Wang,W.; Yang, L.; Huang, H.
2007-01-01
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.
Frazão, Orlando; Baptista, José M; Santos, José L; Roy, Philippe
2008-05-01
A curvature sensor based on a highly birefringent (Hi-Bi) photonic crystal fiber inserted into a Sagnac interferometer is demonstrated. For this purpose, a novel Hi-Bi photonic crystal fiber was designed and fabricated. Half of the microstructured region of the photonic crystal fiber was composed by large diameter holes, while the other half contained small diameter holes. Because of this geometry, the fiber core was shifted from the center and high birefringence appears in the optical fiber. Curvature was applied for three different fiber directions for a range of 0.6-5 m(-1). Temperature and longitudinal strain was also characterized for constant curvature. The configuration showed insensitivity to these two physical parameters.
NASA Technical Reports Server (NTRS)
Braum, W. H.
1974-01-01
Previous analyses for an inviscid jet injected into a stream and the turbulent mixing region which forms between jet and stream are used to find the extent of the core region in a cooling film by calculating the growth of the turbulent boundary layer on the downstream wall. The core is a region of nearly perfect effectiveness which ends at the intersection of the boundary layer and the mixing region. The calculations show that the most important geometrical factor bearing on the length of the core is the curvature of the wall. When the radius of curvature is large, the boundary layer remains thin and the core is long. The effects of Reynolds number, total-pressure difference between film and stream, and lateral position of the downstream wall are also investigated. The step configuration is shown to have a longer core than the slot for the same flow conditions.
First Investigation on the Magnetic Curvature Distribution in the Magnetic Diffusion Region
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shen, C.; Liu, Z.; Marchaudon, A.; Rong, Z.
2015-12-01
We report first results of magnetic curvature distribution in the diffusion region of a unique magnetic reconnection event. This event is exceptional since all four Cluster spacecraft are crossing the diffusion region. Magnetic curvature analysis shows that magnetic field lines are sharply curved with high curvature in the inner outflow regions between the two Hall regions and display nearly coplanar features of antiparallel reconnection. Combination of the decrease in curvature radius of magnetic field lines and the increase in electron gyro-radius induces curvature pitch angle scattering of initially trapped electrons, resulting in an isotropic electron distribution. In Hall regions, magnetic curvature decreases corresponding obviously to the presence of Y-directed Hall fields, which implies that the stress of reconnected field is released here, in agreement with whistler mediated-reconnection. The value and direction of curvature radius are not well organized due to the fluctuating Hall fields resulting from the temporal dynamical reconnection.Same analysis will be applied to MMS data to investigate the fine magnetic structure in diffusion region.
Conservation of DNA curvature signals in regulatory regions of prokaryotic genes
Jáuregui, Ruy; Abreu-Goodger, Cei; Moreno-Hagelsieb, Gabriel; Collado-Vides, Julio; Merino, Enrique
2003-01-01
DNA curvature plays a well-characterized role in many transcriptional regulation mechanisms. We present evidence for the conservation of curvature signals in putative regulatory regions of several archaeal and eubacterial genomes. Genes with highly curved upstream regions were identified in orthologous groups, based on the annotations of the Cluster of Orthologous Groups of proteins (COG) database. COGs possessing a significant number of genes with curvature signals were analyzed, and conserved properties were found in several cases. Curvature signals related to regulatory sites, previously described in single organisms, were located in a broad spectrum of bacterial genomes. Global regulatory proteins, such as HU, IHF and FIS, known to bind to curved DNA and to be autoregulated, were found to present conserved DNA curvature signals in their regulatory regions, emphasizing the fact that structural parameters of the DNA molecule are conserved elements in the process of transcriptional regulation of some systems. It is currently an open question whether these diverse systems are part of an integrated global regulatory response in different microorganisms. PMID:14627810
Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement.
Weise, S E; Kuznetsov, O A; Hasenstein, K H; Kiss, J Z
2000-06-01
Gravitropic sensing in stems and stem-like organs is hypothesized to occur in the endodermis. However, since the endodermis runs the entire length of the stem, the precise site of gravisensing has been difficult to define. In this investigation of gravisensitivity in inflorescence stems of Arabidopsis, we positioned stems in a high gradient magnetic field (HGMF) on a rotating clinostat. Approximately 40% of the young, wild-type (WT) inflorescences, for all positions tested, curved toward the HGMF in the vicinity of the stem exposed to the field. In contrast, when the wedge was placed in the basal region of older inflorescence stems, no curvature was observed. As a control, the HGMF was applied to a starchless mutant, and 5% of the stems curved toward the field. Microscopy of the endodermis in the WT showed amyloplast displacement in the vicinity of the HGMF. Additional structural studies demonstrated that the basal region of WT stems experienced amyloplast displacement and, therefore, suggest this region is capable of gravity perception. However, increased lignification likely prevented curvature in the basal region. The lack of apical curvature after basal amyloplast displacement indicates that gravity perception in the base is not transmitted to the apex. Thus, these results provide evidence that the signal (and thus, response) resulting from perception in Arabidopsis inflorescence stems is spatially restricted.
Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement
NASA Technical Reports Server (NTRS)
Weise, S. E.; Kuznetsov, O. A.; Hasenstein, K. H.; Kiss, J. Z.
2000-01-01
Gravitropic sensing in stems and stem-like organs is hypothesized to occur in the endodermis. However, since the endodermis runs the entire length of the stem, the precise site of gravisensing has been difficult to define. In this investigation of gravisensitivity in inflorescence stems of Arabidopsis, we positioned stems in a high gradient magnetic field (HGMF) on a rotating clinostat. Approximately 40% of the young, wild-type (WT) inflorescences, for all positions tested, curved toward the HGMF in the vicinity of the stem exposed to the field. In contrast, when the wedge was placed in the basal region of older inflorescence stems, no curvature was observed. As a control, the HGMF was applied to a starchless mutant, and 5% of the stems curved toward the field. Microscopy of the endodermis in the WT showed amyloplast displacement in the vicinity of the HGMF. Additional structural studies demonstrated that the basal region of WT stems experienced amyloplast displacement and, therefore, suggest this region is capable of gravity perception. However, increased lignification likely prevented curvature in the basal region. The lack of apical curvature after basal amyloplast displacement indicates that gravity perception in the base is not transmitted to the apex. Thus, these results provide evidence that the signal (and thus, response) resulting from perception in Arabidopsis inflorescence stems is spatially restricted.
Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement
NASA Technical Reports Server (NTRS)
Weise, S. E.; Kuznetsov, O. A.; Hasenstein, K. H.; Kiss, J. Z.
2000-01-01
Gravitropic sensing in stems and stem-like organs is hypothesized to occur in the endodermis. However, since the endodermis runs the entire length of the stem, the precise site of gravisensing has been difficult to define. In this investigation of gravisensitivity in inflorescence stems of Arabidopsis, we positioned stems in a high gradient magnetic field (HGMF) on a rotating clinostat. Approximately 40% of the young, wild-type (WT) inflorescences, for all positions tested, curved toward the HGMF in the vicinity of the stem exposed to the field. In contrast, when the wedge was placed in the basal region of older inflorescence stems, no curvature was observed. As a control, the HGMF was applied to a starchless mutant, and 5% of the stems curved toward the field. Microscopy of the endodermis in the WT showed amyloplast displacement in the vicinity of the HGMF. Additional structural studies demonstrated that the basal region of WT stems experienced amyloplast displacement and, therefore, suggest this region is capable of gravity perception. However, increased lignification likely prevented curvature in the basal region. The lack of apical curvature after basal amyloplast displacement indicates that gravity perception in the base is not transmitted to the apex. Thus, these results provide evidence that the signal (and thus, response) resulting from perception in Arabidopsis inflorescence stems is spatially restricted.
High-Curvature Nanostructuring Enhances Probe Display for Biomolecular Detection.
De Luna, Phil; Mahshid, Sahar S; Das, Jagotamoy; Luan, Binquan; Sargent, Edward H; Kelley, Shana O; Zhou, Ruhong
2017-02-08
High-curvature electrodes facilitate rapid and sensitive detection of a broad class of molecular analytes. These sensors have reached detection limits not attained using bulk macroscale materials. It has been proposed that immobilized DNA probes are displayed at a high deflection angle on the sensor surface, which allows greater accessibility and more efficient hybridization. Here we report the first use of all-atom molecular dynamics simulations coupled with electrochemical experiments to explore the dynamics of single-stranded DNA immobilized on high-curvature versus flat surfaces. We find that high-curvature structures suppress DNA probe aggregation among adjacent probes. This results in conformations that are more freely accessed by target molecules. The effect observed is amplified in the presence of highly charged cations commonly used in electrochemical biosensing. The results of the simulations agree with experiments that measure the degree of hybridization in the presence of mono-, di-, and trivalent cations. On high-curvature structures, hybridization current density increases as positive charge increases, whereas on flat electrodes, the trivalent cations cause aggregation due to electrostatic overscreening, which leads to decreased current density and less sensitive detection.
Plan curvature and landslide probability in regions dominated by earth flows and earth slides
Ohlmacher, G.C.
2007-01-01
Damaging landslides in the Appalachian Plateau and scattered regions within the Midcontinent of North America highlight the need for landslide-hazard mapping and a better understanding of the geomorphic development of landslide terrains. The Plateau and Midcontinent have the necessary ingredients for landslides including sufficient relief, steep slope gradients, Pennsylvanian and Permian cyclothems that weather into fine-grained soils containing considerable clay, and adequate precipitation. One commonly used parameter in landslide-hazard analysis that is in need of further investigation is plan curvature. Plan curvature is the curvature of the hillside in a horizontal plane or the curvature of the contours on a topographic map. Hillsides can be subdivided into regions of concave outward plan curvature called hollows, convex outward plan curvature called noses, and straight contours called planar regions. Statistical analysis of plan-curvature and landslide datasets indicate that hillsides with planar plan curvature have the highest probability for landslides in regions dominated by earth flows and earth slides in clayey soils (CH and CL). The probability of landslides decreases as the hillsides become more concave or convex. Hollows have a slightly higher probability for landslides than noses. In hollows landslide material converges into the narrow region at the base of the slope. The convergence combined with the cohesive nature of fine-grained soils creates a buttressing effect that slows soil movement and increases the stability of the hillside within the hollow. Statistical approaches that attempt to determine landslide hazard need to account for the complex relationship between plan curvature, type of landslide, and landslide susceptibility. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shen, C.; Marchaudon, A.; Rong, Z.; Lavraud, B.; Fazakerley, A. N.; Yao, Z.; Mihaljcic, B.; Ji, Y.
2016-12-01
Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature. This scattering generates more isotropic particle distribution functions, with important impacts on the presence or absence of plasma instabilities. Using magnetic curvature analysis (MCA) based on multipoint Cluster spacecraft observations, we present the first investigation of magnetic curvature in the vicinity of an ion diffusion region where reconnected field lines are highly curved. Electrons at energies > 8 keV show a clear pitch angle ordering between bidirectional or trapped distribution in surrounding regions, while we show that in the more central part of the ion diffusion region electrons above such energies become isotropic. By contrast, colder electrons ( 1 keV) retain their bidirectional character throughout the diffusion regions. The calculated adiabatic parameter for these electrons is in agreement with theory. This study provides the first observational evidence for particle pitch angle scattering due to magnetic field lines with well characterized curvature in a space plasma.
NASA Astrophysics Data System (ADS)
Zhang, Y. C.; Shen, C.; Marchaudon, A.; Rong, Z. J.; Lavraud, B.; Fazakerley, A.; Yao, Z.; Mihaljcic, B.; Ji, Y.; Ma, Y. H.; Liu, Z. X.
2016-05-01
Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature. This scattering generates more isotropic particle distribution functions, with important impacts on the presence or absence of plasma instabilities. Using magnetic curvature analysis based on multipoint Cluster spacecraft observations, we present the first investigation of magnetic curvature in the vicinity of an ion diffusion region where reconnected field lines are highly curved. Electrons at energies > 8 keV show a clear pitch angle ordering between bidirectional and trapped distribution in surrounding regions, while we show that in the more central part of the ion diffusion region electrons above such energies become isotropic. By contrast, colder electrons (~1 keV) retain their bidirectional character throughout the diffusion regions. The calculated adiabatic parameter K2 for these electrons is in agreement with theory. This study provides the first observational evidence for particle pitch angle scattering due to magnetic field lines with well characterized curvature in a space plasma.
Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S
2015-09-01
The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.
