Hosoi, Atsushi; Kishi, Tomoya; Ju, Yang
2013-01-01
A technique to heal a fatigue crack in austenitic stainless steel SUS316 by applying a controlled, high-density pulsed current was developed. A surface-activated pre-coating (SAPC), which eliminates the oxide layer and coats a Ni film on the crack surface, was used to improve the adhesion between crack surfaces. Cracks were observed by scanning electron microscopy before and after the application of high-density electropulsing. To evaluate the healing effect of the SAPC during crack propagation, fatigue tests were conducted under a constant stress intensity factor. The fatigue crack treated with the SAPC was found to be effectively healed as a result of electropulsing, and also showed a slower rate of crack propagation. PMID:28788327
Comparison of Effective Medium Schemes For Seismic Velocities in Cracked Anisotropic Rock
NASA Astrophysics Data System (ADS)
Morshed, S.; Chesnokov, E.
2017-12-01
Understanding of elastic properties of reservoir rock is necessary for meaningful interpretation and analysis of seismic measurements. The elastic properties of a rock are controlled by the microstructural properties such as mineralogical composition, pore and crack distribution, texture and pore connectivity. However, seismic scale is much larger than microstructure scale. Understanding of macroscopic properties at relevant seismic scale (e.g. borehole sonic data) comes from effective medium theory (EMT). However, most of the effective medium theories fail at high crack density as the interactions of strain fields of the cracks can't be ignored. We compare major EMT schemes from low to high crack density. While at low crack density all method gives similar results, at high crack density they differ significantly. Then, we focus on generalized singular approximation (GSA) and effective field (EF) method as they allow cracks beyond the limit of dilute concentrations. Additionally, we use grain contact (GC) method to examine the stiffness constants of the rock matrix. We prepare simple models of a multiphase media containing low to high concentrations of isolated pores. Randomly oriented spherical pores and horizontally oriented ellipsoidal (aspect ratio =0.1) pores have been considered. For isolated spherical pores, all the three methods show exactly same or similar results. However, inclusion interactions are different in different directions in case of horizontal ellipsoidal pores and individual stiffness constants differ greatly from one method to another at different crack density. Stiffness constants remain consistent in GSA method whereas some components become unusual in EF method at a higher crack density (>0.15). Finally, we applied GSA method to interpret ultrasonic velocities of core samples. Mineralogical composition from X-ray diffraction (XRD) data and lab measured porosity data have been utilized. Both compressional and shear wave velocities from GSA method show good fit with the lab measured velocities.
Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.
2016-09-15
A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linearmore » crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur vapor prevented both low- and high-density cracking as well as blistering. However, grain growth was limited even after annealing with 400 flashes. This lack of grain growth is attributed to a difficulty of maintaining high sulfur vapor pressure and absence of alkali metal impurities when Mo foil substrates are used.« less
Method For Manufacturing Articles For High Temperature Use, And Articles Made Therewith
Wang, Hongyu; Mitchell, David Joseph; Lau, Yuk-Chiu; Henry, Arnold Thomas
2006-02-28
A method for manufacturing an article for use in a high-temperature environment, and an article for use in such an environment, are presented. The method comprises providing a substrate; selecting a desired vertical crack density for a protective coating to be deposited on the substrate; providing a powder, wherein the powder has a size range selected to provide a coating having the desired vertical crack density; and applying a thermal-sprayed coating to the substrate, the coating having the desired vertical crack density, wherein the powder is used as a raw material for the coating.
Method For Manufacturing Articles For High Temperature Use, And Articles Made Therewith
Wang, Hongyu; Mitchell, David Joseph; Lau, Yuk-Chiu; Henry, Arnold Thomas
2005-03-15
A method for manufacturing an article for use in a high-temperature environment, and an article for use in such an environment, are presented. The method comprises providing a substrate; selecting a desired vertical crack density for a protective coating to be deposited on the substrate; providing a powder, wherein the powder has a size range selected to provide a coating having the desired vertical crack density; and applying a thermal-sprayed coating to the substrate, the coating having the desired vertical crack density, wherein the powder is used as a raw material for the coating.
NASA Astrophysics Data System (ADS)
Zhang, Xueang; Yang, Zhichao; Tang, Bin; Wang, Renbo; Wei, Xiong
2018-05-01
During geophysical surveys, water layers may interfere with the detection of oil layers. In order to distinguish between oil and water layers in porous cracked media, research on the properties of the cracks, the oil and water layers, and their relation to pulsed neutron logging characteristics is essential. Using Hudson's crack theory, we simulated oil and water layers in a cracked porous medium with different crack parameters corresponding to the well log responses. We found that, in a cracked medium with medium-angle (40°-50°) cracks, the thermal neutron count peak value is higher and more sensitive than those in low-angle and high-angle crack environments; in addition, the thermal neutron density distribution shows more minimum values than in other cases. Further, the thermal neutron count and the rate of change for the oil layer are greater than those of the water layer, and the time spectrum count peak value for the water layer in middle-high-angle (40°-70°) cracked environments is higher than that of the oil layer. The thermal neutron density distribution sensitivity is higher in the water layer with a range of small crack angles (0°-30°) than in the oil layer with the same range of angles. In comparing the thermal neutron density distribution, thermal neutron count peak, thermal neutron density distribution sensitivity, and time spectrum maximum in the oil and water layers, we find that neutrons in medium-angle (40°-50°) cracked reservoirs are more sensitive to deceleration and absorption than those in water layers; neutrons in approximately horizontal (0°-30°) cracked water layers are more sensitive to deceleration than those in reservoirs. These results can guide future work in the cracked media neutron logging field.
Crack-resistant Al2O3-SiO2 glasses.
Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-04-07
Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.
Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sooyeol; Barabash, Rozaliya; Chung, Jin-Seok
2008-01-01
An in-situ neutron diffraction technique was used to investigate the lattice-strain distributions and plastic deformation around a crack tip after overload. The lattice-strain profiles around a crack tip were measured as a function of the applied load during the tensile loading cycles after overload. Dislocation densities calculated from the diffraction peak broadening were presented as a function of the distance from the crack tip. Furthermore, the crystallographic orientation variations were examined near a crack tip using polychromatic X-ray microdiffraction combined with differential aperture microscopy. Crystallographic tilts are considerably observed beneath the surface around a crack tip, and these are consistentmore » with the high dislocation densities near the crack tip measured by neutron peak broadening.« less
Crack tip field and fatigue crack growth in general yielding and low cycle fatigue
NASA Technical Reports Server (NTRS)
Minzhong, Z.; Liu, H. W.
1984-01-01
Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.
Crack-resistant Al2O3–SiO2 glasses
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-01-01
Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006
Crack-resistant Al2O3-SiO2 glasses
NASA Astrophysics Data System (ADS)
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-04-01
Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.
NASA Astrophysics Data System (ADS)
Finkel, Peter
2008-03-01
We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks
Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.
2013-01-01
The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions (Int. J. Solid. Struct. 1987; 23(1):23–43) is employed to analyze both hexagonal and square crack configurations. In approximating crack interactions, the solution converges when the total truncation number of the cracks is 109. As expected, due to high density packing crack interaction in the hexagonal configuration is stronger than that in the square configuration. Based on the numerical results, convenient fitting equations for quick evaluation of the mode I stress intensity factors are obtained as a function of crack density and angle around the crack edge for both crack configurations. Numerical results for the mode II and III stress intensity factors are presented in the form of contour lines for the case of Poisson’s ratio ν =0.3. Possible errors for these problems due to Kachanov’s approximate method are estimated. Good agreement is observed with the limited number of results available in the literature and obtained by different methods. PMID:27175035
Seismic velocities in fractured rocks: An experimental verification of Hudson`s theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peacock, S.; McCann, C.; Sothcott, J.
1994-01-01
Flow of fluids in many hydrocarbon reservoirs aquifers is enhanced by the presence of cracks and fractures. These cracks could be detected by their effects on propagation of compressional and shear waves through the reservoir: several theories, including Hudson`s, claim to predict the seismic effects of cracks. Although Hudson`s theory has already been used to calculate crack densities from seismic survey`s, the predictions of the theory have not yet been tested experimentally on rocks containing a known crack distribution. This paper describes an experimental verification of the theory. The rock used, Carrara marble, was chosen for its uniformity and lowmore » porosity, so that the effect of cracks would not be obscured by other influences. Cracks were induced by loading of laboratory specimens. Velocities of compressional and shear waves were measured by ultrasound at 0.85 MHz in dry and water-saturated specimens at high and low effective pressures.The cracks were then counted in polished sections of the specimens. In ``dry`` specimens with both dry and saturated cracks, Hudson`s theory overpredicted observed crack densities by a constant amount that is attributed to the observed value being systematically underestimated. The theory made poor predictions for fully saturated specimens. Shear-wave splitting, caused by anisotropy due to both crystal and crack alignment, was observed. Cracks were seen to follow grain boundaries rather than the direction of maximum compression due to loading. The results demonstrate that Hudson`s theory may be used in some cases to determine crack and fracture densities from compressional- and shear-wave velocity data.« less
STRESS CRACKING BEHAVIOR OF HDPE GEOMEMBRANES AND ITS PREVENTION
Geomembranes made from high density polyethylene (HOPE) have a high percent crystallinity and are therefore of concern with regard to stress cracking. A review of the literature plus our field exhuming of various sites-of-opportunity gave rise to twenty-five (25) situations wh...
NASA Astrophysics Data System (ADS)
Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui
2012-01-01
The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.
Fatigue crack tip deformation and fatigue crack propagation
NASA Technical Reports Server (NTRS)
Kang, T. S.; Liu, H. W.
1972-01-01
The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).
Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply
NASA Technical Reports Server (NTRS)
Van Der Meer, Frans P.; Davila, Carlos G.
2012-01-01
The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.
NASA Astrophysics Data System (ADS)
Finkel, Peter
2007-03-01
It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
Processing of crack-free high density polycrystalline LiTaO3 ceramics
Chen, Ching-Fong; Brennecka, Geoff L.; King, Graham; ...
2016-11-04
Our work achieved high density (99.9%) polycrystalline LiTaO 3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO 3 is less than 5 μm, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Furthermore, Rietveld analysismore » of neutron diffraction data revealed the presence of LiAlO 2 and LiAl 5O 8 minority phases and negligible substitutional defect incorporation in LiTaO 3.« less
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki
2017-04-01
A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.
NASA Astrophysics Data System (ADS)
Todoroki, Akira; Omagari, Kazuomi
Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.
Towards crack-free ablation cutting of thin glass sheets with picosecond pulsed lasers
NASA Astrophysics Data System (ADS)
Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi
2017-08-01
We investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond laser. Two kinds of damage morphologies observed on the cross-section of the cut channel, are caused by high-density free-electrons and the temperature accumulation, respectively. Notches and micro-cracks can be observed on the top surface of the sample near the cut edge. The surface micro-cracks were related to high energy free-electrons and also the heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Gu, Meng
LiNi 1/3Mn 1/3Co 1/3O 2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated frommore » grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials.« less
Yan, Pengfei; Zheng, Jianming; Gu, Meng; ...
2017-01-16
LiNi 1/3Mn 1/3Co 1/3O 2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated frommore » grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ass'ad, J.M.; McDonald, J.A.; Kusky, T.M.
1993-04-01
An approximation to plane-wave propagation through a composite material is examined using a physical model with oriented but randomly distributed penny-shaped rubber inclusions within an isotropic epoxy resin matrix. A pulse transmission method is used to determine velocities of shear and compressional waves as a function of angle of incidence and crack density. The experimental and theoretical results of Hudson were compared and limitations within the crack parameters used in this study have been determined. Results from both polarized shear waves (S1, S2) compare favorably with the theory for a composite with up to 7% crack density, but theory andmore » experiment diverge at higher crack densities. On the other hand, compressional-wave velocities at low crack densities (1% and 3%) compare favorably with the theory. It is also shown that the velocity ratio V[sub p]/V[sub s] for two extreme cases, i.e. propagation normal and parallel to the cracks, as a function of crack density and porosity, has a strong directional dependence.« less
Effective Thermal Conductivity of Graphite Materials with Cracks
NASA Astrophysics Data System (ADS)
Pestchaanyi, S. E.; Landman, I. S.
The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.
NASA Astrophysics Data System (ADS)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.
Unidirectional cold rolling has been shown to promote intergranular stress corrosion cracking (IGSCC) in alloy 690 tested in PWR primary water. High-resolution scanning (SEM) and transmission electron microscopy (TEM) have been employed to investigate the microstructural reasons for this enhanced susceptibility in two stages, first examining grain boundary damage produced by cold rolling and second by characterization of stress corrosion crack tips. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG precipitate distribution. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. For the same degree of cold rolling, alloys with few IG carbides exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal no interaction between the preexisting voids and cracked carbides with the propagation. In many cases, these features appeared to blunt propagation of IGSCC cracks. High-resolution characterizations are described for cold-rolled alloy 690 CRDM tubing and plate materials to gain insights into IGSCC mechanisms.
X-ray scattering to probe cracks in rubbers
NASA Astrophysics Data System (ADS)
Creton, Costantino; Demassieux, Quentin; Berghezan, Daniel
Natural rubber is a well-known very tough elastomer and its toughness is generally attributed to its aptitude to crystallize under strain. Yet the mechanism linking the extent of strain induced crystallization to the toughness gamma is still unclear. We mapped by scanning microbeam X-ray diffraction (20 microns resolution), the strain induced crystallization near the crack tip of highly crosslinked and carbon-black filled natural rubbers. Experiments were carried out on static cracks loaded at different values of energy release rates G and for different filler and crosslinker concentrations. We specifically investigated the effect of the crosslinking density, the effect of thermal (oxygen-free) aging and the effect of temperature (between 23 and 100 °C). Several novel findings are reported : a significant amount of crystallization was still present at the crack tip at 100°C, thermal aging (in the absence of oxygen) greatly reduces the amount of crystallization at the crack tip without much effect on the room temperature resistance to fatigue crack propagation of the material, and an increase in crosslinking density reduces the extent of crystallinity at the crack tip for the same applied G. We acknowledge the financial support of Michelin.
Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrow, T.J.; Prangnell, P.; Aindow, M.
1996-08-01
Observations of internal hydrogen cleavage in Fe-3Si are reported. Hydrogen-assisted stable crack growth (H-SCG) is associated with cleavage striations of a 300 nm spacing, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). High resolution SEM revealed finer striations, previously undetected, with a spacing of approximately 30 nm. These were parallel to the coarser striations. Scanning tunneling microscopy (STM) also showed the fine striation spacing, and gave a striation height of approximately 15 nm. The crack front was not parallel to the striations. Transmission electron microscopy (TEM) of crack tip plastic zones showed {l_brace}112{r_brace} and {l_brace}110{r_brace} slip, withmore » a high dislocation density (around 10{sup 14}m{sup {minus}2}). The slip plane spacing was approximately 15--30 nm. Parallel arrays of high dislocation density were observed in the wake of the hydrogen cleavage crack. It is concluded that H-ScG in Fe-3Si occurs by periodic brittle cleavage on the {l_brace}001{r_brace} planes. This is preceded by dislocation emission. The coarse striations are produced by crack tip blunting and the fine striations by dislocations attracted by image forces to the fracture surface after cleavage. The effects of temperature, pressure and yield strength on the kinetics of H-SCG can be predicted using a model for diffusion of hydrogen through the plastic zone.« less
Experimental measurements of seismic attenuation in microfracture sedimentary rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peacock, S.; McCann, C.; Sothcott, J.
1994-09-01
In a previous paper (Peacock et al., 1994), the authors related ultrasonic velocities in water-saturated Carrara Marble to crack densities in polished sections to verify Hudson's (1980, 1981, 1986) theory for velocities in cracked rock. They describe the empirical relationships between attenuation and crack density that they established during these experiments in the hope of clarifying the mechanism of attenuation in rocks with fluid-filled cracks. Relating seismic velocity and attenuation to crack density is important in predicting the productivity of fractured petroleum reservoirs such as the North Sea Brent Field. It also allows cracks to be used as stress indicatorsmore » throughout the shallow crust (Crampin and Lovell, 1991).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, X. Q., E-mail: xq-shen@aist.go.jp; Takahashi, T.; Ide, T.
2015-09-28
We investigate the generation mechanisms of micro-cracks (MCs) in an ultra-thin AlN/GaN superlattice (SL) structure grown on Si(110) substrates by metalorganic chemical vapor deposition. The SL is intended to be used as an interlayer (IL) for relaxing tensile stress and obtaining high-quality crack-free GaN grown on Si substrates. It is found that the MCs can be generated by two different mechanisms, where large mismatches of the lattice constant (LC) and the coefficient of thermal expansion (CTE) play key roles in the issue. Different MC configurations (low-density and high-density MCs) are observed, which are considered to be formed during the differentmore » growth stages (SL growth and cooling down processes) due to the LC and the CTE effects. In-situ and ex-situ experimental results support the mechanism interpretations of the MCs generation. The mechanism understanding makes it possible to optimize the SL IL structure for growing high-quality crack-free GaN films on Si substrates for optical and electronic device applications.« less
Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion
GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO
2005-01-01
• Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful in managing cropping practices for integrated plant protection. PMID:15655107
Extended analytical solutions for effective elastic moduli of cracked porous media
NASA Astrophysics Data System (ADS)
Nguyen, Sy-Tuan; To, Quy Dong; Vu, Minh Ngoc
2017-05-01
Extended solutions are derived, on the basis of the micromechanical methods, for the effective elastic moduli of porous media containing stiff pores and both open and closed cracks. Analytical formulas of the overall bulk and shear moduli are obtained as functions of the elastic moduli of the solid skeleton, porosity and the densities of open and closed cracks families. We show that the obtained results are extensions of the classical widely used Walsh's (JGR, 1965) and Budiansky-O‧Connell's (JGR, 1974) solutions. Parametric sensitivity analysis clarifies the impact of the model parameters on the effective elastic properties. An inverse analysis, using sonic and density data, is considered to quantify the density of both open and closed cracks. It is observed that the density of closed cracks depends strongly on stress condition while the dependence of open cracks on the confining stress is negligible.
Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components
NASA Astrophysics Data System (ADS)
Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard
2014-09-01
The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.
Transverse cracking and stiffness reduction in composite laminates
NASA Technical Reports Server (NTRS)
Yuan, F. G.; Selek, M. C.
1993-01-01
A study of transverse cracking mechanism in composite laminates is presented using a singular hybrid finite element model. The model provides the global structural response as well as the precise local crack-tip stress fields. An elasticity basis for the problem is established by employing Lekhnitskii's complex variable potentials and method of eigenfunction expansion. Stress singularities associated with the transverse crack are obtained by decomposing the deformation into the symmetric and antisymmetric modes and proper boundary conditions. A singular hybrid element is thereby formulated based on the variational principle of a modified hybrid functional to incorporate local crack singularities. Axial stiffness reduction due to transverse cracking is studied. The results are shown to be in very good agreement with the existing experimental data. Comparison with simple shear lag analysis is also given. The effects of stress intensity factors and strain energy density on the increase of crack density are analyzed. The results reveal that the parameters approach definite limits when crack densities are saturated, an evidence of the existence of characteristic damage state.
Prediction of corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints
NASA Astrophysics Data System (ADS)
An, J.; Chen, J.; Gou, G.; Chen, H.; Wang, W.
2017-07-01
Through investigating the corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints in 3.5 wt.% NaCl solution, corrosion fatigue crack initiation life is formulated as Ni = 6.97 × 1012[Δσeqv1.739 - 491.739]-2 and the mechanism of corrosion fatigue crack initiation is proposed. SEM and TEM tests revealed that several corrosion fatigue cracks formed asynchronously and the first crack does not necessarily develop into the leading crack. The uneven reticular dislocations produced by fatigue loading are prone to piling up and tangling near the grain boundaries or the second phases and form the “high dislocation-density region” (HDDR), which acts as an anode in microbatteries and dissolved to form small crack. Thus the etching pits, HDDR near the grain boundaries and second phases are confirmed as the main causes inducing the initiation of fatigue crack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.
2012-10-01
Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less
Microcrack healing in non-ferrous metal tubes through eddy current pulse treatment.
Xu, Wenchen; Yang, Chuan; Yu, Haiping; Jin, Xueze; Guo, Bin; Shan, Debin
2018-04-16
This study proposed a novel method to heal microcrack within Mg alloy tubes using high density eddy current pulse treatment (ECPT). Through electromagnetic induction inside a copper coil connected with a high density pulse power source supply, the high density (greater than 5 × 10 9 A/m 2 ) and short duration eddy current was generated in tube specimens of Mg alloy. The results show that the microcracks in tube specimens was healed evidently and the mechanical properties of the tubes subjected to ECPT were improved simultaneously. The crack healing during ECPT was ascribed to not only the thermal stress around the microcrack tips and the softening or melting of metals in the vicinity of microcrack tips, but also the squeezing action acted by the Lorentz force. In the inward-discharging scheme, both the compressive radial stress and tangential stress induced by the Lorentz force contributed to more sufficient crack healing and thus better mechanical properties of tube specimens after the ECPT experiment, compared to the outward-discharging scheme. The ECPT can heal microcracks automatically without directly contacting tubular specimens and is not limited by the length of tubular workpieces, exhibiting great potential for crack healing in non-ferrous alloy tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babeyko, A.Yu.; Sobolev, S.V.; Sinelnikov, E.D.
1994-09-01
In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density andmore » elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.« less
Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure
Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; ...
2015-08-24
Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In this paper, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lackmore » of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. Also, the cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.« less
Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri
2017-07-21
This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.
NASA Astrophysics Data System (ADS)
Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.
Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals
NASA Astrophysics Data System (ADS)
Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.
2017-09-01
An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.
Fatigue crack propagation in additively manufactured porous biomaterials.
Hedayati, R; Amin Yavari, S; Zadpoor, A A
2017-07-01
Additively manufactured porous titanium implants, in addition to preserving the excellent biocompatible properties of titanium, have very small stiffness values comparable to those of natural bones. Although usually loaded in compression, biomedical implants can also be under tensional, shear, and bending loads which leads to crack initiation and propagation in their critical points. In this study, the static and fatigue crack propagation in additively manufactured porous biomaterials with porosities between 66% and 84% is investigated using compact-tension (CT) samples. The samples were made using selective laser melting from Ti-6Al-4V and were loaded in tension (in static study) and tension-tension (in fatigue study) loadings. The results showed that displacement accumulation diagram obtained for different CT samples under cyclic loading had several similarities with the corresponding diagrams obtained for cylindrical samples under compression-compression cyclic loadings (in particular, it showed a two-stage behavior). For a load level equaling 50% of the yield load, both the CT specimens studied here and the cylindrical samples we had tested under compression-compression cyclic loading elsewhere exhibited similar fatigue lives of around 10 4 cycles. The test results also showed that for the same load level of 0.5F y , the lower density porous structures demonstrate relatively longer lives than the higher-density ones. This is because the high bending stresses in high-density porous structures gives rise to local Mode-I crack opening in the rough external surface of the struts which leads to quicker formation and propagation of the cracks. Under both the static and cyclic loading, all the samples showed crack pathways which were not parallel to but made 45 ° angles with respect to the notch direction. This is due to the fact that in the rhombic dodecahedron unit cell, the weakest struts are located in 45 ° direction with respect to the notch direction. Copyright © 2017 Elsevier B.V. All rights reserved.
Transply crack density detection by acousto-ultrasonics
NASA Technical Reports Server (NTRS)
Hemann, John H.; Bowles, Kenneth J.; Kautz, Harold; Cavano, Paul
1987-01-01
The acousto-ultrasonic method was applied to a PMR-15 8-harness, satin Celion 3000 fabric composite to determine the extent of transply cracking. A six-ply 0/90 laminate was also subjected to mechanical loading, which induced transply cracking. The stress wave factor (SWF) is defined as the energy contained in the received signal from a 2.25-MHz center frequency transducer. The correlation of the SWF with transply crack density is shown.
NASA Astrophysics Data System (ADS)
Picu, R. C.; Pal, A.; Lupulescu, M. V.
2016-04-01
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.
Simulation of 90{degrees} ply fatigue crack growth along the width of cross-ply carbon-epoxy coupons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henaff-Gardin, C.; Urwald, E.; Lafarie-Frenot, M.C.
1994-07-01
We study the mechanism of fatigue cracking of the matrix of cross-ply carbon-epoxy laminates. Primary attention is given to the study of the influence of the specimen width on the evolution of damage. On the basis of shear lag analysis, we determine the strain energy release rate in the processes of initiation and growth of transverse fatigue cracks. We also present results of experimental research on the evolution of the edge crack density per ply, the average length of the cracks, and the crack propagation rate under transverse fatigue cracking. It is shown that these characteristics are independent of themore » specimen width. At the same time, as soon as the edge crack density reaches its saturation value, the average crack growth rate becomes constant. All the experimental results are in good agreement with results obtained by using the theoretical model.« less
Spatial organization of seismicity and fracture pattern at the boundary between Alps and Dinarides
NASA Astrophysics Data System (ADS)
Bressan, Gianni; Ponton, Maurizio; Rossi, Giuliana; Urban, Sandro
2016-04-01
The paper affords the study of the spatial organization of seismicity in the easternmost region of the Alps (Friuli, in NE Italy and W Slovenia), dominated by the interference between the Alpine and the Dinaric tectonic systems. Two non-conventional methods of spatial analysis are used: fractal analysis and principal component analysis (PCA). The fractal analysis helps to discriminate the cases in which hypocentres clearly define a plane, from the ones in which hypocenter distribution tends to the planarity, without reaching it. The PCA analysis is used to infer the orientation of planes fitting through earthquake foci, or the direction of propagation of the hypocentres. Furthermore, we study the spatial seismicity pattern at the shallow depths in the context of a general damage model, through the crack density distribution. The results of the three methods concur to a complex and composite model of fracturing in the region. The hypocentre pattern fills only partially a plane, i.e. has a fractal dimension close to 2. The three exceptions regard planes with Dinaric trend, without interference with Alpine lineaments. The shallowest depth range (0-10 km depth) is characterized by the activation of planes with variable orientations, reflecting the interference between the Dinaric and the Alpine tectonic structures, and closely bound to the variation of the mechanical properties of the crust. The seismicity occurs mostly in areas characterized by a variation from low to moderate crack density, indicating the sharp transition from zones of low damage to zones of moderate damage. Low crack density indicates the presence of more competent rocks capable of sustaining high strain energy while high crack density areas pertain to highly fractured rocks that cannot store high strain energy. Brittle failure, i.e. seismic activity, is favoured within the sharp transitions from low to moderate crack density zones. The orientation of the planes depicting the seismic activity, indeed, coincides with the orientation of the faults generated along the flanks of past carbonate platforms both in Friuli and western Slovenia. In the deepest depth range (10-20-km depth), on the contrary, the study evidences the dominance of the tectonic Dinaric system to the NW of the External Dinarides, in depth. This depth interval is characterized by a more organized pattern of seismicity. Seismic events mainly locate on the Dinaric lineaments in the northern and eastern parts of the region considered, while on Alpine thrusts in the western and southern parts.
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.
Kennedy, Oran D; Brennan, Orlaith; Mauer, Peter; O'Brien, Fergal J; Rackard, Susan M; Taylor, David; Lee, T Clive
2008-01-01
This study investigates the effect of microdamage on bone quality in osteoporosis using an ovariectomised (OVX) sheep model of osteoporosis. Thirty-four sheep were divided into an OVX group (n=16) and a control group (n=18). Fluorochromes were administered intravenously at 3 monthly intervals after surgery to label bone turnover. After sacrifice, beams were removed from the metatarsal and tested in three-point bending. Following failure, microcracks were identified and quantified in terms of region, location and interaction with osteons. Number of cycles to failure (Nf) was lower in the OVX group relative to controls by approximately 7%. Crack density (CrDn) was higher in the OVX group compared to controls. CrDn was 2.5 and 3.5 times greater in the compressive region compared to tensile in control and OVX bone respectively. Combined results from both groups showed that 91% of cracks remained in interstitial bone, approximately 8% of cracks penetrated unlabelled osteons and less than 1% penetrated into labelled osteons. All cases of labelled osteon penetration occurred in controls. Crack surface density (CrSDn), was 25% higher in the control group compared to OVX. It is known that crack behaviour on meeting microstructural features such as osteons will depend on crack length. We have shown that osteon age also affects crack propagation. Long cracks penetrated unlabelled osteons but not labelled ones. Some cracks in the control group did penetrate labelled osteons. This may be due the fact that control bone is more highly mineralized. CrSDn was increased by 25% in the control group compared to OVX. Further study of these fracture mechanisms will help determine the effect of microdamage on bone quality and how this contributes to bone fragility.
Prediction of thermal cycling induced matrix cracking
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1992-01-01
Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yi; Wu, Yaqiao; Burns, Jatuporn
Ni-based weld alloys 52, 52M and 152 are extensively used in repair and mitigation of primary water stress corrosion cracking (SCC) in nuclear power plants. In the present study, a series of microstructure and microchemistry at the SCC tips of these alloys were examined with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) and energy filtered transmission electron microscopy (EFTEM). The specimens have similar chemical compositions and testing conditions. Intergranular (IG) and transgranular (TG) SCC was observed in all of them. The cracks were filled with nickel-oxidesmore » and partial precipitations of chrome carbides (CrCs), niobium carbides (NbCs), titanium nitrides (TiNs) and silicon carbides (SiCs), while iron (Fe) was largely dissolved into the solution. However, the crack densities, lengths and distributions were different for all three specimens. - Highlights: • Microstructure and microchemistry at the SCC tips of Ni-based weld alloys 52, 52M and 152 were examined. • The crack densities, lengths and distributions were found to be different for different alloys. • IGSCC and TGSCC were observed on alloy 52, only TGSCC was observed on alloy 52M and 152. • The cracks were filled by Ni-oxides and precipitated CrCs, NbCs, TiNs and SiCs.« less
Effective properties of a poroelastic medium containing a distribution of aligned cracks
NASA Astrophysics Data System (ADS)
Galvin, R. J.; Gurevich, B.
2009-07-01
We simulate the effect of fractures by considering them to be thin circular cracks in a poroelastic background. Using the solution of the scattering problem for a single-crack and multiple-scattering theory, we estimate the attenuation and dispersion of elastic waves in a porous medium containing a sparse distribution of cracks. When comparing with a similar model, in which multiple-scattering effects are neglected, we find that there is agreement at high frequencies and discrepancies at low frequencies. We conclude that the interaction between cracks should not be neglected at low frequencies, even in the limit of weak crack density. Since the models only agree with each other at high frequencies, when the time available for fluid diffusion is small, we conclude that the interaction between cracks, which is a result of fluid diffusion, is negligible at high frequencies. We also compare our results with a model for spherical inclusions and find that the attenuation for spherical inclusions has exactly the same dependence upon frequency but a difference in magnitude, which depends upon frequency. Since the attenuation curves are very close at low frequencies, we conclude that the effective medium properties are not sensitive to the shape of an inclusion at wavelengths that are large compared with the inclusion size. However, at frequencies such that the wavelength is comparable to or smaller than the inclusion size, the effective properties are sensitive to the greater compliance of the flat cracks, and more attenuation occurs at a given frequency as a result.
Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material
NASA Astrophysics Data System (ADS)
Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming
2016-10-01
Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruska, Karen; Zhai, Ziqing; Bruemmer, Stephen M.
Due to its superior resistance to corrosion and stress corrosion cracking (SCC), high Cr, Ni-base Alloy 690 is now commonly used in pressurized water reactors (PWRs). Even though highly cold-worked (CW) Alloy 690 has been shown to be susceptible to SCC crack growth in PWR primary water environments, an open question remains whether SCC initiation was possible for these materials under constant load test conditions. Testing has been performed on a series of CW alloy 690 CRDM tubing specimens at constant load for up to 9,220 hours in 360°C simulated PWR primary water. A companion paper will discuss the overallmore » testing approach and describe results on different alloy 690 heats and cold work levels. The focus of the current paper is to illustrate the use of focused ion beam (FIB), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the high-resolution investigation of precursor damage and intergranular (IG) crack nucleation in these specimens. Three-dimensional (3D) FIB/SEM imaging has been conducted on a series of grain boundary (GB) damage precursors, such as IG small cavities, local corrosion and even shallow cracks observed at the specimen surface. Contrast variations and EDS mapping were used to distinguish oxides, carbides and cavities from the matrix material. Nanometer-sized cavities were observed associated with GB carbides in the highly CW specimens. Shallow IG cracks were present in the 30%CW specimens and exhibited oxidized crack flanks and a higher density of cavities ahead of the oxide front in all cases. The shape and distribution of carbides and cavities in the plane of the cracked GBs was analyzed in 3D to gain a mechanistic understanding of the processes that may be leading to crack initiation in highly CW alloy 690.« less
NASA Astrophysics Data System (ADS)
Park, Eun Kil; Kim, Sungmin; Heo, Jaeyeong; Kim, Hyeong Joon
2016-05-01
By measuring leakage current density, we detected crack generation in silicon nitride (SiNx) and silicon oxynitride (SiOxNy) thin-film encapsulation layers, and correlated with the films' water vapor permeability characteristics. After repeated bending cycles, both the changes in water vapor transmission rate and leakage current density were directly proportional to the crack density. Thick SiNx films had better water vapor barrier characteristics in their pristine state, but cyclic loading led to fast failure. Varying the atomic concentration of the SiOxNy films affected their bending reliability. We attribute these differences to changes in the shape of the crack tip as the oxygen content varies.
Estimation of Confined Peak Strength of Crack-Damaged Rocks
NASA Astrophysics Data System (ADS)
Bahrani, Navid; Kaiser, Peter K.
2017-02-01
It is known that the unconfined compressive strength of rock decreases with increasing density of geological features such as micro-cracks, fractures, and veins both at the laboratory specimen and rock block scales. This article deals with the confined peak strength of laboratory-scale rock specimens containing grain-scale strength dominating features such as micro-cracks. A grain-based distinct element model, whereby the rock is simulated with grains that are allowed to deform and break, is used to investigate the influence of the density of cracks on the rock strength under unconfined and confined conditions. A grain-based specimen calibrated to the unconfined and confined strengths of intact and heat-treated Wombeyan marble is used to simulate rock specimens with varying crack densities. It is demonstrated how such cracks affect the peak strength, stress-strain curve and failure mode with increasing confinement. The results of numerical simulations in terms of unconfined and confined peak strengths are used to develop semi-empirical relations that relate the difference in strength between the intact and crack-damaged rocks to the confining pressure. It is shown how these relations can be used to estimate the confined peak strength of a rock with micro-cracks when the unconfined and confined strengths of the intact rock and the unconfined strength of the crack-damaged rock are known. This approach for estimating the confined strength of crack-damaged rock specimens, called strength degradation approach, is then verified by application to published laboratory triaxial test data.
NASA Astrophysics Data System (ADS)
Chaouadi, R.
2008-01-01
This paper examines the effect of irradiation-induced plastic flow localization on the crack resistance behavior. Tensile and crack resistance measurements were performed on Eurofer-97 that was irradiated at 300 °C to neutron doses ranging between 0.3 and 2.1 dpa. A severe degradation of crack resistance behavior is experimentally established at quasi-static loading, in contradiction with the Charpy impact data and the dynamic crack resistance measurements. This degradation is attributed to the dislocation channel deformation phenomenon. At quasi-static loading rate, scanning electron microscopy observations of the fracture surfaces revealed a significant change of fracture topography, mainly from equiaxed dimples (mode I) to shear dimples (mode I + II). With increasing loading rate, the high peak stresses that develop inside the process zone activate much more dislocation sources resulting in a higher density of cross cutting dislocation channels and therefore an almost unaffected crack resistance. These explanations provide a rational to all experimental observations.
2014-12-01
and low Hmax. In this way, the flux density in the material for the specimen with intermediate k (k = 36.4) magnetised using Hmax = 250 Oe... aerospace components for surface-breaking fatigue cracks. In the residual-field variant of MRT, inspections are performed following the application...packages which can adequately predict the fields produced in practical residual-field MRT. Finally, central- conductor MRT, for which there are fewer
Chen, Jian; Yuan, Shenfang; Qiu, Lei; Wang, Hui; Yang, Weibo
2018-01-01
Accurate on-line prognosis of fatigue crack propagation is of great meaning for prognostics and health management (PHM) technologies to ensure structural integrity, which is a challenging task because of uncertainties which arise from sources such as intrinsic material properties, loading, and environmental factors. The particle filter algorithm has been proved to be a powerful tool to deal with prognostic problems those are affected by uncertainties. However, most studies adopted the basic particle filter algorithm, which uses the transition probability density function as the importance density and may suffer from serious particle degeneracy problem. This paper proposes an on-line fatigue crack propagation prognosis method based on a novel Gaussian weight-mixture proposal particle filter and the active guided wave based on-line crack monitoring. Based on the on-line crack measurement, the mixture of the measurement probability density function and the transition probability density function is proposed to be the importance density. In addition, an on-line dynamic update procedure is proposed to adjust the parameter of the state equation. The proposed method is verified on the fatigue test of attachment lugs which are a kind of important joint components in aircraft structures. Copyright © 2017 Elsevier B.V. All rights reserved.
Fracture characterization of inhomogeneous wrinkled metallic films deposited on soft substrates
NASA Astrophysics Data System (ADS)
Kishida, Hiroshi; Ishizaka, Satoshi; Nagakura, Takumi; Suzuki, Hiroaki; Yonezu, Akio
2017-12-01
This study investigated the fracture properties of wrinkled metallic films on a polydimethylsiloxane (PDMS) soft substrate. In particular, the crack density of the wrinkled film during tensile deformation was examined. In order to achieve better deformability of metallic thin films, a method to fabricate a wrinkled thin film on a PDMS soft substrate was first established. The copper (Cu) nano-film fabricated in this study possessed a wrinkled geometry, which plays a critical role in determining the extent of large elastic deformation. To create the wrinkled structure, wet-etching with a polymeric sacrificial layer was used. A sacrificial layer was first deposited onto a silicone rubber sheet. During the curing process of the layer, a compressive strain was applied such that the hardened surface layer buckled, and a wrinkled form was obtained. Subsequently, a PDMS solution was used to cover the layer in order to form a wrinkled PDMS substrate. Finally, the Cu film was deposited onto the wrinkled PDMS, such that the wrinkled Cu film on a soft PDMS substrate was fabricated. The use of uni-axial tensile tests resulted in film crack generation at the stress concentration zone in the wrinkled structure of the films. When the tensile loading was increased, the number of cracks increased. It was found that the increase in crack density was strongly related to the inhomogeneous nature of the wrinkled structure. Such a trend in crack density was investigated using FEM (finite element method) computations, such that this study established a simple mechanical model that may be used to predict the increase in crack density during tensile deformation. This model was verified through several experiments using various wrinkle patterns. The proposed mechanical model may be useful to predict the crack density of a wrinkled metallic film subject to tensile loading.
The reduction in fatigue crack growth resistance of dentin with depth.
Ivancik, J; Neerchal, N K; Romberg, E; Arola, D
2011-08-01
The fatigue crack growth resistance of dentin was characterized as a function of depth from the dentino-enamel junction. Compact tension (CT) specimens were prepared from the crowns of third molars in the deep, middle, and peripheral dentin. The microstructure was quantified in terms of the average tubule dimensions and density. Fatigue cracks were grown in-plane with the tubules and characterized in terms of the initiation and growth responses. Deep dentin exhibited the lowest resistance to the initiation of fatigue crack growth, as indicated by the stress intensity threshold (ΔK(th) ≈ 0.8 MPa•m(0.5)) and the highest incremental fatigue crack growth rate (over 1000 times that in peripheral dentin). Cracks in deep dentin underwent incremental extension under cyclic stresses that were 40% lower than those required in peripheral dentin. The average fatigue crack growth rates increased significantly with tubule density, indicating the importance of microstructure on the potential for tooth fracture. Molars with deep restorations are more likely to suffer from the cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Chopra, O. K.; Soppet, W. K.
2010-02-16
Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier testsmore » with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.« less
Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance
NASA Technical Reports Server (NTRS)
Smith, Craig; Gyekenyesi, Andrew
2011-01-01
The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.
Anisotropic Poroelasticity in a Rock With Cracks
NASA Astrophysics Data System (ADS)
Wong, Teng-Fong
2017-10-01
Deformation of a saturated rock in the field and laboratory may occur in a broad range of conditions, ranging from undrained to drained. The poromechanical response is often anisotropic, and in a brittle rock, closely related to preexisting and stress-induced cracks. This can be modeled as a rock matrix embedded with an anisotropic system of cracks. Assuming microisotropy, expressions for three of the poroelastic coefficients of a transversely isotropic rock were derived in terms of the crack density tensor. Together with published results for the five effective elastic moduli, this provides a complete micromechanical description of the eight independent poroelastic coefficients of such a cracked rock. Relatively simple expressions were obtained for the Skempton pore pressure tensor, which allow one to infer the crack density tensor from undrained measurement in the laboratory, and also to infer the Biot-Willis effective stress coefficients. The model assumes a dilute concentration of noninteractive penny-shaped cracks, and it shows good agreement with experimental data for Berea sandstone, with crack density values up to 0.6. Whereas predictions on the storage coefficient and normal components of the elastic stiffness tensor also seem reasonable, significant discrepancy between model and measurement was observed regarding the off-diagonal and shear components of the stiffness. A plausible model had been proposed for development of very strong anisotropy in the undrained response of a fault zone, and the model here placed geometric constraints on the associated fracture system.
Timing of seed dispersal generates a bimodal seed bank depth distribution
Espinar, J.L.; Thompson, K.; Garcia, L.V.
2005-01-01
The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Don??ana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated.
NASA Astrophysics Data System (ADS)
Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.
2016-08-01
The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.
Brittle Materials Design, High Temperature Gas Turbine
1977-08-01
hubs were inspected radiographi - cally and by fluoresent dye penetrant. The dye penetrant revealed tight cracks on the inner axial faces of hub A... radiography of green parts has proved effective in detecting major flaws. Slip cast Si3N4 test bars having a density of 2.7 gm/cc show four point MOR...this run. Post inspection showed all ceramic parts to be crack free. The rotor failed during a subsequent run at 50,000 rpm and 2300°F T.I.T. (10
NASA Technical Reports Server (NTRS)
Hartranft, R. J.; Sih, G. C.
1973-01-01
The closed form expressions for the stress intensity factors due to concentrated forces applied to the surfaces of a half plane crack in an infinite body are used to generate solutions for distributed loads in this geometry. The stress intensity factors for uniformly distributed loads applied over a rectangular portion of the crack surface are given in closed form. An example of non-uniformly distributed loads which can be treated numerically is also included. In particular, combinations of normal and shear stresses on the crack which simulate the case of loading at an angle to the crack front are considered. The resulting stress intensity factors are combined with the strain energy density fracture criterion for the purpose of predicting the most likely direction of crack propagation. The critical value of the energy density factor can then be used for determining the allowable load on a specimen with a crack front not perpendicular to the tensile axis.
A comparison of fatigue crack growth in human enamel and hydroxyapatite.
Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne D
2008-12-01
Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m=7.7+/-1.0) was similar to that for HAp (m=7.9+/-1.4), whereas the crack growth coefficient (C) for enamel (C=8.7 E-04 (mm/cycle)x(MPa m(0.5))(-m)) was significantly lower (p<0.0001) than that for HAp (C=2.0 E+00 (mm/cycle)x(MPa m(0.5))(-m)). Micrographs of the fracture surfaces showed that crack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth.
A Comparison of Fatigue Crack Growth in Human Enamel and Hydroxyapatite
Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne
2008-01-01
Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m = 7.7±1.0) was similar to that for HAp (m = 7.9±1.4), whereas the crack growth coefficient (C) for enamel (C=8.7E-04 (mm/cycle)·(MPa·m0.5)-m) was significantly lower (p<0.0001) than that for HAp (C = 2.0E+00 (mm/cycle)·(MPa·m0.5)-m). Micrographs of the fracture surfaces showed that crack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth. PMID:18804277
Biological Dimensions of Crack Morphology in Dryland Soils
NASA Astrophysics Data System (ADS)
DeCarlo, K. F.; Spiegel, M.; Caylor, K. K.
2014-12-01
Macropores and cracks have an integral role in soil hydrology, and the physicochemical factors that induce them have been the subject of much laboratory research. How these processes translate to field soils, however, is often obfuscated by the biological elements present that complicate its formation and dynamics. In this study, we investigated the biological influence of herbivores and vegetation on 3D crack morphology in a dryland swelling soil (black cotton/vertisol). Fieldwork was conducted at and near the Kenya Long-Term Exclosure Experiment (KLEE) plots in Mpala, central Kenya, where three different soil regions were identified: highly vegetated areas, animal trails, and termite mounds. Crack networks were physically characterized by pouring liquid resin into the soil and excavating them when dry, after which they were imaged and quantified using medical magnetic resonance imaging (MRI). Cracking intensity of each cast was corrected via soil moisture and bulk density measurements at 5 cm intervals over 30 cm. 3D characterization of the soil system shows that mechanical compaction is a major influence in the formation of extensive and deep cracks in animal trails, with megaherbivores (e.g. elephants) inducing the most extreme cracks. Bioturbation is seen as a major influence in the formation of shallower cracks in termite mounds, as termites loosen and aerate the soil and reduce the soil's cohesive properties. Highly vegetated soils show a large degree of variability: small, disconnected soil patches induced by vegetative cover and a larger root network results in smaller and shallower cracks, but full vegetative cover induces deep and irregular cracks, possibly due to diverted rainfall. Our results highlight the intricate connections between the biology and physics that dictate soil processes in a complex soil system at the field scale.
NASA Astrophysics Data System (ADS)
Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.
2010-05-01
Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.
NASA Astrophysics Data System (ADS)
Stephenson, Kale J.; Was, Gary S.
2015-01-01
The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.
NASA Astrophysics Data System (ADS)
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
Transverse Isotropy of Phyllite Under Brazilian Tests: Laboratory Testing and Numerical Simulations
NASA Astrophysics Data System (ADS)
Xu, Guowen; He, Chuan; Chen, Ziquan; Su, Ang
2018-04-01
Phyllite is a low-grade, metamorphic rock with well-developed foliation. We characterized the fracture pattern and failure strength of phyllite specimens under Brazilian tests. The specimens were obtained from the Zhegu mountain tunnel in China and had different foliation-loading angles, namely 0°, 15°, 30°, 45°, 60°, 75° and 90°. The processes for the initiation and propagation of macro-cracks were recorded using high-speed photography. The evolution of micro-cracks was analyzed based on the results of acoustic emission (AE) tests. The failure process of the specimens during the Brazilian tests was simulated with a new numerical approach based on the particle discrete element method. The influence of foliation strength and the microstructure of the rock matrix were also studied numerically. The experimental results showed that the failure strength of the specimens was related to their fracture patterns and the areas of their fracture surfaces. The initial cracking point of the specimens appeared at the upper or lower loading position, and the cracks propagated to the boundaries of the specimens along or across foliation. The temporal distributions of the AE counts and AE energy of the specimens were affected predominantly by the fracture pattern, and we divided these distributions into two modes: the peak mode and the uniformly distributed mode. The numerical results indicated that the fracture surface was roughly parallel to the loading direction and that the surface was located in the central part of the disk specimens for rocks with loose structure (low coordination number or large crack density) or with strong foliation, i.e., foliation with high shear strength. The failure pattern and trends of variation in failure strength as a function of foliation-loading angles varied with the ratio of cohesion to the tensile strength of foliation, the crack density, and the coordination number.
Ply cracking in composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Youngmyong.
1989-01-01
Ply cracking behavior and accompanying stiffness changes in thermoset as well as thermoplastic matrix composites under various loading conditions are investigated. Specific topics addressed are: analytical model development for property degradations due to ply cracking under general in-plane loading; crack initiation and multiplication under static loading; and crack multiplication under cyclic loading. A model was developed to calculate the energy released due to ply cracking in a composite laminate subjected to general in-plane loading. The method is based on the use of a second order polynomial to represent the crack opening displacement and the concept of a through-the-thickness inherent flaw.more » The model is then used in conjunction with linear elastic fracture mechanics to predict the progressive ply cracking as well as first ply cracking. A resistance curve for crack multiplication is proposed as a means of characterizing the resistance to ply cracking in composite laminates. A methodology of utilizing the resistance curve to assess the crack density or overloading is also discussed. The method was applied to the graphite/thermoplastic polyimide composite to predict progressive ply cracking. However, unlike the thermoset matrix composites, a strength model is found to fit the experimental results better than the fracture mechanics based model. A set of closed form equations is also developed to calculate the accompanying stiffness changes due to the ply cracking. The effect of thermal residual stress is included in the analysis. A new method is proposed to characterize transverse ply cracking of symmetric balanced laminates under cyclic loading. The method is based on the concept of a through-the-thickness inherent flaw, the Paris law, and the resistance curve. Only two constants are needed to predict the crack density as a function of fatigue cycles.« less
Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance
NASA Technical Reports Server (NTRS)
Smith, Craig E.; Gyekenyesi, Andrew
2011-01-01
The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.
Gupta, Satyapriya; Taupin, Vincent; Fressengeas, Claude; Jrad, Mohamad
2018-03-27
The displacement discontinuity arising between crack surfaces is assigned to smooth densities of crystal defects referred to as disconnections, through the incompatibility of the distortion tensor. In a dual way, the disconnections are defined as line defects terminating surfaces where the displacement encounters a discontinuity. A conservation statement for the crack opening displacement provides a framework for disconnection dynamics in the form of transport laws. A similar methodology applied to the discontinuity of the plastic displacement due to dislocations results in the concurrent involvement of dislocation densities in the analysis. Non-linearity of the geometrical setting is assumed for defining the elastic distortion incompatibility in the presence of both dislocations and disconnections, as well as for their transport. Crack nucleation in the presence of thermally-activated fluctuations of the atomic order is shown to derive from this nonlinearity in elastic brittle materials, without any algorithmic rule or ad hoc material parameter. Digital image correlation techniques applied to the analysis of tensile tests on ductile Al-Cu-Li samples further demonstrate the ability of the disconnection density concept to capture crack nucleation and relate strain localization bands to consistent disconnection fields and to the eventual occurrence of complex and combined crack modes in these alloys.
Weibull crack density coefficient for polydimensional stress states
NASA Technical Reports Server (NTRS)
Gross, Bernard; Gyekenyesi, John P.
1989-01-01
A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.
Growth of Matrix Cracks During Intermediate Temperature Stress Rupture of a SiC/SiC Composite in Air
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2000-01-01
The crack density of woven Hi-Nicalon(sup TM) (Nippon Carbon, Japan) fiber, BN interphase, melt-infiltrated SiC matrix composites was determined for specimens subjected to tensile stress rupture at 815 C. A significant amount of matrix cracking occurs due to the growth of fiber-bridged microcracks even at stresses below the run-out condition. This increased cracking corresponded to time dependent strain accumulation and acoustic emission activity during the constant load test. However, the portion of the rupture specimens subjected to cooler temperatures (< 600 C than the hot section had significantly lower crack densities compared to the hotter regions. From the acoustic emission and time dependent strain data it can be inferred that most of the matrix crack growth occurred within the first few hours of the tensile rupture experiment. The crack growth was attributed to an interphase recession mechanism that is enhanced by the presence of a thin carbon layer between the fiber and the matrix as a result of the composite fabrication process. One important consequence of matrix crack growth at the lower stresses is poor retained strength at room temperature for specimens that did not fail.
Strain energy density and surface layer energy for a crack-like ellipse
NASA Technical Reports Server (NTRS)
Kipp, M. E.; Sih, G. C.
1973-01-01
Some of the fundamental concepts of sharp crack fracture criteria are applied to cracks and narrow ellipses. The strain energy density theory is extended to notch boundaries, where the energy in a surface layer is calculated and the location of failure initiation is determined. The concept of a core region near the notch tip, and its consequences, are examined in detail. The example treated is that of an elliptical cavity loaded uniformly at a large distance from the hole, and at an angle to the hole; the results are shown to approach that of the crack solution for narrow ellipses, and to display quite satisfactory agreement with recently published experimental data under both tensile and compressive loading conditions. Results also indicate that in globally unstable configurations in brittle materials, the original loading and notch geometry are sufficient to predict the subsequent crack trajectory with considerable accuracy.
USDA-ARS?s Scientific Manuscript database
Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...
Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders
Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario
2016-01-01
Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles. PMID:28773603
Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.
Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario
2016-06-16
Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.
Thermo-Mechanical and Thermal Behavior of High-Temperature Structural Materials.
1980-12-31
glass insulating tape to prevent fracture due to unknown stresses at Lhe rod ends. Because of the very high density of cracks in the alumina, this...143. [31] 0. L. Bowie, J. Math. Phys. 35 (1956) 60. [32] F. Erdogan : in Fracture Mechanics of Ceramics, Vol. 1, ed. by R. C. f Bradt, D. P. H
Ballistic Impact of Braided Composites with a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike
2002-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.
NASA Technical Reports Server (NTRS)
Tiede, D. A.
1972-01-01
A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.
Elastic anisotropy due to aligned cracks in porous rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomsen, L.
1995-08-01
All theoretical expression which relate the characteristics of saturated aligned cracks to the associated elastic anisotropy are restricted in some important way, for example to the case of stiff pore fluids, or of the absence of equate porosity, or of a moderately high frequency band. Because of these restrictions, previous theory is not suitable for application to the upper crust, where the pore fluid is brine (K{sub f}{approx}K{sub s}/20), the equant porosity is often substantial ({phi}{sub p}>0.1), and the frequency band is sonic to seismic. This work removes these particular restrictions, recognizing in the process an important mechanism of dispersion.more » A notable feature of these more general expressions is their insensitivity, at low frequency, to the aspect ratio of the cracks; only the crack density is critical. An important conclusion of this more general model is that many insights previously achieved, concerning the shear-wave splitting due to vertical aligned saturated cracks, are sustained. However, conclusions on crack orientation or crack aspect ratio, which were derived from P-wave data or from shear-wave `critical angles`, may need to be reconsidered. Further, the non-linear coupling between pores and cracks, due to pressure equalization effects, means that the (linear) Schoenberg-Muir calculus may not be applied to such systems. The theory received strong support from recent data by Rathore et al. on artificial samples with controlled crack geometry.« less
Experimental study of ELM-like heat loading on beryllium under ITER operational conditions
NASA Astrophysics Data System (ADS)
Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.
2016-02-01
The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.
Laser-induced cracks in ice due to temperature gradient and thermal stress
NASA Astrophysics Data System (ADS)
Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun
2018-06-01
This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.
Ding, Xiangyan; Li, Feilong; Zhao, Youxuan; Xu, Yongmei; Hu, Ning; Cao, Peng; Deng, Mingxi
2018-04-23
This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures.
Ding, Xiangyan; Li, Feilong; Xu, Yongmei; Cao, Peng; Deng, Mingxi
2018-01-01
This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures. PMID:29690580
The equivalence between dislocation pile-ups and cracks
NASA Technical Reports Server (NTRS)
Liu, H. W.; Gao, Q.
1990-01-01
Cracks and dislocation pile-ups are equivalent to each other. In this paper, the physical equivalence between cracks and pile-ups is delineated, and the relationshps between crack-extension force, force on the leading dislocation, stress-intensity factor, and dislocation density are reviewed and summarized. These relations make it possible to extend quantitatively the recent advances in the concepts and practices of fracture mechanics to the studies of microfractures and microplastic deformations.
NASA Astrophysics Data System (ADS)
Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel
2017-08-01
We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1)
NASA Astrophysics Data System (ADS)
Jaffer, Shahzma Jafferali
Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there was a minor effect of the type of loading on rebar corrosion within the period of the project. These measurements also highlighted the problems associated with corrosion measurements, for example, identifying the actual corroding area and the influence of the length of rebar. The numbers of cracks and crack-widths in each beam were measured after the beam's initial exposure to salt solution and, again, after the final corrosion measurements. HPC beams had more cracks than the OPCC. Also, final measurements illustrated increased crack-widths in dynamically loaded beams, regardless of the concrete type. The cracks in both statically and dynamically loaded OPCC and HPC beams bifurcated at the rebar level and propagated parallel to the rebar. This project also examined the extent of corrosion on the rebars and the distribution of corrosion products in the concrete and on the concrete walls of the cracks. Corrosion occurred only at cracks in the concrete and was spread over a larger area on the rebars in HPC than those in OPCC. The damage due to corrosion was superficial in HPC and crater-like in OPCC. Regardless of the concrete type, there was a larger distribution of corrosion products on the crack walls of the dynamically loaded beams. Corrosion products diffused into the cement paste and the paste-aggregate interface in OPCC but remained in the crack in HPC. The most voluminous corrosion product identified was ferric hydroxide. Elemental analysis of mill-scale on rebar which was not embedded in concrete or exposed to chlorides was compared to that of the bars that had been embedded in uncontaminated concrete and in cracked concrete exposed to chlorides. In uncontaminated concrete, mill-scale absorbed calcium and silicon. At a crack, a layer, composed of a mixture of cement paste and corrosion products, developed between the mill-scale and the substrate steel. Based on the results, it was concluded that (i) corrosion occurred on the rebar only at cracks in the concrete, (ii) corrosion was initiated at the cracks immediately upon exposure to salt solution, (ii) the type of loading had a minor influence on the corrosion rates of reinforcing steel and (iv) the use of polarized area led to a significant underestimation of the current density at the crack. It is recommended that the effect of cover-depth on (i) the time to initiation of corrosion and (ii) the corrosion current density in cracked concrete be investigated.
Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide
2012-01-01
Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992
NASA Astrophysics Data System (ADS)
Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.
2013-08-01
This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.
Ledbetter, C A
2008-09-01
Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.
Detection of small-size solder ball defects through heat conduction analysis
NASA Astrophysics Data System (ADS)
Zhou, Xiuyun; Chen, Yaqiu; Lu, Xiaochuan
2018-02-01
Aiming to solve the defect detection problem of a small-size solder ball in the high density chip, heat conduction analysis based on eddy current pulsed thermography is put forward to differentiate various defects. With establishing the 3D finite element model about induction heating, defects such as cracks and void can be distinguished by temperature difference resulting from heat conduction. Furthermore, the experiment of 0.4 mm-diameter solder balls with different defects is carried out to prove that crack and void solder can be distinguished. Three kinds of crack length on a gull-wing pin are selected, including 0.24 mm, 1.2 mm, and 2.16 mm, to verify that the small defect can be discriminated. Both the simulation study and experiment result show that the heat conduction analysis method is reliable and convenient.
NASA Astrophysics Data System (ADS)
Liu, Jiang; Wen, Guanghua; Tang, Ping
2017-12-01
The formation of coarse prior austenite grain is a key factor to promote transverse crack, and the susceptibility to the transverse crack can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate two types of double phase-transformation technologies. The distribution and morphology of ferrites under different cooling conditions were analyzed, and the effects of ferrite distribution and morphology on the double phase-transformation technologies were explored to obtain the suitable double phase-change technology for the continuous casting process. The results indicate that, under the thermal cycle TH0 [the specimens were cooled down to 913 K (640 °C) at a cooling rate of 5.0 K/s (5.0 °C/s)], the width of prior austenite grain boundaries was thick, and the dislocation density at grain boundaries was high. It had strong inhibition effect on crack propagation; under the thermal cycle TH1 [the specimens were cooled down to 1073 K (800 °C) at a cooling rate of 5.0 K/s (5.0 °C/s) and then to 913 K (640 °C) at a cooling rate of 1.0 K/s (1.0 °C/s)], the width of prior austenite grain boundary was thin, and the dislocation density at grain boundaries was low. It was beneficial to crack propagation. After the first phase change, the developed film-like ferrite along the austenite grain boundaries improved the nucleation conditions of new austenitic grains and removed the inhibition effect of the prior austenite grain boundaries on the austenite grain size.
NASA Astrophysics Data System (ADS)
Kitamura, M.; Takahashi, M.; Takagi, K.; Hirano, N.; Tsuchiya, N.
2017-12-01
To extract geothermal energy effectively and safely from magma and/or adjacent hot rock, we need to tackle many issues which require new technology development, such as a technique to control a risk from induced-earthquakes. On a development of induced-earthquake mitigation technology, it is required to understand roles of factors on occurrences of the induced-earthquake (e.g., strength, crack density, and fluid-rock reaction) and their intercorrelations (e.g., Asanuma et al., 2012). Our purpose of this series of experiments is to clarify a relationship between the rock strength and the crack density under supercritical conditions. We conducted triaxial deformation test on intact granite rock strength under high-temperature (250 - 750°C), high-pressure (104 MPa) condition at a constant load velocity (0.1 μm/sec) using a gas-rig at AIST. We used Oshima granite, which has initially <0.2 % of the porosity, 4.29±0.55 km/s in Vp (dry), and 2.49±0.19 km/s in Vs (dry). All experimental products showed the brittle feature having several oblique fracture surfaces, but the amount of stress drop became smaller at higher temperature. Young's modulus increased with decreasing the temperature from 32.3 GPa at 750°C to 57.4 GPa at 250°C. At 400 °C, the stress drop accelerated the deformation with 98 times faster velocity than that at load-point. In contrast, at 650°C and 750°C, the velocity during stress drop kept the same order of the load-point velocity. Therefore, the deformation mechanism may start to be changed from brittle to ductile when the temperature exceeds 650°C. Highly dense cracked granite specimens were formed by a rapid decompression test (RDT) using an autoclave settled at Tohoku University (Hirano et al., 2016JpGU), caused by a reduction of fluid pressure within 1-2 sec from vapor/supercritical state (10 - 48 MPa, 550 °C) to ambient pressure. The specimens after RDT show numerous microcracks on X-ray CT images. The RDT imposed the porosity increasing towards 3.75 % and Vp and Vs decreasing towards 1.37±0.52 km/s and 0.97±0.25 km/s. The Poisson's ratio shows the negative values in dry and 0.5 in wet. In the meeting, we will present results of triaxial deformation test on such cracked granites and show the relationship between strength and crack density under supercritical conditions.
A new perspective on the generation of the 2016 M6.4 Meilung earthquake, southwestern Taiwan
NASA Astrophysics Data System (ADS)
Wang, Z.
2017-12-01
In order to investigate the likely generation mechanism of the 2016 M6.4 Meilung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and s models. In this way, multi-geophysical parameter imaging revealed that the 2016 Meilung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-Poisson ratio body that has high-crack density and somewhat high-saturate fracture anomalies above the hypocenter under the coastal plain represents fluids contained in the young fold-and-thrust belt relative to the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson ratio, crack density and saturate fracture anomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the coastal plain and western foothills as far as the southeastern lower crust under the central range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt associated with the passive Asian continental margin in the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake.
46 CFR 164.015-4 - Inspections and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Pounds/feet3 54.0 54.0 52.0 Volume loss on heat aging (maximum). 164.015-4(d) Percent 5.0 5.0 4.0... .06 Flexibility at 0 ±2F 164.015-4(j) No cracking No cracking Oil resistance 164.015-4(k) (1) (1) (1) Odor 164.015-4(l) (2) (2) (2) 1 No softening or swelling. 2 Not objectionable. (b) Density. The density...
Precision Composite Space Structures
2007-10-15
large structures. 15. SUBJECT TERMS Composite materials, dimensional stability, microcracking, thermal expansion , space structures, degradation...Figure 32. Variation of normalized coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6...coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6 composite lamina with a fiber volume
The elasticity problem for a thick-walled cylinder containing a circumferential crack
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1983-01-01
The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.
The elasticity problem for a thick-walled cylinder containing a circumferential crack
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1982-01-01
The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.
Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E.; Boyde, Alan
2015-01-01
We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA. PMID:25927581
Theoretical predicting of permeability evolution in damaged rock under compressive stress
NASA Astrophysics Data System (ADS)
Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.
2017-05-01
This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.
NASA Astrophysics Data System (ADS)
Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan
2018-04-01
The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.
Picosecond amorphization of SiO2 stishovite under tension.
Misawa, Masaaki; Ryuo, Emina; Yoshida, Kimiko; Kalia, Rajiv K; Nakano, Aiichiro; Nishiyama, Norimasa; Shimojo, Fuyuki; Vashishta, Priya; Wakai, Fumihiro
2017-05-01
It is extremely difficult to realize two conflicting properties-high hardness and toughness-in one material. Nano-polycrystalline stishovite, recently synthesized from Earth-abundant silica glass, proved to be a super-hard, ultra-tough material, which could provide sustainable supply of high-performance ceramics. Our quantum molecular dynamics simulations show that stishovite amorphizes rapidly on the order of picosecond under tension in front of a crack tip. We find a displacive amorphization mechanism that only involves short-distance collective motions of atoms, thereby facilitating the rapid transformation. The two-step amorphization pathway involves an intermediate state akin to experimentally suggested "high-density glass polymorphs" before eventually transforming to normal glass. The rapid amorphization can catch up with, screen, and self-heal a fast-moving crack. This new concept of fast amorphization toughening likely operates in other pressure-synthesized hard solids.
NASA Astrophysics Data System (ADS)
Yasui, Minami; Takano, Shota; Matsue, Kazuma; Arakawa, Masahiko
2015-08-01
Most of asteroids would have pores and a plenty of pre-cracks in their interiors, and the pre-cracks could be formed by multiple impacts at various impact angles. Porosity and pre-cracks are important physical properties controlling the impact strength. Okamoto and Arakawa (2009) did impact experiments of porous gypsum spheres to obtain the impact strength of porous asteroids, but they carried out only single impact experiments on the same target at head-on. In this study, we conducted oblique impact and multiple impacts on porous gypsum and examined the effects of impact angle and pre-cracks on the impact strength.We carried out impact experiments by using the one-stage He gas gun and the two-stage H2 gas gun at Kobe University. The impact velocities were <200 m/s (low-vi) and >3 km/s (high-vi). Targets were porous gypsum spheres with the porosity of 55% and the diameters of 7 or 12 cm. The projectiles were a porous gypsum sphere with the diameter of 2.5 cm at low-vi or a polycarbonate sphere with the diameter of 4.7 cm at high-vi. The impact angle changed from 15° to 90°, and the projectile was impacted on the same target for 2-15 times. The impact phenomena were observed by a high-speed digital video camera to measure the fragment velocities.The oblique impact experiments showed that the impact strength did not depend on the impact angle θ between 45° and 90°, and obtained to be ~2000 J/kg, while it drastically changed at the θ from 15° to 30°. We reanalyzed our results by using the effective energy density defined as Qsin2θ, where Q is the energy density, and found that most of the results were consistent with the results of head-on impacts. The multiple impacts showed that the impact strength of pre-impacted targets was larger than that of intact targets in the case of low-vi. This might be caused by the compaction of the target surface. In the case of high-vi, the impact strength of pre-impacted targets was smaller than that of intact targets. This is because many cracks were generated in the target by the strong shock pressure propagating through the entire target.
NASA Astrophysics Data System (ADS)
Yu, Jing; Zhang, Hongchao; Deng, Dewei; Hao, Shengzhi; Iqbal, Asif
2014-07-01
The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.
NASA Astrophysics Data System (ADS)
Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.
2013-07-01
Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.
Fatigue properties of an 1421 aluminum alloy processed by ECAE
NASA Astrophysics Data System (ADS)
Mogucheva, A.; Kaibyshev, R.
2010-07-01
Fatigue properties and fatigue crack growth rate were examined in an Al-Mg-Li-Sc-Zr allow subjected to equal channel angular extrusion (ECAE) with rectangular shape of channels up to a total strain of ~4 at a temperature of 325°C followed by solution treatment with subsequent oil quenching with aging. After this processing the fraction recrystallized was ~80pct; the deformed microstructure remains essentially unchanged under solution treatment due to high density of Al3Sc coherent dispersoids playing a role of effective pinning agents. It was shown that the fatigue limit of this material attained a value of ~185 MPa. Thermomechanical processing provided a decrease in fatigue crack propagation growth rate and an increase in the stress intensity factor, K1c, in comparison with extruded bar. However, characteristics of crack propagation resistance did not attain values suitable for application of this alloy for critical aircraft components.
Role of fiber-stitching in eliminating transverse fracture in cross-ply ceramic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, T.J.; Hutchinson, J.W.
1995-12-31
A theoretical study of the feasibility of using fiber stitching to prevent transverse matrix cracking in cross-ply ceramic composites is first reported. The prototype problem solved is a curved composite beam subject to pure bending (the C-specimen), which develops a transverse tensile stress Go acting across its circumferential mid-plane. This transverse stress is cause for concern if the beam is unstitched since there is no mechanism to arrest a matrix crack once one becomes critical. Fiber stitches normal to this plane are introduced to bridge a circumferential matrix crack lying along the mid-plane of the specimen. Results are presented formore » the energy release rate of this matrix crack as a function of a nondimensional parameter characterizing the density and fiber sliding stress of the fiber stitches. A parameter is identified which assures the applicability of the classical ACK (Aveston, Cooper and Kelly) limit for a steady-state matrix crack subject to {sigma}{sub 0}. The results obtained can be used to choose the level of stitching such that transverse matrix cracking will be excluded. The second problem we address is thermal delamination in a cross-ply ceramic composite plate due to high temperature gradients applied in the thickness direction. It is shown that a preexistent crack with a size of the order of the plate thickness will propagate unstably when a moderately large through-thickness temperature gradient is enforced. The possibility of using cross-fiber stitches to suppress thermal delamination cracking is discussed.« less
The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam
NASA Astrophysics Data System (ADS)
Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina
2016-01-01
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.
A Model for Deformation and Fragmentation in Crushable Brittle Solids
2008-03-01
diameter 7.94mm, was formed from an alloy of mass density 18 690 kg/m3. The concrete target was SAC-7 composition [6], with no reinforcing bars, 25.4mm...normalized density of micro- cracks in the substance. Similar approaches, albeit with various different ways of relating continuum damage variables to...This technique is naturally more realistic than element deletion for modeling discrete cracks , and is thought to be particularly useful for
Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunarno; Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281; Rochmadi,
The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality ofmore » bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.« less
Enabling aqueous processing for crack-free thick electrodes
Du, Zhijia; Rollag, K. M.; Li, J.; ...
2017-04-14
Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less
NASA Astrophysics Data System (ADS)
Shimizu, Masahiro; Hashida, Masaki; Miyasaka, Yasuhiro; Tokita, Shigeki; Sakabe, Shuji
2013-10-01
We have investigated the origin of nanostructures formed on metals by low-fluence femtosecond laser pulses. Nanoscale cracks oriented perpendicular to the incident laser polarization are induced on tungsten, molybdenum, and copper targets. The number density of the cracks increases with the number of pulses, but crack length plateaus. Electromagnetic field simulation by the finite-difference time-domain method indicates that electric field is locally enhanced along the direction perpendicular to the incident laser polarization around a nanoscale hole on the metal surface. Crack formation originates from the hole.
Strip Yield Model Numerical Application to Different Geometries and Loading Conditions
NASA Technical Reports Server (NTRS)
Hatamleh, Omar; Forman, Royce; Shivakumar, Venkataraman; Lyons, Jed
2006-01-01
A new numerical method based on the strip-yield analysis approach was developed for calculating the Crack Tip Opening Displacement (CTOD). This approach can be applied for different crack configurations having infinite and finite geometries, and arbitrary applied loading conditions. The new technique adapts the boundary element / dislocation density method to obtain crack-face opening displacements at any point on a crack, and succeeds by obtaining requisite values as a series of definite integrals, the functional parts of each being evaluated exactly in a closed form.
The effect of texture on the crack growth resistance of alumina
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Shannon, John L., Jr.; Bradt, Richard C.
1987-01-01
The crack growth resistance of a textured, extruded alumina body was compared with that of an isotropic, isopressed body of similar grain size, density, and chemistry. R-curve levels reflected the preferred orientation; however, R-curve slopes (dK sub IR/d Delta a) were the same in all instances, implying a similar crack growth resistive mechanism. Three orthogonal orientations of crack growth in the two structures exhibited similar forms of K sub IR versus Delta-a curves, for which a schematic diagram for polycrystalline ceramics is proposed.
Stress state of a piecewise uniform layered space with doubly periodic internal cracks
NASA Astrophysics Data System (ADS)
Hakobyan, V. N.; Dashtoyan, L. L.
2018-04-01
The present paper deals with the stress state of a piecewise homogeneous plane formed by alternation junction of two distinct strips of equal height manufactured of different materials. There is a doubly periodic system of cracks on the plane. The governing system of singular integral equations of the first kind for the density of the crack dislocation is derived. The solution of the problem in the case where only one of the repeated strips contains one doubly-periodic crack is obtained by the method of mechanical quadratures.
Hwang, Sung-Woo; Kim, Tae-Youn; Hyun, Sang-Hoon
2008-06-01
The instantaneous solvent exchange/surface modification (ISE/SM) process for the ambient synthesis of crack-free silica aerogel monoliths with a high production yield was optimized. Monolithic forms of silica wet gels were obtained from aqueous colloidal silica sols prepared via the ion exchange of sodium silicate solutions. Crack-free silica aerogel monoliths were synthesized via an ISE/SM process using isopropyl alcohol/trimethylchlorosilane as a modification agent and n-hexane as a main solvent, followed by ambient drying. The optimum process conditions of the ISE/SM process were investigated by clarifying the reaction mechanism and phenomena. Most effective ranges of process variables on the ISE/SM stage were determined as 0.2500-0.3567 of TMCS/H2O (pore water) in molar ratio and 15-30 of n-hexane/TMCS in volumetric ratio, with a reaction temperature below 283 K. Crack-free silica aerogel monoliths synthesized via these conditions had a well-developed mesoporous structure and excellent properties (bulk density of 0.12-0.14 g/cm3, specific surface area of 724 m2/g), and a high yield (nearly 80%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, M J; Tosten, M H
1989-01-01
Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
d’Hauthuille, Luc; Zhai, Yuhu
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
d’Hauthuille, Luc; Zhai, Yuhu
2017-07-11
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
Picosecond amorphization of SiO2 stishovite under tension
Misawa, Masaaki; Ryuo, Emina; Yoshida, Kimiko; Kalia, Rajiv K.; Nakano, Aiichiro; Nishiyama, Norimasa; Shimojo, Fuyuki; Vashishta, Priya; Wakai, Fumihiro
2017-01-01
It is extremely difficult to realize two conflicting properties—high hardness and toughness—in one material. Nano-polycrystalline stishovite, recently synthesized from Earth-abundant silica glass, proved to be a super-hard, ultra-tough material, which could provide sustainable supply of high-performance ceramics. Our quantum molecular dynamics simulations show that stishovite amorphizes rapidly on the order of picosecond under tension in front of a crack tip. We find a displacive amorphization mechanism that only involves short-distance collective motions of atoms, thereby facilitating the rapid transformation. The two-step amorphization pathway involves an intermediate state akin to experimentally suggested “high-density glass polymorphs” before eventually transforming to normal glass. The rapid amorphization can catch up with, screen, and self-heal a fast-moving crack. This new concept of fast amorphization toughening likely operates in other pressure-synthesized hard solids. PMID:28508056
Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing
Kim, Chae Un; Tate, Mark W.; Gruner, Sol M.
2015-01-01
Observation of theorized glass-to-liquid transitions between low-density amorphous (LDA) and high-density amorphous (HDA) water states had been stymied by rapid crystallization below the homogeneous water nucleation temperature (∼235 K at 0.1 MPa). We report optical and X-ray observations suggestive of glass-to-liquid transitions in these states. Crack healing, indicative of liquid, occurs when LDA ice transforms to cubic ice at 160 K, and when HDA ice transforms to the LDA state at temperatures as low as 120 K. X-ray diffraction study of the HDA to LDA transition clearly shows the characteristics of a first-order transition. Study of the glass-to-liquid transitions in nanoconfined aqueous solutions shows them to be independent of the solute concentrations, suggesting that they represent an intrinsic property of water. These findings support theories that LDA and HDA ice are thermodynamically distinct and that they are continuously connected to two different liquid states of water. PMID:26351671
On cracking of charged anisotropic polytropes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azam, M.; Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com
2017-01-01
Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide rangemore » of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.« less
Use of innovative concrete mixes for improved constructability and sustainability of bridge decks.
DOT National Transportation Integrated Search
2013-11-01
Bridge deck crack surveys were performed on twelve bridges on US-59 south of Lawrence, Kansas, to determine the effects of : mixture proportions, concrete properties, deck type, and girder type on the crack density of reinforced concrete bridge decks...
NASA Technical Reports Server (NTRS)
Hu, Shoufeng; Bark, Jong S.; Nairn, John A.
1993-01-01
A variational analysis of the stress state in microcracked cross-ply laminates has been used to investigate the phenomenon of curved microcracking in /(S)/90n/s laminates. Previous investigators proposed that the initiation and orientation of curved microcracks are controlled by local maxima and stress trajectories of the principal stresses. We have implemented a principal stress model using a variational mechanics stress analysis and we were able to make predictions about curved microcracks. The predictions agree well with experimental observations and therefore support the assertion that the variational analysis gives an accurate stress state that is useful for modeling the microcracking properties of cross-ply laminates. An important prediction about curved microcracks is that they are a late stage of microcracking damage. They occur only when the crack density of straight microcracks exceeds the critical crack density for curved microcracking. The predicted critical crack density for curved microcracking agrees well with experimental observations.
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
Imaging inert fluorinated gases in cracks: perhaps in David's ankles.
Kuethe, Dean O; Scholz, Markus D; Fantazzini, Paola
2007-05-01
Inspired by the challenge of determining the nature of cracks on the ankles of Michelangelo's statue David, we discovered that one can image SF(6) gas in cracks in marble samples with alacrity. The imaging method produces images of gas with a signal-to-noise ratio (SNR) of 100-250, which is very high for magnetic resonance imaging (MRI) in general, let alone for an image of a gas at thermal equilibrium polarization. To put this unusual SNR in better perspective, we imaged SF(6) in a crack in a marble sample and imaged the lung tissue of a live rat (a more familiar variety of sample to many MRI scientists) using the same pulse sequence, the same size coils and the same MRI system. In both cases, we try to image subvoxel thin sheets of material that should appear bright against a darker background. By choosing imaging parameters appropriate for the different relaxation properties of SF(6) gas versus lung tissue and by choosing voxel sizes appropriate for the different goals of detecting subvoxel cracks on marble versus resolving subvoxel thin sheets of tissue, the SNR for voxels full of material was 220 and 14 for marble and lung, respectively. A major factor is that we chose large voxels to optimize SNR for detecting small cracks and we chose small voxels for resolving lung features at the expense of SNR. Imaging physics will cooperate to provide detection of small cracks on marble, but David's size poses a challenge for magnet designers. For the modest goal of imaging cracks in the left ankle, we desire a magnet with an approximately 32-cm gap and a flux density of approximately 0.36 T that weighs <500 kg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Yuri, E-mail: yufi55@mail.ru; National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050; National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electronmore » beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.« less
DOT National Transportation Integrated Search
2013-11-01
Bridge deck crack surveys were performed on twelve bridges on US-59 south of Lawrence, Kansas, to determine the effects of mixture proportions, concrete properties, deck type, and girder type on the crack density of reinforced concrete bridge decks.
Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading
NASA Astrophysics Data System (ADS)
Sun, Yuanxiang
Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Sutton, M. A.
1993-01-01
The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1983-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
Matrix cracking in laminated composites under monotonic and cyclic loadings
NASA Technical Reports Server (NTRS)
Allen, David H.; Lee, Jong-Won
1991-01-01
An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio
2016-12-01
Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.
Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads
NASA Astrophysics Data System (ADS)
De Temmerman, G.; Morgan, T. W.; van Eden, G. G.; de Kruif, T.; Wirtz, M.; Matejicek, J.; Chraska, T.; Pitts, R. A.; Wright, G. M.
2015-08-01
The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (FHF) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate FHF = 19 MJ m-2 s-1/2, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.
NASA Astrophysics Data System (ADS)
Balaraman Yadhukulakrishnan, Govindaraajan
Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.
Impact Cratering Physics al Large Planetary Scales
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.
2007-06-01
Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).
Critical flaw size in silicon nitride ball bearings
NASA Astrophysics Data System (ADS)
Levesque, George Arthur
Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN. Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test. CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size. Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA. Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Tea, Eric; Hin, Celine
Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.
Fatigue Crack Prognostics by Optical Quantification of Defect Frequency
NASA Astrophysics Data System (ADS)
Chan, K. S.; Buckner, B. D.; Earthman, J. C.
2018-01-01
Defect frequency, a fatigue crack prognostics indicator, is defined as the number of microcracks per second detected using a laser beam that is scanned across a surface at a constant predetermined frequency. In the present article, a mechanistic approach was taken to develop a methodology for deducing crack length and crack growth information from defect frequency data generated from laser scanning measurements made on fatigued surfaces. The method was developed by considering a defect frequency vs fatigue cycle curve that comprised three regions: (i) a crack initiation regime of rising defect frequency, (ii) a plateau region of a relatively constant defect frequency, and (iii) a region of rapid rising defect frequency due to crack growth. Relations between defect frequency and fatigue cycle were developed for each of these three regions and utilized to deduce crack depth information from laser scanning data of 7075-T6 notched specimens. The proposed method was validated using experimental data of crack density and crack length data from the literature for a structural steel. The proposed approach was successful in predicting the length or depth of small fatigue cracks in notched 7075-T6 specimens and in smooth fatigue specimens of a structural steel.
NASA Astrophysics Data System (ADS)
Gao, S. W.; Feng, W. J.; Fang, X. Q.; Zhang, G. L.
2014-11-01
In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.
NASA Astrophysics Data System (ADS)
Kim, Cheol-man; Kim, Woo-sik; Kho, Young-tai
2002-04-01
For the corrosion protection of natural gas transmission pipelines, two methods are used, cathodic protection and a coating technique. In the case of cathodic protection, defects are embrittled by hydrogen occurring at crack tips or surfaces of materials. It is, however, very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD testing under various test conditions, such as potential and current density. The CTOD of the base steel and weld metal showed a strong dependence on the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Cathodic overprotection results in hydrogen embrittlement at the crack tip.
Prediction of microcracking in composite laminates under thermomechanical loading
NASA Technical Reports Server (NTRS)
Maddocks, Jason R.; Mcmanus, Hugh L.
1995-01-01
Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.
NASA Astrophysics Data System (ADS)
Faccoli, Michela; Petrogalli, Candida; Lancini, Matteo; Ghidini, Andrea; Mazzù, Angelo
2017-07-01
An experimental investigation was carried out to study and compare the response to cyclic loading of the high-performance railway wheel steels ER8 EN13262 and SUPERLOS®. Rolling contact tests were performed with the same contact pressure, rolling speed and sliding/rolling ratio, varying the lubrication regime to simulate different climatic conditions. The samples, machined out of wheel rims at two depths within the reprofiling layer, were coupled with UIC 900A rail steel samples. The wear rates, friction coefficients and hardness were correlated with the deformation beneath the contact surface. The crack morphology was studied, and the damage mechanisms were identified. The distribution of crack length and depth at the end of the dry tests was analyzed to quantify the damage. The main difference between the steels lies in the response of the external samples to dry contact: SUPERLOS® is subjected to a higher wear and lower friction coefficient than ER8, and this reduces the density of surface cracks that can propagate under wet contact conditions. The analysis of feedback data from in-service wheels confirmed the experimental results.
Analysis of the progressive failure of brittle matrix composites
NASA Technical Reports Server (NTRS)
Thomas, David J.
1995-01-01
This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded region. The results of this study verified qualitatively the validity of assuming a uniform crack spacing (as was done in the shear-lag model).
Interaction between a circular inclusion and an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Gupta, G. D.; Ratwani, M.
1975-01-01
The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.
Synchrotron x-ray microtomography of the interior microstructure of chocolate
NASA Astrophysics Data System (ADS)
Lügger, Svenja K.; Wilde, Fabian; Dülger, Nihan; Reinke, Lennart M.; Kozhar, Sergii; Beckmann, Felix; Greving, Imke; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan
2016-10-01
The structure of chocolate, a multicomponent food product, was analyzed using microtomography. Chocolate consists of a semi-solid cocoa butter matrix and a dense network of suspended particles. A detailed analysis of the microstructure is needed to understand mass transport phenomena. Transport of lipids from e.g. a filling or liquid cocoa butter is responsible for major problems in the confectionery industry such as formation of chocolate bloom, which is the formation of visible white spots or a grayish haze on the chocolate surface and leads to consumer rejections and thus large sales losses for the confectionery industry. In this study it was possible to visualize the inner structure of chocolate and clearly distinguish the particles from the continuous phase by taking advantage of the high density contrast of synchrotron radiation. Consequently, particle arrangement and cracks within the sample were made visible. The cracks are several micrometers thick and propagate throughout the entire sample. Images of pure cocoa butter, chocolate without any particles, did not show any cracks and thus confirmed that cracks are a result of embedded particles. They arise during the manufacturing process. Thus, the solidification process, a critical manufacturing step, was simulated with finite element methods in order to understand crack formation during this step. The simulation showed that cracks arise because of significant contraction of cocoa butter, the matrix phase, without any major change of volume of the suspended particles. Tempering of the chocolate mass prior to solidification is another critical step for a good product quality. We found that samples which solidified in an uncontrolled manner are less homogeneous than tempered samples. In summary, our study visualized for the first time the inner microstructure of tempered and untempered cocoa butter as well as chocolate without sample destruction and revealed cracks, which might act as transport pathways.
NASA Technical Reports Server (NTRS)
Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.
2014-01-01
A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.
Dielectric cracking produced by electromigration in microelectronic interconnects
NASA Astrophysics Data System (ADS)
Chiras, S.; Clarke, D. R.
2000-12-01
The development of stress during electromigration along Al lines, constrained within a dielectric in a coplanar test configuration, is measured. It is shown that, above a certain threshold current density, cracking of the dielectric is induced in the vicinity of the anode. Cracking of the dielectric leads to loss of mechanical constraint on the aluminum conductor which, in turn, leads to increases in electrical resistance with continued current flow. The electromigration-induced stresses are determined from the measured frequency shifts induced in a novel ruby strain sensor embedded immediately beneath the interconnect line on a sapphire substrate. The transparency of the sapphire substrate also facilitated the observation of a hitherto unreported form of dielectric cracking, namely cracking from the interconnect along internal interfaces. The observations of dielectric cracking are in agreement with a recent fracture mechanics model. Analysis of the stress data, together with the results of finite element calculations of the strain energy release rate for crack extension, gives a quantitative estimate of the effective valence Z*(=1.3±0.2) for aluminum.
Thermally induced transverse cracking in graphite-epoxy cross-ply laminates
NASA Technical Reports Server (NTRS)
Adams, D. S.; Bowles, D. E.; Herakovich, C. T.
1986-01-01
Thermally induced transverse cracking in T300/5208 graphite-epoxy cross-ply laminates was investigated experimentally and theoretically. The six laminate configurations studied were: 0/90(3)s, 0(2)/90(2)s, 0(3)/90s, 90/0(3)s, 90(2)/0(2)s, and 90(3)/0s. The thermal load required to initiate transverse cracking was determined experimentally and compared to a theoretical prediction. Experimental results for the accumulation of transverse cracks under cyclic thermal loading between - 250 and 250 F for up to 500 thermal cycles are presented. The calculated in situ transverse-lamina strength was determined to be at least 1.9 times the unidirectional-lamina transverse tensile strength. All laminate configurations exhibited an increase in crack density with increasing thermal cycles.
Matrix cracking with irregular fracture fronts as observed in fiber reinforced ceramic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, K.X.; Yeh, C.P.; Wyatt, K.W.
1998-01-01
As a result of matrix cracking in fiber reinforced composites, fracture planforms assume a wide variation of profiles due to the fact that fiber bridging strongly affects the behavior of local crack fronts. This observation raises the question on the legitimacy of commonly used penny-shaped crack solutions when applied to fiber reinforced composites. Accordingly, investigation of the effects of fracture front profiles on mechanical responses is the thrust of this paper. The authors start with the solution of a penny-shaped crack in a unidirectional, fiber reinforced composite, which demonstrates necessity of considering wavy fracture fronts in fiber reinforced composites. Amore » theoretical framework for fiber reinforced composites with irregular fracture fronts due to matrix cracking is then established via a micromechanics model. The difference between small crack-size matrix cracking and large crack-size matrix cracking is investigated in detail. It is shown that the bridging effect is insignificant when matrix crack size is small and solution of effective property are obtained using Mori-Tanaka`s method by treating cracks and reinforcing fibers as distinct, but interacting phases. When the crack size becomes large, the bridging effects has to be taken into consideration. With bridging tractions obtained in consistency with the micromechanics solution, and corresponding crack energy backed out, the effective properties are obtained through a modification of standard Mori-Tanaka`s treatment of multiphase composites. Analytical solutions show that the generalization of a crack density of a penny-shaped planform is insufficient in describing the effective responses of fiber-reinforced composites with matrix cracking. Approximate solutions that account for the effects of the irregularity of crack planforms are given in closed forms for several irregular crack planforms, including cracks of cross rectangle, polygon and rhombus.« less
NASA Astrophysics Data System (ADS)
Yeh, Chun-Ping; Huang, Jiunn-Yuan
2018-04-01
Low-alloy steels used as structural materials in nuclear power plants are subjected to cyclic stresses during power plant operations. As a result, cracks may develop and propagate through the material. The alternating current potential drop technique is used to measure the lengths of cracks in metallic components. The depth of the penetration of the alternating current is assumed to be small compared to the crack length. This assumption allows the adoption of the unfolding technique to simplify the problem to a surface Laplacian field. The numerical modelling of the electric potential and current density distribution prediction model for a compact tension specimen and the unfolded crack model are presented in this paper. The goal of this work is to conduct numerical simulations to reduce deviations occurring in the crack length measurements. Numerical simulations were conducted on AISI 4340 low-alloy steel with different crack lengths to evaluate the electric potential distribution. From the simulated results, an optimised position for voltage measurements in the crack region was proposed.
Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction
NASA Technical Reports Server (NTRS)
Smith, Craig; Morscher, Gregory; Xia, Zhenhai
2009-01-01
Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.
NASA Technical Reports Server (NTRS)
Ou, Danny; Trifu, Roxana; Caggiano, Gregory
2013-01-01
A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.
Self-similar crack-generation effects in the fracture process in brittle materials
NASA Astrophysics Data System (ADS)
Hilarov, V. L.
1998-07-01
Using acoustic-emission data banks we have computed time and space correlation functions for the purpose of investigation of crack-propagation self-similarity during the fracture process in brittle materials. It is shown that the whole fracture process may be represented as a two-stage process. In the first stage, the crack propagation is uniform and uncorrelated in space, having a time spectral density of the white-noise type and a correlation fractal dimension approximately equal to that of 3D Euclidean space. In the second stage, this fractal dimension decreases significantly, reaching the value of 2.2-2.4, characteristic for the fracture surfaces, while the time spectral density exhibits a significant low-frequency increase becoming of 0965-0393/6/4/002/img1-noise type. The resulting fractal shows no multifractal behaviour, appearing to be a single fractal.
NASA Technical Reports Server (NTRS)
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
NASA Astrophysics Data System (ADS)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo
2018-04-01
The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...
2018-04-10
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
NASA Astrophysics Data System (ADS)
Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi
2015-01-01
In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.
NASA Astrophysics Data System (ADS)
Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.
In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramkrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramakrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
NASA Astrophysics Data System (ADS)
Husseini, Naji Sami
Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time,
Zhao, Youxuan; Li, Feilong; Cao, Peng; Liu, Yaolu; Zhang, Jianyu; Fu, Shaoyun; Zhang, Jun; Hu, Ning
2017-08-01
Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S 0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S 0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S 0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates. Copyright © 2017 Elsevier B.V. All rights reserved.
The fracture criticality of crustal rocks
NASA Astrophysics Data System (ADS)
Crampin, Stuart
1994-08-01
The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before and after earthquakes, amongst others.
Sheng, Yinying; Hua, Youlu; Zhao, Xueyang; Chen, Lianxi; Zhou, Hanyu; Wang, James; Berndt, Christopher C.; Li, Wei
2018-01-01
The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT) metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others). The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted. PMID:29364844
Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625
NASA Astrophysics Data System (ADS)
Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.
2016-02-01
The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.
Carbon nanotube-embedded advanced aerospace composites for early-stage damage sensing
NASA Astrophysics Data System (ADS)
Nataraj, Latha; Coatney, Michael; Cain, Jason; Hall, Asha
2018-03-01
Fiber reinforced polymer (FRP) composites featuring outstanding fatigue performance, high specific stiffness and strength, and low density have evolved as critical structural materials in aerospace applications. Microscale damage such as fiber breakage, matrix cracking, and delamination could occur in layered composites compromising structural integrity, emphasizing the critical need to monitor structural health. Early damage detection would lead to enhanced reliability, lifetime, and performance while minimizing maintenance time, leading to enormous scientific and technical interest in realizing physically stable, quick responding, and cost effective strain sensing materials, devices, and techniques with high sensitivity over a broad range of the practical strain spectrum. Today's most commonly used strain sensing techniques are metal foil strain gauges and optical fiber sensors. Metal foil gauges offer high stability and cost-effectiveness but can only be surface-mounted and have a low gauge factor. Optical fibers require expensive instrumentation, are mostly insensitive to cracks parallel to the fiber orientation and may lead to crack initiation as the diameter is larger than that of the reinforcement fibers. Carbon nanotubes (CNTs) have attracted much attention due to high aspect ratio and superior electrical, thermal, and mechanical properties. CNTs embedded in layered composites have improved performance. A variety of CNT architectures and configurations have shown improved piezoresistive behavior and stability for sensing applications. However, scaling up and commercialization remain serious challenges. The current study investigates a simple, cost effective and repeatable technique for highly sensitive, stable, linear and repeatable strain sensing for damage detection by integrating CNT laminates into composites.
NASA Technical Reports Server (NTRS)
deGroh, Kim; Gaier, James R.; Hall, Rachelle L.; Norris, Mary Jo; Espe, Matthew P.; Cato, Daveen R.
1999-01-01
Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene) thermal control material on the Hubble Space Telescope (HST) is degrading in the space environment. Teflon(Registered Trademark) FEP thermal control blankets (space-facing FEP) retrieved during the first servicing mission (SM1) were found to be embrittled on solar facing surfaces and contained microscopic cracks. During the second servicing mission (SM2) astronauts noticed that the FEP outer layer of the multi-layer insulation (MLI) covering the telescope was cracked in many locations around the telescope. Large cracks were observed on the light shield, forward shell and equipment bays. A tightly curled piece of cracked FEP from the light shield was retrieved during SM2 and was severely embrittled, as witnessed by ground testing. A Failure Review Board (FRB) was organized to determine the mechanism causing the MLI degradation. Density, x-ray crystallinity and solid state nuclear magnetic resonance (NMR) analyses of FEP retrieved during SM1 were inconsistent with results of FEP retrieved during SM2. Because the retrieved SM2 material curled while in space, it experienced a higher temperature extreme during thermal cycling, estimated at 200 C, than the SM1 material, estimated at 50 C. An investigation on the effects of heating pristine and FEP exposed on HST was therefore conducted. Samples of pristine. SM1, and SM2 FEP were heated to 200 C and evaluated for changes in density and morphology. Elevated temperature exposure was found to have a major impact on the density of the retrieved materials. Characterization of polymer morphology of as-received and heated FEP samples by NMR provided results that were consistent with the density results. These findings have provided insight to the damage mechanisms of FEP in the space environment.
Experimental micromechanical approach to failure process in CFRP cross-ply laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, N.; Ogihara, S.; Kobayashi, A.
The microscopic failure process of three different types of cross-ply laminates, (0/90{sub n}/0) (n = 4, 8, 12), was investigated at R.T. and 80 C. Progressive damage parameters, the transverse crack density and the delamination ratio, were measured. A simple modified shear-lag analysis including the thermal residual strains was conducted to predict the transverse crack density as a function of laminate strain, considering the constraint effect, as well as the strength distribution of the transverse layer. The analysis was also extended to the system containing delamination to predict the delamination length. A prediction was also presented for the transverse crackmore » density including the effect of the delamination growth. The prediction showed good agreement with the experimental results.« less
NASA Astrophysics Data System (ADS)
Rashidi Moghaddam, M.; Ayatollahi, M. R.; Berto, F.
2018-01-01
The values of mode II fracture toughness reported in the literature for several rocks are studied theoretically by using a modified criterion based on strain energy density averaged over a control volume around the crack tip. The modified criterion takes into account the effect of T-stress in addition to the singular terms of stresses/strains. The experimental results are related to mode II fracture tests performed on the semicircular bend and Brazilian disk specimens. There are good agreements between theoretical predictions using the generalized averaged strain energy density criterion and the experimental results. The theoretical results reveal that the value of mode II fracture toughness is affected by the size of control volume around the crack tip and also the magnitude and sign of T-stress.
Trends in long-period seismicity related to magmatic fluid compositions
Morrissey, M.M.; Chouet, B.A.
2001-01-01
Sound speeds and densities are calculated for three different types of fluids: gas-gas mixture; ash-gas mixture; and bubbly liquid. These fluid properties are used to calculate the impedance contrast (Z) and crack stiffness (C) in the fluid-driven crack model (Chouet: J. Geophys. Res., 91 (1986) 13,967; 101 (1988) 4375; A seismic model for the source of long-period events and harmonic tremor. In: Gasparini, P., Scarpa, R., Aki, K. (Eds.), Volcanic Seismology, IAVCEI Proceedings in Volcanology, Springer, Berlin, 3133). The fluid-driven crack model describes the far-field spectra of long-period (LP) events as modes of resonance of the crack. Results from our calculations demonstrate that ash-laden gas mixtures have fluid to solid density ratios comparable to, and fluid to solid velocity ratios lower than bubbly liquids (gas-volume fractions 20% gas-volume fraction yields values of Q-1r similar to those for a rectangular crack. As with gas-gas and ash-gas mixtures, an increase in mass fraction narrows the bandwidth of the dominant mode and shifts the spectra to lower frequencies. Including energy losses due to dissipative processes in a bubbly liquid increases attenuation. Attenuation may also be higher in ash-gas mixtures and foams if the effects of momentum and mass transfer between the phases were considered in the calculations. ?? 2001 Elsevier Science B. V. All rights reserved.
Curvature in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Li, Wenxia; Hasinska, Kathy; Seabaugh, Matt; Swartz, Scott; Lannutti, John
At this point in history, curvature is inherent to the laminated components that comprise solid oxide fuel cells (SOFCs). Surprisingly, however, this fact has never been previously quantified in the literature. In addition, potential curvature changes associated with NiO reduction and re-oxidation during operation have not been investigated. In this report, an optical profilometer was employed to non-destructively quantify the surface curvature or cracking behavior observed on a large scale in industrially manufactured cells. This provides insights into the challenges that the component materials face as well as additional appreciation for why, in spite of a concerted effort to commercialize SOFC power generation, all currently manufactured SOFC stacks fail. Our results demonstrate that cracked electrolyte areas (caused by differential sintering) are flatter than uncracked regions. The height of the electrolyte surface ranged from 86 to 289 μm above the baseline following sintering. Reduction typically results in increases in curvature of up to 214 μm. Initial crack density appears to affect curvature evolution during reduction; the higher the crack density, the smaller the curvature increase following reduction at 600 °C. In general, however, we observed that the electrolyte layer is remarkably resistant to further cracking during these typographic changes. Following oxidation at 750 °C, large changes in curvature (up to 280 μm) are noted that appear to be related to the strength of the bond between the electrolyte and the underlying anode.
Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature
NASA Astrophysics Data System (ADS)
Gupta, Pradeep; Yedla, Natraj
2017-12-01
In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.
Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review
NASA Astrophysics Data System (ADS)
Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.
2017-12-01
The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.
Creep Behavior and Durability of Cracked CMC
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Fox, Dennis; Smith, Craig
2015-01-01
To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori
2015-02-01
In recent years, it has been determined that Inconel X-750 CANDU spacers have lost strength and material ductility following irradiation in reactor. The irradiated fracture behaviour of ex-service material was also found to be entirely intergranular. The heavily thermalized flux spectrum in a CANDU reactor results in transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n,α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Metallographicmore » examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. He bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips give direct evidence linking crack propagation with grain boundary He bubbles.« less
NASA Astrophysics Data System (ADS)
Stepanova, L. V.
2017-12-01
Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.
The Role of Retained Austenite on the Mechanical Properties of a Low Carbon 3Mn-1.5Ni Steel
NASA Astrophysics Data System (ADS)
Chen, Jun; Zhang, Wei-na; Liu, Zhen-yu; Wang, Guo-dong
2017-12-01
The present studies focus on the correlation between retained austenite characteristics and the cryogenic temperature Charpy impact toughness, strength, and plasticity. The steels with different volume fractions and stabilities of retained austenite were prepared by quenching followed by intercritical heat treatment, and the microstructure was characterized using scanning electron microscope, electron back-scattered diffraction, and X-ray diffraction. The grain size, dislocation density, crack initiation energy, and crack propagation energy were quantified. It has been demonstrated that the volume fraction of retained austenite plays a significant role in the reduction of the measured yield strength and the effect of tempered martensite/ferrite matrix on cryogenic temperature impact toughness can be assumed to be similar due to the similar grain size, dislocation density and element content in solution for different heat treatments. It was found that the stability of retained austenite plays a determining role in the increase of cryogenic temperature impact toughness. Furthermore, the dependence of the crack propagation energy on retained austenite is much greater than that of the crack initiation energy. Generally, an excellent UTS × TEL does not produce good cryogenic temperature impact toughness.
Topography, surface features, and flooding of Rogers Lake playa, California
Dinehart, Randal L.; McPherson, Kelly R.
1998-01-01
Rogers Lake is a desert playa used as a military airport for Edwards Air Force Base in the Antelope Valley of southern California. Previous measurements of land subsidence and ground-water levels in the study area indicated that ground-water pumping induced tensional stresses in the playa, which were sporadically relieved through the formation of long cracks. Drying of the sediments beneath the playa also may have accelerated the natural formation of giant desiccation polygons. When water flows across the playa, the cracks erode into fissures of sufficient width and depth to endanger traffic on the playa. Topographic surveys of the playa were made to derive a contour map that would allow examination of erosive flow paths. Crack networks were surveyed in selected areas during 1995 and compared with cracks visible in aerial photographs taken in 1990. Crack networks remained visible in their positions following several inundations of the playa. The density of the crack networks increased in all of the selected areas.
NASA Astrophysics Data System (ADS)
Chouet, Bernard
1988-05-01
A dynamic source model is presented, in which a three-dimensional crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area ΔS of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness, C = (b/μ)(L/d), and viscous damping loss, F = (12ηL)/(ρƒd2α), where b is the bulk modulus, η is the viscosity, ρƒ is the density of the fluid, μ is the rigidity, α is the compressional velocity of the solid, L is the crack length, and d is the crack thickness. The first parameter characterizes the ability of the crack to vibrate and shapes the spectral signature of the source, and the second quantifies the effect of fluid viscosity on the duration of resonance. Resonance is sustained by a very slow wave trapped in the fluid-filled crack. This guided wave, called the crack wave, is similar to the tube wave propagating in a fluid-filled borehole; it is inversely dispersive, showing a phase velocity that decreases with increasing wavelength, and its wave speed is always lower than the acoustic velocity of the fluid, decreasing rapidly as the crack stiffness increases. The source spectrum shows many sharp peaks characterizing the individual modes of vibration of the crack; the variation of spectral shape, both in the number and width of peaks, is surprisingly complex, reflecting the interference between the lateral and longitudinal modes of resonance, as well as nodes for these modes. The far-field spectrum is marked by narrow-band dominant and subdominant peaks that reflect the interaction of the various source modes. The frequency of the dominant spectral peak radiated by the source is independent of the radiation direction. The frequency, bandwidth, and spacing of the resonant peaks are strongly dependent on the crack stiffness, larger values of the stiffness factor shifting these peaks to lower frequencies and decreasing their bandwidth. The excitation of a particular mode depends on the position of the trigger and on the extent of the crack surface affected by the pressure transient. Fluid viscosity decreases the amplitudes of the main spectral peaks, smears out the finer structure of the spectrum, and greatly reduces the duration of the radiated signal. The energy loss by radiation is stronger for high frequencies, producing a seismic signature that is marked by a high-frequency content near the onset of the signal and dominated by a longer-period component of much longer duration in the signal coda. Such signature is in harmony with those displayed by long-period events observed on active volcanoes and in hydrofracture experiments. The very low velocity which is possible in a crack with high stiffness (C ≥ 100) also provides an attractive explanation for very long period tremor, such as type 2 tremor at Aso volcano, Japan, without the requirement of an unrealistically large magma container. The standing wave pattern set up on the crack surface by the sustained resonance in the fluid is observable in the near field of the crack, suggesting that the location and extent of the source may be estimated from the mapping of the pattern of nodes and antinodes seen in its vicinity. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the latter representing the excitation due to more complex forcing functions.
Critical Issues in Hydrogen Assisted Cracking of Structural Alloys
2006-01-01
does not precipitate ? Does the HEAC mechanism explain environment-assisted (stress corrosion ) crack growth in high strength alloys stressed in moist...superalloys were cracked in high pressure (100-200 M~a) H2, while maraging and tempered-martensitic steels were cracked in low pressure (-100 kPa) H2...of IRAC in ultra-high strength AerMet®l00 steel demonstrates the role of crack tip stress in promoting H accumulation and embrittlement. The cracking
TOPSIS based parametric optimization of laser micro-drilling of TBC coated nickel based superalloy
NASA Astrophysics Data System (ADS)
Parthiban, K.; Duraiselvam, Muthukannan; Manivannan, R.
2018-06-01
The technique for order of preference by similarity ideal solution (TOPSIS) approach was used for optimizing the process parameters of laser micro-drilling of nickel superalloy C263 with Thermal Barrier Coating (TBC). Plasma spraying was used to deposit the TBC and a pico-second Nd:YAG pulsed laser was used to drill the specimens. Drilling angle, laser scan speed and number of passes were considered as input parameters. Based on the machining conditions, Taguchi L8 orthogonal array was used for conducting the experimental runs. The surface roughness and surface crack density (SCD) were considered as the output measures. The surface roughness was measured using 3D White Light Interferometer (WLI) and the crack density was measured using Scanning Electron Microscope (SEM). The optimized result achieved from this approach suggests reduced surface roughness and surface crack density. The holes drilled at an inclination angle of 45°, laser scan speed of 3 mm/s and 400 number of passes found to be optimum. From the Analysis of variance (ANOVA), inclination angle and number of passes were identified as the major influencing parameter. The optimized parameter combination exhibited a 19% improvement in surface finish and 12% reduction in SCD.
Corrosion of NiTi Wires with Cracked Oxide Layer
NASA Astrophysics Data System (ADS)
Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr
2014-07-01
Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Toloczko, Mychailo B.; Olszta, Matthew J.
High chromium, nickel-base Alloy 690 exhibits an increased resistance to stress corrosion cracking (SCC) in pressurized water reactor (PWR) primary water environments over lower chromium alloy 600. As a result, Alloy 690 has been used to replace Alloy 600 for steam generator tubing, reactor pressure vessel nozzles and other pressure boundary components. However, recent laboratory crack-growth testing has revealed that heavily cold-worked Alloy 690 materials can become susceptible to SCC. To evaluate reasons for this increased SCC susceptibility, detailed characterizations have been performed on as-received and cold-worked Alloy 690 materials using electron backscatter diffraction (EBSD) and Vickers hardness measurements. Examinationsmore » were performed on cross sections of compact tension specimens that were used for SCC crack growth rate testing in simulated PWR primary water. Hardness and the EBSD integrated misorientation density could both be related to the degree of cold work for materials of similar grain size. However, a microstructural dependence was observed for strain correlations using EBSD and hardness which should be considered if this technique is to be used for gaining insight on SCC growth rates« less
Elliott, R.O.; Gschneidner, K.A. Jr.
1962-07-10
A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)
A two scale analysis of tight sandstones
NASA Astrophysics Data System (ADS)
Adler, P. M.; Davy, C. A.; Song, Y.; Troadec, D.; Hauss, G.; Skoczylas, F.
2015-12-01
Tight sandstones have a low porosity and a very small permeability K. Available models for K do not compare well with measurements. These sandstones are made of SiO_2 grains, with a typical size of several hundreds of micron. These grains are separated by a network of micro-cracks, with sizes ranging between microns down to tens of nm. Therefore, the structure can be schematized by Voronoi polyhedra separated by plane and permeable polygonal micro-cracks. Our goal is to estimate K based on a two scale analysis and to compare the results to measurements. For a particular sample [2], local measurements on several scales include FIB/SEM [3], CMT and 2D SEM. FIB/SEM is selected because the peak pore size given by Mercury Intrusion Porosimetry is of 350nm. FIB/SEM imaging (with 50 nm voxel size) identifies an individual crack of 180nm average opening, whereas CMT provides a connected porosity (individual crack) for 60 nm voxel size, of 4 micron average opening. Numerical modelling is performed by combining the micro-crack network scale (given by 2D SEM) and the 3D micro-crack scale (given by either FIB/SEM or CMT). Estimates of the micro-crack density are derived from 2D SEM trace maps by counting the intersections with scanlines, the surface density of traces, and the number of fracture intersections. K is deduced by using a semi empirical formula valid for identical, isotropic and uniformly distributed fractures [1]. This value is proportional to the micro-crack transmissivity sigma. Sigma is determined by solving the Stokes equation in the micro-cracks measured by FIB/SEM or CMT. K is obtained by combining the two previous results. Good correlation with measured values on centimetric plugs is found when using sigma from CMT data. The results are discussed and further research is proposed. [1] Adler et al, Fractured porous media, Oxford Univ. Press, 2012. [2] Duan et al, Int. J. Rock Mech. Mining Sci., 65, p75, 2014. [3] Song et al, Marine and Petroleum Eng., 65, p63, 2015.
Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.
Zhou, Piao; Zhou, Jianqiu; Zhu, Yongwei; Jiang, E; Wang, Zikun
2018-04-01
A theoretical model to explore the effect on crack initiation of nanotwinned materials was proposed based on the accumulation of dislocations at twin boundaries. First, a critical cracking initiation condition was established considering the number of dislocations pill-up at TBs, grain size and twin layer thickness, and a semi-quantitative relationship between the crystallographic orientation and the stacking fault energy was built. In addition, the number of dislocations pill-up was described by introducing the theory of strain gradient. Based on this model, the effects of grain size and twin lamellae thickness on dislocation density and crack initiation at twin boundaries were also discussed. The simulation results demonstrated that the crack initiation resistance can be improved by decreasing the grain size and increasing the twin lamellae, which keeps in agreement with recent experimental findings reported in the literature.
Development of moldable carbonaceous materials for ablative rocket nozzles.
NASA Technical Reports Server (NTRS)
Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.
1972-01-01
Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2001-01-01
Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-05-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-04-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
NASA Astrophysics Data System (ADS)
Savage, M. K.; Ferrazzini, V.; Peltier, A.; Rivemale, E.; Mayor, J.; Schmid, A.; Brenguier, F.; Massin, F.; Got, J.-L.; Battaglia, J.; DiMuro, A.; Staudacher, T.; Rivet, D.; Taisne, B.; Shelley, A.
2015-05-01
The Piton de la Fournaise volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use a permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms, and ambient noise correlation analysis of surface wave velocities and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations, and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14 h period, allowing high time resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.
Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide
2016-02-05
Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. Copyright © 2015 Elsevier B.V. All rights reserved.
Damage instability and Earthquake nucleation
NASA Astrophysics Data System (ADS)
Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.
2017-12-01
Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.
Fracture behavior of 20% Nb particulate reinforced alumina composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, S.; Biner, S.B.; Buck, O.
1993-11-01
The composites consist of alumina matrix with 0.05 wt % MgO and 20 Vol % Nb with an average particle size of 30 to 100 microns produced by dry mixing and sintering to near their theoretical densities. Fracture toughness tests were carried out in three point bending on chevron notched samples. Results indicate that R-curve of the composites exhibited more than 300% increase in crack growth resistance compared to crack growth resistance of alumina produced with the identical procedures. Crack growth resistance curve of the composites increased with increasing Nb particle size. Metallorgraph indicated that failure of Nb particles inmore » crack path ranges from full interface separation without any significant deformation of Nb particles to cleavage failure without any evidence of interface separation.« less
Resolved shear stress intensity coefficient and fatigue crack growth in large crystals
NASA Technical Reports Server (NTRS)
Chen, QI; Liu, Hao-Wen
1988-01-01
Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.
Pride, Steven R.; Berryman, James G.; Commer, Michael; ...
2016-08-30
Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pride, Steven R.; Berryman, James G.; Commer, Michael
Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less
Crack healing in cross-ply composites observed by dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Nielsen, Christian; Nemat-Nasser, Sia
2015-03-01
Cross-ply composites with healable polymer matrices are characterized using dynamic mechanical analysis (DMA). The [90,0]s samples are prepared by embedding layers of unidirectional glass or carbon fibers in 2MEP4FS, a polymer with thermally reversible covalent cross-links, which has been shown to be capable of healing internal cracks and fully recovering fracture toughness when the crack surfaces are kept in contact. After fabrication, cracks in the composites' transverse plies are observed due to residual thermal stresses introduced during processing. Single cantilever bending DMA measurements show the samples exhibit periods of increasing storage moduli with increasing temperature. These results are accurately modeled as a one-dimensional composite, which captures the underlying physics of the phenomenon. The effect of cracks on the stiffness is accounted for by a shear-lag model. The predicted crack density of the glass fiber composite is shown to fall within a range observed from microscopy images. Crack healing occurs as a function of temperature, with chemistry and mechanics-based rationales given for the onset and conclusion of healing. The model captures the essential physics of the phenomenon and yields results in accord with experimental observations.
Field experiments to determine wave propagation principles and mechanical properties of snow
NASA Astrophysics Data System (ADS)
Simioni, Stephan; Gebhard, Felix; Dual, Jürg; Schweizer, Jürg
2017-04-01
To understand the release of snow avalanches by explosions one needs to know how acoustic waves travel above and within the snowpack. Hitherto, wave propagation was investigated in the laboratory with small samples or in the field in the shock wave region. We developed a measurement system and layout to derive wave attenuation in snow, wave speeds and elastic moduli on small-scale (1-2 m) field experiments to close the gap between the lab scale (0.1 m) and the scale of artificial release (10-100 m). We used solid explosives and hammer blows to create the load and accelerometers to measure the resulting wave within the snowpack. The strong attenuation we observed indicates that we measured the second longitudinal wave which propagates through the pore space. The wave speeds, however, corresponded to the speeds of the first longitudinal wave within the ice skeleton. The elastic moduli were high on the order of several tens of MPa for lower densities (150 kg m-3) and agreed well with earlier lab studies, in particular for the higher densities 250-400 kg m-3). However, the scatter was rather large as expected for in-situ experiments in the layered snow cover. In addition, we measured accelerations during propagation saw test experiments. The propagation of cracks during this type of snow instability test has mainly been studied by analysing the bending of the slab (due to the saw cut) using particle tracking velocimetry. We used the accelerometers to measure crack propagation speeds. The wave speeds were slightly higher for most experiments than reported previously. Furthermore, in some experiments, we encountered to different wave types with one propagating at a higher speed. This finding may be interpreted as the actual crack propagation and the settling of the weak layer (collapse wave). Our results show that field measurements of propagation properties are feasible and that crack propagation as observed during propagation saw tests may involve different processes that need to be further investigated.
Thermal shock behaviour of H and H/He-exposed tungsten at high temperature
NASA Astrophysics Data System (ADS)
Lemahieu, N.; Greuner, H.; Linke, J.; Maier, H.; Pintsuk, G.; Wirtz, M.; Van Oost, G.; Noterdaeme, J.-M.
2016-02-01
Polycrystalline tungsten samples were characterized and exposed to a pure H beam or mixed H/He beam containing 6% He in GLADIS at a surface temperature of 600 °C, 1000 °C, or 1500 °C. After 5400 s of exposure time with a heat flux of 10.5 MW m-2, the total accumulated fluence of 2 × 1025 m-2 was reached. Thereafter, edge localized mode (ELM)-like thermal shocks with a duration of 1 ms and an absorbed power density of 190 MW m-2 and 380 MW m-2 were applied on the samples in JUDITH 1. During the thermal shocks, the base temperature was kept at 1000 °C. The ELM-experiments with the lowest transient power density did not result in any detected damage. The other tests showed the beginning of crack formation for every sample, except the sample pre-exposed with the pure H-beam at 1500 °C in GLADIS. This sample was roughened, but did not show any crack initiation. With exception to the roughened sample, the category of ELM-induced damage for the pre-exposed samples is identical to the reference tests without pre-exposure to a particle flux.
Say, Y; Aksakal, B
2016-06-01
To improve corrosion resistance of metallic implant surfaces, Rex-734 alloy was coated with two different bio-ceramics; single-Hydroxyapatite (HA), double-HA/Zirconia(Zr) and double-Bioglass (BG)/Zr by using sol-gel method. Porous surface morphologies at low crack density were obtained after coating and sintering processes. Corrosion characteristics of coatings were determined by Open circuit potential and Potentiodynamic polarization measurements during corrosion tests. Hardness and adhesion strength of coating layers were measured and their surface morphologies before and after corrosion were characterized by scanning electron microscope (SEM), XRD and EDX. Through the SEM analysis, it was observed that corrosion caused degradation and sphere-like formations appeared with dimples on the coated surfaces. The coated substrates that exhibit high crack density, the corrosion was more effective by disturbing and transmitting through the coating layer, produced CrO3 and Cr3O8 oxide formation. It was found that the addition of Zr provided an increase in adhesion strength and corrosion resistance of the coatings. However, BG/Zr coatings had lower adhesion strength than the HA/Zr coatings, but showed higher corrosion resistance.
Hydrogen Permeability of Polymer Matrix Composites at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Grenoble, Ray W.; Gates, Thomas S
2005-01-01
This paper presents experimental methods and results of an ongoing study of the correlation between damage state and hydrogen gas permeability of laminated composite materials under mechanical strains and thermal loads. A specimen made from IM-7/977-2 composite material has been mechanically cycled at room temperature to induce microcrack damage. Crack density and tensile modulus were observed as functions of number of cycles. Damage development was found to occur most quickly in the off-axis plies near the outside of the laminate. Permeability measurements were made after 170,000 cycles and 430,000 cycles. Leak rate was found to depend on applied mechanical strain, crack density, and test temperature.
Cracks and blisters formed close to a silicon wafer surface by He-H co-implantation at low energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkashin, N., E-mail: nikolay.cherkashin@cemes.fr; Darras, F.-X.; Claverie, A.
2015-12-28
We have studied the effect of reducing the implantation energy towards low keV values on the areal density of He and H atoms stored within populations of blister cavities formed by co-implantation of the same fluence of He then H ions into Si(001) wafers and annealing. Using a variety of experimental techniques, we have measured blister heights and depth from the surface, diameter, areal density of the cracks from which they originate as functions of implantation energy and fluence. We show that there is a direct correlation between the diameters of the cracks and the heights of the associated blisters.more » This correlation only depends on the implantation energy, i.e., only on the depth at which the cracks are located. Using finite element method modeling, we infer the pressure inside the blister cavities from the elastic deformations they generate, i.e., from the height of the blisters. From this, we demonstrate that the gas pressure within a blister only depends on the diameter of the associated crack and not on its depth position and derive an analytical expression relating these parameters. Relating the pressure inside a blister to the respective concentrations of gas molecules it contains, we deduce the areal densities of He and H atoms contained within the populations of blisters. After low-energy implantations (8 keV He{sup +}, 3 keV H{sup +}), all the implanted He and H atoms contribute to the formation of the blisters. There is no measurable exo-diffusion of any of the implanted gases, in contrast to what was assumed at the state of the art to explain the failure of the Smart-Cut technology when using very low energy ion implantation for the fabrication of ultra-thin layers. Alternative explanations must be investigated.« less
Mathematical model governing laser-produced dental cavity
NASA Astrophysics Data System (ADS)
Yilbas, Bekir S.; Karatoy, M.; Yilbas, Z.; Karakas, Eyup S.; Bilge, A.; Ustunbas, Hasan B.; Ceyhan, O.
1990-06-01
Formation of dental cavity may be improved by using a laser beam. This provides nonmechanical contact, precise location of cavity, rapid processing and increased hygienity. Further examination of interaction mechanism is needed to improve the application of lasers in density. Present study examines the tenperature rise and thermal stress development in the enamel during Nd YAG laser irradiation. It is found that the stresses developed in the enamel is not sufficiently high enough to cause crack developed in the enamel.
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Development of indirect ring tension test for fracture characterization of asphalt mixtures
NASA Astrophysics Data System (ADS)
Zeinali Siavashani, Alireza
Low temperature cracking is a major distress in asphalt pavements. Several test configurations have been introduced to characterize the fracture properties of hot mix (HMA); however, most are considered to be research tools due to the complexity of the test methods or equipment. This dissertation describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be deployed at the Department of Transportation level. The primary advantages of this innovative and yet practical test include: relatively large fracture surface test zone, simplicity of the specimen geometry, widespread availability of the required test equipment, and ability to test laboratory compacted specimens as well as field cores. Numerical modeling was utilized to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. To develop the test procedure, a laboratory study was conducted to determine the optimal test parameters for HMA material. An experimental plan was then developed to evaluate the capability of the test in capturing the variations in the mix properties, asphalt pavement density, asphalt material aging, and test temperature. Five plant-produced HMA mixtures were used in this extensive study, and the results revealed that the IRT fracture test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Furthermore, an analytical model was developed based on the viscoelastic properties of HMA to estimate the maximum allowable crack size for the pavements in the experimental study. This analysis indicated that the low-temperature cracking potential of the asphalt mixtures is highly sensitive to the fracture toughness and brittleness of the HMA material. Additionally, the IRT fracture test data seemed to correlate well with the data from the distress survey which was conducted on the pavements after five years of service. The maximum allowable crack size analysis revealed that a significant improvement could be realized in terms of the pavements performance if the HMA were to be compacted to a higher density. Finally, the IRT fracture test data were compared to the results of the disk-shaped compact [DC(t)] test. The results of the two tests showed a strong correlation; however, the IRT test seemed to be more repeatable. KEYWORDS: Asphalt Pavement, Low-Temperature Cracking, Fracture Mechanics, Material Characterization, Laboratory Testing.
NASA Astrophysics Data System (ADS)
Caputo, Riccardo; Hancock, Paul L.
1998-11-01
It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.
Detection of Fatigue Cracks at Rivets with Self-Nulling Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min
1994-01-01
A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Sievers, K. W.; Huang, J.; Demond, A. H.
2012-12-01
The subsurface storage and transport of a Dense Non-Aqueous Phase Liquid (DNAPL) was evaluated using a numerical model. DNAPLs are organic liquids comprised of slightly water-soluble chemicals or chemical mixtures that have a density greater than water. DNAPLs may pool atop low permeability layers upon entering the subsurface. Even with the removal or destruction of most pooled DNAPL mass, small amounts of the remaining contaminant, which had been transported into the low permeability layer, can dissolve into flowing groundwater and continue to act as a contamination source for decades. Recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more mass is stored in the low permeability zones than can be explained by diffusion alone. Observations and experimental evidence indicate that cracks in low permeability layers may have apertures of sufficient size to allow entry of separate phase DNAPL. In this study, a numerical flow and transport model is employed using a dual domain construct (high and low permeability layers) to investigate the impact of DNAPL entry into cracked low permeability zones on dissolved contaminant plume evolution and persistence. This study found that DNAPL within cracks can significantly contribute to down gradient dissolved phase concentrations; however, the extent of this contribution is very dependent upon the rate of DNAPL dissolution. Given these findings, remediation goals may be difficult to meet if source remediation strategies are used which do not account for the effect of cracking upon contaminant transport and storage in low permeability layers.
Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling
NASA Astrophysics Data System (ADS)
Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang
2018-05-01
This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.
NASA Astrophysics Data System (ADS)
Rueda Velasquez, Rosa Imelda
The chemical building blocks that comprise petroleum asphaltenes were determined by cracking samples under conditions that minimized alterations to aromatic and cycloalkyl groups. Hydrogenation conditions that used tetralin as hydrogen-donor solvent, with an iron-based catalyst, allowed asphaltenes from different geological regions to yield 50-60 wt% of distillates (<538°C fraction), with coke yields below 10 wt%. Control experiments with phenanthrene and 5alpha-cholestane confirmed low hydrogenation catalytic activity, and preservation of the cycloalkyl structures. Quantitative recovery of cracking products and characterization of the distillates, by gas chromatography-field ionization--time of flight high resolution mass spectrometry, displayed remarkable similarity in molecular composition for the different asphaltenes. Paraffins and 1-3 ring aromatics were the most abundant building blocks. The diversity of molecules identified, and the high yield of paraffins were consistent with high heterogeneity and complexity of molecules, built up by smaller fragments attached to each other by bridges. The sum of material remaining as vacuum residue and coke was in the range of 35-45 wt%; this total represents the maximum amount of large clusters in asphaltenes that could not be converted to lighter compounds under the evaluated cracking conditions. These analytical data for Cold Lake asphaltenes were transformed into probability density functions that described the molecular weight distributions of the building blocks. These distributions were input for a Monte Carlo approach that allowed stochastic construction of asphaltenes and simulation of their cracking reactions to examine differences in the distributions of products associated to the molecular topology. The construction algorithm evidenced that a significant amount of asphaltenes would consist of 3-5 building blocks. The results did not show significant differences between linear and dendritic molecular architectures, but suggested that dendritic molecules would experience slower reaction rates as they required more breakages to reach a given yield of distillates. Thermal cracking of asphaltenes in heavy oils and bitumens can dramatically reduce viscosity, enabling pipeline transportation with less solvent addition. The viscosities of the products from visbreaking reactions of two different heavy oils were modeled with lumped kinetics based on boiling point pseudo-components, and with the estimation of their individual fluid properties. The model was tuned with experimental viscosity data, and provided estimations of viscosities at different temperatures with absolute average deviations lower than 31%.
Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam
NASA Astrophysics Data System (ADS)
Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian
2017-09-01
The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker
The constitutive behaviors and failure processes of brittle materials under far-field compressive loading are studied in this work. Several approaches are used: experiments to study the compressive failure behavior of ceramics, design of experimental techniques by means of finite element simulations, and the development of micro-mechanical damage models to analyze and predict mechanical response of brittle materials under far-field compression. Experiments have been conducted on various ceramics, (primarily on a transparent polycrystalline ceramic, aluminum oxynitride or AlON) under loading rates ranging from quasi-static (˜ 5X10-6) to dynamic (˜ 200 MPa/mus), using a servo-controlled hydraulic test machine and a modified compression Kolsky bar (MKB) technique respectively. High-speed photography has also been used with exposure times as low as 20 ns to observe the dynamic activation, growth and coalescence of cracks and resulting damage zones in the specimen. The photographs were correlated in time with measurements of the stresses in the specimen. Further, by means of 3D finite element simulations, an experimental technique has been developed to impose a controlled, homogeneous, planar confinement in the specimen. The technique can be used in conjunction with a high-speed camera to study the in situ dynamic failure behavior of materials under confinement. AlON specimens are used for the study. The statically pre-compressed specimen is subjected to axial dynamic compressive loading using the MKB. Results suggest that confinement not only increases the load carrying capacity, it also results in a non-linear stress evolution in the material. High-speed photographs also suggest an inelastic deformation mechanism in AlON under confinement which evolves more slowly than the typical brittle-cracking type of damage in the unconfined case. Next, an interacting micro-crack damage model is developed that explicitly accounts for the interaction among the micro-cracks in brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.
Closure of fatigue cracks at high strains
NASA Technical Reports Server (NTRS)
Iyyer, N. S.; Dowling, N. E.
1985-01-01
Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.
Thermal Cracking to Improve the Qualification of the Waxes
NASA Astrophysics Data System (ADS)
He, B.; Agblevor, F. A.; Chen, C. G.; Feng, J.
2018-05-01
Thermal cracking of waxes at mild conditions (430-500°C) has been reconsidered as a possible refining technology for the production of fuels and chemicals. In this study, the more moderate thermal cracking was investigated to process Uinta Basin soft waxes to achieve the required pour point so that they can be pumped to the refineries. The best thermal cracking conditions were set 420°C and 20 minutes. The viscosity and density of the final liquid product were respectively achieved as 2.63 mP•s and 0.784 g/cm3 at 40°C. The result of FT-IR analysis of the liquid product indicated that the unsaturated hydrocarbons were produced after thermal cracking, which was corroborated by the 13C NMR spectrum. The GC analysis of the final gas product indicated that the hydrogen was produced; the dehydrogenation reaction was also proved by the elemental analysis and HHV results. The pour point of the final liquid product met the requirement.
Formation and prevention of fractures in sol-gel-derived thin films.
Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy
2015-02-07
Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.
Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite
NASA Astrophysics Data System (ADS)
Rodriguez-Castro, Ramon
2000-11-01
Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated. Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness. The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20--0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration. Appropriate flat specimens with a continuously graded microstructure for fracture mechanics testing were machined from the cast blocks. No published work has reported specimens of similar characteristics (size of the specimens and continuous reinforcement gradation). Fracture mechanics of the composite specimens with the crack parallel to the gradation in elastic properties was studied to investigate the effect of the nonhomogeneous microstructure on fracture toughness. Fatigue pre-cracking was used and a limited amount of fatigue crack propagation data was gathered. Low values of DeltaKth and increased crack growth resistance in the Paris region were observed for the functionally graded composite compared to a homogeneous 20 vol% composite. R-curve (KR) behavior of fracture was investigated in the functionally graded composite. At elevated SiC concentrations (low values of crack length), limited dissipation of energy by restrained plastic deformation of the matrix at the crack tip produced low fracture toughness values. On the contrary, at longer crack lengths SiC content decreased and there was more absorption of energy, resulting in higher fracture toughness values. In addition, the crack growth resistance behavior of the FGM composite was compared to the corresponding behavior of an Al A359/SiCp 20 vol% homogeneous composite. The latter exhibited a declining KR-curve behavior whereas the FGM composite displayed an increasing KR-curve behavior. Consequently, this increasing crack growth resistance behavior displayed by the functionally graded Al A359/SiCp composite shows that tailored changes in the microstructure could circumvent the low toughness inherent in MMCs.
NASA Astrophysics Data System (ADS)
Wang, Xiaonan; Fu, Tingting; Wang, Zhe
2018-04-01
In this paper, we demonstrate a novel method for fabricating metal nanopatterns using cracking to address the limitations of traditional techniques. Parallel crack arrays were created in a polydimethylsiloxane (PDMS) mold using a combination of surface modification and control of strain fields. The elastic PDMS containing the crack arrays was subsequently used as a stamp to prepare nanoscale metal patterns on a substrate by transfer printing. To illustrate the functionality of this technique, we employed the metal patterns as the source and drain contacts of an organic field effect transistor. Using this approach, we fabricated transistors with channel lengths ranging from 70-600 nm. The performance of these devices when the channel length was reduced was studied. The drive current density increases as expected, indicating the creation of operational transistors with recognizable properties.
Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply
NASA Technical Reports Server (NTRS)
VanDerMeer, Frans P.; Davila, Carlos G.
2013-01-01
This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks
Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes
NASA Astrophysics Data System (ADS)
Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong
2016-09-01
A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.
Shock fabrics in fine-grained micrometeorites
NASA Astrophysics Data System (ADS)
Suttle, M. D.; Genge, M. J.; Russell, S. S.
2017-10-01
The orientations of dehydration cracks and fracture networks in fine-grained, unmelted micrometeorites were analyzed using rose diagrams and entropy calculations. As cracks exploit pre-existing anisotropies, analysis of their orientation provides a mechanism with which to study the subtle petrofabrics preserved within fine-grained and amorphous materials. Both uniaxial and biaxial fabrics are discovered, often with a relatively wide spread in orientations (40°-60°). Brittle deformation cataclasis and rotated olivine grains are reported from a single micrometeorite. This paper provides the first evidence for impact-induced shock deformation in fine-grained micrometeorites. The presence of pervasive, low-grade shock features in CM chondrites and CM-like dust, anomalously low-density measurements for C-type asteroids, and impact experiments which suggest CM chondrites are highly prone to disruption all imply that CM parent bodies are unlikely to have remained intact and instead exist as a collection of loosely aggregated rubble-pile asteroids, composed of primitive shocked clasts.
Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.
1999-01-01
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.
Tiled fuzzy Hough transform for crack detection
NASA Astrophysics Data System (ADS)
Vaheesan, Kanapathippillai; Chandrakumar, Chanjief; Mathavan, Senthan; Kamal, Khurram; Rahman, Mujib; Al-Habaibeh, Amin
2015-04-01
Surface cracks can be the bellwether of the failure of any component under loading as it indicates the component's fracture due to stresses and usage. For this reason, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content, hence the crack detection is difficult. Moreover, shallow cracks result in very low contrast image pixels making their detection difficult. For these reasons, studies on pavement crack detection is active even after years of research. In this paper, the fuzzy Hough transform is employed, for the first time to detect cracks on any surface. The contribution of texture pixels to the accumulator array is reduced by using the tiled version of the Hough transform. Precision values of 78% and a recall of 72% are obtaining for an image set obtained from an industrial imaging system containing very low contrast cracking. When only high contrast crack segments are considered the values move to mid to high 90%.
Characterization of crack growth under combined loading
NASA Technical Reports Server (NTRS)
Feldman, A.; Smith, F. W.; Holston, A., Jr.
1977-01-01
Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.
How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††
Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.
2015-01-01
The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672
Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications
NASA Astrophysics Data System (ADS)
Kim, Minseok; Kim, Dong-Joo; Ha, Dogyeong; Kim, Taesung
2016-05-01
Cracks are frequently observed in daily life, but they are rarely welcome and are considered as a material failure mode. Interestingly, cracks cause critical problems in various micro/nanofabrication processes such as colloidal assembly, thin film deposition, and even standard photolithography because they are hard to avoid or control. However, increasing attention has been given recently to control and use cracks as a facile, low-cost strategy for producing highly ordered nanopatterns. Specifically, cracking is the breakage of molecular bonds and occurs simultaneously over a large area, enabling fabrication of nanoscale patterns at both high resolution and high throughput, which are difficult to obtain simultaneously using conventional nanofabrication techniques. In this review, we discuss various cracking-assisted nanofabrication techniques, referred to as crack lithography, and summarize the fabrication principles, procedures, and characteristics of the crack patterns such as their position, direction, and dimensions. First, we categorize crack lithography techniques into three technical development levels according to the directional freedom of the crack patterns: randomly oriented, unidirectional, or multidirectional. Then, we describe a wide range of novel practical devices fabricated by crack lithography, including bioassay platforms, nanofluidic devices, nanowire sensors, and even biomimetic mechanosensors.
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-06-03
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-01-01
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975
Tungsten and beryllium armour development for the JET ITER-like wall project
NASA Astrophysics Data System (ADS)
Maier, H.; Hirai, T.; Rubel, M.; Neu, R.; Mertens, Ph.; Greuner, H.; Hopf, Ch.; Matthews, G. F.; Neubauer, O.; Piazza, G.; Gauthier, E.; Likonen, J.; Mitteau, R.; Maddaluno, G.; Riccardi, B.; Philipps, V.; Ruset, C.; Lungu, C. P.; Uytdenhouwen, I.; EFDA contributors, JET
2007-03-01
For the ITER-like wall project at JET the present main chamber CFC tiles will be exchanged with Be tiles and in parallel a fully tungsten-clad divertor will be prepared. Therefore three R&D programmes were initiated: Be coatings on Inconel as well as Be erosion markers were developed for the first wall of the main chamber. High heat flux screening and cyclic loading tests carried out on the Be coatings on Inconel showed excellent performance, above the required power and energy density. For the divertor a conceptual design for a bulk W horizontal target plate was investigated, with the emphasis on minimizing electromagnetic forces. The design consisted of stacks of W lamellae of 6 mm width that were insulated in the toroidal direction. High heat flux tests of a test module were performed with an electron beam at an absorbed power density up to 9 MW m-2 for more than 150 pulses and finally with increasing power loads leading to surface temperatures in excess of 3000 °C. No macroscopic failure occurred during the test while SEM showed the development of micro-cracks on the loaded surface. For all other divertor parts R&D was performed to provide the technology to coat the 2-directional CFC material used at JET with thin tungsten coatings. The W-coated CFC tiles were subjected to heat loads with power densities ranging up to 23.5 MW m-2 and exposed to cyclic heat loading for 200 pulses at 10.5 MW m-2. All coatings developed cracks perpendicular to the CFC fibres due to the stronger contraction of the coating upon cool-down after the heat pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wire, G. L.; Mills, W. J.
2002-08-01
Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventionalmore » deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.« less
Crack networks in damaged glass
NASA Astrophysics Data System (ADS)
Mallet, Celine; Fortin, Jerome; Gueguen, Yves
2013-04-01
We investigate how cracks develop and propagate in synthetic glass samples. Cracks are introduced in glass by a thermal shock of 300oC. Crack network is documented from optical and electronic microscopy on these samples that have been submitted to a thermal shock only. Samples are cylinder of 80 mm length and 40 mm diameter. Sections were cut along the cylinder axis and perpendicular to it. Using SEM, crack lengths and apertures can be measured. Optical microscopy allows to get the crack distribution over the entire sample. The sample average crack length is 3 mm. The average aperture is 6 ± 3μm. There is however a clear difference between the sample core, where the crack network has approximatively a transverse isotrope symmetry and the outer ring, where cracks are smaller and more numerous. By measuring before and after the thermal treatment the radial P and S wave velocities in room conditions, we can determine the total crack density which is 0.24. Thermally cracked samples, as described above, were submitted to creep tests. Constant axial stress and lateral stress were applied. Several experiments were performed at different stress values. Samples are saturated for 48 hours (to get an homogeneous pore fluid distribution), the axial stress is increased up to 80% of the sample strength. Stress step tests were performed in order to get creep data. The evolution of strain (axial and radial strain) is measured using strain gages, gap sensors (for the global axial strain) and pore volume change (for the volumetric strain). Creep data are interpreted as evidence of sub-critical crack growth in the cracked glass samples. The above microstructural observations are used, together with a crack propagation model, to account for the creep behavior. Assuming that (i) the observed volumetric strain rate is due to crack propagation and (ii) crack aspect ratio is constant we calculate the creep rate. We obtain some value on the crack propagation during a 24 hours of constant stress test. At each of these test, crack propagate of 0.3 to 0.4 mm. From the initial average crack length of 3 mm, the crack reach the size of 5.8 mm at the end of a complete creep test (with 8 constant stress step of 24 hours).
Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1997-01-01
Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.
Nanographene reinforced carbon/carbon composites
NASA Astrophysics Data System (ADS)
Bansal, Dhruv
Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic dispersions compared to VGCNF/phenolic dispersions. In nanocomposites, at low concentration (≤ 1.5 wt%), NGP were effective in increasing the flexure strength, char content and lowering the porosity and coefficient of thermal expansion of neat phenolic resin. At higher concentration (>1.5wt%), NGP had a tendency to agglomerate and lost their effectiveness. The behavior observed in nanocomposites continued in manufactured CCC. The highest Inter Laminar Shear Strength (ILSS), flexure strength/modulus, stiffness and density was observed at 1.5 wt% NGP. In CCC at concentrations > 1.5 wt%, the properties (ILSS, flexure, stiffness, density) decreased due to agglomeration but they were still higher compared to that of neat CCC (without NGP).
Effects of Laser Remelting and Oxidation on NiCrAlY/8Y2O3-ZrO2 Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Xu, S. Q.; Zhu, C.; Zhang, Y.
2018-02-01
In this study, three groups of thermal barrier coatings (TBCs) samples were remelted by CO2 laser with different laser energy densities (1, 5 and 10 J/mm2) to seal the surface of yttria-stabilized zirconia (YSZ) coatings. Microscopic observations showed that the cracks size and the remelted depth in YSZ coatings increased. A 50-μm-thick dense layer was formed on the surface of YSZ coating in samples with 1 J/mm2 energy density. Microindentation tests showed that the Vickers hardness of YSZ coatings increases with the increase in laser energy density. After isothermal oxidation at 1200 °C for 200 h, thinner thermally growth oxides were found in laser remelted YSZ samples under energy density of 1 J/mm2 (6.32 ± 0.28 μm). Cyclic oxidation results showed that the weight gain per unit area of low energy density laser remelted TBCs was smaller than that of the high energy density laser remelted and as-sprayed TBCs.
Locating and characterizing a crack in concrete with diffuse ultrasound: A four-point bending test.
Larose, Eric; Obermann, Anne; Digulescu, Angela; Planès, Thomas; Chaix, Jean-Francois; Mazerolle, Frédéric; Moreau, Gautier
2015-07-01
This paper describes an original imaging technique, named Locadiff, that benefits from the diffuse effect of ultrasound waves in concrete to detect and locate mechanical changes associated with the opening of pre-existing cracks, and/or to the development of diffuse damage at the tip of the crack. After giving a brief overview of the theoretical model to describe the decorrelation of diffuse waveforms induced by a local change, the article introduces the inversion procedure that produces the three dimensional maps of density of changes. These maps are interpreted in terms of mechanical changes, fracture opening, and damage development. In addition, each fracture is characterized by its effective scattering cross section.
Compliance matrices for cracked bodies
NASA Technical Reports Server (NTRS)
Ballarini, R.
1986-01-01
An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).
Bridge Crack Detection Using Multi-Rotary Uav and Object-Base Image Analysis
NASA Astrophysics Data System (ADS)
Rau, J. Y.; Hsiao, K. W.; Jhan, J. P.; Wang, S. H.; Fang, W. C.; Wang, J. L.
2017-08-01
Bridge is an important infrastructure for human life. Thus, the bridge safety monitoring and maintaining is an important issue to the government. Conventionally, bridge inspection were conducted by human in-situ visual examination. This procedure sometimes require under bridge inspection vehicle or climbing under the bridge personally. Thus, its cost and risk is high as well as labor intensive and time consuming. Particularly, its documentation procedure is subjective without 3D spatial information. In order cope with these challenges, this paper propose the use of a multi-rotary UAV that equipped with a SONY A7r2 high resolution digital camera, 50 mm fixed focus length lens, 135 degrees up-down rotating gimbal. The target bridge contains three spans with a total of 60 meters long, 20 meters width and 8 meters height above the water level. In the end, we took about 10,000 images, but some of them were acquired by hand held method taken on the ground using a pole with 2-8 meters long. Those images were processed by Agisoft PhotoscanPro to obtain exterior and interior orientation parameters. A local coordinate system was defined by using 12 ground control points measured by a total station. After triangulation and camera self-calibration, the RMS of control points is less than 3 cm. A 3D CAD model that describe the bridge surface geometry was manually measured by PhotoscanPro. They were composed of planar polygons and will be used for searching related UAV images. Additionally, a photorealistic 3D model can be produced for 3D visualization. In order to detect cracks on the bridge surface, we utilize object-based image analysis (OBIA) technique to segment the image into objects. Later, we derive several object features, such as density, area/bounding box ratio, length/width ratio, length, etc. Then, we can setup a classification rule set to distinguish cracks. Further, we apply semi-global-matching (SGM) to obtain 3D crack information and based on image scale we can calculate the width of a crack object. For spalling volume calculation, we also apply SGM to obtain dense surface geometry. Assuming the background is a planar surface, we can fit a planar function and convert the surface geometry into a DSM. Thus, for spalling area its height will be lower than the plane and its value will be negative. We can thus apply several image processing technique to segment the spalling area and calculate the spalling volume as well. For bridge inspection and UAV image management within a laboratory, we develop a graphic user interface. The major functions include crack auto-detection using OBIA, crack editing, i.e. delete and add cracks, crack attributing, 3D crack visualization, spalling area/volume calculation, bridge defects documentation, etc.
Characterization of Environmentally Assisted Cracking for Design: State of the Art.
1982-01-01
Barsom, J.M., Effect of cyclic stress form on corrosion fatigue crack propagation below Kiscc in a high yield strength steel , in Corrosion Fatigue... Effect of Prestressing on the Stress Corrosion Resistance of Two High Strength Steels , Boeing Document D6-25275, Boeing Company, Seattle, Washington...sT’e Residual stress Crack growth High strength steel Seawater Crack initiation Hydrogen embrittlement Stress corrosion Design Linear elastic fracture
Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075
NASA Astrophysics Data System (ADS)
Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.
High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.
NASA Astrophysics Data System (ADS)
Chen, Guangzhi; Pageot, Damien; Legland, Jean-Baptiste; Abraham, Odile; Chekroun, Mathieu; Tournat, Vincent
2018-04-01
The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.
Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.
1999-07-20
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.
Cracking on anisotropic neutron stars
NASA Astrophysics Data System (ADS)
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Wi, Jaemin; Seo, Hyejin; Lee, Jong Yeon; Nam, Dong Heun
2016-01-01
To evaluate the efficacy and outcomes of intracameral illuminator-assisted nucleofractis technique in cataract surgery. Since June 2012, this novel technique has been performed in all cataract cases by one surgeon (approximately 300 cases of various densities). Trenching continues until the posterior plate white reflex between an endonucleus and an epinucleus is identified (enhanced depth trench). After trenching, cracking is initiated with minimal separation force, and completion of cracking is confirmed by posterior capsule reflex (one-shot crack). With followability enhanced by an elliptical phaco mode, the divided nucleus is efficiently cut into small fragments by a chisel-shaped illuminator (phaco cut). We have not experienced any capsular bag or zonular complications, and the effective phacoemulsification time seemed to be shorter than that with the conventional technique. This technique simplifies the complete division of the nucleus, which is the most challenging step in safe and efficient phacoemulsification.
Damage evolution and mechanical response of cross-ply ceramic composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitsman, Y.; Yu, N.; Zhu, H.
1995-12-31
A mechanistic model for the damage evolution and mechanical response of cross-ply ceramic composite laminates under monotonically increasing uniaxial tension is presented. The model accounts for a variety of damage mechanisms evolving in cross-ply ceramic composite laminates, such as fiber-bridged matrix cracks in 0{degrees}-plies, transversely oriented matrix cracks in 90{degrees}-plies, and slips at 0{degrees}/90{degrees} ply interfaces as well as at the fiber/matrix interfaces. Energy criteria are developed to determine the creation and progression of matrix cracks and slip zones. The model predicts that the crack density in 0{degrees}-plies becomes higher than that within the 90{degrees}-plies as the applied load ismore » incrementally increased, which agrees with the experimental observation. It is also shown that the model provides a reasonable prediction for the nonlinear stress-strain behavior of crossply SiC/CAS ceramic composites.« less
Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys
NASA Astrophysics Data System (ADS)
Gupta, Vipul K.
The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the role of inter-subgranular cracking, which had previously been advanced based upon fracture surface observations alone.
NASA Astrophysics Data System (ADS)
Bhattacharya, Sandeep; Alpas, Ahmet T.
2016-10-01
Lithiation-induced volume changes in Si result in fracture and fragmentation of Si anodes in Li-ion batteries. This paper reports the self-healing behaviour of cracks observed in micron-sized Si particles dispersed in a ductile Al matrix of a Si-Al electrode electrochemically cycled vs. Li/Li+ using a high lithiation rate of 15.6 C. Cross-sectional high-resolution transmission electron microscopy and Raman spectroscopy revealed that an amorphous layer with a depth up to ∼100 nm was formed at the surface of Si particles. In-situ optical microscopy performed during electrochemical experiments revealed development of cracks in Si particles as the voltage decreased to 0.02 V during lithiation. Self-healing of cracks in Si particles occurred in two steps: i) arresting of the crack growth at the Si/Al interface as the surrounding Al matrix had a higher fracture toughness and thus acted as a barrier to crack propagation, and ii) closure of cracks due to compressive stresses applied to the crack faces by the amorphous zones formed on each side of the crack paths.
DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.
2017-05-01
Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less
Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue
NASA Astrophysics Data System (ADS)
Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.
2016-02-01
The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.
Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble
NASA Astrophysics Data System (ADS)
Cheng, Yi; Wong, Louis Ngai Yuen
2018-01-01
Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.
NASA Astrophysics Data System (ADS)
Singh, A. P.; Mishra, O. P.
2015-10-01
In order to understand the processes involved in the genesis of monsoon induced micro to moderate earthquakes after heavy rainfall during the Indian summer monsoon period beneath the 2011 Talala, Saurashtra earthquake (Mw 5.1) source zone, we assimilated 3-D microstructures of the sub-surface rock materials using a data set recorded by the Seismic Network of Gujarat (SeisNetG), India. Crack attributes in terms of crack density (ε), the saturation rate (ξ) and porosity parameter (ψ) were determined from the estimated 3-D sub-surface velocities (Vp, Vs) and Poisson's ratio (σ) structures of the area at varying depths. We distinctly imaged high-ε, high-ξ and low-ψ anomalies at shallow depths, extending up to 9-15 km. We infer that the existence of sub-surface fractured rock matrix connected to the surface from the source zone may have contributed to the changes in differential strain deep down to the crust due to the infiltration of rainwater, which in turn induced micro to moderate earthquake sequence beneath Talala source zone. Infiltration of rainwater during the Indian summer monsoon might have hastened the failure of the rock by perturbing the crustal volume strain of the causative source rock matrix associated with the changes in the seismic moment release beneath the surface. Analyses of crack attributes suggest that the fractured volume of the rock matrix with high porosity and lowered seismic strength beneath the source zone might have considerable influence on the style of fault displacements due to seismo-hydraulic fluid flows. Localized zone of micro-cracks diagnosed within the causative rock matrix connected to the water table and their association with shallow crustal faults might have acted as a conduit for infiltrating the precipitation down to the shallow crustal layers following the fault suction mechanism of pore pressure diffusion, triggering the monsoon induced earthquake sequence beneath the source zone.
Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Gangloff, Richard P.
1989-01-01
Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.
Palousek, David; Pantelejev, Libor; Hoeller, Christian; Pichler, Rudolf; Tesicky, Lukas; Kaiser, Jozef
2018-01-01
This paper deals with various selective laser melting (SLM) processing strategies for aluminum 2618 powder in order to get material densities and properties close to conventionally-produced, high-strength 2618 alloy. To evaluate the influence of laser scanning strategies on the resulting porosity and mechanical properties a row of experiments was done. Three types of samples were used: single-track welds, bulk samples and samples for tensile testing. Single-track welds were used to find the appropriate processing parameters for achieving continuous and well-shaped welds. The bulk samples were built with different scanning strategies with the aim of reaching a low relative porosity of the material. The combination of the chessboard strategy with a 2 × 2 mm field size fabricated with an out-in spiral order was found to eliminate a major lack of fusion defects. However, small cracks in the material structure were found over the complete range of tested parameters. The decisive criteria was the elimination of small cracks that drastically reduced mechanical properties. Reduction of the thermal gradient using support structures or fabrication under elevated temperatures shows a promising approach to eliminating the cracks. Mechanical properties of samples produced by SLM were compared with the properties of extruded material. The results showed that the SLM-processed 2618 alloy could only reach one half of the yield strength and tensile strength of extruded material. This is mainly due to the occurrence of small cracks in the structure of the built material. PMID:29443912
Krewerth, D; Weidner, A; Biermann, H
2013-12-01
The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.
Damage Recovery in Carrara Marble
NASA Astrophysics Data System (ADS)
Meyer, G.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.
2017-12-01
We investigate the effect of confining pressure on the recovery of elastic wave velocities following deformation episodes in Carrara Marble. Dry Carrara Marble cores were deformed in the ductile regime (Pc = 40 MPa) up to 3% axial strain. After deformation, samples were held at constant stress conditions for extended periods of time (5-8 days) whilst continuously recording volumetric strain and seismic wave velocities. The velocity data were used to invert for microcrack densities using an effective medium approach. Finally, thin sections were produced to characterise the microstructures after recovery. During deformation, elastic wave speeds decreased with increasing strain by more than 30% of the value for the intact rock due to the formation of distributed microcracks. Under constant hydrostatic pressure, wave speeds progressively recovered 12-90% of the initial drop, depending on the applied confining pressure. In contrast, the strain recovery (deformation towards the initial shape of the sample) during holding time is negligible (of the order of 10-4). Tests performed under nonhydrostatic (triaxial) stress conditions during recovery showed some time-dependent creep deformation together with very significant recovery of wave velocities. The recovery is interpreted as a progressive reduction in crack density within the sample. The process is highly dependent on confining pressure, which favours it. We propose that the driving process for wave speed recovery is the time-dependent increase of contact area between crack surfaces due to the formation and growth of asperity contacts. We develop a micromechanical model for crack closure driven by asperity creep, which shows a good fit to the experimental data. Most of the recovery is achieved in the initial few hours, implying it is the fastest recovery or healing process, and thus occurs prior to any chemical healing or mineral precipitation. Our data corroborate field observations of post-seismic fault behavior.
Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas
2015-09-01
Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.
Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide.
Sakamoto, Kosuke; Kuwae, Hiroyuki; Kobayashi, Naofumi; Nobori, Atsuki; Shoji, Shuichi; Mizuno, Jun
2018-02-12
We developed highly bendable transparent indium tin oxide (ITO) electrodes with a mesh pattern for use in flexible electronic devices. The mesh patterns lowered tensile stress and hindered propagation of cracks. Simulations using the finite element method confirmed that the mesh patterns decreased tensile stress by over 10% because of the escaped strain to the flexible film when the electrodes were bent. The proposed patterned ITO electrodes were simply fabricated by photolithography and wet etching. The resistance increase ratio of a mesh-patterned ITO electrode after bending 1000 times was at least two orders of magnitude lower than that of a planar ITO electrode. In addition, crack propagation was stopped by the mesh pattern of the patterned ITO electrode. A mesh-patterned ITO electrode was used in a liquid-based organic light-emitting diode (OLED). The OLED displayed the same current density-voltage-luminance (J-V-L) curves before and after bending 100 times. These results indicate that the developed mesh-patterned ITO electrodes are attractive for use in flexible electronic devices.
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Zhu, Dongming
2008-01-01
Pulse detonation engine (PDE) concepts are receiving increasing attention for future aeronautic propulsion applications, due to their potential thermodynamic cycle efficiency and higher thrust to density ratio that lead to the decrease in fuel consumption. But the resulting high gas temperature and pressure fluctuation distributions at high frequency generated with every detonation are viewed to be detrimental to the combustor liner material. Experimental studies on a typical metal combustion material exposed to a laser simulated pulse heating showed extensive surface cracking. Coating of the combustor materials with low thermal conductivity ceramics is shown to protect the metal substrate, reduce the thermal stresses, and hence increase the durability of the PDE combustor liner material. Furthermore, the temperature fluctuation and depth of penetration is observed to decrease with increasing the detonation frequency. A crack propagation rate in the coating is deduced by monitoring the variation of the coating apparent thermal conductivity with time that can be utilized as a health monitoring technique for the coating system under a rapid fluctuating heat flux.
NASA Technical Reports Server (NTRS)
Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.
1998-01-01
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.
Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambliss, K.; Diwan, M.; Simos, N.
Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less
Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors
Chambliss, K.; Diwan, M.; Simos, N.; ...
2014-10-09
Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less
Friction and wear of single-crystal manganese-zinc ferrite
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.
NASA Technical Reports Server (NTRS)
Klima, S. J.; Vary, A.
1986-01-01
Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.
NASA Astrophysics Data System (ADS)
Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai
2018-04-01
In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.
Fracture mechanics and surface chemistry investigations of environment-assisted crack growth
NASA Technical Reports Server (NTRS)
Wei, R. P.; Klier, K.; Simmons, G. W.; Chou, Y. T.
1984-01-01
It is pointed out that environment-assisted subcritical crack growth in high-strength steels and other high-strength alloys (particularly in hydrogen and in hydrogenous environments) is an important technological problem of long standing. This problem is directly related to issues of structural integrity, durability, and reliability. The terms 'hydrogen embrittlement' and 'stress corrosion cracking' have been employed to describe the considered phenomenon. This paper provides a summary of contributions made during the past ten years toward the understanding of environmentally assisted crack growth. The processes involved in crack growth are examined, and details regarding crack growth and chemical reactions are discussed, taking into account crack growth in steels exposed to water/water vapor, the effect of hydrogen, reactions involving hydrogen sulfide, and aspects of fracture surface morphology and composition. Attention is also given to the modeling of crack growth response, crack growth in gas mixtures, and the interaction of solute atoms with the crack-tip stress field.
High speed thin plate fatigue crack monitor
NASA Technical Reports Server (NTRS)
Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)
1996-01-01
A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.
NASA Astrophysics Data System (ADS)
Co, Noelle Easter C.; Brown, Donald E.; Burns, James T.
2018-05-01
This study applies data science approaches (random forest and logistic regression) to determine the extent to which macro-scale corrosion damage features govern the crack formation behavior in AA7050-T7451. Each corrosion morphology has a set of corresponding predictor variables (pit depth, volume, area, diameter, pit density, total fissure length, surface roughness metrics, etc.) describing the shape of the corrosion damage. The values of the predictor variables are obtained from white light interferometry, x-ray tomography, and scanning electron microscope imaging of the corrosion damage. A permutation test is employed to assess the significance of the logistic and random forest model predictions. Results indicate minimal relationship between the macro-scale corrosion feature predictor variables and fatigue crack initiation. These findings suggest that the macro-scale corrosion features and their interactions do not solely govern the crack formation behavior. While these results do not imply that the macro-features have no impact, they do suggest that additional parameters must be considered to rigorously inform the crack formation location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew
The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up.more » Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.« less
Crack problem in superconducting cylinder with exponential distribution of critical-current density
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Xu, Chi; Shi, Liang
2018-04-01
The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.
Resistance of Some Steels to Stress Corrosion Cracking
NASA Technical Reports Server (NTRS)
Humphries, T. S.; Nelson, E. E.
1982-01-01
Evaluations of stress-corrosion cracking resistance of five high-strength low-alloy steels described in report now available. Steels were heat-treated to various tensile strengths and found to be highly resistant to stress-corrosion cracking.
Numerical approach for ECT by using boundary element method with Laplace transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enokizono, M.; Todaka, T.; Shibao, K.
1997-03-01
This paper presents an inverse analysis by using BEM with Laplace transform. The method is applied to a simple problem in the eddy current testing (ECT). Some crack shapes in a conductive specimen are estimated from distributions of the transient eddy current on its sensing surface and magnetic flux density in the liftoff space. Because the transient behavior includes information on various frequency components, the method is applicable to the shape estimation of a comparative small crack.
Identification of fundamental deformation and failure mechanisms in armor ceramics
NASA Astrophysics Data System (ADS)
Muller, Andrea Marie
Indentation of a surface with a hard sphere can be used to examine micromechanical response of a wide range of materials and has been shown to generate loading conditions resembling early stages of ballistic impact events. Cracking morphologies also show similarities, particularly with formation of cone cracks at the contact site. The approach in this thesis is to use this indentation technique to characterize contact damage and deformation processes in armor ceramics, as well as identify the role of cone cracking and inelastic behavior. To accomplish these objectives, an instrumented indentation system was designed and fabricated, extending depth-sensing capabilities originally developed for nano-indentation to higher forces. This system is also equipped with an acoustic emission system to detect onset of cone cracking and subsequent failure. Once calibrated and verified the system was used to evaluate elastic modulus and cone crack initiation forces of two commercial float glasses. As-received air and tin surfaces of soda-lime-silica and borosilicate float glass were tested to determine differences in elastic and fracture behavior. Information obtained from load--displacement curves and visual inspection of indentation sites were used to determine elastic modulus, and conditions for onset of cone cracking as a function of surface roughness. No difference in reduced modulus or cone cracking loads on as-received air and tin surfaces were observed. Abraded surfaces showed the tin surface to be slightly more resistant to cone cracking. A study focusing on the transition from elastic to inelastic deformation in two transparent fine-grained polycrystalline spinels with different grain sizes was then conducted. Congruent experiments included observations on evolution of damage, examinations of sub-surface damage and inspection of remnant surface profiles. Indentation stress--strain behavior obtained from load--displacement curves revealed a small difference in yielding and strain-hardening behavior given the significant grain size difference. Directly below the indentation sites, regions of grain boundary cracking, associated with the inelastic zone, were identified in both spinels. Comparison of Meyer hardness and in-situ hardness showed a discrepancy at low loads, a result of elastic recovery. Elastic-plastic indentation behavior of the two spinels was then compared to behavior of a transparent large-grained aluminum oxinitirde (AlON) and a small-grained sintered aluminum nitride (AlN). Subsurface indentation damage revealed transitions from intergranular to transgranular fracture in the two spinels, AlON showed a transition from multiple cleavage microcracks to transgranular fracture while AlN exhibited only intergranular fracture. Analysis of indentation stress-strain results showed a slight difference in yielding behaviors of the two spinels and AlON whereas AlN showed a much lower yield value comparatively. Slight differences in strain-hardening behavior were observed. When comparing indentation stress--strain energy density and work of indentation a linear correlation was observed and a clear distinction could be made between materials. Therefore, it is suggested by the work in this thesis that instrumented spherical indentation could serve as a useful method of evaluating armor materials, particularly when behavior is described using indentation stress and strain, as this is a useful way to evaluate onset and development of inelastic deformation under high contact pressures and self-confining stresses. Additionally, it proposes that comparison of the work of indentation and indentation strain energy density approaches provide a good foundation for evaluating and comparing a materials penetration resistance.
78 FR 4042 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... provides an option for a high frequency eddy current inspection for cracking of the critical fastener holes... for a high frequency eddy current inspection for cracking of the critical fastener holes, and repair..., August 9, 2007)), do a high frequency eddy current (HFEC) inspection for cracking of the four critical...
Kim, Dong Joo; Kang, Seok Hee; Ahn, Tae-Ho
2014-01-01
The crack self-healing behavior of high-performance steel-fiber reinforced cement composites (HPSFRCs) was investigated. High-strength deformed steel fibers were employed in a high strength mortar with very fine silica sand to decreasing the crack width by generating higher interfacial bond strength. The width of micro-cracks, strongly affected by the type of fiber and sand, clearly produced the effects on the self-healing behavior. The use of fine silica sand in HPSFRCs with high strength deformed steel fibers successfully led to rapid healing owing to very fine cracks with width less than 20 μm. The use of very fine silica sand instead of normal sand produced 17%–19% higher tensile strength and 51%–58% smaller width of micro-cracks. PMID:28788471
Three-dimensional stress intensity factor analysis of a surface crack in a high-speed bearing
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Hsu, Yingchun
1990-01-01
The boundary element method is applied to calculate the stress intensity factors of a surface crack in the rotating inner raceway of a high-speed roller bearing. The three-dimensional model consists of an axially stressed surface cracked plate subjected to a moving Hertzian contact loading. A multidomain formulation and singular crack-tip elements were employed to calculate the stress intensity factors accurately and efficiently for a wide range of configuration parameters. The results can provide the basis for crack growth calculations and fatigue life predictions of high-performance rolling element bearings that are used in aircraft engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, James G.; Grechka, Vladimir
2006-07-08
A model study on fractured systems was performed using aconcept that treats isotropic cracked systems as ensembles of crackedgrains by analogy to isotropic polycrystalline elastic media. Theapproach has two advantages: (a) Averaging performed is ensembleaveraging, thus avoiding the criticism legitimately leveled at mosteffective medium theories of quasistatic elastic behavior for crackedmedia based on volume concentrations of inclusions. Since crack effectsare largely independent of the volume they occupy in the composite, sucha non-volume-based method offers an appealingly simple modelingalternative. (b) The second advantage is that both polycrystals andfractured media are stiffer than might otherwise be expected, due tonatural bridging effects ofmore » the strong components. These same effectshave also often been interpreted as crack-crack screening inhigh-crack-density fractured media, but there is no inherent conflictbetween these two interpretations of this phenomenon. Results of thestudy are somewhat mixed. The spread in elastic constants observed in aset of numerical experiments is found to be very comparable to the spreadin values contained between the Reuss and Voigt bounds for thepolycrystal model. However, computed Hashin-Shtrikman bounds are much tootight to be in agreement with the numerical data, showing thatpolycrystals of cracked grains tend to violate some implicit assumptionsof the Hashin-Shtrikman bounding approach. However, the self-consistentestimates obtained for the random polycrystal model are nevertheless verygood estimators of the observed average behavior.« less
Vibration analysis of partially cracked plate submerged in fluid
NASA Astrophysics Data System (ADS)
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
The use of synthetic blended fibers to reduce cracking risk in high performance concrete.
DOT National Transportation Integrated Search
2014-09-01
Transportation departments have observed varying degrees of cracking in their concrete structures. Cracking of high performance reinforced concrete structures, in particular bridge decks, is of paramount concern to Pacific Northwest Departments of Tr...
Net shaped high performance oxide ceramic parts by selective laser melting
NASA Astrophysics Data System (ADS)
Yves-Christian, Hagedorn; Jan, Wilkes; Wilhelm, Meiners; Konrad, Wissenbach; Reinhart, Poprawe
An additive manufacturing technique (AM) for ceramics, based on Al2O3-ZrO2 powder by means of Selective Laser Melting (SLM) is presented. Pure ceramic powder is completely melted by a laser beam yielding net-shaped specimens of almost 100% densities without any post-processing. Possible crack formation during the build-up process due to thermal stresses is prevented by a high-temperature preheating of above 1600 ∘C. Specimens with fine-grained nano-sized microstructures and flexural strengths of above 500 MPa are produced. The new technology allows for rapid freeform manufacture of complex net-shaped ceramics, thus, exploiting the outstanding mechanical and thermal properties for high-end medical and engineering disciplines.
Toda, Hiroyuki
2014-11-01
X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this technique to the deformation behavior of a polycrystalline aluminium alloy will be demonstrated in the presentation [6].The synchrotron-based microtomography has been mainly utilized to light materials due to their good X-ray transmission. In the present talk, the application of the synchrotron-based microtomography to steels will be also introduced. Degradation of contrast and spatial resolution due to forward scattering could be avoided by selecting appropriate experimental conditions in order to obtain superior spatial resolution close to the physical limit even in ferrous materials [7]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stress corrosion cracking of several high strength ferrous and nickel alloys
NASA Technical Reports Server (NTRS)
Nelson, E. E.
1971-01-01
The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.
Mitigation of Crack Damage in Metallic Materials
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.
2014-01-01
A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.
Sannicolo, Thomas; Charvin, Nicolas; Flandin, Lionel; Kraus, Silas; Papanastasiou, Dorina T; Celle, Caroline; Simonato, Jean-Pierre; Muñoz-Rojas, David; Jiménez, Carmen; Bellet, Daniel
2018-05-22
Electrical stability and homogeneity of silver nanowire (AgNW) networks are critical assets for increasing their robustness and reliability when integrated as transparent electrodes in devices. Our ability to distinguish defects, inhomogeneities, or inactive areas at the scale of the entire network is therefore a critical issue. We propose one-probe electrical mapping (1P-mapping) as a specific simple tool to study the electrical distribution in these discrete structures. 1P-mapping has allowed us to show that the tortuosity of the voltage equipotential lines of AgNW networks under bias decreases with increasing network density, leading to a better electrical homogeneity. The impact of the network fabrication technique on the electrical homogeneity of the resulting electrode has also been investigated. Then, by combining 1P-mapping with electrical resistance measurements and IR thermography, we propose a comprehensive analysis of the evolution of the electrical distribution in AgNW networks when subjected to increasing voltage stresses. We show that AgNW networks experience three distinctive stages: optimization, degradation, and breakdown. We also demonstrate that the failure dynamics of AgNW networks at high voltages occurs through a highly correlated and spatially localized mechanism. In particular the in situ formation of cracks could be clearly visualized. It consists of two steps: creation of a crack followed by propagation nearly parallel to the equipotential lines. Finally, we show that current can dynamically redistribute during failure, by following partially damaged secondary pathways through the crack.
Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material.
Lim, Jin-Myoung; Hwang, Taesoon; Kim, Duho; Park, Min-Sik; Cho, Kyeongjae; Cho, Maenghyo
2017-01-03
Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 layered oxide cathodes have been highlighted for large-scale energy applications due to their high energy density. Although its specific capacity is enhanced at higher voltages as Ni ratio increases, its structural degradation due to phase transformations and lattice distortions during cycling becomes severe. For these reasons, we focused on the origins of crack generation from phase transformations and structural distortions in Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 using multiscale approaches, from first-principles to meso-scale phase-field model. Atomic-scale structure analysis demonstrated that opposite changes in the lattice parameters are observed until the inverse Li content x = 0.75; then, structure collapses due to complete extraction of Li from between transition metal layers. Combined-phase investigations represent the highest phase barrier and steepest chemical potential after x = 0.75, leading to phase transformations to highly Li-deficient phases with an inactive character. Abrupt phase transformations with heterogeneous structural collapse after x = 0.81 (~220 mAh g -1 ) were identified in the nanodomain. Further, meso-scale strain distributions show around 5% of anisotropic contraction with lower critical energy release rates, which cause not only micro-crack generations of secondary particles on the interfaces between the contracted primary particles, but also mechanical instability of primary particles from heterogeneous strain changes.
Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?
Gao, Zhiwen; Gao, Yanfei
2016-05-14
We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less
Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiwen; Gao, Yanfei
We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less
Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.
2005-01-01
The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.
Analysis of cracks induced by elevated temperature in rock using micro-focus X-ray CT
NASA Astrophysics Data System (ADS)
Cheon, D. S.; Park, E. S.
2016-12-01
Thermal energy storage facilities and deep borehole nuclear waste disposal in the underground are repeatedly applied by heat. The thermal stress induced by heat can generate micro-cracks and extend the existing micro-cracks of rocks. For long-term stabilities of the above facilities, the features of thermal induced cracks should be investigated. In this paper, we investigated occurred the features of thermal cracks using micro-focus X-ray CT before and after thermal experiments. Two different kinds of rock core specimens (limestone, granite) were heated within the furnace with the elevated temperatures of 250 °C, 400 °C and 550 °C. In thermal experiments, we heated rocks with the speed of 1.5 ºC /min to avoid thermal shock. Total 16 cases were subjected to X-ray imaging and post-processing to observe thermally induced fractures. Micro-cracks induced by thermal loading may not be extractable by a thresholding method such that the manual tracking within the ROI (Region of Interest) was implemented by using the VG Studio Software. Identified fractures were grouped by each object whose orientation was fitted by 3D plane. And then, its normal vector was computed and visualized. Nominal fractures (less than 10 voxel size) were excluded. Each fracture was projected on the 3D sphere and its volume was represented by color map. Thermal induced cracks in the limestone observed on CT images were very small. On the other hand, they could be more clearly observed in the granite. In case of limestone, the number of cracks is only 4 after heating up 550 °C and most of them occurred within the mineral. In case of granite, 157 cracks are detected both at the boundaries of minerals and within the mineral. In both rocks, the development of thermal cracks within a certain mineral was superior to them that occurred along the interface between minerals. After heating up to 550 °C the occurred cracks significantly increased. Crack volume was also similar pattern to the number of cracks. However the average volume of cracks in limestone is larger than granite. The normal vector of the cracks is similar to the bedding plane of limestone and texture of granite. These cracks affected the physical(density, elastic wave velocity) and mechanical properties(uniaxial compression strength , elastic modulus.
Development of shrinkage limits and testing protocols for ODOT high performance concrete.
DOT National Transportation Integrated Search
2013-12-01
ODOT has observed varying degrees of cracking in their concrete structures. Cracking of high performance reinforced : concrete structures, in particular bridge decks, is of paramount concern to ODOT. Cracking at early ages (especially within : the fi...
The influence of temperature on fatigue-crack growth in a mill annealed Ti-6Al-4V alloy
NASA Technical Reports Server (NTRS)
Wei, R. P.; Ritter, D. L.
1972-01-01
To understand the influence temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude, fatigue crack growth experiments were carried out using a 1/4-inch-thick (6.35 mm) mill annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C (or, about 550 F/563K) and as a function of the crack tip stress intensity factor in a dehumidified high purity argon environment. Limited correlative experiments indicate that dehumidified oxygen and hydrogen have no effect on the rate of fatigue crack growth in this alloy, while distilled water increased the rate of crack growth slightly in the range tested. Companion fractographic examinations suggest that the mechanisms for fatigue crack growth in the various environments are essentially the same.
NASA Astrophysics Data System (ADS)
Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming
2005-01-01
Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.
Crack propagation of brittle rock under high geostress
NASA Astrophysics Data System (ADS)
Liu, Ning; Chu, Weijiang; Chen, Pingzhi
2018-03-01
Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1982-01-01
The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, V.M. Jr.; Northcutt, W.G. Jr.
The present invention relates to a method for fabricating thin-walled high-density structures of tungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
1987-07-01
commercial application i.e. high strength/ low density alloys . As a class, they are generally utilized in a precipitation hardened cond[tion obtained...Munich, 6 (1973) V231; Cyclic Stress-Strain Response of Two- Phase Alloys , I. Microstructures Containing Particles Penetrable by Dislocations, Ii. Particles ...mer. Some suggestions for obtaining more crack propagation resistant pressure vessel alloys are given. Dual ferrite -tempered martensite microstructures
NASA Astrophysics Data System (ADS)
Eppes, M. C.; Hancock, G. S.; Dewers, T. A.; Chen, X.; Eichhubl, P.
2017-12-01
There is a disconnect between measured rates of rock erosion and regolith production and our understanding of the factors and processes that drive them. Here we examine the mechanical weathering (cracking) characteristics of natural, bare bedrock outcrops characterized by 10Be derived erosion rates that vary from 2 to 40 m/my in the Blue Ridge Mountains, VA. Observed erosion rate variance generally correlates with rock type; we seek to characterize and quantify to what extent the mechanical weathering properties of the different rock types drive erosion rates. We assert that subcritical cracking constitutes the primary mechanism by which the outcrops increase their porosity and subsequently weather and erode. We therefore hypothesize that rock parameters that control rates and styles of subcritical cracking set the outcrop erosion rates. For each outcrop, we measured crack characteristics along transects: for every crack >2 cm length, we measured its length, width, orientation, and weathering characteristics (rounded vs sharp edges); and we measured the thickness of all `steps' (spallation remnants) encountered in the transects. For most outcrops, we collected surface samples in order to characterize their mineralogy and microcracking characteristics through thin section analysis. For each rock type, we collected samples for which we measured fracture toughness, as well as the subcritical crack growth index under different moisture conditions. Preliminary analysis of the field crack data indicates that each rock type (granite, sandstone, quartzite) is characterized by unique macro- and micro-scale crack characteristics consistent with known generic subcritical cracking parameters for those rocks. Crack density and length correlate with erosion rates in faster eroding rock types, but not slowly eroding ones. Overall, we hope these data will help to shed light on the driving and limiting factors for the mechanical production of porosity in rock at and near Earth's surface.
Kral, A H; Bluthenthal, R N; Booth, R E; Watters, J K
1998-01-01
OBJECTIVES: This study deter- mined human immunodeficiency virus (HIV) seroprevalence and factors associated with HIV infection among street-recruited injection drug users and crack cocaine smokers. METHODS: An analysis was performed on HIV serologies and risk behaviors of 6402 injection drug users and 3383 crack smokers in 16 US municipalities in 1992 and 1993. RESULTS: HIV seroprevalence was 12.7% among injection drug users and 7.5% among crack smokers. Most high-seroprevalence municipalities (>25%) were located along the eastern seaboard of the United States. In high-seroprevalence municipalities, but not in others, HIV seroprevalence was higher for injection drug users than for crack smokers. Among injection drug users, cocaine injection, use of speedballs (cocaine or amphetamines with heroin), and sexual risk behaviors were independently associated with HIV infection. Among crack smokers, sexual risk behaviors were associated with HIV infection. CONCLUSIONS: Injection drug users and crack smokers are at high risk for HIV infection. PMID:9584014
Chen, Tao; He, Yuting; Du, Jinqiang
2018-06-01
This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.
NASA Astrophysics Data System (ADS)
Yuasa, Motohiro; Huang, Xinsheng; Suzuki, Kazutaka; Mabuchi, Mamoru; Chino, Yasumasa
2015-11-01
The discharge behaviors of rolled Mg-6 mass%Al-0.3 mass%Mn-2 mass%Ca (AMX602) and Mg-6 mass%Al-0.3 mass%Mn (AM60) alloys used as anodes for Magnesium-air batteries were investigated. The AMX602 alloy exhibited superior discharge properties compared to the AM60 alloy, especially at low current density. The discharge products of the AMX602 alloy were dense and thin, and many cracks were observed at all current densities. In addition, the discharge products were detached at some sites. These sites often corresponded to the positions of Al2Ca particles. The comparison of the discharge and corrosion tests indicated that the dense and thin discharge products of AMX602 were easily cracked by dissolution of the Mg matrix around Al2Ca particles, and the cracks promoted the penetration of the electrolyte into the discharge products, retaining the discharge activity. In contrast, concerning the AM60 alloy, thick discharge products were formed on the surface during discharge, and cracking of the discharge products hardly occurred, degrading the discharge properties. Localized and deeply corroded pits that could result from the detachment of metal pieces from the anode during discharge were partly observed in the AM60 alloy. It is suggested that these detached metal pieces are another reason for the low discharge properties of the AM60 alloy.
Effects of ply thickness on thermal cycle induced damage and thermal strain
NASA Astrophysics Data System (ADS)
Tompkins, Stephen S.
1994-07-01
An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion, CTE. A graphite-epoxy composite material, P75/ERL 1962, in thin (1 mil) and thick (5 mils) prepregs was used to make cross-ply laminates, ((0/90)(sub n))s, with equal total thickness (n=2, n=10) and cross-ply laminates with the same total number of plies (n=2). Specimens of each laminate configuration were cycled up to 1500 times between -250 and 250 F. Thermally induced microdamage was assessed as a function of the number of cycles as was the change in CTE. The results showed that laminates fabricated with thin-plies microcracked at significantly different rates and reached significantly different equilibrium crack densities than the laminate fabricated with thick-ply and n=2. The CTE of thin-ply laminates was less affected by thermal cycling and damage than the CTE of thick-ply laminates. These differences are attributed primarily to differences in interply constraints. Observed effects of ply thickness on crack density was qualitatively predicted by a combined shear-lag stress/energy method.
Effects of ply thickness on thermal cycle induced damage and thermal strain
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.
1994-01-01
An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion, CTE. A graphite-epoxy composite material, P75/ERL 1962, in thin (1 mil) and thick (5 mils) prepregs was used to make cross-ply laminates, ((0/90)(sub n))s, with equal total thickness (n=2, n=10) and cross-ply laminates with the same total number of plies (n=2). Specimens of each laminate configuration were cycled up to 1500 times between -250 and 250 F. Thermally induced microdamage was assessed as a function of the number of cycles as was the change in CTE. The results showed that laminates fabricated with thin-plies microcracked at significantly different rates and reached significantly different equilibrium crack densities than the laminate fabricated with thick-ply and n=2. The CTE of thin-ply laminates was less affected by thermal cycling and damage than the CTE of thick-ply laminates. These differences are attributed primarily to differences in interply constraints. Observed effects of ply thickness on crack density was qualitatively predicted by a combined shear-lag stress/energy method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.
2010-07-01
Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nibur, Kevin A.
2010-11-01
Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less
Hydrogen Assisted Cracking of High Strength Steel Welds
1988-05-01
cracking of high strength steel welds. The microplasticity theory originally proposed by M Beachem is used to explain the effect of hydrogen on the var... microplasticity mechanism rather than embrittlement (B7). He suggests that the hydrogen in the lattice ahead of the crack tip assists whatever...intensity level on the observed fracture mode. This theory postu- lates that hydrogen will promote cracking by a microplasticity mechanism rather than
Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si
NASA Astrophysics Data System (ADS)
Sun, Yi; Zhou, Kun; Sun, Qian; Liu, Jianping; Feng, Meixin; Li, Zengcheng; Zhou, Yu; Zhang, Liqun; Li, Deyao; Zhang, Shuming; Ikeda, Masao; Liu, Sheng; Yang, Hui
2016-09-01
Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm-2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.
The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels
NASA Astrophysics Data System (ADS)
Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.
2015-09-01
The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.
Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology
Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing
2014-01-01
In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684
Fatigue Crack Closure Analysis Using Digital Image Correlation
NASA Technical Reports Server (NTRS)
Leser, William P.; Newman, John A.; Johnston, William M.
2010-01-01
Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.
Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V
NASA Technical Reports Server (NTRS)
Elber, W.
1975-01-01
The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.
Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries
NASA Astrophysics Data System (ADS)
Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan
2017-05-01
Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.
Effects of friction and high torque on fatigue crack propagation in Mode III
NASA Astrophysics Data System (ADS)
Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.
1982-12-01
Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI {dy4140} steel from 10-6 to 10-2 mm per cycle.
Processing of Alumina-Toughened Zirconia Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2003-01-01
Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.
Influence of Laser Glazing on the Characterization of Plasma-Sprayed YSZ Coatings
NASA Astrophysics Data System (ADS)
Wang, Yan; Liu, Jiangwei; Liao, Hanlin; Darut, Geoffrey; Stella, Jorge; Poirier, Thierry; Planche, Marie-Pierre
2017-01-01
In this study, 8 wt.% yttria-stabilized zirconia powder was deposited on the substrates by atmospheric plasma spray. The coatings were post-treated by laser glazing under different parameters in order to densify them. The characterization of the laser molten pools under different laser treatment conditions was studied. Preheating processes were also employed. Scanning electron microscopy observations of the surface and cross section of as-sprayed and laser-glazed coatings were carried out to investigate the influence of laser glazing on the microstructure on laser-glazed coatings. The results show that preheating processes improve the coating in terms of deepening the laser-glazed layer, reducing the number of vertical cracks and surface density of cracks and widening the molten pool. Finally, the influences of linear energy density on the characterization of the glazed layer are discussed.
Fracture behavior of W based materials. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, J.E.
This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ``heavy alloy`` and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed inmore » two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general.« less
Softening non-metallic crystals by inhomogeneous elasticity.
Howie, P R; Thompson, R P; Korte-Kerzel, S; Clegg, W J
2017-09-14
High temperature structural materials must be resistant to cracking and oxidation. However, most oxidation resistant materials are brittle and a significant reduction in their yield stress is required if they are to be resistant to cracking. It is shown, using density functional theory, that if a crystal's unit cell elastically deforms in an inhomogeneous manner, the yield stress is greatly reduced, consistent with observations in layered compounds, such as Ti 3 SiC 2 , Nb 2 Co 7 , W 2 B 5 , Ta 2 C and Ta 4 C 3 . The mechanism by which elastic inhomogeneity reduces the yield stress is explained and the effect demonstrated in a complex metallic alloy, even though the electronegativity differences within the unit cell are less than in the layered compounds. Substantial changes appear possible, suggesting this is a first step in developing a simple way of controlling plastic flow in non-metallic crystals, enabling materials with a greater oxidation resistance and hence a higher temperature capability to be used.
A statistical approach to the brittle fracture of a multi-phase solid
NASA Technical Reports Server (NTRS)
Liu, W. K.; Lua, Y. I.; Belytschko, T.
1991-01-01
A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.
NASA Astrophysics Data System (ADS)
Walton, G.; Alejano, L. R.; Arzua, J.; Markley, T.
2018-06-01
A database of post-peak triaxial test results was created for artificially jointed planes introduced in cylindrical compression samples of a Blanco Mera granite. Aside from examining the artificial jointing effect on major rock and rock mass parameters such as stiffness, peak strength and residual strength, other strength parameters related to brittle cracking and post-yield dilatancy were analyzed. Crack initiation and crack damage values for both the intact and artificially jointed samples were determined, and these damage envelopes were found to be notably impacted by the presence of jointing. The data suggest that with increased density of jointing, the samples transition from a combined matrix damage and joint slip yielding mechanism to yield dominated by joint slip. Additionally, post-yield dilation data were analyzed in the context of a mobilized dilation angle model, and the peak dilation angle was found to decrease significantly when there were joints in the samples. These dilatancy results are consistent with hypotheses in the literature on rock mass dilatancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Natalie M.; Zok, Frank W.
One route for producing fiber-reinforced ceramic-matrix composites entails repeated impregnation and pyrolysis of a preceramic polymer in a fiber preform. The process relies crucially on the development of networks of contiguous cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full densification. The present study employs in-situ x-ray computed tomography (XCT) to reveal in three dimensions the evolution of matrix structure during pyrolysis of a SiC-based preceramic polymer to 1200 °C. Observations are used to guide the development of a taxonomy of crack geometries and crack structures and to identify the temporal sequence of their formation. A quantitative analysis ismore » employed to characterize effects of local microstructural dimensions on the conditions required to form cracks of various types. Complementary measurements of gas evolution and mass loss of the preceramic polymer during pyrolysis as well as changes in mass density and Young's modulus provide context for the physical changes revealed by XCT. Furthermore, the findings provide a foundation for future development of physics-based models to guide composite fabrication processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walls, P
Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Runmore » 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A combination of: (1) use of a higher forming pressure, (2) reduction of organics content, (3) improvement in the distribution of the organic wax and binder components throughout the green body, could possibly alleviate cracking. Ultrasonic emulsification of the binder and wax with a small quantity of water prior to adding to the ball or attrition mill is advised to ensure more even distribution of the wax/binder system. This would also reduce the proportion of organic additives required. The binder burnout stage of the operation must first be optimized (i.e. production of pucks with no cracks) prior to optimization of the sintering stage.« less
Singh, S. S.; Williams, J. J.; Lin, M. F.; ...
2014-05-14
In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.
Cracking of Beams Strengthened with Externally Bonded SRP Tapes
NASA Astrophysics Data System (ADS)
Krzywoń, Rafał
2017-10-01
Paper discusses strengthening efficiency of relatively new kind of SRP composite based on high strength steel wires. They are made of ultra-high strength steel primarily used in cords of car tires. Through advanced treatment, the mechanical properties of SRP steel are similar to other high carbon cold drawn steels used in construction industry. Strength significantly exceed 2000 MPa, there is no perfect plasticity at yield stress level. Almost linear stress-strain relationship makes SRP steel mechanical properties similar to carbon fibers. Also flexibility and weight ratio of the composite overlay is slightly worse than CFRP strip. Despite these advantages SRP is not as popular as other composites reinforced with fibers of high strength. This is due to the small number of studies of SRP behavior and applicability. Paper shows selected results of the laboratory test of beams strengthened with use of SRP and CFRP externally bonded overlays. Attention has been focused primarily on the phenomenon of cracking. Comparison include the cracking moment, crack width and spacing, coverage of crack zone. Despite the somewhat lower rigidity of SRP tapes, they have a much better adhesion to concrete, so that the crack width is comparable in almost the whole load range. The paper also includes an assessment of the common methods of checking the condition of cracking in relation to the tested SRP strengthening. The paper presents actual calculation procedures to determine the crack spacing and crack width. The discussed formulas are verified with results of provided laboratory tests.
Resistance to Fracture, Fatigue and Stress-Corrosion of Al-Cu-Li-Zr Alloys
1985-02-19
alloys , in both smooth and notch fatigue conditions, are compared in Figure 15 giving a summary of Mg- effect on S-N fatigue behavior. Several ...crack initiation of conventional aluminum alloys and reported that fatigue cracks were associated with cracked constituent particles in 2024 -T3... fatigue cracks. Kung & Fine (14) investigated surface crack initiation in a 2024 -T4 alloy . They observed that at high stresses most cracks formed
NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.
1992-01-01
The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.
Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80
NASA Astrophysics Data System (ADS)
Kedrinskii, V. K.; Skulkin, A. A.
2017-07-01
A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.
Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil
Chen, Bin; Wang, Yanan; Yan, Zhaoli
2018-01-01
Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method. PMID:29382144
Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.
Chen, Bin; Wang, Yanan; Yan, Zhaoli
2018-01-29
Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Stepanova, L. V.
2017-12-01
The paper is devoted to the multi-parameter asymptotic description of the stress field near the crack tip of a finite crack in an infinite isotropic elastic plane medium subject to 1) tensile stress; 2) in-plane shear; 3) mixed mode loading for a wide range of mode-mixity situations (Mode I and Mode II). The multi-parameter series expansion of stress tensor components containing higher-order terms is obtained. All the coefficients of the multiparameter series expansion of the stress field are given. The main focus is on the discussion of the influence of considering the higher-order terms of the Williams expansion. The analysis of the higher-order terms in the stress field is performed. It is shown that the larger the distance from the crack tip, the more terms it is necessary to keep in the asymptotic series expansion. Therefore, it can be concluded that several more higher-order terms of the Williams expansion should be used for the stress field description when the distance from the crack tip is not small enough. The crack propagation direction angle is calculated. Two fracture criteria, the maximum tangential stress criterion and the strain energy density criterion, are used. The multi-parameter form of the two commonly used fracture criteria is introduced and tested. Thirty and more terms of the Williams series expansion for the near-crack-tip stress field enable the angle to be calculated more precisely.
NASA Astrophysics Data System (ADS)
Zhang, H.; Huang, Chongxiang; Guan, Zhongwei; Li, Jiukai; Liu, Yongjie; Chen, Ronghua; Wang, Qingyuan
2018-01-01
The purpose of this study was to evaluate rotary bending high-cycle fatigue properties and crack growth of Nimonic 80A-based metal and electron beam-welded joints. All the tests were performed at room temperature. Fracture surfaces under high-cycle fatigue and fatigue crack growth were observed by scanning electron microscopy. Microstructure, hardness and tensile properties were also evaluated in order to understand the effects on the fatigue results obtained. It was found that the tensile properties, hardness and high-cycle fatigue properties of the welded joint are lower than the base metal. The fracture surface of the high-cycle fatigue shows that fatigue crack initiated from the surface under the high stress amplitude and from the subsurface under the low stress amplitude. The effect of the welding process on the statistical fatigue data was studied with a special focus on probabilistic life prediction and probabilistic lifetime limits. The fatigue crack growth rate versus stress intensity factor range data were obtained from the fatigue crack growth tests. From the results, it was evident that the fatigue crack growth rates of the welded are higher than the base metal. The mechanisms and fracture modes of fatigue crack growth of welded specimens were found to be related to the stress intensity factor range ΔK. In addition, the effective fatigue crack propagation thresholds and mismatch of welded joints were described and discussed.
Periodic nonlinear waves resulting from the contact interaction of a crack
NASA Astrophysics Data System (ADS)
Lee, Sang Eon; Jin, Suyeong; Hong, Jung-Wuk
2017-09-01
When two different inputs of distinct low and high frequencies are applied to a medium, the linear responses are composed of waves of two dominant frequencies. However, microcracks such as fatigue cracks generate nonlinear waves by modulating the characteristics of the incident waves. Although this phenomenon has been observed and used to detect microcracks, the underlying principles have not been thoroughly elucidated. The hysteresis properties were introduced to describe the nonlinear relationship between the stress and strain to explain these phenomena [Van Den Abeele et al., Res. Nondestruct. Eval. 12, 17 (2000) and Nazarov et al., Acoust. Phys. 49, 344 (2003)]. The generation of harmonics was explained by superimposing stress-strain relations that vary with crack width and excitation magnitude. As the crack depth increases, the ratio of magnitudes of the second harmonic to the first harmonic increases, but the increment becomes smaller [Kawashima et al., Ultrasonics 40, 611 (2002)]. Here, we show that the waves affected by the contact motion of the crack surfaces cultivate the nonlinearity in waveforms, resulting in high frequency off-band signals. With the hypothesis that the clapping of cracks might generate nonlinear components close to the high excitation frequency, we prove that the generation of the high frequency off-band peaks is directly affected by the clapping contact interaction of the crack surfaces. The amount of energy transmitted is closely related to the size of the crack width and the magnitudes of low and high frequency excitations.
The fatigue response of the aluminium-lithium alloy, 8090
NASA Technical Reports Server (NTRS)
Birt, M. J.; Beevers, C. J.
1989-01-01
The fatigue response of an Al-Li-Cu-Mg-Zr (8090) alloy has been studied at room temperature. The initiation and growth of small and long cracks has been examined at R = 0.1 and at a frequency of 100 Hz. Initiation was observed to occur dominantly at sub-grain boundaries. The growth of the small cracks was crystallographic in character and exhibited little evidence of retardation or arrest at the grain boundaries. The long crack data showed the alloy to have a high resistance to fatigue crack growth with underaging providing the optimum heat treatment for fatigue crack growth resistance. In general, this can be attributed to high levels of crack closure which resulted from the presence of extensive microstructurally related asperities.
Assessment Criteria for Environmental Cracking of High-Strength Steels in Seawater.
1983-03-18
OF HIGH-STRENGTH STEELS IN SEAWATER T. W. Crooker and J. A. Hauser II Material Science and Technology Division Naval Research Laboratory Washington, DC...AGSTPACT (Continued) environmental cracking. This report provides a summary of state-of-theart technology for assessing environmental cracking of high...This report will address this issue, both in terms of existing technology and needs for further
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanna, V.; Olson, R.A.; Jennings, H.M.
The effects of drying on mortars containing Portland cement blended with fly ash or slag on the shrinkage, extent of surface cracking, pore size distribution as measured by mercury intrusion porosimetry, flexural strength, fracture toughness, and Young`s modulus are reported. Specimens were exposed to conditions of 100% relative humidity (RH), 50% RH, and/or oven-drying at 105 C. Drying coarsened the pore structure and increased the density of surface cracks, but surprisingly increased the flexural strength and the fracture toughness, and as anticipated lowered the Young`s modulus. This was regardless of the content of mineral admixture.
NASA Astrophysics Data System (ADS)
Nurul, Islam Md.; Arai, Yoshio; Araki, Wakako
Strain range controlled low-cycle fatigue tests were conducted using ultrasonic method in order to investigate the effect of plastic strain range on the remaining life of austenitic stainless steel SUS316NG before the onset of crack growth in its early stages of fatigue. It was found that the decrease in ultrasonic back-reflection intensity from the surface of the material, caused by the increase in average dislocation density with localized plastic deformation at persistent slip bands (PSBs), starts earlier with increase in the plastic strain range. The amount of decrease in ultrasonic back-reflection before the onset of crack growth increases for larger plastic strain range. The difference in the cumulative plastic strains at the onset of crack growth and at the onset of decrease in the ultrasonic back-reflection remained constant over the range of tested plastic strain. This result can be used to predict the remaining life before the onset of crack growth within the plastic strain range used in this study. In addition, we present and evaluate another method to predict damage evolution involving ultrasound attenuation caused by PSBs.
NASA Astrophysics Data System (ADS)
Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.
2018-03-01
Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.
The epidemiology of physical attack and rape among crack-using women.
Falck, R S; Wang, J; Carlson, R G; Siegal, H A
2001-02-01
This prospective study examines the epidemiology of physical attack and rape among a sample of 171 not-in-treatment, crack-cocaine using women. Since initiating crack use, 62% of the women reported suffering a physical attack. The annual rate of victimization by physical attack was 45%. Overall, more than half of the victims sought medical care subsequent to an attack. The prevalence of rape since crack use was initiated was 32%, and the annual rate was 11%. Among those women having been raped since they initiated crack use, 83% reported they were high on crack when the crime occurred as were an estimated 57% of the perpetrators. Logistic regression analyses showed that duration of crack use, arrest for prostitution, and some college education were predictors of having experienced a physical attack. Duration of crack use and a history of prostitution were predictors of suffering a rape. Drug abuse treatment programs must be sensitive to high levels of violence victimization experienced by crack-cocaine using women. Screening women for victimization, and treating the problems that emanate from it, may help make drug abuse treatment more effective.
DOT National Transportation Integrated Search
2017-02-01
The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...
Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.
Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli
2017-10-20
Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.
Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor
Liu, Zhiping; Li, Zongchen
2017-01-01
Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects. PMID:29053614
Research of infrared laser based pavement imaging and crack detection
NASA Astrophysics Data System (ADS)
Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang
2013-08-01
Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.
Airframe integrity based on Bayesian approach
NASA Astrophysics Data System (ADS)
Hurtado Cahuao, Jose Luis
Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability and integrity of airframes in aging aircrafts. Inspection data shown in this dissertation are not the actual data from known aircrafts and are only used to demonstrate the methodologies.
1991-05-01
next generation of hk,- s-performance jet engines will require markedly stiffer materials, operating at higher stress levels anw. :apable of...the crack tip, and fatigue-crack propagation is observed at stress -intensity levels as low as 6 MPa&m, far below those required to initiate cracking...The next generation of high-performance jet engines will require markedly stiffer materials, operating at higher stress levels and capable of
Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel
NASA Astrophysics Data System (ADS)
Ramasagara Nagarajan, Varun
Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the austempering temperature decreases the resistance to hydrogen embrittlement. An interesting phenomenon was also observed in annealed specimen charged with hydrogen for 250 h which had an unusually high fatigue threshold (DeltaKth).
NASA Astrophysics Data System (ADS)
Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard
2016-03-01
Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.
The influence of temperature on fatigue-crack growth in a mill-annealed Ti-6Al-4V alloy
NASA Technical Reports Server (NTRS)
Wei, R. P.; Ritter, D. L.
1971-01-01
To understand the influence of temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude fatigue crack growth experiments were carried out using a 1/4 inch thick (6.35 mm) mill-annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C and as a function of the crack tip, stress intensity factor K, in dehumidified high purity argon environment. The dependence of the rate of fatigue crack growth on K appears to be separable into two regions. The transition correlates with changes in both the microscopic and macroscopic appearances of the fracture surfaces, and suggests a change in the mechanism and the influence of microstructure on fatigue crack growth.
NASA Astrophysics Data System (ADS)
Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming
2017-12-01
The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.
NASA Astrophysics Data System (ADS)
Lipovsky, B.; Dunham, E. M.
2013-12-01
Long-period seismicity due to the excitation of hydraulic fracture normal modes is thought to occur in many geological systems, including volcanoes, glaciers and ice sheets, and hydrocarbon reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluid within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis that accounts for quasi-dynamic elasticity of the fracture wall, as well as fluid drag, inertia, and compressibility. We consider symmetric perturbations and neglect the effects of stratification and gravity. In the long-wavelength or thin-fracture limit, dispersive guided waves known as crack waves propagate with phase velocity cw=√(G*|k|w/ρ), where G* = G/(1-υ) for shear modulus G and Poisson ratio υ, w is the crack half-width, k is the wavenumber, and ρ is the fluid density. Restoring forces from elastic wall deformation drive wave motions. In the opposite, short-wavelength limit, guided waves are simply sound waves within the fluid and little seismic excitation occurs due to minimal fluid-solid coupling. We focus on long-wavelength crack waves, which, in the form of standing wave modes in finite-length cracks, are thought to be a common mechanism for long-period seismicity. The dispersive nature of crack waves implies several basic scaling relations that might be useful when interpreting statistics of long-period events. Seismic observations may constrain a characteristic frequency f0 and seismic moment M0~GδwR2, where δw is the change in crack width and R is the crack dimension. Resonant modes of a fluid-filled crack have associated frequencies f~cw/R. Linear elasticity provides a link between pressure changes δp in the crack and the induced opening δw: δp~G δw/R. Combining these, and assuming that pressure changes have no variation with crack dimension, leads to the scaling law relating seismic moment and oscillation frequency, M0~(Gwδp/ρ)f0-2. This contrasts with the well-known self-similar earthquake scaling M0∝f0-3. Attenuation of long-period crack waves is due to both drag within the fluid and radiative energy losses from excitation of seismic waves. Fluid drag may be characterized by either a turbulent or laminar viscous law. We present a thorough characterization of viscous damping that is valid at both low frequencies, where the flow is always fully developed, and at high frequencies, where fluid inertia becomes important. We have derived simple formulas for the quality factor due to viscous attenuation. Waves may become unstable for sufficiently fast background fluid velocity u0. This instability, first proposed by Julian (1994), was further investigated by Dunham and Ogden (2012), who determined the instability condition, u0>cw/2. We establish a more general result: that the stability condition is not only independent of viscosity, but also uninfluenced by fluid inertia, although both do alter growth rates. We also show that radiation damping (excitation of plane P waves normal to the crack walls) has only a stabilizing effect. This work suggests that under geologically relevant conditions, crack wave propagation is most likely stable, and the occurrence of long-period oscillations thus requires some additional excitation process.
Improved hairline crack detector and poor shell-quality eggs
USDA-ARS?s Scientific Manuscript database
Cracks frequently occur throughout various points of egg collection and processing and there are numerous high-speed online commercial crack detectors in use. The accuracy of crack detectors is validated by USDA human graders to ensure that they are in compliance with voluntary grade standards USDA...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smeltzer, C E; Metcalfe, A G
The subject program is primarily an exploratory and demonstration study of the use of silicate glass-based adhesives for bonding silicon-base refractory ceramics (SiC, Si/sub 3/N/sub 4/). The projected application is 1250 to 2050/sup 0/F relaxing joint service in high-performance energy conversion systems. The five program tasks and their current status are as follows. Task 1 - Long-Term Joint Stability. Time-temperature-transformation studies of candidate glass adhesives, out to 2000 hours simulated service exposure, are half complete. Task 2 - Environmental and Service Effects on Joint Reliability. Start up delayed due to late delivery of candidate glass fillers and ceramic specimens. Taskmore » 3 - Viscoelastic Damping of Glass Bonded Ceramics. Promising results obtained over approximately the same range of glass viscosity required for joint relaxation function (10/sup 7.5/ to 10/sup 9.5/ poise). Work is 90% complete. Task 4 - Crack Arrest and Crack Diversion by Joints. No work started due to late arrival of materials. Task 5 - Improved Joining and Fabrication Methods. Significant work has been conducted in the area of refractory pre-glazing and the application and bonding of high-density candidate glass fillers (by both hand-artisan and slip-spray techniques). Work is half complete.« less
NASA Astrophysics Data System (ADS)
Pramanik, R.; Deb, D.
2015-07-01
The paper presents a methodology in the SPH framework to analyze physical phenomena those occur in detonation process of an explosive. It mainly investigates the dynamic failure mechanism in surrounding brittle rock media under blast-induced stress wave and expansion of high pressure product gases. A program burn model is implemented along with JWL equation of state to simulate the reaction zone in between unreacted explosive and product gas. Numerical examples of detonation of one- and two-dimensional explosive slab have been carried out to investigate the effect of reaction zone in detonation process and outward dispersion of gaseous product. The results are compared with those obtained from existing solutions. A procedure is also developed in SPH framework to apply continuity conditions between gas and rock interface boundaries. The modified Grady-Kipp damage model for the onset of tensile yielding and Drucker-Prager model for shear failure are implemented for elasto-plastic analysis of rock medium. The results show that high compressive stress causes high crack density in the vicinity of blast hole. The major principal stress (tensile) is responsible for forming radial cracks from the blast hole. Spalling zones are also developed due to stress waves reflected from the free surfaces.
High-power hybrid plasma spraying of large yttria-stabilized zirconia powder
NASA Astrophysics Data System (ADS)
Huang, Heji; Eguchi, Keisuke; Yoshida, Toyonobu
2006-03-01
To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... proposed AD would require a one-time high frequency eddy current inspection of fastener holes for cracks at... high frequency eddy current inspection of fastener holes for cracking at the left and right side wing... of this AD, do a one-time high frequency eddy current inspection for cracking of fastener holes at...
The growth of small corrosion fatigue cracks in alloy 2024
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1993-01-01
The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.
High resolution electron microscopy of a small crack at the superficial layer of enamel.
Hayashi, Y
1994-12-01
A small enamel crack was investigated using a high resolution electron microscope. The inside of the crack was filled with aggregates of irregularly oriented plate-like crystals. Amorphous mineral deposits were observed among these aggregates at a low magnification. Selected area electron diffractions indicated that the plate-like crystals consisted of hydroxyapatite (OH-AP), and that the amorphous mineral deposits were a mixture of OH-AP and whitlockite. These findings indicate that this crack may have been formed by occlusal and/or masticatory stress, and that a natural occlusion might occur through mineral deposition at the small crack such as in this case.
NASA Astrophysics Data System (ADS)
de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.
2013-04-01
To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.
Understanding breakage in curly hair.
Camacho-Bragado, G A; Balooch, G; Dixon-Parks, F; Porter, C; Bryant, H
2015-07-01
In 2005, the L'Oréal Institute for hair and skin research carried out a multiethnic study to investigate hair breakage in women residing in the U.S.A. In this study it was reported that a large percentage (96%) of the African-American respondents experience breakage. A combination of structural differences and grooming-induced stresses seem to contribute to the higher breakage incidence in the African-American group as the chemical composition of African-American hair is not significantly different from other ethnic groups. Some authors have proposed that the repeated elongation, torsion and flexion actions may affect the components of the hair fibre. However, considering the different properties of cuticle and cortex, one would expect a different wearing mechanism of each, leading to the ultimate failure of hair. Knowing in detail how each part of the structure fails can potentially lead to better ways to protect the hair from physical insults. To investigate crack propagation and fracture mechanisms in African-American hair. Virgin hair of excellent quality was collected, with informed consent, from a female African-American volunteer. A series of controlled mechanical stresses was applied to 10-mm hair sections using a high-resolution mechanical stage (20 mN) up to the fracture of the fibre. The surface was monitored using scanning electron microscopy imaging during the stress application. X-ray tomographic microscopy images were acquired and quantified to detect changes in energy absorption as a function of applied stress that could be linked to increase in crack density. Analysis of the mechanical response of hair combined with the two imaging techniques led us to propose the following mechanism of hair breakage: cuticle sliding; failure of the cuticle-cortex interface; nucleation of intercellular cracks and growth of cracks at the cuticle-cortex junction; and propagation of intercellular cracks towards the surface of the hair and final breakage when these cracks merge at the cuticular junction. The combination of scanning electron microscopy and X-ray tomography provided new information about the fracture of hair. Mechanical damage from grooming and some environmental factors accumulate in hair creating internal cracks that eventually result in breakage at unpredictable sites and therefore a continuous care regimen for the hair throughout the life cycle of the fibres is recommended. © 2015 The Authors BJD © 2015 British Association of Dermatologists.
Electrically reversible cracks in an intermetallic film controlled by an electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.
Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less
Electrically reversible cracks in an intermetallic film controlled by an electric field
Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.; ...
2018-01-03
Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less
The Development of Engineering Tomography for Monolithic and Composite Materials and Components
NASA Technical Reports Server (NTRS)
Hemann, John
1997-01-01
The research accomplishments under this grant were very extensive in the areas of the development of engineering tomography for monolithic and composite materials and components. Computed tomography was used on graphite composite pins and bushings to find porosity, cracks, and delaminations. It supported the following two programs: Reusable Launch Vehicle (RLV) and Southern Research institute (SRI). Did research using CT and radiography on Nickel based Superalloy dogbones and found density variations and gas shrinkage porosity. Did extensive radiography and CT of PMC composite flywheels and found delamination and non-uniform fiber distribution. This grant supported the Attitude Control Energy Storage Experiment (ACESE) program. Found broken fibers and cracks of outer stainless steel fibers using both radiographic and CT techniques on Pratt and Whitney fuel lines; Supported the Pratt & Whitney and Aging Aircraft engines program. Grant research helped identify and corroborate thickness variations and density differences in a silicon nitride "ROTH" tube using computed tomography.
Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn
2012-01-01
This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.
Controlled crack shapes for indentation fracture of soda-lime glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.M.; Scattergood, R.O.
1992-01-01
Radial cracks for indented soda-lime glass aged in distilled water were highly elliptical because of truncation by lateral cracks. Indentation in silicone oil minimized radial/lateral crack interaction but still produced cracks having nominally constant ellipticity during bend testing. Analysis of applied stress/indentation crack length data using stress intensity factors based on half-penny crack shape resulted in apparent R-curve behavior and/or overestimation of the fracture toughness. Incorporation of elliptical shape factors eliminated the R-curve behavior and reduced measured toughness to near the accepted value for soda-lime glass.
Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material
Lim, Jin-Myoung; Hwang, Taesoon; Kim, Duho; Park, Min-Sik; Cho, Kyeongjae; Cho, Maenghyo
2017-01-01
Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathodes have been highlighted for large-scale energy applications due to their high energy density. Although its specific capacity is enhanced at higher voltages as Ni ratio increases, its structural degradation due to phase transformations and lattice distortions during cycling becomes severe. For these reasons, we focused on the origins of crack generation from phase transformations and structural distortions in Ni-rich LiNi0.8Co0.1Mn0.1O2 using multiscale approaches, from first-principles to meso-scale phase-field model. Atomic-scale structure analysis demonstrated that opposite changes in the lattice parameters are observed until the inverse Li content x = 0.75; then, structure collapses due to complete extraction of Li from between transition metal layers. Combined-phase investigations represent the highest phase barrier and steepest chemical potential after x = 0.75, leading to phase transformations to highly Li-deficient phases with an inactive character. Abrupt phase transformations with heterogeneous structural collapse after x = 0.81 (~220 mAh g−1) were identified in the nanodomain. Further, meso-scale strain distributions show around 5% of anisotropic contraction with lower critical energy release rates, which cause not only micro-crack generations of secondary particles on the interfaces between the contracted primary particles, but also mechanical instability of primary particles from heterogeneous strain changes. PMID:28045118
Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.
Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O
2013-11-12
Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.
Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism
Gludovatz, Bernd; Demetriou, Marios D.; Floyd, Michael; Hohenwarter, Anton; Johnson, William L.; Ritchie, Robert O.
2013-01-01
Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ∼1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly “zig-zag” manner, creating a rough “staircase-like” profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability. PMID:24167284
Automatic quantification framework to detect cracks in teeth
Shah, Hina; Hernandez, Pablo; Budin, Francois; Chittajallu, Deepak; Vimort, Jean-Baptiste; Walters, Rick; Mol, André; Khan, Asma; Paniagua, Beatriz
2018-01-01
Studies show that cracked teeth are the third most common cause for tooth loss in industrialized countries. If detected early and accurately, patients can retain their teeth for a longer time. Most cracks are not detected early because of the discontinuous symptoms and lack of good diagnostic tools. Currently used imaging modalities like Cone Beam Computed Tomography (CBCT) and intraoral radiography often have low sensitivity and do not show cracks clearly. This paper introduces a novel method that can detect, quantify, and localize cracks automatically in high resolution CBCT (hr-CBCT) scans of teeth using steerable wavelets and learning methods. These initial results were created using hr-CBCT scans of a set of healthy teeth and of teeth with simulated longitudinal cracks. The cracks were simulated using multiple orientations. The crack detection was trained on the most significant wavelet coefficients at each scale using a bagged classifier of Support Vector Machines. Our results show high discriminative specificity and sensitivity of this method. The framework aims to be automatic, reproducible, and open-source. Future work will focus on the clinical validation of the proposed techniques on different types of cracks ex-vivo. We believe that this work will ultimately lead to improved tracking and detection of cracks allowing for longer lasting healthy teeth. PMID:29769755
STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.
2015-08-15
As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagatedmore » both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.« less
Crack identification and evolution law in the vibration failure process of loaded coal
NASA Astrophysics Data System (ADS)
Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing
2017-08-01
To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Zanganehgheshlaghi, Mohannad
2014-01-01
The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.
Automatic concrete cracks detection and mapping of terrestrial laser scan data
NASA Astrophysics Data System (ADS)
Rabah, Mostafa; Elhattab, Ahmed; Fayad, Atef
2013-12-01
Terrestrial laser scanning has become one of the standard technologies for object acquisition in surveying engineering. The high spatial resolution of imaging and the excellent capability of measuring the 3D space by laser scanning bear a great potential if combined for both data acquisition and data compilation. Automatic crack detection from concrete surface images is very effective for nondestructive testing. The crack information can be used to decide the appropriate rehabilitation method to fix the cracked structures and prevent any catastrophic failure. In practice, cracks on concrete surfaces are traced manually for diagnosis. On the other hand, automatic crack detection is highly desirable for efficient and objective crack assessment. The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.
NASA Astrophysics Data System (ADS)
Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav
2017-08-01
Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.
On crack initiation in notched, cross-plied polymer matrix composites
NASA Astrophysics Data System (ADS)
Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.
2015-05-01
The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.
Effects of Crack on Heat Flux in Hypersonic Shock/Boundary-Layer Interaction
NASA Astrophysics Data System (ADS)
Ozawa, Hiroshi; Hanai, Katsuhisa; Kitamura, Keiichi; Mori, Koichi; Nakamura, Yoshiaki
A small crack on body surface led to a tragic accident in 2003, which is the Columbia accident. During the shuttle's re-entry, high temperature gas penetrated crack on leading-edge of the left wing and melted the aluminum structure, finally the Columbia blew up. Since early times, there are many fundamental studies about simple cavity-flow formed on body surface in hypersonic speeds. However, an investigation of Shock/Boundary-Layer Interaction (SBLI) on crack has not been researched. For multistage space transportation vehicle such as TSTO, SBLI is an inevitable problem, and then SBLI on crack becomes a critical issue for TSTO development. In this study, the effects of crack, where SBLI occurs, were investigated for TSTO hypersonic speed (M∞ = 8.1). A square crack locates at SBLI point on the TSTO booster. Results show that a crack and its depth strongly effect on peak heat flux and aerodynamic interaction flow-field. In the cases of shallow crack (d/C ≤ 0.10), there exist two high heat flux regions on crack floor, which locates at a flow reattachment region and a back end wall of crack. In this case, a peak heat flux at flow reattachment region becomes about 2 times as large as the stagnation point heat flux, which value becomes larger compared with a peak heat flux in the case of No-Crack TSTO. While in the case of deep crack (d/C = 0.20), overall heat flux on crack floor decreases to below the stagnation point heat flux. These results provide useful data for a development of TSTO thermal protection system (TPS) such as thermal protection tile.
Crack sealer fill characteristics.
DOT National Transportation Integrated Search
2010-06-01
Laboratory testing was conducted to determine the extent of crack fill for crack sealers composed of methyl methacrylate, : epoxy, urethane, and high molecular weight methacrylate. The test specimens consisted of eight-inch long concrete : cylinders ...
... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...
Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo
2015-03-04
Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.
Rathke, Jörn; Müller, Ulrich; Konnerth, Johannes; Sinn, Gerhard
2012-01-01
This paper is the third part of a study dealing with the mechanical and fracture mechanical characterization of Medium Density Fiberboards (MDF). In the first part, an analysis of internal bond strength testing was performed and in the second part MDF was analyzed by means of the wedge splitting experiment; this part deals with the double cantilever I beam test, which is designed for measuring the fracture energy as well as stress intensity factor in Mode I. For a comparison of isotropic and orthotropic material behavior, finite element modeling was performed. In addition to the calculation of fracture energy the stress intensity factor was analyzed by means of finite elements simulation and calculation. In order to analyze strain deformations and the process zone, electronic speckle pattern interferometry measurements were performed. The results revealed an elongated process zone and lower results for KIC if compared to the wedge splitting experiment. The Gf numbers are higher compared to the wedge splitting results and can be explained by the thicker process zone formed during the crack propagation. The process zone width on its part is influenced by the stiff reinforcements and yields a similar crack surface as with the internal bond test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hmelo, A.B.
1987-01-01
The nature of the plastic relaxation associated with the semi-brittle cleavage fracture of a series of pre-cracked molybdenum-niobium alloy single crystals was investigated as a function of composition and temperature from 77/sup 0/ to 298/sup 0/K. Conventional optical microscopy and white-beam Synchrotron X-Ray Fractography (SXRF) were used to examined the structure of a thin layer a few microns thick at the remnant of the precursor crack plastic zone. The plastic work of fracture was evaluated by measuring the lattice curvature associated with networks of dislocations beneath the cleavage surface. Using SXRF, lattice curvature is detected as asterism on photographic plates,more » and is associated with an excess density of edge dislocations of one sign. The results are in qualitative agreement with a previous determination of the fracture toughness of these specimens. Excess edge-dislocation density of one sign has been shown to vary as a function of temperature and composition, in a way consistent with previous studies of total dislocation content in these materials. Unlike the etch-pit analysis that can reveal the total dislocation content only, the tensor bases analysis described here allows the activity on individual slip systems to be distinguished.« less
NASA Astrophysics Data System (ADS)
Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi
2010-12-01
This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.
Crack Nucleation in β Titanium Alloys under High Cycle Fatigue Conditions - A Review
NASA Astrophysics Data System (ADS)
Benjamin, Rohit; Nageswara Rao, M.
2017-05-01
Beta titanium (β-Ti) alloys have emerged over the last 3 to 4 decades as an important class of titanium alloys. Many of the applications that they found, particularly in aerospace sector, are such that their high cycle fatigue (HCF) behavior becomes critical. In HCF regime, crack nucleation accounts for major part of the life. Consequently it becomes important to understand the mechanisms underlying the nucleation of cracks under HCF type loading conditions. The purpose of this review is to document the best understanding we have on date on crack nucleation in β-Ti alloys under HCF conditions. Role of various microstructural features encountered in β-Ti alloys in influencing the crack nucleation under HCF conditions has been reviewed. It has been brought out that changes in processing can result in changes in microstructure which in turn influence the time for crack nucleation/fatigue life and fatigue limit. While majority of fatigue failures originate at the surface, subsurface cracking is not uncommon with β-Ti alloys and the factors leading to subsurface cracking have been discussed in this review.
Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; ...
2015-01-01
Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less
The Microstructural Evolution of Fatigue Cracks in FCC Metals
NASA Astrophysics Data System (ADS)
Gross, David William
The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations between the dislocation cells increased and the cell size decreased as the crack flank was approached. The final set of experiments involved reloading the arrested crack tips in monotonic tension. This was performed on both the Haynes 230 and 316 stainless steel. This technique exposed the fracture surface and location of the arrested crack tip away from the free surface, allowing for a sample to be extracted via FIB micromachining and TEM evaluation of the microstructure. This permitted the crack tip microstructure to be investigated without exposing the microstructure to crack closure or free surface effects. These experiments confirmed what was inferred from the earlier experiments, namely that the banded structure was a product of the crack tip plastic zone and the refined structure was a product of the strain associated with crack advance. Overall the microstructural complexity presented in this work was much higher than would be predicted by current models of fatigue crack propagation. It is recommended that future models attempt to simulate interactions between the dislocations emitted during fatigue crack growth and the pre-existing microstructure to more accurately simulate the processes occurring at the crack tip during crack growth.
Fatigue crack closure behavior at high stress ratios
NASA Technical Reports Server (NTRS)
Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.
1988-01-01
Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.
High Temperature Fatigue Crack Growth Behavior of Alloy 10
NASA Technical Reports Server (NTRS)
Gayda, John
2001-01-01
Methods to improve the high temperature, dwell crack growth resistance of Alloy 10, a high strength, nickel-base disk alloy, were studied. Two approaches, heat treat variations and composition modifications, were investigated. Under the heat treat approach, solution temperature, cooling rates, and stabilization, were studied. It was found that higher solution temperatures, which promote coarser grain sizes, coupled with a 1550 F stabilization treatment were found to significantly reduce dwell crack growth rates at 1300 F Changes in the niobium and tantalum content were found to have a much smaller impact on crack growth behavior. Lowering the niobium:tantalum ratio did improve crack growth resistance and this effect was most pronounced for coarse grain microstructures. Based on these findings, a coarse grain microstructure for Alloy 10 appears to be the best option for improving dwell crack growth resistance, especially in the rim of a disk where temperatures can reach or exceed 1300 T. Further, the use of advanced processing technologies, which can produce a coarse grain rim and fine grain bore, would be the preferred option for Alloy 10 to obtain the optimal balance between tensile, creep, and crack growth requirements for small gas turbine engines.
Apollo experience report: The problem of stress-corrosion cracking
NASA Technical Reports Server (NTRS)
Johnson, R. E.
1973-01-01
Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.
Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif
2015-01-01
The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.
Periodic cracks and temperature-dependent stress in Mo/Si multilayers on Si substrates
NASA Astrophysics Data System (ADS)
Kravchenko, Grygoriy; Tran, Hai T.; Volinsky, Alex A.
2018-07-01
This work examines formation of the peculiar periodic crack patterns observed in the thermally loaded Mo/Si multilayers. Using the substrate curvature measurements, the macroscopic film stress evolution during thermal cycling was investigated. Then high-speed microscopic observation of crack propagation in the annealed Mo/Si multilayers was presented providing experimental evidence of the mechanism underlying formation of the periodic crack patterns. The origin of the peculiar periodic crack patterns was determined. They were observed to form by the slow crack propagation under quasi-static conditions as a result of the interaction between the channelling crack propagation and the advance of the delamination front.
Evaluation of a Small-Crack Monitoring System
NASA Technical Reports Server (NTRS)
Newman, John A.; Johnston, William M.
2010-01-01
A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.
Is there a crack epidemic among students in Brazil?: comments on media and public health issues.
Nappo, Solange Aparecida; Sanchez, Zila M; Ribeiro, Luciana Abeid
2012-09-01
In the past year, the Brazilian Federal Government and society have reported and acted on a crack use epidemic, which has been exacerbated by the media. This study hypothesized that crack use has not increased at the rate suggested by the Brazilian media. A cross-sectional survey was carried out in 2010 using a multistage probabilistic representative sample of Brazilian middle and high school students in the country's 27 state capitals. A total of 50,890 valid questionnaires were weighted, analyzed and results compared to the 2004 national school survey dataset. Considering lifetime and past year crack use, no change in consumption was found between 2004 and 2010. Official data in Brazil on middle and high school students does not support the assertion of a crack epidemic widely publicized by the media. Government measures to treat and prevent crack use are encouraged; however, the term epidemic has been inappropriately used to represent the static prevalence of crack consumption among students.
Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel
NASA Technical Reports Server (NTRS)
Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.
2004-01-01
The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.
Stress Corrosion Cracking of High Strength Steels
1995-06-01
R. Brown, J. H. Graves, E. U. Lee, C. E. Neu and J. Kozol, " Corrosion Behavior of High Strength Steels for Aerospace Applications," Proceedings of...h fit Stress Corrosion Cracking of High Strength Steels Eun U. Lee, Henry Sanders and Bhaskar Sarkar Naval Air Warfare Center Aircraft Division...Patuxent River, Maryland 20670 ABSTRACT The stress corrosion cracking (SCC) was investigated for AerMet 100 and 300M steels in four aqueous NaCl
Influence of load interactions on crack growth as related to state of stress and crack closure
NASA Technical Reports Server (NTRS)
Telesman, J.
1985-01-01
Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.
High-Temperature Intergranular Crack Growth in Martensitic 2-1/4 Cr1Mo Steel,
1987-01-01
segregation of sulphur to crack-tip regions. Crack advance appears to occur by discrete jumps when a critical concentration of sulphur is achieved over the...jump-distance. At high stress intensities, reater than 48-55 HPam ,-the mo.e of fracture changes to interranular microvoid coalescence (IGMVC), and is...stze of crack opening displacement (5) at 500C. using 6 K(! - v2 )/20 E, where v - 0.3, 0 - 840 MPs and E = 160 GPa --6) ’ 27 7 Equilibriua concentration
Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru
2006-01-01
We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.
NASA Astrophysics Data System (ADS)
Enos, David George
Assessment of the effect of cathodic protection on a chloride contaminated bridge pile involves the definition of the hydrogen embrittlement behavior of the pearlitic reinforcement combined with quantification of the local (i.e., at the steel/concrete interface) chemical and electrochemical conditions, both prior to and throughout the application of cathodic protection. The hydrogen embrittlement behavior of the reinforcement was assessed through a combination of Devanathan/Stachurski permeation experiments to quantify subsurface hydrogen concentrations, CsbH, as a function of the applied hydrogen overpotential, eta, and crack initiation tests for bluntly notched and fatigue pre-cracked tensile specimens employing elastic-plastic finite element analysis and linear elastic fracture mechanics, respectively. A threshold mobile lattice hydrogen concentration for embrittlement of 2×10sp{-7} mol/cmsp3 was established for bluntly notched and fatigue pre-cracked specimens. Crack initiation occurred by the formation of shear cracks oriented at an angle approaching 45sp° from the tensile axis, as proposed by Miller and Smith (Miller, 1970), in regions where both the longitudinal and shear stresses were maximized (i.e., near the notch root). These Miller cracks then triggered longitudinal splitting which continued until fast fracture of the remaining ligament occurred. Instrumented laboratory scale piles were constructed and partially immersed in ASTM artificial ocean water. With time, localized corrosion (crevicing) was initiated along the reinforcement, and was accompanied by an acidic shift in the pH of the occluded environment due to ferrous ion hydrolysis. Cathodic protection current densities from -0.1 muA/cmsp2 to -3.0 muA/cmsp2 were applied via a skirt anode located at the waterline. Current densities as low as 0.66 muA/cmsp2 were sufficient to deplete the dissolved oxygen concentration at the steel/concrete interface and result in the observance of hydrogen production within regions near the waterline where the pH had decreased locally due to ferrous ion hydrolysis. By combining the effect of local cathodic protection level as a function of position along the reinforcement on hydrogen absorption with the information on the hydrogen embrittlement characteristics of the reinforcement as a function of hydrogen concentration, safe windows for the application of cathodic protection may be identified. Although hydrogen production and absorption were detected at -0.66 muA/cmsp2, concentrations which were of sufficient magnitude to be considered embrittling were not realized until -1.33 muA/cmsp2. Local hydrogen concentrations were compared to the 100 mV, 200 mV, and -780 mVsbSCE absolute potential cathodic protection criteria. With the exception of the 100 mV depolarization/decay criteria, it was not possible to sufficiently protect the high corrosion rate splash zone of the piling without exceeding the threshold hydrogen concentration for embrittlement at some zone within the reinforcement.
In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion
Larson, Natalie M.; Zok, Frank W.
2017-10-31
One route for producing fiber-reinforced ceramic-matrix composites entails repeated impregnation and pyrolysis of a preceramic polymer in a fiber preform. The process relies crucially on the development of networks of contiguous cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full densification. The present study employs in-situ x-ray computed tomography (XCT) to reveal in three dimensions the evolution of matrix structure during pyrolysis of a SiC-based preceramic polymer to 1200 °C. Observations are used to guide the development of a taxonomy of crack geometries and crack structures and to identify the temporal sequence of their formation. A quantitative analysis ismore » employed to characterize effects of local microstructural dimensions on the conditions required to form cracks of various types. Complementary measurements of gas evolution and mass loss of the preceramic polymer during pyrolysis as well as changes in mass density and Young's modulus provide context for the physical changes revealed by XCT. Furthermore, the findings provide a foundation for future development of physics-based models to guide composite fabrication processes.« less
Fracture mechanics criteria for turbine engine hot section components
NASA Technical Reports Server (NTRS)
Meyers, G. J.
1982-01-01
The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.
Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.
Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less
Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels
Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.
2015-09-10
Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less
Fatigue crack detection by nonlinear spectral correlation with a wideband input
NASA Astrophysics Data System (ADS)
Liu, Peipei; Sohn, Hoon
2017-04-01
Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.
NASA Astrophysics Data System (ADS)
Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.
2018-04-01
Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.
Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results
NASA Technical Reports Server (NTRS)
Wells, D. N.; Allen, P. A.
2012-01-01
An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.
NASA Astrophysics Data System (ADS)
Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu
2007-07-01
The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.
A Fundamental Investigation of Crack and Surrounding Damage in Stiff Clays
1988-09-01
equation of state is written in terms of entropy production. A generalized flux is identified as the centroidal movement of the damage zone, and the...on the following governing equation. I I a14 ( 1.1] Ti = z ’_Xc + "_.wXrOt + a.’X ef = 0 where Si is the global entropy production, 1, , and a are...convenient to express the internal energy density u in terms of i Gibb’s potential density and the entropy density s [6.3] u = g + Ts +’ijciji Here
Space Shuttle Main Engine High Pressure Fuel Turbopump Turbine Blade Cracking
NASA Technical Reports Server (NTRS)
Lee, Henry
1988-01-01
The analytical results from two-dimensional (2D) and three-dimensional (3D) finite element model investigations into the cracking of Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) first- and second-stage turbine blades are presented. Specifically, the initiation causes for transverse cracks on the pressure side of the firststage blade fir tree lobes and face/corner cracks on the downstream fir tree face of the second-state blade are evaluated. Because the blade material, MAR-M-246 Hf (DS), is highly susceptible to hydrogen embrittlement in the -100 F to 400 F thermal environment, a steady-state condition (full power level = 109 percent) rather than a start-up or shut-down transient was considered to be the most likely candidate for generating a high-strain state in the fir tree areas. Results of the analyses yielded strain levels on both first- and second-stage blade fir tree regions that are of a magnitude to cause hydrogen assisted low cycle fatigue cracking. Also evident from the analysis is that a positive margin against fir tree cracking exists for the planned design modifications, which include shot peening for both first- and second-stage blade fir tree areas.
Glasman, Laura R.; Dickson-Gomez, Julia; Lechuga, Julia; Tarima, Sergey; Bodnar, Gloria; de Mendoza, Lorena Rivas
2016-01-01
In El Salvador, crack users are at high risk for HIV but they are not targeted by efforts to promote early HIV diagnosis. We evaluated the promise of peer-referral chains with incentives to increase HIV testing and identify undiagnosed HIV infections among networks of crack users in San Salvador. For 14 months, we offered HIV testing in communities with a high prevalence of crack use. For the following 14 months, we promoted chains in which crack users from these communities referred their peers to HIV testing and received a small monetary incentive. We recorded the monthly numbers of HIV testers, and their crack use, sexual risk behaviors and test results. After launching the referral chains, the monthly numbers of HIV testers increased significantly (Z = 6.90, p < .001) and decayed more slowly (Z = 5.93, p < .001), and the total number of crack-using testers increased nearly fourfold. Testers in the peer-referral period reported fewer HIV risk behaviors, but a similar percentage (~5 %) tested HIV positive in both periods. More women than men received an HIV-positive diagnosis throughout the study (χ2(1, N = 799) = 4.23, p = .040). Peer-referral chains with incentives can potentially increase HIV testing among networks of crack users while retaining a focus on high-risk individuals. PMID:26687093
Deformation and spallation of a magnesium alloy under high strain rate loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, M.; Lu, L.; Li, C.
2016-04-01
We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less
Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan
2017-09-01
Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1998-01-01
Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt.% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF/HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damages at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, were observed especially for the combined LCF/HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.
Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE
Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare
2013-01-01
Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theus, G.J.; Emanuelson, R.H.
1983-05-01
This report describes a continuing study of stress corrosion cracking (SCC) of Inconel alloys 600 and 690 in all-volatile treated (AVT) water. Specimens of alloys 600 and 690 are being exposed to AVT water at 288/sup 0/, 332/sup 0/, 343/sup 0/, and 360/sup 0/C. Alloy 600 generally resists SCC in high-purity water under normal service conditions but is susceptible under other specific conditions. In general, mill-annealed alloy 600 is more susceptible than stress-relieved material. Susceptibility to SCC increases rapidly with increasing exposure temperature. Very high stresses (near or above yield) are required to induce cracking in AVT or other high-puritymore » waters. Most of the data presented in this report are for alloy 600; alloy 690 has not yet cracked. However, the program is being continued and will subsequently characterize the high-purity water cracking behavior, if any, of alloy 690.« less
Environmental fatigue in aluminum-lithium alloys
NASA Technical Reports Server (NTRS)
Piascik, Robert S.
1992-01-01
Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.
Hydrogen enhanced crack growth in 18 Ni maraging steels
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Wei, R. P.
1976-01-01
The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high-purity hydrogen are examined using the crack-tip stress intensity factor K as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly defined K-independent stage (Stage II). Crack growth rates in an 18 Ni (grade 250) maraging steel are examined for temperatures from -6 to +100 C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 plus or minus 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparent Kth (stress intensity level below which no observable crack growth occurs) and the crack growth behavior. Comparison of results on '250' and '300' grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior.
Dynamic delamination crack propagation in a graphite/epoxy laminate
NASA Technical Reports Server (NTRS)
Grady, J. E.; Sun, C. T.
1991-01-01
Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.
Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.
2003-01-01
The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.
High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.
Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen
2013-09-09
Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration.
Welding processes for Inconel 718- A brief review
NASA Astrophysics Data System (ADS)
Tharappel, Jose Tom; Babu, Jalumedi
2018-03-01
Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.
Self-healing of cracks in Ag joining layer for die-attachment in power devices
NASA Astrophysics Data System (ADS)
Chen, Chuantong; Nagao, Shijo; Suganuma, Katsuaki; Jiu, Jinting; Zhang, Hao; Sugahara, Tohru; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro
2016-08-01
Sintered silver (Ag) joining has attracted significant interest in power devices modules for its ability to form stable joints with a porous interconnection layer. A function for the self-healing of cracks in sintered porous Ag interlayers at high temperatures is discovered and reported here. A crack which was prepared on a Ag joining layer was closed after heating at 200 °C in air. The tensile strength of pre-cracked Ag joining layer specimens recovers to the value of non-cracked specimens after heating treatment. Transmission electron microscopy (TEM) was used to probe the self-healing mechanism. TEM images and electron diffraction patterns show that a large quantity of Ag nanoparticles formed at the gap with the size less than 10 nm, which bridges the crack in the self-healing process. This discovery provides additional motivation for the application of Ag as an interconnection material for power devices at high temperature.
Thermal cracking of poly α-olefin aviation lubricating base oil
NASA Astrophysics Data System (ADS)
Fei, Yiwei; Wu, Nan; Ma, Jun; Hao, Jingtuan
2018-02-01
Thermal cracking of poly α-olefin (PAO) was conducted under different temperatures among 190 °C to 300 °C. The reacted mixtures were sequentially detected by gas chromatography-mass spectrometer (GC/MS). A series of small molecular normal alkanes, branched alkanes and olefins were identified. PAO perfect structure of aligned comb-likely side-chains has been seriously cracked under high temperatures. Property changes about kinematic viscosity and pour point of PAO samples reacted under high temperatures were also investigated. The appearance of small molecular compounds weakened the thermal stability, viscosity temperature performance and low temperature fluidity of PAO samples. Property of PAO samples was deteriorated due to thermal cracking under high temperatures.
Study of Near-Threshold Fatigue Crack Propagation in Pipeline Steels in High Pressure Environments
NASA Technical Reports Server (NTRS)
Mitchell, M.
1981-01-01
Near threshold fatigue crack propagation in pipeline steels in high pressure environments was studied. The objective was to determine the level of threshold stress intensity for fatigue crack growth rate behavior in a high strength low alloy X60 pipeline-type steel. Complete results have been generated for gaseous hydrogen at ambient pressure, laboratory air at ambient pressure and approximately 60% relative humidity as well as vacuum of 0.000067 Pa ( 0.0000005 torr) at R-ratios = K(min)/K(max) of 0.1, 0.5, and 0.8. Fatigue crack growth rate behavior in gaseous hydrogen, methane, and methane plus 10 percent hydrogen at 6.89 MPa (100 psi) was determined.
Experimental study on the crack detection with optimized spatial wavelet analysis and windowing
NASA Astrophysics Data System (ADS)
Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine
2018-05-01
In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.
Yang, Kun; Wu, Yanqing; Huang, Fenglei
2018-08-15
A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Qiuting; Tang, Yichao; Hajfathalian, Maryam; Chen, Chunxu; Turner, Kevin T; Dikin, Dmitriy A; Lin, Gaojian; Yin, Jie
2017-12-27
Design of electronic materials with high stretchability is of great importance for realizing soft and conformal electronics. One strategy of realizing stretchable metals and semiconductors is to exploit the buckling of materials bonded to elastomers. However, the level of stretchability is often limited by the cracking and fragmentation of the materials that occurs when constrained buckling occurs while bonded to the substrate. Here, we exploit a failure mechanism, spontaneous buckling-driven periodic delamination, to achieve high stretchability in metal and silicon films that are deposited on prestrained elastomer substrates. We find that both globally periodic buckle-delaminated pattern and ordered cracking patterns over large areas are observed in the spontaneously buckle-delaminated thin films. The geometry of periodic delaminated buckles and cracking periodicity can be predicted by theoretical models. By patterning the films into ribbons with widths smaller than the predicted cracking periodicity, we demonstrate the design of crack-free and spontaneous delaminated ribbons on highly prestrained elastomer substrates, which provides a high stretchability of about 120% and 400% in Si and Au ribbons, respectively. We find that the high stretchability is mainly attributed to the largely relaxed strain in the ribbons via spontaneous buckling-driven delamination, as made evident by the small maximum tensile strain in both ribbons, which is measured to be over 100 times smaller than that of the substrate prestrain.
Examination of coating failure by acoustic emission
NASA Technical Reports Server (NTRS)
Berndt, Christopher C.
1985-01-01
Coatings of NiCrAlY bond coat with a zirconia - 12 wt percent yttria overlay were applied to disc-shaped specimens of U-700 alloy. A waveguide of 1 mm diameter platinum was TIG welded to the specimen and allowed it to be suspended in a tubular furnace. The specimen was thermally cycled to 1150 C, and the acoustic emission (AE) monitored. The weight gain per thermal cycle was also measured. A computer system based on the IBM-XT microcomputer was used extensively to acquire the AE data with respect to temperature. This system also controlled the temperature by using a PD software loop. Several different types of AE analyses were performed. A major feature of these tests, not addressed by previous work in this area, was that the coatings covered 100 percent of the specimen and also that the AE was amplified at two different levels. It is believed that this latter feature allows a qualitative appraisal of the relative number of cracks per AE event. The difference in AE counts between the two channels is proportional to the number of cracks per AE event, and this parameter may be thought of as the crack density. The ratio of the AE count difference to the AE count magnitude of one channel is inversely proportional to the crack growth. Both of these parameters allow the crack distribution and crack growth within each specimen to be qualitatively followed during the thermal cycling operation. Recent results which used these principles will be presented.
Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.; ...
2016-09-28
Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less
NASA Astrophysics Data System (ADS)
Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.
2018-05-01
In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.
Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less
Bioconcrete: next generation of self-healing concrete.
Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin
2016-03-01
Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research.
Stable tearing behavior of a thin-sheet material with multiple cracks
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with 1-5 collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: (1) saw cutting; (2) fatigue precracking at a low stress range; and (3) fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the Crack Tip Opening Angle (CTOA) fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with from one to five collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: saw cutting, fatigue precracking at a low stress range, and fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the CTOA fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
A novel assembly used for hot-shock consolidation
NASA Astrophysics Data System (ADS)
Chen, Pengwan; Zhou, Qiang; State Key Laboratory of Explosion Science and Technique Team
2013-06-01
A novel assembly characterized by an automatic set-up was developed for hot-shock consolidations of powders. The under-water shock wave and the high-temperature preheating, which are considered as two effective ways to eliminate cracks, were combined in the system. In this work, a SHS reaction mixture was used as chemical furnace to preheat the precursor powder, and the water column as well as the explosive attached to it was detached from the furnace by a solenoid valve fixed on the slide guide. When the precursor powders was preheated to the designed temperature, the solenoid valve was switched on, then the water column and the explosive slid down along the slide guide by gravity. At the moment the water container contacted with the lower part, the explosive was initiated, and the generated shock wave propagated through the water column to compact the powders. So the explosive and water column can be kept cool during the preheating process. The intensity of shock wave loading can be adjusted by changing the heights of water column. And the preheating temperature is controlled in the range of 700 ~1300 °C by changing the mass of the SHS mixture. In this work, pure tungsten powders and tungsten-copper mixture were separately compacted using this new assembly. The pure tungsten powder with a grain size of 2 μm were compacted to high density (96%T.D.) at 1300 °C, and the 90W-10Cu (wt pct) mixtures were compacted to nearly theoretical density at 1000 °C. The results showed that both samples were free of cracks. The consolidated specimens were then characterized by SEM analysis and micro-hardness testing.
Equations of state for crystalline zirconium iodide: The role of dispersion
NASA Astrophysics Data System (ADS)
Rossi, Matthew L.; Taylor, Christopher D.
2013-02-01
We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.
2008-01-01
The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.
In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina
2018-01-01
In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.
A novel crack healing in steels by gas nitrocarburizing
NASA Astrophysics Data System (ADS)
Li, Ai; Chen, Xing; Zhang, Chengsong; Cui, Guodong; Zhao, Hui; Yang, Chuan
2018-06-01
In this paper, the gas nitrocarburizing technique was applied for the first time to solve the challenge in crack healing of metallic materials. The crack-healing behavior of 42CrMo steel was investigated. The gas nitrocarburizing was carried out in two steps with the decrease of the healing temperature. The mechanical properties after healing were measured using the three-point blending test. X-ray diffraction, optical microscope and scanning electron microscopy were applied to characterize the phase composition and microstructure of crack healing area and analyze healing mechanisms involved. The results show that the optimal healing effect could be obtained when it is healed at 760 °C for 2 h and then at 550 °C for 4 h. The maximum healing degree reached to 63.68%. The crack healing process could be divided into two stages, i.e. healing in crack tips at high temperatures and then in crack openings at low temperatures. The volumetric expansion and filling of formed nitrides contributed to the rapid healing of the large-sized cracks. The healing efficiency could be improved by decreasing the healing temperature. Moreover, high pressure gas nitrocarburizing was considered as another potential way to improve the healing efficiency and healing degree.
Fatigue crack growth model RANDOM2 user manual, appendix 1
NASA Technical Reports Server (NTRS)
Boyce, Lola; Lovelace, Thomas B.
1989-01-01
The FORTRAN program RANDOM2 is documented. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Included in this user manual are details regarding the theoretical background of RANDOM2, input data, instructions and a sample problem illustrating the use of RANDOM2. Appendix A gives information on the physical quantities, their symbols, FORTRAN names, and both SI and U.S. Customary units. Appendix B includes photocopies of the actual computer printout corresponding to the sample problem. Appendices C and D detail the IMSL, Ver. 10(1), subroutines and functions called by RANDOM2 and a SAS/GRAPH(2) program that can be used to plot both the probability density function (p.d.f.) and the cumulative distribution function (c.d.f.).
Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.
Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun
2014-01-01
The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.
Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser
Liu, Dan; Shi, Yongjun
2014-01-01
The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230
Optimizing Probability of Detection Point Estimate Demonstration
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds
Liu, Xuesong; Berto, Filippo
2018-01-01
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J
2018-04-24
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.
A new perspective on the generation of the 2016 M6.7 Kaohsiung earthquake, southwestern Taiwan
NASA Astrophysics Data System (ADS)
Wang, Zhi
2017-04-01
In order to investigate the likely generation mechanism of the 2016 M6.7 Kaohsiung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and σgodels. In this way, multi-geophysical parameter imaging revealed that the 2016 Kaohsiung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-σ body that has high ɛ and somewhat high ζ anomalies above the hypocenter under the Coastal Plain represents fluids contained in the young fold-and-thrust belt associated with the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson's ratio, crack density and saturate fracturegnomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the Coastal Plain and Western Foothills as far as the southeastern lower crust under the Central Range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson's ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake. PIC
Stress Ratio Effects on Small Fatigue Crack Growth in Ti-6Al-4V (Preprint)
2008-11-01
crack effect is observed in this alloy , consistent with previous observations, where small cracks grew at stress intensity factor ranges below the long...high stress intensity factor ranges, ΔK, on the order of 10 MPa√m or greater. A significant small crack effect is observed in this alloy , consistent...the behavior of small cracks under different stress ratios in Ti-6Al-4V, an alloy commonly used for fan airfoils. The effect of stress ratio on
NASA Astrophysics Data System (ADS)
Zhang, Zhiying
Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.
Study of Solidification Cracking in a Transformation-Induced Plasticity-Aided Steel
NASA Astrophysics Data System (ADS)
Agarwal, G.; Kumar, A.; Gao, H.; Amirthalingam, M.; Moon, S. C.; Dippenaar, R. J.; Richardson, I. M.; Hermans, M. J. M.
2018-04-01
In situ high-temperature laser scanning confocal microscopy is applied to study solidification cracking in a TRIP steel. Solidification cracking was observed in the interdendritic region during the last stage of solidification. Atom probe tomography revealed notable enrichment of phosphorus in the last remaining liquid. Phase field simulations also confirm phosphorus enrichment leading to severe undercooling of more than 160 K in the interdendritic region. In the presence of tensile stress, an opening at the interdendritic region is difficult to fill with the remaining liquid due to low permeability and high viscosity, resulting in solidification cracking.
Dynamics of a fluid-driven crack in three dimensions by the finite difference method
NASA Astrophysics Data System (ADS)
Chouet, Bernard
1986-12-01
The finite difference method is applied to the study of the dynamics of a three-dimensional fluid-filled crack excited into resonance by the sudden failure of a small barrier of area ΔS on the crack surface. The impulse response of the crack is examined for various ratios of crack width to crack length and for several values of the crack stiffness C = (b/μ)(L/d), where b is the bulk modulus of the fluid, μ is the rigidity of the solid, and L and d are the crack length and crack thickness, respectively. The motion of the crack is characterized by distinct time scales representing the duration of brittle failure and the periods of acoustic resonance in the lateral and longitudinal dimensions of the source. The rupture has a duration proportional to the area of crack expansion and is the trigger responsible for the excitation of the crack into resonance; the resonant periods are proportional to the crack stiffness and to the width and length of the crack. The crack wave sustaining the resonance is analogous to the tube wave propagating in a fluid-filled borehole. It is dispersive, showing a phase velocity that decreases with increasing wavelength. Its wave speed is always lower than the acoustic velocity of the fluid and shows a strong dependence on the crack stiffness, decreasing as the stiffness increases. The initial motion of the crack surface is an opening, and the radiated far-field compressional wave starts with a strong but brief compression which has a duration proportional to the crack stiffness and size of the rupture area; the amplitude of this pulse increases with the area of rupture but decreases with increasing stiffness. Flow into the newly created cavity triggers a pressure drop in the fluid, which produces a partial collapse of the wall propagated over the crack surface at the speed of the crack wave. The collapse of the crack surface generates a weak long-period component of dilatation following the compressional first motion in the far-field P wave train; the dilatational component is clearer in the signal from stiffer cracks when seen in the direction of the rupture. The energy loss by radiation is stronger for high frequencies, resulting in a progressive enrichment of the crack response in lower frequencies over the duration of resonance. These source characteristics translate into a far-field signature that is marked by a high-frequency content near its onset and dominated by a longer-period component in its coda. The source duration shows a strong dependence on the fluid viscosity and associated viscous damping at the crack wall.
NASA Astrophysics Data System (ADS)
Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni
2016-05-01
The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.
NASA Astrophysics Data System (ADS)
Anggraini, L.; Sugeng
2018-05-01
This research discusses the testing and analysis of cracking Aluminum (Al) material. Al as a handle lever was used for a braking device on a motor vehicle. Cracking of handle lever due to the part content of porosity from hydrogen gas. The existence of the H2 can be caused by the casting process and dies design that is less perfect, especially at the gate or brisket and overflow. This research is to optimize the process of making Al part handle lever, and the construction dies by following the standard. The results of these improvements were reevaluated through the chemical and mechanical testing properties stages, such as density test and tensile test on the workpiece as part handle lever. The loads on the tensile test are 25 kg and 35 kg, and the tensile test result has met the standard set by the motor vehicle company. The optimization result has the porosity defect can be reduced by 99 %. Therefore the best part handle lever can be produced.
Near-IR imaging of cracks in teeth
NASA Astrophysics Data System (ADS)
Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel
2014-02-01
Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.
NASA Astrophysics Data System (ADS)
Zhang, Lefu; Chen, Kai; Du, Donghai; Gao, Wenhua; Andresen, Peter L.; Guo, Xianglong
2017-08-01
The effect of creep on stress corrosion cracking (SCC) was studied by measuring crack growth rates (CGRs) of 30% cold worked (CW) Alloy 690 in supercritical water (SCW) and inert gas environments at temperatures ranging from 450 °C to 550 °C. The SCC crack growth rate under SCW environments can be regarded as the cracking induced by the combined effect of corrosion and creep, while the CGR in inert gas environment can be taken as the portion of creep induced cracking. Results showed that the CW Alloy 690 sustained high susceptibility to intergranular (IG) cracking, and creep played a dominant role in the SCC crack growth behavior, contributing more than 80% of the total crack growth rate at each testing temperature. The temperature dependence of creep induced CGRs follows an Arrhenius dependency, with an apparent activation energy (QE) of about 225 kJ/mol.
Recent advances in the modelling of crack growth under fatigue loading conditions
NASA Technical Reports Server (NTRS)
Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.
1994-01-01
Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.
MoSi2-Base Composite for Engine Applications
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Nathal, Michael V.
1997-01-01
The intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cm versus 8 g/cm for current engine materials), and ease of machining make it an attractive structural material. However, the use of MoSi2 has been hindered because of the brittle nature of the material at low temperatures, inadequate creep resistance at high temperatures, accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 400 and 500 C, and a coefficient of thermal expansion (CTE) that is relatively high in comparison to potential reinforcing fibers such as SiC. This CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling.
DOT National Transportation Integrated Search
2009-01-01
Pipeline steels suffer significant degradation of their mechanical properties in high-pressure : gaseous hydrogen, including their fatigue cracking resistances to cyclic loading. The current : project work was conducted to produce fatigue crack growt...
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears
2012-06-01
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears by David “Blake” Stringer, Ph.D., Kelsen E. LaBerge, Ph.D., Cory...0383 June 2012 Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears David “Blake” Stringer and Ph.D., Kelsen E. LaBerge...Quality Spur Gears 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David “Blake” Stringer, Ph.D., Kelsen E
Cecere, M. C.; Gürtler, R. E.; Chuit, R.; Cohen, J. E.
1998-01-01
Reported are the environmental and demographic risk factors associated with the domestic infestation and density of Triatoma infestans in three heavily infested rural villages in Santiago del Estero Province, Argentina. In a one-factor unadjusted analysis, the number of T. infestans captured per person-hour was associated significantly and negatively with the use of domestic insecticides by householders, type of thatch used in the roofs and the age of the house; and positively with the following: degree of cracking of the indoor walls and presence of hens nesting indoors. In one model, using multiple linear regression and a backward stepwise elimination procedure, most of the variation in the overall abundance of T. infestans was explained by insecticide use and the presence of hens nesting indoors; in another model using the same procedure it was explained by insecticide use, bug density in 1988 and previous spraying with deltamethrin in 1985. Variations in bug density per capture stratum (household goods, beds, walls and roof) were explained by the bug density in other strata and by one or two of the following risk factors: hens nesting indoors, type of roof, presence of cracks in the walls and number of people living in the house. Bug density might be locally controlled by the availability of refuges in the roofs and walls, by the presence of hens nesting indoors and by the use of domestic insecticides. Certain local materials, such as a grass known as simbol, could be successfully used in rural housing improvement programmes aimed at reducing the availability of refuges for insects in the roof. PMID:9803588
Cecere, M C; Gürtler, R E; Chuit, R; Cohen, J E
1998-01-01
Reported are the environmental and demographic risk factors associated with the domestic infestation and density of Triatoma infestans in three heavily infested rural villages in Santiago del Estero Province, Argentina. In a one-factor unadjusted analysis, the number of T. infestans captured per person-hour was associated significantly and negatively with the use of domestic insecticides by householders, type of thatch used in the roofs and the age of the house; and positively with the following: degree of cracking of the indoor walls and presence of hens nesting indoors. In one model, using multiple linear regression and a backward stepwise elimination procedure, most of the variation in the overall abundance of T. infestans was explained by insecticide use and the presence of hens nesting indoors; in another model using the same procedure it was explained by insecticide use, bug density in 1988 and previous spraying with deltamethrin in 1985. Variations in bug density per capture stratum (household goods, beds, walls and roof) were explained by the bug density in other strata and by one or two of the following risk factors: hens nesting indoors, type of roof, presence of cracks in the walls and number of people living in the house. Bug density might be locally controlled by the availability of refuges in the roofs and walls, by the presence of hens nesting indoors and by the use of domestic insecticides. Certain local materials, such as a grass known as simbol, could be successfully used in rural housing improvement programmes aimed at reducing the availability of refuges for insects in the roof.
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Gawlak, Karolina; Gurgul, Magdalena; Dziurka, Magdalena; Nowak, Marlena; Gilek, Dominika; Sulka, Grzegorz D.
2018-05-01
Nanoporous tin oxide layers were synthesized via simple one-step anodic oxidation of a low-purity Sn foil (98.8%) in sodium hydroxide electrolyte. The process of pore formation at the early stage of anodization was discussed on the basis of concepts of oxygen bubble mould effect and viscous flow of oxide. The effect of anodizing conditions on the generation of internal cracks and fractures within the anodic film was investigated in detail. It was confirmed that crack-free tin oxide films can be obtained if the anodization is carried out at the potential of 4 V independently of the electrolyte concentration. On the other hand, the porous anodic film with a totally stacked internal morphology is obtained at the potential of 5 V in 0.1 M NaOH electrolyte. The generation of internal cracks and voids can be attributed to a much lower surface porosity and local trapping of O2 inside the pores of the oxide layer. However, increasing electrolyte concentration allows for obtaining less cracked porous films due to effective and uniform liberation of oxygen bubbles from the channels through completely open pore mouths. Furthermore, it was confirmed that uniformity of the anodic tin oxide layers can be significantly improved by vigorous electrolyte stirring. Finally, we observed that the addition of ethanol to the electrolyte can reduce anodic current density and the oxide growth rate. In consequence, less cracked anodic film can be formed even at the potential of 6 V. The generation of oxygen at the pore bottoms, together with the open pore mouths were found to be critical factors responsible for the anodic formation of crack-free porous tin oxide films.
Residual strength of thin panels with cracks
NASA Technical Reports Server (NTRS)
Madenci, Erdogan
1994-01-01
The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions.
NASA Astrophysics Data System (ADS)
Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.
2016-11-01
This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.
Raman Mapping for the Investigation of Nano-phased Materials
NASA Astrophysics Data System (ADS)
Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.
Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.
Effect of a high helium content on the flow and fracture properties of a 9Cr martensitic steel
NASA Astrophysics Data System (ADS)
Henry, J.; Vincent, L.; Averty, X.; Marini, B.; Jung, P.
2007-08-01
An experimental characterization was conducted of helium effects on the mechanical properties of a 9Cr martensitic steel. Six sub-size Charpy samples were implanted in the notch region at 250 °C with 0.25 at.% helium and subsequently tested in 3-point bending at room temperature. Brittle fracture mode (cleavage and intergranular fracture) was systematically observed in the implanted zones of the samples. Finite element calculations of the tests, using as input the tensile properties measured on a helium loaded sample, were performed in order to determine the fracture stress at the onset of brittle crack propagation. Preliminary TEM investigations of the implantation-induced microstructure revealed a high density of small helium bubbles.
Crack-resistant concrete : maximizing the service life of transportation infrastructure.
DOT National Transportation Integrated Search
2009-01-01
Although much progress has been made in reducing concretes propensity to crack, the goal remains elusive. A novel approach to this problem is the focus of High-Performance Stress-Relaxing Cementitious Composites for Crack-Free Pavements and Tra...
NASA Astrophysics Data System (ADS)
Zhang, Yuwei; Guo, Zhansheng
2018-03-01
Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.
Glasman, Laura R; Dickson-Gomez, Julia; Lechuga, Julia; Tarima, Sergey; Bodnar, Gloria; de Mendoza, Lorena Rivas
2016-06-01
In El Salvador, crack users are at high risk for HIV but they are not targeted by efforts to promote early HIV diagnosis. We evaluated the promise of peer-referral chains with incentives to increase HIV testing and identify undiagnosed HIV infections among networks of crack users in San Salvador. For 14 months, we offered HIV testing in communities with a high prevalence of crack use. For the following 14 months, we promoted chains in which crack users from these communities referred their peers to HIV testing and received a small monetary incentive. We recorded the monthly numbers of HIV testers, and their crack use, sexual risk behaviors and test results. After launching the referral chains, the monthly numbers of HIV testers increased significantly (Z = 6.90, p < .001) and decayed more slowly (Z = 5.93, p < .001), and the total number of crack-using testers increased nearly fourfold. Testers in the peer-referral period reported fewer HIV risk behaviors, but a similar percentage (~5 %) tested HIV positive in both periods. More women than men received an HIV-positive diagnosis throughout the study (χ(2)(1, N = 799) = 4.23, p = .040). Peer-referral chains with incentives can potentially increase HIV testing among networks of crack users while retaining a focus on high-risk individuals.
Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian
2016-01-01
We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584
Experimental assessment of an RFID-based crack sensor for steel structures
NASA Astrophysics Data System (ADS)
E Martínez-Castro, R.; Jang, S.; Nicholas, J.; Bansal, R.
2017-08-01
The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions of high moment for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cyclic loading, which can initiate crack formation at the toe of the weld and reduce beam capacity. Thus, timely detection of fatigue cracks is of utmost importance in steel girder bridge monitoring. To date, crack monitoring methods using in-house radio frequency identification (RFID)-based sensors have been developed to complement visual inspection and provide quantitative information of damage level. Offering similar properties at a reduced cost, commercial ultra-high frequency (UHF) passive RFID tags have been identified as a more financially viable option for pervasive crack monitoring using a dense array of sensors. This paper presents a study on damage sensitivity of low-cost commercial UHF RFID tags for crack detection and monitoring on metallic structures. Using backscatter power as a parameter for damage identification, a crack sensing system has been developed for single and multiple tag configurations for increased sensing pervasiveness. The effect on backscatter power of the existence and stage of crack propagation has been successfully characterized. For further automation of crack detection, a damage index based on the variation of backscatter power has also been established. The tested commercial RFID-based crack sensor contributes to the usage of this technology on steel girder bridges.
A Study of Three Intrinsic Problems of the Classic Discrete Element Method Using Flat-Joint Model
NASA Astrophysics Data System (ADS)
Wu, Shunchuan; Xu, Xueliang
2016-05-01
Discrete element methods have been proven to offer a new avenue for obtaining the mechanics of geo-materials. The standard bonded-particle model (BPM), a classic discrete element method, has been applied to a wide range of problems related to rock and soil. However, three intrinsic problems are associated with using the standard BPM: (1) an unrealistically low unconfined compressive strength to tensile strength (UCS/TS) ratio, (2) an excessively low internal friction angle, and (3) a linear strength envelope, i.e., a low Hoek-Brown (HB) strength parameter m i . After summarizing the underlying reasons of these problems through analyzing previous researchers' work, flat-joint model (FJM) is used to calibrate Jinping marble and is found to closely match its macro-properties. A parametric study is carried out to systematically evaluate the micro-parameters' effect on these three macro-properties. The results indicate that (1) the UCS/TS ratio increases with the increasing average coordination number (CN) and bond cohesion to tensile strength ratio, but it first decreases and then increases with the increasing crack density (CD); (2) the HB strength parameter m i has positive relationships to the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle, but a negative relationship to the average coordination number (CN); (3) the internal friction angle increases as the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle increase; (4) the residual friction angle has little effect on these three macro-properties and mainly influences post-peak behavior. Finally, a new calibration procedure is developed, which not only addresses these three problems, but also considers the post-peak behavior.
Corrosion-Resistant Roof with Integrated Photovoltaic Power System
2014-02-01
Figure 9. The panels are coated with a PVDF organic coating on the external facing surface and polyester enamel on the interior-facing surface. The high...1 no scribe No evidence of blistering, cracking , peeling or delaminating #2 scribe No evidence of blistering, cracking , peeling or delaminating...3 scribe No evidence of blistering, cracking , peeling or delaminating #4 scribe No evidence of blistering, cracking , peeling or delaminating
High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.
Zhao, Jing; Ji, Honghong; Wang, Tiansheng
2017-12-29
The high-cycle, push-pull fatigue fracture behavior of high-C, Si-Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push-pull fatigue limits at 10⁷ cycles were estimated as 710-889 MPa, for the samples isothermally transformed at the temperature range of 220-260 °C through data extrapolation, measured under the maximum cycle number of 10⁵. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.
High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel
Zhao, Jing; Ji, Honghong
2017-01-01
The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325
Test Method Variability in Slow Crack Growth Properties of Sealing Glasses
NASA Technical Reports Server (NTRS)
Salem, J. A.; Tandon, R.
2010-01-01
The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.
Crack healing in silicon nitride due to oxidation
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Tikare, Veena; Pawlik, Ralph
1991-01-01
The crack healing behavior of a commercial, MgO-containing, hot pressed Si3N4 was studied as a function of temperature in oxidizing and inert annealing environments. Crack healing occurred at a temperature 800 C or higher due to oxidation regardless of crack size, which ranged from 100 microns (indentation crack) to 1.7 mm (SEPB precrack). The resulting strength and apparent fracture toughness increased at crack healing temperature by 100 percent and 300 percent, respectively. The oxide layer present in the crack plane was found to be highly fatigue resistant, indicating that the oxide is not solely silicate glass, but a mixture of glass, enstatite, and/or cristobalite that was insensitive to fatigue in a room temperature water environment.
Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024
NASA Technical Reports Server (NTRS)
Riddell, William T.; Piascik, Robert S.
1998-01-01
The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pao, P.S.; Meyn, D.A.; Bayles, R.A.
1997-06-01
Both overaged and peakaged TIMETAL 21S beta titanium alloys exhibit significant ripple-load cracking susceptibility in salt water and in ambient air environments. At R = 0.90, the ripple-load cracking thresholds of the overaged alloy are 67% and 72% lower than the stress-corrosion cracking and sustained-load cracking thresholds. For the peakaged alloy, the reductions are 55% and 61%. The stress-corrosion cracking threshold in salt water and the sustained-load cracking threshold in air of peakaged TIMETAL 21S are significantly lower while the ripple-load cracking threshold is slightly lower than those of the overaged alloy. The stress-corrosion cracking, sustained-load cracking, and ripple-load crackingmore » resistance of peakaged TIMETAL 21S are significantly inferior to those of both beta-annealed Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn. The ripple-load cracking resistance of overaged TIMETAL 21S, though better than Ti-15V-3Cr-3Al-3Sn, is still inferior than that of beta-annealed Ti-6Al-4V.« less
Growth of Ca 4YO(BO 3) 3 crystals by vertical Bridgman method
NASA Astrophysics Data System (ADS)
Luo, Jun; Fan, Shiji; Wang, Jinchang; Zhong, Zhenwu; Qian, Guoxing; Sun, Renying
2001-07-01
Growth of single crystals of Ca 4YO(BO 3) 3 (YCOB) by the vertical Bridgman method is reported in this paper. By using near-sealed Pt crucibles to prevent volatilization of B 2O 3, the high-optical-quality YCOB crystals of 25 mm diameter and more than 40 mm in length have been grown at the furnace temperature of 50-80°C above the melting point of YCOB and the crucible lowering rates of 0.2-0.6 mm/h. Owing to the low vertical and radial temperature gradient, crack-free YCOB crystals have been obtained in the <0 1 0> and <0 0 1> directions. At the top of a YCOB boule, the dislocation density was found to decrease from the center to the outer area, and the average dislocation density is about 600/cm 2.
Improved imaging algorithm for bridge crack detection
NASA Astrophysics Data System (ADS)
Lu, Jingxiao; Song, Pingli; Han, Kaihong
2012-04-01
This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.
Fatigue crack propagation in aluminum-lithium alloys
NASA Technical Reports Server (NTRS)
Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.
1989-01-01
The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.
Correlation between laboratory and plant produced high RAP/RAS mixtures : final report.
DOT National Transportation Integrated Search
2016-07-01
Cracking is one of the most prevalent types of distresses in asphalt pavements. There are different cracking : index parameters that are determined from tests conducted on binders and mixtures to assess cracking : potential. The objective of this stu...
Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1999-01-01
A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.
Influence of High Mn-Cu-Mo on Microstructure and Fatigue characteristics of Austempered Ductile Iron
NASA Astrophysics Data System (ADS)
Banavasi Shashidhar, M.; Ravishankar, K. S.; Naik Padmayya, S.
2018-03-01
The impacts of high Mn content on microstructure and fatigue characteristics of ADI at 300, 350 and 400 °C for 120 min have been examined. Optical microscopy images reveals bainite morphology only at 300°C. Higher Mn contents hinders bainite transformation in the locales of Mn and Mo segregation, where in stage II reaction initiates near the graphite nodules before stage I reaction ends away from the nodules which creates more unreacted austenite volume after cooling forming martensite around the periphery creating austenite-martensite zone at 350 °C and tremendously articulated at 400°C. Feathery ferrite laths, stable retained austenite and uniform density hardness in the matrix, promotes higher toughness and fatigue properties (250 MPa @ 106 cycles) at 300 °C. Presence of stage II carbides in the eutectic cell and austenite-martensite zone in the intercellular regions, due to their embrittlement in the matrix, makes easy crack path for initiation and propagation deteriorating properties at 350°C and above. SEM images of fatigue fractured surface revealed that at 300°C, showed a regular crack interconnecting graphite nodule, fatigue striation and quazi-cleavage fracture mode, and at 350 & 400°C reveals the carbide, austenite-martensite and porosity/defect final fracture region.
NASA Astrophysics Data System (ADS)
Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.
2017-05-01
The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.
Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.K.; Lim, J.K.; Watanabe, Yutaka
1996-10-01
Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 ummore » to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.« less
An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.
Tian, Hao; Yan, Zhaoli; Yang, Jun
2018-04-09
Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.
NASA Astrophysics Data System (ADS)
Badica, P.; Awaji, S.; Oguro, H.; Nishijima, G.; Watanabe, K.
2006-04-01
Six Nb3Sn composite wires with different architectures ('central and near-the-edge reinforcement') were repeatedly in-plane bent at room temperature (in-plane 'pre-bending'). Breakage behaviour was revealed from scanning electron microscopy observations by semi-quantitative analysis of the filament crack formation and evolution. Cracks are formed in the transversal and longitudinal directions. Transversal cracks show some tolerance to the applied bending strain due to the fact that filaments are composite materials; residual Nb core can arrest development of a partial transversal crack initiated in the Nb3Sn outer part of the filament. Together with the density of cracks C and the evolution of this parameter with pre-bending strain, ɛpb, in different regions of the wire, R-ɛpb curves are important to understand breakage behaviour of the wires. R is the ratio (number of full transversal cracks)/(number of full transversal cracks + number of partial transversal cracks). Parameters C and R allow us to reveal and satisfactorily understand the wire architecture—breakage—critical current decay relationship when pre-bending treatment is applied. As a consequence, breakage criteria necessary to minimize Ic decay were defined and the positive influence of the reinforcement in preventing breakage was observed. It was also found that, in this regard, more Nb in the CuNb reinforcement, for the investigated wires, is better, if the heat treatment for the wire synthesis is performed at 670 °C for 96 h. A different heat treatment, 650 °C for 240 h, is less efficient in preventing filament breakage. Our results suggest the possibility of control and improvement of the breakage susceptibility of the filaments in the wires and, hence, of the bending Ic decay, through the wise design of the wire architecture (i.e. by correlating design with the choice of composing materials and heat treatments).
NASA Astrophysics Data System (ADS)
Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.
2013-01-01
Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.
ERIC Educational Resources Information Center
Physics Education, 1984
1984-01-01
Describes (1) oil slick interference rings in the laboratory; (2) cracking of glass by impact; (3) multipurpose prism for refractometry and light path demonstrations; and (4) determination of liquid densities and volumes of solid bodies by the reaction force on a vessel. Procedures used and equipment needed are discussed. (JN)
Design and performance of crack-free environmentally friendly concrete "crack-free eco-crete".
DOT National Transportation Integrated Search
2014-08-01
High-performance concrete (HPC) is characterized by high content of cement and supplementary cementitious materials (SCMs). : Using high binder content, low water-to-cementitious material ratio (w/cm), and various chemical admixtures in the HPC can r...
Williams Element with Generalized Degrees of Freedom for Fracture Analysis of Multiple-Cracked Beam
NASA Astrophysics Data System (ADS)
Xu, Hua; Wei, Quyang; Yang, Lufeng
2017-10-01
In this paper, the method of finite element with generalized degrees of freedom (FEDOFs) is used to calculate the stress intensity factor (SIF) of multiple cracked beam and analysed the effect of minor cracks on the main crack SIF in different cases. Williams element is insensitive to the size of singular region. So that calculation efficiency is highly improved. Examples analysis validates that the SIF near the crack tip can be obtained directly though FEDOFs. And the result is well consistent with ANSYS solution and has a satisfied accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaliszewski, M.S.; Behrens, G.; Heuer, A.H.
1994-05-01
The development of Vickers indent-induced cracks with increasing indent load has been studied in two Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] ceramics. Such cracks form as radial or Palmqvist cracks at low loads, assume kidney'' shapes at intermediate loads, and finally form median (half-penny) cracks at high loads. The plastic zone directly beneath the indent is uncracked; a significant portion of the plasticity induced by indentation occurs by martensitic transformation.
Nonstationary envelope process and first excursion probability
NASA Technical Reports Server (NTRS)
Yang, J.
1972-01-01
A definition of the envelope of nonstationary random processes is proposed. The establishment of the envelope definition makes it possible to simulate the nonstationary random envelope directly. Envelope statistics, such as the density function, joint density function, moment function, and level crossing rate, which are relevent to analyses of catastrophic failure, fatigue, and crack propagation in structures, are derived. Applications of the envelope statistics to the prediction of structural reliability under random loadings are discussed in detail.