A case study of magnetotail current sheet disruption and diversion
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.; Mcentire, R. W.; Zanetti, L. J.
1988-01-01
On June 1, 1985 the AMPTE/CCE spacecraft (at a geocentric distance of about 8.8 earth radii at the midnight neutral sheet region) observed a dispersionless energetic particle injection and an increase in magnetic field magnitude, which are features commonly attributed to disruption of the near-earth cross-tail current sheet during substorm expansion onsets. An analysis based on high time-resolution measurements from the magnetometer and the energetic particle detector indicates that the current sheet disruption region exhibited localized (less than 1 earth radius) and transient (less than 1 min) particle intensity enhancements, accompanied by complex magnetic field changes with occasional development of a southward magnetic field component. Similar features are seen in other current disruption/diversion events observed by the CCE. The present analysis suggests that the current disruption region is quite turbulent, similar to laboratory experiments on current sheet disruption, with signatures unlike those expected from an X-type neutral line configuration. No clear indication of periodicity in any magnetic field parameter is discernible for this current disruption event.
On the avalanche generation of runaway electrons during tokamak disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín-Solís, J. R., E-mail: solis@fis.uc3m.es; Loarte, A.; Lehnen, M.
2015-08-15
A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway currentmore » at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model.« less
Utilization of Superheroes Social Skills to Reduce Disruptive and Aggressive Behavior
ERIC Educational Resources Information Center
O'Handley, Roderick D.; Radley, Keith C.; Cavell, Hannah J.
2016-01-01
The current pilot study investigated the effectiveness of the Superheroes Social Skills program in decreasing disruptive and aggressive behavior of elementary-age students with high-incidence disabilities. Six students in a self-contained classroom, identified as displaying high rates of disruptive and aggressive behavior toward peers, were…
Impact and mitigation of disruptions with the ITER-like wall in JET
NASA Astrophysics Data System (ADS)
Lehnen, M.; Arnoux, G.; Brezinsek, S.; Flanagan, J.; Gerasimov, S. N.; Hartmann, N.; Hender, T. C.; Huber, A.; Jachmich, S.; Kiptily, V.; Kruezi, U.; Matthews, G. F.; Morris, J.; Plyusnin, V. V.; Reux, C.; Riccardo, V.; Sieglin, B.; de Vries, P. C.; EFDA Contributors, JET
2013-09-01
Disruptions are a critical issue for ITER because of the high thermal and magnetic energies that are released on short timescales, which results in extreme forces and heat loads. The choice of material of the plasma-facing components (PFCs) can have significant impact on the loads that arise during a disruption. With the ITER-like wall (ILW) in JET made of beryllium in the main chamber and tungsten in the divertor, the main finding is a low fraction of radiation. This has dropped significantly with the ILW from 50-100% of the total energy being dissipated during disruptions in CFC wall plasmas, to less than 50% on average and down to just 10% for vertical displacement events (VDEs). All other changes in disruption properties and loads are consequences of this low radiation: long current quenches (CQs), high vessel forces caused by halo currents and toroidal current asymmetries as well as severe heat loads. Temperatures close to the melting limit have been locally observed on upper first wall structures during deliberate VDE and even at plasma currents as low as 1.5 MA and thermal energy of about 1.5 MJ only. A high radiation fraction can be regained by massive injection of a mixture of 10% Ar with 90% D2. This accelerates the CQ thus reducing the halo current and sideways impulse. The temperature of PFCs stays below 400 °C. MGI is now a mandatory tool to mitigate disruptions in closed-loop operation for currents at and above 2.5 MA in JET.
High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.
2018-01-01
Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.
Hiro and Evans currents in Vertical Disruption Event
NASA Astrophysics Data System (ADS)
Zakharov, Leonid; Xujing Li Team; Sergei Galkin Team
2014-10-01
The notion of Tokamak Magneto-Hydrodynamics (TMHD), which explicitly reflects the anisotropy of a high temperature tokamak plasma is introduced. The set of TMHD equations is formulated for simulations of macroscopic plasma dynamics and disruptions in tokamaks. Free from the Courant restriction on the time step, this set of equations is appropriate for high performance plasmas and does not require any extension of the MHD plasma model. At the same time, TMHD requires the use of magnetic field aligned numerical grids. The TMHD model was used for creation of theory of the Wall Touching Kink and Vertical Modes (WTKM and WTVM), prediction of Hiro and Evans currents, design of an innovative diagnostics for Hiro current measurements, installed on EAST device. While Hiro currents have explained the toroidal asymmetry in the plasma current measurements in JET disruptions, the Evans currents explain the tile current measurements in tokamaks. The recently developed Vertical Disruption Code (VDE) have demonstrated 5 regimes of VDE and confirmed the generation of both Hiro and Evans currents. The results challenge the 24 years long misinterpretation of the tile currents in tokamaks as ``halo'' currents, which were a product of misuse of equilibrium reconstruction for VDE. This work is supported by US DoE Contract No. DE-AC02-09-CH1146.
Measurement of scrape-off-layer current dynamics during MHD activity and disruptions in HBT-EP
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Brooks, J. W.; Abler, M. C.; Bialek, J.; Byrne, P. J.; Hansen, C. J.; Hughes, P. E.; Mauel, M. E.; Navratil, G. A.; Rhodes, D. J.
2017-08-01
We report scrape-off layer (SOL) current measurements during magnetohydrodynamic (MHD) mode activity, resonant magnetic perturbations (RMPs), and disruptions in the High Beta Tokamak—Extended Pulse (HBT-EP) device. Currents are measured via segmented plasma current Rogowski coils, jumpers running toroidally between otherwise-isolated vessel sections, and a grounded electrode in the scrape-off layer. These currents strongly depend on the plasma’s major radius, and amplitude and phase of non-axisymmetric field components. SOL currents connecting through the vessel are seen to reach ∼0.2{--}0.5 % of the plasma current during typical kink activity and RMPs. Plasma current asymmetries and scrape-off-layer currents generated during disruptions, which are commonly called halo currents, reach ∼4 % of I p. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once I p reaches ∼30 % of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-I p, with co-I p being dominant on average during disruptions. A relative increase in local plasma current measured by a segmented I p Rogowski coil correlates with counter-I p current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetry measurements are consistent with both models, and SOL currents scale with plasma displacement toward the vessel wall. The design of an upcoming SOL current diagnostic and control upgrade is also briefly presented.
Eggenreich, Britta; Rajamanickam, Vignesh; Wurm, David Johannes; Fricke, Jens; Herwig, Christoph; Spadiut, Oliver
2017-08-01
Cell disruption is a key unit operation to make valuable, intracellular target products accessible for further downstream unit operations. Independent of the applied cell disruption method, each cell disruption process must be evaluated with respect to disruption efficiency and potential product loss. Current state-of-the-art methods, like measuring the total amount of released protein and plating-out assays, are usually time-delayed and involve manual intervention making them error-prone. An automated method to monitor cell disruption efficiency at-line is not available to date. In the current study we implemented a methodology, which we had originally developed to monitor E. coli cell integrity during bioreactor cultivations, to automatically monitor and evaluate cell disruption of a recombinant E. coli strain by high-pressure homogenization. We compared our tool with a library of state-of-the-art methods, analyzed the effect of freezing the biomass before high-pressure homogenization and finally investigated this unit operation in more detail by a multivariate approach. A combination of HPLC and automated data analysis describes a valuable, novel tool to monitor and evaluate cell disruption processes. Our methodology, which can be used both in upstream (USP) and downstream processing (DSP), describes a valuable tool to evaluate cell disruption processes as it can be implemented at-line, gives results within minutes after sampling and does not need manual intervention.
Disruption mitigation and avoidance at ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Maraschek, M.; Pautasso, G.; Esposito, B.; Granucci, G.; Stober, J.; Treutterer, W.
2009-11-01
Disruptions are a major concern for tokamaks and in particular for ITER. They cause high heat loads during the thermal quench and high mechanical forces during the subsequent current quench. The generation and loss of runaway electrons (highly accelerated electrons carrying large fractions of the plasma current) can produce damage to the vessel structures. Therefore, schemes are implemented in present tokamaks to mitigate or to even avoid them. Mitigation has been proven to be effective through the injection of noble gases causing a reduction of the thermal heat load by radiation and a reduction of the mechanical forces. In addition 25% of the required density for the collisional suppression of runaways in ITER has been reached. For the trigger of the noble gas injection a locked mode detector is routinely used at ASDEX Upgrade. An extension to more complex precursors is planed. A different approach has been used for disruption avoidance by injecting ECRH triggered by the loop voltage increase before the disruption. The avoidance of an ongoing density limit disruption has been achieved when the ECRH is deposited at resonant surfaces where MHD modes, such as the m=2/n=1, occur. Present schemes for the mitigation and eventually avoidance of disruptions will be discussed.
Brown-Wright, Lynda; Tyler, Kenneth M; Graves, Scott L; Thomas, Deneia; Stevens-Watkins, Danelle; Mulder, Shambra
2013-01-01
The current study examined the association among home-school dissonance, amotivation, and classroom disruptive behavior among 309 high school juniors and seniors at two urban high schools in the Southern region of the country. Students completed two subscales of the Patterns of Learning Activities Scales (PALS) and one subscale of the Academic Motivation Scale (AMS). ANCOVA analyses revealed significant differences in classroom disruptive behaviors for the gender independent variable. Controlling for gender in the multiple hierarchical regression analyses, it was revealed that home-school dissonance significantly predicted both amotivation and classroom disruptive behavior. In addition, a Sobel mediation analysis showed that amotivation was a significant mediator of the association between home-school dissonance and classroom disruptive behavior. Findings and limitations are discussed.
Brown-Wright, Lynda; Tyler, Kenneth M.; Graves, Scott L.; Thomas, Deneia; Stevens-Watkins, Danelle; Mulder, Shambra
2015-01-01
The current study examined the association among home–school dissonance, amotivation, and classroom disruptive behavior among 309 high school juniors and seniors at two urban high schools in the Southern region of the country. Students completed two subscales of the Patterns of Learning Activities Scales (PALS) and one subscale of the Academic Motivation Scale (AMS). ANCOVA analyses revealed significant differences in classroom disruptive behaviors for the gender independent variable. Controlling for gender in the multiple hierarchical regression analyses, it was revealed that home–school dissonance significantly predicted both amotivation and classroom disruptive behavior. In addition, a Sobel mediation analysis showed that amotivation was a significant mediator of the association between home–school dissonance and classroom disruptive behavior. Findings and limitations are discussed. PMID:27081213
Disruption of crystalline structure of Sn3.5Ag induced by electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw; Wu, Albert T.
2016-03-21
This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density ofmore » up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.« less
Degnan, Kathryn A.; Calkins, Susan D.; Keane, Susan P.; Hill-Soderlund, Ashley L.
2010-01-01
Disruptive behavior, including aggression, defiance, and temper tantrums, typically peaks in early toddlerhood and decreases by school entry; however, some children do not show this normative decline. The current study examined disruptive behavior in 318 boys and girls at 2, 4, and 5 years of age and frustration reactivity, physiological regulation, and maternal behavior in the laboratory at 2 years of age. A latent profile analysis (LPA) resulted in 4 longitudinal profiles of disruptive behavior, which were differentiated by interactions between reactivity, regulation, and maternal behavior. A high profile was associated with high reactivity combined with high maternal control or low regulation combined with low maternal control. Results are discussed from a developmental psychopathology perspective. PMID:18826530
Screening for endocrine-disrupting chemicals (EDCs) requires sensitive, scalable assays. Current high-throughput screening (HTPS) approaches for estrogenic and androgenic activity yield rapid results, but many are not sensitive to physiological hormone concentrations, suggesting ...
NASA Astrophysics Data System (ADS)
Zhuang, Huidong; Zhang, Xiaodong
2013-08-01
In large tokamaks, disruption of high current plasma would damage plasma facing component surfaces (PFCs) or other inner components due to high heat load, electromagnetic force load and runaway electrons. It would also influence the subsequent plasma discharge due to production of impurities during disruptions. So the avoidance and mitigation of disruptions is essential for the next generation of tokamaks, such as ITER. Massive gas injection (MGI) is a promising method of disruption mitigation. A new fast valve has been developed successfully on EAST. The valve can be opened in 0.5 ms, and the duration of open state is largely dependent on the gas pressure and capacitor voltage. The throughput of the valve can be adjusted from 0 mbar·L to 700 mbar·L by changing the capacitor voltage and gas pressure. The response time and throughput of the fast valve can meet the requirement of disruption mitigation on EAST. In the last round campaign of EAST and HT-7 in 2010, the fast valve has operated successfully. He and Ar was used for the disruption mitigation on HT-7. By injecting the proper amount of gas, the current quench rate could be slowed down, and the impurities radiation would be greatly improved. In elongated plasmas of EAST discharges, the experimental data is opposite to that which is expected.
Enhancement of runaway production by resonant magnetic perturbation on J-TEXT
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Huang, D. W.; Izzo, V. A.; Tong, R. H.; Jiang, Z. H.; Hu, Q. M.; Wei, Y. N.; Yan, W.; Rao, B.; Wang, S. Y.; Ma, T. K.; Li, S. C.; Yang, Z. J.; Ding, D. H.; Wang, Z. J.; Zhang, M.; Zhuang, G.; Pan, Y.; J-TEXT Team
2016-07-01
The suppression of runaways following disruptions is key for the safe operation of ITER. The massive gas injection (MGI) has been developed to mitigate heat loads, electromagnetic forces and runaway electrons (REs) during disruptions. However, MGI may not completely prevent the generation of REs during disruptions on ITER. Resonant magnetic perturbation (RMP) has been applied to suppress runaway generation during disruptions on several machines. It was found that strong RMP results in the enhancement of runaway production instead of runaway suppression on J-TEXT. The runaway current was about 50% pre-disruption plasma current in argon induced reference disruptions. With moderate RMP, the runway current decreased to below 30% pre-disruption plasma current. The runaway current plateaus reach 80% of the pre-disruptive current when strong RMP was applied. Strong RMP may induce large size magnetic islands that could confine more runaway seed during disruptions. This has important implications for runaway suppression on large machines.
Reduction of asymmetric wall force in ITER disruptions with fast current quench
NASA Astrophysics Data System (ADS)
Strauss, H.
2018-02-01
One of the problems caused by disruptions in tokamaks is the asymmetric electromechanical force produced in conducting structures surrounding the plasma. The asymmetric wall force in ITER asymmetric vertical displacement event (AVDE) disruptions is calculated in nonlinear 3D MHD simulations. It is found that the wall force can vary by almost an order of magnitude, depending on the ratio of the current quench time to the resistive wall magnetic penetration time. In ITER, this ratio is relatively low, resulting in a low asymmetric wall force. In JET, this ratio is relatively high, resulting in a high asymmetric wall force. Previous extrapolations based on JET measurements have greatly overestimated the ITER wall force. It is shown that there are two limiting regimes of AVDEs, and it is explained why the asymmetric wall force is different in the two limits.
On the energy budget in the current disruption region. [of geomagnetic tail
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim
1993-01-01
This study investigates the energy budget in the current disruption region of the magnetotail, coincident with a pre-onset thin current sheet, around substorm onset time using published observational data and theoretical estimates. We find that the current disruption/dipolarization process typically requires energy inflow into the primary disruption region. The disruption dipolarization process is therefore endoenergetic, i.e., requires energy input to operate. Therefore we argue that some other simultaneously operating process, possibly a large scale magnetotail instability, is required to provide the necessary energy input into the current disruption region.
Shiraki, D.; Commaux, N.; Baylor, L. R.; ...
2016-06-27
Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraki, D.; Commaux, N.; Baylor, L. R.
Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraki, D.; Commaux, N.; Baylor, L. R.
Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrates control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. This mixed species SPI technique provides a possible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less
Contribution of ASDEX Upgrade to disruption studies for ITER
NASA Astrophysics Data System (ADS)
Pautasso, G.; Zhang, Y.; Reiter, B.; Giannone, L.; Gruber, O.; Herrmann, A.; Kardaun, O.; Khayrutdinov, K. K.; Lukash, V. E.; Maraschek, M.; Mlynek, A.; Nakamura, Y.; Schneider, W.; Sias, G.; Sugihara, M.; ASDEX Upgrade Team
2011-10-01
This paper describes the most recent contributions of ASDEX Upgrade to ITER in the field of disruption studies. (1) The ITER specifications for the halo current magnitude are based on data collected from several tokamaks and summarized in the plot of the toroidal peaking factor versus the maximum halo current fraction. Even if the maximum halo current in ASDEX Upgrade reaches 50% of the plasma current, the duration of this maximum lasts a fraction of a ms. (2) Long-lasting asymmetries of the halo current are rare and do not give rise to a large asymmetric component of the mechanical forces on the machine. Differently from JET, these asymmetries are neither locked nor exhibit a stationary harmonic structure. (3) Recent work on disruption prediction has concentrated on the search for a simple function of the most relevant plasma parameters, which is able to discriminate between the safe and pre-disruption phases of a discharge. For this purpose, the disruptions of the last four years have been classified into groups and then discriminant analysis is used to select the most significant variables and to derive the discriminant function. (4) The attainment of the critical density for the collisional suppression of the runaway electrons seems to be technically and physically possible on our medium size tokamak. The CO2 interferometer and the AXUV diagnostic provide information on the highly 3D impurity transport process during the whole plasma quench.
Model of vertical plasma motion during the current quench
NASA Astrophysics Data System (ADS)
Breizman, Boris; Kiramov, Dmitrii
2017-10-01
Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.
The risks of innovation in health care.
Enzmann, Dieter R
2015-04-01
Innovation in health care creates risks that are unevenly distributed. An evolutionary analogy using species to represent business models helps categorize innovation experiments and their risks. This classification reveals two qualitative categories: early and late diversification experiments. Early diversification has prolific innovations with high risk because they encounter a "decimation" stage, during which most experiments disappear. Participants face high risk. The few decimation survivors can be sustaining or disruptive according to Christensen's criteria. Survivors enter late diversification, during which they again expand, but within a design range limited to variations of the previous surviving designs. Late diversifications carry lower risk. The exception is when disruptive survivors "diversify," which amplifies their disruption. Health care and radiology will experience both early and late diversifications, often simultaneously. Although oversimplifying Christensen's concepts, early diversifications are likely to deliver disruptive innovation, whereas late diversifications tend to produce sustaining innovations. Current health care consolidation is a manifestation of late diversification. Early diversifications will appear outside traditional care models and physical health care sites, as well as with new science such as molecular diagnostics. They warrant attention because decimation survivors will present both disruptive and sustaining opportunities to radiology. Radiology must participate in late diversification by incorporating sustaining innovations to its value chain. Given the likelihood of disruptive survivors, radiology should seriously consider disrupting itself rather than waiting for others to do so. Disruption entails significant modifications of its value chain, hence, its business model, for which lessons may become available from the pharmaceutical industry's current simultaneous experience with early and late diversifications. Copyright © 2015. Published by Elsevier Inc.
van der Molen, Elsa; Blokland, Arjan A. J.; Hipwell, Alison E.; Vermeiren, Robert R.J.M.; Doreleijers, Theo A.H.; Loeber, Rolf
2014-01-01
Background It is widely recognized that early onset of disruptive behavior is linked to a variety of detrimental outcomes in males later in life. In contrast, little is known about the association between girls’ childhood trajectories of disruptive behavior and adjustment problems in early adolescence. Methods The current study used 9 waves of data from the ongoing Pittsburgh Girls Study. A semi-parametric group based model was used to identify trajectories of disruptive behavior in 1,513 girls from age 6 to 12 years. Adjustment problems were characterized by depression, self-harm, PTSD, substance use, interpersonal aggression, sexual behavior, affiliation with delinquent peers, and academic achievement at ages 13 and 14. Results Three trajectories of childhood disruptive behavior were identified: low, medium, and high. Girls in the high group were at increased risk for depression, self-harm, PTSD, illegal substance use, interpersonal aggression, early and risky sexual behavior, and lower academic achievement. The likelihood of multiple adjustment problems increased with trajectories reflecting higher levels of disruptive behavior. Conclusion Girls following the high childhood trajectory of disruptive behavior require early intervention programs to prevent multiple, adverse outcomes in adolescence and further escalation in adulthood. PMID:25302849
Understanding and managing sleep disruption in children with fetal alcohol spectrum disorder.
Hanlon-Dearman, Ana; Chen, Maida Lynn; Olson, Heather Carmichael
2018-04-01
Accumulating evidence has revealed high rates of sleep disruption among children with fetal alcohol spectrum disorder (FASD). Multiple animal and clinical studies have found a clear association between sleep problems and prenatal alcohol exposure, and recent research is beginning to characterize the types and extent of sleep disruption in FASD. Nevertheless, sleep disruption in children with FASD often goes unrecognized or is treated without referring to an evidence base. Children's disrupted sleep interferes with parental sleep and increases caregiver burden, which is of particular importance for families raising children with FASD, a group with very high levels of caregiving stress. The literature supporting an association between sleep problems and deficits in emotional, behavioral, and cognitive function in children is compelling, but needs further investigation in children with FASD. This paper will review the current state of knowledge on sleep in FASD and recommend a rational approach to sleep interventions for affected children and their families.
Characterization of plasma current quench during disruptions at HL-2A
NASA Astrophysics Data System (ADS)
Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team
2017-05-01
The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.
Scrape-off-layer currents during MHD activity and disruptions in HBT-EP
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Desanto, S.; Battey, A.; Bialek, J.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.
2017-10-01
We report scrape-off layer (SOL) current measurements during MHD mode activity and disruptions in the HBT-EP tokamak. Currents are measured via Rogowski coils mounted on tiles in the low-field-side SOL, toroidal jumpers between otherwise-isolated vessel sections, and segmented plasma current Rogowski coils. These currents strongly depend on the plasma's major radius, mode amplitude, and mode phase. Plasma current asymmetries and SOL currents during disruptions reach 4% of the plasma current. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once Ip reaches 30% of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-Ip, with co-Ip being dominant on average during disruptions. Increases in local plasma current correlate with counter-Ip current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetries are consistent with both models, and scale with plasma displacement toward the wall. Progress of ongoing SOL current diagnostic upgrades is also presented. Supported by U.S. DOE Grant DE-FG02-86ER53222.
ERIC Educational Resources Information Center
Radley, Keith C.; Dart, Evan H.; O'Handley, Roderick D.
2016-01-01
The current study investigated the effectiveness of the Quiet Classroom Game, an interdependent group contingency using an iPad loaded with a decibel meter app, for increasing academically engaged behavior. Three first-grade classrooms in the southeastern United States, identified as displaying high levels of noise and disruptive behavior, were…
NASA Astrophysics Data System (ADS)
Dorfman, Seth
2011-10-01
Magnetic reconnection is a fundamental process in plasmas which converts magnetic energy to plasma kinetic and thermal energy through topological changes. One of the important goals in magnetic reconnection research is to explain the fast reconnection rate observed in real three-dimensional laboratory and astrophysical systems. In the Magnetic Reconnection Experiment (MRX), an enhancement of the reconnection electric field is often associated with a wholesale disruption of the reconnection current layer, an intrinsically 3-D phenomena observed in the presence of out-of-plane gradients of local quantities such as reconnection layer current and density. During a disruption, the out-of-plane current decreases as current carrying electrons are redirected in the outflow direction. Observed ``O-point'' signatures and density striations suggest that this redirection often occurs though the ejection of 3-D flux rope structures. Large fluctuations in the lower hybrid frequency range are also routinely seen, but the ratio of the phase speed to the diamagnetic drift speed does not match what is predicted by 3-D kinetic simulations without disruptions. A 2-D Hall MHD analysis of the out-of-plane gradients is consistent with the buildup of magnetic energy leading to the event, but variation in all three spacial dimensions is required in order to obtain results in agreement with the disruptive behavior observed. Analysis and comparison with 3-D simulations is ongoing to determine if the fluctuations and/or disruptive behavior are responsible for the corresponding discrepancies in the layer structure between the experiments and 2-D kinetic simulations,,. Supported by DOE, NASA, and NSF.
Local and integral disruption forces on the tokamak wall
NASA Astrophysics Data System (ADS)
Pustovitov, V. D.; Kiramov, D. I.
2018-04-01
The disruption-induced forces on the tokamak wall are evaluated analytically within the standard large-aspect-ratio model that implies axisymmetry, circular plasma and wall, and absence of halo currents. Additionally, the ideal-wall reaction is assumed. The disruptions are modelled as rapid changes in the plasma pressure (thermal quench (TQ)) and net current (current quench (CQ)). The force distribution over the poloidal angle is found as a function of these inputs. The derived formulas allow comparison of the TQ- and CQ-produced forces calculated differently, with and without account of the poloidal current induced in the wall. The latter variant represents the inherent property of the codes treating the wall as a set of toroidal filaments. It is proved here that such a simplification leads to unacceptably large errors in the simulated forces for both TQs and CQs. It is also shown that the TQ part of the force must prevail over that due to CQ in the high-β scenarios developed for JT-60SA and ITER.
Burgess, Don E; Bartos, Daniel C; Reloj, Allison R; Campbell, Kenneth S; Johnson, Jonathan N; Tester, David J; Ackerman, Michael J; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Delisle, Brian P
2012-11-13
Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1 gene, which encodes the K(+) channel (Kv7.1) that underlies the slowly activating delayed rectifier K(+) current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss of function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confers a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated nonfunctional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamics simulations of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K(+)-K(+) repulsive forces required for rapid K(+) permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K(+) channel selectivity filter.
Current disruptions in the near-earth neutral sheet region
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Lopez, R. E.; Anderson, B. J.; Takahashi, K.; Zanetti, L. J.; Mcentire, R. W.; Potemra, T. A.; Klumpar, D. M.; Greene, E. M.; Strangeway, R.
1992-01-01
Current disruption events observed by the Charge Composition Explorer during 1985 and 1986 are examined. Occurrence of current disruption was accompanied by large magnetic field turbulence and frequently with reversal in the sign of the field component normal to the neutral sheet. Current disruptions in the near-earth region are found to be typically shortlived (about 1-5 min), and their onsets coincide well with the ground onsets of substorm expansion or intensification in the local time sector of the footpoint of the spacecraft. These events are found almost exclusively close to the field reversal plane of the neutral sheet (within about 0.5 RE). Prior to current disruption the field strength can be reduced to as low as one seventh of the dipole field value and can recover to nearly the dipole value after disruption. The temporal evolution of particle pressure in the near-earth neutral sheet during the onset of current disruption indicates that the current buildup during the substorm growth phase is associated with enhancement in the particle pressure at the neutral sheet.
Linear MHD stability analysis of post-disruption plasmas in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com; Huijsmans, G. T. A.; Aleynikov, P.
2016-05-15
Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile,more » we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.« less
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT.
Liu, L J; Yu, K X; Zhang, M; Zhuang, G; Li, X; Yuan, T; Rao, B; Zhao, Q
2016-01-01
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.
Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST
NASA Astrophysics Data System (ADS)
Bo, SHI; Jinhong, YANG; Cheng, YANG; Desheng, CHENG; Hui, WANG; Hui, ZHANG; Haifei, DENG; Junli, QI; Xianzu, GONG; Weihua, WANG
2018-07-01
The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m‑2 flows to the upper divertor target plate and about 6 MW m‑2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.
Burgess, Don E.; Bartos, Daniel C.; Reloj, Allison R.; Campbell, Kenneth S.; Johnson, Jonathan N.; Tester, David J.; Ackerman, Michael J.; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J.; Ohno, Seiko; Horie, Minoru; Delisle, Brian P.
2012-01-01
Type 1 long QT syndrome (LQT1) syndrome is caused by loss-of-function mutations in the KCNQ1, which encodes the K+ channel (Kv7.1) that underlies the slowly activating delayed rectifier K+ current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss-of-function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confer a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated non-functional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamic simulations (MDS) of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K+-K+ repulsive forces required for rapid K+ permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K+ channel selectivity filter. PMID:23092362
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
NASA Astrophysics Data System (ADS)
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn
2016-01-15
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distributionmore » of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.« less
NASA Technical Reports Server (NTRS)
Ohtani, S.; Kokubun, S.; Russell, C. T.
1992-01-01
A new method is used to examine the radial expansion of the tail current disruption and the substorm onset region. The expansion of the disruption region is specified by examining the time sequence (phase relationship) between the north-south component and the sun-earth component. This method is tested by applying it to the March 6, 1979, event. The phase relationship indicates that the current disruption started on the earthward side of the spacecraft, and expanded tailward past the spacecraft. The method was used for 13 events selected from the ISEE magnetometer data. The results indicate that the current disruption usually starts in the near-earth magnetotail and often within 15 RE from the earth.
Energization of Ions in near-Earth current sheet disruptions
NASA Technical Reports Server (NTRS)
Taktakishvili, A.; Lopez, R. E.; Goodrich, C. C.
1995-01-01
In this study we examine observations made by AMPTE/CCE of energetic ion bursts during seven substorm periods when the satellite was located near the neutral sheet, and CCE observed the disruption cross-tail current in situ. We compare ion observations to analytic calculations of particle acceleration. We find that the acceleration region size, which we assume to be essentially the current disruption region, to be on the order of 1 R(sub E). Events exhibiting weak acceleration had either relatively small acceleration regions (apparently associated with pseudobreakup activity on the ground) or relatively small changes in the local magnetic field (suggesting that the magnitude of the local current disruption region was limited). These results add additional support for the view that the particle bursts observed during turbulent current sheet disruptions are due to inductive acceleration of ions.
Physics conditions for robust control of tearing modes in a rotating tokamak plasma
NASA Astrophysics Data System (ADS)
Lazzaro, E.; Borgogno, D.; Brunetti, D.; Comisso, L.; Fevrier, O.; Grasso, D.; Lutjens, H.; Maget, P.; Nowak, S.; Sauter, O.; Sozzi, C.; the EUROfusion MST1 Team
2018-01-01
The disruptive collapse of the current sustained equilibrium of a tokamak is perhaps the single most serious obstacle on the path toward controlled thermonuclear fusion. The current disruption is generally too fast to be identified early enough and tamed efficiently, and may be associated with a variety of initial perturbing events. However, a common feature of all disruptive events is that they proceed through the onset of magnetohydrodynamic instabilities and field reconnection processes developing magnetic islands, which eventually destroy the magnetic configuration. Therefore the avoidance and control of magnetic reconnection instabilities is of foremost importance and great attention is focused on the promising stabilization techniques based on localized rf power absorption and current drive. Here a short review is proposed of the key aspects of high power rf control schemes (specifically electron cyclotron heating and current drive) for tearing modes, considering also some effects of plasma rotation. From first principles physics considerations, new conditions are presented and discussed to achieve control of the tearing perturbations by means of high power ({P}{{EC}}≥slant {P}{{ohm}}) in regimes where strong nonlinear instabilities may be driven, such as secondary island structures, which can blur the detection and limit the control of the instabilities. Here we consider recent work that has motivated the search for the improvement of some traditional control strategies, namely the feedback schemes based on strict phase tracking of the propagating magnetic islands.
Code of Federal Regulations, 2010 CFR
2010-04-01
... provisions be reconciled with the provision that disruptions to current participants should be avoided? 641... that disruptions to current participants should be avoided? Governors must describe the steps that are being taken to comply with the statutory requirement to avoid disruptions in the State Plan. (OAA sec...
Schuberth, Christian; Won, Hong-Hee; Blattmann, Peter; Joggerst-Thomalla, Brigitte; Theiss, Susanne; Asselta, Rosanna; Duga, Stefano; Merlini, Pier Angelica; Ardissino, Diego; Lander, Eric S.; Gabriel, Stacey; Rader, Daniel J.; Peloso, Gina M.; Kathiresan, Sekar; Runz, Heiko
2015-01-01
A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude. PMID:25647241
Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.
2017-10-01
KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.
Disruption Event Characterization and Forecasting in Tokamaks
NASA Astrophysics Data System (ADS)
Berkery, J. W.; Sabbagh, S. A.; Park, Y. S.; Ahn, J. H.; Jiang, Y.; Riquezes, J. D.; Gerhardt, S. P.; Myers, C. E.
2017-10-01
The Disruption Event Characterization and Forecasting (DECAF) code, being developed to meet the challenging goal of high reliability disruption prediction in tokamaks, automates data analysis to determine chains of events that lead to disruptions and to forecast their evolution. The relative timing of magnetohydrodynamic modes and other events including plasma vertical displacement, loss of boundary control, proximity to density limits, reduction of safety factor, and mismatch of the measured and desired plasma current are considered. NSTX/-U databases are examined with analysis expanding to DIII-D, KSTAR, and TCV. Characterization of tearing modes has determined mode bifurcation frequency and locking points. In an NSTX database exhibiting unstable resistive wall modes (RWM), the RWM event and loss of boundary control event were found in 100%, and the vertical displacement event in over 90% of cases. A reduced kinetic RWM stability physics model is evaluated to determine the proximity of discharges to marginal stability. The model shows high success as a disruption predictor (greater than 85%) with relatively low false positive rate. Supported by US DOE Contracts DE-FG02-99ER54524, DE-AC02-09CH11466, and DE-SC0016614.
NASA Astrophysics Data System (ADS)
Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team
2018-05-01
A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pustovitov, V. D., E-mail: pustovitov-vd@nrcki.ru
The radial force balance in a tokamak during fast transient events with a duration much shorter than the resistive time of the vacuum vessel wall is analyzed. The aim of the work is to analytically estimate the resulting integral radial force on the wall. In contrast to the preceding study [Plasma Phys. Rep. 41, 952 (2015)], where a similar problem was considered for thermal quench, simultaneous changes in the profiles and values of the pressure and plasma current are allowed here. Thereby, the current quench and various methods of disruption mitigation used in the existing tokamaks and considered for futuremore » applications are also covered. General formulas for the force at an arbitrary sequence or combination of events are derived, and estimates for the standard tokamak model are made. The earlier results and conclusions are confirmed, and it is shown that, in the disruption mitigation scenarios accepted for ITER, the radial forces can be as high as in uncontrolled disruptions.« less
Observational support for the current sheet catastrophe model of substorm current disruption
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Lopez, R. E.; Dusenbery, P. B.; Speiser, T. W.
1992-01-01
The principles of the current sheet catastrophe models are briefly reviewed, and observations of some of the signatures predicted by the theory are presented. The data considered here include AMPTE/CCE observations of fifteen current sheet disruption events. According to the model proposed here, the root cause of the current disruption is some process, as yet unknown, that leads to an increase in the k sub A parameter. Possible causes for the increase in k sub A are discussed.
Fragmentation of Thin Wires under High Voltage Pulses and Bipolar Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papageorgiou, C. D.; Raptis, T. E.
2010-01-21
In this article we present an alternative explanation of the phenomenon of wire fragmentation under high transient currents based on classical electromagnetism. We also explain how this phenomenon can be utilized as a primitive example of low energy-high power disruptive phenomena that can affect even nuclear matter.
Sleep disruption in breast cancer patients and survivors.
Palesh, Oxana; Aldridge-Gerry, Arianna; Ulusakarya, Ayhan; Ortiz-Tudela, Elisabet; Capuron, Lucile; Innominato, Pasquale F
2013-12-01
Sleep disruption is prevalent in patients and survivors of breast cancer. Most patients undergoing chemotherapy will experience transient sleep disruption, and nearly 60% will have chronic sleep problems. Numerous factors contribute to sleep disruption in women diagnosed with breast cancer. Sleep disruption is a consequence of several biological alterations, including circadian disruption and immune and metabolic deregulations. These systems also play significant roles in the control and progression of breast cancer. Sleep disruption is associated with many side effects and psychiatric and medical comorbidities. This article discusses the relationship between stress and posttraumatic stress disorder, depression and fatigue, and how sleep disturbance might be the cause or consequence of these disorders. Current evidence for management of sleep disturbance in breast cancer and high chronic use of hypnotic medication in this population is also discussed. Finally, the differences in management of sleep disturbance during acute cancer care and during the survivorship phase are discussed. More research is needed on accurate and timely assessment of sleep disturbance associated with breast cancer, and additional tailored approaches for the management of sleep problems in breast cancer should be developed.
Overview of recent experimental results from the Aditya tokamak
NASA Astrophysics Data System (ADS)
Tanna, R. L.; Ghosh, J.; Chattopadhyay, P. K.; Raj, Harshita; Patel, Sharvil; Dhyani, P.; Gupta, C. N.; Jadeja, K. A.; Patel, K. M.; Bhatt, S. B.; Panchal, V. K.; Patel, N. C.; Chavda, Chhaya; Praveenlal, E. V.; Shah, K. S.; Makawana, M. N.; Jha, S. K.; Gopalkrishana, M. V.; Tahiliani, K.; Sangwan, Deepak; Raju, D.; Nagora, Umesh; Pathak, S. K.; Atrey, P. K.; Purohit, S.; Raval, J.; Joisa, Y. S.; Rao, C. V. S.; Chowdhuri, M. B.; Banerjee, S.; Ramaiya, N.; Manchanda, R.; Thomas, J.; Kumar, Ajai; Ajay, Kumar; Sharma, P. K.; Kulkarni, S. V.; Sathyanarayana, K.; Shukla, B. K.; Das, Amita; Jha, R.; Saxena, Y. C.; Sen, A.; Kaw, P. K.; Bora, D.; the ADITYA Team
2017-10-01
Several experiments, related to controlled thermonuclear fusion research and highly relevant for large size tokamaks, including ITER, have been carried out in ADITYA, an ohmically heated circular limiter tokamak. Repeatable plasma discharges of a maximum plasma current of ~160 kA and discharge duration beyond ~250 ms with a plasma current flattop duration of ~140 ms have been obtained for the first time in ADITYA. The reproducibility of the discharge reproducibility has been improved considerably with lithium wall conditioning, and improved plasma discharges are obtained by precisely controlling the position of the plasma. In these discharges, chord-averaged electron density ~3.0-4.0 × 1019 m-3 using multiple hydrogen gas puffs, with a temperature of the order of ~500-700 eV, have been achieved. Novel experiments related to disruption control are carried out and disruptions, induced by hydrogen gas puffing, are successfully mitigated using the biased electrode and ion cyclotron resonance pulse techniques. Runaway electrons are successfully mitigated by applying a short local vertical field (LVF) pulse. A thorough disruption database has been generated by identifying the different categories of disruption. Detailed analysis of several hundred disrupted discharges showed that the current quench time is inversely proportional to the q edge. Apart from this, for volt-sec recovery during the plasma formation phase, low loop voltage start-up and current ramp-up experiments have been carried out using electron cyclotron resonance heating (ECRH). Successful recovery of volt-sec leads to the achievement of longer plasma discharge durations. In addition, the neon gas puff assisted radiative improved confinement mode has also been achieved in ADITYA. All of the above mentioned experiments will be discussed in this paper.
Tumor RNA disruption predicts survival benefit from breast cancer chemotherapy.
Parissenti, Amadeo M; Guo, Baoqing; Pritzker, Laura B; Pritzker, Kenneth P H; Wang, Xiaohui; Zhu, Mu; Shepherd, Lois E; Trudeau, Maureen E
2015-08-01
In a prior substudy of the CAN-NCIC-MA.22 clinical trial (ClinicalTrials.gov identifier NCT00066443), we observed that neoadjuvant chemotherapy reduced tumor RNA integrity in breast cancer patients, a phenomenon we term "RNA disruption." The purpose of the current study was to assess in the full patient cohort the relationship between mid-treatment tumor RNA disruption and both pCR post-treatment and, subsequently, disease-free survival (DFS) up to 108 months post-treatment. To meet these objectives, we developed the RNA disruption assay (RDA) to quantify RNA disruption and stratify it into 3 response zones of clinical importance. Zone 1 is a level of RNA disruption inadequate for pathologic complete response (pCR); Zone 2 is an intermediate level, while Zone 3 has high RNA disruption. The same RNA disruption cut points developed for pCR response were then utilized for DFS. Tumor RDA identified >fourfold more chemotherapy non-responders than did clinical response by calipers. pCR responders were clustered in RDA Zone 3, irrespective of tumor subtype. DFS was about 2-fold greater for patients with tumors in Zone 3 compared to Zone 1 patients. Kaplan-Meier survival curves corroborated these findings that high tumor RNA disruption was associated with increased DFS. DFS values for patients in zone 3 that did not achieve a pCR were similar to that of pCR recipients across tumor subtypes, including patients with hormone receptor positive tumors that seldom achieve a pCR. RDA appears superior to pCR as a chemotherapy response biomarker, supporting the prospect of its use in response-guided chemotherapy.
Disruption avoidance by means of electron cyclotron waves
NASA Astrophysics Data System (ADS)
Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams
2011-12-01
Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.
20 CFR 641.430 - What are the eligibility criteria that each applicant must meet?
Code of Federal Regulations, 2010 CFR
2010-04-01
... disruption for current participants if there is a change in project sponsor and/or location, and its plan for minimizing disruptions; and (h) Any additional criteria that the Secretary of Labor deems appropriate in order to minimize disruptions for current participants. ...
Establishment and Assessment of Plasma Disruption and Warning Databases from EAST
NASA Astrophysics Data System (ADS)
Wang, Bo; Robert, Granetz; Xiao, Bingjia; Li, Jiangang; Yang, Fei; Li, Junjun; Chen, Dalong
2016-12-01
Disruption database and disruption warning database of the EAST tokamak had been established by a disruption research group. The disruption database, based on Structured Query Language (SQL), comprises 41 disruption parameters, which include current quench characteristics, EFIT equilibrium characteristics, kinetic parameters, halo currents, and vertical motion. Presently most disruption databases are based on plasma experiments of non-superconducting tokamak devices. The purposes of the EAST database are to find disruption characteristics and disruption statistics to the fully superconducting tokamak EAST, to elucidate the physics underlying tokamak disruptions, to explore the influence of disruption on superconducting magnets and to extrapolate toward future burning plasma devices. In order to quantitatively assess the usefulness of various plasma parameters for predicting disruptions, a similar SQL database to Alcator C-Mod for EAST has been created by compiling values for a number of proposed disruption-relevant parameters sampled from all plasma discharges in the 2015 campaign. The detailed statistic results and analysis of two databases on the EAST tokamak are presented. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2014GB103000)
Passive runaway electron suppression in tokamak disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H. M.; Helander, P.; Boozer, A. H.
2013-07-15
Runaway electrons created in disruptions pose a serious problem for tokamaks with large current. It would be desirable to have a runaway electron suppression method which is passive, i.e., a method that does not rely on an uncertain disruption prediction system. One option is to let the large electric field inherent in the disruption drive helical currents in the wall. This would create ergodic regions in the plasma and increase the runaway losses. Whether these regions appear at a suitable time and place to affect the formation of the runaway beam depends on disruption parameters, such as electron temperature andmore » density. We find that it is difficult to ergodize the central plasma before a beam of runaway current has formed. However, the ergodic outer region will make the Ohmic current profile contract, which can lead to instabilities that yield large runaway electron losses.« less
Fast Acting Eddy Current Driven Valve for Massive Gas Injection on ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyttle, Mark S; Baylor, Larry R; Carmichael, Justin R
2015-01-01
Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and eddy currents, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the current decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supplymore » have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.« less
The influence of an ITER-like wall on disruptions at JET
NASA Astrophysics Data System (ADS)
de Vries, Peter
2013-10-01
Disruptions are a key issue for tokamaks such as ITER because the fast release of the high thermal and magnetic energies will result in large forces and heat loads. Hence, finding methods to avoid them or mitigate their impact is vital. The recent replacement of carbon tiles with a metallic ITER-like wall (ILW) has greatly increased the significance of disruptions for JET operations. This paper summarizes how the metallic wall influenced the disruption physics itself and its influence on the causes of disruptions. Tolerable heat loads on the ILW are reduced compared to the carbon wall because of the potential for melting. This is exacerbated by the fact that with the ILW, significantly less energy is radiated during the disruption and thus more energy is conducted to the wall. The lower radiation and thus higher temperatures also slow down the current decay, yielding larger vessel forces. Mitigation by massive gas injection had to be applied routinely in order to safely operate JET with the new wall. The start of operations with the ILW showed a marked rise in the average disruption rate from 3.4% to 10%, although in the last 2 weeks, H-mode operations with only 3.3% disruptions was achieved. The increased disruption rate can be attributed to the influence of the new wall on plasma operation and control, requiring adjustments of the established carbon-wall scenarios. A detailed survey of disruption causes will be presented, showing the improvements made to avoid various disruption classes, but also indicating those disruption types responsible for the enhanced disruption rate. The latter can be mainly attributed to disruptions due to too high core radiation but also due to density control issues and error field locked modes. Detailed technical and physics understanding of disruption causes is essential for devising optimum strategies to avoid or mitigate these events. This research was funded partly by the European Communities under the contract of Association between EURATOM and FOM, and was carried out within the framework of EFDA. The views and opinions expressed herein do not necessarily reflect those of the Europe.