Ho, Ruoya; Stroupe, Christopher
2016-10-01
Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A novel setup for wafer curvature measurement at very high heating rates.
Islam, T; Zechner, J; Bernardoni, M; Nelhiebel, M; Pippan, R
2017-02-01
The curvature evolution of a thin film layer stack containing a top Al layer is measured during temperature cycles with very high heating rates. The temperature cycles are generated by means of programmable electrical power pulses applied to miniaturized polysilicon heater systems embedded inside a semiconductor chip and the curvature is measured by a fast wafer curvature measurement setup. Fast temperature cycles with heating duration of 100 ms are created to heat the specimen up to 270 °C providing an average heating rate of 2500 K/s. As a second approach, curvature measurement utilizing laser scanning Doppler vibrometry is also demonstrated which verifies the results obtained from the fast wafer curvature measurement setup. Film stresses calculated from the measured curvature values compare well to literature results, indicating that the new method can be used to measure curvature during fast temperature cycling.
A novel setup for wafer curvature measurement at very high heating rates
NASA Astrophysics Data System (ADS)
Islam, T.; Zechner, J.; Bernardoni, M.; Nelhiebel, M.; Pippan, R.
2017-02-01
The curvature evolution of a thin film layer stack containing a top Al layer is measured during temperature cycles with very high heating rates. The temperature cycles are generated by means of programmable electrical power pulses applied to miniaturized polysilicon heater systems embedded inside a semiconductor chip and the curvature is measured by a fast wafer curvature measurement setup. Fast temperature cycles with heating duration of 100 ms are created to heat the specimen up to 270 °C providing an average heating rate of 2500 K/s. As a second approach, curvature measurement utilizing laser scanning Doppler vibrometry is also demonstrated which verifies the results obtained from the fast wafer curvature measurement setup. Film stresses calculated from the measured curvature values compare well to literature results, indicating that the new method can be used to measure curvature during fast temperature cycling.
Internal curvature signal and noise in low- and high-level vision
Grabowecky, Marcia; Kim, Yee Joon; Suzuki, Satoru
2011-01-01
How does internal processing contribute to visual pattern perception? By modeling visual search performance, we estimated internal signal and noise relevant to perception of curvature, a basic feature important for encoding of three-dimensional surfaces and objects. We used isolated, sparse, crowded, and face contexts to determine how internal curvature signal and noise depended on image crowding, lateral feature interactions, and level of pattern processing. Observers reported the curvature of a briefly flashed segment, which was presented alone (without lateral interaction) or among multiple straight segments (with lateral interaction). Each segment was presented with no context (engaging low-to-intermediate-level curvature processing), embedded within a face context as the mouth (engaging high-level face processing), or embedded within an inverted-scrambled-face context as a control for crowding. Using a simple, biologically plausible model of curvature perception, we estimated internal curvature signal and noise as the mean and standard deviation, respectively, of the Gaussian-distributed population activity of local curvature-tuned channels that best simulated behavioral curvature responses. Internal noise was increased by crowding but not by face context (irrespective of lateral interactions), suggesting prevention of noise accumulation in high-level pattern processing. In contrast, internal curvature signal was unaffected by crowding but modulated by lateral interactions. Lateral interactions (with straight segments) increased curvature signal when no contextual elements were added, but equivalent interactions reduced curvature signal when each segment was presented within a face. These opposing effects of lateral interactions are consistent with the phenomena of local-feature contrast in low-level processing and global-feature averaging in high-level processing. PMID:21209356
Active optics for high-dynamic variable curvature mirrors.
Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard R; Madec, Fabrice; Vives, Sébastien; Chardin, Elodie; Le Mignant, David; Cuby, Jean-Gabriel
2009-10-01
Variable curvature mirrors of large amplitude are designed by using finite element analysis. The specific case studied reaches at least a 800 mum sag with an optical quality better than lambda/5 over a 120 mm clear aperture. We highlight the geometrical nonlinearity and the plasticity effect.
Management of High-Grade Penile Curvature Associated With Hypospadias in Children
Moscardi, Paulo R. M.; Gosalbez, Rafael; Castellan, Miguel Alfedo
2017-01-01
Penile curvature is a frequent feature associated with hypospadias with also a great variability of severity among each patient. While the low-grade curvature (<30°) can be relatively easily corrected by simple techniques like penile degloving and dorsal plication, severe cases often demand more complex maneuvers to manage it. A great number of surgical techniques have been developed to adequately correct curvatures greater than 30°; however, each one of them should be individualized to different patients and local conditions encountered. In this article, we will review the evaluation of the pediatric patient with penile curvature associated with hypospadias with a special attention to high-grade cases, their management, indications for surgical treatment, and several surgical options for their definitive treatment. PMID:28929092
High bending curvature withstanding one-dimensional angle sensor with fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Jang, Minsu; Kim, Ockchul; Yang, Sungwook; Kim, Jinseok
2017-04-01
We report on the development of an angle sensor which can measure at high bending curvature. Unlike the other sensors, the novel angle sensor can be durable and flexible. The sensors consist of one fiber Bragg grating (FBG) fiber which is located in the middle of each sensor, and are fabricated in varying thickness to confirm the relation between the distance of the center of the angle sensor to the core of the FBG node and the radii of curvature at which the sensor can measure. The thinnest sensor has the thickness of 200 μm and can measure at the bending radius of 5 mm. However, its angle measurement error is the largest with 1.25°, because of high sensitivity. Regulating the thickness of sensor, the angles at high curvatures can be measured reliably.
Classification and quantification of leaf curvature
Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke
2010-01-01
Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields. PMID:20400533
Classification and quantification of leaf curvature.
Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke
2010-06-01
Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields.
A high-precision calculation method for interface normal and curvature on an unstructured grid
NASA Astrophysics Data System (ADS)
Ito, Kei; Kunugi, Tomoaki; Ohno, Shuji; Kamide, Hideki; Ohshima, Hiroyuki
2014-09-01
In the volume-of-fluid algorithm, the calculations of the interface normal and curvature are crucially important for accurately simulating interfacial flows. However, few methods have been proposed for the high-precision interface calculation on an unstructured grid. In this paper, the authors develop a height function method that works appropriately on an unstructured grid. In the process, the definition of the height function is discussed, and the high-precision calculation method of the interface normal is developed to meet the necessary condition for a second-order method. This new method has highly reduced computational cost compared with a conventional high-precision method because the interface normal calculation is completed by solving relatively simple algebraic equations. The curvature calculation method is also discussed and the approximated quadric curve of an interface is employed to calculate the curvature. Following a basic verification, the developed height function method is shown to successfully provide superior calculation accuracy and highly reduced computational cost compared with conventional calculation methods in terms of the interface normal and curvature. In addition, the height function method succeeds in calculating accurately the slotted-disk revolution problem and the oscillating drop on unstructured grids. Therefore, the developed height function method is confirmed to be an efficient technique for the high-precision numerical simulation of interfacial flows on an unstructured grid.
Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber
NASA Astrophysics Data System (ADS)
Wu, Yue; Pei, Li; Jin, Wenxing; Jiang, Youchao; Yang, Yuguang; Shen, Ya; Jian, Shuisheng
2017-07-01
A highly sensitive curvature sensor based on asymmetrical twin core fiber (TCF) and multimode fiber (MMF) is proposed and experimentally demonstrated. By applying the coupled-mode theory and equivalent refractive index model, we theoretically analyze the uncoupled feature of the TCF and the relationship between peak wavelength and the curvature. Two segments of MMF used as beam splitter and combiner are embedded on the two ends of the TCF, and the extinction ratio of the comb transmission spectrum is about 15 dB. The experimental result shows that the curvature sensitivity of the sensor can be achieved as high as 103.35 nm/m-1 ranging from 0.24 m-1 to 0.6 m-1, and the strain sensitivity is up to -4.01 pm/με in the range from 0 μεto 1400 με. The simultaneous detection of the curvature and strain can be realized. The temperature sensitivity is 0.431 nm/°C in the range from 40 °C to 70 °C. This fiber sensor exhibits the advantages of low cost, easy and repeated fabrication, and high sensitivity.
In-fiber directional coupler for high-sensitivity curvature measurement.
Guzman-Sepulveda, J R; May-Arrioja, D A
2013-05-20
A curvature fiber optic sensor using a two-core fiber (TCF) is proposed and demonstrated. The TCF is designed to operate as a directional coupler with one core located exactly at the center of the fiber and the other off-axis, but close to the center of the fiber. This design allows straightforward splicing of the TCF to single mode fibers (SMF), and alignment of the off-axis core is not strictly required for optimum operation. The sensor is fabricated by simply splicing a 5 cm long section of TCF between two SMF sections, which provides a sinusoidal spectral response. When the fiber is bent, the coupling parameters are modified due to stress-optic and effective length effects, effectively blue-shifting the sinusoidal spectral response of the sensor and allowing for the measurement of curvature. The sensor exhibits linear response and a sensitivity of -137.87 nm/m(-1) for curvature ranging from 0 to 0.27 m(-1), making it suitable to measure small curvatures with high sensitivity.
Besnard, Romain; Arrachart, Guilhem; Cambedouzou, Julien; Pellet-Rostaing, Stéphane
2016-05-10
The self-assembly of amino-undecyl-triethoxysilane (AUT) as micelles in water is considered. The behavior of acid/AUT systems is governed by a complete proton transfer from the acid to the amine, leading to the formation of an ammonium headgroup. This moiety is responsible for the bending of the interface between the organic core of the micelles and the surrounding water. By playing with the size of the acid used as curvature agent, the amphiphilic behavior of the organosilane molecule may be adjusted. We follow the aggregation as the curvature agent size increases. This approach constitutes an efficient and original method in order to tune the nanostructure of highly functionalized silica at the early stage of the elaboration. Small-angle X-ray scattering, wet scanning transmission electron microscopy, dynamic light scattering, and complementary characterization techniques indicate that hybrid organic-inorganic planar objects and vesicles are obtained for smaller curvature agents. Increasing the size of the curvature agent results in a transition of the aggregation geometry from vesicles to cylindrical direct micelles, finally leading to nanofibers organized in a 2D hexagonal network resembling a "reverse MCM-41 structure". A geometrical molecular self-assembly model is finally proposed, considering the dimensions of the surfactant tail and those of the head groups.
Gao, Dengliang
2013-03-01
In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.
Electron microscopy mapping of pBR322 DNA curvature. Comparison with theoretical models.
Muzard, G; Théveny, B; Révet, B
1990-01-01
A map of local curvature of the pBR322 DNA has been established by electron microscopy analysis of linearized plasmid molecules. To determine their polarity these molecules are one end labelled with an avidin-ferritin-biotin complex and the images are digitized. Local curvature is calculated from two mathematical treatments of the DNA trajectory and expressed in term of a mean dinucleotide wedge angle. Eight regions of curvature are distinguished. The four main regions of curvature have a high content of phased AA runs. The experimental curvature map is compared to theoretical maps of curvature obtained from four available models for DNA curvature. Images Fig. 2. PMID:2323339
Formation, Stability, and Mobility of One-Dimensional Lipid Bilayer on High Curvature Substrates
Huang, J; Martinez, J; Artyukhin, A; Sirbuly, D; Wang, Y; Ju, J W; Stroeve, P; Noy, A
2007-03-23
Curved lipid membranes are ubiquitous in living systems and play an important role in many biological processes. To understand how curvature and lipid composition affect membrane formation and fluidity we have assembled and studied mixed 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine (DOPE) supported lipid bilayers on amorphous silicon nanowires with controlled diameters ranging from 20 nm to 200 nm. Addition of cone-shaped DOPE molecules to cylindrical DOPC molecules promotes vesicle fusion and bilayer formation on smaller diameter nanowires. Our experiments demonstrate that nanowire-supported bilayers are mobile, exhibit fast recovery after photobleaching, and have low concentration of defects. Lipid diffusion coefficients in these high-curvature tubular membranes are comparable to the values reported for flat supported bilayers and increase with decreasing nanowire diameter.
NASA Astrophysics Data System (ADS)
Hu, Qihao; Zhang, Shuo; Yang, Wenlei; Geng, Tao; Sun, Weimin; Sun, Cuiting; Jin, Xiren; Yuan, Libo
2017-09-01
A highly sensitive curvature sensor made of a novel long period fiber grating (LPFG) is presented and experimentally demonstrated. It is constructed by splicing multiple single mode fibers (SMFs) and multi-mode fibers (MMFs) alternately (MS/MA). The measurement result shows that it has a high sensitivity of -22.4 nm/m-1 in the range from 0.223 m-1 to 4.358 m-1. It can measure curvature on all direction due to the symmetric structure. The proposed sensor was also insensitive to the temperature, whose temperature sensitivity was around -0.015 nm/°C in the range from 40 °C to 200 °C. The advantages of high curvature sensitivity and low temperature sensitivity make it has a great potential to measure curvature in practical application with high resolutions.
Miyake, Masahiro; Yamashiro, Kenji; Akagi-Kurashige, Yumiko; Oishi, Akio; Tsujikawa, Akitaka; Hangai, Masanori; Yoshimura, Nagahisa
2014-01-01
Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001). Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10−5 [1/µm] and variance of curvature ≥0.26×10−8 [1/µm]. Conclusions We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications. PMID:25259853
Radius of curvature changes in spontaneous improvement of foveoschisis in highly myopic eyes.
Hoang, Quan V; Chen, Ching-Lung; Garcia-Arumi, Jose; Sherwood, Pamela R; Chang, Stanley
2016-02-01
Myopic foveoschisis is the splitting of retinal layers overlying staphyloma in highly myopic patients that can lead to vision loss. We assess possible contributing mechanisms to the formation of foveoschisis by examining two cases of spontaneous improvement of myopic foveoschisis and employ a radius of curvature (ROC) measure to track posterior scleral curvature over time. A retrospective, non-comparative case series was performed and optical coherence tomography images were analysed. Retinal pigment epithelial layer ROC was calculated from manually segmented images through the posterior scleral curvature apex. Two cases of myopic foveoschisis with foveal detachments in the left eye (OS) were studied. Both patients had high myopia (either <-10 D or >30 mm in axial length). One case occurred in a treatment-naive patient who improved after 4 months of observation. On initial presentation, OS posterior scleral ROC was 12.35 mm and decreased to 12.15 mm at the time of resolution. The other case occurred in a patient who was followed for 7 years, had previously underwent pars plana vitrectomy and removal of epiretinal membrane, experienced recurrence of foveoschisis and then spontaneously improved without further posterior segment surgery. There was an uncomplicated cataract extraction in the interim. Posterior scleral ROC was 4.05 mm on presentation, 4.10 during recurrence, 3.55 mm after cataract extraction and 3.75 mm at resolution. Spontaneous improvement of myopic foveoschisis may be due to changes in tractional forces from the internal limiting membrane, cortical vitreous or staphyloma or, alternatively, from a delayed or fluctuant recovery course after intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Giuliani, James E.
1994-01-01
The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.
NASA Astrophysics Data System (ADS)
Adl, Ahmad-Hossein; El-Sankary, Kamal; El-Masry, Ezz
2010-07-01
A bandgap voltage reference with high-order curvature compensation is presented in this study. It exploits subtraction and derivative equalisation of currents generated from two complementary NMOS and PMOS bandgap references (BGRs) using subthreshold MOSFETs. By equating the derivative with respect to temperature of the two currents, generated by the complementary bandgaps, and subtracting these currents, an accurate high-order curvature compensation is achieved. To overcome problems due to the limited input common-mode range of opamps used in BGRs, a transimpedance amplifier with new accurate current compensation that tracks the temperature variation is proposed. This bandgap is implemented using the 0.18 μm CMOS process with a supply voltage as low as 0.7 V. At 0.8 V power supply and an output reference voltage of 386 mV, the proposed circuit achieves a temperature coefficient of 19 ppm/°C from 0 to 130°C. The power consumption is 119 μW and the power supply reduction ratio is 24 dB at 1 kHz.
NASA Astrophysics Data System (ADS)
Liu, Jin; Tourdot, Richard; Ramanan, Vyas; Agrawal, Neeraj J.; Radhakrishanan, Ravi
2012-06-01
The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable 'neck-region' (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated.
Liu, Jin; Tourdot, Richard; Ramanan, Vyas; Agrawal, Neeraj J; Radhakrishanan, Ravi
2012-06-01
The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable 'neck-region' (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated.
Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P
2015-04-06
In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.
Adaptive region-growing with maximum curvature strategy for tumor segmentation in 18F-FDG PET
NASA Astrophysics Data System (ADS)
Tan, Shan; Li, Laquan; Choi, Wookjin; Kang, Min Kyu; D'Souza, Warren D.; Lu, Wei
2017-07-01
Accurate tumor segmentation in PET is crucial in many oncology applications. We developed an adaptive region-growing (ARG) algorithm with a maximum curvature strategy (ARG_MC) for tumor segmentation in PET. The ARG_MC repeatedly applied a confidence connected region-growing algorithm with increasing relaxing factor f. The optimal relaxing factor (ORF) was then determined at the transition point on the f-volume curve, where the volume just grew from the tumor into the surrounding normal tissues. The ARG_MC along with five widely used algorithms were tested on a phantom with 6 spheres at different signal to background ratios and on two clinic datasets including 20 patients with esophageal cancer and 11 patients with non-Hodgkin lymphoma (NHL). The ARG_MC did not require any phantom calibration or any a priori knowledge of the tumor or PET scanner. The identified ORF varied with tumor types (mean ORF = 9.61, 3.78 and 2.55 respectively for the phantom, esophageal cancer, and NHL datasets), and varied from one tumor to another. For the phantom, the ARG_MC ranked the second in segmentation accuracy with an average Dice similarity index (DSI) of 0.86, only slightly worse than Daisne’s adaptive thresholding method (DSI = 0.87), which required phantom calibration. For both the esophageal cancer dataset and the NHL dataset, the ARG_MC had the highest accuracy with an average DSI of 0.87 and 0.84, respectively. The ARG_MC was robust to parameter settings and region of interest selection, and it did not depend on scanners, imaging protocols, or tumor types. Furthermore, the ARG_MC made no assumption about the tumor size or tumor uptake distribution, making it suitable for segmenting tumors with heterogeneous FDG uptake. In conclusion, the ARG_MC was accurate, robust and easy to use, it provides a highly potential tool for PET tumor segmentation in clinic.
NASA Astrophysics Data System (ADS)
Edey, Alex; Allen, Mark B.
2017-04-01
Many fold-and-thrust belts are curved in plan view, but the origins of this curvature are debated. Understanding which mechanism(s) is appropriate is important to constrain the behaviour of the lithosphere during compressional deformation. Here we analyse the active deformation of the Fars Arc region in the eastern part of the Zagros, Iran, including slip vectors of 92 earthquakes, published GPS and palaeomagnetism data, and the distributions of young and/or active folds. The fold-and-thrust belt in the Fars Arc shows pronounced curvature, convex southwards. Folds trends vary from NW-SE in the west to ENE-WSW in the east. The GPS-derived velocity field shows NNE to SSW convergence, towards the foreland on the Arabian Plate, without dispersion. Earthquake slip vectors are highly variable, spanning a range of azimuths from SW to SSE in an Arabian Plate reference frame. The full variation of azimuths occurs within small (10s of km) sub-regions, but this variation is superimposed on a radial pattern, whereby slip vectors tend to be parallel to the regional topographic gradient. Given the lack of variation in the GPS vectors, we conclude that the Fars Arc is not curved as a result of gravitational spreading over the adjacent foreland, but as a result of deformation being restricted at tectonic boundaries at the eastern and western margins of the Arc. Fault blocks and folds within the Fars Arc, each 20-40 km long, rotate about vertical axes to achieve the overall curvature, predominantly clockwise in the west and counter-clockwise in the east. Active folds of different orientations may intersect and produce dome-and-basin interference patterns, without the need for a series of separate deformation phases of different stress orientations. The Fars Arc clearly contrasts with the Himalayas, where both GPS and earthquake slip vectors display radial patterns towards the foreland, and gravitational spreading is a viable mechanism for producing fold-and-thrust belt curvature.
Liu, Jin; Tourdot, Richard; Ramanan, Vyas; Agrawal, Neeraj J.; Radhakrishanan, Ravi
2015-01-01
The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable ‘neck-region’ (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated. PMID:26500377
Reagan, Ian J; Brumbelow, Matthew L; Flannagan, Michael J; Sullivan, John M
2017-10-03
The few observational studies of the prevalence of high beam use indicate the rate of high beam use is about 25% when vehicles are isolated from other vehicles on unlit roads. Recent studies were limited to 2-lane rural roads and used measurement methods that likely overestimated use. The current study examined factors associated with the rate of high beam use of isolated vehicles on a variety of roadways in the Ann Arbor, Michigan area. Twenty observation sites were categorized as urban, rural, or on a rural/urban boundary and selected to estimate the effects of street lighting, road curvature, and direction of travel relative to the city on high beam use. Sites were selected in pairs so that a majority of traffic passing one site also passed through the other. Measurement of high beams relied on video data recorded for 2 nights at each site, and the video data also were used to derive a precise measure of the proximity of other traffic. Nearly 3,200 isolated vehicles (10 s or longer from other vehicles) were observed, representing 1,500-plus vehicle pairs. Across the sample, 18% of the vehicles used high beams. Seventy-three percent of the 1,500-plus vehicle pairs used low beams at each paired site, whereas 9% used high beams at both sites. Vehicles at rural sites and sites at the boundaries of Ann Arbor were more likely to use high beams than vehicles at urban sites, but use in rural areas compared with rural/urban boundary areas did not vary significantly. Rates at all sites were much lower than expected, ranging from 0.9 to 52.9%. High beam use generally increased with greater time between subject vehicles and leading vehicles and vehicles in the opposing lane. There were mixed findings associated with street lighting, road curvature, and direction of travel relative to the city. Maximizing visibility available to drivers from headlights includes addressing the substantial underuse of high beam headlamps. Advanced technologies such as high beam assist, which
ERIC Educational Resources Information Center
Lim, Ik Soo; Leek, E. Charles
2012-01-01
Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately,…
ERIC Educational Resources Information Center
Lim, Ik Soo; Leek, E. Charles
2012-01-01
Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately,…
Penile curvature: an update for management from 20 years experience in a high volume centre.
Sasso, Francesco; Vittori, Matteo; D'Addessi, Alessandro; Bassi, Pier Francesco
2016-09-26
Our aim was to review the literature and discuss about penile curvature in order to have an update for management after 20 years experience in the field.Penile curvature may be congenital or acquired. Congenital penile curvature is a relatively uncommon condition that may present in late adolescent or early adult life. The incidence is estimated to be 0.6 %. On the other side, acquired penile curvature has an overall prevalence of 0.5-13%. Three main factors seem to increase the risk of developing an acquired penile curvature, often related to Peyronie's disease: penile traumatism, genetic and familiar conditions and a history of diseases of the genital tract. In treating Peyronie's disease, no medical therapy is fully effective, and surgery remains the gold standard in cases of severe deformity and/or erectile disfunction. Peyronie's disease is associated with significant psychological stress for patients and their partners. Appropriate treatment should be individualized and tailored to the patient's goals and expectations. There is not the 'best' surgical technique and outcomes are satisfactory when proper treatment decisions are made.
Liu, Yan; Li, Yanqiu; Cao, Zhen
2016-06-20
An anamorphic magnification extreme ultraviolet (EUV) lithographic objective could increase the size of the exposure field at a wafer in the orthogonal scanning direction to improve the throughput of the lithographic system. In this paper, we present a curvatures combination method for an anamorphic magnification EUV lithographic objective with high numerical aperture (NA). This method achieves an anamorphic magnification initial structure by use of the double-curvature surfaces, which are formed by combining the curvatures of the corresponding surfaces into two coaxial spherical systems. A series of control measures is taken to design the two coaxial spherical systems for ensuring the rationalities of the initial structure and the surfaces after combining. The image quality of the anamorphic initial structure is optimized by a gradual optimization process. Finally, as an example, we design an Mx1/4 and My1/8 anamorphic magnification EUV lithographic objective with the presented design method. This objective achieves 0.5 NA and a 26 mm×16.5 mm exposure field at the wafer. The wavefront error RMS reaches 0.06λ (λ=13.5 nm), and the distortion is less than 2.8 nm. The design result proves the availability of the curvatures combination method.
Muyor, José M.; Alacid, Fernando; López-Miñarro, Pedro A.
2011-01-01
The purpose of this study was to determine the influence of hamstring muscles extensibility in standing, maximal trunk flexion with knees extended and on the bicycle in lower handlebar-hands position of highly trained cyclists. Ninety-six cyclists were recruited for the study (mean ± SD, age: 30.36 ± 5.98 years). Sagittal spinal curvatures and pelvic tilt were measured in the standing position, maximal trunk flexion with knees extended (sit-and-reach test) and while sitting on a bicycle in lower handlebar-hand position using a Spinal Mouse system. Hamstring muscles extensibility was determined in both legs by passive straight leg raise test (PSLR). The sample was divided into three groups according to PSLR angle: (1) reduced extensibility (PSLR < 80º; n = 30), (2) moderate hamstring extensibility group (PSLR = 80º – 90º; n = 35), and (3) high hamstring extensibility (PSLR = > 90º; n = 31). ANOVA analysis showed significant differences among groups for thoracic (p < 0.001) and pelvic tilt (p < 0.001) angles in the sit-and-reach test. No differences were found between groups for standing and on the bicycle position. Post hoc analysis showed significant differences in all pairwise comparisons for thoracic angle (p < 0.01) and pelvic angle (p < 0.001) in the sit-and-reach test. No differences were found in lumbar angle in any posture. In conclusion, the hamstring muscles extensibility influence the thoracic and pelvic postures when maximal trunk flexion with knees extended is performed, but not when cyclists are seated on their bicycles PMID:23486997
Aligning and measuring the curvature and thickness of high-precision lens
NASA Astrophysics Data System (ADS)
Wu, Kun-Huan; Chang, Shenq-Tsong; Hsu, Ming-Ying; Huang, Ting-Ming; Hsu, Wei-Yao; Tseng, Shih-Feng
2015-09-01
The radius of curvature is one of the most important specifications for spherical optics [1]. There are several methods and devices currently on the market that can be used to measure it, including optical level, non-contact laser interferometer (Interferometer), a probe-contact profiler (Profilometer), the centering machine and three-point contact ball diameter meter (Spherometer). The amount that can be measured with a radius of curvature of the lens aperture range depends on the interferometer standard lens f / number and lens of R / number (radius of curvature divided by the clear aperture of the spherical surface ratio between them). Unfortunately, for lens with diameter greater than 300 mm, the device is limited by the size of the holding fixture lenses or space. This paper aims to provide a novel surface contour detection method and machine, named "CMM spherometry by probe compensation," to measure the radius and thickness of the curvature of the optical surface by a coordinate measurement machine (CMM). In order to obtain more accurate optimization results, we used probe and temperature compensation to discuss the effect. The trace samples and the measurement results of CMM and the centering machine, which has top and bottom autocollimators, are compared.
Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M; Lin, Win-Li; Chang, Hsu; Shung, K Kirk
2012-01-01
A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing.
Forman curvature for complex networks
NASA Astrophysics Data System (ADS)
Sreejith, R. P.; Mohanraj, Karthikeyan; Jost, Jürgen; Saucan, Emil; Samal, Areejit
2016-06-01
We adapt Forman’s discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, while the distribution is broad in scale-free and real-world networks. In most networks, Forman curvature is found to display significant negative correlation with degree and centrality measures. However, Forman curvature is uncorrelated with clustering coefficient in most networks. Importantly, we find that both model and real networks are vulnerable to targeted deletion of nodes with highly negative Forman curvature. Our results suggest that Forman curvature can be employed to gain novel insights on the organization of complex networks.
NASA Astrophysics Data System (ADS)
Termini, Donatella
2016-12-01
The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.
A flexure-based steerable needle: high curvature with reduced tissue damage.
Swaney, Philip J; Burgner, Jessica; Gilbert, Hunter B; Webster, Robert J
2013-04-01
In the quest to design higher curvature bevel-steered needles, kinked bevel-tips have been one of the most successful approaches yet proposed. However, the price to be paid for enhancing steerability in this way has been increased tissue damage, since the prebent tip cuts a local helical path into tissue when axially rotated. This is problematic when closed-loop control is desired, because the controller will typically require the needle to rotate rapidly, and it is particularly problematic when duty cycling (i.e., continual needle spinning) is used to adjust curvature. In this paper, we propose a new flexure-based needle tip design that provides the enhanced steerability of kinked bevel-tip needles, while simultaneously minimizing tissue damage.
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
Burgner, Jessica; Gilbert, Hunter B.; Webster, Robert J.
2013-01-01
In the quest to design higher curvature bevel-steered needles, kinked bevel-tips have been one of the most successful approaches yet proposed. However, the price to be paid for enhancing steerability in this way has been increased tissue damage, since the prebent tip cuts a local helical path into tissue when axially rotated. This is problematic when closed-loop control is desired, because the controller will typically require the needle to rotate rapidly, and it is particularly problematic when duty cycling (i.e., continual needle spinning) is used to adjust curvature. In this paper, we propose a new flexure-based needle tip design that provides the enhanced steerability of kinked bevel-tip needles, while simultaneously minimizing tissue damage. PMID:23204267
Curvature adaptive optics and low light imaging
NASA Astrophysics Data System (ADS)
Ftaclas, C.; Chun, M.; Kuhn, J.; Ritter, J.
We review the basic approach of curvature adaptive optics (AO) and show how its many advantages arise. A curvature wave front sensor (WFS) measures exactly what a curvature deformable mirror (DM) generates. This leads to the computational and operational simplicity of a nearly diagonal control matrix. The DM automatically reconstructs the wave front based on WFS curvature measurements. Thus, there is no formal wave front reconstruction. This poses an interesting challenge to post-processing of AO images. Physical continuity of the DM and the reconstruction of phase from wave front curvature data assure that each actuated region of the DM corrects local phase, tip-tilt and focus. This gain in per-channel correction efficiency, combined with the need for only one pixel per channel detector reads in the WFS allows the use of photon counting detectors for wave front sensing. We note that the use of photon counting detectors implies penalty-free combination of correction channels either in the WFS or on the DM. This effectively decouples bright and faint source performance in that one no longer predicts the other. The application of curvature AO to the low light moving target detection problem, and explore the resulting challenges to components and control systems. Rapidly moving targets impose high-speed operation posing new requirements unique to curvature components. On the plus side, curvature wave front sensors, unlike their Shack-Hartmann counterparts, are tunable for optimum sensitivity to seeing and we are examining autonomous optimization of the WFS to respond to rapid changes in seeing.
NASA Astrophysics Data System (ADS)
Crawford, David F.
Curvature Cosmology proposes a new cosmological model very different from, and more elegant than, the Big-Bang Theory. Curvature Cosmology is based on two major hypotheses that Hubble redshift is due to an interaction of photons with curved spacetime and that there is a pressure that acts to stabilise expansion and provides a static, stable universe. The main focus of this book is to describe these two hypotheses in detail and to examine all relevant cosmological data in the context of this new model of the universe. This model proposes that, though evolution of stars and galaxies is evident, the statistical properties of the universe are the same at all places and at all times. In short, the universe is ageless, has no defined beginning (unlike the Big-Bang model), and carries no evidence of expansion, despite the changeability of its components. Curvature Cosmology calls for a paradigm shift in current cosmology and requires at least basic (if not more complex) knowledge of past and current cosmological models and equations.
NASA Astrophysics Data System (ADS)
Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen
2017-03-01
In abdominal disease diagnosis and various abdominal surgeries planning, segmentation of abdominal blood vessel (ABVs) is a very imperative task. Automatic segmentation enables fast and accurate processing of ABVs. We proposed a fully automatic approach for segmenting ABVs through contrast enhanced CT images by a hybrid of 3D region growing and 4D curvature analysis. The proposed method comprises three stages. First, candidates of bone, kidneys, ABVs and heart are segmented by an auto-adapted threshold. Second, bone is auto-segmented and classified into spine, ribs and pelvis. Third, ABVs are automatically segmented in two sub-steps: (1) kidneys and abdominal part of the heart are segmented, (2) ABVs are segmented by a hybrid approach that integrates a 3D region growing and 4D curvature analysis. Results are compared with two conventional methods. Results show that the proposed method is very promising in segmenting and classifying bone, segmenting whole ABVs and may have potential utility in clinical use.
Curvature sensor based on a Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Monteiro, Catarina; Ferreira, Marta S.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando
2016-05-01
A curvature sensor based on a Fabry-Perot interferometer is proposed. A capillary tube of silica is fusion spliced between two single mode fibers, producing a Fabry-Perot cavity. The light propagates in air, when passing through the capillary tube. Two different cavities are subjected to curvature and temperature. The cavity with shorter length shows insensitivity to both measurands. The larger cavity shows two operating regions for curvature measurement, where a linear response is shown, with a maximum sensitivity of 18.77pm/m-1 for the high curvature radius range. When subjected to temperature, the sensing head produces a similar response for different curvature radius, with a sensitivity of 0.87pm/°C.
3D curvature of muscle fascicles in triceps surae.
Rana, Manku; Hamarneh, Ghassan; Wakeling, James M
2014-12-01
Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus.
NASA Astrophysics Data System (ADS)
Bykov, A. D.; Lavrent'eva, N. N.; Sinitsa, L. N.
1992-09-01
The paper is concerned with the effect of trajectory curvature in calculations of the vibrational-rotational lines of molecules. The first-order term of the interruption function is calculated using exact solutions of classical dynamic equations. A universal function for two reduced arguments is obtained which is independent of the potential parameter and initial collision conditions; the function is capable of accounting for actual trajectories. Errors resulting from the use of a linear trajectory model are estimated for water vapor and methane expanded by various gases.
Wallace, John Paul; Myneni, Ganapati Rao; Pike, Robert
2011-03-31
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
John Paul Wallace, Ganapati Rao Myneni, and Robert Pike
2011-03-01
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
Image curvature correction and cosmic removal for high-throughput dispersive Raman spectroscopy.
Zhao, Jun
2003-11-01
A key factor determining the sensitivity of a Raman spectrometer is the usable detection area, which is the product of the usable slit width and the height. For the majority of process Raman samples, the larger the sampling area is, the more the scattered Raman signal can be gathered. On a multi-channel-detector-based dispersive spectrometer, a given spectral resolution limits the slit width. Extending the slit height using a straight slit usually causes the image to be curved on the detector due to optical effects. If left untreated, the curved slit image will degrade the peak shape and spectral resolution; therefore, the slit height must also be kept small if this negative effect is to be avoided. The mechanism of the curvature formation was analyzed for an on-axis-lens-based spectrograph, and a correction technique was developed to generate a straight slit image on the charge-coupled device (CCD). This allowed a large portion of the CCD height to be used without degrading the spectral resolution. A large fiber bundle was usable instead of a single small core fiber, generating significant increase in collected signal strength in clear or translucent samples. The straight image also enabled a new cosmic spike removal method, wherein the CCD image was divided into multiple strips, and a comparison among them allowed the identification and removal of cosmic spikes in a single CCD integration. On the contrary, many existing cosmic removal methods rely on comparison of multiple sequentially acquired spectra, potentially introducing artifacts, particularly when the spectral features are changing.
Spacetime curvature and the Higgs stability during inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2014-11-21
It has been claimed that the electroweak vacuum may be unstable during inflation due to large fluctuations of the order H in the case of a high inflationary scale as suggested by BICEP2. We compute the standard model Higgs effective potential including UV-induced curvature corrections at one-loop level. We find that for a high inflationary scale a large curvature mass is generated due to renormalization group running of nonminimal coupling ξ, which either stabilizes the potential against fluctuations for ξEW≳6×10(-2), or destabilizes it for ξEW≲2×10(-2) when the generated curvature mass is negative. Only in the narrow intermediate region may the effect of the curvature mass be significantly smaller.
Curvature Interaction in Collective Space
NASA Astrophysics Data System (ADS)
Herrmann, Richard
2012-12-01
For the Riemannian space, built from the collective coordinates used within nuclear models, an additional interaction with the metric is investigated, using the collective equivalent to Einstein's curvature scalar. The coupling strength is determined using a fit with the AME2003 ground state masses. An extended finite-range droplet model including curvature is introduced, which generates significant improvements for light nuclei and nuclei in the trans-fermium region.
Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers
Tourdot, Richard W.; Ramakrishnan, N.; Radhakrishnan, Ravi
2015-01-01
Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane—in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer
Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers
NASA Astrophysics Data System (ADS)
Tourdot, Richard W.; Ramakrishnan, N.; Radhakrishnan, Ravi
2014-08-01
Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane—in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer
NASA Astrophysics Data System (ADS)
Jia, Zhenyuan; Song, Dening; Ma, Jianwei; Gao, Yuanyuan
2017-01-01
Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.
A major QTL controls susceptibility to spinal curvature in the curveback guppy
2011-01-01
Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis) accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL) affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts. PMID:21269476
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-01-01
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-02-05
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.
Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature
Cheney, Philip P.; Weisgerber, Alan W.; Feuerbach, Alec M.; Knowles, Michelle K.
2017-01-01
The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed. PMID:28294967
Regional High School Senior Survey.
ERIC Educational Resources Information Center
Day, Philip R., Jr.
In order to identify the educational needs and aspirations of graduating high school seniors in the service region of the University of Maine at Augusta, a survey instrument was designed and administered to 1,950 seniors at 19 institutions. In all, 1,744 completed surveys were returned, a 92 percent response rate. The data are sub-grouped into…
Spatial curvature endgame: Reaching the limit of curvature determination
NASA Astrophysics Data System (ADS)
Leonard, C. Danielle; Bull, Philip; Allison, Rupert
2016-07-01
Current constraints on spatial curvature show that it is dynamically negligible: |ΩK|≲5 ×10-3 (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on ΩK at around the 10-4 level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable—by an order of magnitude—even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Λ CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like ΩK with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses.
NASA Astrophysics Data System (ADS)
Ouyang, Xiaowei; Guo, Huiyong; Zheng, Zhou; Ding, Liyun; Zhou, Ai
2017-04-01
An in-fiber Mach-Zehnder interferometer (MZI) based on dual side-hole fiber (DSHF) was demonstrated for highly sensitive measurement of curvature. The MZI-based bending sensor is fabricated by fusion splicing a piece of DSHF in between two standard single mode fibers (SMF) with cladding alignment. Due to the existence of the two air holes and the asymmetrical cross-section of the DSHF, the DSHF-based MZI is a core-cladding interferometer which is sensitive to directional bending. The bending characteristics are investigated experimentally within the curvature range of 0-8.172m-1. The bending sensitivities of the sensor are respectively 1.464 nm/m-1 and -1.394 nm/m-1 at their two opposite bending directions.
NASA Astrophysics Data System (ADS)
Okutani, Chihiro; Wagatsuma, Akira; Mabuchi, Kunihiko; Hoshino, Takayuki
2017-06-01
Noninvasive techniques of controlling cell migration on substrates are widely useful for tissue engineering. However, the cell migration controls of previous studies were not enough for collecting cells locally. To solve this problem, in this work, we report the C2C12 mouse myoblast cell migration difference (descend or be repelled) by changing the curvature of the boundary of a topographical structure when the cells move from a flat surface to the boundary. 69% of the cells coming across a round boundary — the curvature radius of which was 50 µm — descended into the hole. In contrast, no cells descended into a groove with a linear boundary. Moreover, we demonstrated the cell spatial density change from the difference at the boundary. This finding will provide a new device that will enable us to manipulate spatial cell density noninvasively for tissue engineering.
On the Weyl curvature hypothesis
Stoica, Ovidiu Cristinel
2013-11-15
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.
Membrane curvature at a glance
McMahon, Harvey T.; Boucrot, Emmanuel
2015-01-01
ABSTRACT Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes. PMID:25774051
Spatial curvature falsifies eternal inflation
Kleban, Matthew; Schillo, Marjorie E-mail: mls604@nyu.edu
2012-06-01
Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10{sup −5}). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ω{sub k}. On this basis we argue that a measurement of |Ω{sub k}| > 10{sup −4} would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ω{sub k} < −10{sup −4} (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ω{sub k} measurements and constitute a sharp test of these predictions.
Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature
Renner, Lars D.; Eswaramoorthy, Prahathees; Ramamurthi, Kumaran S.; Weibel, Douglas B.
2013-01-01
In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i) the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii) the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria. PMID:24391905
Sculpting membranes: a mechanism of curvature generation by proteins
NASA Astrophysics Data System (ADS)
Campelo, Felix
2010-03-01
A wide spectrum of intracellular processes is dependent on the ability of cells to dynamically regulate membrane shape. Membrane bending by proteins is necessary for the generation of intracellular transport carriers and for the maintenance of otherwise intrinsically unstable regions of high membrane curvature in cell organelles. Understanding the mechanisms by which proteins curve membranes is therefore of primary importance. Crescent shaped N-BAR domains containing amphipathic helices can induce membrane curvature by two mechanisms: the scaffolding mechanism due to the very shape of the BAR dimer, and the hydrophobic insertion mechanism by which small shallow inclusions penetrate the membrane matrix and act as a wedge changing the local membrane curvature. We will focus on this latter mechanism, and study it from a quantitative point of view. We use an elastic model of the lipid bilayer, taking into account the internal strains and stresses generated by the presence of an inclusion. We show that large membrane curvatures found in in vitro experiments can be ascribed to this mechanism, and that shallow insertions are more powerful curvature generators than lipids.
Sorting of Lipids and Proteins in Membrane Curvature Gradients
Tian, A.; Baumgart, T.
2009-01-01
The sorting of lipids and proteins in cellular trafficking pathways is a process of central importance in maintaining compartmentalization in eukaryotic cells. However, the mechanisms behind these sorting phenomena are currently far from being understood. Among several mechanistic suggestions, membrane curvature has been invoked as a means to segregate lipids and proteins in cellular sorting centers. To assess this hypothesis, we investigate the sorting of lipid analog dye trace components between highly curved tubular membranes and essentially flat membranes of giant unilamellar vesicles. Our experimental findings indicate that intracellular lipid sorting, contrary to frequent assumptions, is unlikely to occur by lipids fitting into membrane regions of appropriate curvature. This observation is explained in the framework of statistical mechanical lattice models that show that entropy, rather than curvature energy, dominates lipid distribution in the absence of strongly preferential lateral intermolecular interactions. Combined with previous findings of curvature induced phase segregation, we conclude that lipid cooperativity is required to enable efficient sorting. In contrast to lipid analog dyes, the peripheral membrane binding protein Cholera toxin subunit B is effectively curvature-sorted. The sorting of Cholera toxin subunit B is rationalized by statistical models. We discuss the implications of our findings for intracellular sorting mechanisms. PMID:19348750
Muterko, Alexandr; Kalendar, Ruslan; Salina, Elena
2016-01-27
In wheat, the vernalization requirement is mainly controlled by the VRN genes. Different species of hexaploid and tetraploid wheat are widely used as genetic source for new mutant variants and alleles for fundamental investigations and practical breeding programs. In this study, VRN-A1 and VRN-B1 were analysed for 178 accessions representing six tetraploid wheat species (Triticum dicoccoides, T. dicoccum, T. turgidum, T. polonicum, T. carthlicum, T. durum) and five hexaploid species (T. compactum, T. sphaerococcum, T. spelta, T. macha, T. vavilovii). Novel allelic variants in the promoter region of VRN-A1 and VRN-B1 were identified based on the change in curvature and flexibility of the DNA molecules. The new variants of VRN-A1 (designated as Vrn-A1a.2, Vrn-A1b.2 - Vrn-A1b.6 and Vrn-A1i) were found to be widely distributed in hexaploid and tetraploid wheat, and in fact were predominant over the known VRN-A1 alleles. The greatest diversity of the new variants of VRN-B1 (designated as VRN-B1.f, VRN-B1.s and VRN-B1.m) was found in the tetraploid and some hexaploid wheat species. For the first time, minor differences within the sequence motif known as the VRN-box of VRN1 were correlated with wheat growth habit. Thus, vrn-A1b.3 and vrn-A1b.4 were revealed in winter wheat in contrast to Vrn-A1b.2, Vrn-A1b.5, Vrn-A1b.6 and Vrn-A1i. It was found that single nucleotide mutation in the VRN-box can influence the vernalization requirement and growth habit of wheat. Our data suggest that both the A-tract and C-rich segment within the VRN-box contribute to its functionality, and provide a new view of the hypothesised role of the VRN-box in regulating transcription of the VRN1 genes. Specifically, it is proposed that combination of mutations in this region can modulate vernalization sensitivity and flowering time of wheat. New allelic variants of the VRN-A1 and VRN-B1 genes were identified in hexaploid and tetraploid wheat. Mutations in A-tract and C-rich segments within the VRN
Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures.
Silva, Pedro Emanuel Santos; Godinho, Maria Helena
2017-03-01
There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Curvature in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Li, Wenxia; Hasinska, Kathy; Seabaugh, Matt; Swartz, Scott; Lannutti, John
At this point in history, curvature is inherent to the laminated components that comprise solid oxide fuel cells (SOFCs). Surprisingly, however, this fact has never been previously quantified in the literature. In addition, potential curvature changes associated with NiO reduction and re-oxidation during operation have not been investigated. In this report, an optical profilometer was employed to non-destructively quantify the surface curvature or cracking behavior observed on a large scale in industrially manufactured cells. This provides insights into the challenges that the component materials face as well as additional appreciation for why, in spite of a concerted effort to commercialize SOFC power generation, all currently manufactured SOFC stacks fail. Our results demonstrate that cracked electrolyte areas (caused by differential sintering) are flatter than uncracked regions. The height of the electrolyte surface ranged from 86 to 289 μm above the baseline following sintering. Reduction typically results in increases in curvature of up to 214 μm. Initial crack density appears to affect curvature evolution during reduction; the higher the crack density, the smaller the curvature increase following reduction at 600 °C. In general, however, we observed that the electrolyte layer is remarkably resistant to further cracking during these typographic changes. Following oxidation at 750 °C, large changes in curvature (up to 280 μm) are noted that appear to be related to the strength of the bond between the electrolyte and the underlying anode.
Relaxation and curvature-induced molecular flows within multicomponent membranes
NASA Astrophysics Data System (ADS)
Morris, Richard G.
2014-06-01
The quantitative understanding of membranes is still rooted in work performed in the 1970s by Helfrich and others, concerning amphiphilic bilayers. However, most biological membranes contain a wide variety of nonamphiphilic molecules too. Drawing analogy with the physics of nematic-non-nematic mixtures, we present a dynamical (out-of-equilibrium) description of such multicomponent membranes. The approach combines nematohydrodynamics in the linear regime and a proper use of (differential-) geometry. The main result is to demonstrate that one can obtain equations describing a cross-diffusion effect (similar to the Soret and Dufour effects) between curvature and the (in-membrane) flow of amphiphilic molecules relative to nonamphiphilic ones. Surprisingly, the shape of a membrane relaxes according to a simple heat equation in the mean curvature, a process that is accompanied by a simultaneous boost to the diffusion of amphiphiles away from regions of high curvature. The model also predicts the inverse process, by which the forced bending of a membrane induces a flow of amphiphilic molecules towards areas of high curvature. In principle, numerical values for the relevant diffusion coefficients should be verifiable by experiment.
Relaxation and curvature-induced molecular flows within multicomponent membranes.
Morris, Richard G
2014-06-01
The quantitative understanding of membranes is still rooted in work performed in the 1970s by Helfrich and others, concerning amphiphilic bilayers. However, most biological membranes contain a wide variety of nonamphiphilic molecules too. Drawing analogy with the physics of nematic-non-nematic mixtures, we present a dynamical (out-of-equilibrium) description of such multicomponent membranes. The approach combines nematohydrodynamics in the linear regime and a proper use of (differential-) geometry. The main result is to demonstrate that one can obtain equations describing a cross-diffusion effect (similar to the Soret and Dufour effects) between curvature and the (in-membrane) flow of amphiphilic molecules relative to nonamphiphilic ones. Surprisingly, the shape of a membrane relaxes according to a simple heat equation in the mean curvature, a process that is accompanied by a simultaneous boost to the diffusion of amphiphiles away from regions of high curvature. The model also predicts the inverse process, by which the forced bending of a membrane induces a flow of amphiphilic molecules towards areas of high curvature. In principle, numerical values for the relevant diffusion coefficients should be verifiable by experiment.
NASA Astrophysics Data System (ADS)
Monga, Olivier; Ayache, Nicholas; Sander, Peter T.
1991-09-01
Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.
Effects of streamline curvature on separation prediction
NASA Astrophysics Data System (ADS)
Arolla, Sunil K.; Durbin, Paul A.
2009-11-01
In this study, the effects of streamline curvature on prediction of flow separation are investigated. The geometry is a circulation control airfoil, a high-lift configuration that has been under extensive research for more than two decades. A tangential jet is blown over a thick, rounded trailing edge, using the Coanda effect to delay separation. An attempt is made to understand, through numerical simulations, the dynamics of turbulent separation and reattachment on the Coanda surface. Highly curved, attached recirculation regions are seen to form. A physics based curvature correction proposed by Pettersson-Reif et al. (1999) is used in conjunction with ζ-f turbulence model. The chord-based Reynolds number is Re = 10^6. Two jet momentum coefficients of Cμ=0.03 and 0.1 are computed. In this paper, comparisons between the computed and experimental pressure distributions, velocity profiles and the position of flow detachment are presented. Comparisons with other closures such as Menter's SST model are also discussed.
Fiber Fabry-Perot interferometer for curvature sensing
NASA Astrophysics Data System (ADS)
Monteiro, Catarina S.; Ferreira, Marta S.; Silva, Susana O.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando
2016-12-01
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/°C to 0.89 pm/°C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
Curvature and torsion in growing actin networks
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.; Fletcher, Daniel A.
2008-06-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Curvature and torsion in growing actin networks
Shaevitz, Joshua W; Fletcher, Daniel A
2011-01-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043
Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia E-mail: enfmarti@mppmu.mpg.de E-mail: liciaverde@icc.ub.edu
2010-03-01
Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d{sub A}(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω{sub k} in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d{sub A}(z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω{sub k} degeneracy.
Aleksi , J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J. A.; Becerra Gonzalez, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; de Ona Wilhelmi, E.; Delgado Mendez, C.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; Garcia Lopez, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinovi , N.; Gonzalez Munoz, A.; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; Longo, F.; Lopez, M.; Lopez-Coto, R.; Lopez-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martinez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribo, M.; Rico, J.; Rodriguez Garcia, J.; Rugamer, S.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Sillanpaa, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzi , T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Vogler, P.; Will, M.; Zanin, R.; Collaboration), (The M.; D'Ammando, F.; Buson, S.; Lahteenmaki, A.; Tornikoski, M.; Hovatta, T.; Readhead, A. C. S.; Max-Moerbeck, W.; Richards, J. L.
2015-05-13
PG 1553+113 is a very high energy (VHE, E > 100 GeV) γ-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4 < z < 0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the γ-ray flux at E < 100 GeV observed by Fermi-LAT is compatible with steady emission. Here, in this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE γ-ray spectrum is rejected with a high significance (fit probability P = 2.6 × 10^{-6}). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z ~ 0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z = 0.4, based on the detection of Lyα absorption. Lastly, we find that the synchrotron self-Compton model gives a satisfactory description of the observed multiwavelength spectral energy distribution during the flare.
NASA Astrophysics Data System (ADS)
Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Vogler, P.; Will, M.; Zanin, R.; MAGIC Collaboration; D'Ammando, F.; Buson, S.; Lähteenmäki, A.; Tornikoski, M.; Hovatta, T.; Readhead, A. C. S.; Max-Moerbeck, W.; Richards, J. L.
2015-07-01
PG 1553+113 is a very high energy (VHE, E > 100 GeV) γ-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4 < z < 0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the γ-ray flux at E < 100 GeV observed by Fermi-LAT is compatible with steady emission. In this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE γ-ray spectrum is rejected with a high significance (fit probability P = 2.6 × 10-6). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z ˜ 0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z = 0.4, based on the detection of Lyα absorption. Finally, we find that the synchrotron self-Compton model gives a satisfactory description of the observed multiwavelength spectral energy distribution during the flare.
Aleksi , J.; Ansoldi, S.; Antonelli, L. A.; ...
2015-05-13
PG 1553+113 is a very high energy (VHE, E > 100 GeV) γ-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4 < z < 0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the γ-ray flux at E < 100 GeV observedmore » by Fermi-LAT is compatible with steady emission. Here, in this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE γ-ray spectrum is rejected with a high significance (fit probability P = 2.6 × 10-6). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z ~ 0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z = 0.4, based on the detection of Lyα absorption. Lastly, we find that the synchrotron self-Compton model gives a satisfactory description of the observed multiwavelength spectral energy distribution during the flare.« less
Curvature Sorting of Peripheral Proteins on Solid-Supported Wavy Membranes
Hsieh, Wan-Ting; Hsu, Chih-Jung; Capraro, Benjamin R.; Wu, Tingting; Chen, Chi-Mon; Yang, Shu; Baumgart, Tobias
2013-01-01
Cellular membrane deformation and the associated redistribution of membrane-bound proteins are important aspects of membrane function. Current model membrane approaches for studying curvature sensing are limited to positive curvatures, and often require complex and delicate experimental setups. To overcome these challenges, we fabricated a wavy substrate imposing a range of curvatures onto an adhering lipid bilayer membrane. We examined the curvature sorting of several peripheral proteins binding to the wavy membrane and observed them to partition into distinct regions of curvature. Furthermore, single molecule imaging experiments suggested that curvature sensing of proteins on low-curvature substrates requires cooperative interactions. PMID:22881196
NASA Astrophysics Data System (ADS)
Yu, Peter; Eyles, Nick; Sookhan, Shane
2015-10-01
Resolving the origin(s) of drumlins and related megaridges in areas of megascale glacial lineations (MSGL) left by paleo-ice sheets is critical to understanding how ancient ice sheets interacted with their sediment beds. MSGL is now linked with fast-flowing ice streams but there is a broad range of erosional and depositional models. Further progress is reliant on constraining fluxes of subglacial sediment at the ice sheet base which in turn is dependent on morphological data such as landform shape and elongation and most importantly landform volume. Past practice in determining shape has employed a broad range of geomorphological methods from strictly visualisation techniques to more complex semi-automated and automated drumlin extraction methods. This paper reviews and builds on currently available visualisation, semi-automated and automated extraction methods and presents a new, Curvature Based Relief Separation (CBRS) technique; for drumlin mapping. This uses curvature analysis to generate a base level from which topography can be normalized and drumlin volume can be derived. This methodology is tested using a high resolution (3 m) LiDAR elevation dataset from the Wadena Drumlin Field, Minnesota, USA, which was constructed by the Wadena Lobe of the Laurentide Ice Sheet ca. 20,000 years ago and which as a whole contains 2000 drumlins across an area of 7500 km2. This analysis demonstrates that CBRS provides an objective and robust procedure for automated drumlin extraction. There is strong agreement with manually selected landforms but the method is also capable of resolving features that were not detectable manually thereby considerably expanding the known population of streamlined landforms. CBRS provides an effective automatic method for visualisation of large areas of the streamlined beds of former ice sheets and for modelling sediment fluxes below ice sheets.
Lim, Ik Soo; Leek, E Charles
2012-07-01
Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately, Feldman and Singh (2005, Psychological Review, 112, 243-252) proposed a mathematical derivation to yield information content as a function of curvature along a contour. Here, we highlight several fundamental errors in their derivation and in its associated implementation, which are problematic in both mathematical and psychological senses. Instead, we propose an alternative mathematical formulation for information measure of contour curvature that addresses these issues. Additionally, unlike in previous work, we extend this approach to 3-dimensional (3D) shape by providing a formal measure of information content for surface curvature and outline a modified version of the minima rule relating to part segmentation using curvature in 3D shape. Copyright 2012 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Chambolle, Antonin; Morini, Massimiliano; Ponsiglione, Marcello
2015-12-01
This paper aims at building a unified framework to deal with a wide class of local and nonlocal translation-invariant geometric flows. We introduce a class of nonlocal generalized mean curvatures and prove the existence and uniqueness for the level set formulation of the corresponding geometric flows. We then introduce a class of generalized perimeters, whose first variation is an admissible generalized curvature. Within this class, we implement a minimizing movements scheme and we prove that it approximates the viscosity solution of the corresponding level set PDE. We also describe several examples and applications. Besides recovering and presenting in a unified way existence, uniqueness, and approximation results for several geometric motions already studied and scattered in the literature, the theory developed in this paper also allows us to establish new results.
Curvature constraints from the causal entropic principle
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-07-15
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than {rho}{sub k}=40{rho}{sub m} are disfavored by more than 99.99% peak value at {rho}{sub {lambda}}=7.9x10{sup -123} and {rho}{sub k}=4.3{rho}{sub m} for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
Lauric, Alexandra; Hippelheuser, James; Safain, Mina G.; Malek, Adel M.
2014-01-01
Although high-impact hemodynamic forces are thought to lead to cerebral aneurysmal change, little is known about the aneurysm formation on the inner aspect of vascular bends such as the internal carotid artery (ICA) siphon where wall shear stress (WSS) is expected to be low. This study evaluates the effect of vessel curvature and hemodynamics on aneurysm formation along the inner carotid siphon. Catheter 3D-rotational angiographic volumes of 35 ICA (10 aneurysms, 25 controls) were evaluated in 3D for radius of curvature and peak curvature of the siphon bend, followed by univariate statistical analysis. Computational fluid dynamic (CFD) simulations were performed on patient-derived models after aneurysm removal and on synthetic variants of increasing curvature. Peak focal siphon curvature was significantly higher in aneurysm bearing ICAs (0.36±0.045 vs. 0.30±0.048 mm−1, p=0.003), with no difference in global radius of curvature (p=0.36). In CFD simulations, increasing parametric curvature tightness (from 5 to 3 mm radius) resulted in dramatic increase of WSS and WSS gradient magnitude (WSSG) on the inner wall of the bend. In patient-derived data, the location of aneurysms coincided with regions of low WSS (<4 Pa) flanked by high WSS and WSSG peaks. WSS peaks correlated with the aneurysm neck. In contrast, control siphon bends displayed low, almost constant, WSS and WSSG profiles with little spatial variation. High bend curvature induces dynamically fluctuating high proximal WSS and WSSG followed by regions of flow stasis and recirculation, leading to local conditions known to induce destructive vessel wall remodeling and aneurysmal initiation. PMID:25062932
Asymptotic behavior of curvature of surface elements in isotropic turbulence
NASA Technical Reports Server (NTRS)
Girimaji, S. S.
1991-01-01
The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Volino, R. J.
2007-01-01
Experiments on boundary layer transition with flat, concave and convex walls and various levels of free-stream disturbance and with zero and strong streamwise acceleration have been conducted. Measurements of both fluid mechanics and heat transfer processes were taken. Examples are profiles of mean velocity and temperature; Reynolds normal and shear stresses; turbulent streamwise and cross-stream heat fluxed; turbulent Prandtl number; and streamwise variations of wall skin friction and heat transfer coefficient values. Free-stream turbulence levels were varied over the range from about 0.3 percent to about 8 percent. The effects of curvature on the onset of transition under low disturbance conditions are clear; concave curvature leads to an earlier and more rapid transition and the opposite is true for convex curvature This was previously known but little documentation of the transport processes in the flow was available
Improving the Sensitivity of Astronomical Curvature Wavefront Sensor Using Dual-Stroke Curvature
NASA Astrophysics Data System (ADS)
Guyon, Olivier; Blain, Celia; Takami, Hideki; Hayano, Yutaka; Hattori, Masayuki; Watanabe, Makoto
2008-06-01
Curvature wavefront sensors measure wavefront phase aberration by acquiring two intensity images on either side of the pupil plane. Low-order adaptive optics (AO) systems using curvature wavefront sensing (CWFS) have proved to be highly efficient for astronomical applications: they are more sensitive, use fewer detector elements, and achieve, for the same number of actuators, higher Strehl ratios than AO systems using more traditional Shack-Hartmann wavefront sensors. In higher-order systems, however, curvature wavefront sensors lose sensitivity to low spatial frequencies wavefront aberrations. This effect, often described as “noise propagation,” limits the usefulness of curvature wavefront sensing for high-order AO systems and/or large telescopes. In this paper, we first explain how this noise propagation effect occurs and then show that this limitation can be overcome by acquiring four defocused images of the pupil instead of two. This solution can be implemented without significant technology development and can run with a simple linear wavefront reconstruction algorithm at >kHz speed. We have successfully demonstrated in the laboratory that the four conjugation planes can be sequentially obtained at >kHz speed using a speaker-vibrating membrane assembly commonly used in current curvature AO systems. Closed loop simulations show that implementing this scheme is equivalent to making the guide star 1 to 1.5 magnitude brighter for the configuration tested (188 actuator elements on 8-m telescope). Higher sensitivity gains are expected on curvature systems with higher number of actuators.
Hysteresis compensation technique for POF curvature sensors
NASA Astrophysics Data System (ADS)
Leal, Arnaldo G.; Frizera, Anselmo; Pontes, Maria José
2017-04-01
Polymer optical fibers (POF) have higher strain limits, fracture toughness and flexibility in bend if compared to glass optical fibers. These characteristics enable the application of POFs as curvature sensors. However, the polymer is a viscoelastic material, which does not have a constant response with stress or strain. For this reason, a curvature sensor based on POF may present high hysteresis. This paper proposes a dynamic compensation technique based on the angular velocity of the sensor. Results show a hysteresis up to 10 times lower. Furthermore, it results on a simple calibration equation, which can be applied in real-time measurements.
Self-assembly of a filament by curvature-inducing proteins
NASA Astrophysics Data System (ADS)
Kwiecinski, James; Chapman, S. Jonathan; Goriely, Alain
2017-04-01
We explore a simplified macroscopic model of membrane shaping by means of curvature-sensing BAR proteins. Equations describing the interplay between the shape of a freely floating filament in a fluid and the adhesion kinetics of proteins are derived from mechanical principles. The constant curvature solutions that arise from this system are studied using weakly nonlinear analysis. We show that the stability of the filament's shape is completely characterized by the parameters associated with protein recruitment and establish that in the bistable regime, proteins aggregate on the filament forming regions of high and low curvatures. This pattern formation is then followed by phase-coarsening that resolves on a time-scale dependent on protein diffusion and drift across the filament, which contend to smooth and maintain the pattern respectively. The model is generalized for multiple species of BAR proteins and we show that the stability of the assembled shape is determined by a competition between proteins attaching on opposing sides.
Curvature-induced expulsion of actomyosin bundles during cytokinetic ring contraction
Huang, Junqi; Chew, Ting Gang; Kamnev, Anton; Martin, Douglas S; Carter, Nicholas J; Cross, Robert Anthony; Oliferenko, Snezhana; Balasubramanian, Mohan K
2016-01-01
Many eukaryotes assemble a ring-shaped actomyosin network that contracts to drive cytokinesis. Unlike actomyosin in sarcomeres, which cycles through contraction and relaxation, the cytokinetic ring disassembles during contraction through an unknown mechanism. Here we find in Schizosaccharomyces japonicus and Schizosaccharomyces pombe that, during actomyosin ring contraction, actin filaments associated with actomyosin rings are expelled as micron-scale bundles containing multiple actomyosin ring proteins. Using functional isolated actomyosin rings we show that expulsion of actin bundles does not require continuous presence of cytoplasm. Strikingly, mechanical compression of actomyosin rings results in expulsion of bundles predominantly at regions of high curvature. Our work unprecedentedly reveals that the increased curvature of the ring itself promotes its disassembly. It is likely that such a curvature-induced mechanism may operate in disassembly of other contractile networks. DOI: http://dx.doi.org/10.7554/eLife.21383.001 PMID:27734801
NASA Astrophysics Data System (ADS)
Berry, M. V.
2013-10-01
Wave streamlines are integral curves of the local wavevector (phase gradient). An exact formula is derived, giving the curvature of streamlines as the component transverse to the local wavevector of the gradient of the logarithm of the local wavenumber. The formula is applied to quantum particles moving in a potential and classical light in the presence of a refractive-index gradient. Three limiting regimes are encompassed. The first is geometrical, in which the bending of streamlines arises solely from the classical force or optical index gradient. The second and third limits concern singularities in the pattern of wave streamlines, of two types: optical vortices, near which the streamlines are asymptotically circular, and phase saddles, near which the streamlines are asymptotically hyperbolic.
Curvature-processing network in macaque visual cortex.
Yue, Xiaomin; Pourladian, Irene S; Tootell, Roger B H; Ungerleider, Leslie G
2014-08-19
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them.
Curvature-processing network in macaque visual cortex
Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.
2014-01-01
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328
Curvature-driven lateral segregation of membrane constituents in Golgi cisternae
NASA Astrophysics Data System (ADS)
Derganc, Jure
2007-12-01
Lateral segregation of mobile membrane constituents (e.g. lipids, proteins or membrane domains) into the regions of their preferred curvature relaxes stresses in the membrane. The equilibrium distribution of the constituents in the membrane is thus a balance between the gains in the membrane elastic energy and the segregation-induced loss of entropy. The membrane in the Golgi cisternae is particularly susceptible to the curvature-driven segregation because it possesses two very different curvatures—the highly curved membrane in the cisternal rims and the flat membrane in the cisternal sides. In this work, we calculate the extent of lateral segregation in the Golgi cisternae in the case where the segregation is driven by the Helfrich bending energy. It is assumed that the membrane bending constant and spontaneous curvature depend on the local membrane composition. A simple analytical expression for the extent of the lateral segregation is derived. The results show that the segregation depends on the ratio between the bending constant and the thermal energy, the difference of the preferred curvatures of the constituents and the sizes of the constituents. Applying the model to a typical Golgi cisterna, it was found that entropy can effectively limit the extent of the curvature-driven lateral segregation.
Controllable curvature from planar polymer sheets in response to light.
Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan
2017-02-24
The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, Ta. We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.
On nonlinear higher spin curvature
NASA Astrophysics Data System (ADS)
Manvelyan, Ruben; Mkrtchyan, Karapet; Rühl, Werner; Tovmasyan, Murad
2011-05-01
We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the de Wit-Freedman curvature.
Controlling Hamiltonian chaos via Gaussian curvature.
Oloumi, A; Teychenné, D
1999-12-01
We present a method allowing one to partly stabilize some chaotic Hamiltonians which have two degrees of freedom. The purpose of the method is to avoid the regions of V(q(1),q(2)) where its Gaussian curvature becomes negative. We show the stabilization of the Hénon-Heiles system, over a wide area, for the critical energy E=1/6. Total energy of the system varies only by a few percent.
Generalization of Seidel astigmatism and Petzval curvature.
Gaj, M
1966-06-01
In a paper probably to be published in Optika i Spektroskopiya the wave aberration for sagittal focus for the arbitrary surface of rotational symmetry has been carried out on the base of the astigmatic beam invariant D(s) = nu(s)d(s). The resulting expression for the wave aberration has been reformulated into three terms which, in the Seidel region, go over into astigmatism (the first) and into the Petzval curvature (the second) while the third disappears.
Curvature dependence of the interfacial heat and mass transfer coefficients
NASA Astrophysics Data System (ADS)
Glavatskiy, K. S.; Bedeaux, D.
2014-03-01
Nucleation is often accompanied by heat transfer between the surroundings and a nucleus of a new phase. The interface between two phases gives an additional resistance to this transfer. For small nuclei the interfacial curvature is high, which affects not only equilibrium quantities such as surface tension, but also the transport properties. In particular, high curvature affects the interfacial resistance to heat and mass transfer. We develop a framework for determining the curvature dependence of the interfacial heat and mass transfer resistances. We determine the interfacial resistances as a function of a curvature. The analysis is performed for a bubble of a one-component fluid and may be extended to various nuclei of multicomponent systems. The curvature dependence of the interfacial resistances is important in modeling transport processes in multiphase systems.
Schmidt, Nathan W.; Mishra, Abhijit; Wang, Jun; DeGrado, William F.; Wong, Gerard C. L.
2013-01-01
The M2 protein is a multi-functional protein, which plays several roles in the replication cycle of the influenza A virus. Here we focus on its ability to promote budding of the mature virus from the cell surface. Using high resolution small angle X-ray scattering we show that M2 can restructure lipid membranes into bicontinuous cubic phases which are rich in negative Gaussian curvature (NGC). The active generation of negative Gaussian membrane curvature by M2 is essential to influenza virus budding. M2 has been observed to colocalize with the region of high NGC at the neck of a bud. The structural requirements for scission are even more stringent than those for budding, as the neck must be considerably smaller than the virus during ‘pinch off’. Consistent with this, the amount of NGC in the induced cubic phases suggests that M2 proteins can generate high curvatures comparable to those on a neck with size 10x smaller than a spherical influenza virus. Similar experiments on variant proteins containing different M2 domains show that the cytoplasmic amphipathic helix is necessary and sufficient for NGC generation. Mutations to the helix which reduce its amphiphilicity and are known to diminish budding attenuated NGC generation. An M2 construct comprising the membrane interactive domains, the transmembrane helix and the cytoplasmic helix, displayed enhanced ability to generate NGC, suggesting that other domains cooperatively promote membrane curvature. These studies establish the importance of M2-induced negative Gaussian curvature during budding and suggest that antagonizing this curvature is a viable anti-influenza strategy. PMID:23962302
CUTEX: CUrvature Thresholding EXtractor
NASA Astrophysics Data System (ADS)
Molinari, S.; Schisano, E.; Faustini, F.; Pestalozzi, M.; di Giorgio, A. M.; Liu, S.
2017-08-01
CuTEx analyzes images in the infrared bands and extracts sources from complex backgrounds, particularly star-forming regions that offer the challenges of crowding, having a highly spatially variable background, and having no-psf profiles such as protostars in their accreting phase. The code is composed of two main algorithms, the first an algorithm for source detection, and the second for flux extraction. The code is originally written in IDL language and it was exported in the license free GDL language. CuTEx could be used in other bands or in scientific cases different from the native case. This software is also available as an on-line tool from the Multi-Mission Interactive Archive web pages dedicated to the Herschel Observatory.
Astronomical redshifts of highly ionized regions
NASA Astrophysics Data System (ADS)
Hansen, Peter M.
2014-07-01
Astronomical or cosmological redshifts are an observable property of extragalactic objects and have historically been wholly attributed to the recessional velocity of that object. The question of other, or intrinsic, components of the redshift has been highly controversial since it was first proposed. This paper investigates one theoretical source of intrinsic redshift that has been identified. The highly ionized regions of Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSO) are, by definition, plasmas. All plasmas have electromagnetic scattering characteristics that could contribute to the observed redshift. To investigate this possibility, one region of a generalized AGN was selected, the so called Broad Line Region (BLR). Even though unresolvable with current instrumentation, physical estimates of this region have been published for years in the astronomical literature. These data, selected and then averaged, are used to construct an overall model that is consistent with the published data to within an order of magnitude. The model is then subjected to a theoretical scattering investigation. The results suggest that intrinsic redshifts, derivable from the characteristics of the ambient plasma, may indeed contribute to the overall observed redshift of these objects.
Cosmic curvature and condensation
NASA Technical Reports Server (NTRS)
Harwit, Martin
1992-01-01
It is shown that the universe may consist of a patchwork of domains with different Riemann curvature constants k = 0, +/-1. Features of a phase transition in which flat space breaks up in a transition 2k0 - k(-) + k(+) with initial scale factors R(-) = R(+) are postulated and explored. It is shown that such a transition is energetically permitted, has the equivalent of a Curie temperature, and can lead in a natural way to the formation of voids and galaxies. It is predicted that, if the ambient universe on average is well fitted by a purely k(-) space, with only occasional domains of k(+) containing galaxies, a density parameter of (A(z sub c + 1)) super -1 should be expected, where z sub c represents the redshift of the earliest objects to have condensed, and A takes on values ranging from about 5 to 3. Present observations of quasars would suggest a density of about 0.03 or 0.05, respectively, but it could be lower if earlier condensation took place.
Animal Fascioliasis: Perspectives from high altitudinal regions.
Lyngdoh, Damanbha; Sharma, Sunil; Roy, Bishnupada; Tandon, Veena
2016-12-15
The parasitic flukes of the genus Fasciola (Platyhelminthes: Trematoda: Digenea) cause fascioliasis or liver-rot disease in ruminant livestock in tropical and sub-tropical regions of the world. Classically, two species of Fasciola- F. hepatica and F. gigantica, are universally recognized as taxonomically valid species. Our survey studies on ovid and bovid animals including yak and mithun from high altitudinal mountainous regions in Northeast India revealed the occurrence of Fasciola gigantica and also Fasciola sp.- an intermediate form, at altitudes between 5000 and 14,085 feet above sea level (asl). Two morphotypes- F. hepatica - like and F. gigantica - like, of Fasciola species were reported from the high altitudinal areas of Northeast India; most of these locales constitute new-locality and first records for the occurrence of these liver flukes.
EAU guidelines on penile curvature.
Hatzimouratidis, Konstantinos; Eardley, Ian; Giuliano, François; Hatzichristou, Dimitrios; Moncada, Ignacio; Salonia, Andrea; Vardi, Yoram; Wespes, Eric
2012-09-01
Penile curvature can be congenital or acquired. Acquired curvature is secondary due to La Peyronie (Peyronie's) disease. To provide clinical guidelines on the diagnosis and treatment of penile curvature. A systematic literature search on the epidemiology, diagnosis, and treatment of penile curvature was performed. Articles with the highest evidence available were selected and formed the basis for assigning levels of evidence and grades of recommendations. The pathogenesis of congenital penile curvature is unknown. Peyronie's disease is a poorly understood connective tissue disorder most commonly attributed to repetitive microvascular injury or trauma during intercourse. Diagnosis is based on medical and sexual histories, which are sufficient to establish the diagnosis. Physical examination includes assessment of palpable nodules and penile length. Curvature is best documented by a self-photograph or pharmacologically induced erection. The only treatment option for congenital penile curvature is surgery based on plication techniques. Conservative treatment for Peyronie's disease is associated with poor outcomes. Pharmacotherapy includes oral potassium para-aminobenzoate, intralesional treatment with verapamil, clostridial collagenase or interferon, topical verapamil gel, and iontophoresis with verapamil and dexamethasone. They can be efficacious in some patients, but none of these options carry a grade A recommendation. Steroids, vitamin E, and tamoxifen cannot be recommended. Extracorporeal shock wave treatment and penile traction devices may only be used to treat penile pain and reduce penile deformity, respectively. Surgery is indicated when Peyronie's disease is stable for at least 3 mo. Tunical shortening procedures, especially plication techniques, are the first treatment options. Tunical lengthening procedures are preferred in more severe curvatures or in complex deformities. Penile prosthesis implantation is recommended in patients with erectile dysfunction
Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts
Not Available
2006-06-01
This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.
Compound curvature laser window development
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.
Sigma models with negative curvature
NASA Astrophysics Data System (ADS)
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-05-01
We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O (n , 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.
Sigma models with negative curvature
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-03-16
Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.
Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature*♦
Holkar, Sachin S.; Kamerkar, Sukrut C.; Pucadyil, Thomas J.
2015-01-01
Epsins belong to the family of highly conserved clathrin-associated sorting proteins that are indispensable for clathrin-mediated endocytosis, but their precise functions remain unclear. We have developed an assay system of budded supported membrane tubes displaying planar and highly curved membrane surfaces to analyze intrinsic membrane curvature preference shown by clathrin-associated sorting proteins. Using real-time fluorescence microscopy, we find that epsin preferentially partitions to and assembles clathrin on highly curved membrane surfaces. Sorting of epsin to regions of high curvature strictly depends on binding to phosphatidylinositol 4,5-bisphosphate. Fluorescently labeled clathrins rapidly assemble as foci, which in turn cluster epsin, while maintaining tube integrity. Clathrin foci grow in intensity with a typical time constant of ∼75 s, similar to the time scales for coated pit formation seen in cells. Epsin therefore effectively senses membrane curvature to spatially control clathrin assembly. Our results highlight the potential role of membrane curvature in orchestrating the myriad molecular interactions necessary for the success of clathrin-mediated membrane budding. PMID:25837255
Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature.
Holkar, Sachin S; Kamerkar, Sukrut C; Pucadyil, Thomas J
2015-06-05
Epsins belong to the family of highly conserved clathrin-associated sorting proteins that are indispensable for clathrin-mediated endocytosis, but their precise functions remain unclear. We have developed an assay system of budded supported membrane tubes displaying planar and highly curved membrane surfaces to analyze intrinsic membrane curvature preference shown by clathrin-associated sorting proteins. Using real-time fluorescence microscopy, we find that epsin preferentially partitions to and assembles clathrin on highly curved membrane surfaces. Sorting of epsin to regions of high curvature strictly depends on binding to phosphatidylinositol 4,5-bisphosphate. Fluorescently labeled clathrins rapidly assemble as foci, which in turn cluster epsin, while maintaining tube integrity. Clathrin foci grow in intensity with a typical time constant of ∼75 s, similar to the time scales for coated pit formation seen in cells. Epsin therefore effectively senses membrane curvature to spatially control clathrin assembly. Our results highlight the potential role of membrane curvature in orchestrating the myriad molecular interactions necessary for the success of clathrin-mediated membrane budding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Influence of Coanda surface curvature on performance of bladeless fan
NASA Astrophysics Data System (ADS)
Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2014-10-01
The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.
Smrt, Sean T.; Draney, Adrian W.; Lorieau, Justin L.
2015-01-01
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. PMID:25398882
A novel and small curvature sensor based on butterfly-shape Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng
2017-04-01
A novel hollow-core fiber (HCF) curvature sensor based on a tapered HCF sandwiched between two single mode fibers (Butterfly-Shape Structure) is proposed and experimentally demonstrated. The collapsed region around the first fusion interface excites the high-order modes, and the butterfly shape couples the high-order modes back into the core and interferes with the fundamental mode in the second fusion interface. Simulation of the butterfly-shape structure is carried out using the beam propagation method to determine an optimized size of sensing element. The experimental results show that the variation of the interference spectrum light intensity is almost linearly proportional to the change of curvature, and the curvature sensitivity and resolution of the proposed sensor can be up to -10.9041dB / m-1 and 0.000917m-1 respectively in the range from 0.387 to 1.285 m-1. The proposed curvature sensor is compact size, high sensitive, and inexpensive.
Geometrical interpretation and curvature distribution in nanocarbons
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Saxena, Avadh
2011-04-01
Despite extensive research on microscopic structure and physical property characterization of advanced nanocarbon systems, they have not been viewed as topologically distinct nanoscale materials with various geometries (curvature). This work is motivated by our recent work [S. Gupta and A. Saxena, J. Raman Spectrosc. 40, 1127 (2009)] where we introduced the notion of "global" topology for novel nanocarbons and provided systematic trends by monitoring the phonon spectra via resonance Raman spectroscopy, which led to the paradigm of curvature/topology → property → functionality relationship in these materials. Here we determined the distribution of the mean (H) and Gaussian (K) curvatures as pertinent observables for geometric characterization taking into account the observed geometrical parameters, that is, radius, polar, azimuthal, or conical angle associated with tubular (single, double-, and multi-walled nanotubes; K = 0), spherical (hypo- and hyperfullerenes; K > 0) and complex (helical nanoribbons and nanotori/nanorings; K < 0) nanocarbon geometries to quantify the interplay of intrinsic surface curvature and topology, wherein global topology of the overall sp2-bonded carbon (sp2C) constrains local topology of the constituent carbon rings. We also studied various other structures such as catenoid and saddle-shaped surfaces as interesting nanocarbons. We compared these results with highly oriented pyrolytic graphite and monolayer graphene as layered and planar systems, respectively. Moreover, nanocarbons discussed herein are their derivatives. Curvature leads to nonlinearity that manifests itself in some form of symmetry breaking which can be extrapolated to topological variation due to nanoscale defects. Thus it may either close/open the bandgap leading to the introduction of new Raman spectroscopy signatures and optical absorption peaks, changes in mechanical properties, electrical behavior, and electronic density of states and possibly inducing magnetism
High Plains regional ground-water study
Dennehy, Kevin F.
2000-01-01
Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.
Effect of curvature on domain wall motion in elliptical nanorings
NASA Astrophysics Data System (ADS)
Kaya, Fikriye Idil; Bickel, Jessica; Aidala, Katherine
2014-03-01
Understanding domain wall (DW) motion in ferromagnetic nanostructures is important to realize proposed magnetic data storage and logic devices. We investigate the effect of curvature on DW pinning and motion by studying elliptical rings using micromagnetic simulations. Elliptical rings with constant width have varying curvature, with the lowest curvature at the minor axis, and the greatest curvature at the major axis. DWs can be created at any angular position within the ellipse by the application of an appropriate uniform magnetic field. However, only some of these positions are stable when the field is removed. We study the stability and depinning of the DWs by applying a slowly increasing elliptical magnetic field to determine the magnitude of the field at which the DWs begin to move. By varying the major to minor axis ratio, we examine the effect of curvature on DW pinning. A larger field is required to move DWs in regions of higher curvature (near the major axis) than lower curvature (near the minor axis). Overall, we see that increasing the major to minor axis ratio of elliptical nanorings requires increasing field strength to depin the DWs along the major axis. Work supported in part by NSF DMR-1207924 and NSF CMMI-1025020. Simulations performed at the CNS computational facilities at Harvard University, a member of the NNIN supported by NSF Award No. ECS-0335765.
Bavi, Omid; Cox, Charles D.; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris
2016-01-01
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels. PMID:26861405
Bavi, Omid; Cox, Charles D; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris
2016-02-05
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace's equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace's equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.
Do adult men with untreated ventral penile curvature have adverse outcomes?
Menon, Vani; Breyer, Benjamin; Copp, Hillary L; Baskin, Laurence; Disandro, Michael; Schlomer, Bruce J
2016-02-01
Congenital ventral penile curvature without hypospadias is often treated surgically in childhood. The history of untreated ventral curvature is unknown. This study's aim was to examine the association of untreated ventral penile curvature with various sexual and psychosexual outcomes. An electronic survey was advertised to men older than 18 years on Facebook. Men with possible ventral penile curvature identified themselves by choosing sketches that most closely represented their anatomy. Outcomes assessed included: Sexual Health Inventory for Men, difficulty of intercourse because of curvature, International Prostate Symptom Score, Penile Perception Score, psychosexual milestones, paternity, infertility, sitting to urinate, and the CDC HRQOL-4 module. Among participants, 81 out of 684 men (11.8%) reported untreated ventral penile curvature. Participants with self-reported curvature noted more difficulty with intercourse because of curvature (4.5 vs 4.9, p < 0.001), more unhealthy mental days (8.6 vs 6.2, p = 0.02), and increased dissatisfaction with penile self-perception compared with men without reported curvature (8.6 vs 9.5, p < 0.001). Men with possible untreated ventral curvature reported worse penile perception scores, more mentally unhealthy days, and increased difficulty with intercourse secondary to curvature compared with men without curvature. A limitation to this study is selection bias; responses collected were self-reported from survey volunteers. Additionally, the question identifying ventral penile curvature is not validated but performed well in pretesting. Most questions were from validated surveys, but some were modeled after validated surveys and/or contained high face validity types of questions. Men with possible untreated ventral penile curvature reported more dissatisfaction with penile appearance, increased difficulty with intercourse, and more unhealthy mental days. Given high success rates, low complications, and improved outcomes after
Do adult men with untreated ventral penile curvature have adverse outcomes?
Menon, Vani; Breyer, Benjamin; Copp, Hillary L.; Baskin, Laurence; Disandro, Michael; Schlomer, Bruce J.
2016-01-01
Summary Introduction Congenital ventral penile curvature without hypospadias is often treated surgically in childhood. The history of untreated ventral curvature is unknown. Objective This study’s aim was to examine the association of untreated ventral penile curvature with various sexual and psychosexual outcomes. Study design An electronic survey was advertised to men older than 18 years on Facebook. Men with possible ventral penile curvature identified themselves by choosing sketches that most closely represented their anatomy. Outcomes assessed included: Sexual Health Inventory for Men, difficulty of intercourse because of curvature, International Prostate Symptom Score, Penile Perception Score, psychosexual milestones, paternity, infertility, sitting to urinate, and the CDC HRQOL-4 module. Results Among participants, 81 out of 684 men (11.8%) reported untreated ventral penile curvature. Participants with self-reported curvature noted more difficulty with intercourse because of curvature (4.5 vs 4.9, p < 0.001), more unhealthy mental days (8.6 vs 6.2, p = 0.02), and increased dissatisfaction with penile self-perception compared with men without reported curvature (8.6 vs 9.5, p < 0.001). Discussion Men with possible untreated ventral curvature reported worse penile perception scores, more mentally unhealthy days, and increased difficulty with intercourse secondary to curvature compared with men without curvature. A limitation to this study is selection bias; responses collected were self-reported from survey volunteers. Additionally, the question identifying ventral penile curvature is not validated but performed well in pretesting. Most questions were from validated surveys, but some were modeled after validated surveys and/or contained high face validity types of questions. Conclusion Men with possible untreated ventral penile curvature reported more dissatisfaction with penile appearance, increased difficulty with intercourse, and more unhealthy mental
Magnetophoretic Induction of Root Curvature
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.
1997-01-01
The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.
LPG-based sensor for curvature and vibration
NASA Astrophysics Data System (ADS)
Nascimento, I. M.; Chesini, G.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, P. A. S.
2016-05-01
A long-period grating (LPG) written on a standard single mode fiber is investigated as a curvature and vibration sensor. It is demonstrated a high sensitivity to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using an intensity based interrogation scheme with the LPG sensor operating in the curvature regime. Results have shown a reproducible frequency discrimination in the 30 Hz to 2000 Hz, with resolutions between 11 mHz and 913 mHz. Frequency retrieval could be performed independent of temperature up to 86 °C.
A highly amyloidogenic region of hen lysozyme.
Frare, Erica; