Another" Collaborative Learning in an Academic Writing Workshop
ERIC Educational Resources Information Center
Dowse, Cilla; van Rensburg, Wilhelm
2015-01-01
Using Design Research as methodology and research design type, this article reports on a research proposal writing workshop conducted with Education postgraduate students, with the aim of ascertaining the roles that conversation, collaboration and feedback play in constructing meaning and supporting writing. It was found that through conversation,…
Increased Eye Contact during Conversation Compared to Play in Children with Autism
ERIC Educational Resources Information Center
Jones, Rebecca M.; Southerland, Audrey; Hamo, Amarelle; Carberry, Caroline; Bridges, Chanel; Nay, Sarah; Stubbs, Elizabeth; Komarow, Emily; Washington, Clay; Rehg, James M.; Lord, Catherine; Rozga, Agata
2017-01-01
Children with autism have atypical gaze behavior but it is unknown whether gaze differs during distinct types of reciprocal interactions. Typically developing children (N = 20) and children with autism (N = 20) (4-13 years) made similar amounts of eye contact with an examiner during a conversation. Surprisingly, there was minimal eye contact…