First measurements of Hiro currents in vertical displacement event in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Hao; Xu, Guosheng; Wang, Huiqian
Specially designed tiles were setup in the 2012 campaign of the Experimental Advanced Superconducting Tokamak (EAST), to directly measure the toroidal surface currents during the disruptions. Hiro currents with direction opposite to the plasma currents have been observed, confirming the sign prediction by the Wall Touching Vertical Mode (WTVM) theory and numerical simulations. During the initial phase of the disruption, when the plasma begins to touch the wall, the surface currents can be excited by WTVM along the plasma facing tile surface, varying with the mode magnitude. The currents are not observed in the cases when the plasma moves awaymore » from the tile surface. This discovery addresses the importance of the plasma motion into the wall in vertical disruptions. WTVM, acting as a current generator, forces the Hiro currents to flow through the gaps between tiles. This effect, being overlooked so far in disruption analysis, may damage the edges of the tiles and is important for the ITER device.« less
Gupta, Jhumka; Willie, Tiara C; Harris, Courtney; Campos, Paola Abril; Falb, Kathryn L; Garcia Moreno, Claudia; Diaz Olavarrieta, Claudia; Okechukwu, Cassandra A
2018-03-07
Disrupting women's employment is a strategy that abusive partners could use to prevent women from maintaining economic independence and stability. Yet, few studies have investigated disruptions in employment among victims of intimate partner violence (IPV) in low-income and middle-income countries. Moreover, even fewer have sought to identify which female victims of IPV are most vulnerable to such disruptions. Using baseline data from 947 women in Mexico City enrolled in a randomised controlled trial, multilevel latent class analysis (LCA) was used to classify women based on their reported IPV experiences. Furthermore, multilevel logistic regression analyses were performed on a subsample of women reporting current work (n=572) to investigate associations between LCA membership and IPV-related employment disruptions. Overall, 40.6% of women who were working at the time of the survey reported some form of work-related disruption due to IPV. LCA identified four distinct classes of IPV experiences: Low Physical and Sexual Violence (39.1%); High Sexual and Low Physical Violence class (9.6%); High Physical and Low Sexual Violence and Injuries (36.5%); High Physical and Sexual Violence and Injuries (14.8%). Compared with women in the Low Physical and Sexual Violence class, women in the High Physical and Sexual Violence and Injuries class and women in the High Physical and Low Sexual Violence and Injuries class were at greater risk of work disruption (adjusted relative risk (ARR) 2.44, 95% CI 1.80 to 3.29; ARR 2.05, 95% CI 1.56 to 2.70, respectively). No other statistically significant associations emerged. IPV, and specific patterns of IPV experiences, must be considered both in work settings and, more broadly, by economic development programmes. NCT01661504. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Jim, Heather S.L.; Evans, Bryan; Jeong, Jiyeon M.; Gonzalez, Brian D.; Johnston, Laura; Nelson, Ashley M.; Kesler, Shelli; Phillips, Kristin M.; Barata, Anna; Pidala, Joseph; Palesh, Oxana
2014-01-01
Sleep disruption is common among hematopoietic cell transplant (HCT) recipients, with over 50% of patients experiencing sleep disruption pre-transplant, up to 82% experiencing moderate to severe sleep disruption during hospitalization for transplant, and up to 43% in the post-transplant period. These rates of sleep disruption are substantially higher than the general population. Although sleep disruption can be distressing to patients and contribute to diminished quality of life, it is rarely discussed during clinical visits. The goal of the current review is to draw attention to sleep disruption as a clinical problem in HCT in order to facilitate patient education, intervention, and research. The review opens with a discussion of sleep disruption measurement and clinical diagnosis of sleep disorders. An overview of the prevalence, severity, and chronicity of sleep disruption and disorders in patients receiving HCT follows. Current evidence regarding sociodemographic and clinical predictors of sleep disruption and disorders is summarized. The review concludes with suggestions for behavioral and pharmacologic management of sleep disruption and disorders as well as directions for future research. PMID:24747335
Martel, Michelle M.; Pierce, Laura; Nigg, Joel T.; Jester, Jennifer M.; Adams, Kenneth; Puttler, Leon I.; Buu, Anne; Fitzgerald, Hiram; Zucker, Robert A.
2008-01-01
Temperament traits may increase risk for developmental psychopathology like Attention-Deficit/Hyperactivity Disorder (ADHD) and disruptive behaviors during childhood, as well as predisposing to substance abuse during adolescence. In the current study, a cascade model of trait pathways to adolescent substance abuse was examined. Component hypotheses were that (a) maladaptive traits would increase risk for inattention/hyperactivity, (b) inattention/hyperactivity would increase risk for disruptive behaviors, and (c) disruptive behaviors would lead to adolescent substance abuse. Participants were 674 children (486 boys) from 321 families in an ongoing, longitudinal high risk study that began when children were three years old. Temperament traits assessed were reactive control, resiliency, and negative emotionality, using examiner ratings on the California Q-Sort. Parent, teacher, and self ratings of inattention/hyperactivity, disruptive behaviors, and substance abuse were also obtained. Low levels of childhood reactive control, but not resiliency or negative emotionality, were associated with adolescent substance abuse, mediated by disruptive behaviors. Using a cascade model, family risk for substance abuse was partially mediated by reactive control, inattention/hyperactivity, and disruptive behavior. Some, but not all, temperament traits in childhood were related to adolescent substance abuse; these effects were mediated via inattentive/hyperactive and disruptive behaviors. PMID:18787942
JET disruption studies in support of ITER
NASA Astrophysics Data System (ADS)
Riccardo, V.; Arnoux, G.; Cahyna, P.; Hender, T. C.; Huber, A.; Jachmich, S.; Kiptily, V.; Koslowski, R.; Krlin, L.; Lehnen, M.; Loarte, A.; Nardon, E.; Paprok, R.; Tskhakaya (Sr, D.; contributors, JET-EFDA
2010-12-01
Plasma disruptions affect plasma-facing and structural components of tokamaks due to electromechanical forces, thermal loads and generation of high energy runaway electrons (REs). Asymmetries in poloidal halo and toroidal plasma current can now be routinely measured in four positions 90° apart. Their assessment is used to validate the design of the ITER vessel support system and its in-vessel components. The challenge of disruption thermal loads comes from both the short duration over which a large energy has to be lost and the potential for asymmetries. The focus of this paper will be on localized heat loads. Resonant magnetic perturbations failed to reduce the generation of REs in JET. An explanation of the limitations applying to these attempts is offered together with a minimum guideline. The REs generated by a moderate, but fast, Ar injection in limiter plasmas show evidence of milder and more efficient losses due to the high Ar background density.
Mechanical algal disruption for efficient biodiesel extraction
NASA Astrophysics Data System (ADS)
Krehbiel, Joel David
Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of mass at the bubble center, and if the bubble-to-cell spacing is much larger than the cell radius, the flow around the cell is approximately extensional in the cell's frame of reference. It is known that the present algae are quasi-spherical with cytoplasmic viscosity approximately 100 times that of water, so the cell is approximated as a viscous sphere. Thus, conditions that cause cell disruption from an expanding microbubble are modeled as either steady inviscid extensional flow or steady point source flow over a viscous sphere. In the inviscid extensional flow model, the flow inside the sphere is dominated by viscous forces so the Stokes equation is solved with matched stresses at the sphere surface from the exterior inviscid extensional flow. The short-time deformation of the sphere surface suggests that inviscid extensional flow is insufficient to disrupt cells. This indicates that asymmetry of the flow over the sphere may be required to provide sufficient surface areal strain to rupture the cell. In a more detailed model, the bubble expansion is modeled as an expansion near a viscous sphere using finite element software. For conditions similar to those seen in the experiment, deformation shows similar scaling to disruption. The deformation in this model is significantly higher than predicted from the inviscid extensional flow model due to the effect of asymmetric flow on the cell membrane. Estimates suggest 21% average areal strain on the algal membrane is required to disrupt algal cells, and this result agrees well with areal strains typically required to disrupt cell membranes although the actual value would be lessened by the effect of an elastic membrane, which is neglected in the present model. The local areal strain on the sphere surface is a maximum closest to the point source, and there is compressive strain near theta = +/-pi/4 with theta the angle from the line between the cell center and the point source. The maximum local areal strain shows less sensitivity to the viscosity of the interior fluid than the average areal strain. Overall, the dissertation lays the groundwork for more efficient algal disruption through the judicious use of microbubbles. Separation of bubble generation and bubble growth provides the ability to improve the efficiency of each process and localize energy. Results suggest that effective disruption can occur by pulsing high-pressure ultrasound waves to a solution of cells co-suspended with microbubbles. The models are thought to represent basic phenomenological mechanisms of disruption that could be exploited to improve the overall energy efficiency of schemes. Analysis suggests that extensional flow alone cannot be the cause of cell disruption near an expanding microbubble. Additionally, this work provides an estimate of the areal strain required disrupt an algal cell membrane. This research suggests a couple routes toward reducing the energy required for production of algal biodiesel.
Eidietis, N. W.; Gerhardt, S. P.; Granetz, R. S.; ...
2015-05-22
A multi-device database of disruption characteristics has been developed under the auspices of the International Tokamak Physics Activity magneto hydrodynamics topical group. The purpose of this ITPA Disruption Database (IDDB) is to find the commonalities between the disruption and disruption mitigation characteristics in a wide variety of tokamaks in order to elucidate the physics underlying tokamak disruptions and to extrapolate toward much larger devices, such as ITER and future burning plasma devices. Conversely, in order to previous smaller disruption data collation efforts, the IDDB aims to provide significant context for each shot provided, allowing exploration of a wide array ofmore » relationships between pre-disruption and disruption parameters. Furthermore, the IDDB presently includes contributions from nine tokamaks, including both conventional aspect ratio and spherical tokamaks. An initial parametric analysis of the available data is presented. Our analysis includes current quench rates, halo current fraction and peaking, and the effectiveness of massive impurity injection. The IDDB is publicly available, with instruction for access provided herein.« less
Examining Whether Dental Therapists Constitute a Disruptive Innovation in US Dentistry
2011-01-01
Dental therapists—midlevel dental providers who are roughly analogous to nurse practitioners in medicine—might constitute a disruptive innovation within US dentistry. Proponents tend to claim that dental therapists will provide more equitable access to dental care; opponents tend to view them from a perspective that focuses on retaining the current attributes of the dental profession. Therapists display traits similar to those of disruptive innovations: their attributes are different from dentists’, they may not initially be valued by current dental patients, they may appeal to current dental underutilizers, and they may transform the dental delivery system. Whether dental therapists constitute a disruptive innovation will only be determined retrospectively. PMID:21852623
Automatic location of disruption times in JET
NASA Astrophysics Data System (ADS)
Moreno, R.; Vega, J.; Murari, A.
2014-11-01
The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).
The Transition to High School: Current Knowledge, Future Directions
ERIC Educational Resources Information Center
Benner, Aprile D.
2011-01-01
In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a…
The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...
Das, Nupur; Xie, Liwei; Ramakrishnan, Sadeesh K; Campbell, Andrew; Rivella, Stefano; Shah, Yatrik M
2015-09-25
Sickle cell disease (SCD) is caused by genetic defects in the β-globin chain. SCD is a frequently inherited blood disorder, and sickle cell anemia is a common type of hemoglobinopathy. During anemia, the hypoxic response via the transcription factor hypoxia-inducible factor (HIF)-2α is highly activated in the intestine and is essential in iron absorption. Intestinal disruption of HIF-2α protects against tissue iron accumulation in iron overload anemias. However, the role of intestinal HIF-2α in regulating anemia in SCD is currently not known. Here we show that in mouse models of SCD, disruption of intestinal HIF-2α significantly decreased tissue iron accumulation. This was attributed to a decrease in intestinal iron absorptive genes, which were highly induced in a mouse model of SCD. Interestingly, disruption of intestinal HIF-2α led to a robust improvement in anemia with an increase in RBC, hemoglobin, and hematocrit. This was attributed to improvement in RBC survival, hemolysis, and insufficient erythropoiesis, which is evident from a significant decrease in serum bilirubin, reticulocyte counts, and serum erythropoietin following intestinal HIF-2α disruption. These data suggest that targeting intestinal HIF-2α has a significant therapeutic potential in SCD pathophysiology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Understanding disruptions in tokamaksa)
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA
2012-05-01
This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.
MHD Calculation of halo currents and vessel forces in NSTX VDEs
NASA Astrophysics Data System (ADS)
Breslau, J. A.; Strauss, H. R.; Paccagnella, R.
2012-10-01
Research tokamaks such as ITER must be designed to tolerate a limited number of disruptions without sustaining significant damage. It is therefore vital to have numerical tools that can accurately predict the effects of these events. The 3D nonlinear extended MHD code M3D [1] can be used to simulate disruptions and calculate the associated wall currents and forces. It has now been validated against halo current data from NSTX experiments in which vertical displacement events (VDEs) were deliberately induced by turning off vertical feedback control. The results of high-resolution numerical simulations at realistic Lundquist numbers show reasonable agreement with the data, supporting a model in which the most dangerously asymmetric currents and heat loads, and the largest horizontal forces, arise in situations where a fast-growing ideal 2,1 external kink mode is destabilized by the scraping-off of flux surfaces with safety factor q>2 during the course of the VDE. [4pt] [1] W. Park, et al., Phys. Plasmas 6 (1999) 1796.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourham, Mohamed A.; Gilligan, John G.
Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing componentsmore » safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.« less
HIGH-THROUGHPUT CHEMICAL SCREENING USING PROTEIN PROFILING OF FISH PLASMA
Compounds that affect the hormone system, referred to as "endocrine-disrupting chemicals" (EDCs), cause human and animal health problems. It is necessary to test putative EDC chemicals for such deleterious effects, though current testing methodologies are time/animal intensive an...
Numerical modelling on stabilizing large magnetic island by RF current for disruption avoidance
NASA Astrophysics Data System (ADS)
Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin
2018-01-01
Numerical modelling on tearing mode stabilization by RF current due to electron cyclotron current drive (ECCD) has been carried out for the purposes of disruption avoidance, focusing on stabilizing the magnetic island which can grow to a large width and therefore, might cause plasma disruption. When the island has become large, a threshold in driven current for fully stabilizing the mode is found; below this threshold, the island width only slightly decreases. The island’s O-point shifts radially towards the magnetic axis as the mode grows, as a result, applying ECCD at the minor radius of the island’s O-point has a stronger effect than that at the original equilibrium rational surface for stabilizing a large island. During the island growth, the required driven current for mode stabilization increases with the island’s width, indicating that it is more effective to apply ECCD as early as possible for disruption avoidance, as observed in experiments. The numerical results have been compared with those obtained from the modified Rutherford equation.
Magnetic field line reconnection experiments. V - Current disruptions and double layers
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Gekelman, W.; Wild, N.
1983-01-01
An investigation is conducted of the stability of a large laboratory plasma current sheet, which has been generated in the process of magnetic field line reconnection, with respect to local current increases. Magnetic flux variations in regions remote from the current sheet generate an inductive voltage in the current loop that drops off inside the plasma in the form of a potential double layer, leading to particle acceleration with velocities much larger than those expected from the steady state electric fields in the plasma. A model for the mechanism of the current disruptions is formulated in which the potential structure leads to ion expulsion, creating a localized density drop. The associated current drop in an inductive circuit drives the potential structure, providing feedback for the disruptive instability. Similarities to, and differences from, magnetospheric substorm phenomena are noted.
NASA Astrophysics Data System (ADS)
Maraschek, M.; Gude, A.; Igochine, V.; Zohm, H.; Alessi, E.; Bernert, M.; Cianfarani, C.; Coda, S.; Duval, B.; Esposito, B.; Fietz, S.; Fontana, M.; Galperti, C.; Giannone, L.; Goodman, T.; Granucci, G.; Marelli, L.; Novak, S.; Paccagnella, R.; Pautasso, G.; Piovesan, P.; Porte, L.; Potzel, S.; Rapson, C.; Reich, M.; Sauter, O.; Sheikh, U.; Sozzi, C.; Spizzo, G.; Stober, J.; Treutterer, W.; ZancaP; ASDEX Upgrade Team; TCV Team; the EUROfusion MST1 Team
2018-01-01
Routine reaction to approaching disruptions in tokamaks is currently largely limited to machine protection by mitigating an ongoing disruption, which remains a basic requirement for ITER and DEMO [1]. Nevertheless, a mitigated disruption still generates stress to the device. Additionally, in future fusion devices, high-performance discharge time itself will be very valuable. Instead of reacting only on generic features, occurring shortly before the disruption, the ultimate goal is to actively avoid approaching disruptions at an early stage, sustain the discharges whenever possible and restrict mitigated disruptions to major failures. Knowledge of the most relevant root causes and the corresponding chain of events leading to disruption, the disruption path, is a prerequisite. For each disruption path, physics-based sensors and adequate actuators must be defined and their limitations considered. Early reaction facilitates the efficiency of the actuators and enhances the probability of a full recovery. Thus, sensors that detect potential disruptions in time are to be identified. Once the entrance into a disruption path is detected, we propose a hierarchy of actions consisting of (I) recovery of the discharge to full performance or at least continuation with a less disruption-prone backup scenario, (II) complete avoidance of disruption to sustain the discharge or at least delay it for a controlled termination and, (III), only as last resort, a disruption mitigation. Based on the understanding of disruption paths, a hierarchical and path-specific handling strategy must be developed. Such schemes, testable in present devices, could serve as guidelines for ITER and DEMO operation. For some disruption paths, experiments have been performed at ASDEX Upgrade and TCV. Disruptions were provoked in TCV by impurity injection into ELMy H-mode discharges and in ASDEX Upgrade by forcing a density limit in H-mode discharges. The new approach proposed in this paper is discussed for these cases. For the H-mode density limit sensors used so far react too late. Thus a plasma-state boundary is proposed, that can serve as an adequate early sensor for avoiding density limit disruptions in H-modes and for recovery to full performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stettenheim, Joel
Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramaticallymore » increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.« less
National Defense Industrial Association Disruptive Technologies Conference
2009-10-14
NDIA Disruptive Technologies 10/16/2009 Page-1 National Defense Industrial Association Disruptive Technologies Conference 14 October 2009 The...SUPPLEMENTARY NOTES Presented at the 6th Annual Disruptive Technologies Conference, 14-15 oct 2009, Washington, DC 14. ABSTRACT 15. SUBJECT TERMS 16...of conflict NDIA Disruptive Technologies 10/16/2009 Page-3 DDR&E Imperatives 1. Accelerate delivery of technical capabilities to win the current
Disrupt"ive" or Disrupt"ed"? A Qualitative Study on the Construction of Indiscipline
ERIC Educational Resources Information Center
Araujo, Marta
2005-01-01
This paper examines current official discourses on school discipline in Britain. It analyses New Labour's recent documents in education, such as the party's manifestos, Green and White papers, and official guidelines, to understand which particular understandings of discipline are being promoted. In spite of a political commitment to social…
Algal cell disruption using microbubbles to localize ultrasonic energy
Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.
2015-01-01
Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188
Sideways wall force produced during tokamak disruptions
NASA Astrophysics Data System (ADS)
Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.
2013-07-01
A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltyn, Stephen R; Jia, Quanxi; Arendt, Paul N
A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.
Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G
2012-10-01
Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Papadopoulos, Nicole; McGinley, Jennifer; Tonge, Bruce J.; Bradshaw, John L.; Saunders, Kerryn; Rinehart, Nicole J.
2012-01-01
There is now a growing body of research examining movement difficulties in children diagnosed with high functioning autism (HFA) and Asperger's disorder (AD). Despite this, few studies have investigated the kinematic components of movement that may be disrupted in children diagnosed with these disorders. The current study investigated rapid aiming…
Adverse outcome pathway (AOP) analyses illustrate that some molecular-initiating events (MIEs) for thyroid disruption, including thyroperoxidase (TPO) inhibition, are not evaluated by current ToxCast/Tox21 high-throughput screening (HTS) assays. A novel HTS assay for TPO inhibiti...
Gene disruption technologies have the potential to transform stored product insect pest control
USDA-ARS?s Scientific Manuscript database
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...
Overmoded W-Band Traveling Wave Tube Amplifier
2014-11-24
developing high power tubes for use in that frequency range. In addition , there is a window at 220 GHz which is also an area of large development for...equipment. operation. Figure 1-4 shows electronic warfare applications, which involve disrupting electronic systems with high power microwave and millimeter...requiring gyrotrons to power the high -energy beam and a large transport vehicle. In addition to being difficult to transport, it is currently incapable
NASA Astrophysics Data System (ADS)
Knipp, D. J.; Ramsay, A. C.; Beard, E. D.; Boright, A. L.; Cade, W. B.; Hewins, I. M.; McFadden, R. H.; Denig, W. F.; Kilcommons, L. M.; Shea, M. A.; Smart, D. F.
2016-09-01
Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01 and 9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high-frequency communication in the polar cap. Subsequently, record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. An important and long-lasting outcome of this storm was more formal Department of Defense-support for current-day space weather forecasting. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the twentieth century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the twentieth century, despite the apparent lack of large geomagnetically induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.
NASA Astrophysics Data System (ADS)
Gunell, H.; Andersson, L.; De Keyser, J.; Mann, I.
2015-10-01
The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam-plasma interaction. The double layer is disrupted when reaching altitudes of 1-2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.
A case for change: disruption in academic medicine.
Kahn, Marc J; Maurer, Ralph; Wartman, Steven A; Sachs, Benjamin P
2014-09-01
Disruptive technologies allow less expensive and more efficient processes to eventually dominate a market sector. The academic health center's tripartite mission of education, clinical care, and research is threatened by decreasing revenues and increasing expenses and is, as a result, ripe for disruption. The authors describe current disruptive technologies that threaten traditional operations at academic health centers and provide a prescription not only to survive, but also to prosper, in the face of disruptive forces.
Lynch, Rebecca J; Kistner, Janet A; Allan, Nicholas P
2014-08-01
This study examined unique predictive associations of aggressive and hyperactive-inattentive behaviors in elementary school with high school graduation. The current study also investigated whether these associations were moderated by gender. At Time 1, 745 children in the 3rd through 5th grades completed peer ratings on their classmates' disruptive behaviors. At Time 2, school records were reviewed to determine whether students graduated within four years of entering high school. Results showed that gender and hyperactivity-inattention are uniquely associated with high school graduation, but childhood aggression is not. Results also indicated that gender moderated associations between hyperactivity-inattention and graduation. Among boys, hyperactive-inattentive behaviors were not significantly associated with graduation, above and beyond aggression. In contrast, among girls, hyperactive-inattentive behaviors in childhood were significantly associated with graduation even after controlling for aggression. These findings suggest that in middle childhood, hyperactive-inattentive behaviors may be a more meaningful predictor of high school graduation than other forms of early disruptive behavior (e.g., aggression), especially for girls. Such findings could have significant implications for prevention and intervention programs designed to target children at risk for dropping out of school. Copyright © 2014 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Hong, Ji S; Tillman, Rebecca; Luby, Joan L
2015-03-01
To investigate which disruptive behaviors in preschool were normative and transient vs markers of conduct disorder, as well as which disruptive behaviors predicted the persistence of conduct disorder into school age. Data from a longitudinal study of preschool children were used to investigate disruptive behaviors. Caregivers of preschoolers ages 3.0-5.11 years (n = 273) were interviewed using the Preschool Age Psychiatric Assessment to derive the following diagnostic groups: conduct disorder, externalizing disorder without conduct disorder, internalizing disorder without externalizing disorder, and healthy. At school age, participants were again assessed via an age-appropriate diagnostic interview. Logistic and linear regression with pairwise group comparisons was used to investigate clinical markers of preschool conduct disorder and predictors of school age conduct disorder. Losing one's temper, low-intensity destruction of property, and low-intensity deceitfulness/stealing in the preschool period were found in both healthy and disordered groups. In contrast, high-intensity argument/defiant behavior, both low- and high-intensity aggression to people/animals, high-intensity destruction of property, high-intensity deceitfulness/stealing, and high-intensity peer problems were markers of preschool conduct disorder and predictors of school age conduct disorder. Inappropriate sexual behavior was not a marker for preschool conduct disorder but was a predictor of school age conduct disorder. These findings provide a guide for primary care clinicians to help identify preschoolers with clinical conduct disorder and those who are at risk for persistent conduct disorder in childhood. Preschoolers displaying these symptoms should be targeted for mental health assessment. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, Morgan; Ramirez-Ruiz, Enrico; Guillochon, James
In this paper, we model the observable signatures of tidal disruptions of white dwarf (WD) stars using massive black holes (MBHs) of moderate mass, ≈10{sup 3}–10{sup 5} M{sub ⊙}. When the WD passes deep enough within the MBH’s tidal field, these signatures include thermonuclear transients from burning during maximum compression. We combine a hydrodynamic simulation that includes nuclear burning of the disruption of a 0.6 M{sub ⊙} C/O WD with a Monte Carlo radiative transfer calculation to synthesize the properties of a representative transient. The transient’s emission emerges in the optical, with light curves and spectra reminiscent of Type I supernovae. Themore » properties are strongly viewing angle dependent, and key spectral signatures are ≈10,000 km s{sup −1} doppler shifts, due to the orbital motion of the unbound ejecta. Disruptions of He WDs likely produce large quantities of intermediate-mass elements, offering a possible production mechanism for Ca-rich transients. Accompanying multi-wavelength transients are fueled by accretion and arise from the nascent accretion disk and relativistic jet. If MBHs of moderate mass exist with number densities similar to those of supermassive BHs, both high-energy wide-field monitors and upcoming optical surveys should detect tens to hundreds of WD tidal disruptions per year. The current best strategy for their detection may therefore be deep optical follow-up of high-energy transients of unusually long duration. The detection rate or the nondetection of these transients by current and upcoming surveys can thus be used to place meaningful constraints on the extrapolation of the MBH mass function to moderate masses.« less
Synergetic Effects of Runaway and Disruption Induced by VDE on the First Wall Damage in HL-2A
NASA Astrophysics Data System (ADS)
Song, Xianying; Yang, Jinwei; Li, Xu; Yuan, Guoliang; Zhang, Yipo
2012-03-01
The plasma facing component in HL-2A has been damaged seriously after disruption, and for this reason its operation is suspended for maintenance. The experimental phenomena and plasma configurations, calculated by the current filament code (CF-code) using the plasma parameters measured by diagnostics and the signals of the magnetic probes, confirm that the first wall is damaged by the synergetic effects of runaway electrons and disruption induced by a vertical displacement event (VDE). When the plasma column is displaced upward/downward, the strong runaway electrons normally hit the baffle plate of the MP3 or MP1 coil in the upper and lower divertor during the disruption, causing the baffle plates to be holed and wrinkled by the energetic runaway current, and water (for cooling or heating the baffle plates) to leak into the vacuum vessel. Another disastrous consequence is that bellows underlying the baffle plate and outside the coil of MP3 for connecting two segments of the jacket casing pipe are punctured by arcing. The arc may be part of the halo current that forms a complete circuit. The experimental phenomena are indirect but compelling evidence for the existence of a halo current during the disruption and VDE, though the halo current has not been measured by the diagnostics in the HL-2A tokamak.
Volpe, F. A.; Hyatt, Alan; La Haye, Robert J.; ...
2015-10-19
The international ITER tokamak has the objective of demonstrating the scientific feasibility of magnetic confinement fusion as a source of energy. A concern towards the achievement of this goal is represented by major disruptions: complete losses of confinement often initiated by a non-rotating ('locked') magnetic island created by magnetic reconnection. During disruptions, energy and particles accumulated in the plasma volume over many seconds are lost in a few milliseconds and released on the plasma-facing materials. In addition, multi-MA level currents flowing in the tokamak plasma for its sustainment and confinement are lost, also in milliseconds, thus terminating the plasma dischargemore » and causing electromagnetic stresses that, if unmitigated, could lead to excessive device wear. Moreover it is shown that magnetic perturbations can be used to avoid disruptions by "guiding" the magnetic island to lock in a position where it is accessible to millimetre wave beams that fully stabilize it.« less
Formation and termination of runaway beams in ITER disruptions
NASA Astrophysics Data System (ADS)
Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
2017-06-01
A self-consistent analysis of the relevant physics regarding the formation and termination of runaway beams during mitigated disruptions by Ar and Ne injection is presented for selected ITER scenarios with the aim of improving our understanding of the physics underlying the runaway heat loads onto the plasma facing components (PFCs) and identifying open issues for developing and accessing disruption mitigation schemes for ITER. This is carried out by means of simplified models, but still retaining sufficient details of the key physical processes, including: (a) the expected dominant runaway generation mechanisms (avalanche and primary runaway seeds: Dreicer and hot tail runaway generation, tritium decay and Compton scattering of γ rays emitted by the activated wall), (b) effects associated with the plasma and runaway current density profile shape, and (c) corrections to the runaway dynamics to account for the collisions of the runaways with the partially stripped impurity ions, which are found to have strong effects leading to low runaway current generation and low energy conversion during current termination for mitigated disruptions by noble gas injection (particularly for Ne injection) for the shortest current quench times compatible with acceptable forces on the ITER vessel and in-vessel components ({τ\\text{res}}∼ 22~\\text{ms} ). For the case of long current quench times ({τ\\text{res}}∼ 66~\\text{ms} ), runaway beams up to ∼10 MA can be generated during the disruption current quench and, if the termination of the runaway current is slow enough, the generation of runaways by the avalanche mechanism can play an important role, increasing substantially the energy deposited by the runaways onto the PFCs up to a few hundreds of MJs. Mixed impurity (Ar or Ne) plus deuterium injection proves to be effective in controlling the formation of the runaway current during the current quench, even for the longest current quench times, as well as in decreasing the energy deposited on the runaway electrons during current termination.
Comparison of JET AVDE disruption data with M3D simulations and implications for ITER
Strauss, H.; Joffrin, E.; Riccardo, V.; ...
2017-10-02
Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less
Comparison of JET AVDE disruption data with M3D simulations and implications for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, H.; Joffrin, E.; Riccardo, V.
Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less
Digital Collaboration Tools in the Military: Their Historical and Current Status
2006-02-16
Writer = online word processor that edits, stores and shares your documents from anywhere. February 16, 2006 31 Recent “ Disruptive ” Technologies Cell...Webcasts Wikis February 16, 2006 32 Now Consider: Disruptive Technologies (1997) becomes Disruptive Innovations in 2003. Military Transformation: Drivers...from http://www.sims.berkeley.edu/how-much-info-2003 Schneiderman, R. (2005). Preparing for the Disruptive Technologies of Tomorrow. http
Stelinski, L L; Miller, J R; Rogers, M E
2008-08-01
The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is a worldwide pest of citrus. A season-long investigation was conducted that evaluated mating disruption for this pest. Effective disruption of the male P. citrella orientation to pheromone traps (98%) and reduced flush infestation by larvae was achieved for 221 d with two deployments of a 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal/(Z,Z)-7,11-hexadecadienal at a remarkably low rate of 1.5 g active ingredient (AI)/ha per deployment. To gain insight into the mechanism that mediates the disruption of P. citrella, male moth catch was quantified in replicated plots of citrus treated with varying densities of pheromone dispensers. The densities of septum dispensers compared were: 0 (0/ha, 0.0 g AI/ha), 0.2 (one every fifth tree or 35/ha, 0.05 g AI/ha), 1 (215/ha, 0.29 g AI/ha), and 5 per tree (1,100/ha, 1.5 g AI/ha). Profile analysis by previously published mathematical methods matched predictions of noncompetitive mating disruption. Behavioral observations of male P. citrella in the field revealed that males did not approach mating disruption dispensers in any of the dispenser density treatments. The current report presents the first set of profile analyses combined with direct behavioral observations consistent with previously published theoretical predictions for a noncompetitive mechanism of mating disruption. The results suggest that disruption of P. citrella should be effective even at high population densities given the density-independent nature of disruption for this species and the remarkably low rate of pheromone per hectare required for efficacy.
The Spillover of Systemic Ethical Behaviour
ERIC Educational Resources Information Center
Canadas, Alejandro
2010-01-01
The current financial crisis not only brought us high levels of unemployment, abrupt international disruption in economic growth, disinflation of assets prices and a dry up in the credit markets, among many other things; but it also brought us a crisis in the theory of economics and finance. Even though, a discussion concerning "a crisis in the…
Maternal characteristics predicting young girls' disruptive behavior.
van der Molen, Elsa; Hipwell, Alison E; Vermeiren, Robert; Loeber, Rolf
2011-01-01
Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls' disruptive behavior. The current study used five waves of parent- and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years. Multivariate generalized estimating equation analyses indicated that European American race, mother's prenatal nicotine use, maternal depression, maternal conduct problems prior to age 15, and low maternal warmth explained unique variance. Maladaptive parenting partly mediated the effects of maternal depression and maternal conduct problems. Both current and early maternal risk factors have an impact on young girls' disruptive behavior, providing support for the timing and focus of the prevention of girls' disruptive behavior.
Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment
NASA Astrophysics Data System (ADS)
Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.
2018-05-01
A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.
Enzymatic cell disruption of microalgae biomass in biorefinery processes.
Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes
2015-10-01
When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.
Reiter, L.W.; DeRosa, C.; Kavlock, R.J.; Lucier, G.; Mac, M.J.; Melillo, J.; Melnick, R.L.; Sinks, T.; Walton, B.T.
1998-01-01
The potential health and ecological effects of endocrine disrupting chemicals has become a high visibility environmental issue. The 1990s have witnessed a growing concern, both on the part of the scientific community and the public, that environmental chemicals may be causing widespread effects in humans and in a variety of fish and wildlife species. This growing concern led the Committee on the Environment and Natural Resources (CENR) of the National Science and Technology Council to identify the endocrine disrupter issue as a major research initiative in early 1995 and subsequently establish an ad hoc Working Group on Endocrine Disrupters. The objectives of the working group are to 1) develop a planning framework for federal research related to human and ecological health effects of endocrine disrupting chemicals; 2) conduct an inventory of ongoing federal research programs; and 3) identify research gaps and develop a coordinated interagency plan to address priority research needs. This communication summarizes the activities of the federal government in defining a common framework for planning an endocrine disrupter research program and in assessing the status of the current effort. After developing the research framework and compiling an inventory of active research projects supported by the federal government in fiscal year 1996, the CENR working group evaluated the current federal effort by comparing the ongoing activities with the research needs identified in the framework. The analysis showed that the federal government supports considerable research on human health effects, ecological effects, and exposure assessment, with a predominance of activity occurring under human health effects. The analysis also indicates that studies on reproductive development and carcinogenesis are more prevalent than studies on neurotoxicity and immunotoxicity, that mammals (mostly laboratory animals) are the main species under study, and that chlorinated dibenzodioxins and polychlorinated biphenyls are the most commonly studied chemical classes. Comparison of the inventory with the research needs should allow identification of underrepresented research areas in need of attention.
The external kink mode in diverted tokamaks
Turnbull, Alan D.; Hanson, Jeremy M.; Turco, Francesca; ...
2016-06-16
Here, an explanation is provided for the disruptive instability in diverted tokamaks when the safety factor at the 95% poloidal flux surface, q 95, is driven below 2.0. The instability is a resistive kink counterpart to the current-driven ideal mode that traditionally explained the corresponding disruption in limited cross-sections when q edge, the safety factor at the outermost closed flux surface, lies just below a rational value. Experimentally, external kink modes are observed in limiter configurations as the current in a tokamak is ramped up and q edge decreases through successive rational surfaces. For q edge < 2, the instabilitymore » is always encountered and is highly disruptive. However, diverted plasmas, in which q edge is formally infinite in the magnetohydrodynamic (MHD) model, have presented a longstanding difficulty since the theory would predict stability, yet, the disruptive limit occurs in practice when q 95, reaches 2. It is shown from numerical calculations that a resistive kink mode is linearly destabilized by the rapidly increasing resistivity at the plasma edge when q 95 < 2, but q edge >> 2. The resistive kink behaves much like the ideal kink with predominantly kink or interchange parity and no real sign of a tearing component. However, the growth rates scale with a fractional power of the resistivity near the q = 2 surface. The results have a direct bearing on the conventional edge cutoff procedures used in most ideal MHD codes, as well as implications for ITER and for future reactor options.« less
Driessens, Corine M E F
2015-11-11
The prevalence of problem behaviours among British adolescents has increased in the past decades. Following Erikson's psychosocial developmental theory and Bronfenbrenner's developmental ecological model, it was hypothesized that youth problem behaviour is shaped in part by social environment. The aim of this project was to explore potential protective factors within the social environment of British youth's for the presentation of disruptive behavioural problems. This study used secondary data from the Longitudinal Study of Young People in England, a cohort study of secondary school students. These data were analysed with generalized estimation equations to take the correlation between the longitudinal observations into account. Three models were built. The first model determined the effect of family, school, and extracurricular setting on presentation of disruptive behavioural problems. The second model expanded the first model by assuming extracurricular activities as protective factors that moderated the interaction between family and school factors with disruptive behavioural problems. The third model described the effect of prior disruptive behaviour on current disruptive behaviour. Associations were found between school factors, family factors, involvement in extracurricular activities and presence of disruptive behavioural problems. Results from the second generalized estimating equation (GEE) logistic regression models indicated that extracurricular activities buffered the impact of school and family factors on the presence of disruptive behavioural problems. For instance, participation in sports activities decreased the effect of bullying on psychological distress. Results from the third model indicated that prior acts of disruptive behaviour reinforced current disruptive behaviour. This study supports Erikson's psychosocial developmental theory and Bronfenbrenner's developmental ecological model; social environment did influence the presence of disruptive behavioural problems for British adolescents. The potential of extracurricular activities to intervention strategies addressing disruptive behavioural problems of adolescents is discussed.
NASA Astrophysics Data System (ADS)
Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.
2015-11-01
Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )<2 ) is routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) < 2. When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) < 2, external n = 1 kink mode activity does not appear to play a significant role in the disruption phenomenology observed.
ERIC Educational Resources Information Center
Tyler, Kenneth M.; Burris, Jennifer L.; Coleman, Sean T.
2018-01-01
Disruptive classroom behaviors are a major schooling dilemma in urban schools. While several contextual and motivational factors have been statistically associated with disruptive classroom behaviors, one overlooked factor has been home-school dissonance. The current study examined the relationship between 260 middle school students' reports of…
Immediate and Distal Effects of the Good Behavior Game
ERIC Educational Resources Information Center
Donaldson, Jeanne M.; Wiskow, Katie M.; Soto, Paul L.
2015-01-01
The Good Behavior Game (GBG) has been demonstrated to reduce disruptive student behavior during implementation. The effects of playing the GBG on disruption immediately before and after the GBG are unknown. The current study evaluated the effects of the GBG on disruption in 5 kindergarten classes immediately before, during, and after GBG…
NASA Astrophysics Data System (ADS)
Xue, L.; Duan, X. R.; Zheng, G. Y.; Liu, Y. Q.; Pan, Y. D.; Yan, S. L.; Dokuka, V. N.; Lukash, V. E.; Khayrutdinov, R. R.
2016-05-01
Cold and hot vertical displacement events (VDEs) are frequently related to the disruption of vertically-elongated tokamaks. The weak poloidal magnetic field around the null-points of a snowflake divertor configuration may influence the vertical displacement process. In this paper, the major disruption with a cold VDE and the vertical disruption in the HL-2M tokamak are investigated by the DINA code. In order to better illustrate the effect from the weak poloidal field, a double-null snowflake configuration is compared with the standard divertor (SD) configuration under the same plasma parameters. Computational results show that the weak poloidal magnetic field can be partly beneficial for mitigating the vertical instability of the plasma under small perturbations. For major disruption, the peak poloidal halo current fraction is almost the same between the snowflake and the SD configurations. However, this fraction becomes much larger for the snowflake in the event of a hot VDE. Furthermore, during the disruption for a snowflake configuration, the distribution of electromagnetic force on a vacuum vessel gets more non-uniform during the current quench.
Tereno, Susana; Madigan, Sheri; Lyons-Ruth, Karlen; Plamondon, Andre; Atkinson, Leslie; Guedeney, Nicole; Greacen, Tim; Dugravier, Romain; Saias, Thomas; Guedeney, Antoine
2017-05-01
Although randomized interventions trials have been shown to reduce the incidence of disorganized attachment, no studies to date have identified the mechanisms of change responsible for such reductions. Maternal sensitivity has been assessed in various studies and shown to change with intervention, but in the only study to formally assess mediation, changes in maternal sensitivity did not mediate changes in infant security of attachment (Cicchetti, Rogosch, & Toth, 2006). Primary aims of the current randomized controlled intervention trial in a high-risk population were to fill gaps in the literature by assessing whether the intervention (a) reduced disorganization, (b) reduced disrupted maternal communication, and (c) whether reductions in disrupted maternal communication mediated changes in infant disorganization. The results indicated that, compared to controls (n = 52), both infant disorganization and disrupted maternal communication were significantly reduced in the intervention group (n = 65) that received regular home-visiting during pregnancy and the first year of life. Furthermore, reductions in disrupted maternal communication partially accounted for the observed reductions in infant disorganization compared to randomized controls. The results are discussed in relation to the societal cost effectiveness of early attachment-informed interventions for mothers and infants, as well as the importance of formally assessing underlying mechanisms of change in order to improve and appropriately target preventive interventions.
NASA Astrophysics Data System (ADS)
Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.
2012-10-01
Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.
Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology
NASA Astrophysics Data System (ADS)
Goodwin, Bruce
2015-03-01
This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.
Maternal Characteristics Predicting Young Girls’ Disruptive Behavior
van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf
2011-01-01
Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls’ disruptive behavior. The current study used five waves of parent and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years. Multivariate Generalized Estimating Equation (GEE) analyses indicated that European American race, mother’s prenatal nicotine use, maternal depression, maternal conduct problems prior to age 15, and low maternal warmth explained unique variance. Maladaptive parenting partly mediated the effects of maternal depression and maternal conduct problems. Both current and early maternal risk factors have an impact on young girls’ disruptive behavior, providing support for the timing and focus of the prevention of girls’ disruptive behavior. PMID:21391016
Halo current diagnostic system of experimental advanced superconducting tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D. L.; Shen, B.; Sun, Y.
2015-10-15
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.
ERIC Educational Resources Information Center
Turner, Jennifer Danridge; Albro, Jennifer
2017-01-01
College and career readiness has become a key educational priority in the United States. Framed by neoliberal discourses, current conceptions of college and career readiness narrowly define literacy as discrete sets of cognitive skills and curricular knowledge and reduce literacy learning to scores on high-stakes assessments. To disrupt these…
ERIC Educational Resources Information Center
Najmi, Sadia; Bureau, Jean-Francois; Chen, Diyu; Lyons-Ruth, Karlen
2009-01-01
Objective: The Personal Attitude Scale (PAS; Hooley, 2000) is a method that is under development for identifying individuals high in Expressed Emotion based on personality traits of inflexibility, intolerance, and norm-forming. In the current study, the goal was to measure the association between this maternal attitudinal inflexibility, early…
ERIC Educational Resources Information Center
Shawler, Paul M.; Sullivan, Maureen A.
2017-01-01
The current study investigated the parent-child relationship by examining associations between parent stress, parental discipline strategies, child disruptive behavior problems, and level of autism spectrum disorder (ASD) symptoms. A sample of 130 parents of children with ASD ages 3 to 11 years participated. Parents reported high levels of parent…
ERIC Educational Resources Information Center
Mondloch, Catherine J.; Horner, Matthew; Mian, Jasmine
2013-01-01
Adults' and 8-year-old children's perception of emotional faces is disrupted when faces are presented in the context of incongruent body postures (e.g., when a sad face is displayed on a fearful body) if the two emotions are highly similar (e.g., sad/fear) but not if they are highly dissimilar (e.g., sad/happy). The current research investigated…
Disruptive innovations: new anti-infectives in the age of resistance
Tegos, George P.; Hamblin, Michael R.
2013-01-01
This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. PMID:24012294
NASA Astrophysics Data System (ADS)
Zhang, Jie; Sabarinathan, Ranjani; Bubel, Tracy; Williams, David R.; Hunter, Jennifer J.
2016-03-01
Observations of RPE disruption and autofluorescence (AF) photobleaching at light levels below the ANSI photochemical maximum permissible exposure (MPE) (Morgan et al., 2008) indicates a demand to modify future light safety standards to protect the retina from harm. To establish safe light exposures, we measured the visible light action spectrum for RPE disruption in an in vivo monkey model with fluorescence adaptive optics retinal imaging. Using this high resolution imaging modality can provide insight into the consequences of light on a cellular level and allow for longitudinal monitoring of retinal changes. The threshold retinal radiant exposures (RRE) for RPE disruption were determined for 4 wavelengths (460, 488, 544, and 594 nm). The anaesthetized macaque retina was exposed to a uniform 0.5° × 0.5° field of view (FOV). Imaging within a 2° × 2° FOV was performed before, immediately after and at 2 week intervals for 10 weeks. At each wavelength, multiple RREs were tested with 4 repetitions each to determine the threshold for RPE disruption. For qualitative analysis, RPE disruption is defined as any detectable change from the pre exposure condition in the cell mosaic in the exposed region relative to the corresponding mosaic in the immediately surrounding area. We have tested several metrics to evaluate the RPE images obtained before and after exposure. The measured action spectrum for photochemical RPE disruption has a shallower slope than the current ANSI photochemical MPE for the same conditions and suggests that longer wavelength light is more hazardous than other measurements would suggest.
Geologic implications and potential hazards of scour depressions on bering shelf, Alaska
Larsen, M.C.; Nelson, H.; Thor, D.R.
1979-01-01
Flat-bottomed depression 50-150 m in diameter and 60-80 cm deep occur in the floor of Norton Sound, Bering Sea. These large erosional bedforms and associated current ripples are found in areas where sediment grain size is 0.063-0.044 mm (4-4.5 ??), speeds of bottom currents are greatest (20-30 cm/s mean speeds under nonstorm conditions, 70 cm/s during typical storms), circulation of water is constricted by major topographic shoals (kilometers in scale), and small-scale topographic disruptions, such as ice gouges, occur locally on slopes of shoals. These local obstructions on shoals appear to disrupt currents, causing separation of flow and generating eddies that produce large-scale scour. Offshore artificial structures also may disrupt bottom currents in these same areas and have the potential to generate turbulence and induce extensive scour in the area of disrupted flow. The size and character of natural scour depressions in areas of ice gouging suggest that large-scale regions of scour may develop from enlargement of local scour sites around pilings, platforms, or pipelines. Consequently, loss of substrate support for pipelines and gravity structures is possible during frequent autumn storms. ?? 1979 Springer-Verlag New York Inc.
Suppression of high-energy electrons generated in both disrupting and sustained MST tokamak plasmas
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Chapman, B. E.; Munaretto, S.; Cornille, B. S.; McCollam, K. J.; Sovinec, C. R.; Dubois, A. M.; Almagri, A. F.; Goetz, J. A.
2017-10-01
High-energy electrons appearing during MST tokamak plasma disruptions are rapidly lost from the plasma due apparently to internal MHD activity. Work has just recently begun on generating and diagnosing disruptions in MST tokamak plasmas. Initial measurements show the characteristic drop in central temperature and density preceding a quench of the plasma current. This corresponds to a burst of dominantly n=1 MHD activity, which is accompanied by a short-lived burst of high-energy electrons. The short-lived nature of these electrons is suspected to be due to stochastic transport associated with the increased MHD. Earlier work shows that runaway electrons generated in low density, sustained plasmas are suppressed by a sufficiently large m=3 RMP in plasmas with q(a) <3. RMPs of various poloidal mode number can be generated with an array of saddle coils wound around the vertical insulated gap in MST's thick conducting shell. With an m=3 RMP, the degree of runaway suppression increases with RMP amplitude, while an m=1 RMP has little effect on the runaways. Nonlinear MHD modeling with NIMROD of these MST plasmas indicates increased stochasticity with an m=3 RMP, while no such increase in stochasticity is observed with an m=1 RMP. Work supported by US DOE.
Cumulative Effects of Mothers' Risk and Promotive Factors on Daughters' Disruptive Behavior
ERIC Educational Resources Information Center
van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf
2012-01-01
Little is known about the ways in which the accumulation of maternal factors increases or reduces risk for girls' disruptive behavior during preadolescence. In the current study, maternal risk and promotive factors and the severity of girls' disruptive behavior were assessed annually among girls' ages 7-12 in an urban community sample (N = 2043).…
ERIC Educational Resources Information Center
Degnan, Kathryn A.; Calkins, Susan D.; Keane, Susan P.; Hill-Soderlund, Ashley L.
2008-01-01
Disruptive behavior, including aggression, defiance, and temper tantrums, typically peaks in early toddlerhood and decreases by school entry; however, some children do not show this normative decline. The current study examined disruptive behavior in 318 boys and girls at 2, 4, and 5 years of age and frustration reactivity, physiological…
International trade inoperability input-output model (IT-IIM): theory and application.
Jung, Jeesang; Santos, Joost R; Haimes, Yacov Y
2009-01-01
The inoperability input-output model (IIM) has been used for analyzing disruptions due to man-made or natural disasters that can adversely affect the operation of economic systems or critical infrastructures. Taking economic perturbation for each sector as inputs, the IIM provides the degree of economic production impacts on all industry sectors as the outputs for the model. The current version of the IIM does not provide a separate analysis for the international trade component of the inoperability. If an important port of entry (e.g., Port of Los Angeles) is disrupted, then international trade inoperability becomes a highly relevant subject for analysis. To complement the current IIM, this article develops the International Trade-IIM (IT-IIM). The IT-IIM investigates the resulting international trade inoperability for all industry sectors resulting from disruptions to a major port of entry. Similar to traditional IIM analysis, the inoperability metrics that the IT-IIM provides can be used to prioritize economic sectors based on the losses they could potentially incur. The IT-IIM is used to analyze two types of direct perturbations: (1) the reduced capacity of ports of entry, including harbors and airports (e.g., a shutdown of any port of entry); and (2) restrictions on commercial goods that foreign countries trade with the base nation (e.g., embargo).
Characteristics of Low-q(a) Disruptions in the Compact Toroidal Hybrid
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Archmiller, M. C.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2014-10-01
Tokamak disruptions are dramatic events that lead to a sudden loss of plasma confinement. Disruptions that occur at low edge safety-factor, q (a) , limit the operation of tokamaks to q (a) >= 2 . The Compact Toroidal Hybrid (CTH) is a torsatron-tokamak hybrid with a helical field coil and vertical field coils to establish a stellartor equilibrium, while an ohmic coil induces plasma current. A feature of the CTH device is the ability to adjust the vacuum rotational transform, tvac (t =1/q ), by varying the ratio of current in the helical and toroidal field coils. The value of edge tvac can be varied from about 0.02 to 0.3 (qvac (a) ~ 50 to 3.3). Plasma discharges in CTH are routinely observed to operate with q (a) < 2 , and in some cases as low as q (a) ~ 1 . 1 . In CTH, low-q(a) disruptions are observed with a dominant m/n=3/2 precursor. The disruptivity of plasma discharges is over 80% when tvac (a) < 0 . 04 (qvac (a) < 25) and as tvac (a) is increased further, the disruptivity of the plasma discharges decreases. The disruptions are completely suppressed for tvac (a) > 0 . 07 (qvac (a) ~ 14) . This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata
Benton, Mark D.; Lewis, Amanda H.; Bant, Jason S.
2013-01-01
Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17–21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (β4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias. PMID:23446695
This Request for Information (RFI) is directed toward determining how best to accelerate research in disruptive proteomics technologies. The Disruptive Proteomics Technologies (DPT) Working Group of the NIH Common Fund wishes to identify gaps and opportunities in current technologies and methodologies related to proteome-wide measurements. For the purposes of this RFI, “disruptive” is defined as very rapid, very significant gains, similar to the "disruptive" technology development that occurred in DNA sequencing technology.
Effect of high hydrostatic pressure and whey proteins on the disruption of casein micelle isolates.
Harte, Federico M; Gurram, Subba Rao; Luedecke, Lloyd O; Swanson, Barry G; Barbosa-Cánovas, Gustavo V
2007-11-01
High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.
Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.
Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L
2014-01-01
The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired.
Cationic Peptide Exposure Enhances Pulsed-Electric-Field-Mediated Membrane Disruption
Kennedy, Stephen M.; Aiken, Erik J.; Beres, Kaytlyn A.; Hahn, Adam R.; Kamin, Samantha J.; Hagness, Susan C.; Booske, John H.; Murphy, William L.
2014-01-01
Background The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF’s ability to disrupt plasma membranes. Methodology/Principal Findings We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell’s PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1–2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Conclusions/Significance Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired. PMID:24671150
Disruptive behaviour in the perioperative setting: a contemporary review.
Villafranca, Alexander; Hamlin, Colin; Enns, Stephanie; Jacobsohn, Eric
2017-02-01
Disruptive behaviour, which we define as behaviour that does not show others an adequate level of respect and causes victims or witnesses to feel threatened, is a concern in the operating room. This review summarizes the current literature on disruptive behaviour as it applies to the perioperative domain. Searches of MEDLINE ® , Scopus™, and Google books identified articles and monographs of interest, with backreferencing used as a supplemental strategy. Much of the data comes from studies outside the operating room and has significant methodological limitations. Disruptive behaviour has intrapersonal, interpersonal, and organizational causes. While fewer than 10% of clinicians display disruptive behaviour, up to 98% of clinicians report witnessing disruptive behaviour in the last year, 70% report being treated with incivility, and 36% report being bullied. This type of conduct can have many negative ramifications for clinicians, students, and institutions. Although the evidence regarding patient outcomes is primarily based on clinician perceptions, anecdotes, and expert opinion, this evidence supports the contention of an increase in morbidity and mortality. The plausible mechanism for this increase is social undermining of teamwork, communication, clinical decision-making, and technical performance. The behavioural responses of those who are exposed to such conduct can positively or adversely moderate the consequences of disruptive behaviour. All operating room professions are involved, with the rank order (from high to low) being surgeons, nurses, anesthesiologists, and "others". The optimal approaches to the prevention and management of disruptive behaviour are uncertain, but they include preventative and professional development courses, training in soft skills and teamwork, institutional efforts to optimize the workplace, clinician contracts outlining the clinician's (and institution's) responsibilities, institutional policies that are monitored and enforced, regular performance feedback, and clinician coaching/remediation as required. Disruptive behaviour remains a part of operating room culture, with many associated deleterious effects. There is a widely accepted view that disruptive behaviour can lead to increased patient morbidity and mortality. This is mechanistically plausible, but more rigorous studies are required to confirm the effects and estimate their magnitude. An important measure that individual clinicians can take is to monitor and control their own behaviour, including their responses to disruptive behaviour.
Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment
Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.; ...
2018-03-14
Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less
Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.
Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less
Hourd, Paul; Williams, David J
2018-05-01
Since the regenerative medicine sector entered the second phase of its development (RegenMed 2.0) more than a decade ago, there is increasing recognition that current technology innovation trajectories will drive the next translational phase toward the production of disruptive, high-value curative cell and gene-based regenerative medicines. To identify the manufacturing science problems that must be addressed to permit translation of these next generation therapeutics. In this short report, a long lens look within the pluripotent stem cell therapeutic space, both embryonic and induced, is used to gain early insights on where critical technology and manufacturing challenges may emerge. This report offers a future perspective on the development and innovation that will be needed within manufacturing science to add value in the production and commercialization of the next generation of advanced cell therapies and precision medicines. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Ch’ng, Jun-Hong; Moll, Kirsten; Quintana, Maria del Pilar; Chan, Sherwin Chun Leung; Masters, Ellen; Moles, Ernest; Liu, Jianping; Eriksson, Anders B.; Wahlgren, Mats
2016-01-01
The spread of artemisinin-resistant parasites could lead to higher incidence of patients with malaria complications. However, there are no current treatments that directly dislodge sequestered parasites from the microvasculature. We show that four common antiplasmodial drugs do not disperse rosettes (erythrocyte clusters formed by malaria parasites) and therefore develop a cell-based high-throughput assay to identify potential rosette-disrupting compounds. A pilot screen of 2693 compounds identified Malaria Box compound MMV006764 as a potential candidate. Although it reduced rosetting by a modest 20%, MMV006764 was validated to be similarly effective against both blood group O and A rosettes of three laboratory parasite lines. Coupled with its antiplasmodial activity and drug-likeness, MMV006764 represents the first small-molecule compound that disrupts rosetting and could potentially be used in a resource-limited setting to treat patients deteriorating rapidly from malaria complications. Such dual-action drugs that simultaneously restore microcirculation and reduce parasite load could significantly reduce malaria morbidity and mortality. PMID:27403804
NASA Astrophysics Data System (ADS)
Conway, Declan; Dalin, Carole; Landman, Willem A.; Osborn, Timothy J.
2017-12-01
Hydropower comprises a significant and rapidly expanding proportion of electricity production in eastern and southern Africa. In both regions, hydropower is exposed to high levels of climate variability and regional climate linkages are strong, yet an understanding of spatial interdependences is lacking. Here we consider river basin configuration and define regions of coherent rainfall variability using cluster analysis to illustrate exposure to the risk of hydropower supply disruption of current (2015) and planned (2030) hydropower sites. Assuming completion of the dams planned, hydropower will become increasingly concentrated in the Nile (from 62% to 82% of total regional capacity) and Zambezi (from 73% to 85%) basins. By 2030, 70% and 59% of total hydropower capacity will be located in one cluster of rainfall variability in eastern and southern Africa, respectively, increasing the risk of concurrent climate-related electricity supply disruption in each region. Linking of nascent regional electricity sharing mechanisms could mitigate intraregional risk, although these mechanisms face considerable political and infrastructural challenges.
Monitoring-induced disruption in skilled typewriting.
Snyder, Kristy M; Logan, Gordon D
2013-10-01
It is often disruptive to attend to the details of one's expert performance. The current work presents four experiments that utilized a monitor to report protocol to evaluate the sufficiency of three accounts of monitoring-induced disruption. The inhibition hypothesis states that disruption results from costs associated with preparing to withhold inappropriate responses. The dual-task hypothesis states that disruption results from maintaining monitored information in working memory. The implicit-explicit hypothesis states that disruption results from explicitly monitoring details of performance that are normally implicit. The findings suggest that all three hypotheses are sufficient to produce disruption, but inhibition and dual-task costs are not necessary. Experiment 1 showed that monitoring to report was disruptive even when there was no requirement to inhibit. Experiment 2 showed that maintaining information in working memory caused some disruption but much less than monitoring to report. Experiment 4 showed that monitoring to inhibit was more disruptive than monitoring to report, suggesting that monitoring is more disruptive when it is combined with other task requirements, such as inhibition. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Vytal, Katherine E.; Cornwell, Brian R.; Letkiewicz, Allison M.; Arkin, Nicole E.; Grillon, Christian
2013-01-01
Anxiety can be distracting, disruptive, and incapacitating. Despite problems with empirical replication of this phenomenon, one fruitful avenue of study has emerged from working memory (WM) experiments where a translational method of anxiety induction (risk of shock) has been shown to disrupt spatial and verbal WM performance. Performance declines when resources (e.g., spatial attention, executive function) devoted to goal-directed behaviors are consumed by anxiety. Importantly, it has been shown that anxiety-related impairments in verbal WM depend on task difficulty, suggesting that cognitive load may be an important consideration in the interaction between anxiety and cognition. Here we use both spatial and verbal WM paradigms to probe the effect of cognitive load on anxiety-induced WM impairment across task modality. Subjects performed a series of spatial and verbal n-back tasks of increasing difficulty (1, 2, and 3-back) while they were safe or at risk for shock. Startle reflex was used to probe anxiety. Results demonstrate that induced-anxiety differentially impacts verbal and spatial WM, such that low and medium-load verbal WM is more susceptible to anxiety-related disruption relative to high-load, and spatial WM is disrupted regardless of task difficulty. Anxiety impacts both verbal and spatial processes, as described by correlations between anxiety and performance impairment, albeit the effect on spatial WM is consistent across load. Demanding WM tasks may exert top-down control over higher-order cortical resources engaged by anxious apprehension, however high-load spatial WM may continue to experience additional competition from anxiety-related changes in spatial attention, resulting in impaired performance. By describing this disruption across task modalities, these findings inform current theories of emotion–cognition interactions and may facilitate development of clinical interventions that seek to target cognitive impairments associated with anxiety. PMID:23542914
Disruptive innovations: new anti-infectives in the age of resistance.
Tegos, George P; Hamblin, Michael R
2013-10-01
This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. Copyright © 2013. Published by Elsevier Ltd.
Fibrosis and diseases of the eye
Friedlander, Martin
2007-01-01
Most diseases that cause catastrophic loss of vision do so as a result of abnormal angiogenesis and wound healing, often in response to tissue ischemia or inflammation. Disruption of the highly ordered tissue architecture in the eye caused by vascular leakage, hemorrhage, and concomitant fibrosis can lead to mechanical disruption of the visual axis and/or biological malfunctioning. An increased understanding of inflammation, wound healing, and angiogenesis has led to the development of drugs effective in modulating these biological processes and, in certain circumstances, the preservation of vision. Unfortunately, such pharmacological interventions often are too little, too late, and progression of vision loss frequently occurs. The recent development of progenitor and/or stem cell technologies holds promise for the treatment of currently incurable ocular diseases. PMID:17332885
Emerging and Disruptive Technologies.
Kricka, Larry J
2016-08-01
Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.
Emerging and Disruptive Technologies
2016-01-01
Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages. PMID:27683538
Disruption forces on the tokamak wall with and without poloidal currents
NASA Astrophysics Data System (ADS)
Pustovitov, V. D.
2017-05-01
The contributions into the disruption radial force on the tokamak vacuum vessel wall are calculated and analyzed. One is due to the induced toroidal current in the wall, and another is due to the poloidal current. The latter is not accounted for in the models that represent the wall as a set of isolated toroidal filaments. It is shown that such modeling must lead to significant errors in the evaluation of the force during either thermal or current quench. The analytical derivations are performed here for an arbitrary tokamak configuration with final estimates for a circular large-aspect-ratio plasma and a coaxial wall reacting on perturbations as a perfect conductor. The results are compared with those recently obtained numerically by the codes DINA, MAXFEA and CarMa0NL. The discrepancies between the DINA simulations (Khayrutdinov et al 2016 Plasma Phys. Control. Fusion 58 115012) and earlier analytical predictions are explained. The recent conclusion (Villone et al 2015 Fusion Eng. Des. 93 57) on the role of the disruption-induced poloidal current in the wall is confirmed and extended to a wider area.
Runaway Geneeration In Disruptions Of Plasmas In TFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, E. D.; Bell, M. G.; Taylor, G.
2014-03-31
Many disruptions in the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24] produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lastingmore » runaway plasmas, Parail-Pogutse instabilities were observed.« less
Progress of recent experimental research on the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Zhuang, G.; Gentle, K. W.; Chen, Z. Y.; Chen, Z. P.; Yang, Z. J.; Zheng, Wei; Hu, Q. M.; Chen, J.; Rao, B.; Zhong, W. L.; Zhao, K. J.; Gao, L.; Cheng, Z. F.; Zhang, X. Q.; Wang, L.; Jiang, Z. H.; Xu, T.; Zhang, M.; Wang, Z. J.; Ding, Y. H.; Yu, K. X.; Hu, X. W.; Pan, Y.; Huang, H.; the J-TEXT Team
2017-10-01
The progress of experimental research over the last two years on the J-TEXT tokamak is reviewed and reported in this paper, including: investigations of resonant magnetic perturbations (RMPs) on the J-TEXT operation region show that moderate amplitude of applied RMPs either increases the density limit from less than 0.7n G to 0.85n G (n G is the Greenwald density, {{n}\\text{G}}={{I}\\text{p}}/π {{a}2} ) or lowers edge safety factor q a from 2.15 to nearly 2.0; observations of influence of RMPs with a large m/n = 3/1 dominant component (where m and n are the toroidal and poloidal mode numbers respectively) on electron density indicate electron density first increases (decreases) inside (around/outside) of the 3/1 rational surface, and it is increased globally later together with enhanced edge recycling; investigations of the effect of RMPs on the behavior of runaway electrons/current show that application of RMPs with m/n = 2/1 dominant component during disruptions can reduce runaway production. Furthermore, its application before the disruption can reduce both the amplitude and the length of runaway current; experimental results in the high-density disruption plasmas confirm that local current shrinkage during a multifaceted asymmetric radiation from the edge can directly terminate the discharge; measurements by a multi-channel Doppler reflectometer show that the quasi-coherent modes in the electron diamagnetic direction occur in the J-TEXT ohmic confinement regime in a large plasma region (r/a ~ 0.3-0.8) with frequency of 30-140 kHz.
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2015-11-01
Low edge safety factor operation at a value less than two (q (a) = 1 /ttot (a) < 2) is routine on the Compact Toroidal Hybrid device. Presently, the operational space of this current carrying stellarator extends down to q (a) = 1 . 2 without significant n = 1 kink mode activity after the initial plasma current rise of the discharge. The disruption dynamics of these low q (a) plasmas depend upon the fraction of rotational transform produced by external stellarator coils to that generated by the plasma current. We observe that when about 10% of the total rotational transform is supplied by the stellarator coils, low q (a) disruptions are passively suppressed and avoided even though q (a) < 2 . When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, mode numbers of m / n = 3 / 2 and 4 / 3 observed by external magnetic sensors, and m / n = 1 / 1 activity observed by core soft x-ray emissivity measurements. Even though q (a) passes through and becomes much less than two, external n = 1 kink mode activity does not appear to play a significant role in the observed disruption phenomenology. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Parabens and their effects on the endocrine system.
Nowak, Karolina; Ratajczak-Wrona, Wioletta; Górska, Maria; Jabłońska, Ewa
2018-03-27
Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system. Copyright © 2018 Elsevier B.V. All rights reserved.
Back on Track: Approaches to Managing Highly Disruptive School Classes
ERIC Educational Resources Information Center
Vaaland, Grete S.
2017-01-01
Teaching and learning are at stake when classrooms become highly disruptive and pupils ignore the teacher's instructions and leadership. Re-establishing teacher authority in a highly disruptive school class is an understudied area. This instrumental multiple case study aimed to reveal concepts and conceptual frameworks that are suitable for…
Simulation study of disruption characteristics in KSTAR
NASA Astrophysics Data System (ADS)
Lee, Jongkyu; Kim, J. Y.; Kessel, C. E.; Poli, F.
2012-10-01
A detailed simulation study of disruption in KSTAR had been performed using the Tokamak Simulation Code(TSC) [1] during the initial design phase of KSTAR [2]. Recently, however, a partial modification in the structure of passive plate was made in relation to reduce eddy current and increase the efficiency of control of vertical position. A substantial change can then occur in disruption characteristics and plasma behavior during disruption due to changes in passive plate structure. Because of this, growth rate of vertical instability is expected to be increased and eddy current and its associated electomagnetic force are expected to be reduced. To check this in more detail, a new simulation study is here given with modified passive plate structure of KSTAR. In particular, modeling of vertical disruption that is vertical displacement event (VDE) was carried out. We calculated vertical growth rate for a drift phase of plasma and electromagnetic force acting on PFC structures and compared the results between in a new model and an old model. [4pt] [1] S.C. Jardin, N. Pomphrey and J. Delucia, J. Comp. Phys. 66, 481 (1986).[0pt] [2] J.Y. Kim, S.Y. Cho and KSTAR Team, Disruption load analysis on KSTAR PFC structures, J. Accel. Plasma Res. 5, 149 (2000).
Cell disruption for microalgae biorefineries.
Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H
2015-01-01
Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.
Twenty Years of Research on the Alcator C-Mod Tokamak
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2013-10-01
Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE
Asteroid families: Current situation
NASA Astrophysics Data System (ADS)
Cellino, A.; Dell'Oro, A.; Tedesco, E. F.
2009-02-01
Being the products of energetic collisional events, asteroid families provide a fundamental body of evidence to test the predictions of theoretical and numerical models of catastrophic disruption phenomena. The goal is to obtain, from current physical and dynamical data, reliable inferences on the original disruption events that produced the observed families. The main problem in doing this is recognizing, and quantitatively assessing, the importance of evolutionary phenomena that have progressively changed the observable properties of families, due to physical processes unrelated to the original disruption events. Since the early 1990s, there has been a significant evolution in our interpretation of family properties. New ideas have been conceived, primarily as a consequence of the development of refined models of catastrophic disruption processes, and of the discovery of evolutionary processes that had not been accounted for in previous studies. The latter include primarily the Yarkovsky and Yarkovsky-O'Keefe-Radzvieski-Paddack (YORP) effects - radiation phenomena that can secularly change the semi-major axis and the rotation state. We present a brief review of the current state of the art in our understanding of asteroid families, point out some open problems, and discuss a few likely directions for future developments.
The Transition to High School: Current Knowledge, Future Directions
2011-01-01
In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a particular developmental domain (e.g., academics and socioemotional well-being) to the exclusion of a more integrated model. This review relies on life course theory to establish an organizational framework for interpreting and connecting the diffuse and sometimes disparate findings on the high school transition, including adolescent developmental trajectories and the influence of social ties, changing sociocultural contexts, and stratification systems. Conclusions identify aspects for future inquiry suggested by current knowledge and the tenets of the life course perspective. PMID:21966178
Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James
2012-06-30
Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult antisocial behavior and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional magnetic resonance imaging scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Overview, Progress, and Plans for the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Hartwell, G. J.; Allen, N. R.; Ennis, D. A.; Hanson, J. D.; Howell, E. C.; Johnson, C. A.; Knowlton, S. F.; Kring, J. D.; Ma, X.; Maurer, D. A.; Ross, K. G.; Schmitt, J. C.; Traverso, P. J.; Williamson, E. N.
2017-10-01
The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T) which generates highly configurable confining magnetic fields solely with external coils but typically uses up to 80 kA of plasma current for heating and disruption studies. The main goals of the CTH experiment are to study disruptive behavior as a function of applied 3D magnetic shaping, and to test and advance the V3FIT reconstruction code and NIMROD modeling of CTH. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased with no observed threshold for avoidance. Low-q operations (1.1 < q(a) < 2.0) are routine, with disruptions ceasing if the vacuum transform is raised above 0.07. Sawteeth are observed in CTH and have a similar phenomenology to tokamak sawteeth despite employing a 3D confining field. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges. Internal SXR diagnostics, in conjunction with external magnetics, extend the range of reconstruction accuracy into the plasma core. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
Girls’ Disruptive Behavior and its Relationship to Family Functioning: A Review
Kroneman, Leoniek M.; Loeber, Rolf; Hipwell, Alison E.; Koot, Hans M.
2009-01-01
Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework. Clarifying the heterogeneity of development in girls is important for developing and optimizing gender-specific prevention and treatment programs. In the current review, we describe the unique aspects of the development of disruptive behavior in girls and explore how the gender-specific development of disruptive behavior can be explained by family linked risk and protective processes. Based on this review, we formulate a gender-specific reciprocal model of the influence of social factors on the development of disruptive behavior in girls in order to steer further research and better inform prevention and treatment programs. PMID:20161077
Jim, Heather S L; Sutton, Steven; Majhail, Navneet S; Wood, William A; Jacobsen, Paul B; Wingard, John R; Wu, Juan; Knight, Jennifer M; Syrjala, Karen L; Lee, Stephanie J
2018-03-07
Sleep disruption has received little attention in hematopoietic cell transplantation (HCT). The goal of this study was to describe severity, course, and predictors of sleep disruption following HCT. A secondary data analysis was conducted of the Blood and Marrow Transplantation Clinical Trials Network (BMT CTN) 0902 study. Participants completed a modified version of the Pittsburgh Sleep Quality Index prior to transplant and 100 and 180 days posttransplant. Growth mixture models were used to characterize subgroups of patients based on baseline sleep disruption and change over time. A total of 570 patients (mean age 55 years, 42% female) were included in the current analyses. Patients could be grouped into four distinct classes based on sleep disruption: (1) clinically significant sleep disruption at baseline that did not improve over time (20%); (2) clinically significant sleep disruption at baseline that improved over time (22%); (3) sleep disruption that did not reach clinical significance at baseline and did not improve over time (45%); and (4) no sleep disruption at baseline or over time (13%). These data provide a more comprehensive understanding of sleep disruption that can be used to develop interventions to improve sleep in HCT recipients.
Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...
Travel Effects and Associated Greenhouse Gas Emissions of Automated Vehicles
DOT National Transportation Integrated Search
2018-04-01
In much the same way that the automobile disrupted horse and cart transportation in the 20th century, automated vehicles hold the potential to disrupt our current system of transportation and the fabric of our built environment in the 21st century. E...
Tubular localization of silent calcium channels in crustacean skeletal muscle fibers.
Monterrubio, J; Ortiz, G; Orkand, P M; Zuazaga, C
2002-01-01
Ca2+-induced Ca2+ release (CICR) in the superficial abdominal flexor muscle of the crustacean Atya lanipes appears to be mediated by a local control mechanism similar to that of vertebrate cardiac muscle, but with an unusually high gain. Thus, Ca2+ influx increases sufficiently the local concentration of Ca2+ in the immediate vicinity of the sarcoplasmic reticulum Ca2+ release channels to trigger the highly amplified release of Ca2+ required for contraction, but is too low to generate a macroscopic inward current (i.e., the Ca2+ channels are silent). To determine the localization of the silent Ca2+ Channels, the mechanical, electrophysiological and ultrastructural properties of the muscle were examined before and after formamide treatment, a procedure that produces the disruption of transverse tubules of striated muscle. We found that tubular disruption decreased tension generation by about 90%; reduced inward current (measured as Vmax, the maximum rate of rise of Sr2+ action potentials) by about 80%; and decreased membrane capacitance by about 77%. The results suggest that ca. 80% of the silent Ca2+ channels are located in the tubular system. Thus, these studies provide further evidence to support the local control mechanism of CICR in crustacean skeletal muscle.
Wang, Dongqin; Li, Yanqun; Hu, Xueqiong; Su, Weimin; Zhong, Min
2015-01-01
Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process. PMID:25853267
Tapia-Orozco, Natalia; Santiago-Toledo, Gerardo; Barrón, Valeria; Espinosa-García, Ana María; García-García, José Antonio; García-Arrazola, Roeb
2017-04-01
Environmental Epigenomics is a developing field to study the epigenetic effect on human health from exposure to environmental factors. Endocrine disrupting chemicals have been detected primarily in pharmaceutical drugs, personal care products, food additives, and food containers. Exposure to endocrine-disrupting chemicals (EDCs) has been associated with a high incidence and prevalence of many endocrine-related disorders in humans. Nevertheless, further evidence is needed to establish a correlation between exposure to EDC and human disorders. Conventional detection of EDCs is based on chemical structure and concentration sample analysis. However, substantial evidence has emerged, suggesting that cell exposure to EDCs leads to epigenetic changes, independently of its chemical structure with non-monotonic low-dose responses. Consequently, a paradigm shift in toxicology assessment of EDCs is proposed based on a comprehensive review of analytical techniques used to evaluate the epigenetic effects. Fundamental insights reported elsewhere are compared in order to establish DNA methylation analysis as a viable method for assessing endocrine disruptors beyond the conventional study approach of chemical structure and concentration analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stoeger, W. R.; Pacholczyk, A. G.; Stepinski, T. F.
1992-01-01
The extent to which individual holes in a cluster of black holes with a mass spectrum can liberate and accrete the resulting material by tidally disrupting stars they encounter, or by capturing stars as binary companions is studied. It is found that the smaller black holes in 'the halo' of such clusters can adequately supply themselves to the level M-dot sub h or greater than 0.0001(M-dot sub h) sub crit, and up to 0.05(M-dot sub h)sub crit for the smallest holes, by tidal disruption, as long as the cluster is embedded in a distribution of stars of relatively high density (not less than 0.1M sub cl/cu pc), and as long as the entire cluster of stars is not too compact (not less than 0.5 pc). Consideration is given to modifications this 'internal' mode of supply introduces in the spectrum emitted by such black hole clusters, and to the current status of their viability as models for AGN and QSOs in light of dynamical studies by Quinlan and Shapiro (1987, 1989).
2006-02-01
technology for cost and risk reduction of products, software, and processes; long-term, multi-Service needs; and disruptive technologies , both...initiatives and for disruptive technologies , the Office of the Secretary of Defense (OSD) can better promote the importance and value of the program...multi- Service programs, research in “ disruptive ” technologies , and SBIR programs. Balance current, near term, and future needs as well as small and
Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L
2017-03-01
Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated with axonal disruption, where lower FA was associated with greater axonal disruption in white matter directly adjacent to hyperphosphorylated tau positive sulci. In summary, our findings indicate that axonal disruption and tau pathology are closely associated, and high spatial resolution ex vivo diffusion MRI has the potential to detect microstructural alterations observed in CTE tissue. Future studies will be required to determine whether this approach can be applied to living people.
Antifungal activity of redox-active benzaldehydes that target cellular antioxidation
USDA-ARS?s Scientific Manuscript database
Many pathogenic fungi are becoming resistant to currently available drugs. Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. The aim of this study was to identify benzaldehydes that...
Toroidal current asymmetry in tokamak disruptions
NASA Astrophysics Data System (ADS)
Strauss, H. R.
2014-10-01
It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.
Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.
2012-12-01
The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more » Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.
The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more » Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less
Brief Report: Postsecondary Work and Educational Disruptions for Youth on the Autism Spectrum
ERIC Educational Resources Information Center
Taylor, Julie Lounds; DaWalt, Leann Smith
2017-01-01
This study examined vocational/educational disruption in the 2-3 years after high school for 36 youth with autism spectrum disorder (ASD). Data were collected three times from parents: during youth's last year of high school and two times after high school exit. Data were coded into categories indicating any versus no disruptions in postsecondary…
Currents in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Azari, A.; Eidietis, N. W.
2012-10-01
Loss of vertical control of an elongated tokamak plasma results in a vertical displacement event (VDE) which can induce large currents on open field lines and exert high JxB forces on in-vessel components. An array of first-wall tile current monitors on DIII-D provides direct measurement of the poloidal halo currents. These measurements are analyzed to create a database of halo current magnitude and asymmetry, which are found to lie within the ranges seen by numerous other tokamaks in the ITPA Disruption Database. In addition, an analysis of halo asymmetry rotation is presented, as rotation at the resonance frequencies of in-vessel components could lead to significant amplification of the halo forces. Halo current rotation is found to be far more prevalent in old (1997-2002) DIII-D halo current data than recent data (2009), perhaps due to a change in divertor geometry over that time.
NASA Astrophysics Data System (ADS)
Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.
2010-11-01
Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.
The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke
Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael
2011-01-01
The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI. PMID:21209786
The application of MRI for depiction of subtle blood brain barrier disruption in stroke.
Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael
2010-12-26
The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.
Addressing Production System Failures Using Multi-agent Control
NASA Astrophysics Data System (ADS)
Gautam, Rajesh; Miyashita, Kazuo
Output in high-volume production facilities is limited by bottleneck machines. We propose a control mechanism by modeling workstations as agents that pull jobs from other agents based on their current WIP level and requirements. During failures, when flows of some jobs are disrupted, the agents pull alternative jobs to maintain utilization of their capacity at a high level. In this paper, we empirically demonstrate that the proposed mechanism can react to failures more appropriately than other control mechanisms using a benchmark problem of a semiconductor manufacturing process.
Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko
2011-02-01
Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.
Recent Advances on Endocrine Disrupting Effects of UV Filters.
Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin
2016-08-03
Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.
Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team
2017-01-01
The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.
Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L.
McGhee, Peter S; Miller, James R; Thomson, Donald R; Gut, Larry J
2016-07-01
Experiments were conducted in commercial apple orchards to determine if improved efficiencies in pheromone delivery may be realized by using aerosol pheromone dispensers for codling moth (CM), Cydia pomonella L., mating disruption. Specifically, we tested how reducing: pheromone concentration, period of dispenser operation, and frequency of pheromone emission from aerosol dispensers affected orientational disruption of male CM to pheromone-baited monitoring traps. Isomate® CM MIST formulated with 50 % less codlemone (3.5 mg/ emission) provided orientation disruption equal to the standard commercial formulation (7 mg / emission). Decreased periods of dispenser operation (3 and 6 h) and frequency of pheromone emission (30 and 60 min) provided a level of orientational disruption similar to the current standard protocol of releasing pheromone over a 12 h period on a 15 min cycle, respectively. These three modifications provide a means of substantially reducing the amount of pheromone necessary for CM disruption. The savings accompanying pheromone conservation could lead to increased adoption of CM mating disruption and, moreover, provide an opportunity for achieving higher levels of disruption by increasing dispenser densities.
Cole, Catherine; Richards, Kathy
2007-05-01
Insomnia is not a normal part of aging, but nighttime sleep in older adults is often disrupted, leading to excessive daytime sleepiness and other physical, psychological, and cognitive changes that affect overall health. Even so, clinicians often pay little attention to sleep in this population. The sleep of older adults tends to be less deep than that of younger people, and coexisting conditions and treatment effects can more easily disrupt sleep. This article reviews the current literature on sleep disruption in older adults and suggests ways that nurses can apply the information in intervening to improve sleep in their older patients.
The significance of ASDA arousals in children.
Lopes, Maria-Cecilia; Marcus, Carole L
2007-12-01
Sleep disorders are common in children. The sleep disturbances associated with these disease processes may impact neurodevelopment and result in daytime behavioral and cognitive changes. Currently, there are no precise methods to accurately assess sleep disruption in the pediatric age group. There is evidence that American Sleep Disorders Association (ASDA) arousals are insufficient markers of sleep disruption in children. Other techniques that have been used to assess sleep disruption include unconventional means of evaluating the electroencephalogram (EEG) during sleep and evaluating subcortical or autonomic activation. The aim of this review is to discuss the application of conventional and unconventional markers of sleep disruption in children.
Synchronous oscillation prior to disruption caused by kink modes in HL-2A tokamak plasmas
NASA Astrophysics Data System (ADS)
Jiang, M.; Hu, D.; Wang, X. G.; Shi, Z. B.; Xu, Y.; Chen, W.; Ding, X. T.; Zhong, W. L.; Dong, Y. B.; Ji, X. Q.; Zhang, Y. P.; Gao, J. M.; Li, J. X.; Yang, Z. C.; Li, Y. G.; Liu, Y.
2015-08-01
A class of evident MHD activities prior to major disruption has been observed during recent radiation induced disruptions of the HL-2A tokamak discharges. It can be named SOD, synchronous oscillations prior to disruption, characterized by synchronous oscillation of electron cyclotron emission (ECE), core soft x-ray, Mirnov coil, and {{D}α} radiation signals at the divertor plate. The SOD activity is mostly observed in a parametric regime where the poloidal beta is low enough before disruption, typically corresponding to those radiation-induced disruptions. It has been found that the m/n = 2/1 mode is dominant during the SODs, and consequently it is the drop of the mode frequency and the final mode locking that lead to thermal quench. The mode frequency before the mode locking corresponds to the toroidal rotation frequency of the edge plasma. It is also found that during SODs, the location of the q = 2 surface is moving outward, and most of the plasma current is enclosed within the surface. This demonstrates that the current channel lies inside the rational surface during SOD, and thus the resistive kink mode is unstable. Further analysis of the electron temperature perturbation structure shows that the plasma is indeed dominated by the resistive kink mode, with kink-like perturbation in the core plasma region. It suggests that it is the nonlinear growth of the m/n = 2/1 resistive kink mode and its higher order harmonics, rather than the spontaneous overlapping of multiple neighboring islands, that ultimately triggered the disruption.
Nürnberger, Fabian; Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health.
ERIC Educational Resources Information Center
Martel, Michelle M.; Pierce, Laura; Nigg, Joel T.; Jester, Jennifer M.; Adams, Kenneth; Puttler, Leon I.; Buu, Anne; Fitzgerald, Hiram; Zucker, Robert A.
2009-01-01
Temperament traits may increase risk for developmental psychopathology like Attention-Deficit/Hyperactivity Disorder (ADHD) and disruptive behaviors during childhood, as well as predisposing to substance abuse during adolescence. In the current study, a cascade model of trait pathways to adolescent substance abuse was examined. Component…
A Cognitive Behavioural Group Approach for Adolescents with Disruptive Behaviour in Schools
ERIC Educational Resources Information Center
Ruttledge, Richard A.; Petrides, K. V.
2012-01-01
Cognitive behavioural approaches emphasize the links between thoughts, feelings and behaviour (Greig, 2007). Previous research has indicated that these approaches are efficacious in reducing disruptive behaviour in adolescents. The aim of the current study was to provide further evaluation of cognitive behavioural group work to reduce disruptive…
Turbulence, Perturbance, and Educational Change
ERIC Educational Resources Information Center
Beabout, Brian R.
2012-01-01
While scholarship on educational change has long accepted that disruptions to the status quo are an essential part of the change process, disruption has never been more central to planned change than it is in the current political context in the USA, where legislation has mandated school closure, reconstitution, and turnaround as required remedies…
The Viability of a DTN System for Current Military Application
2013-03-01
Agency (DARPA) Disruption-Tolerant Networking program and the Internet Research Task Force (IRTF) DTN Research Group made significant strides toward...Disruption-Tolerant Networks A Primer,” Interplanetary Internet Special Interest Group, 2012. [4] D. T. N. R. Group, “Compiling DTN2,” Internet Research Task
Control of Post-disruption Runaway Electron Beams in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Eidietis, N. W.
2011-10-01
Recent experiments on DIII-D have demonstrated real-time control of post-disruption runaway electron (RE) beams, presenting the possibility for slow, controlled dissipation of the beam energy. RE beams will present a greater challenge to ITER than present tokamaks due to ITER's high RE avalanche gain constant [Nucl.Fusion 37, 1355-62 (1997)] and the difficulty repairing potential damage to its first wall. In the rare event that disruption control and mitigation schemes fail to suppress RE generation, active control of the RE beam may be an important line of defense to prevent rapid, localized deposition of RE beam energy on the first wall. Initially, sustaining a RE beam plateau requires avoiding radial collapse of the beam into the inner wall during the first 1-2 wall penetration times following the current quench (CQ). This collapse is caused by attractive induced currents in the wall and a lack of radial equilibrium with slow vertical field coils. The collapse is avoided by slewing the inner PF coils to push the RE beam off the wall while reducing the outer PF coil currents. Beam survival through this phase requires sufficient RE plateau current (IRE) and power supply slew rates to re-establish equilibrium. Following that transient period, RE beam vertical position was dynamically controlled, and stabilization was maintained in an elongated (κ <= 1 . 8) DND configuration for up 250ms. Most controlled RE beams end in a rapid vertical displacement event (VDE), indicating that the profiles evolve even as the position is controlled. Experimental radial evolution and VDE onset are shown to be consistent with theoretical calculations of controllability boundaries. However, ohmic regulation of IRE has been shown to delay VDEs to the pre-programmed ramp-down time, indicating that steady-state control may be achievable. Supported by the US DOE under DE-FC02-04ER54698.
NRAM: a disruptive carbon-nanotube resistance-change memory.
Gilmer, D C; Rueckes, T; Cleveland, L
2018-04-03
Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.
NRAM: a disruptive carbon-nanotube resistance-change memory
NASA Astrophysics Data System (ADS)
Gilmer, D. C.; Rueckes, T.; Cleveland, L.
2018-04-01
Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.
Exploring the relationship between retrieval disruption from collaboration and recall
Barber, Sarah J.; Rajaram, Suparna
2011-01-01
When people recall together in a collaborative group, they recall less than their potential. This phenomenon of collaborative inhibition is explained in terms of retrieval disruption. However, collaborative recall also re-exposes individuals to items recalled by others that they themselves might otherwise have forgotten. This re-exposure produces post-collaborative benefits in individual recall. The current study examined whether reduced retrieval disruption during group recall is related not only to less collaborative inhibition, but also to greater post-collaborative recall benefits. To test this, we devised a paradigm to calculate the extent to which each individual experienced retrieval disruption during group recall. We also included two types of collaborative groups, one of which was expected to experience greater retrieval disruption than the other. Results suggest that the relationship between retrieval disruption and recall performance depends upon the level at which retrieval disruption is measured. When retrieval disruption was assessed at the individual level, then minimizing retrieval disruption was associated with higher recall (i.e., less collaborative inhibition and greater post-collaborative individual recall). However, when retrieval disruption was assessed at the group level there was no relationship with recall. Furthermore, the findings from this design suggest a role of cross-cueing in modulating group recall levels. PMID:21736433
Survival and in-vessel redistribution of beryllium droplets after ITER disruptions
NASA Astrophysics Data System (ADS)
Vignitchouk, L.; Ratynskaia, S.; Tolias, P.; Pitts, R. A.; De Temmerman, G.; Lehnen, M.; Kiramov, D.
2018-07-01
The motion and temperature evolution of beryllium droplets produced by first wall surface melting after ITER major disruptions and vertical displacement events mitigated during the current quench are simulated by the MIGRAINe dust dynamics code. These simulations employ an updated physical model which addresses droplet-plasma interaction in ITER-relevant regimes characterized by magnetized electron collection and thin-sheath ion collection, as well as electron emission processes induced by electron and high-Z ion impacts. The disruption scenarios have been implemented from DINA simulations of the time-evolving plasma parameters, while the droplet injection points are set to the first-wall locations expected to receive the highest thermal quench heat flux according to field line tracing studies. The droplet size, speed and ejection angle are varied within the range of currently available experimental and theoretical constraints, and the final quantities of interest are obtained by weighting single-trajectory output with different size and speed distributions. Detailed estimates of droplet solidification into dust grains and their subsequent deposition in the vessel are obtained. For representative distributions of the droplet injection parameters, the results indicate that at most a few percents of the beryllium mass initially injected is converted into solid dust, while the remaining mass either vaporizes or forms liquid splashes on the wall. Simulated in-vessel spatial distributions are also provided for the surviving dust, with the aim of providing guidance for planned dust diagnostic, retrieval and clean-up systems on ITER.
Runaway electron mitigation by 3D fields in the ASDEX-Upgrade experiment
NASA Astrophysics Data System (ADS)
Gobbin, M.; Li, L.; Liu, Y. Q.; Marrelli, L.; Nocente, M.; Papp, G.; Pautasso, G.; Piovesan, P.; Valisa, M.; Carnevale, D.; Esposito, B.; Giacomelli, L.; Gospodarczyk, M.; McCarthy, P. J.; Martin, P.; Suttrop, W.; Tardocchi, M.; Teschke, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2018-01-01
Disruption-generated runaway electron (RE) beams represent a severe threat for tokamak plasma-facing components in high current devices like ITER, thus motivating the search of mitigation techniques. The application of 3D fields might aid this purpose and recently was investigated also in the ASDEX Upgrade experiment by using the internal active saddle coils (termed B-coils). Resonant magnetic perturbations (RMPs) with dominant toroidal mode number n = 1 have been applied by the B-coils, in a RE specific scenario, before and during disruptions, which are deliberately created via massive gas injection. The application of RMPs affects the electron temperature profile and seemingly changes the dynamics of the disruption; this results in a significantly reduced current and lifetime of the generated RE beam. A similar effect is observed also in the hard-x-ray (HXR) spectrum, associated to RE emission, characterized by a partial decrease of the energy content below 1 MeV when RMPs are applied. The strength of the observed effects strongly depends on the upper-to-lower B-coil phasing, i.e. on the poloidal spectrum of the applied RMPs, which has been reconstructed including the plasma response by the code MARS-F. A crude vacuum approximation fails in the interpretation of the experimental findings: despite the relatively low β (< 0.5 % ) of these discharges, a modest amplification (factor of 2) of the edge kink response occurs, which has to be considered to explain the observed suppression effects.
A statistical study of magnetic field magnitude changes during substorms in the near earth tail
NASA Technical Reports Server (NTRS)
Lopez, R. E.; Lui, A. T. Y.; Mcentire, R. W.; Potemra, T. A.; Krimigis, S. M.
1990-01-01
Using AMPTE/CCE data taken in 1985 and 1986 when the CCE apogee (8.8 earth radii) was within 4.5 hours of midnight, 167 injection events in the near-earth magnetotail have been cataloged. These events are exactly or nearly dispersionless on a 72-sec time scale from 25 keV to 285 keV. The changes in the field magnitude are found to be consistent with the expected effects of the diversion/disruption of the cross-tail current during a substorm, and the latitudinal position of the current sheet is highly variable within the orbit of CCE. The local time variation of the magnetic-field changes implies that the substorm current wedge is composed of longitudinally broad Birkeland currents.
Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks.
Bakhtiari, M; Kramer, G J; Takechi, M; Tamai, H; Miura, Y; Kusama, Y; Kamada, Y
2005-06-03
Bremsstrahlung radiation of runaway electrons is found to be an energy limit for runaway electrons in tokamaks. The minimum and maximum energy of runaway electron beams is shown to be limited by collisions and bremsstrahlung radiation, respectively. It is also found that a massive injection of a high-Z gas such as xenon can terminate a disruption-generated runaway current before the runaway electrons hit the walls.
Design of a Rail Gun System for Mitigating Disruptions in Fusion Reactors
NASA Astrophysics Data System (ADS)
Lay, Wei-Siang
Magnetic fusion devices, such as the tokamak, that carry a large amount of current to generate the plasma confining magnetic fields have the potential to lose magnetic stability control. This can lead to a major plasma disruption, which can cause most of the stored plasma energy to be lost to localized regions on the walls, causing severe damage. This is the most important issue for the $20B ITER device (International Thermonuclear Experimental Reactor) that is under construction in France. By injecting radiative materials deep into the plasma, the plasma energy could be dispersed more evenly on the vessel surface thus mitigating the harmful consequences of a disruption. Methods currently planned for ITER rely on the slow expansion of gases to propel the radiative payloads, and they also need to be located far away from the reactor vessel, which further slows down the response time of the system. Rail guns are being developed for aerospace applications, such as for mass transfer from the surface of the moon and asteroids to low earth orbit. A miniatured version of this aerospace technology seems to be particularly well suited to meet the fast time response needs of an ITER disruption mitigation system. Mounting this device close to the reactor vessel is also possible, which substantially increases its performance because the stray magnetic fields near the vessel walls could be used to augment the rail gun generated magnetic fields. In this thesis, the potential viability on Rail Gun based DMS is studied to investigate its projected fast time response capability by design, fabrication, and experiment of an NSTX-U sized rail gun system. Material and geometry based tests are used to find the most suitable armature design for this system for which the desirable attributes are high specific stiffness and high electrical conductivity. With the best material in these studies being aluminum 7075, the experimental Electromagnetic Particle Injector (EPI) system has propelled an aluminum armature (weighing 3g) to a velocity more than 150 m/s within two milliseconds post trigger, consistent with the predicted projection for a system with those parameters. Fixed magnetic field probes and high-speed images capture the velocity profile. To propel the armatures, a 20 mF capacitor bank charged to 2 kV and augmented with external field coils powers the rails. These studies indicate that an EPI based system can indeed operate with a fast response time of less than three milliseconds after an impending disruption is detected, and thus warrants further studies to more fully develop the concept as a back-up option for an ITER DMS.
Laporte, Aimée N; Ji, Jennifer X; Ma, Limin; Nielsen, Torsten O; Brodin, Bertha A
2016-06-07
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known.
Creemers, Hanneke E; van Lier, Pol A C; Vollebergh, Wilma A M; Ormel, Johan; Verhulst, Frank C; Huizink, Anja C
2009-11-01
Increased knowledge about the mechanisms by which some individuals are at risk for early onset of cannabis use might contribute to the improvement of prevention efforts. We focus on the roles of early-adolescent high-intensity pleasure, disruptive behavior, and their interplay in the prediction of onset of cannabis use 2 years later. Data from 81% (n = 1,804) of the participants (51.9% girls) of the Tracking Adolescents' Individual Lives Survey (TRAILS), a prospective general population study in the north of The Netherlands, were analyzed. Measures included parent-reported high-intensity pleasure, and parent- and self-reported general disruptive behavior, attention-deficit hyperactivity, oppositional problems, and conduct problems (Child Behavior Checklist/6-18 and Youth Self-Report) at ages 10-12. Onset of cannabis use was assessed at age 12-14 by means of self-reports. Analyses were carried out in Mplus. Early adolescent high-intensity pleasure and disruptive behavior, mainly conduct problems and to some extent attention-deficit hyperactivity, predicted the onset of cannabis use in adolescence. Although we found some mediation by general disruptive behavior, conduct problems, and attention-deficit hyperactivity, the contribution of high-intensity pleasure in predicting the onset of cannabis use was found to be mainly independent from disruptive behavior. The unique contribution of both high-intensity pleasure and disruptive behavior points in the direction of different pathways toward onset of cannabis use.
The May 1967 Great Storm and Radio Disruption Event: The Impacts We Didn't Know About
NASA Astrophysics Data System (ADS)
Knipp, D.
2016-12-01
Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01-9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high frequency communication in the polar cap. Subsequently record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. This event is also one with severe impacts on thermospheric temperature and satellite drag. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the 20th Century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the 20th century, despite the lack of large geomagnetically-induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.
De, Bishnu P; Pagovich, Odelya E; Hicks, Martin J; Rosenberg, Jonathan B; Moreno, Amira Y; Janda, Kim D; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G
2013-01-01
Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1(-)E3(-) Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines.
Merlo, Eduardo; Podratz, Priscila L; Sena, Gabriela C; de Araújo, Julia F P; Lima, Leandro C F; Alves, Izabela S S; Gama-de-Souza, Letícia N; Pelição, Renan; Rodrigues, Lívia C M; Brandão, Poliane A A; Carneiro, Maria T W D; Pires, Rita G W; Martins-Silva, Cristina; Alarcon, Tamara A; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B
2016-08-01
Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.
Recent Advances on Endocrine Disrupting Effects of UV Filters
Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin
2016-01-01
Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives. PMID:27527194
Commercially available radio immunoassays (RIM) are frequently used in toxicological studies to evaluate effects of endocrine disrupting chemicals (EDCs) on steroidogenesis in rats. Currently there are limited data comparing steroid concentrations in rats as measured by RIM to th...
Latham, Rachel M; Mark, Katharine M; Oliver, Bonamy R
2018-02-01
Parenting sense of competence (PSOC) is a critical aspect of parental adjustment that may be undermined by children's disruptive behavior. Interparental relationships have been shown to shape how parents react and respond to their children's characteristics, but little is known about the role of parenting teamwork, known as 'coparenting.' We examined mothers' and fathers' perceptions of children's disruptive behavior and the quality of coparenting, as well as their interaction in association with PSOC. Mothers and fathers from 108 'intact' families participating in the Twins, Family, and Behavior (TFaB) Study reported on their children's disruptive behavior, coparenting and PSOC via postal questionnaire (Mchild age = 6 years, SDchild age = 6.12 months). Dyadic multilevel analyses revealed that higher levels of children's disruptive behavior related to lower levels of parents' PSOC and perceptions of higher-quality coparenting were associated with higher PSOC. Notably, and as hypothesized, there was a significant interaction between coparenting and children's disruptive behavior such that perceptions of high quality coparenting buffered PSOC from its negative association with children's disruptive behavior. High-quality coparenting is an important aspect of family functioning that may protect the PSOC of parents dealing with high levels of children's disruptive behavior. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The Impact of Marital Conflict and Disruption on Children's Health
ERIC Educational Resources Information Center
Houseknecht, Sharon K.; Hango, Darcy W.
2006-01-01
This article investigates the effect of inconsistency between parental marital conflict and disruption on children's health. Inconsistent situations arise when minimal marital conflict precedes disruption or when marital conflict is high but there is no disruption. Using data from the National Longitudinal Survey of Youth, two alternative…
NIMROD Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Device (CTH)
NASA Astrophysics Data System (ADS)
Howell, E. C.; Pandya, M. D.; Hanson, J. D.; Mauer, D. A.; Ennis, D. A.; Hartwell, G. J.
2016-10-01
Nonlinear MHD simulations of low-q disruptions in the CTH are presented. CTH is a current carrying stellarator that is used to study the effects of 3D shaping. The application of 3D shaping stabilizes low-q disruptions in CTH. The amount of 3D shaping is controlled by adjusting the external rotational transform, and it is characterized by the ratio of the external rotational transform to the total transform: f =ιvac / ι . Disruptions are routinely observed during operation with weak shaping (f < 0.05). The frequency of disruptions decreases with increasing amounts of 3D shaping, and the disruptions are completely suppressed for f > 0.1 . Nonlinear simulations are performed using the NIMROD code to better understand how the shaping suppresses the disruptions. Comparisons of runs with weak (f = 0.04) and strong (f = 0.10) shaping are shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Numbers DE-FG02-03ER54692 and DE-FG02-00ER54610.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, S.; Ohno, N.; Shibata, Y.
2013-11-15
According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less
Jim, Heather S L; Evans, Bryan; Jeong, Jiyeon M; Gonzalez, Brian D; Johnston, Laura; Nelson, Ashley M; Kesler, Shelli; Phillips, Kristin M; Barata, Anna; Pidala, Joseph; Palesh, Oxana
2014-10-01
Sleep disruption is common among hematopoietic cell transplant (HCT) recipients, with over 50% of recipients experiencing sleep disruption pre-transplant, with up to 82% of patients experiencing moderate to severe sleep disruption during hospitalization for transplant and up to 43% after transplant. These rates of sleep disruption are substantially higher than what we see in the general population. Although sleep disruption can be distressing to patients and contribute to diminished quality of life, it is rarely discussed during clinical visits. The goal of the current review is to draw attention to sleep disruption and disorders (ie, insomnia, obstructive sleep apnea, restless legs syndrome) as a clinical problem in HCT in order to facilitate patient education, intervention, and research. We identified 35 observational studies published in the past decade that examined sleep disruption or disorders in HCT. Most studies utilized a single item measure of sleep, had small sample size, and included heterogeneous samples of patients. Six studies of the effects of psychosocial and exercise interventions on sleep in HCT have reported no significant improvements. These results highlight the need for rigorous observational and interventional studies of sleep disruption and disorders in HCT recipients.. Copyright © 2014 American Society for Blood and Marrow Transplantation. All rights reserved.
Superconducting technology for overcurrent limiting in a 25 kA current injection system
NASA Astrophysics Data System (ADS)
Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein
2008-09-01
Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.
From Physics to industry: EOS outside HEP
NASA Astrophysics Data System (ADS)
Espinal, X.; Lamanna, M.
2017-10-01
In the competitive market for large-scale storage solutions the current main disk storage system at CERN EOS has been showing its excellence in the multi-Petabyte high-concurrency regime. It has also shown a disruptive potential in powering the service in providing sync and share capabilities and in supporting innovative analysis environments along the storage of LHC data. EOS has also generated interest as generic storage solution ranging from university systems to very large installations for non-HEP applications.
ERIC Educational Resources Information Center
Bate, S. C. C.
Two beams forming part of the roof over the swimming pool at the school collapsed. The investigation showed that the cause of the failure was loss of strength due to conversion of high alumina cement concrete followed by sulphate attack leading to disruption of the concrete. The degree of conversion and loss of strength was greater than expected…
van der Molen, Elsa; Blokland, Arjan A J; Hipwell, Alison E; Vermeiren, Robert R J M; Doreleijers, Theo A H; Loeber, Rolf
2015-07-01
It is widely recognized that early onset of disruptive behavior is linked to a variety of detrimental outcomes in males, later in life. In contrast, little is known about the association between girls' childhood trajectories of disruptive behavior and adjustment problems in early adolescence. This study used nine waves of data from the ongoing Pittsburgh Girls Study. A semiparametric group-based model was used to identify trajectories of disruptive behavior in 1,513 girls from age 6 to 12 years. Adjustment problems were characterized by depression, self-harm, Post Traumatic Stress Disorder (PTSD), substance use, interpersonal aggression, sexual behavior, affiliation with delinquent peers, and academic achievement at ages 13 and 14. Three trajectories of childhood disruptive behavior were identified: low, medium, and high. Girls in the high group were at increased risk for depression, self-harm, PTSD, illegal substance use, interpersonal aggression, early and risky sexual behavior, and lower academic achievement. The likelihood of multiple adjustment problems increased with trajectories reflecting higher levels of disruptive behavior. Girls following the high childhood trajectory of disruptive behavior require early intervention programs to prevent multiple, adverse outcomes in adolescence and further escalation in adulthood. © 2014 Association for Child and Adolescent Mental Health.
Does Changing the Reference Frame Affect Infant Categorization of the Spatial Relation BETWEEN?
ERIC Educational Resources Information Center
Quinn, Paul C.; Doran, Matthew M.; Papafragou, Anna
2011-01-01
Past research has shown that variation in the target objects depicting a given spatial relation disrupts the formation of a category representation for that relation. In the current research, we asked whether changing the orientation of the referent frame depicting the spatial relation would also disrupt the formation of a category representation…
Maternal Characteristics Predicting Young Girls' Disruptive Behavior
ERIC Educational Resources Information Center
van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf
2011-01-01
Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls' disruptive behavior. The current study used five waves of parent- and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years.…
Disrupting the Discussion: The Story of Disruptive Students in the Online Classroom
ERIC Educational Resources Information Center
Cowden, Belle Doyle
2011-01-01
Many online classrooms today are designed based on learner-centered principles. Implicit with this design perspective is the goal to create and facilitate a virtual learning community in which students learn from and share with each other through discussion-based computer conferencing. In the current literature, little has been shared on what…
ERIC Educational Resources Information Center
Hollingworth, Andrew; Franconeri, Steven L.
2009-01-01
The "correspondence problem" is a classic issue in vision and cognition. Frequent perceptual disruptions, such as saccades and brief occlusion, create gaps in perceptual input. How does the visual system establish correspondence between objects visible before and after the disruption? Current theories hold that object correspondence is established…
ERIC Educational Resources Information Center
Flouty, Rosanna Noelle
2016-01-01
Lessons from early academic television courses from the 1950s guide an assessment of current disruptive technologies that shape Massive Open Online Courses (known as MOOCs) and other informal online learning opportunities today. This dissertation explores some of the unique contributing factors that led to the creation of "Sunrise…
ERIC Educational Resources Information Center
Hassler, Frank; Reis, Olaf
2010-01-01
The review presented here describes the state of the art of pharmacological treatment of aggression in subjects with mental retardation (MR) summing up results for both, children and adults. In general, psychopharmacological treatment of disruptive behavior in individuals with MR is similar to the treatment in subjects without MR. Compared to…
Williford, Amanda P; Wolcott, Catherine Sanger; Whittaker, Jessica Vick; Locasale-Crouch, Jennifer
2015-11-01
This study examined the relationship among baseline program and teacher characteristics and subsequent implementation of Banking Time. Banking Time is a dyadic intervention intended to improve a teacher's interaction quality with a specific child. Banking Time implementation was examined in the current study using a sample of 59 teachers and preschool children displaying disruptive behaviors in the classroom (~three children per classroom). Predictors included preschool program type, teacher demographic characteristics (personal and professional), and teacher beliefs (self-efficacy, authoritarian beliefs, and negative attributions about child disruptive behavior). Multiple measures and methods (i.e., teacher report, consultant report, independent observations) were used to assess implementation. We created three implementation composite measures (dosage, quality, and generalized practice) that had high internal consistencies within each composite but were only modestly associated with one another, suggesting unique constructs of implementation. We found that type of preschool program was associated with dosage and quality. Aspects of teacher demographics related to all three implementation composites. Teacher beliefs predicted dosage and generalized practice. Results suggest that the factors that predict the implementation of Banking Time vary as a function of the type of implementation being assessed.
Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health. PMID:28603677
PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation.
Hou, Sheng-Qi; Ouyang, Meng; Brandmaier, Andrew; Hao, Hongbo; Shen, Wen H
2017-10-01
Faithful DNA replication and accurate chromosome segregation are the key machineries of genetic transmission. Disruption of these processes represents a hallmark of cancer and often results from loss of tumor suppressors. PTEN is an important tumor suppressor that is frequently mutated or deleted in human cancer. Loss of PTEN has been associated with aneuploidy and poor prognosis in cancer patients. In mice, Pten deletion or mutation drives genomic instability and tumor development. PTEN deficiency induces DNA replication stress, confers stress tolerance, and disrupts mitotic spindle architecture, leading to accumulation of structural and numerical chromosome instability. Therefore, PTEN guards the genome by controlling multiple processes of chromosome inheritance. Here, we summarize current understanding of the PTEN function in promoting high-fidelity transmission of genetic information. We also discuss the PTEN pathways of genome maintenance and highlight potential targets for cancer treatment. © 2017 WILEY Periodicals, Inc.
Stefanopoulos, P K; Soupiou, O T; Pazarakiotis, V C; Filippakis, K
2015-01-01
Maxillofacial firearm-related injuries vary in extent and severity because of the characteristics and behaviour of the projectile(s), and the complexity of the anatomical structures involved, whereas the degree of tissue disruption is also affected by the distance of the shot. In low-energy injuries there is limited damage to the underlying skeleton, which usually dominates the clinical picture, dictating a more straightforward therapeutic approach. High-energy injuries are associated with extensive hard and soft tissue disruption, and are characterized by a surrounding zone of damaged tissue that is prone to progressive necrosis as a result of compromised blood supply and wound sepsis. Current treatment protocols for these injuries emphasize the importance of serial debridement for effective wound control while favouring early definitive reconstruction. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
An Application of Pavlovian Principles to the Problems of Obesity and Cognitive Decline
Davidson, T. L.; Sample, C. H.; Swithers, S. E.
2013-01-01
An enormous amount of research has been aimed at identifying biological and environmental factors that are contributing to the current global obesity pandemic. The present paper reviews recent findings which suggest that obesity is attributable, at least in part, to a disruption of the Pavlovian control of energy regulation. Within our framework, this disruption occurs when (a) consumption of sweet-tasting, but low calorie or noncaloric, foods and beverages reduces the ability of sweet tastes to predict the postingestive caloric consequences of intake and (b) consuming diets high in saturated fat and sugar (a.k.a., Western diet) impairs hippocampal-dependent learning and memory processes that are involved with the use of interoceptive “satiety” signals to anticipate when food and eating are not followed by appetitive postingestive outcomes. The paper concludes with discussion of a “vicious-cycle’ model which links obesity to cognitive decline. PMID:23887140
Marijuana, the Endocannabinoid System and the Female Reproductive System.
Brents, Lisa K
2016-06-01
Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system.
10 CFR 626.4 - General acquisition strategy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... current level of private inventories; (3) Days of net import protection; (4) Current price levels for...) Existing or potential disruptions in supply or refining capability; (7) The level of market volatility; (8...
10 CFR 626.4 - General acquisition strategy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... current level of private inventories; (3) Days of net import protection; (4) Current price levels for...) Existing or potential disruptions in supply or refining capability; (7) The level of market volatility; (8...
10 CFR 626.4 - General acquisition strategy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... current level of private inventories; (3) Days of net import protection; (4) Current price levels for...) Existing or potential disruptions in supply or refining capability; (7) The level of market volatility; (8...
10 CFR 626.4 - General acquisition strategy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... current level of private inventories; (3) Days of net import protection; (4) Current price levels for...) Existing or potential disruptions in supply or refining capability; (7) The level of market volatility; (8...
Contribution of cytoskeletal elements to the axonal mechanical properties
2013-01-01
Background Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos. Results Microtubules, microfilaments, and neurofilaments in axons were disrupted by nocodazole, cytochalasin D, and acrylamide, respectively, or a combination of the three. An atomic force microscope (AFM) was then used to compress the treated axons, and the resulting corresponding force-deformation information was analyzed to estimate the mechanical properties of axons that were partially or fully disrupted. Conclusion We have found that the mechanical stiffness was most reduced in microtubules-disrupted-axons, followed by neurofilaments-disrupted- and microfilaments-disrupted-axons. This suggests that microtubules contribute the most of the mechanical stiffness to axons. PMID:24007256
Tokamak plasma current disruption infrared control system
Kugel, Henry W.; Ulrickson, Michael
1987-01-01
In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.
Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge.
Chetty, Nevendra K; Chonco, Louis; Ijumba, Nelson M; Chetty, Leon; Govender, Thavendran; Parboosing, Raveen; Davidson, Innocent E
2016-09-01
Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.
Brookman-Frazee, Lauren; Stahmer, Aubyn; Baker-Ericzen, Mary J.; Tsai, Katherine
2012-01-01
Empirical support exists for parent training/education (PT/PE) interventions for children with disruptive behavior disorders (DBD) and autism spectrum disorders (ASD). While the models share common roots, current approaches have largely developed independently and the research findings have been disseminated in two different literature traditions: mental health and developmental disabilities. Given that these populations often have overlapping clinical needs and are likely to receive services in similar settings, efforts to integrate the knowledge gained in the disparate literature may be beneficial. This article provides a systematic overview of the current (1995–2005) empirical research on PT/PE for children with DBD and ASD; attending to factors for cross-fertilization. Twenty-two ASD and 38 DBD studies were coded for review. Literature was compared in three main areas: (1) research methodology, (2) focus of PT/PE intervention, and (3) PT/PE procedures. There was no overlap in publication outlets between the studies for the two populations. Results indicate that there are opportunities for cross-fertilization in the areas of (1) research methodology, (2) intervention targets, and (3) format of parenting interventions. The practical implications of integrating these two highly related areas of research are identified and discussed. PMID:17053963
McFadyen-Ketchum, S A; Bates, J E; Dodge, K A; Pettit, G S
1996-10-01
The present study focused on mother-child interaction predictors of initial levels and change in child aggressive and disruptive behavior at school from kindergarten to third grade. Aggression-disruption was measured via annual reports from teachers and peers. Ordinary least-squares regression was used to identify 8 separate child aggression trajectories, 4 for each gender: high initial levels with increases in aggression, high initial levels with decrease in aggression, low initial levels with increases in aggression, and low initial levels with decreases in aggression. Mother-child interaction measures of coercion and nonaffection collected prior to kindergarten were predictive of initial levels of aggression-disruption in kindergarten in both boys and girls. However, boys and girls differed in how coercion and nonaffection predicted change in aggression-disruption across elementary school years. For boys, high coercion and nonaffection were particularly associated with the high-increasing-aggression trajectory, but for girls, high levels of coercion and nonaffection were associated with the high-decreasing-aggression trajectory. This difference is discussed in the context of Patterson et al.'s coercion training theory, and the need for gender-specific theories of aggressive development is noted.
Sites of disruption within E1 and E2 genes of HPV16 and association with cervical dysplasia.
Tsakogiannis, D; Gortsilas, P; Kyriakopoulou, Z; Ruether, I G A; Dimitriou, T G; Orfanoudakis, G; Markoulatos, P
2015-11-01
Integration of HPV16 DNA into the host chromosome usually disrupts the E1 and/or E2 genes. The present study investigated the disruption of E1, E2 genes in a total of eighty four HPV16-positive precancerous and cervical cancer specimens derived from Greek women (seventeen paraffin-embedded cervical biopsies and sixty seven Thin Prep samples). Complete E2 and E1 genes were amplified using three and nine overlapping primer sets respectively, in order to define the sites of disruption. Extensive mapping analysis revealed that disruption/deletion events within E2 gene occurred in high grade and cervical cancer samples (x(2) test, P < 0.01), while no evidence of E2 gene disruption was documented among low grade cervical intraepithelial neoplasias. In addition, disruptions within the E1 gene occur both in high and low grade cervical intraepithelial neoplasia. This leads to the assumption that in low grade cervical intraepithelial neoplasias only E1 gene disruption was involved (Fisher's exact test, P < 0.05), while in high grade malignancies and cervical cancer cases deletions in both E1 and E2 genes occurred. Furthermore, the most prevalent site of disruption of E1 gene was located between nucleotides 1059 and 1323, while the most prevalent deleted region of the E2 gene was located between nucleotides 3172 and 3649 (E2 hinge region). Therefore, it is proposed that each population has its own profile of frequencies and sites of disruptions and extensive mapping analysis of E1 and E2 genes is mandatory in order to determine suitable markers for HPV16 DNA integration analysis in distinct populations. © 2015 Wiley Periodicals, Inc.
Circadian rhythms, sleep, and performance in space.
Mallis, M M; DeRoshia, C W
2005-06-01
Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and performance proficiency in both ground-based simulations and space mission studies, as described in the 2003 NASA Task Book, will be reviewed.
Circadian rhythms, sleep, and performance in space
NASA Technical Reports Server (NTRS)
Mallis, M. M.; DeRoshia, C. W.
2005-01-01
Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and performance proficiency in both ground-based simulations and space mission studies, as described in the 2003 NASA Task Book, will be reviewed.
Palesh, Oxana; Peppone, Luke; Innominato, Pasquale F; Janelsins, Michelle; Jeong, Monica; Sprod, Lisa; Savard, Josee; Rotatori, Max; Kesler, Shelli; Telli, Melinda; Mustian, Karen
2012-01-01
Sleep problems are highly prevalent in cancer patients undergoing chemotherapy. This article reviews existing evidence on etiology, associated symptoms, and management of sleep problems associated with chemotherapy treatment during cancer. It also discusses limitations and methodological issues of current research. The existing literature suggests that subjectively and objectively measured sleep problems are the highest during the chemotherapy phase of cancer treatments. A possibly involved mechanism reviewed here includes the rise in the circulating proinflammatory cytokines and the associated disruption in circadian rhythm in the development and maintenance of sleep dysregulation in cancer patients during chemotherapy. Various approaches to the management of sleep problems during chemotherapy are discussed with behavioral intervention showing promise. Exercise, including yoga, also appear to be effective and safe at least for subclinical levels of sleep problems in cancer patients. Numerous challenges are associated with conducting research on sleep in cancer patients during chemotherapy treatments and they are discussed in this review. Dedicated intervention trials, methodologically sound and sufficiently powered, are needed to test current and novel treatments of sleep problems in cancer patients receiving chemotherapy. Optimal management of sleep problems in patients with cancer receiving treatment may improve not only the well-being of patients, but also their prognosis given the emerging experimental and clinical evidence suggesting that sleep disruption might adversely impact treatment and recovery from cancer. PMID:23486503
Serra-Diaz, Josep M; Maxwell, Charles; Lucash, Melissa S; Scheller, Robert M; Laflower, Danelle M; Miller, Adam D; Tepley, Alan J; Epstein, Howard E; Anderson-Teixeira, Kristina J; Thompson, Jonathan R
2018-04-30
The impacts of climatic changes on forests may appear gradually on time scales of years to centuries due to the long generation times of trees. Consequently, current forest extent may not reflect current climatic patterns. In contrast with these lagged responses, abrupt transitions in forests under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath forest landscape (northern California and southwest Oregon, USA) is currently dominated by high biomass, biodiverse temperate coniferous forests, but climate change could disrupt the mechanisms promoting forest stability (e.g. growth, regeneration and fire tolerance). Using a landscape simulation model, we estimate that about one-third of the Klamath forest landscape (500,000 ha) could transition from conifer-dominated forest to shrub/hardwood chaparral, triggered by increased fire activity coupled with lower post-fire conifer establishment. Such shifts were widespread under the warmer climate change scenarios (RCP 8.5) but were surprisingly prevalent under the climate of 1949-2010, reflecting the joint influences of recent warming trends and the legacy of fire suppression that may have enhanced conifer dominance. Our results demonstrate that major forest ecosystem shifts should be expected when climate change disrupts key stabilizing feedbacks that maintain the dominance of long-lived, slowly regenerating trees.
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Multi-Wavelength Imaging of Solar Plasma - High-Beta Disruption Model of Solar Flares -
NASA Astrophysics Data System (ADS)
Shibasaki, Kiyoto
Solar atmosphere is filled with plasma and magnetic field. Activities in the atmosphere are due to plasma instabilities in the magnetic field. To understand the physical mechanisms of activities / instabilities, it is necessary to know the physical conditions of magnetized plasma, such as temperature, density, magnetic field, and their spatial structures and temporal developments. Multi-wavelength imaging is essential for this purpose. Imaging observations of the Sun at microwave, X-ray, EUV and optical ranges are routinely going on. Due to free exchange of original data among solar physics and related field communities, we can easily combine images covering wide range of spectrum. Even under such circumstances, we still do not understand the cause of activities in the solar atmosphere well. The current standard model of solar activities is based on magnetic reconnection: release of stored magnetic energy by reconnection is the cause of solar activities on the Sun such as solar flares. However, recent X-ray, EUV and microwave observations with high spatial and temporal resolution show that dense plasma is involved in activities from the beginning. Based on these observations, I propose a high-beta model of solar activities, which is very similar to high-beta disruptions in magnetically confined fusion experiments.
Current Saturation Avoidance with Real-Time Control using DPCS
NASA Astrophysics Data System (ADS)
Ferrara, M.; Hutchinson, I.; Wolfe, S.; Stillerman, J.; Fredian, T.
2008-11-01
Tokamak ohmic-transformer and equilibrium-field coils need to be able to operate near their maximum current capabilities. However if they reach their upper limit during high-performance discharges or in the presence of a strong off-normal event, shape control is compromised, and instability, even plasma disruptions can result. On Alcator C-Mod we designed and tested an anti-saturation routine which detects the impending saturation of OH and EF currents and interpolates to a neighboring safe equilibrium in real-time. The routine was implemented with a multi-processor, multi-time-scale control scheme, which is based on a master process and multiple asynchronous slave processes. The scheme is general and can be used for any computationally-intensive algorithm. USDoE award DE- FC02-99ER545512.
Toroidal current asymmetry and boundary conditions in disruptions
NASA Astrophysics Data System (ADS)
Strauss, Henry
2014-10-01
It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the plasma current. The toroidal current asymmetry ΔIϕ is proportional to the vertical current moment ΔMIZ , with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was claimed that this could only be explained by Hiro current. It is shown that instead it is essentially a kinematic effect produced by the VDE displacement of a 3D magnetic perturbation. This is verified by M3D simulations. The simulation results do not require penetration of plasma into the boundary, as in the Hiro current model. It is shown that the normal velocity perpendicular to the magnetic field vanishes at the wall, in the small Larmor radius limit of electromagnetic sheath boundary conditions. Plasma is absorbed into the wall only via the parallel velocity, which is small, penetrates only an infinitesimal distance into the wall, and does not affect forces exerted by the plasma on the wall. Supported by USDOE and ITER.
Jones, Edward R; Goldman, Richard S
2015-08-07
The Centers for Medicare & Medicaid Services' Conditions for Coverage make the medical director of an ESRD facility responsible for all aspects of care, including high-quality health care delivery (e.g., safe, effective, timely, efficient, and patient centered). Because of the high-pressure environment of the dialysis facility, conflicts are common. Conflict frequently occurs when aberrant behaviors disrupt the dialysis facility. Patients, family members, friends, and, less commonly appreciated, nephrology clinicians (i.e., nephrologists and advanced care practitioners) may manifest disruptive behavior. Disruptive behavior in the dialysis facility impairs the ability to deliver high-quality care. Furthermore, disruptive behavior is the leading cause for involuntary discharge (IVD) or involuntary transfer (IVT) of a patient from a facility. IVD usually results in loss of continuity of care, increased emergency department visits, and increased unscheduled, acute dialysis treatments. A sufficient number of IVDs and IVTs also trigger an extensive review of the facility by the regional ESRD Networks, exposing the facility to possible Medicare-imposed sanctions. Medical directors must be equipped to recognize and correct disruptive behavior. Nephrology-based literature and tools exist to help dialysis facility medical directors successfully address and resolve disruptive behavior before medical directors must involuntarily discharge a patient or terminate an attending clinician. Copyright © 2015 by the American Society of Nephrology.
Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K
2018-01-01
The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.
An Ecological Perspective on Sleep Disruption.
Tougeron, Kévin; Abram, Paul K
2017-09-01
Despite its evolutionary importance and apparent ubiquity among animals, the ecological significance of sleep is largely unresolved. The ecology of sleep has been particularly neglected in invertebrates. In insects, recent neurobehavioral research convincingly demonstrates that resting behavior shares several common characteristics with sleep in vertebrates. Laboratory studies have produced compelling evidence that sleep disruption can cause changes in insect daily activity patterns (via "sleep rebound") and have consequences for behavioral performance during active periods. However, factors that could cause insect sleep disruption in nature have not been considered nor have the ecological consequences. Drawing on evidence from laboratory studies, we argue that sleep disruption may be an overlooked component of insect ecology and could be caused by a variety of anthropogenic and nonanthropogenic factors in nature. We identify several candidate sleep-disrupting factors and provide new insights on the potential consequences of sleep disruption on individual fitness, species interactions, and ecosystem services. We propose an experimental framework to bridge the current gap in knowledge between laboratory and field studies. We conclude that sleep disruption is a potential mechanism underpinning variation in behavioral, population, and community-level processes associated with several aspects of global change.
Transitions of Turbulence in Plasma Density Limits
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2002-11-01
Density limits have been observed in nearly all toroidal devices. In most cases exceeding this limit is manifested by a catastrophic growth of edge MHD instabilities [1]. In tokamaks, several other density limiting processes have been identified which limit performance but do not necessarily result in disruption. One such process is degradation of the edge transport barrier and H- to L-mode transition at high density. Further density increase, however can result in a disruption. The 3D nonlocal electromagnetic turbulence code BOUT [2], which models the boundary plasma turbulence in a realistic x-point geometry using two-fluids modified Braginski equations, is used in two numerical experiments. (1) Increasing the density while holding pressure constant (therefore keeping magnetic geometry the same). The pressure remains below the ELM threshold in these numerical experiments. (2) Increasing density while holding temperature constant. Small changes of equilibrium magnetic geometry resulting from the change in the edge pressure gradient are ignored in these simulations. These simulations extend previous work [3] by including the effect of Er well on turbulence, real magnetic geometry, the separatrix and SOL physics. Our simulations show the turbulent fluctuation levels and transport increase with increasing collisionality. Ultimately perpendicular turbulent transport dominates the parallel classical transport, leading to collapse of the sheath; the Er-well is lost and the region of high transport propagates inside the last closed flux surface. As the density increases these simulations show: Drift-wave turbulence--> Resistive MHD-->Detachment from divertor -->Disruption(?) and transport switches from diffusive to bursty processes. The onset of disruption will be calculated by MHD codes Corsica and Elite. The role of radiation on the transition will also be assessed. The scaling of the density limit with plasma current will be studied by conducting an additional series of numerical experiments to examine changes in the turbulent transport due to changes in the plasma current and associated changes in the equilibrium magnetic field and parallel connection length in the plasma scrape-off layer. Changes in the characteristics of the turbulence near density limit will be explored and compared with experiments. REFERENCES [1] M.Greenwald, to be published in plasma physics and controlled fusion. [2] X.Q. Xu, R.H. Cohen, T.D. Rognlien, and J.R. Myra, Phys. Plasmas 7, 1951(2000). [3] B.N. Rogers, J.F. Drake, and A. Zeiler, PRL 81, 4396 (1998).
Controlled permeation of cell membrane by single bubble acoustic cavitation
Zhou, Y.; Yang, K.; Cui, J.; Ye, J. Y.; Deng, C. X.
2011-01-01
Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustic, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency (7.44 MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5 MHz) ultrasound pulse (duration 13.3 or 40 µs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d = 0.75. The maximum mean radius of the pores was estimated from the measured TMC to be 0.106 ± 0.032 µm (n = 70) for acoustic pressure of 1.5 MPa (duration 13.3 µs), and increased to 0.171 ± 0.030 µm (n = 125) for acoustic pressure of 1.7 MPa and to 0.182 ± 0.052 µm (n=112) for a pulse duration of 40 µs (1.5 MPa). These results from controlled cell membrane permeation by cavitation of single bubbles revealed insights and key factors affecting sonoporation at the single cell level. PMID:21945682
ERIC Educational Resources Information Center
Pheatt, Lara E.
2017-01-01
Disruptive innovations are used to lower costs and augment access to high-quality, affordable higher education, but little systematic research is available on the topic. Higher education institutions use disruptive innovations to save students time and money. To understand the process of disruptive innovation, I investigated the rapid diffusion of…
Sleep disruption in chronic rhinosinusitis.
Mahdavinia, Mahboobeh; Schleimer, Robert P; Keshavarzian, Ali
2017-05-01
Chronic rhinosinusitis (CRS) is a common disease of the upper airways and paranasal sinuses with a marked decline in quality of life (QOL). CRS patients suffer from sleep disruption at a significantly higher proportion (60 to 75%) than in the general population (8-18 %). Sleep disruption in CRS causes decreased QOL and is linked to poor functional outcomes such as impaired cognitive function and depression. Areas covered: A systematic PubMed/Medline search was done to assess the results of studies that have investigated sleep and sleep disturbances in CRS. Expert commentary: These studies reported sleep disruption in most CRS patients. The main risk factors for sleep disruption in CRS include allergic rhinitis, smoking, and high SNOT-22 total scores. The literature is inconsistent with regard to the prevalence of sleep-related disordered breathing (e.g. obstructive sleep apnea) in CRS patients. Although nasal obstruction is linked to sleep disruption, the extent of sleep disruption in CRS seems to expand beyond that expected from physical blockage of the upper airways alone. Despite the high prevalence of sleep disruption in CRS, and its detrimental effects on QOL, the literature contains a paucity of studies that have investigated the mechanisms underlying this major problem in CRS.
NASA Astrophysics Data System (ADS)
Gibbs, M.; Oughton, E. J.; Hapgood, M. A.
2017-12-01
The socio-economic impacts of space weather have been under-researched, despite this threat featuring on the UK's National Risk Register. In this paper, a range of Realistic Disaster Scenarios due to failure in electricity transmission infrastructure are tested. We use regional Geomagnetically Induced Current (GIC) studies to identify areas in the UK high-voltage power system deemed to be high-risk. The potential level of disruption arising from a large geomagnetic disturbance in these `hot spots' on local economic activity is explored. Electricity is a necessary factor of production without which businesses cannot operate, so even short term power loss can cause significant loss of value. We utilise a spatially disaggregated approach that focuses on quantifying employment disruption by industrial sector, and relating this to direct Gross Value Added loss. We then aggregate this direct loss into a set of shocks to undertake macroeconomic modelling of different scenarios, to obtain the total economic impact which includes both direct and indirect supply chain disruption effects. These results are reported for a range of temporal periods, with the minimum increment being a one-hour blackout. This work furthers our understanding of the economic impacts of space weather, and can inform future reviews of the UK's National Risk Register. The key contribution of the paper is that the results can be used in the future cost-benefit analysis of investment in space weather forecasting.
De, Bishnu P.; Pagovich, Odelya E.; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F.; Worgall, Stefan; Kaminsky, Stephen M.; Sondhi, Dolan
2013-01-01
Abstract Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines. PMID:23140508
3D Stagnation instabilities in MagLIF loads on the Z Generator
NASA Astrophysics Data System (ADS)
Jennings, Christopher
2017-10-01
Experiments with Magnetized Liner Inertial Fusion (MagLIF) loads have successfully demonstrated the premise of magnetized fusion. While these experiments are increasingly well diagnosed, many of the measurements (particularly during stagnation) are time integrated, limited in spatial resolution or require additional assumptions to interpret in the context of a structured, rapidly evolving system. As such, there is some ambiguity over what may be limiting performance. Poor laser coupling in preheating the fuel prior to implosion has been suggested as a mechanism. Mix of high Z contaminants that cool the fuel is also a significant concern. In addition, time integrated crystal imaging has shown significant structure in the final fuel assembly indicating potential disruption from instabilities. Understanding the balance between these degradation mechanisms is vital to progress with MagLif. We compare several sets of experimental data with synthetically generated data from systematically varied 3D resistive-MHD simulations to gain insight into the relative contributions of different degradation mechanisms. We demonstrate how some measurements strongly indicate disruption from liner material penetrating into the fuel at stagnation, and discuss the implications this has for how MagLif targets work and scale to larger drive currents. We then explore the extent to which different combinations of instability development, current delivery, high-Z mix into the fuel and initial laser deposition can be differentiated in our existing measurements. Better determining the dominant degradation mechanisms can directly influence the direction we take to improve performance, or our confidence in scaling these targets to higher currents. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DoE's NNSA under contract DE-NA0003525.
PHL 1092: A narrow-line quasar emerging from the darkness
NASA Astrophysics Data System (ADS)
Gallo, Luigi
2013-10-01
The radio quiet, narrow line quasar, PHL1092 exhibits the extreme behaviour associated with 1H0707 and IRAS13224, but at a high redshift (z=0.396) and with high luminosity (~10^45 erg/s). From a short, bright state observation of PHL1092 we discovered a super soft excess, possible relativistically broadened FeL and K emission, high radiative efficiency, and possible high velocity outflow. Follow up observations between 2008-10 caught the quasar in a deep minimum that could be attributed to disruption of the corona. We will monitor PHL1092 with Swift to catch the quasar emerging from its current low-flux state so that we can study the bright state of the AGN with a triggered 130ks XMM observation.
Barber, Sarah J; Harris, Celia B; Rajaram, Suparna
2015-03-01
Although a group of people working together remembers more than any one individual, they recall less than their predicted potential. This finding is known as collaborative inhibition and is generally thought to arise due to retrieval disruption. However, there is growing evidence that is inconsistent with the retrieval disruption account, suggesting that additional mechanisms also contribute to collaborative inhibition. In the current studies, we examined 2 alternate mechanisms: retrieval inhibition and retrieval blocking. To identify the contributions of retrieval disruption, retrieval inhibition, and retrieval blocking, we tested how collaborative recall of entirely unshared information influences subsequent individual recall and individual recognition memory. If collaborative inhibition is due solely to retrieval disruption, then there should be a release from the negative effects of collaboration on subsequent individual recall and recognition tests. If it is due to retrieval inhibition, then the negative effects of collaboration should persist on both individual recall and recognition memory tests. Finally, if it is due to retrieval blocking, then the impairment should persist on subsequent individual free recall, but not recognition, tests. Novel to the current study, results suggest that retrieval inhibition plays a role in the collaborative inhibition effect. The negative effects of collaboration persisted on a subsequent, always-individual, free-recall test (Experiment 1) and also on a subsequent, always-individual, recognition test (Experiment 2). However, consistent with the retrieval disruption account, this deficit was attenuated (Experiment 1). Together, these results suggest that, in addition to retrieval disruption, multiple mechanisms play a role in collaborative inhibition. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Sucala, Madalina; Nilsen, Wendy; Muench, Frederick
2017-12-01
Collaborations between scientists, care providers, and technology industry professionals are becoming more relevant for developing, testing, and implementing behavioral health technologies. As the need for such partnerships increases, it is important to understand stakeholders' attitudes about their role in partnering for developing such technologies and how much do they expect technology to impact behavioral research and care. The aim of this study was to investigate how much technology disruption do stakeholders expect in healthcare, as well as their perceived contribution in partnering for developing behavioral health technologies. Stakeholders (N = 74) responded to an online convenience sampling survey. Over 89% of participants reported expecting that technology will bring at least a moderate amount of disruption in the current models of behavioral healthcare, with respondents with the most experience in digital health expecting the most disruption. As for their perception of each other's role in partnering for developing behavioral health technologies, one group's weakness was considered to be complemented by another group's strength. Academics were perceived as having more theoretical and research expertise but being less technology-savvy, while industry professionals were considered to excel at technological and marketing activities. Providers were considered to have the most clinical and real-world healthcare industry expertise. Our results indicate that technology is expected to disrupt current healthcare models, while also highlighting the need for collaboration, as no single group was considered to have sufficient expertise and resources to develop successful, effective behavioral health technologies on its own. These results may contribute to a better understanding of how technology disruption is affecting behavioral healthcare from the standpoint of its key players, which may lead to better collaborative models of research and care delivery.
Delay/Disruption Tolerant Networks for Human Space Flight Video Project
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Ngo, Phong; Schlesinger, Adam
2010-01-01
The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.
Boland, Elaine M; Stange, Jonathan P; Labelle, Denise R; Shapero, Benjamin G; Weiss, Rachel B; Abramson, Lyn Y; Alloy, Lauren B
2016-05-01
The Behavioral Approach System (BAS)/Reward Hypersensitivity Theory and the Social Zeitgeber Theory are two biopsychosocial theories of bipolar spectrum disorders (BSD) that may work together to explain affective dysregulation. The present study examined whether BAS sensitivity is associated with affective symptoms via a) increased social rhythm disruption in response to BAS-relevant life events, or b) greater exposure to BAS events leading to social rhythm disruption and subsequent symptoms. Results indicated that high BAS individuals were more likely to experience social rhythm disruption following BAS-relevant events. Social rhythm disruption mediated the association between BAS-relevant events and symptoms (hypothesis a). High BAS individuals experienced significantly more BAS-relevant events, which predicted greater social rhythm disruption, which predicted greater levels of affective symptoms (hypothesis b). Individuals at risk for BSD may be sensitive to BAS-relevant stimuli, experience more BAS-relevant events, and experience affective dysregulation due to the interplay of the BAS and circadian rhythms.
Montalescot, V; Rinaldi, T; Touchard, R; Jubeau, S; Frappart, M; Jaouen, P; Bourseau, P; Marchal, L
2015-11-01
A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI-SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI-SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Surface currents associated with external kink modes in tokamak plasmas during a major disruption
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
2017-10-01
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
Robles, Cindee F; Johnson, Alexander W
2017-03-01
Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome. Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental endocrine disruption: an effects assessment and analysis.
Crisp, T M; Clegg, E D; Cooper, R L; Wood, W P; Anderson, D G; Baetcke, K P; Hoffmann, J L; Morrow, M S; Rodier, D J; Schaeffer, J E; Touart, L W; Zeeman, M G; Patel, Y M
1998-01-01
This report is an overview of the current state of the science relative to environmental endocrine disruption in humans, laboratory testing, and wildlife species. Background information is presented on the field of endocrinology, the nature of hormones, and potential sites for endocrine disruption, with specific examples of chemicals affecting these sites. An attempt is made to present objectively the issue of endocrine disruption, consider working hypotheses, offer opposing viewpoints, analyze the available information, and provide a reasonable assessment of the problem. Emphasis is placed on disruption of central nervous system--pituitary integration of hormonal and sexual behavioral activity, female and male reproductive system development and function, and thyroid function. In addition, the potential role of environmental endocrine disruption in the induction of breast, testicular, and prostate cancers, as well as endometriosis, is evaluated. The interrelationship of the endocrine and immune system is documented. With respect to endocrine-related ecological effects, specific case examples from the peer-reviewed literature of marine invertebrates and representatives of the five classes of vertebrates are presented and discussed. The report identifies some data gaps in our understanding of the environmental endocrine disruption issue and recommends a few research needs. Finally, the report states the U.S. Environmental Protection Agency Science Policy Council's interim position on endocrine disruption and lists some of the ongoing activities to deal with this matter. PMID:9539004
A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks.
Jin, Zhigang; Wang, Ning; Su, Yishan; Yang, Qiuling
2018-02-07
Underwater acoustic sensor networks (UASNs) have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider's sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider's trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15-33% compared with cooperative opportunistic routing (OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF) methods, and reduce communication energy consumption by 20-58% for a typical network's setting.
A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks
Wang, Ning; Su, Yishan; Yang, Qiuling
2018-01-01
Underwater acoustic sensor networks (UASNs) have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider’s sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider’s trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15–33% compared with cooperative opportunistic routing (OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF) methods, and reduce communication energy consumption by 20–58% for a typical network’s setting. PMID:29414898
NASA Astrophysics Data System (ADS)
Selj, Gorm K.; Heinrich, Daniela H.
2016-10-01
We present results from an observer based photosimulation study of generic camouflage patterns, intended for military uniforms, where three near-identical patterns have been compared. All the patterns were prepared with similar effective color, but were different in how the individual pattern patches were distributed throughout the target. We did this in order to test if high contrast (black) patches along the outline of the target would enhance the survivability when exposed to human observers. In the recent years it has been shown that disruptive coloration in the form of high contrast patches are capable of disturbing an observer by creating false edges of the target and consequently enhance target survivability. This effect has been shown in different forms in the Animal Kingdom, but not to the same extent in camouflaged military targets. The three patterns in this study were i) with no disruptive preference, ii) with a disruptive patch along the outline of the head and iii) with a disruptive patch on the outline of one of the shoulders. We used a high number of human observers to assess the three targets in 16 natural (woodland) backgrounds by showing images of one of the targets at the time on a high definition pc screen. We found that the two patterns that were thought to have a minor disruptive preference to the remaining pattern were more difficult to detect in some (though not all) of the 16 scenes and were also better in overall performance when all the scenes were accounted for.
Ku Mohd Noor, Ku Mastura; Wyse, Cathy; Roy, Lisa A; Biello, Stephany M; McCabe, Christopher; Dewar, Deborah
2017-11-01
Photoperiod disruption, which occurs during shift work, is associated with changes in metabolism or physiology (e.g. hypertension and hyperglycaemia) that have the potential to adversely affect stroke outcome. We sought to investigate if photoperiod disruption affects vulnerability to stroke by determining the impact of photoperiod disruption on infarct size following permanent middle cerebral artery occlusion. Adult male Wistar rats (210-290 g) were housed singly under two different light/dark cycle conditions ( n = 12 each). Controls were maintained on a standard 12:12 light/dark cycle for nine weeks. For rats exposed to photoperiod disruption, every three days for nine weeks, the lights were switched on 6 h earlier than in the previous photoperiod. T 2 -weighted magnetic resonance imaging was performed at 48 h after middle cerebral artery occlusion. Disruption of photoperiod in young healthy rats for nine weeks did not alter key physiological variables that can impact on ischaemic damage, e.g. blood pressure and blood glucose immediately prior to middle cerebral artery occlusion. There was no effect of photoperiod disruption on infarct size after middle cerebral artery occlusion. We conclude that any potentially adverse effect of photoperiod disruption on stroke outcome may require additional factors such as high fat/high sugar diet or pre-existing co-morbidities.
Study of the radiated energy loss during massive gas injection mitigated disruptions on EAST
NASA Astrophysics Data System (ADS)
Duan, Y. M.; Hao, Z. K.; Hu, L. Q.; Wang, L.; Xu, P.; Xu, L. Q.; Zhuang, H. D.; EAST Team
2015-08-01
The MGI mitigated disruption experiments were carried out on EAST with a new fast gas controlling valve in 2012. Different amounts of noble gas He or mixed gas of 99% He + 1% Ar are injected into plasma in current flat-top phase and current ramp-down phase separately. The initial results of MGI experiments are described. The MGI system and the radiation measurement system are briefly introduced. The characteristics of radiation distribution and radiation energy loss are analyzed. About 50% of the stored thermal energy Wdia is dissipated by radiation during the entire disruption process and the impurities of C and Li from the PFC play important roles to radiative energy loss. The amount of the gas can affect the pre-TQ phase. Strong poloidal asymmetry of radiation begins to appear in the CQ phase, which is possibly caused by the plasma configuration changes as a result of VDE. No toroidal radiation asymmetry is observed presently.
Wall-touching kink mode calculations with the M3D code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breslau, J. A., E-mail: jbreslau@pppl.gov; Bhattacharjee, A.
This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicatedmore » by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.« less
Tyler, Patrick M; White, Stuart F; Thompson, Ronald W; Blair, R J R
2018-02-12
A cognitive neuroscience perspective seeks to understand behavior, in this case disruptive behavior disorders (DBD), in terms of dysfunction in cognitive processes underpinned by neural processes. While this type of approach has clear implications for clinical mental health practice, it also has implications for school-based assessment and intervention with children and adolescents who have disruptive behavior and aggression. This review articulates a cognitive neuroscience account of DBD by discussing the neurocognitive dysfunction related to emotional empathy, threat sensitivity, reinforcement-based decision-making, and response inhibition. The potential implications for current and future classroom-based assessments and interventions for students with these deficits are discussed.
Classroom Disruption in English Comprehensive Schools.
ERIC Educational Resources Information Center
Dierenfield, Richard B.
A comparative study was made of disruptive behavior in British comprehensive schools and American high schools. A survey was conducted in 41 British schools to obtain the opinions of teachers and administrators on severe discipline problems, causes of disruptive behavior, and possible solutions. There was general agreement that classroom…
A current disruption mechanism in the neutral sheet for triggering substorm expansions
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.
1989-01-01
Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario.
The impact of recreational MDMA 'ecstasy' use on global form processing.
White, Claire; Edwards, Mark; Brown, John; Bell, Jason
2014-11-01
The ability to integrate local orientation information into a global form percept was investigated in long-term ecstasy users. Evidence suggests that ecstasy disrupts the serotonin system, with the visual areas of the brain being particularly susceptible. Previous research has found altered orientation processing in the primary visual area (V1) of users, thought to be due to disrupted serotonin-mediated lateral inhibition. The current study aimed to investigate whether orientation deficits extend to higher visual areas involved in global form processing. Forty-five participants completed a psychophysical (Glass pattern) study allowing an investigation into the mechanisms underlying global form processing and sensitivity to changes in the offset of the stimuli (jitter). A subgroup of polydrug-ecstasy users (n=6) with high ecstasy use had significantly higher thresholds for the detection of Glass patterns than controls (n=21, p=0.039) after Bonferroni correction. There was also a significant interaction between jitter level and drug-group, with polydrug-ecstasy users showing reduced sensitivity to alterations in jitter level (p=0.003). These results extend previous research, suggesting disrupted global form processing and reduced sensitivity to orientation jitter with ecstasy use. Further research is needed to investigate this finding in a larger sample of heavy ecstasy users and to differentiate the effects of other drugs. © The Author(s) 2014.
The Rich Get Richer: Brain Injury Elicits Hyperconnectivity in Core Subnetworks
Hillary, Frank G.; Rajtmajer, Sarah M.; Roman, Cristina A.; Medaglia, John D.; Slocomb-Dluzen, Julia E.; Calhoun, Vincent D.; Good, David C.; Wylie, Glenn R.
2014-01-01
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the “rich club”. The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury. PMID:25121760
The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.
Hillary, Frank G; Rajtmajer, Sarah M; Roman, Cristina A; Medaglia, John D; Slocomb-Dluzen, Julia E; Calhoun, Vincent D; Good, David C; Wylie, Glenn R
2014-01-01
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.
Arambula, Sheryl E; Fuchs, Joelle; Cao, Jinyan; Patisaul, Heather B
2017-12-01
Bisphenol A (BPA) is a high volume endocrine disrupting chemical found in a wide variety of products including plastics and epoxy resins. Human exposure is nearly ubiquitous, and higher in children than adults. Because BPA has been reported to interfere with sex steroid hormone signaling, there is concern that developmental exposure, even at levels below the current FDA No Observed Adverse Effect Level (NOAEL) of 5mg/kg body weight (bw)/day, can disrupt brain sexual differentiation. The current studies were conducted as part of the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program and tested the hypothesis that perinatal BPA exposure would induce morphological changes in hormone sensitive, sexually dimorphic brain regions. Sprague-Dawley rats were randomly assigned to 5 groups: BPA (2.5, 25, or 2500μg/kgbw/day), a reference estrogen (0.5μg ethinylestradiol (EE 2 )/kgbw/day), or vehicle. Exposure occurred by gavage to the dam from gestational day 6 until parturition, and then to the offspring from birth through weaning. Unbiased stereology was used to quantify the volume of the sexually dimorphic nucleus (SDN), the anteroventral periventricular nucleus (AVPV), the posterodorsal portion of the medial amygdala (MePD), and the locus coeruleus (LC) at postnatal day 28. No appreciable effects of BPA were observed on the volume of the SDN or LC. However, AVPV volume was enlarged in both sexes, even at levels below the FDA NOAEL. Collectively, these data suggest the developing brain is vulnerable to endocrine disruption by BPA at exposure levels below previous estimates by regulatory agencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Irrelevant learned reward associations disrupt voluntary spatial attention.
MacLean, Mary H; Diaz, Gisella K; Giesbrecht, Barry
2016-10-01
Attention can be guided involuntarily by physical salience and by non-salient, previously learned reward associations that are currently task-irrelevant. Attention can be guided voluntarily by current goals and expectations. The current study examined, in two experiments, whether irrelevant reward associations could disrupt current, goal-driven, voluntary attention. In a letter-search task, attention was directed voluntarily (i.e., cued) on half the trials by a cue stimulus indicating the hemifield in which the target letter would appear with 100 % accuracy. On the other half of the trials, a cue stimulus was presented, but it did not provide information about the target hemifield (i.e., uncued). On both cued and uncued trials, attention could be involuntarily captured by the presence of a task-irrelevant, and physically non-salient, color, either within the cued or the uncued hemifield. Importantly, one week prior to the letter search task, the irrelevant color had served as a target feature that was predictive of reward in a separate training task. Target identification accuracy was better on cued compared to uncued trials. However, this effect was reduced when the irrelevant, and physically non-salient, reward-associated feature was present in the uncued hemifield. This effect was not observed in a second, control experiment in which the irrelevant color was not predictive of reward during training. Our results indicate that involuntary, value-driven capture can disrupt the voluntary control of spatial attention.
Wu, Wei; Wang, Kai; Qiao, Jiangtao; Dong, Jie; Li, Zhanping; Zhang, Hongcheng
2018-06-22
Bee pollen, collected by honey bees, contains a substantial amount of nutrients and has a high nutritive value. However, a high level of nutrients can be difficult to be digested and absorbed due to the complex wall of bee pollen. We observed that amino acids were mostly distributed inside cell wall of lotus bee pollen, rape bee pollen, apricot bee pollen, wuweizi bee pollen and camellia bee pollen, using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Thus, five species of bee pollen were wall-disrupted with a combination of ultrasonication and high shear technique (US-HS). After the treatment, bee pollen walls were entirely broken into fragments, and a high number of nutrients were released. The contents of amino acids, fatty acids, protein, crude fat, reducing sugar, β-carotene, calcium, iron, zinc, selenium obviously increased after wall-disruption. Overall, our study demonstrates that US-HS can disrupt bee pollen wall to release nutrients. Therefore, further studies are being conducted to compare the digestibility and absorptivity of pollen nutrients before and after wall-disruption. Additionally, TOF-SIMS seems to be a reliable mapping technique for determining the distribution of food ingredients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Non Benzodiazepines Hypnotics: Another Way to Induce Sleep
2000-03-01
caused by disruption environment and we feel intuitively that it must fulfil of circadian rhythm . Another factor that disrupts some restorative function...Many circadian rhythms are circadian rhythms is the conduct of nocturnal operations, linked tightly to our sleep/wake cycle. An adequate a current...The perfect hypnotic should act brain activity and metabolism (38). rapidly, have a short duration of action, not lead to Arousal and wakefulness seem
Overview of recent results and future plans on the Compact Toroidal Hybrid experiment
NASA Astrophysics Data System (ADS)
Maurer, D. A.; Archmiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-11-01
Goals of the Compact Toroidal Hybrid (CTH) experiment are to: (1) investigate the dependence of plasma disruptive behavior on the level of applied 3D magnetic shaping, (2) test and advance 3D computational modeling tools in strongly shaped plasmas, and (3) study the implementation of a new island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased, but a threshold for disruption avoidance is not observed. Low q operation is routine, with low q disruptions avoided when the vacuum transform is raised to the value of 0.07 or above. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Current efforts at improved equilibrium reconstruction and diagnostic development will beoverviewed. NIMROD is used to model the current ramp phase of CTH and 3D shaped sawtooth behavior. An island divertor design has begun with connection length studies and initial EMC3-Eirene results to model energy deposition on divertor plates located in an edge 1/3 island. This work is supported by U.S. Department of Energy Grant No. DE- FG02-00ER54610.
Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx
NASA Astrophysics Data System (ADS)
Ptak, Andrew
2018-01-01
Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.
Zago, E B; Castilho, R F; Vercesi, A E
2000-07-28
Acetoacetate, an NADH oxidant, stimulated the ruthenium red-insensitive rat liver mitochondrial Ca(2+) efflux without significant release of state-4 respiration, disruption of membrane potential (Deltapsi) or mitochondrial swelling. This process is compatible with the opening of the currently designated low conductance state of the permeability transition pore (PTP) and, under our experimental conditions, was associated with a partial oxidation of the mitochondrial pyridine nucleotides. In contrast, diamide, a thiol oxidant, induced a fast mitochondrial Ca(2+) efflux associated with a release of state-4 respiration, a disruption of Deltapsi and a large amplitude mitochondrial swelling. This is compatible with the opening of the high conductance state of the PTP and was associated with extensive oxidation of pyridine nucleotides. Interestingly, the addition of carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone to the acetoacetate experiment promoted a fast shift from the low to the high conductance state of the PTP. Both acetoacetate and diamide-induced mitochondrial permeabilization were inhibited by exogenous catalase. We propose that the shift from a low to a high conductance state of the PTP can be promoted by the oxidation of NADPH. This impairs the antioxidant function of the glutathione reductase/peroxidase system, strongly strengthening the state of mitochondrial oxidative stress.
Endocrine disruption is considered a highly relevant endpoint for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening for endocrine disruption – with focus on vertebrates (fish and amphibians) and estrogen, and...
Social Goals in Urban Physical Education: Relationships with Effort and Disruptive Behavior
ERIC Educational Resources Information Center
Garn, Alex; McCaughtry, Nate; Shen, Bo; Martin, Jeffrey J.; Fahlman, Mariane M.
2011-01-01
This study investigated the relationships among four distinct types of social goals, effort, and disruptive behavior in urban physical education. Social responsibility, affiliation, recognition, status goals, along with effort and disruptive behavior in physical education were reported by high school physical education students (N = 314) from…
Dynamics of tokamak plasma surface current in 3D ideal MHD model
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.
2013-10-01
Interest in the surface current which can arise on perturbed sharp plasma vacuum interface in tokamaks was recently generated by a few papers (see and references therein). In dangerous disruption events with plasma-touching-wall scenarios, the surface current can be shared with the wall leading to the strong, damaging forces acting on the wall A relatively simple analytic definition of δ-function surface current proportional to a jump of tangential component of magnetic field nevertheless leads to a complex computational problem on the moving plasma-vacuum interface, requiring the incorporation of non-linear 3D plasma dynamics even in one-fluid ideal MHD. The Disruption Simulation Code (DSC), which had recently been developed in a fully 3D toroidal geometry with adaptation to the moving plasma boundary, is an appropriate tool for accurate self-consistent δfunction surface current calculation. Progress on the DSC-3D development will be presented. Self-consistent surface current calculation under non-linear dynamics of low m kink mode and VDE will be discussed. Work is supported by the US DOE SBIR grant #DE-SC0004487.
Stelinski, L L; McGhee, P; Haas, M; Il'ichev, A L; Gut, L J
2007-08-01
Several application parameters of microencapsulated (MEC) sex pheromone formulations were manipulated to determine their impact on efficacy of disruption for codling moth, Cydia pomonella (L.); oriental fruit moth, Grapholita molesta (Busck); obliquebanded leafroller, Choristoneura rosaceana (Harris); and redbanded leafroller, Argyrotaenia velutinana (Walker). Depending on the experiment, the formulations evaluated were those formerly manufactured by 3M Canada (London, ON, Canada) or those that are currently available from Suterra LLC (Bend, OR). The efficacy of MEC formulations applied by air-blast sprayer evenly throughout the entire canopy of 2-3-m-tall apple (Malus spp.) trees was equivalent to treatments in which targeted applications of MECs were made to the lower or upper 1.5 m of the canopy (at equivalent overall rates) for oriental fruit moth and both leafroller species. The realized distribution of deposited microcapsules within the tree canopy corresponded well with the intended heights of application within the canopy. The additional coapplication of the pine resin sticker Nu-Film 17 increased efficacy but not longevity of MEC formulations for oriental fruit moth; this adjuvant had no added effects for codling moth or leafroller formulations. Increasing the rate of active ingredient (AI) per hectare by 20-30-fold (range 2.5-75.0 g/ha) did not improve the disruption efficacy of MECs for codling moth or either leafroller species when both low and high rates were applied at equivalent frequencies per season. A low-rate, high-frequency (nine applications per season) application protocol was compared with a standard protocol in which two to three applications were made per season, once before each moth generation for each species. The low-rate, high-frequency protocol resulted in equivalent or better disruption efficacy for each moth species, despite using two-fold less total AI per hectare per season with the former treatment. The low-rate, frequent-application protocol should make the use of MEC formulations of synthetic pheromone more economical and perhaps more effective.
A mechanical cell disruption microfluidic platform based on an on-chip micropump.
Cheng, Yinuo; Wang, Yue; Wang, Zhiyuan; Huang, Liang; Bi, Mingzhao; Xu, Wenxiao; Wang, Wenhui; Ye, Xiongying
2017-03-01
Cell disruption plays a vital role in detection of intracellular components which contain information about genetic and disease characteristics. In this paper, we demonstrate a novel microfluidic platform based on an on-chip micropump for mechanical cell disruption and sample transport. A 50 μ l cell sample can be effectively lysed through on-chip multi-disruption in 36 s without introducing any chemical agent and suffering from clogging by cellular debris. After 30 cycles of circulating disruption, 80.6% and 90.5% cell disruption rates were achieved for the HEK293 cell sample and human natural killer cell sample, respectively. Profiting from the feature of pump-on-chip, the highly integrated platform enables more convenient and cost-effective cell disruption for the analysis of intracellular components.
A mechanical cell disruption microfluidic platform based on an on-chip micropump
Cheng, Yinuo; Wang, Yue; Wang, Zhiyuan; Bi, Mingzhao; Xu, Wenxiao; Ye, Xiongying
2017-01-01
Cell disruption plays a vital role in detection of intracellular components which contain information about genetic and disease characteristics. In this paper, we demonstrate a novel microfluidic platform based on an on-chip micropump for mechanical cell disruption and sample transport. A 50 μl cell sample can be effectively lysed through on-chip multi-disruption in 36 s without introducing any chemical agent and suffering from clogging by cellular debris. After 30 cycles of circulating disruption, 80.6% and 90.5% cell disruption rates were achieved for the HEK293 cell sample and human natural killer cell sample, respectively. Profiting from the feature of pump-on-chip, the highly integrated platform enables more convenient and cost-effective cell disruption for the analysis of intracellular components. PMID:28798848
Kc, Ranjan; Li, Xin; Forsyth, Christopher B; Voigt, Robin M; Summa, Keith C; Vitaterna, Martha Hotz; Tryniszewska, Beata; Keshavarzian, Ali; Turek, Fred W; Meng, Qing-Jun; Im, Hee-Jeong
2015-11-20
A variety of environmental factors contribute to progressive development of osteoarthritis (OA). Environmental factors that upset circadian rhythms have been linked to various diseases. Our recent work establishes chronic environmental circadian disruption - analogous to rotating shiftwork-associated disruption of circadian rhythms in humans - as a novel risk factor for the development of OA. Evidence suggests shift workers are prone to obesity and also show altered eating habits (i.e., increased preference for high-fat containing food). In the present study, we investigated the impact of chronic circadian rhythm disruption in combination with a high-fat diet (HFD) on progression of OA in a mouse model. Our study demonstrates that when mice with chronically circadian rhythms were fed a HFD, there was a significant proteoglycan (PG) loss and fibrillation in knee joint as well as increased activation of the expression of the catabolic mediators involved in cartilage homeostasis. Our results, for the first time, provide the evidence that environmental disruption of circadian rhythms plus HFD potentiate OA-like pathological changes in the mouse joints. Thus, our findings may open new perspectives on the interactions of chronic circadian rhythms disruption with diet in the development of OA and may have potential clinical implications.
An organizational assessment of disruptive clinician behavior: findings and implications.
Walrath, Jo M; Dang, Deborah; Nyberg, Dorothy
2013-01-01
This study investigated registered nurses' (RNs) and physicians' (MD) experiences with disruptive behavior, triggers, responses, and impacts on clinicians, patients, and the organization. Using the Disruptive Clinician Behavior Survey for Hospital Settings, it was found that RNs experienced a significantly higher frequency of disruptive behaviors and triggers than MDs; MDs (45% of 295) and RNs (37% of 689) reported that their peer's disruptive behavior affected them most negatively. The most frequently occurring trigger was pressure from high census, volume, and patient flow; 189 incidences of harm to patients as a result of disruptive behavior were reported. Findings provide organizational leaders with evidence to customize interventions to strengthen the culture of safety.
Barber, Sarah J.; Rajaram, Suparna
2011-01-01
When people are exposed to a subset of previously studied list items they recall fewer of the remaining items compared to a condition where none of the studied items are provided during recall. This occurs both when the subset of items is provided by the experimenter (i.e., the part-set cuing deficit in individual recall) and when they are provided during the course of a collaborative discussion (i.e., the collaborative inhibition effect in group recall). Previous research has identified retrieval disruption as a common mechanism underlying both effects; however, less is known about the factors that may make individuals susceptible to such retrieval disruption. In the current studies we tested one candidate factor, namely, executive control. Using an executive depletion paradigm we directly manipulated an individual’s level of executive control during retrieval. Results revealed no direct role of executive depletion in modulating retrieval disruption. In contrast, executive control abilities were indirectly related to retrieval disruption through their influence at encoding. Together, these results suggest that executive control does not directly affect retrieval disruption at the retrieval stage, and that the role of this putative mechanism may be limited to the encoding stage. PMID:21678155
Cumulative effects of mothers' risk and promotive factors on daughters' disruptive behavior.
van der Molen, Elsa; Hipwell, Alison E; Vermeiren, Robert; Loeber, Rolf
2012-07-01
Little is known about the ways in which the accumulation of maternal factors increases or reduces risk for girls' disruptive behavior during preadolescence. In the current study, maternal risk and promotive factors and the severity of girls' disruptive behavior were assessed annually among girls' ages 7-12 in an urban community sample (N = 2043). Maternal risk and promotive factors were operative at different time points in girls' development. Maternal warmth explained variance in girls' disruptive behavior, even after controlling for maternal risk factors and relevant child and neighborhood factors. In addition, findings supported the cumulative hypothesis that the number of risk factors increased the chance on girls' disruptive behavior disorder (DBD), while the number of promotive factors decreased this probability. Daughters of mothers with a history of Conduct Disorder (CD) were exposed to more risk factors and fewer promotive factors compared to daughters of mothers without prior CD. The identification of malleable maternal factors that can serve as targets for intervention has important implications for intergenerational intervention. Cumulative effects show that the focus of prevention efforts should not be on single factors, but on multiple factors associated with girls' disruptive behavior.
Cumulative Effects of Mothers’ Risk and Promotive Factors on Daughters’ Disruptive Behavior
Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf
2012-01-01
Little is known about the ways in which the accumulation of maternal factors increases or reduces risk for girls’ disruptive behavior during preadolescence. In the current study, maternal risk and promotive factors and the severity of girls’ disruptive behavior were assessed annually among girls’ ages 7–12 in an urban community sample (N=2043). Maternal risk and promotive factors were operative at different time points in girls’ development. Maternal warmth explained variance in girls’ disruptive behavior, even after controlling for maternal risk factors and relevant child and neighborhood factors. In addition, findings supported the cumulative hypothesis that the number of risk factors increased the chance on girls’ disruptive behavior disorder (DBD), while the number of promotive factors decreased this probability. Daughters of mothers with a history of Conduct Disorder (CD) were exposed to more risk factors and fewer promotive factors compared to daughters of mothers without prior CD. The identification of malleable maternal factors that can serve as targets for intervention has important implications for intergenerational intervention. Cumulative effects show that the focus of prevention efforts should not be on single factors, but on multiple factors associated with girls’ disruptive behavior. PMID:22127641
Guo, Yuan; Zhang, Zhiyong; Wu, Hsiang-en; Luo, Z. David; Hogan, Quinn H.; Pan, Bin
2017-01-01
Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage–activated Ca2+ channels and increases ICa through low-voltage–activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain. PMID:28232180
Qian, Jingyi; Yeh, Bonnie; Rakshit, Kuntol; Colwell, Christopher S.
2015-01-01
There are clear epidemiological associations between circadian disruption, obesity, and pathogenesis of type 2 diabetes. The mechanisms driving these associations are unclear. In the current study, we hypothesized that continuous exposure to constant light (LL) compromises pancreatic β-cell functional and morphological adaption to diet-induced obesity leading to development of type 2 diabetes. To address this hypothesis, we studied wild type Sprague Dawley as well as Period-1 luciferase reporter transgenic rats (Per1-Luc) for 10 weeks under standard light-dark cycle (LD) or LL with concomitant ad libitum access to either standard chow or 60% high-fat diet (HFD). Exposure to HFD led to a comparable increase in food intake, body weight, and adiposity in both LD- and LL-treated rats. However, LL rats displayed profound loss of behavioral circadian rhythms as well as disrupted pancreatic islet clock function characterized by the impairment in the amplitude and the phase islet clock oscillations. Under LD cycle, HFD did not adversely alter diurnal glycemia, diurnal insulinemia, β-cell secretory function as well as β-cell survival, indicating successful adaptation to increased metabolic demand. In contrast, concomitant exposure to LL and HFD resulted in development of hyperglycemia characterized by loss of diurnal changes in insulin secretion, compromised β-cell function, and induction of β-cell apoptosis. This study suggests that circadian disruption and diet-induced obesity synergize to promote development of β-cell failure, likely mediated as a consequence of impaired islet clock function. PMID:26348474
Disruption of the magnetotail current sheet observed by AMPTE/CCE
NASA Technical Reports Server (NTRS)
Takahashi, K.; Zanetti, L. J.; Mcentire, R. W.; Potemra, T. A.; Lopez, R. E.
1987-01-01
An unusual large-amplitude (from less than 10 nT to greater than 40 nT) magnetic oscillation characterized by about-13-sec periodicity and southward turnings of the field was observed by AMPTE/CCE on August 28, 1986. The magnetic field was often stronger southward, with some southward components exceeding 20 nT being noted. The level of the high frequency perturbations was also seen to be enhanced. It is suggested that these observations may be due to the formation of an X-type neutral line and its motion near the spacecraft.
Innovating urinary catheter design: An introduction to the engineering challenge.
Murphy, Cathy
2018-05-01
Every day, people around the world rely on intermittent and indwelling urinary catheters to manage bladder dysfunction, but the potential or actual harm caused by these devices is well-recognised. Current catheter designs can cause urinary tract infection and septicaemia, bladder and urethral trauma and indwelling devices frequently become blocked. Furthermore, the devices can severely disrupt users' lives, limiting their daily activities and can be costly to manage for healthcare providers. Despite this, little significant design innovation has taken place in the last 80 years. In this article current catheter designs and their limitations are reviewed, common catheter-associated problems are outlined and areas of design ripe for improvement proposed. The potential to relieve the individual and economic burden of catheter use is high.
The impact of preventable disruption on the operative time for minimally invasive surgery.
Al-Hakim, Latif
2011-10-01
Current ergonomic studies show that disruption exposes surgical teams to stress and musculoskeletal disorders. This study considers minimally invasive surgery as a sociotechnical process subjected to a variety of disruption events other than those recognized by ergonomic science. The research takes into consideration the impact of preventable disruption on operating time rather than on the physical and emotional status of the surgical team. Events inside operating rooms that disturbed operative time were recorded for 17 minimally invasive surgeries. The disruption events were classified into four main areas: prerequisite requirements, work design, communication during surgery, and other. Each area was further classified according to sources of disruption. Altogether, 11 sources of disruption were identified: patient record, protocol and policy, surgical requirements and surgeon preferences, operating table and patient positioning, arrangement of instruments, lighting, monitor, clothing, surgical teamwork, coordination, and other. Disruption prolonged operative time by more than 32%. Teamwork forms the main source of disruption followed by operating table and patient positioning and arrangement of instruments. These three sources represented approximately 20% of operative time. Failure to follow principles of work design had a significant negative impact, lengthening operative time by approximately 15%. Although lighting and monitors had a relatively small impact on operative time, these factors could create inconvenience and stress within the surgical teams. In addition, the effect of failure to follow surgical protocols and policies or having incomplete patient records may have a limited effect on operative time but could have serious consequences. This report demonstrates that preventable disruption caused an increase in operative time and forced surgeons and patients to endure unnecessary delay of more than 32%. Such additional time could be used to deal with the pressure of emergency cases and to reduce waiting lists for elective surgery.
Chia, Wan Ni; Lee, Yan Quan; Tan, Kevin Shyong-Wei
2017-01-01
Malaria, despite being one of the world's oldest infectious diseases, remains difficult to eradicate because the parasite is rapidly developing resistance to frontline chemotherapies. Previous studies have shown that the parasite exhibits features resembling programmed cell death upon treatment with drugs that disrupt its digestive vacuole (DV), providing a phenotypic readout that can be detected using the imaging flow cytometer. Large compound collections can thus be screened to identify drugs that are able to disrupt the DV of the malaria parasite using this high-content high-throughput screening platform. As a proof-of-concept, 4440 compounds were screened using this platform in 4months and 254 hits (5.7% hit rate) were obtained. Additionally, 25 compounds (0.6% top hit rate) were observed to retain potent DV disruption activity that was comparable to the canonical DV disruptive drug chloroquine when tested at a ten-fold lower concentration from the original screen. This pilot study demonstrates the robustness and high-throughput capability of the imaging flow cytometer and we report herein the methodology of this screening assay. Copyright © 2016 Elsevier Inc. All rights reserved.
Psychosocial job stress and immunity: a systematic review.
Nakata, Akinori
2012-01-01
The purpose of this review was to provide current knowledge about the possible association between psychosocial job stress and immune parameters in blood, saliva, and urine. Using bibliographic databases (PubMed, PsychINFO, Web of Science, Medline) and the snowball method, 56 studies were found. In general, exposure to psychosocial job stress (high job demands, low job control, high job strain, job dissatisfaction, high effort-reward imbalance, overcommitment, burnout, unemployment, organizational downsizing, economic recession) had a measurable impact on immune parameters (reduced NK cell activity, NK and T cell subsets, CD4+/CD8+ ratio, and increased inflammatory markers). The evidence supports that psychosocial job stresses are related to disrupted immune responses but further research is needed to demonstrate cause-effect relationships.
Effects of sleep disruption and high fat intake on glucose metabolism in mice.
Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R
2016-06-01
Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this sleep phase contributes to restorative effects of recovery sleep on glycemic control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.
Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda
2016-09-19
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.
Marijuana, the Endocannabinoid System and the Female Reproductive System
Brents, Lisa K.
2016-01-01
Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system. PMID:27354844
rTMS to the right inferior parietal lobule disrupts self–other discrimination
Uddin, Lucina Q.; Molnar-Szakacs, Istvan; Zaidel, Eran; Iacoboni, Marco
2006-01-01
Self–other discrimination is fundamental to social interaction, however, little is known about the neural systems underlying this ability. In a previous functional magnetic resonance imaging study, we demonstrated that a right fronto-parietal network is activated during viewing of self-faces as compared with the faces of familiar others. Here we used image-guided repetitive transcranial magnetic stimulation (rTMS) to create a ‘virtual lesion’ over the parietal component of this network to test whether this region is necessary for discriminating self-faces from other familiar faces. The current results indeed show that 1 Hz rTMS to the right inferior parietal lobule (IPL) selectively disrupts performance on a self–other discrimination task. Applying 1 Hz rTMS to the left IPL had no effect. It appears that activity in the right IPL is essential to the task, thus providing for the first time evidence for a causal relation between a human brain area and this high-level cognitive capacity. PMID:17387382
Decoding a neural circuit controlling global animal state in C. elegans
Laurent, Patrick; Soltesz, Zoltan; Nelson, Geoffrey M; Chen, Changchun; Arellano-Carbajal, Fausto; Levy, Emmanuel; de Bono, Mario
2015-01-01
Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed. DOI: http://dx.doi.org/10.7554/eLife.04241.001 PMID:25760081
Real-time sensing and gas jet mitigation of VDEs on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Granetz, R. S.; Wolfe, S. M.; Izzo, V. A.; Reinke, M. L.; Terry, J. L.; Hughes, J. W.; Zhurovich, K.; Whyte, D. G.; Bakhtiari, M.; Wurden, G.
2006-10-01
Experiments have been carried out in Alcator C-Mod to test the effectiveness of gas jet disruption mitigation of VDEs with real-time detection and triggering by the C-Mod digital plasma control system (DPCS). The DPCS continuously computes the error in the plasma vertical position from the magnetics diagnostics. When this error exceeds an adjustable preset value, the DPCS triggers the gas jet valve (with a negligible latency time). The high-pressure gas (argon) only takes a few milliseconds to enter the vacuum chamber and begin affecting the plasma, but this is comparable to the VDE timescale on C-Mod. Nevertheless, gas jet injection reduced the halo current, increased the radiated power fraction, and reduced the heating of the divertor compared to unmitigated disruptions, but not quite as well as in earlier mitigation experiments with vertically stable plasmas. Presumably a faster overall response time would be beneficial, and several ways to achieve this will also be discussed.
Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila
Kroll, Jason R.; Wong, Karen G.; Siddiqui, Faria M.; Tanouye, Mark A.
2015-01-01
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure–sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shits1 mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders. PMID:26341658
Disruptive behaviour disorders and DSM-5.
Hawes, David J
2014-10-01
This article provides an overview of the revisions to the diagnoses of oppositional defiant disorder (ODD) and conduct disorder (CD) in DSM-5, and examines the key issues they raise. Particular attention is given to these changes in light of current treatment outcome evidence, including that published since the development of DSM-5. For both ODD and CD, DSM-5 retains the core features that previously defined the phenotypes for these diagnoses. DSM-5 nonetheless introduces a number of revisions pertaining to the guidelines for the application of these criteria, and markers for key individual differences in presentations of these disorders. These revisions reflect small but significant steps towards the perspective that children with disruptive behaviour problems are a highly heterogeneous population, and best characterised on the basis of both behavioural and emotional features. Importantly, there is growing evidence that the newly introduced changes to these diagnoses in DSM-5 may be better able to inform predictions regarding treatment response than previous diagnostic criteria. Copyright © 2014 Elsevier B.V. All rights reserved.
Transient-Free Operations With Physics-Based Real-time Analysis and Control
NASA Astrophysics Data System (ADS)
Kolemen, Egemen; Burrell, Keith; Eggert, William; Eldon, David; Ferron, John; Glasser, Alex; Humphreys, David
2016-10-01
In order to understand and predict disruptions, the two most common methods currently employed in tokamak analysis are the time-consuming ``kinetic EFITs,'' which are done offline with significant human involvement, and the search for correlations with global precursors using various parameterization techniques. We are developing automated ``kinetic EFITs'' at DIII-D to enable calculation of the stability as the plasma evolves close to the disruption. This allows us to quantify the probabilistic nature of the stability calculations and provides a stability metric for all possible linear perturbations to the plasma. This study also provides insight into how the control system can avoid the unstable operating space, which is critical for high-performance operations close to stability thresholds at ITER. A novel, efficient ideal stability calculation method and new real-time CER acquisition system are being developed, and a new 77-core server has been installed on the DIII-D PCS to enable experimental use. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Resilience Metrics for the Electric Power System: A Performance-Based Approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, Eric D.; Castillo, Andrea R; Silva-Monroy, Cesar Augusto
Grid resilience is a concept related to a power system's ability to continue operating and delivering power even in the event that low probability, high-consequence disruptions such as hurricanes, earthquakes, and cyber-attacks occur. Grid resilience objectives focus on managing and, ideally, minimizing potential consequences that occur as a result of these disruptions. Currently, no formal grid resilience definitions, metrics, or analysis methods have been universally accepted. This document describes an effort to develop and describe grid resilience metrics and analysis methods. The metrics and methods described herein extend upon the Resilience Analysis Process (RAP) developed by Watson et al. formore » the 2015 Quadrennial Energy Review. The extension allows for both outputs from system models and for historical data to serve as the basis for creating grid resilience metrics and informing grid resilience planning and response decision-making. This document describes the grid resilience metrics and analysis methods. Demonstration of the metrics and methods is shown through a set of illustrative use cases.« less
Disruption of Radiologist Workflow.
Kansagra, Akash P; Liu, Kevin; Yu, John-Paul J
2016-01-01
The effect of disruptions has been studied extensively in surgery and emergency medicine, and a number of solutions-such as preoperative checklists-have been implemented to enforce the integrity of critical safety-related workflows. Disruptions of the highly complex and cognitively demanding workflow of modern clinical radiology have only recently attracted attention as a potential safety hazard. In this article, we describe the variety of disruptions that arise in the reading room environment, review approaches that other specialties have taken to mitigate workflow disruption, and suggest possible solutions for workflow improvement in radiology. Copyright © 2015 Mosby, Inc. All rights reserved.
78 FR 31566 - Discretionary Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... will be made available in the form of a cooperative agreement to the current grantee, University of... least disruption to the states, communities, and constituencies that currently receive leadership... Community Based Services/University of Massachusetts (U42MC18283). Amount of the Non-Competitive Awards...
High heat flux issues for plasma-facing components in fusion reactors
NASA Astrophysics Data System (ADS)
Watson, Robert D.
1993-02-01
Plasma facing components in tokamak fusion reactors are faced with a number of difficult high heat flux issues. These components include: first wall armor tiles, pumped limiters, diverter plates, rf antennae structure, and diagnostic probes. Peak heat fluxes are 15 - 30 MW/m2 for diverter plates, which will operate for 100 - 1000 seconds in future tokamaks. Disruption heat fluxes can approach 100,000 MW/m2 for 0.1 ms. Diverter plates are water-cooled heat sinks with armor tiles brazed on to the plasma facing side. Heat sink materials include OFHC, GlidcopTM, TZM, Mo-41Re, and niobium alloys. Armor tile materials include: carbon fiber composites, beryllium, silicon carbide, tungsten, and molybdenum. Tile thickness range from 2 - 10 mm, and heat sinks are 1 - 3 mm. A twisted tape insert is used to enhance heat transfer and increase the burnout safety margin from critical heat flux limits to 50 - 60 MW/m2 with water at 10 m/s and 4 MPa. Tests using rastered electron beams have shown thermal fatigue failures from cracks at the brazed interface between tiles and the heat sink after only 1000 cycles at 10 - 15 MW/m2. These fatigue lifetimes need to be increased an order of magnitude to meet future requirements. Other critical issues for plasma facing components include: surface erosion from sputtering and disruption erosion, eddy current forces and runaway electron impact from disruptions, neutron damage, tritium retention and release, remote maintenance of radioactive components, corrosion-erosion, and loss-of-coolant accidents.
Patil, Mahesh D; Patel, Gopal; Surywanshi, Balaji; Shaikh, Naeem; Garg, Prabha; Chisti, Yusuf; Banerjee, Uttam Chand
2016-12-01
Disruption of Pseudomonas putida KT2440 by high-pressure homogenization in a French press is discussed for the release of arginine deiminase (ADI). The enzyme release response of the disruption process was modelled for the experimental factors of biomass concentration in the broth being disrupted, the homogenization pressure and the number of passes of the cell slurry through the homogenizer. For the same data, the response surface method (RSM), the artificial neural network (ANN) and the support vector machine (SVM) models were compared for their ability to predict the performance parameters of the cell disruption. The ANN model proved to be best for predicting the ADI release. The fractional disruption of the cells was best modelled by the RSM. The fraction of the cells disrupted depended mainly on the operating pressure of the homogenizer. The concentration of the biomass in the slurry was the most influential factor in determining the total protein release. Nearly 27 U/mL of ADI was released within a single pass from slurry with a biomass concentration of 260 g/L at an operating pressure of 510 bar. Using a biomass concentration of 100 g/L, the ADI release by French press was 2.7-fold greater than in a conventional high-speed bead mill. In the French press, the total protein release was 5.8-fold more than in the bead mill. The statistical analysis of the completely unseen data exhibited ANN and SVM modelling as proficient alternatives to RSM for the prediction and generalization of the cell disruption process in French press.
Boland, Elaine M.; Stange, Jonathan P.; Labelle, Denise R.; Shapero, Benjamin G.; Weiss, Rachel B.; Abramson, Lyn Y.; Alloy, Lauren B.
2015-01-01
The Behavioral Approach System (BAS)/Reward Hypersensitivity Theory and the Social Zeitgeber Theory are two biopsychosocial theories of bipolar spectrum disorders (BSD) that may work together to explain affective dysregulation. The present study examined whether BAS sensitivity is associated with affective symptoms via a) increased social rhythm disruption in response to BAS-relevant life events, or b) greater exposure to BAS events leading to social rhythm disruption and subsequent symptoms. Results indicated that high BAS individuals were more likely to experience social rhythm disruption following BAS-relevant events. Social rhythm disruption mediated the association between BAS-relevant events and symptoms (hypothesis a). High BAS individuals experienced significantly more BAS-relevant events, which predicted greater social rhythm disruption, which predicted greater levels of affective symptoms (hypothesis b). Individuals at risk for BSD may be sensitive to BAS-relevant stimuli, experience more BAS-relevant events, and experience affective dysregulation due to the interplay of the BAS and circadian rhythms. PMID:27429864
Changes in Adult Behavior to Decrease Disruption from Students in Nonclassroom Settings
ERIC Educational Resources Information Center
Bohanon, Hank
2015-01-01
Decreasing classroom disruptions that result from hallway-related behavior in high school settings can be very challenging for high school staff. This article presents a case example of preventing problem behavior related to hallway settings in a high school with over 1,200 students. The interventions are described, and the results of the plan are…
Novel IgE Inhibitors for the Treatment of Food Allergies
2015-10-01
currently the only FDA approved monoclonal anti-IgE therapy. We solved the IgE:omalizumab crystal structure to 2.54 Å. This structure elucidates the...Surprisingly, the complex structure shares significant similarity with the disruptive IgE inhibitor E2_79, and provides mechanistic insight into the...efficiency with which disruptive inhibitors are able to bind to, and accelerate FcεRIα dissociation from preformed IgE:FcεRIα complexes. Structural
Thyroid-disrupting chemicals and brain development: an update
Mughal, Bilal B; Fini, Jean-Baptiste; Demeneix, Barbara A
2018-01-01
This review covers recent findings on the main categories of thyroid hormone–disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone–disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone–disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss. PMID:29572405
Attaining minimally disruptive medicine: context, challenges and a roadmap for implementation.
Shippee, N D; Allen, S V; Leppin, A L; May, C R; Montori, V M
2015-01-01
In this second of two papers on minimally disruptive medicine, we use the language of patient workload and patient capacity from the Cumulative Complexity Model to accomplish three tasks. First, we outline the current context in healthcare, comprised of contrasting problems: some people lack access to care and others receive too much care in an overmedicalised system, both of which reflect imbalances between patients' workloads and their capacity. Second, we identify and address five tensions and challenges between minimally disruptive medicine, the existing context, and other approaches to accessible and patient-centred care such as evidence-based medicine and greater patient engagement. Third, we outline a roadmap of three strategies toward implementing minimally disruptive medicine in practice, including large-scale paradigm shifts, mid-level add-ons to existing reform efforts, and a modular strategy using an existing 'toolkit' that is more limited in scope, but can fit into existing healthcare systems.
Polluted Pathways: Mechanisms of Metabolic Disruption by Endocrine Disrupting Chemicals.
Mimoto, Mizuho S; Nadal, Angel; Sargis, Robert M
2017-06-01
Environmental toxicants are increasingly implicated in the global decline in metabolic health. Focusing on diabetes, herein, the molecular and cellular mechanisms by which metabolism disrupting chemicals (MDCs) impair energy homeostasis are discussed. Emerging data implicate MDC perturbations in a variety of pathways as contributors to metabolic disease pathogenesis, with effects in diverse tissues regulating fuel utilization. Potentiation of traditional metabolic risk factors, such as caloric excess, and emerging threats to metabolism, such as disruptions in circadian rhythms, are important areas of current and future MDC research. Increasing evidence also implicates deleterious effects of MDCs on metabolic programming that occur during vulnerable developmental windows, such as in utero and early post-natal life as well as pregnancy. Recent insights into the mechanisms by which MDCs alter energy homeostasis will advance the field's ability to predict interactions with classical metabolic disease risk factors and empower studies utilizing targeted therapeutics to treat MDC-mediated diabetes.
NASA Astrophysics Data System (ADS)
Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.
2017-10-01
Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
[The relationship between sleep and obesity: current perspective].
Piskáčková, Zlata; Forejt, Martin; Martykánová, Lucie
2012-01-01
Disruption of circadian rhythms negatively affects regulation of metabolism and energy homeostasis. Disrupted metabolism in response to disrupted biological rhythms might lead, together with genetic background, to obesity and to other health complications. Results of epidemiologic surveys are consistent with mechanistic theory showing the interconnection between the biological rhythms, sleep and metabolism. Epidemiologic surveys confirm that sleep duration of less than 6 hours increases significantly the risk of obesity. Systematic reviews of epidemiologic surveys examining association of sleep and obesity refer to large heterogeneity in involved subjects, methodological approaches of measuring obesity and sleep, and confounders. Design of study plays also essential role in interpretation and definition of causal relationship. Reduced sleep duration in relation to obesity is in the literature discussed from different points of view: 1. as a possible primary cause of obesity, 2. as a result of comorbidities resulting from obesity and 3. as an accompanied part of the third factor contributing to obesity (e.g. long working hours, chronic emotional stress, overusing of media). Causal relationship between sleep and obesity is not yet fully elucidated, however the association is supposed to be bidirectional. The article gives an overview of current knowledge concerning the influence of sleep on the development of obesity and points to the critical points of current research.
Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2017-10-01
Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.
Direct behavior rating as a school-based behavior universal screener: replication across sites.
Kilgus, Stephen P; Riley-Tillman, T Chris; Chafouleas, Sandra M; Christ, Theodore J; Welsh, Megan E
2014-02-01
The purpose of this study was to evaluate the utility of Direct Behavior Rating Single Item Scale (DBR-SIS) targets of disruptive, engaged, and respectful behavior within school-based universal screening. Participants included 31 first-, 25 fourth-, and 23 seventh-grade teachers and their 1108 students, sampled from 13 schools across three geographic locations (northeast, southeast, and midwest). Each teacher rated approximately 15 of their students across three measures, including DBR-SIS, the Behavioral and Emotional Screening System (Kamphaus & Reynolds, 2007), and the Student Risk Screening Scale (Drummond, 1994). Moderate to high bivariate correlations and area under the curve statistics supported concurrent validity and diagnostic accuracy of DBR-SIS. Receiver operating characteristic curve analyses indicated that although respectful behavior cut scores recommended for screening remained constant across grade levels, cut scores varied for disruptive behavior and academic engaged behavior. Specific cut scores for first grade included 2 or less for disruptive behavior, 7 or greater for academically engaged behavior, and 9 or greater for respectful behavior. In fourth and seventh grades, cut scores changed to 1 or less for disruptive behavior and 8 or greater for academically engaged behavior, and remained the same for respectful behavior. Findings indicated that disruptive behavior was particularly appropriate for use in screening at first grade, whereas academically engaged behavior was most appropriate at both fourth and seventh grades. Each set of cut scores was associated with acceptable sensitivity (.79-.87), specificity (.71-.82), and negative predictive power (.94-.96), but low positive predictive power (.43-.44). DBR-SIS multiple gating procedures, through which students were only considered at risk overall if they exceeded cut scores on 2 or more DBR-SIS targets, were also determined acceptable in first and seventh grades, as the use of both disruptive behavior and academically engaged behavior in defining risk yielded acceptable conditional probability indices. Overall, the current findings are consistent with previous research, yielding further support for the DBR-SIS as a universal screener. Limitations, implications for practice, and directions for future research are discussed. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Dean Pearson; Steve Sutherland; Jack Butler; Jane Smith; Carolyn Sieg
2011-01-01
Exotic plants dramatically impact natural communities and disrupt ecosystem services (Mack and others 2000). Although the bulk of current impacts are caused by relatively few exotic species, many additional exotics that are currently established at low levels are increasing in density and distribution and present substantial imminent threats. Additionally, new exotic...
The study of heat flux for disruption on experimental advanced superconducting tokamak
NASA Astrophysics Data System (ADS)
Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen
2016-05-01
Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.
Jang, Ji Woong; Kim, Myung-Hwan; Oh, Dongwook; Cho, Dong Hui; Song, Tae Jun; Park, Do Hyun; Lee, Sang Soo; Seo, Dong-Wan; Lee, Sung Koo; Moon, Sung-Hoon
Acute necrotizing pancreatitis (ANP) can affect main pancreatic duct (MPD) as well as parenchyma. However, the incidence and outcomes of MPD disruption has not been well studied in the setting of ANP. This retrospective study investigated 84 of 465 patients with ANP who underwent magnetic resonance cholangiopancreatography and/or endoscopic retrograde cholangiopancreatography. The MPD disruption group was subclassified into complete and partial disruption. MPD disruption was documented in 38% (32/84) of the ANP patients. Extensive necrosis, enlarging/refractory pancreatic fluid collections (PFCs), persistence of amylase-rich output from percutaneous drainage, and amylase-rich ascites/pleural effusion were more frequently associated with MPD disruption. Hospital stay was prolonged (mean 55 vs. 29 days) and recurrence of PFCs (41% vs. 14%) was more frequent in the MPD disruption group, although mortality did not differ between ANP patients with and without MPD disruption. Subgroup analysis between complete disruption (n = 14) and partial disruption (n = 18) revealed a more frequent association of extensive necrosis and full-thickness glandular necrosis with complete disruption. The success rate of endoscopic transpapillary pancreatic stenting across the stricture site was lower in complete disruption (20% vs. 92%). Patients with complete MPD disruption also showed a high rate of PFC recurrence (71% vs. 17%) and required surgery more often (43% vs. 6%). MPD disruption is not uncommon in patients with ANP with clinical suspicion on ductal disruption. Associated MPD disruption may influence morbidity, but not mortality of patients with ANP. Complete MPD disruption is often treated by surgery, whereas partial MPD disruption can be managed successfully with endoscopic transpapillary stenting and/or transmural drainage. Further prospective studies are needed to study these items. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Leung, Man-kit; Yang, Wan-Hsi; Chuang, Ching-Nan; Lee, Jiun-Haw; Lin, Chi-Feng; Wei, Mao-Kuo; Liu, Yu-Hao
2012-10-05
Five rigid oxadiazole (OXD) containing silanes, denoted 1-5, have been developed with high morphological stability. Disruption of the π-aromatic conjugation by introduction of Si atoms leads to a large band gap and high triplet energy. Among the OXDs we studied, 2,5-bis(triphenylsilylphenyl)-1,3,4-oxadiazole 5 is the best host for FIrpic, with a phosphorescent organic light emitting diode (PHOLED) turn-on voltage of 6.9 V, maximum luminance of 5124 cd/m(2), current efficiency of 39.9 cd/A, and external quantum efficiency of 13.1%. Special molecular stacking in the single crystal of 5 was discussed.
Marken, Ken
2018-01-09
The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors â high-temperature superconducting (HTS) tapes â which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.
ERIC Educational Resources Information Center
Cholewa, Blaire; Smith-Adcock, Sondra; Amatea, Ellen
2010-01-01
Elementary school counselors are often expected to intervene when students are disruptive. This article describes four evidence-based programs that have been shown to be highly effective in changing children's disruptive behavior. The success of these programs rests on the involvement of both parents and teachers in developing a collaborative…
ERIC Educational Resources Information Center
Romi, Shlomo; Freund, Mira
1999-01-01
Explores the attitudes of students, teachers, and parents toward students' disruptive behavior as part of school discipline. Finds that teachers agreed on the severity of most disruptive behavior problems, while parents and students disagreed among themselves. Indicates that parents and students should be involved with discipline-related policies.…
ERIC Educational Resources Information Center
Forbes, L. M.; Evans, E. M.; Moran, G.; Pederson, D. R.
2007-01-01
This longitudinal study examined links between disorganization and atypical maternal behavior at 12 and 24 months in 71 adolescent mother-child dyads. Organized attachment and maternal not disrupted behavior were more stable than disorganization and disrupted behavior, respectively. At both ages, disorganization and maternal disrupted behavior…
McMahon, William E.; Friedman, Daniel J.; Geisz, John F.
2017-05-23
This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, William E.; Friedman, Daniel J.; Geisz, John F.
This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less
In vitro based assays are used to identify potential endocrine disrupting chemicals. Thyroperoxidase (TPO), an enzyme essential for thyroid hormone (TH) synthesis, is a target site for disruption of the thyroid axis for which a high-throughput screening (HTPS) assay has recently ...
High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limi...
ERIC Educational Resources Information Center
Holland, Denise D.; Piper, Randy T.
2016-01-01
We introduce diverse definitions of leadership and its evolutionary history and then we integrate this idea network: strategic thinking, high-trust leadership, blended learning, and disruptive innovation. Following the lead of Marx's (2014) model of Teaching Leadership and Strategy and Rehm's (2014) model of High School Student Leadership…
ERIC Educational Resources Information Center
Cochran, Jeff L.; Cochran, Nancy H.; Fuss, Angela; Nordling, William J.
2010-01-01
Children with highly disruptive behavior present problems for their peers and are often a heavy burden to the schools, teachers, counselors, and other adults who care for them. Without successful intervention, such children certainly face lives of high risk, emotional pain, and ever-increasing difficulty; from a humanistic perspective, such an…
Identifying chemicals that are planetary boundary threats.
MacLeod, Matthew; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; Persson, Linn M; Rudén, Christina; McLachlan, Michael S
2014-10-07
Rockström et al. proposed a set of planetary boundaries that delimit a "safe operating space for humanity". Many of the planetary boundaries that have so far been identified are determined by chemical agents. Other chemical pollution-related planetary boundaries likely exist, but are currently unknown. A chemical poses an unknown planetary boundary threat if it simultaneously fulfills three conditions: (1) it has an unknown disruptive effect on a vital Earth system process; (2) the disruptive effect is not discovered until it is a problem at the global scale, and (3) the effect is not readily reversible. In this paper, we outline scenarios in which chemicals could fulfill each of the three conditions, then use the scenarios as the basis to define chemical profiles that fit each scenario. The chemical profiles are defined in terms of the nature of the effect of the chemical and the nature of exposure of the environment to the chemical. Prioritization of chemicals in commerce against some of the profiles appears feasible, but there are considerable uncertainties and scientific challenges that must be addressed. Most challenging is prioritizing chemicals for their potential to have a currently unknown effect on a vital Earth system process. We conclude that the most effective strategy currently available to identify chemicals that are planetary boundary threats is prioritization against profiles defined in terms of environmental exposure combined with monitoring and study of the biogeochemical processes that underlie vital Earth system processes to identify currently unknown disruptive effects.
Marital Biography and Health at Mid-Life*
Hughes, Mary Elizabeth; Waite, Linda J.
2011-01-01
This article develops a series of hypotheses about the long-term effects of one’s history of marriage, divorce, and widowhood on health, and it tests those hypotheses using data from the Health and Retirement Study. We examine four dimensions of health at mid-life: chronic conditions, mobility limitations, self-rated health, and depressive symptoms. We find that the experience of marital disruption damages health, with the effects still evident years later; among the currently married, those who have ever been divorced show worse health on all dimensions. Both the divorced and widowed who do not remarry show worse health than the currently married on all dimensions. Dimensions of health that seem to develop slowly, such as chronic conditions and mobility limitations, show strong effects of past marital disruption, whereas others, such as depressive symptoms, seem more sensitive to current marital status. Those who spent more years divorced or widowed show more chronic conditions and mobility limitations. PMID:19711810
Zhuang, H D; Zhang, X D
2015-05-01
A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.
Li, Qiang; Aucamp, Jean P; Tang, Alison; Chatel, Alex; Hoare, Mike
2012-08-01
An ultra scale-down (USD) device that provides insight of how industrial homogenization impacts bioprocess performance is desirable in the biopharmaceutical industry, especially at the early stage of process development where only a small quantity of material is available. In this work, we assess the effectiveness of focused acoustics as the basis of an USD cell disruption method to mimic and study high-pressure, step-wise homogenization of rec Escherichia coli cells for the recovery of an intracellular protein, antibody fragment (Fab'). The release of both Fab' and of overall protein follows first-order reaction kinetics with respect to time of exposure to focused acoustics. The rate constant is directly proportional to applied electrical power input per unit volume. For nearly total protein or Fab' release (>99%), the key physical properties of the disruptate produced by focused acoustics, such as cell debris particle size distribution and apparent viscosity show good agreement with those for homogenates produced by high-pressure homogenization operated to give the same fractional release. The only key difference is observed for partial disruption of cells where focused acoustics yields a disruptate of lower viscosity than homogenization, evidently due to a greater extent of polynucleic acids degradation. Verification of this USD approach to cell disruption by high-pressure homogenization is achieved using USD centrifugation to demonstrate the same sedimentation characteristics of disruptates prepared using both the scaled-down focused acoustic and the pilot-scale homogenization methods for the same fraction of protein release. Copyright © 2012 Wiley Periodicals, Inc.
Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan
2014-11-01
The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.
Classroom discipline skills and disruption rate: A correlational study
NASA Astrophysics Data System (ADS)
Dropik, Melonie Jane
Very little has been done to quantify the relationship between the frequency with which teachers use discipline skills and disruption rate in high school settings. Most of the available research that examined this relationship empirically was done in elementary schools, while a few studies examined the junior high school setting. The present research examined whether the use of ten specific discipline skills were related to the rate of disruption in suburban high school science classrooms. The ten skills were selected based on their prevalence in the theoretical literature and the strength of the relationships reported in empirical studies of elementary and junior high classrooms. Each relationship was tested directionally at alpha = .01. The maximum experimentwise Type I error rate was .10. Disruption rate was measured by trained observers over five class periods in the Fall of the school year. The frequency of performing the ten skills was assessed using a student survey developed for this study. The ten skills were: (1) beginning class on time, (2) using routines, (3) waiting for student attention before speaking, (4) giving clear directions, (5) presenting material fast enough to hold students' attention, (6) requiring students to remain seated, (7) appearing confident, (8) stopping misbehavior quickly, (9) checking for student attentiveness, and (10) teaching to the bell. Appearing confident (r = --.697, p = .004) and quickly stopping misbehavior (r = --.709, p = .003) were significantly negatively related to disruption rate. The effect sizes for the confidence and stopping misbehavior variables were .49 and .50, respectively. At least half of the variation in disruption rate was attributable to the difference in the frequency of appearing confident and stopping misbehavior quickly. The eight other relationships produced nonsignificant results. The results raise questions about whether theories developed from observational and anecdotal evidence gathered in elementary or junior high school classrooms can be applied to high school classrooms and indicate that further investigation into the high school setting is necessary.
Severe Craniofacial Involvement due to Amniotic Band Sequence.
Becerra-Solano, Luis Eduardo; Castañeda-Cisneros, Gema; Corona-Rivera, Jorge Roman; Díaz-Rodríguez, Manuel; Figuera, Luis Eduardo; López-Muñoz, Eunice; Nastasi-Catanese, José Antonio; Toscano-Flores, José Jesús; Ramírez-Dueñas, María de Lourdes; García-Ortíz, José Elias
2018-02-01
Disruptive amniotic band sequence (DABS) is a sporadic, non-familial disorder with unclear etiology. Diagnosis is based on clinical features because there is currently no reliable laboratory diagnostic tests. We describe six cases of DABS with severe craniofacial deformations, three with and three without classical constrictive limb deformation. The craniofacial deformities were delimited by peripheral sharply demarcated scarring. When a sharply demarcated linear disruptive craniofacial lesion is observed, DABS should be considered despite the absence of constrictive limb scarring.
High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia
2016-10-01
Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.
Erath, Stephen A.; Bierman, Karen L.
2009-01-01
Direct associations between aggressive marital conflict and child aggressive-disruptive behavior at home and school were explored in this cross-sectional study of 360 kindergarten children. In addition, mediated pathways linking aggressive marital conflict to maternal harsh punishment to child aggressive-disruptive behavior were examined. Moderation analyses explored how the overall frequency of marital disagreement might buffer or exacerbate the impact of aggressive marital conflict on maternal harsh punishment and child aggressive-disruptive behavior. Hierarchical regressions revealed direct pathways linking aggressive marital conflict to child aggressive-disruptive behavior at home and school and a partially mediated pathway linking aggressive marital conflict to child aggressive-disruptive behavior at home. Further analyses revealed that rates of marital disagreement moderated the association between aggressive marital conflict and child aggressive-disruptive behavior at home, with an attenuated association at high rates of marital disagreement as compared with low rates of marital disagreement. PMID:16756397
Wei, Benxi; Cai, Canxin; Xu, Baoguo; Jin, Zhengyu; Tian, Yaoqi
2018-02-01
The mechanism underlying the fragmentation of waxy maize starch (WMS) granules during high-pressure homogenization (HPH) was studied and the results were interpreted in terms of granular and molecular aspects. The diameter of disrupted starch granules decreased exponentially with increasing HPH pressure, but decreased linearly with increasing of HPH cycles. Scanning electron microscopy revealed a cone-like inside-out disruption pattern through the channels that resulted in separation of blocklets fragments or starch fragments. The M w of amylopectin was reduced by ∼half following treatment at 150MPa with two cycles, or at 100MPa for eight cycles, and the decrease was in accordance with the disruption of starch granules. This indicated that amylopectin was "protected" by blocklets, and the disruption of WMS granules mainly occurred close to the linkage among blocklets. Increasing the HPH pressure appeared to be more effective for breaking starch granules than increasing the number of HPH cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-04-13
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High-throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Ellis-Hutchings, Robert G; Settivari, Raja S; McCoy, Alene T; Kleinstreuer, Nicole; Franzosa, Jill; Knudsen, Thomas B; Carney, Edward W
2017-06-01
Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Formation and dissipation of runaway current by MGI on J-TEXT
NASA Astrophysics Data System (ADS)
Wei, Yunong; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai; Zhang, Xiaolong
2017-10-01
Plasma disruptions are one of the major concern for ITER. A large fraction of runaway current may be formed due to the avalanche generation of runaway electrons (REs) during disruptions and ruin the device structure. Experiments of runaway current formation and dissipation have been done on J-TEXT. Two massive gas injection (MGI) valves are used to form and dissipate the runaway current. Hot tail RE generation caused by the fast thermal quench leads to an abnormal formation of runaway current when the pre-TQ electron density increases in a range of 0.5-2-10 19m-3. 1020-22 quantities of He, Ne, Ar or Kr impurities are injected by MGI2 to dissipate the runaway current. He injection shows no obvious effect on runaway current dissipation in the experiments and Kr injection shows the best. The kinetic energy of REs and the magnetic energy of RE beam will affect the dissipation efficiency to a certain extent. Runaway current decay rate is found increasing quickly with the increase of the gas injection when the quantity is moderate, and then reaches to a saturation value with large quantity injection. A possible reason to explain the saturation of dissipation effect is the saturation of gas assimilation efficiency.
Electrical stimulation of a small brain area reversibly disrupts consciousness.
Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne
2014-08-01
The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Collins, Tai A.; Cook, Clayton R.; Dart, Evan H.; Socie, Diana G.; Renshaw, Tyler L.; Long, Anna C.
2016-01-01
Off-task and disruptive classroom behaviors have a negative impact on the learning environment and present a unique challenge for teachers to address. The aim of this study was to evaluate the Class Pass Intervention (CPI) as a behavior management strategy for secondary students with disruptive classroom behavior. The CPI consists of providing…
Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.
Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A
2014-07-01
Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.
Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells
Reifenberger, Matthew S.; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Eaton, Douglas C.; Alli, Abdel A.
2014-01-01
Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na+ channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. PMID:24829507
School Counselors Connecting the Dots between Disruptive Classroom Behavior and Youth Self-Concept
ERIC Educational Resources Information Center
Bidell, Markus P.; Deacon, Robert E.
2010-01-01
Students exhibiting emotional and behavioral problems in the classroom can significantly impact the learning environment and often are referred to school counselors. The purpose of this study was to evaluate the relationship between high school students' self-concept and disruptive classroom behaviors (DCB). High school students (N = 92)…
NASA Astrophysics Data System (ADS)
Xu, Heqiucen; Shiokawa, Kazuo; Frühauff, Dennis
2017-10-01
We statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet at 6-12 RE (Earth radii; 1 RE = 6371 km), because they are important for non-magnetohydrodynamics (non-MHD) effects in the magnetotail and are considered to be necessary for current disruption in the inside-out substorm model. We used magnetic field data from 2013 and 2014 obtained by the Time History of Events and Macroscale Interactions during Substorms E (THEMIS-E) satellite (sampling rate: 4 Hz). A total of 1283 severe magnetic fluctuation events were identified that satisfied the criteria σB/B > 0. 5, where σB and B are the standard deviation and the average value of magnetic field intensity during the time interval of the local proton gyroperiod, respectively. We found that the occurrence rates of severe fluctuation events are 0.00118, 0.00899, and 0.0238 % at 6-8, 8-10, and 10-12 RE, respectively, and most events last for no more than 15 s. From these occurrence rates, we estimated the possible scale sizes of current disruption by severe magnetic fluctuations as 3.83 RE3 by assuming that four substorms with 5 min intervals of current disruption occur every day. The fluctuation events occurred most frequently at the ZGSM (Z distance in the geocentric solar magnetospheric coordinate system) close to the model neutral sheet within 0.2 RE. Most events occur in association with sudden decreases in the auroral electrojet lower (AL) index and magnetic field dipolarization, indicating that they are related to substorms. Sixty-two percent of magnetic fluctuation events were accompanied by ion flow with velocity V > 100 km s-1, indicating that the violation of ion gyromotion tends to occur during high-speed flow in the near-Earth plasma sheet. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We discuss how both the inside-out and outside-in substorm models can explain this increase in flow speeds before magnetic fluctuation events.
Daianu, Madelaine; Jahanshad, Neda; Villalon-Reina, Julio E.; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Joshi, Aditi; Barsuglia, Joseph; Thompson, Paul M.
2015-01-01
Diffusion imaging and brain connectivity analyses can reveal the underlying organizational patterns of the human brain, described as complex networks of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-weighted images from 64 participants – 15 patients with behavioral variant frontotemporal (bvFTD) dementia, 19 with early-onset Alzheimer’s disease (EOAD), and 30 healthy elderly controls. Based on whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We examined how bvFTD and EOAD disrupt the weighted ‘rich club’ – a network property where high-degree network nodes are more interconnected than expected by chance. bvFTD disrupts both the nodal and global organization of the network in both low- and high-degree regions of the brain. EOAD targets the global connectivity of the brain, mainly affecting the fiber density of high-degree (highly connected) regions that form the rich club network. These rich club analyses suggest distinct patterns of disruptions among different forms of dementia. PMID:26161050
Disruption of Helmet Streamers by Current Emergence
NASA Technical Reports Server (NTRS)
Guo, W. P.; Wu, S. T.; Tandberg-Hanssen, E.
1996-01-01
We have investigated the dynamic response of a coronal helmet streamer to the emergence from below of a current with its magnetic field in a direction opposite to the overlying streamer field. Once the emerging current moves into the closed region of the streamer, a current sheet forms between the emerging field and the streamer field, because the preexisting field and the newly emerging field have opposite polarities. Thus magnetic reconnection will occur at the flanks of the emerged structure where the current density is maximum. If the emerging current is large enough, the energy contained in the current and the reconnection will promptly disrupt the streamer. If the emerging current is small, the streamer will experience a stage of slow evolution. In this stage, slow magnetic reconnection occurring at the flanks of the emerged structure leads to the degeneration of the emerged current to a neutral point. Above this point, a new magnetic bubble will form. The resulting configuration resembles an inverse-polarity prominence. Depending on the initial input energy of the current, the resulting structure will either remain in situ, forming a quasi-static structure, or move upward, forming a coronal transient similar to coronal jets. The numerical method used in this paper can be used to construct helmet streamers containing a detached magnetic structure in their closed field region. The quasi-static solution may serve as a preevent corona for studying coronal mass ejection initiation.
Nigeria Country Analysis Brief
2016-01-01
Nigeria is currently the largest oil producer in Africa and was the world's fourth-largest exporter of LNG in 2015. Nigeria's oil production is hampered by instability and supply disruptions, while its natural gas sector is restricted by the lack of infrastructure to commercialize natural gas that is currently flared (burned off).
Lins, Brittney R; Marks, Wendie N; Phillips, Anthony G; Howland, John G
2017-04-01
The search for novel antipsychotic drugs to treat schizophrenia is driven by the poor treatment efficacy, serious side effects, and poor patient compliance of current medications. Recently, a class of compounds known as tetrahydroprotoberberines, which includes the compound d,l -govadine, have shown promise in preclinical rodent tests relevant to schizophrenia. To date, the effect of govadine on prepulse inhibition (PPI), a test for sensorimotor gating commonly used to assess the effects of putative treatments for schizophrenia, has not been determined. The objective of the present study was to determine the effects of each enantiomer of govadine ( d - and l -govadine) on PPI alone and its disruption by the distinct pharmacological compounds apomorphine and MK-801. Male Long-Evans rats were treated systemically with d - or l -govadine and apomorphine or MK-801 prior to PPI. The PPI paradigm employed here included parametric manipulations of the prepulse intensity and the interval between the prepulse and pulse. Acute MK-801 (0.15 mg/kg) significantly increased the startle response to startle pulses alone, while both MK-801 and apomorphine (0.2 mg/kg) significantly increased reactivity to prepulse-alone trials. Both MK-801 and apomorphine disrupted PPI. In addition, d -govadine alone significantly disrupted PPI in the apomorphine experiment. Pretreatment with l -, but not d -, govadine (1.0 mg/kg) blocked the effect of apomorphine and MK-801 on PPI. Treatment of rats with l -govadine alone (0.3, 1.0, 3.0 mg/kg) also dose-dependently increased PPI. Given the high affinity of l -govadine for dopamine D2 receptors, these results suggest that further testing of l -govadine as an antipsychotic is warranted.
The power of disruptive technological innovation: Transcatheter aortic valve implantation.
Berlin, David B; Davidson, Michael J; Schoen, Frederick J
2015-11-01
We sought to evaluate the principles of disruptive innovation, defined as technology innovation that fundamentally shifts performance and utility metrics, as applied to transcatheter aortic valve implantation (TAVI). In particular, we considered implantation procedure, device design, cost, and patient population. Generally cheaper and lower performing, classical disruptive innovations are first commercialized in insignificant markets, promise lower margins, and often parasitize existing usage, representing unattractive investments for established market participants. However, despite presently high unit cost, TAVI is less invasive, treats a "new," generally high risk, patient population, and is generally done by a multidisciplinary integrated heart team. Moreover, at least in the short-term TAVI has not been lower-performing than open surgical aortic valve replacement in high-risk patients. We conclude that TAVI extends the paradigm of disruptive innovation and represents an attractive commercial opportunity space. Moreover, should the long-term performance and durability of TAVI approach that of conventional prostheses, TAVI will be an increasingly attractive commercial opportunity. © 2014 Wiley Periodicals, Inc.
Capture of Small Bodies After Tidal Disruption
NASA Astrophysics Data System (ADS)
Ershova, A.; Medvedev, Yu.
2017-09-01
The subject of the current work is the phisical and dynamical evolution of the small comets group formed by tidal disruption of the protocomet while passing near the large body (Sun, Jupiter). The equations of motion were integrated numericaly. In case of the Sun the evolution of the sun-grazing orbits were discussed and the typical lifetime of such comets was estimated. Nongravitational acceleration and the size reduction of fragments due to sublimation were taking into account using the Marsden formula.
Relational trauma: using play therapy to treat a disrupted attachment.
Anderson, Sarah M; Gedo, Paul M
2013-01-01
Caregiver-child attachment results in a cognitive-emotional schema of self, other, and self-other relationships. Significantly disrupted attachments may lead to pathogenic internal working models, which may have deleterious consequences; this indicates the need for early attachment intervention. The authors consider the therapy of a 3-year-old boy with aggressive behaviors who had lacked consistent caregiving. Attachment theory can account for the child's psychotherapeutic gains, despite his insecure attachment style. The authors discuss discrepancies between treatment and current research trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohrs, J.T.
It is popularly reported that rapid population influx due to energy development in the Rocky Mountain states has led to an increase in numerous social disruptions. Professional literature dealing with immigration, population density, crowding, urbanization or new communities does not appear generalizable to rapid population influx in western states. The current study is thus an exploratory one, designed to investigate whether social disruptions over a 15 year period, including institutional admissions, auto accidents, bankruptcies, cost of criminal administration, crime, divorce, fires, infant deaths, school dropouts and welfare recipients occur along with boom growth in Wyoming.
Spiller, Laura C.; Jouriles, Ernest N.; McDonald, Renee; Skopp, Nancy A.
2012-01-01
Objective Despite the substantial co-occurrence of women’s experiences of physical and sexual violence, very little is known about their separate and combined effects on child functioning. The present study examines whether sexual victimization experienced by physically abused women is associated with their children’s disruptive behavior problems, after controlling for mothers’ physical victimization and parent to child aggression. It also tests the hypothesis that maternal distress mediates the association between women’s sexual victimization and their children’s disruptive behavior problems. Method The sample includes 449 mothers and their children (4–8 years) who were recruited while residing in domestic violence shelters. Mothers reported on their experiences of physical and sexual victimization over the past year and their current symptoms of psychological distress. Trained diagnosticians interviewed mothers about their children’s disruptive behavior problems. Results Approximately 75% of the women reported experiences of sexual victimization. Physically abused women’s experiences of sexual victimization correlated positively with their children’s disruptive behavior problems and their own psychological distress. The results of path analyses indicated that maternal psychological distress mediates the relation between women’s experiences of sexual victimization and their children’s disruptive behavior problems. Conclusions This research suggests that physically abused women’s experiences of sexual victimization are important for understanding their children’s disruptive behavior problems. Additionally, this research provides further evidence that maternal psychological distress is important for understanding how intimate partner violence might influence children. PMID:23166861
High prevalence of body dysmorphic disorder symptoms in patients seeking rhinoplasty.
Picavet, Valerie A; Prokopakis, Emmanuel P; Gabriëls, Lutgardis; Jorissen, Mark; Hellings, Peter W
2011-08-01
Nasal aesthetic deformities may be associated with significant body image dissatisfaction. The only diagnostic category in the current list of psychiatric disorders that directly addresses these concerns is body dysmorphic disorder. This large-scale study determined the prevalence of body dysmorphic disorder and its symptoms in patients seeking rhinoplasty and evaluated the clinical profile of these patients. Two hundred twenty-six patients were given questionnaires including demographic characteristics, visual analogue scales for nasal shape, the Yale-Brown Obsessive Compulsive Scale modified for body dysmorphic disorder to assess severity of symptoms, a generic quality-of-life questionnaire, and the Derriford Appearance Scale 59, to assess appearance-related disruption of everyday living. Independent observers scored the nasal shape. Thirty-three percent of patients showed at least moderate symptoms of body dysmorphic disorder. Aesthetic goals (p < 0.001), revision rhinoplasty (p = 0.003), and psychiatric history (p = 0.031) were associated with more severe symptoms. There was no correlation between the objective and subjective scoring of the nasal shape. Yale-Brown scale modified for body dysmorphic disorder scores correlated inversely with the subjective nasal scoring (n = 210, p < 0.001), without relation to the objective deformity of the nose. Body dysmorphic disorder symptoms significantly reduced the generic quality of life (n = 160, p < 0.001) and led to significant appearance-related disruption of everyday living (n = 161, p < 0.001). The prevalence of moderate to severe body dysmorphic disorder symptoms in an aesthetic rhinoplasty population is high. Patients undergoing revision rhinoplasty and with psychiatric history are particularly at risk. Body dysmorphic disorder symptoms significantly reduce the quality of life and cause significant appearance-related disruption of everyday living. Risk, III.
Kufareva, Irina; Abagyan, Ruben
2014-01-01
Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM–3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption. PMID:24928891
McRobb, Fiona M; Kufareva, Irina; Abagyan, Ruben
2014-09-01
Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM-3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Marchiq, Ibtissam; Le Floch, Renaud; Roux, Danièle; Simon, Marie-Pierre; Pouyssegur, Jacques
2015-01-01
Rapidly growing glycolytic tumors require energy and intracellular pH (pHi) homeostasis through the activity of two major monocarboxylate transporters, MCT1 and the hypoxia-inducible MCT4, in intimate association with the glycoprotein CD147/BASIGIN (BSG). To further explore and validate the blockade of lactic acid export as an anticancer strategy, we disrupted, via zinc finger nucleases, MCT4 and BASIGIN genes in colon adenocarcinoma (LS174T) and glioblastoma (U87) human cell lines. First, we showed that homozygous loss of MCT4 dramatically sensitized cells to the MCT1 inhibitor AZD3965. Second, we demonstrated that knockout of BSG leads to a decrease in lactate transport activity of MCT1 and MCT4 by 10- and 6-fold, respectively. Consequently, cells accumulated an intracellular pool of lactic and pyruvic acids, magnified by the MCT1 inhibitor decreasing further pHi and glycolysis. As a result, we found that these glycolytic/MCT-deficient cells resumed growth by redirecting their metabolism toward OXPHOS. Third, we showed that in contrast with parental cells, BSG-null cells became highly sensitive to phenformin, an inhibitor of mitochondrial complex I. Phenformin addition to these MCT-disrupted cells in normoxic and hypoxic conditions induced a rapid drop in cellular ATP-inducing cell death by "metabolic catastrophe." Finally, xenograft analysis confirmed the deleterious tumor growth effect of MCT1/MCT4 ablation, an action enhanced by phenformin treatment. Collectively, these findings highlight that inhibition of the MCT/BSG complexes alone or in combination with phenformin provides an acute anticancer strategy to target highly glycolytic tumors. This genetic approach validates the anticancer potential of the MCT1 and MCT4 inhibitors in current development. ©2014 American Association for Cancer Research.
Walker, Deena M.; Zama, Aparna M.; Armenti, AnnMarie E.; Uzumcu, Mehmet
2011-01-01
Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors reprograms expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16–17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence. PMID:22016562
The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds
Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.
2013-01-01
Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352
Disruption Neutral Point Experiment on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Granetz, R. S.; Nakamura, Y.
2000-10-01
Disruptions of single-null elongated plasmas generally result in loss of vertical position control, leading to a current quench occurring at the top or bottom of the machine, with all the attendant problems of halo and eddy currents flowing in divertor structures. On JT-60U, it has been found that if the plasma is operated with its magnetic axis at a particular height, called the neutral point, the initial vertical drift after a thermal quench is significantly slower than usual, and sometimes can even be arrested, thereby avoiding a current quench in the divertor region entirely. In an ongoing collaboration between MIT and JAERI, the neutral point concept is being tested in Alcator C-Mod, which has a significantly higher plasma elongation than JT-60U (1.65 vs 1.3). Calculations using TSC predict a neutral point at z~=+1 cm above the midplane (a=22 cm). The existence of a neutral point has now been experimentally confirmed, albeit at a height of z=+2.7 cm. The plasma has remained vertically stable for up to 9 ms after the disruption thermal quench, which in principle, is long enough for the PF control system to respond, if programmed appropriately. In addition, the physics of the neutral point stability on C-Mod appears to be somewhat different than that on JT-60U.
Kink modes and surface currents associated with vertical displacement events
NASA Astrophysics Data System (ADS)
Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan
2012-08-01
The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, qaxis, remains fixed and the qedge systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when qedge drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.
HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents
NASA Astrophysics Data System (ADS)
Navratil, G. A.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Levesque, J. P.; Mauel, M. E.; Stewart, I. G.; Hansen, C. J.
2017-10-01
The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. Comparison of kink mode structure and RMP response in circular versus diverted plasmas shows good agreement with DCON modeling. SOL current measurements have been used to study SOL current dynamics and current-sharing with the vacuum vessel wall during kink-mode growth and disruptions. A multi-chord extreme UV/soft X-ray array is being installed to provide detailed internal mode structure information. Internal local electrodes were used to apply local bias voltage at two radial locations to study the effect of rotation profile on MHD mode rotation and stability and radial current flow through the SOL. A GPU-based low latency control system using 96 inputs and 64 outputs to apply magnetic perturbations for active control of kink modes is extended to directly control the SOL currents for kink-mode control. An extensive array of SOL current monitors and edge drive electrodes are being installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.
ERIC Educational Resources Information Center
McCormick, Meghan P.; Turbeville, Ashley R.; Barnes, Sophie P.; McClowry, Sandee G.
2014-01-01
Research Findings: Racial/ethnic minority low-income children with temperaments high in negative reactivity are at heightened risk for developing disruptive behavior problems. Teacher-child relationships characterized by high levels of closeness and low levels of conflict may protect against the development of disruptive behaviors in school. The…
Parent Use of DRI on High Rate Disruptive Behavior: Direct and Collateral Benefits.
ERIC Educational Resources Information Center
Friman, Patrick C.; Altman, Karl
1990-01-01
This study evaluates parental use of differential reinforcement of other and/or incompatible behavior to treat high-rate disruptive behavior in a severely retarded four-year-old boy. A withdrawal experimental design was used. Intervention effectively reduced instances of toy chewing and throwing, while appropriate toy play and ability to remain…
Disruptive Behaviour in Religious and Secular High Schools: Teachers' and Students' Attitudes
ERIC Educational Resources Information Center
Romi, Shlomo
2004-01-01
This two-phase study, conducted in religious and secular high schools, investigated the attitudes of teachers and students to disruptive behaviour. The first phase examined a religious school, then applied the same research tools to a secular school. It was assumed that differences of attitude would be found, with teachers viewing disruptive…
The study of heat flux for disruption on experimental advanced superconducting tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhendong, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Fang, Jianan, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn
Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptionsmore » have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR{sub sep} = −2 cm, while it changes to upper single null (dR{sub sep} = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m{sup 2}.« less
A class of compact dwarf galaxies from disruptive processes in galaxy clusters.
Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S
2003-05-29
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.
Thigmotaxis Mediates Trail Odour Disruption.
Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M
2017-05-10
Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.
"Trojan Horse" strategy for deconstruction of biomass for biofuels production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann
2008-08-01
Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze themore » cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.« less
Disruption of River Networks in Nature and Models
NASA Astrophysics Data System (ADS)
Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.
2017-12-01
Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.
Modeling resistive wall modes and disruptive instabilities with M3D-C1
NASA Astrophysics Data System (ADS)
Ferraro, Nm; Jardin, Sc; Pfefferle, D.
2016-10-01
Disruptive instabilities pose a significant challenge to the tokamak approach to magnetic fusion energy, and must be reliably avoided in a successful reactor. These instabilities generally involve rapid, global changes to the magnetic field, and electromagnetic interaction with surrounding conducting structures. Here we apply the extended-MHD code M3D-C1 to calculate the stability and evolution of disruptive modes, including their interaction with external conducting structures. The M3D-C1 model includes the effects of resistivity, equilibrium rotation, and resistive walls of arbitrary thickness, each of which may play important roles in the stability and evolution of disruptive modes. The strong stabilizing effect of rotation on resistive wall modes is explored and compared with analytic theory. The nonlinear evolution of vertical displacement events is also considered, including the evolution of non-axisymmetric instabilities that may arise during the current-quench phase of the disruption. It is found that the non-axisymmetric stability of the plasma during a VDE depends strongly on the thermal history of the plasma. This work is supported by US DOE Grant DE-AC02-09CH11466 and the SciDAC Center for Extended MHD Modeling.
High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling.
Fernandes, Herman B; Catches, Justin S; Petralia, Ronald S; Copits, Bryan A; Xu, Jian; Russell, Theron A; Swanson, Geoffrey T; Contractor, Anis
2009-09-24
Kainate receptors signal through both ionotropic and metabotropic pathways. The high-affinity subunits, GluK4 and GluK5, are unique among the five receptor subunits, as they do not form homomeric receptors but modify the properties of heteromeric assemblies. Disruption of the Grik4 gene locus resulted in a significant reduction in synaptic kainate receptor currents. Moreover, ablation of GluK4 and GluK5 caused complete loss of synaptic ionotropic kainate receptor function. The principal subunits were distributed away from postsynaptic densities and presynaptic active zones. There was also a profound alteration in the activation properties of the remaining kainate receptors. Despite this, kainate receptor-mediated inhibition of the slow afterhyperpolarization current (I(sAHP)), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown obligatory role for the high-affinity subunits for ionotropic kainate receptor function and further demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels.
Disruption mitigation with high-pressure helium gas injection on EAST tokamak
NASA Astrophysics Data System (ADS)
Chen, D. L.; Shen, B.; Granetz, R. S.; Qian, J. P.; Zhuang, H. D.; Zeng, L.; Duan, Y.; Shi, T.; Wang, H.; Sun, Y.; Xiao, B. J.
2018-03-01
High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time ⩽150 μs, capable of injecting up to 7 × 1022 particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N_He≃ N_plasma ) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N_He≃ 40× N_plasma ) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (˜7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.
Vandenberg, Laura N.
2014-01-01
Non-monotonic dose response curves (NMDRCs) have been demonstrated for natural hormones and endocrine disrupting chemicals (EDCs) in a variety of biological systems including cultured cells, whole organ cultures, laboratory animals and human populations. The mechanisms responsible for these NMDRCs are well known, typically related to the interactions between the ligand (hormone or EDC) and a hormone receptor. Although there are hundreds of examples of NMDRCs in the EDC literature, there are claims that they are not ‘common enough’ to influence the use of high-to-low dose extrapolations in risk assessments. Here, we chose bisphenol A (BPA), a well-studied EDC, to assess the frequency of non-monotonic responses. Our results indicate that NMDRCs are common in the BPA literature, occurring in greater than 20% of all experiments and in at least one endpoint in more than 30% of all studies we examined. We also analyzed the types of endpoints that produce NMDRCs in vitro and factors related to study design that influence the ability to detect these kinds of responses. Taken together, these results provide strong evidence for NMDRCs in the EDC literature, specifically for BPA, and question the current risk assessment practice where ‘safe’ low doses are predicted from high dose exposures. PMID:24910584
Vandenberg, Laura N
2014-05-01
Non-monotonic dose response curves (NMDRCs) have been demonstrated for natural hormones and endocrine disrupting chemicals (EDCs) in a variety of biological systems including cultured cells, whole organ cultures, laboratory animals and human populations. The mechanisms responsible for these NMDRCs are well known, typically related to the interactions between the ligand (hormone or EDC) and a hormone receptor. Although there are hundreds of examples of NMDRCs in the EDC literature, there are claims that they are not 'common enough' to influence the use of high-to-low dose extrapolations in risk assessments. Here, we chose bisphenol A (BPA), a well-studied EDC, to assess the frequency of non-monotonic responses. Our results indicate that NMDRCs are common in the BPA literature, occurring in greater than 20% of all experiments and in at least one endpoint in more than 30% of all studies we examined. We also analyzed the types of endpoints that produce NMDRCs in vitro and factors related to study design that influence the ability to detect these kinds of responses. Taken together, these results provide strong evidence for NMDRCs in the EDC literature, specifically for BPA, and question the current risk assessment practice where 'safe' low doses are predicted from high dose exposures.
NASA Astrophysics Data System (ADS)
Basile, Vincent
The United States current incarcerates more citizens than any other country in history, by disproportionately targeting men and boys of color through mechanisms such as the school to prison pipeline. In better understanding the processes that fuel the school to prison pipeline such as criminalizing practices and the ways boys of color resist them, we can begin to identify teaching practices and perspectives which work to disrupt those processes. Examining criminalization and acts of resistance in STEM education is particularly salient because of the high social and economic status STEM knowledge bears in dominant U.S. culture, and the ways access to STEM learning functions as gateways in our education system. Through a longitudinal study in a multi-site elementary after-school STEM program, I examined what criminalization and acts of resistance look like, the ways they interact, and how staff in the program work to disrupt those cycles. I found that criminalization and acts of resistance are normal and ordinary occurrences, frequently interacting in response to each other in escalating patterns. I also found that staff engaged in multiple categories of decriminalizing practices based on highly respectful interactions and viewing boys of color as brilliant students who engage in acts of resistance as a healthy response to oppressive measures.
Interpreting Disruption Prediction Models to Improve Plasma Control
NASA Astrophysics Data System (ADS)
Parsons, Matthew
2017-10-01
In order for the tokamak to be a feasible design for a fusion reactor, it is necessary to minimize damage to the machine caused by plasma disruptions. Accurately predicting disruptions is a critical capability for triggering any mitigative actions, and a modest amount of attention has been given to efforts that employ machine learning techniques to make these predictions. By monitoring diagnostic signals during a discharge, such predictive models look for signs that the plasma is about to disrupt. Typically these predictive models are interpreted simply to give a `yes' or `no' response as to whether a disruption is approaching. However, it is possible to extract further information from these models to indicate which input signals are more strongly correlated with the plasma approaching a disruption. If highly accurate predictive models can be developed, this information could be used in plasma control schemes to make better decisions about disruption avoidance. This work was supported by a Grant from the 2016-2017 Fulbright U.S. Student Program, administered by the Franco-American Fulbright Commission in France.
Aggregate formation affects ultrasonic disruption of microalgal cells.
Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih
2015-12-01
Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anderson, Kent R.
2000-01-01
The Internet represents a different type of technology for publishers of scientific, technical, and medical journals. It is not a technology that sustains current markets and creates new efficiencies but is, rather, a disruptive technology that could radically alter market forces, profit expectations, and business models. This paper is a translation and amplification of the research done in this area, applied to a large-circulation new science journal, Pediatrics. The findings suggest that the journal of the future will be electronic, have a less volatile cost structure, be supported more by services than by content, be less able to rely on subscription revenues, and abandon certain elements of current value networks. It also provides a possible framework for other publishers to use to evaluate their own journals relative to this disruptive technology. PMID:10833160
Clover, Kerrie; Oultram, Sharon; Adams, Catherine; Cross, Laraine; Findlay, Naomi; Ponman, Leah
2011-12-01
This analysis sought to determine whether patient self-report measures were associated with disruption to radiation therapy sessions due to anxiety among cancer patients undergoing radiation therapy to the head and neck region. A cohort of patients undergoing radiation therapy to the head and neck region at a major regional radiation oncology treatment centre (ROTC) in Australia completed self-report measures of anxiety, history of panic and fears relevant to use of an immobilising mask. The treating Radiation Therapist (RT) rated the level of session disruption due to patient anxiety during the Computerised Tomography/Simulation (CT/Sim) (baseline) session and first treatment session. Complete data were obtained for 90 patients. RTs rated 11 and 24% of patients as having some level of session disruption session due to anxiety at baseline and Treatment 1, respectively. Five factors were significantly associated with session disruption at baseline in bivariate analyses: currently taking psycho-active medication (p=0.008); fear of enclosed spaces (p=0.006); fear of face being covered up (p=0.006); fear of movement restriction (p=0.041) and ever had an anxiety attack (p=0.034). Sensitivity ranged from 0.57 to 0.75 and specificity ranged from 0.68 to 0.90. Only session disruption at baseline predicted disruption at Treatment 1 (p<0.01). This study offers some preliminary insights into the prevalence of patient anxiety severe enough to cause session disruption and patient self-report measures which might be used to flag patients for prophylactic treatment. Further development and replication in a larger sample is warranted before introduction of these measures into routine practice. Copyright © 2010 John Wiley & Sons, Ltd.
Peripheral ammonia and blood brain barrier structure and function after methamphetamine.
Northrop, Nicole A; Halpin, Laura E; Yamamoto, Bryan K
2016-08-01
An effect of the widely abuse psychostimulant, methamphetamine (Meth), is blood-brain-barrier (BBB) disruption; however, the mechanism by which Meth causes BBB disruption remains unclear. Recently it has been shown that Meth produces liver damage and consequent increases in plasma ammonia. Ammonia can mediate oxidative stress and inflammation, both of which are known to cause BBB disruption. Therefore, the current studies examined the role of peripheral ammonia in Meth-induced disruption of BBB structure and function. A neurotoxic Meth regimen (10 mg/kg, ip, q 2 h, ×4) administered to rats increased plasma ammonia and active MMP-9 in the cortex 2 h after the last Meth injection, compared to saline treated rats. At 24 h after Meth treatment, decreased immunoreactivity of BBB structural proteins, occludin and claudin-5, and increased extravasation of 10,000 Da FITC-dextran were observed, as compared to saline controls. Pretreatment with lactulose (5.3 g/kg, po, q 12 h), a drug that remains in the lumen of the intestine and promotes ammonia excretion, prevented the Meth-induced increases in plasma ammonia. These results were paralleled by the prevention of decreases in BBB structural proteins, increases in extravasation of 10,000 Da FITC-dextran and increases in active MMP-9. The results indicate that Meth-induced increases in ammonia produce BBB disruption and suggest that MMP-9 activation mediates the BBB disruption. These findings identify a novel mechanism of Meth-induced BBB disruption that is mediated by plasma ammonia and are the first to identify a peripheral contribution to Meth-induced BBB disruption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Rosen, Jeffrey B.; Stanton, Mark E.
2016-01-01
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated. The current study investigated the involvement of NMDA receptors in contextual fear acquisition, retention, and expression across all phases of the CPFE in adolescent rats. In Experiment 1 systemic injections of 0.1 mg/kg MK-801, a non-competitive NMDA receptor antagonist, given before multiple context preexposure disrupted the acquisition of a context representation. In Experiment 2, pre-training MK-801 disrupted both immediate acquisition of contextual fear measured by postshock freezing, as well as retention test freezing 24 hours later. Experiment 3 showed that expression of contextual fear via a 24hr retention freezing test does not depend on NMDA receptors, indicating that MK-801 disrupts learning rather than performance of freezing behavior. In Experiment 4, consolidation of contextual information was partially disrupted by post-preexposure MK-801 whereas consolidation of contextual fear was not disrupted by post-training MK-801. Finally, Experiment 5 employed a dose-response design and found that a pre-training dose of 0.1 mg/kg MK-801 disrupted both postshock and retention test freezing while lower pre-training doses of MK-801 (0.025 or 0.05 mg/kg) only disrupted retention freezing. This is the first study to distinguish the role of NMDA receptors in acquisition (post-shock freezing), retention, expression, and consolidation of context vs. context-shock learning using the CPFE paradigm in adolescent rats. The findings provide a foundation for similar developmental studies examining these effects from early ontogeny through adulthood. PMID:26711910
Variation of Argon Impurity Assimilation with Runaway Electron Current in DIII-D
NASA Astrophysics Data System (ADS)
Hollmann, Eric; Bykov, I.; Moyer, R. A.; Rudakov, D. L.; Briesemeister, A.; Shiraki, D.; Herfindal, J. L.; Austin, M. E.; Lasnier, C. J.; Carlstrom, T. N.; Eidietis, N. W.; Paz-Soldan, C.; van Zeeland, M.
2017-10-01
Measurements of the effect of runaway electron (RE) pressure upon argon impurity assimilation in DIII-D are reported. Intentionally created post-disruption RE beams are ramped to different plasma currents to vary the RE pressure, while impurity levels are varied by injecting argon gas (in addition to Ar already present from the small pellet used to create the disruption). Based on comparisons of current decay rates and hard x-ray, spectroscopic, interferometer, and Thomson scattering data, it is found that argon is not mixed uniformly through the plasma radially but appears to be preferentially moved out of the center of the plasma toward the walls, relative to the main species (deuterium). This exclusion appears to be stronger at higher plasma current, indicating that this force originates from the runaway electrons. Supported by the US DOE under DE-FG02-07ER54917, DE-AC05-00OR22725, DE-FG02-04ER54758, DE-FC02-04ER54698, DE-AC52-07N27344, DE-FG03-95ER54309, and DE-FG02-04ER54762.
Monte Carlo simulation of Alaska wolf survival
NASA Astrophysics Data System (ADS)
Feingold, S. J.
1996-02-01
Alaskan wolves live in a harsh climate and are hunted intensively. Penna's biological aging code, using Monte Carlo methods, has been adapted to simulate wolf survival. It was run on the case in which hunting causes the disruption of wolves' social structure. Social disruption was shown to increase the number of deaths occurring at a given level of hunting. For high levels of social disruption, the population did not survive.
Super massive black hole in galactic nuclei with tidal disruption of stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters formore » a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.« less
Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars
NASA Astrophysics Data System (ADS)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
2014-09-01
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.
Huppertz, Thom; de Kruif, Cornelis G
2006-08-09
In this study, factors influencing the disruption and aggregation of casein micelles during high-pressure (HP) treatment at 250 MPa for 40 min were studied in situ in serum protein-free casein micelle suspensions. In control milk, light transmission increased with treatment time for approximately 15 min, after which a progressive partial reversal of the HP-induced increase in light transmission occurred, indicating initial HP-induced disruption of casein micelles, followed by reformation of casein aggregates from micellar fragments. The extent of HP-induced micellar disruption was negatively correlated with the concentration of casein micelles, milk pH, and levels of added ethanol, calcium chloride, or sodium chloride and positively correlated with the level of added sodium phosphate. The reformation of casein aggregates during prolonged HP treatment did not occur when HP-induced disruption of casein micelles was limited (<60%) or very extensive (>95%) and was promoted by a low initial milk pH or added sodium phosphate, sodium chloride, or ethanol. On the basis of these findings, a mechanism for HP-induced disruption of casein micelles and subsequent aggregation of micellar fragments is proposed, in which the main element appears to be HP-induced solubilization of micellar calcium phosphate.
Food and water deprivation disrupts latent inhibition with an auditory fear conditioning procedure.
De la Casa, Luis G
2013-11-01
Latent inhibition (LI), operationally defined as the reduced conditioned response to a stimulus that has been preexposed before conditioning, seems to be determined by the interaction of different processes that includes attentional, associative, memory, motivational, and emotional factors. In this paper we focused on the role of deprivation level on LI intensity using an auditory fear conditioning procedure with rats. LI was observed when the animals were non-deprived, but it was disrupted when the rats were water- or food-deprived. We propose that deprivation induced an increase in attention to the to-be-CS, and, as a result, LI was disrupted in deprived animals. The implications of the results for the current interpretations of LI are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
NASA Astrophysics Data System (ADS)
Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.
2018-05-01
We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.
Stephenson, Kyle R; Meston, Cindy M
2015-03-01
Recent research has highlighted a complex association between female sexual function and subjective distress regarding sexual activity. These findings are difficult to explain given limited knowledge as to the mechanisms through which impaired sexual function causes distress. The current study assessed whether a number of specific consequences of impaired sexual function, including decreased physical pleasure, disruption of sexual activity, and negative partner responses, mediated the association between sexual function and distress. Eighty-seven women in sexually active relationships reporting impairments in sexual function completed validated self-report measures and daily online assessments of sexual experiences. Participants completed the Sexual Satisfaction Scale for Women, the Female Sexual Function Index, and the Measure of Sexual Consequences. Results suggested that decreased physical pleasure and disruption of sexual activity, but not partner responses, statistically mediated the association between sexual function and distress. Sexual consequences represent potential maintaining factors of sexual dysfunction that are highly distressing to women. Results are discussed in the context of theoretical models of sexual dysfunction and related treatments. © 2014 International Society for Sexual Medicine.
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraki, D.; Commaux, N.; Baylor, L. R.
Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
Shiraki, D.; Commaux, N.; Baylor, L. R.; ...
2018-03-07
Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less
Stephenson, Kyle R.; Meston, Cindy M.
2015-01-01
Introduction Recent research has highlighted a complex association between female sexual function and subjective distress regarding sexual activity. These findings are difficult to explain given limited knowledge as to the mechanisms through which impaired sexual function causes distress. Aim The current study assessed whether a number of specific consequences of impaired sexual function, including decreased physical pleasure, disruption of sexual activity, and negative partner responses, mediated the association between sexual function and distress. Methods Eighty seven women in sexually active relationships reporting impairments in sexual function completed validated self-report measures and daily online assessments of sexual experiences. Main Outcome Measures Participants completed the Sexual Satisfaction Scale for Women (SSS-W), the Female Sexual Function Index (FSFI), and the Measure of Sexual Consequences (MSC). Results Results suggested that decreased physical pleasure and disruption of sexual activity, but not partner responses, statistically mediated the association between sexual function and distress. Conclusion Sexual consequences represent potential maintaining factors of sexual dysfunction that are highly distressing to women. Results are discussed in the context of theoretical models of sexual dysfunction and related treatments. PMID:25556719
Campbell, Lauryl E; Nelson, Jennifer; Gibbons, Elizabeth; Judd, Allan M; Bell, John D
2014-01-01
This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32-42°C). A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.
Copy number determination of genetically-modified hematopoietic stem cells.
Schuesler, Todd; Reeves, Lilith; Kalle, Christof von; Grassman, Elke
2009-01-01
Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.
Kamishima, Manami; Hattori, Tatsuya; Suzuki, Go; Matsukami, Hidenori; Komine, Chiaki; Horii, Yasuyuki; Watanabe, Gen; Oti, Takumi; Sakamoto, Hirotaka; Soga, Tomoko; Parhar, Ishwar S; Kondo, Yasuhiko; Takigami, Hidetaka; Kawaguchi, Maiko
2018-05-01
Exposure to endocrine-disrupting chemicals may adversely affect animals, particularly during development. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) is an organophosphate with anti-androgen function in vitro that is present in indoor dust at relatively high concentrations. In male rats, androgens are necessary for the development of reproductive organs, as well as the endocrine and central nervous systems. However, we currently do not know the exact effects of TDCIPP exposure through suckling on subsequent reproductive behavior in males. Here, we show that TDCIPP exposure (25-250 mg kg -1 via oral administration over 28 consecutive days post-birth) suppressed male sexual behavior and reduced testes size. These changes were dose-dependent and appeared first in adults rather than in juveniles. These results demonstrate that TDCIPP exposure led to normal body growth and appearance in juveniles, but disrupted the endocrine system and physiology in adults. Therefore, assays should be performed using adult animals to ensure accuracy, and to confirm the influence of chemical substances given during early mammalian life. Copyright © 2017 John Wiley & Sons, Ltd.
Guilt and Effortful Control: Two Mechanisms that Prevent Disruptive Developmental Trajectories
Kochanska, Grazyna; Barry, Robin A.; Jimenez, Natasha B.; Hollatz, Amanda L.; Woodard, Jarilyn
2009-01-01
Children's guilt associated with transgressions and their capacity for effortful control are both powerful forces that inhibit disruptive conduct. We examined how guilt and effortful control, repeatedly observed from toddler to preschool age, jointly predict children's disruptive outcomes in two multi-method multi-trait longitudinal studies (N's 57 and 99). Disruptive outcomes were rated by mothers at 73 months (Study 1) and mothers, fathers, and teachers at 52 and 67 months (Study 2). In both studies, guilt moderated effects of effortful control: For highly guilt-prone children, variations in effortful control were unrelated to future disruptive outcomes, but for children who were less guilt prone, effortful control predicted such outcomes. Guilt may inhibit transgressions through an automatic response due to negative arousal triggered by memories of past wrongdoing, regardless of child capacity for deliberate inhibition. Effortful control that engages a deliberate restraint may offset risk for disruptive conduct conferred by low guilt. PMID:19634978
Simulations of Magnetic Fields in Tidally Disrupted Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillochon, James; McCourt, Michael, E-mail: jguillochon@cfa.harvard.edu
2017-01-10
We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to 20, but see no evidence for a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream onlymore » decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.« less
Ma, Nyuk Ling; Teh, Kit Yinn; Lam, Su Shiung; Kaben, Anne Marie; Cha, Thye San
2015-08-01
This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Women in the Occupational World: Social Disruption and Conflict
ERIC Educational Resources Information Center
Coser, Rose Laub; Rokoff, Gerald
1971-01-01
Equal opportunities for women in the occupational world produce situations in which women are considered a potential source of disruption in high-status positions as a result of their expected status-articulation which interrupts routine. (JM)
Targeted gene disruption in Koji mold Aspergillus oryzae.
Maruyama, Jun-Ichi; Kitamoto, Katsuhiko
2011-01-01
Filamentous fungi have received attentions as hosts for heterologous protein production because of their high secretion capability and eukaryotic post-translational modifications. One of the safest hosts for heterologous protein production is Koji mold Aspergillus oryzae since it has been used in the production of Japanese fermented foods for over 1,000 years. The production levels of proteins from higher eukaryotes are much lower than those of homologous (fungal) proteins. Bottlenecks in the heterologous protein production are suggested to be proteolytic degradation of the produced protein in the medium and the secretory pathway. For construction of excellent host strains, many genes causing the bottlenecks should be disrupted rapidly and efficiently. We developed a marker recycling system with the highly efficient gene-targeting background in A. oryzae. By employing this technique, we performed multiple gene disruption of the ten protease genes. The decuple protease gene disruptant showed fourfold production level of a heterologous protein compared with the wild-type strain.
Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco
2015-01-01
The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest.
Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco
2015-01-01
The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest. PMID:26284241
Automated selective disruption of slow wave sleep.
Ooms, Sharon J; Zempel, John M; Holtzman, David M; Ju, Yo-El S
2017-04-01
Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10s live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5-4Hz) band, particularly in the 0.5-2Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4-8Hz) and alpha (8-12Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6min, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. Copyright © 2017 Elsevier B.V. All rights reserved.
Najmi, Sadia; Bureau, Jean-Francois; Chen, Diyu; Lyons-Ruth, Karlen
2009-12-01
: The Personal Attitude Scale (PAS; Hooley, 2000) is a method that is under development for identifying individuals high in Expressed Emotion based on personality traits of inflexibility, intolerance, and norm-forming. In the current study, the goal was to measure the association between this maternal attitudinal inflexibility, early hostile or disrupted mother-infant interactions, and hostile-aggressive behavior problems in the child. In a prospective longitudinal study of 76 low-income mothers and their infants, it was predicted that maternal PAS scores, assessed at child age 20, would be related to difficulties in early observed mother-infant interaction and to hostile-aggressive behavioral difficulties in the child. Results indicated that maternal difficulties in interacting with the infant in the laboratory were associated with maternal PAS scores assessed 20 years later. Hostile-aggressive behavior problems in the child at age five were also predictive of PAS scores of mothers. However, contrary to prediction, these behavior problems did not mediate the association between mother-infant interaction difficulties and maternal PAS scores, indicating that the child's hostile-aggressive behavior problems did not produce the link between quality of early interaction and later maternal attitudinal inflexibility. The current results validate the PAS against observable mother-child interactions and child hostile-aggressive behavior problems and indicate the importance of future work investigating the maternal attitudes that are associated with, and may potentially precede, parent-infant interactive difficulties. These findings regarding the inflexible attitudes of mothers whose interactions with their infants are also disrupted have important clinical implications. First, once the stability of the PAS has been established, this measure may offer a valuable screening tool for the prenatal identification of parents at risk for difficult interactions with their children. Second, it suggests routes for more cognitive interventions around helping less flexible parents shift perspectives to better take account of their child's outlooks and needs.
ERIC Educational Resources Information Center
de Wied, Minet; van Boxtel, Anton; Matthys, Walter; Meeus, Wim
2012-01-01
This study examined empathy-related responding in male adolescents with disruptive behavior disorder (DBD), high or low on callous-unemotional (CU) traits. Facial electromyographic (EMG) and heart rate (HR) responses were monitored during exposure to empathy-inducing film clips portraying sadness, anger or happiness. Self-reports were assessed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Anna
With recent trends toward intermittent renewable energy sources in the U.S., the geothermal industry in its current form faces a crossroad: adapt, disrupt, or be left behind. Strategic planning with scenario analysis offers a framework to characterize plausible views of the future given current trends - as well as disruptions to the status quo. To inform strategic planning in the Department of Energy's (DOE) Geothermal Technology Office (GTO), the Geothermal Vision Study is tasked with offering data-driven pathways for future geothermal development. Scenario analysis is a commonly used tool in private industry corporate strategic planning as a way to prioritizemore » and manage large investments in light of uncertainty and risk. Since much of the uncertainty and risk in a geothermal project is believed to occur within early stage exploration and drilling, this paper focuses on the levers (technical and financial) within the exploration process that can be pulled to affect change. Given these potential changes, this work first qualitatively explores potential shifts to the geothermal industry. Future work within the Geothermal Vision Study will incorporate these qualitative scenarios quantitatively, in competition with other renewable and conventional energy industries.« less
Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons.
Dennis, Emily L; Babikian, Talin; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F
2018-02-01
Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.
Jagielski, Mateusz; Smoczyński, Marian; Adrych, Krystian
In last thirty years we have been observing significant development of an endoscopic treatment of pancreatic fluid collections, including transmural drainage of walled-off pancreatic necrosis. Simultaneously, the use of endotherapy in treatment of main pancreatic ducts disruptions has increased. Despite many publications available in current literature, concerning the endoscopic treatment of consequences of acute necrotizing pancreatitis, the role of transpapillary drainage in management of patients with pancreatic fluid collections and pancreatic duct disruption as an after-effect of severe acute pancreatitis remains unclear and is still a current problem. This publication includes comment on the article entitled 'Early dual drainage combining transpapillary endotherapy and percutaneous catheter drainage in patients with pancreatic fistula associated with severe acute pancreatitis' published by Yokoi et al. in the July-August 2016 issue of Pancreatology together with questions to the authors. Furthermore, in the article we did pay particular attention to the role of transpapillary drainage in management of pancreatic fluid collections, especially of walled-of pancreatic necrosis. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae).
Ioriatti, C; Anfora, G; Tasin, M; De Cristofaro, A; Witzgall, P; Lucchi, A
2011-08-01
The moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) feeds on grapes (Vitis vinifera L.), reducing yield and increasing susceptibility to fungal infections. L. botrana is among the most economically important insects in Europe and has recently been found in vineyards in Chile, Argentina, and California. Here, we review L. botrana biology and behavior in relation to its larval host (the grapevine) and its natural enemies. We also discuss current and future control strategies in light of our knowledge of chemical ecology, with an emphasis on the use of the sex pheromone-based strategies as an environmentally safe management approach. Pheromone-mediated mating disruption is the most promising technique available on grapes and is currently implemented on approximately 140,000 ha in Europe. Experience from several growing areas confirms the importance of collaboration between research, extension, growers, and pheromone-supply companies for the successful implementation of the mating disruption technique. In the vineyards where mating disruption has been successfully applied as an areawide strategy, the reduction in insecticide use has improved the quality of life for growers, consumers, as well as the public living near wine-growing areas and has thereby reduced the conflict between agricultural and urban communities.
Plasma Chamber and First Wall of the Ignitor Experiment^*
NASA Astrophysics Data System (ADS)
Cucchiaro, A.; Coppi, B.; Bianchi, A.; Lucca, F.
2005-10-01
The new designs of the Plasma Chamber (PC) and of the First Wall (FW) system are based on updated scenarios for vertical plasma disruption (VDE) as well as estimates for the maximum thermal wall loadings at ignition. The PC wall thickness has been optimized to reduce the deformation during the worst disruption event without sacrificing the dimensions of the plasma column. A non linear dynamic analysis of the PC has been performed on a 360^o model of it, taking into account possible toroidal asymmetries of the halo current. Radial EM loads obtained by scaling JET measurements have been also considered. The low-cycle fatigue analysis confirms that the PC is able to meet a lifetime of few thousand cycles for the most extreme combinations of magnetic fields and plasma currents. The FW, made of Molybdenum (TZM) tiles covering the entire inner surface of the PC, has been designed to withstand thermal and EM loads, both under normal operating conditions and in case of disruption. Detailed elasto-plastic structural analyses of the most (EM) loaded tile-carriers show that these are compatible with the adopted fabrication requirements. ^*Sponsored in part by ENEA of Italy and by the U.S. DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. H. Titus, S. Avasaralla, A.Brooks, R. Hatcher
2010-09-22
The National Spherical Torus Experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the center-stack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of componentsmore » in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic (EM) and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses.« less
High-frequency ultrasound-responsive block copolymer micelle.
Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue
2009-11-17
Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.
Yoshida, Motoharu; Knauer, Beate; Jochems, Arthur
2012-01-01
Suppression of cholinergic receptors and inactivation of the septum impair short-term memory, and disrupt place cell and grid cell activity in the medial temporal lobe (MTL). Location-dependent hippocampal place cell firing during active waking, when the acetylcholine level is high, switches to time-compressed replay activity during quiet waking and slow-wave-sleep (SWS), when the acetylcholine level is low. However, it remains largely unknown how acetylcholine supports short-term memory, spatial navigation, and the functional switch to replay mode in the MTL. In this paper, we focus on the role of the calcium-activated non-specific cationic (CAN) current which is activated by acetylcholine. The CAN current is known to underlie persistent firing, which could serve as a memory trace in many neurons in the MTL. Here, we review the CAN current and discuss possible roles of the CAN current in short-term memory and spatial navigation. We further propose a novel theoretical model where the CAN current switches the hippocampal place cell activity between real-time and time-compressed sequential activity during encoding and consolidation, respectively. PMID:22435051
Computational modeling of Krypton gas puffs with tailored mass density profiles on Z
Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; ...
2015-05-18
Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiativemore » output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.« less
Numerical model study of radio frequency vessel sealing thermodynamics
NASA Astrophysics Data System (ADS)
Pearce, John
2015-03-01
Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.
Blood-Brain Barrier Disruption After Cardiopulmonary Bypass: Diagnosis and Correlation to Cognition.
Abrahamov, Dan; Levran, Oren; Naparstek, Sharon; Refaeli, Yael; Kaptson, Shani; Abu Salah, Mahmud; Ishai, Yaron; Sahar, Gideon
2017-07-01
Cardiopulmonary bypass (CPB) elicits a systemic inflammatory response that may impair blood-brain barrier (BBB) integrity. BBB disruption can currently be detected by dynamic contrast enhancement magnetic resonance imaging (MRI), reflected by an increase in the permeability constant (K trans ). We aimed to determine (1) whether CPB induces BBB disruption, (2) duration until BBB disruption resolution, and (3) the obtainable correlation between BBB injury (location and intensity) and neurocognitive dysfunction. Seven patients undergoing CPB with coronary artery bypass grafting (CABG) were assigned to serial cerebral designated MRI evaluations, preoperatively and on postoperative day (POD) 1 and 5. Examinations were analyzed for BBB disruption and microemboli using dynamic contrast enhancement MRI and diffusion-weighted imaging methods, respectively. Neuropsychologic tests were performed 1 day preoperatively and on POD 5. A significant local K trans increase (0.03 min -1 vs 0.07 min -1 , p = 0.033) compatible with BBB disruption was evident in 5 patients (71%) on POD 1. Resolution was observed by POD 5 (mean, 0.012 min -1 ). The location of the disruption was most prominent in the frontal lobes (400% vs 150% K trans levels upsurge, p = 0.05). MRI evidence of microembolization was demonstrated in only 1 patient (14%). The postoperative global cognitive score was reduced in all patients (98.2 ± 12 vs 95.1 ± 11, p = 0.032), predominantly in executive and attention (frontal lobe-related) functions (91.8 ± 13 vs 86.9 ± 12, p = 0.042). The intensity of the dynamic contrast enhancement MRI BBB impairment correlated with the magnitude of cognition reduction (r = 0.69, p = 0.04). BBB disruption was evident in most patients, primarily in the frontal lobes. The location and intensity of the BBB disruption, rather than the microembolic load, correlated with postoperative neurocognitive dysfunction. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti A.
2018-01-01
Vulnerability of man-made infrastructure to Earth-directed space weather events is a serious concern for today's technology-dependent society. Space weather-driven geomagnetically induced currents (GICs) can disrupt operation of extended electrically conducting technological systems. The threat of adverse impacts on critical technological infrastructure, like power grids, oil and gas pipelines, and communication networks, has sparked renewed interest in extreme space weather. Because extreme space weather events have low occurrence rate but potentially high impact, this presents a major challenge for our understanding of extreme GIC activity. In this chapter, we discuss some of the key science challenges pertaining to our understanding of extreme events. In addition, we present an overview of GICs including highlights of severe impacts over the last 80 years and recent U.S. Federal actions relevant to this community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghisari, Mandana; Long, Manhai; Tabbo, Agnese
Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyaceticmore » acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark can interfere with TH signaling and AhR function in vitro and might have the potential to cause endocrine disruption. - Highlights: • Endocrine disrupting (ED) potential of currently used pesticides were evaluated in cell culture. • Pesticides were analyzed for disruption of TH and aryl hydrocarbon receptor function. • 6 pesticides increased the GH3 cell proliferation, whereasfour antagonized the T3-induced cell growth. • 11 pesticides had agonistic effect on AhR and 4 antagonized the TCDD-induced AhR transactivation. • The five component mixture had inducing effect in both assays.« less
Wound Disruption Following Colorectal Operations.
Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J
2015-12-01
Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P < 0.01). A number of factors are associated with wound disruption such as chronic steroid use (AOR: 1.71, P < 0.01), smoking (AOR: 1.60, P < 0.01), obesity (AOR: 1.57, P < 0.01), operation length more than 3 h (AOR: 1.56, P < 0.01), severe Chronic Obstructive Pulmonary Disease (COPD) (AOR: 1.36, P < 0.01), urgent/emergent admission (AOR: 1.31, P = 0.01), and serum Albumin Level <3 g/dL (AOR: 1.27, P < 0.01). Laparoscopic surgery had significantly lower risk of wound disruption compared to open surgery (AOR: 0.61, P < 0.01). Wound disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.
Currents between tethered electrodes in a magnetized laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Urrutia, J. M.
1989-01-01
Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.
Sleep disruption among cancer patients following autologous hematopoietic cell transplantation.
Nelson, Ashley M; Jim, Heather S L; Small, Brent J; Nishihori, Taiga; Gonzalez, Brian D; Cessna, Julie M; Hyland, Kelly A; Rumble, Meredith E; Jacobsen, Paul B
2018-03-01
Despite a high prevalence of sleep disruption among hematopoietic cell transplant (HCT) recipients, relatively little research has investigated its relationships with modifiable cognitive or behavioral factors or used actigraphy to characterize sleep disruption in this population. Autologous HCT recipients who were 6-18 months post transplant completed self-report measures of cancer-related distress, fear of cancer recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors upon enrollment. Patients then wore an actigraph for 7 days and completed a self-report measure of sleep disruption on day 7 of the study. Among the 84 participants (age M = 60, 45% female), 41% reported clinically relevant sleep disruption. Examination of actigraph data confirmed that, on average, sleep was disrupted (wake after sleep onset M = 66 min) and sleep efficiency was less than recommended (sleep efficiency M = 78%). Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors were related to self-reported sleep disruption (p values<0.05) but not objective sleep indices. Results suggest that many HCT recipients experience sleep disruption after transplant. Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and maladaptive sleep behaviors are related to self-reported sleep disruption and should be considered targets for cognitive behavioral intervention in this population.
Modeling Steroidogenesis Disruption Using High-Throughput In Vitro Screening Data (SOT)
Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on ...
Autism: Oxytocin, serotonin, and social reward.
Dölen, Gül
2015-01-01
Over 70 years since the first description of the disease, disrupted social behavior remains a core clinical feature of autistic spectrum disorder. The complex etiology of the disorder portends the need for a better understanding of the brain mechanisms that enable social behaviors, particularly those that are relevant to autism which is characterized by a failure to develop peer relationships, difficulty with emotional reciprocity and imitative play, and disrupted language and communication skills. Toward this end, the current review will examine recent progress that has been made toward understanding the neural mechanisms underlying consociate social attachments.
Griffiths, P; Mounteney, J
2017-02-01
The internet facilitates rapid and covert communication, knowledge transfer, and has the potential to disrupt and transform drug market models and associated consumption patterns. Innovation and new trends diffuse rapidly through this medium and new operational models are emerging. Although the online drug markets currently only account for a small share of all drug transactions, the potential of the surface and deep web to provide a new platform for drug sale and exchanges is considerable. © 2016 American Society for Clinical Pharmacology and Therapeutics.
20 years of research on the Alcator C-Mod tokamaka)
NASA Astrophysics Data System (ADS)
Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.
2014-11-01
The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.
Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf
2010-09-01
Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.
Disruptive Technologies in Workmanship: pH-neutral Flux, CDM ESD Events, HDI PCBs
NASA Technical Reports Server (NTRS)
Plante, Jeannette F.
2010-01-01
This slide presentation describes what it calls "disruptive technologies", i.e., "Low-end disruption" occurs when the rate at which products improve exceeds the rate at which customers can adopt the new performance. Therefore, at some point the performance of the product overshoots the needs of certain customer segments. At this point, a disruptive technology may enter the market and provide a product which has lower performance than the incumbent but which exceeds the requirements of certain segments, thereby gaining a foothold in the market. This concept is viewed in impacting incumbent technologies Rosin Flux, with a pH-neutral water soluble Flux; electrostatic discharge models being disrupted by the charge device model (CDM) concept; and High Density Interconnect Printed Circuit Boards (HDI PCB).
Onset of magnetic reconnection in a weakly collisional, high- β plasma
NASA Astrophysics Data System (ADS)
Alt, Andrew; Kunz, Matthew
2017-10-01
In a magnetized, weakly collisional plasma, the magnetic moment of the constituent particles is an adiabatic invariant. An increase of the magnetic-field strength in such a plasma thus leads to an increase in the thermal pressure perpendicular to the field lines. Above a β-dependent threshold, this pressure anisotropy drives the mirror instability, which produces strong distortions in the field lines and traps particles on ion-Larmor scales. The impact of this instability on magnetic reconnection is investigated using simple analytical and numerical models for the formation of a current sheet and the associated production of pressure anisotropy. The difficulty in maintaining an isotropic, Maxwellian particle distribution during the formation and subsequent thinning of a current sheet in a weakly collisional plasma, coupled with the low threshold for the mirror instability in a high- β plasma, imply that the topology of reconnecting magnetic fields can radically differ from the standard Harris-sheet profile often used in kinetic simulations of collisionless reconnection. Depending on the rate of current-sheet formation, this mirror-induced disruption may occur before standard tearing modes are able to develop. This work was supported by U.S. DOE contract DE-AC02-09CH11466.
Ofotokun, Ighovwerha; Weitzmann, M. Neale
2013-01-01
The skeleton is an organ whose integrity is maintained by constant lifelong renewal involving coordinated removal of worn bone by osteoclasts and resynthesis of new bone by osteoblasts. In young adult humans and animals this process is homeostatic with no net gain or loss of bone mass. With natural aging and exacerbated by numerous pathological conditions, bone removal exceeds bone formation, disrupting homeostasis and resulting in bone loss. Over time, skeletal decline reaches clinical significance with development of osteopenia and eventually osteoporosis, conditions that dramatically increase bone fragility and the risk of fracture. Bone fractures can be devastating with significant morbidity and mortality. Over the last decade, it has become clear that skeletal renewal is strongly influenced by the immune system, a consequence of deep integration and centralization of common cell types and cytokine mediators, which we have termed the “immuno-skeletal interface.” Consequently, dysregulated skeletal renewal and bone loss is a common feature of inflammatory conditions associated with immune activation. Interestingly, bone loss is also associated with conditions of immunodeficiency, including infection by the human immunodeficiency virus (HIV) that leads to acquired immunodeficiency syndrome (AIDS). Disruptions to the immuno-skeletal interface drive skeletal deterioration contributing to a high rate of bone fracture in HIV infection. This review examines current knowledge concerning the prevalence and etiology of skeletal complications in HIV infection, the effect of antiretroviral therapies (ART) on the skeleton, and how disruption of the immuno-skeletal interface may underlie bone loss in HIV infection and ART. PMID:21616037
Effect of transmeridian travel and jetlag on mood disorders: evidence and implications.
Inder, Maree L; Crowe, Marie T; Porter, Richard
2016-03-01
Given the sensitivity of individuals with mood disorders to circadian disruption, transmeridian travel would likely be a high-risk endeavour leading to onset or relapses in mood. A systematic review was undertaken to identify the evidence of the impact of transmeridian travel on people with mood disorders. Databases search included the following: CINAHL, MEDLINE, PsycINFO and manual searching using the keywords jetlag, transmeridian travel, circadian rhythm disruption, mood disorder, bipolar, major depression, seasonal affective disorder, depression, mania and hypomania. Only three studies were identified that related to transmeridian travel and jetlag in people with mood disorders. There is some suggestion that transmeridian travel does appear to precipitate mood episodes with an increased rate of episodes of depression with westward compared with an increased rate of manic/hypomanic episodes with eastward travel. Individuals with a previous history of mood disorder appear to be more vulnerable if adherence to medication is compromised. Given the limited evidence that transmeridian travel precipitates mood episodes, this poses difficulties in identifying suitable ways to mitigate the effects of transmeridian travel in mood disorders. However, in the absence of mood-specific guidelines, some guidance can be given based on our current understanding of the relevance of circadian disruption to both jetlag and mood disorders. Further research is required to identify more focused strategies to mitigate the impact of transmeridian travel for individuals with mood disorders. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Renaud, Johanne; Berlim, Marcelo T; McGirr, Alexander; Tousignant, Michel; Turecki, Gustavo
2008-01-01
The present study was designed to evaluate psychiatric risk factors for child and adolescent suicide, and to determine the association between impulsive-aggressive and other personality traits, and suicide completion in this population. Psychiatric diagnoses, impulsive-aggressive and other personality traits were assessed in 55 child and adolescent suicide victims and 55 community controls using semi-structured proxy-based interviews and questionnaires. The most significant psychiatric risk factors associated with child and adolescent suicide were depressive disorders (OR=48.414, 95% CI 6.247-375.185), substance/alcohol abuse disorder (OR=5.365, 95% CI 1.434-20.076), and disruptive disorders (OR=13.643, 95% CI 2.292-23.16). Additionally, suicide victims showed higher scores on lifetime aggression/impulsivity, and harm avoidance. However, after logistic regression, the only independent significant predictors of suicide in this age group were the presence of depressive disorders (Adjusted OR (AOR)=39.652, 95% CI 4.501-349.345), substance/alcohol abuse disorders (AOR=7.325, 95% CI 1.127-47.62), and disruptive disorders (AOR=6.464, 95% CI 1.422-29.38). Relatively small sample size, and cross-sectional design. Our findings confirm the existence of a particular clinical profile of children and adolescents at high risk for suicide. Additionally, our results reinforce the need for improved understanding of the interrelationships between stressors, depression, substance/alcohol abuse disorders, disruptive disorders and personality traits/dimensions in youth suicidal behavior.
The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites.
Russell, Bruce M; Cooke, Brian M
2017-04-01
Our current understanding of how malaria parasites remodel their host red blood cells (RBCs) and ultimately cause disease is largely based on studies of Plasmodium falciparum. In this review, we expand our knowledge to include what is currently known about pathophysiological changes to RBCs that are infected by non-falciparum malaria parasites. We highlight the potential folly of making generalizations about the rheology of malaria infection, and emphasize the need for more systematic studies into the erythrocytic biology of non-falciparum malaria parasites. We propose that a better understanding of the mechanisms that underlie the changes to RBCs induced by malaria parasites other than P. falciparum may be highly informative for the development of therapeutics that specifically disrupt the altered rheological profile of RBCs infected with either sexual- or asexual-stage parasites, resulting in drugs that block transmission, reduce disease severity, and help delay the onset of resistance to current and future anti-malaria drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maran, Thomas; Sachse, Pierre; Martini, Markus; Weber, Barbara; Pinggera, Jakob; Zuggal, Stefan; Furtner, Marco
2017-01-01
Biased cognition during high arousal states is a relevant phenomenon in a variety of topics: from the development of post-traumatic stress disorders or stress-triggered addictive behaviors to forensic considerations regarding crimes of passion. Recent evidence indicates that arousal modulates the engagement of a hippocampus-based “cognitive” system in favor of a striatum-based “habit” system in learning and memory, promoting a switch from flexible, contextualized to more rigid, reflexive responses. Existing findings appear inconsistent, therefore it is unclear whether and which type of context processing is disrupted by enhanced arousal. In this behavioral study, we investigated such arousal-triggered cognitive-state shifts in human subjects. We validated an arousal induction procedure (three experimental conditions: violent scene, erotic scene, neutral control scene) using pupillometry (Preliminary Experiment, n = 13) and randomly administered this method to healthy young adults to examine whether high arousal states affect performance in two core domains of contextual processing, the acquisition of spatial (spatial discrimination paradigm; Experiment 1, n = 66) and sequence information (learned irrelevance paradigm; Experiment 2, n = 84). In both paradigms, spatial location and sequences were encoded incidentally and both displacements when retrieving spatial position as well as the predictability of the target by a cue in sequence learning changed stepwise. Results showed that both implicit spatial and sequence learning were disrupted during high arousal states, regardless of valence. Compared to the control group, participants in the arousal conditions showed impaired discrimination of spatial positions and abolished learning of associative sequences. Furthermore, Bayesian analyses revealed evidence against the null models. In line with recent models of stress effects on cognition, both experiments provide evidence for decreased engagement of flexible, cognitive systems supporting encoding of context information in active cognition during acute arousal, promoting reduced sensitivity for contextual details. We argue that arousal fosters cognitive adaptation towards less demanding, more present-oriented information processing, which prioritizes a current behavioral response set at the cost of contextual cues. This transient state of behavioral perseverance might reduce reliance on context information in unpredictable environments and thus represent an adaptive response in certain situations. PMID:29170634
Regulatory Disruption and Arbitrage in Health-Care Data Protection.
Terry, Nicolas P
This article explains how the structure of U.S. health-care data protection (specifically its sectoral and downstream properties) has led to a chronically uneven policy environment for different types of health-care data. It examines claims for health-care data protection exceptionalism and competing demands such as data liquidity. In conclusion, the article takes the position that healthcare- data exceptionalism remains a valid imperative and that even current concerns about data liquidity can be accommodated in an exceptional protective model. However, re-calibrating our protection of health-care data residing outside of the traditional health-care domain is challenging, currently even politically impossible. Notwithstanding, a hybrid model is envisioned with downstream HIPAA model remaining the dominant force within the health-care domain, but being supplemented by targeted upstream and point-of-use protections applying to health-care data in disrupted spaces.
SYBR safeTM efficiently replaces ethidium bromide in Aspergillus fumigatus gene disruption.
Canela, H M S; Takami, L A; Ferreira, M E S
2017-02-08
Invasive aspergillosis is a disease responsible for high mortality rates, caused mainly by Aspergillus fumigatus. The available drugs are limited and this disease continues to occur at an unacceptable frequency. Gene disruption is essential in the search for new drug targets. An efficient protocol for A. fumigatus gene disruption was described but it requires ethidium bromide, a genotoxic agent, for DNA staining. Therefore, the present study tested SYBR safe TM , a non-genotoxic DNA stain, in A. fumigatus gene disruption protocol. The chosen gene was cipC, which has already been disrupted successfully in our laboratory. A deletion cassette was constructed in Saccharomyces cerevisiae and used in A. fumigatus transformation. There was no statistical difference between the tested DNA stains. The success rate of S. cerevisiae transformation was 63.3% for ethidium bromide and 70% for SYBR safe TM . For A. fumigatus gene disruption, the success rate for ethidium bromide was 100 and 97% for SYBR safe TM . In conclusion, SYBR safe TM efficiently replaced ethidium bromide, making this dye a safe and efficient alternative for DNA staining in A. fumigatus gene disruption.
A Comparison of the X-Ray Emission from Tidal Disruption Events with those of Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Auchettl, Katie; Ramirez-Ruiz, Enrico; Guillochon, James
2018-01-01
One of the main challenges of current tidal disruption events (TDEs) studies is that emission arising from active galactic nucleus (AGN) activity may potentially mimic the expected X-ray emission of a TDE. Here we compare the X-ray properties of TDEs and AGNs to determine a set of characteristics that would allow us to discriminate between flares arising from these two objects. We find that at peak, TDEs are brighter than AGNs found at similar redshifts. However, compared to pre-flare upper limits, highly variable AGNs can produce flares of a similar order of magnitude as those seen from X-ray TDEs. Nevertheless, TDEs decay significantly more monotonically, and their emission exhibits little variation in spectral hardness as a function of time. We also find that X-ray TDEs are less absorbed, and their emission is much softer than the emission detected from AGNs found at similar redshifts. We derive the X-ray luminosity function (LF) for X-ray TDEs using the events from Auchettl et al. Interestingly, our X-ray LF closely matches the theoretically derived LF by Milosavljević et al., which assumes a higher TDE rate currently estimated from observations. Using our results and the results of Stone & Metzger, we estimate a TDE rate of (0.7–4.7) × 10‑4 year‑1 per galaxy, higher than current observational estimates. We find that TDEs can contribute significantly to the LF of AGNs for z ≲ 0.4, while there is no evidence that TDEs influence the growth of 106–7 M ⊙ BHs. However, BHs < 106 M ⊙ can grow from TDEs arising from super-Eddington accretion without contributing significantly to the observed AGN LF at z = 0.
Event boundaries and anaphoric reference.
Thompson, Alexis N; Radvansky, Gabriel A
2016-06-01
The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition.
Severe blood-brain barrier disruption and surrounding tissue injury.
Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D
2009-12-01
Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of occlusion duration (Independent samples t test, P<0.05). Severe vascular disruption, as labeled with high-molecular-weight dextran-fluorescein isothiocyanate leakage, is associated with severe tissue injury. This marker of severe vascular disruption may be useful in further studies of the pathoanatomic mechanisms of vascular disruption-mediated tissue injury.
Upgrades to the NSTX HHFW antenna
NASA Astrophysics Data System (ADS)
Ellis, R.; Brunkhorst, C.; Hosea, J.
2014-02-01
The High Harmonic Fast Wave (HHFW) antenna for the National Spherical Torus Experiment (NSTX) at PPPL will be upgraded as part of the NSTX upgrade project. Higher magnetic fields and plasma current result in disruption forces on the current straps that can be up to four times the original design values. The current straps on the HHFW antenna are presently fed by coaxial feedthroughs with rigid center conductors. The additional forces on the current straps require a compliant section in the center conductor in order to minimize the forces on the feedthrough. The design of this compliant section has been an integrated effort involving electrostatic calculations in parallel with mechanical and thermal analyses, in order to arrive at a design that is optimized for mechanical, thermal and electrical considerations. The voltage standoff obtained from this design will be verified when a prototype antenna is evaluated on our RF test stand. This paper describes the design of the compliant section of the center conductor, mechanical, thermal and electrostatic calculations, and plans for full implementation of the upgrade on NSTX.
The operating room of the future: observations and commentary.
Satava, Richard M
2003-09-01
The Operating Room of the Future is a construct upon which to develop the next generation of operating environments for the patient, surgeon, and operating team. Analysis of the suite of visions for the Operating Room of the Future reveals a broad set of goals, with a clear overall solution to create a safe environment for high-quality healthcare. The vision, although planned for the future, is based upon iteratively improving and integrating current systems, both technology and process. This must become the Operating Room of Today, which will require the enormous efforts described. An alternative future of the operating room, based upon emergence of disruptive technologies, is also presented.
A multi-machine scaling of halo current rotation
NASA Astrophysics Data System (ADS)
Myers, C. E.; Eidietis, N. W.; Gerasimov, S. N.; Gerhardt, S. P.; Granetz, R. S.; Hender, T. C.; Pautasso, G.; Contributors, JET
2018-01-01
Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: (1) the machine-specific minimum current quench time, \
A multi-machine scaling of halo current rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, C. E.; Eidietis, N. W.; Gerasimov, S. N.
Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: the machine-specific minimum current quench time,more » $$ \
A multi-machine scaling of halo current rotation
Myers, C. E.; Eidietis, N. W.; Gerasimov, S. N.; ...
2017-12-12
Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: the machine-specific minimum current quench time,more » $$ \
Argentine ant trail pheromone disruption is mediated by trail concentration.
Suckling, David Maxwell; Stringer, Lloyd D; Corn, Joshua E
2011-10-01
Argentine ant trail pheromone disruption, using continuous release of the trail pheromone compound (Z)-9-hexadecanal, reduces the incidence of trails and foraging rates of field populations. However, little is known about the concentrations of pheromone required for successful disruption. We hypothesized that higher pheromone quantities would be necessary to disrupt larger ant populations. To test this, we laid a 30-cm long base trail of (Z)-9-hexadecanal on a glass surface at low and high rates (1 and 100 pg/cm) (Trail 1), and laid a second, shorter trail (Trail 2, 10 cm long, located 1.5 cm upwind) near the middle of Trail 1 at six rates (1, 10, 100, 1,000, 10,000, and 100,000 pg/cm). We then recorded and digitized movements of individual ants following Trail 1, and derived a regression statistic, r (2), as an index of trail integrity, and also recorded arrival success at the other end of the trail (30 cm) near a food supply. Disruption of trails required 100 fold more pheromone upwind, independent of base-trail concentration. This implies that in the field, trail disruption is likely to be less successful against high ant-trail densities (greater concentration of trail pheromone), and more successful against newly formed or weak trails, as could be expected along invasion fronts.
Hackenberg, Timothy D.; Hineline, Philip N.
1987-01-01
Disruption of ongoing appetitive behavior before and after daily avoidance sessions was examined. After baselines of appetitive responding were established under a fixed-interval 180-s schedule of food presentation, 4 rats were exposed to 40-min sessions of the appetitive schedule just prior to 100-min sessions of electric shock postponement, while another 4 rats received the 40-min appetitive sessions just following daily sessions of shock postponement. In all 8 subjects, fixed-interval response rates decreased relative to baseline levels, the effect being somewhat more pronounced when the avoidance sessions immediately followed. The disruption of fixed-interval responding was only partially reversed when avoidance sessions were discontinued. During the initial exposure to the avoidance sessions, patterns of responding under the fixed-interval schedule were differentially sensitive to disruption, with high baseline response rates generally more disturbed than low rates. These disruptions were not systematically related to changes in reinforcement frequency, which remained fairly high and invariant across all conditions of the experiment; they were also not systematically related to the response rates or to the shock rates of the adjacent avoidance sessions. The results, while qualitatively resembling patterns of conditioned suppression as typically studied, occurred on a greatly expanded time scale. As disruption of behavior extending over time, the present data suggest that some forms of conditioned suppression are perhaps best viewed within a larger temporal context. PMID:16812486
The Effects of Varying Contextual Demands on Age-related Positive Gaze Preferences
Noh, Soo Rim; Isaacowitz, Derek M.
2015-01-01
Despite many studies on the age-related positivity effect and its role in visual attention, discrepancies remain regarding whether one’s full attention is required for age-related differences to emerge. The present study took a new approach to this question by varying the contextual demands of emotion processing. This was done by adding perceptual distractions, such as visual and auditory noise, that could disrupt attentional control. Younger and older participants viewed pairs of happy–neutral and fearful–neutral faces while their eye movements were recorded. Facial stimuli were shown either without noise, embedded in a background of visual noise (low, medium, or high), or with simultaneous auditory babble. Older adults showed positive gaze preferences, looking toward happy faces and away from fearful faces; however, their gaze preferences tended to be influenced by the level of visual noise. Specifically, the tendency to look away from fearful faces was not present in conditions with low and medium levels of visual noise, but was present where there were high levels of visual noise. It is important to note, however, that in the high-visual-noise condition, external cues were present to facilitate the processing of emotional information. In addition, older adults’ positive gaze preferences disappeared or were reduced when they first viewed emotional faces within a distracting context. The current results indicate that positive gaze preferences may be less likely to occur in distracting contexts that disrupt control of visual attention. PMID:26030774
The effects of varying contextual demands on age-related positive gaze preferences.
Noh, Soo Rim; Isaacowitz, Derek M
2015-06-01
Despite many studies on the age-related positivity effect and its role in visual attention, discrepancies remain regarding whether full attention is required for age-related differences to emerge. The present study took a new approach to this question by varying the contextual demands of emotion processing. This was done by adding perceptual distractions, such as visual and auditory noise, that could disrupt attentional control. Younger and older participants viewed pairs of happy-neutral and fearful-neutral faces while their eye movements were recorded. Facial stimuli were shown either without noise, embedded in a background of visual noise (low, medium, or high), or with simultaneous auditory babble. Older adults showed positive gaze preferences, looking toward happy faces and away from fearful faces; however, their gaze preferences tended to be influenced by the level of visual noise. Specifically, the tendency to look away from fearful faces was not present in conditions with low and medium levels of visual noise but was present when there were high levels of visual noise. It is important to note, however, that in the high-visual-noise condition, external cues were present to facilitate the processing of emotional information. In addition, older adults' positive gaze preferences disappeared or were reduced when they first viewed emotional faces within a distracting context. The current results indicate that positive gaze preferences may be less likely to occur in distracting contexts that disrupt control of visual attention. (c) 2015 APA, all rights reserved.
Kleinfelter, Lara M.; Jangra, Rohit K.; Jae, Lucas T.; Herbert, Andrew S.; Mittler, Eva; Stiles, Katie M.; Wirchnianski, Ariel S.; Kielian, Margaret; Brummelkamp, Thijn R.
2015-01-01
ABSTRACT Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. PMID:26126854
Slater, Frances R; Singer, Andrew C; Turner, Susan; Barr, Jeremy J; Bond, Philip L
2011-02-01
The 2009-2010 influenza pandemic saw many people treated with antivirals and antibiotics. High proportions of both classes of drugs are excreted and enter wastewater treatment plants (WWTPs) in biologically active forms. To date, there has been no study into the potential for influenza pandemic-scale pharmaceutical use to disrupt WWTP function. Furthermore, there is currently little indication as to whether WWTP microbial consortia can degrade antiviral neuraminidase inhibitors when exposed to pandemic-scale doses. In this study, we exposed an aerobic granular sludge sequencing batch reactor, operated for enhanced biological phosphorus removal (EBPR), to a simulated influenza-pandemic dosing of antibiotics and antivirals for 8 weeks. We monitored the removal of the active form of Tamiflu(®), oseltamivir carboxylate (OC), bacterial community structure, granule structure and changes in EBPR and nitrification performance. There was little removal of OC by sludge and no evidence that the activated sludge community adapted to degrade OC. There was evidence of changes to the bacterial community structure and disruption to EBPR and nitrification during and after high-OC dosing. This work highlights the potential for the antiviral contamination of receiving waters and indicates the risk of destabilizing WWTP microbial consortia as a result of high concentrations of bioactive pharmaceuticals during an influenza pandemic. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Purinergic Signaling in Neuron-Astrocyte Interactions, Circadian Rhythms, and Alcohol Use Disorder
Lindberg, Daniel; Andres-Beck, Lindsey; Jia, Yun-Fang; Kang, Seungwoo; Choi, Doo-Sup
2018-01-01
Alcohol use disorder (AUD) is a debilitating condition marked by cyclic patterns of craving, use, and withdrawal. These pathological behaviors are mediated by multiple neurotransmitter systems utilizing glutamate, GABA, dopamine, ATP, and adenosine. In particular, purines such as ATP and adenosine have been demonstrated to alter the phase and function of the circadian clock and are reciprocally regulated by the clock itself. Importantly, chronic ethanol intake has been demonstrated to disrupt the molecular circadian clock and is associated with altered circadian patterns of activity and sleep. Moreover, ethanol has been demonstrated to disrupt purinergic signaling, while dysfunction of the purinergic system has been implicated in conditions of drug abuse such as AUD. In this review, we summarize our current knowledge regarding circadian disruption by ethanol, focusing on the reciprocal relationship that exists between oscillatory neurotransmission and the molecular circadian clock. In particular, we offer detailed explanations and hypotheses regarding the concerted regulation of purinergic signaling and circadian oscillations by neurons and astrocytes, and review the diverse mechanisms by which purinergic dysfuction may contribute to circadian disruption or alcohol abuse. Finally, we describe the mechanisms by which ethanol may disrupt or hijack endogenous circadian rhythms to induce the maladaptive behavioral patterns associated with AUD. PMID:29467662
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Bogatu, I. N.; Svidzinski, V. A.
2015-11-01
A novel project to develop Disruption Prediction And Simulation Suite (DPASS) of comprehensive computational tools to predict, model, and analyze disruption events in tokamaks has been recently started at FAR-TECH Inc. DPASS will eventually address the following aspects of the disruption problem: MHD, plasma edge dynamics, plasma-wall interaction, generation and losses of runaway electrons. DPASS uses the 3-D Disruption Simulation Code (DSC-3D) as a core tool and will have a modular structure. DSC is a one fluid non-linear, time-dependent 3D MHD code to simulate dynamics of tokamak plasma surrounded by pure vacuum B-field in the real geometry of a conducting tokamak vessel. DSC utilizes the adaptive meshless technique with adaptation to the moving plasma boundary, with accurate magnetic flux conservation and resolution of the plasma surface current. DSC has also an option to neglect the plasma inertia to eliminate fast magnetosonic scale. This option can be turned on/off as needed. During Phase I of the project, two modules will be developed: the computational module for modeling the massive gas injection and main plasma respond; and the module for nanoparticle plasma jet injection as an innovative disruption mitigation scheme. We will report on this development progress. Work is supported by the US DOE SBIR grant # DE-SC0013727.
Automated selective disruption of slow wave sleep
Ooms, Sharon J.; Zempel, John M.; Holtzman, David M.; Ju, Yo-El S.
2017-01-01
Background Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. New Method We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10 seconds live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. Results The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5–4 Hz) band, particularly in the 0.5–2 Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4–8 Hz) and alpha (8–12 Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6 minutes, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. Comparison with existing method This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. Conclusion This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. PMID:28238859
Toghanian, Samira; Wahlqvist, Peter; Johnson, David A; Bolge, Susan C; Liljas, Bengt
2010-01-01
Recent data indicate that among patients with gastro-oesophageal reflux disease (GORD) there is a subgroup with a higher disrupting burden of illness in terms of symptom frequency and overall impact. The aim of this study was to evaluate the burden of disrupting versus non-disrupting GORD on individuals, healthcare providers and society. Data were obtained from European (France, Germany, Italy, Spain and the UK) and US respondents in the 2007 National Health and Wellness Survey (NHWS). Respondents with GORD were classified as having disrupting or non-disrupting GORD based on self-reported symptom frequency, presence of night-time symptoms and medication usage. Disrupting GORD was defined as the presence of GORD symptoms on at least 2 days/week in addition to either night-time symptoms or use of prescribed/over-the-counter medication at least twice a week during the past month. Of 116 536 respondents included in the 2007 NHWS, 23% reported GORD symptoms; 39% of these were acknowledged as having disrupting GORD. These patients had higher healthcare resource utilization than those with non-disrupting disease. Respondents with disrupting GORD also had poorer health-related quality of life, greater impairments in health-related work productivity and absenteeism (all p < 0.05 vs non-disrupting GORD), and higher associated total medical costs. Overall, patients with physician-diagnosed GORD also had significantly lower health-related quality of life than self-diagnosed respondents (p < 0.05). GORD is a common disease that places a substantial burden on affected individuals and society. A high proportion of patients have disrupting GORD, which has significant adverse potential from both a clinical and an economic perspective.
Consequences of Family Disruption on Children’s Educational Outcomes in Norway
STEELE, FIONA; SIGLE-RUSHTON, WENDY; KRAVDAL, ØYSTEIN
2009-01-01
Using high-quality data from Norwegian population registers, we examine the relationship between family disruption and children’s educational outcomes. We distinguish between disruptions caused by parental divorce and paternal death and, using a simultaneous equation model, pay particular attention to selection bias in the effect of divorce. We also allow for the possibility that disruption may have different effects at different stages of a child’s educational career. Our results suggest that selection on time-invariant maternal characteristics is important and works to overstate the effects of divorce on a child’s chances of continuing in education. Nevertheless, the experience of marital breakdown during childhood is associated with lower levels of education, and the effect weakens with the child’s age at disruption. The effects of divorce are most pronounced for the transitions during or just beyond the high school level. In models that do not allow for selection, children who experienced a father’s death appear less disadvantaged than children whose parents divorced. After we control for selection, however, differences in the educational qualifications of children from divorced and bereaved families narrow substantially and, at mean ages of divorce, are almost non-existent. PMID:19771944
A credit-card library approach for disrupting protein-protein interactions.
Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D
2006-04-15
Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.
Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina
2013-01-01
Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.
Macaskill, Anne C; Harrow, Catherine C; Harper, David N
2015-01-01
Different drugs produce different patterns of impairment on delayed matching-to-sample tasks. For example, (+/-)3,4-methylenedioxymethamphetamine (MDMA) produces an increase in proactive interference. That is, subjects are less accurate when they are required to make a response different to the one they made on the immediately previous trial. The current study assessed whether methamphetamine also produces this particular pattern of disruption in delayed matching-to-sample performance in rats. Methamphetamine primarily reduced accuracy on trials where the correct response differed from the one made on the previous trial. Thus methamphetamine, like MDMA and other stimulant-based drugs of abuse, increased proactive interference. This impairment was reduced by prior administration of the dopamine D1 antagonist SCH23390. These results further extend a general conclusion that a range of stimulant-based drugs may disrupt working memory function indirectly via a tendency to repeat previously made responses and that this disruption is related to D1 receptor activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Psychotropic medications for highly vulnerable children.
McLaren, Jennifer L; Barnett, Erin R; Concepcion Zayas, Milangel T; Lichtenstein, Jonathan; Acquilano, Stephanie C; Schwartz, Lisa M; Woloshin, Steven; Drake, Robert E
2018-04-01
At least 20% of children in the U.S. are highly vulnerable because they lack healthcare and protection. Several factors produce vulnerability: trauma, disruptions of parenting, poverty, involvement in the juvenile justice and/or child welfare systems, residence in restrictive settings, and problems related to developmental disabilities. These children receive psychotropic medications at high rates, raising numerous concerns. Areas covered: The authors begin this review with a description of the population of highly vulnerable children. They then follow this with a review of the effectiveness and side effects of psychotropic medications for their most common diagnoses, using the highest-quality systematic reviews identified by multiple database searches. Expert opinion: Highly vulnerable children receive numerous psychotropic medications with high rates of polypharmacy, off-label use, and long-term use, typically in the absence of adjunctive psychosocial interventions. The current evidence contravenes these trends. Future studies of psychotropic medications in vulnerable children should include long-term effectiveness trials and polypharmacy in conjunction with evidence-based, family-centered, psychosocial treatments.
Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine
2011-02-01
Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less
THE DROP DURING LESS THAN 300 DAYS OF A DUSTY WHITE DWARF'S INFRARED LUMINOSITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.; Jura, M., E-mail: sxu@astro.ucla.edu, E-mail: jura@astro.ucla.edu
2014-09-10
We report Spitzer/Infrared Array Camera photometry of WD J0959–0200, a white dwarf that displays excess infrared radiation from a disk, likely produced by a tidally disrupted planetesimal. We find that in 2010, the fluxes in both 3.6 μm and 4.5 μm decreased by ∼35% in less than 300 days. The drop in the infrared luminosity is likely due to an increase of the inner disk radius from one of two scenarios: (1) a recent planetesimal impact; (2) instability in the circumstellar disk. The current situation is tantalizing; high-sensitivity, high-cadence infrared studies will be a new tool to study the interplay between a diskmore » and its host white dwarf star.« less
Slesnick, Natasha; Guo, Xiamei; Brakenhoff, Brittany; Feng, Xin
2013-01-01
Given high levels of health and psychological costs associated with the family disruption of homelessness, identifying predictors of runaway and homeless episodes is an important goal. The current study followed 179 substance abusing, shelter-recruited adolescents who participated in a randomized clinical trial. Predictors of runaway and homeless episodes were examined over a two year period. Results from the hierarchical linear modeling analysis showed that family cohesion and substance use, but not family conflict or depressive symptoms, delinquency, or school enrollment predicted future runaway and homeless episodes. Findings suggest that increasing family support, care and connection and reducing substance use are important targets of intervention efforts in preventing future runaway and homeless episodes amongst a high risk sample of adolescents. PMID:24011094
AntBot: Anti-pollution peer-to-peer botnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Guanhua; Eidenbenz, Stephan; Ha, Duc T
2009-01-01
Botnets, which are responsible for many email sparnming and DDoS (Distributed Denial of Service) attacks in the current Internet, have emerged as one of most severe cyber-threats in recent years. To evade detection and improve resistance against countermeasures, botnets have evolved from the first generation that relies on IRC chat channels to deliver commands to the current generation that uses highly resilient P2P (Peer-to-Peer) protocols to spread their C&C (Command and Control) information. It is, however, revealed that P2P botnets, although relieved from the single point of failure that IRC botnets suffer, can be easily disrupted using pollution-based mitigation schemesmore » [15]. In this paper, we play the devil's advocate and propose a new type of hypothetical botnets called AntBot, which aim to propagate their C&C information to individual bots even though there exists an adversary that persistently pollutes keys used by seized bots to search the command information. The key idea of AntBot is a tree-like structure that bots use to deliver the command so that captured bots reveal only limited information. To evaluate effectiveness of AntBot against pollution-based mitigation in a virtual environment, we develop a distributed P2P botnet simulator. Using extensive experiments, we demonstrate that AntBot operates resiliently against pollution-based mitigation. We further present a few potential defense schemes that could effectively disrupt AntBot operations.« less
Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M; Restrepo, Diego; Macklin, Wendy B
2018-02-13
Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1 -null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1 -null mice. Young adult Plp1- null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. © 2018, Gould et al.
Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M
2018-01-01
Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1-null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1-null mice. Young adult Plp1-null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. PMID:29436368
Clavijo Rivera, E; Montalescot, V; Viau, M; Drouin, D; Bourseau, P; Frappart, M; Monteux, C; Couallier, E
2018-05-01
Samples of nitrogen-starved Parachlorella kessleri containing intact cells (IC), cells ground by bead milling (BM), and cells subjected to high-pressure cell disruption (HPD), together with their supernatants after centrifugation, were compared for granulometry and lipid profiles. The effects of disruption on the lipid profile and organisation were evaluated. The quantity of lipids available for extraction increased with disruption, and up to 81% could be recovered in supernatants after centrifugation, but a marked reorganization occurred. The proportion of amphiphilic free fatty acids and lysophosphatidylcholine increased during disruption due to their release or owing to lipid degradation by enzymes or physical conditions. This effect was more marked in HPD than in BM. Lipids contained in the aqueous phase, after disruption and centrifugation, were enriched in unsaturated fatty acids, BM leading to larger droplets than HPD. The larger liquid lipid droplet would be easier to recover in the following downstream processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lu, Baoju; Xiao, Anfeng; Lil, Lijun; Ni, Hui; Cai, Huinong; Su, Wenjin
2008-07-01
Phaffia rhodozyma is one of the organisms for production of astaxanthin, and the key process for extracting intracellular astaxanthin is cell disruption. In this work, cell disruption for extracting astaxanthin from Phaffia rhodozyma was studied with autoclave method at low acid concentration. The optimum disrupting conditions were: autoclave pressure 0.1 MPa, 121 degrees C; hydrochloric acid concentration 0.5 mol/L; liquid to material ratio (V/W) 30 mL/g dry cell weight and disruption time 2 min. Under the optimum conditions, medium scale experiment showed that astaxanthin and total carotenoids recovery from Phaffia rhodozyma were (84.8 +/- 3.2)% and (93.3 +/- 2)%, respectively. This new method can lead to no poisonous residues and get high extraction yield, which have good prospects to be put into industrial production.
The 1908 Tunguska explosion - Atmospheric disruption of a stony asteroid
NASA Technical Reports Server (NTRS)
Chyba, Christofer F.; Thomas, Paul J.; Zahnle, Kevin J.
1993-01-01
The explosion over Tunguska, Central Siberia, in 1908 released 10 to 20 megatons (high explosive equivalent) of energy at an altitude of about 10 km. This event represents a typical fate for stony asteroids tens of meters in radius entering the Earth's atmosphere at common hypersonic velocities. Comets and carbonaceous asteroids of the appropriate energy disrupt too high, whereas typical iron objects reach and crater the terrestrial surface.
Automated pavement analysis in Missouri using ground penetrating radar
DOT National Transportation Integrated Search
2003-02-01
Current geotechnical procedures for monitoring the condition of roadways are time consuming and can be disruptive to traffic, often requiring extensive invasive procedures (e.g., coring). Ground penetrating radar (GPR) technology offers a methodology...
Grasso, Damion J.; Henry, David; Kestler, Jacqueline; Nieto, Ricardo; Wakschlag, Lauren S.; Briggs-Gowan, Margaret J.
2015-01-01
Young children living with intimate partner violence (IPV) are often also exposed to harsh parenting. Both forms of violence increase children’s risk for clinically significant disruptive behavior, which can place them on a developmental trajectory associated with serious psychological impairment later in life. Although it is hypothesized that IPV behaviors may spillover into harsh parenting, and thereby influence risk for disruptive behavior, relatively little is known about these processes in families with young children. The current study examines the overlap of the quality and frequency of psychological and physical forms of IPV and harsh parenting, and tests whether harsh parenting mediates the relationship between IPV and child disruptive behavior in a diverse cross-sectional sample of 81 children ages 4 to 6 years. Results suggest that mothers reporting a greater occurrence of psychologically aggressive IPV (e.g., yelling, name-calling) more often engage in psychological and physical aggression toward their children (odds ratios [ORs] = 4.6–9.9). Mothers reporting a greater occurrence of IPV in the form of physical assault more often engage in mild to more severe forms of physical punishment with potential harm to the child (ORs = 3.8–5.0). Psychological and physical forms of IPV and harsh parenting all significantly correlated with maternal reports of child disruptive behavior (r = .29–.40). Psychological harsh parenting partially mediated the association between psychological IPV and child disruptive behavior. However, a significant direct effect of psychological IPV on preschool children’s disruptive behavior remained. Implications for child welfare policy and practice and intervention, including the need for increased awareness of the negative impact of psychological IPV on young children, are discussed. PMID:25724875
Whisman, Mark A.; Robustelli, Briana L.; Sbarra, David A.
2016-01-01
Rationale Marital disruption (i.e., marital separation, divorce) is associated with a wide range of poor mental and physical health outcomes, including increased risk for all-cause mortality. One biological intermediary that may help explain the association between marital disruption and poor health is accelerated cellular aging. Objective This study examines the association between marital disruption and salivary telomere length in a United States probability sample of adults ≥ 50 years of age. Method Participants were 3,526 individuals who participated in the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Health and lifestyle factors, traumatic and stressful life events, and neuroticism were assessed via self-report. Linear regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Results Based on their marital status data in the 2006 wave, people who were separated or divorced had shorter salivary telomeres than people who were continuously married or had never been married, and the association between marital disruption and salivary telomere length was not moderated by gender or neuroticism. Furthermore, the association between marital disruption and salivary telomere length remained statistically significant after adjusting for demographic and socioeconomic variables, neuroticism, cigarette use, body mass, traumatic life events, and other stressful life events. Additionally, results revealed that currently married adults with a history of divorce evidenced shorter salivary telomeres than people who were continuously married or never married. Conclusion Accelerated cellular aging, as indexed by telomere shortening, may be one pathway through which marital disruption is associated with morbidity and mortality. PMID:27062452
Whisman, Mark A; Robustelli, Briana L; Sbarra, David A
2016-05-01
Marital disruption (i.e., marital separation, divorce) is associated with a wide range of poor mental and physical health outcomes, including increased risk for all-cause mortality. One biological intermediary that may help explain the association between marital disruption and poor health is accelerated cellular aging. This study examines the association between marital disruption and salivary telomere length in a United States probability sample of adults ≥50 years of age. Participants were 3526 individuals who participated in the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Health and lifestyle factors, traumatic and stressful life events, and neuroticism were assessed via self-report. Linear regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Based on their marital status data in the 2006 wave, people who were separated or divorced had shorter salivary telomeres than people who were continuously married or had never been married, and the association between marital disruption and salivary telomere length was not moderated by gender or neuroticism. Furthermore, the association between marital disruption and salivary telomere length remained statistically significant after adjusting for demographic and socioeconomic variables, neuroticism, cigarette use, body mass, traumatic life events, and other stressful life events. Additionally, results revealed that currently married adults with a history of divorce evidenced shorter salivary telomeres than people who were continuously married or never married. Accelerated cellular aging, as indexed by telomere shortening, may be one pathway through which marital disruption is associated with morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grasso, Damion J; Henry, David; Kestler, Jacqueline; Nieto, Ricardo; Wakschlag, Lauren S; Briggs-Gowan, Margaret J
2016-07-01
Young children living with intimate partner violence (IPV) are often also exposed to harsh parenting. Both forms of violence increase children's risk for clinically significant disruptive behavior, which can place them on a developmental trajectory associated with serious psychological impairment later in life. Although it is hypothesized that IPV behaviors may spillover into harsh parenting, and thereby influence risk for disruptive behavior, relatively little is known about these processes in families with young children. The current study examines the overlap of the quality and frequency of psychological and physical forms of IPV and harsh parenting, and tests whether harsh parenting mediates the relationship between IPV and child disruptive behavior in a diverse cross-sectional sample of 81 children ages 4 to 6 years. Results suggest that mothers reporting a greater occurrence of psychologically aggressive IPV (e.g., yelling, name-calling) more often engage in psychological and physical aggression toward their children (odds ratios [ORs] = 4.6-9.9). Mothers reporting a greater occurrence of IPV in the form of physical assault more often engage in mild to more severe forms of physical punishment with potential harm to the child (ORs = 3.8-5.0). Psychological and physical forms of IPV and harsh parenting all significantly correlated with maternal reports of child disruptive behavior (r = .29-.40). Psychological harsh parenting partially mediated the association between psychological IPV and child disruptive behavior. However, a significant direct effect of psychological IPV on preschool children's disruptive behavior remained. Implications for child welfare policy and practice and intervention, including the need for increased awareness of the negative impact of psychological IPV on young children, are discussed. © The Author(s) 2015.
ERIC Educational Resources Information Center
Baldridge, Bianca J.; Beck, Nathan; Medina, Juan Carlos; Reeves, Marlo A.
2017-01-01
Community-based educational spaces (CBES; afterschool programs, community-based youth organizations, etc.) have a long history of interrupting patterns of educational inequity and continue to do so under the current educational policy climate. The current climate of education, marked by neoliberal education restructuring, has left community-based…
Head in the Clouds: A Review of Current and Future Potential for Cloud-Enabled Pedagogies
ERIC Educational Resources Information Center
Stevenson, Michael; Hedberg, John G.
2011-01-01
This paper reviews the research on the disruptive and transformative potential of newly-emerging cloud-based pedagogies. It takes into consideration the extent to which Cloud Computing can be leveraged to disseminate and scale web-based applications within and across learning contexts. It examines ideas from current literature in Web 2.0- and…
Sources and Losses of Ring Current Ions
NASA Technical Reports Server (NTRS)
Chen, Sheng-Hsien; Fok, Mei-Ching H.; Angeloupoulos, Vassilis
2010-01-01
During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.
Error field optimization in DIII-D using extremum seeking control
Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...
2016-06-03
A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less
Tidal disruption of viscous bodies
NASA Technical Reports Server (NTRS)
Sridhar, S.; Tremaine, S.
1992-01-01
Tidal disruptions are investigated in viscous-fluid planetesimals whose radius is small relative to the distance of closest (parabolic-orbit) approach to a planet. The planetesimal surface is in these conditions always ellipsoidal, facilitating treatment by coupled ODEs which are solvable with high accuracy. While the disrupted planetesimals evolve into needlelike ellipsoids, their density does not decrease. The validity of viscous fluid treatment holds for solid (ice or rock) planetesimals in cases where tidal stresses are greater than material strength, but integrity is maintained by self-gravity.
Quenching and disruption of lunar KREEP lava flows by impacts
NASA Technical Reports Server (NTRS)
Ryder, Graham
1988-01-01
The results of a reexamination of petrography of the Apollo 15 KREEP basalts are reported. Several of the basalts contain yellow residual glasses which cross-cut the crystallized phases; some show more extreme disruption. The features of the glasses appear to be compatible only with impact disruption, ejection, and quenching from actively crystallizing flows, indicating a high impact flux immediately after the impact that formed the Imbrium basin. No other example of impacts into active lava flows is known in the solar system.
Physics and Control of Locked Modes in the DIII-D Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volpe, Francesco
This Final Technical Report summarizes an investigation, carried out under the auspices of the DOE Early Career Award, of the physics and control of non-rotating magnetic islands (“locked modes”) in tokamak plasmas. Locked modes are one of the main causes of disruptions in present tokamaks, and could be an even bigger concern in ITER, due to its relatively high beta (favoring the formation of Neoclassical Tearing Mode islands) and low rotation (favoring locking). For these reasons, this research had the goal of studying and learning how to control locked modes in the DIII-D National Fusion Facility under ITER-relevant conditions ofmore » high pressure and low rotation. Major results included: the first full suppression of locked modes and avoidance of the associated disruptions; the demonstration of error field detection from the interaction between locked modes, applied rotating fields and intrinsic errors; the analysis of a vast database of disruptive locked modes, which led to criteria for disruption prediction and avoidance.« less
Self-evaluation by adolescents in a psychiatric hospital school token program1
Santogrossi, David A.; O'Leary, K. Daniel; Romanczyk, Raymond G.; Kaufman, Kenneth F.
1973-01-01
Nine adolescent boys with a history of high rates of disruptive classroom behavior were selected from a psychiatric hospital school and placed in a remedial reading class after school in which various factors in a token reinforcement program involving self-evaluation were investigated. The effects of self-evaluation, in the form of a rating the students gave themselves about the appropriateness of their classroom behavior, were first assessed. While the students' ratings of their own behavior correlated highly with the teacher's ratings and evaluations made by independent observers, the self-evaluations did not lead to a reduction in disruptive behavior. A token reinforcement program, in which the teacher rated the students' level of appropriate behavior and in which the students traded earned rating points for prizes, clearly led to a reduction of disruptive behavior. When the students were given the opportunity to evaluate their own behavior and to receive rewards in exchange for the evaluation, they returned to their former rates of disruptive behavior. PMID:16795409
Disruption of the Aortic Elastic Lamina and Medial Calcification Share Genetic Determinants in Mice
Wang, Susanna S.; Martin, Lisa J.; Schadt, Eric E.; Meng, Haijin; Wang, Xuping; Zhao, Wei; Ingram-Drake, Leslie; Nebohacova, Martina; Mehrabian, Margarete; Drake, Thomas A.; Lusis, Aldons J.
2010-01-01
Background Disruption of the elastic lamina, as an early indicator of aneurysm formation, and vascular calcification frequently occur together in atherosclerotic lesions of humans. Methods and Results We now report evidence of shared genetic basis for disruption of the elastic lamina (medial disruption) and medial calcification in an F2 mouse intercross between C57BL/6J and C3H/HeJ on a hyperlipidemic apolipoprotein E (ApoE−/−) null background. We identified 3 quantitative trait loci (QTLs) on chromosomes 6, 13, and 18, which are common to both traits, and 2 additional QTLs for medial calcification on chromosomes 3 and 7. Medial disruption, including severe disruptions leading to aneurysm formation, and medial calcification were highly correlated and occurred concomitantly in the cross. The chromosome 18 locus showed a striking male sex-specificity for both traits. To identify candidate genes, we integrated data from microarray analysis, genetic segregation, and clinical traits. The chromosome 7 locus contains the Abcc6 gene, known to mediate myocardial calcification. Using transgenic complementation, we show that Abcc6 also contributes to aortic medial calcification. Conclusions Our data indicate that calcification, though possibly contributory, does not always lead to medial disruption and that in addition to aneurysm formation, medial disruption may be the precursor to calcification. PMID:20031637
Pretreatment of high solid microbial sludges
Rivard, Christopher J.; Nagle, Nicholas J.
1998-01-01
A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.
Molet, Jenny; Maras, Pamela M; Kinney-Lang, Eli; Harris, Neil G; Rashid, Faisal; Ivy, Autumn S; Solodkin, Ana; Obenaus, Andre; Baram, Tallie Z
2016-12-01
Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.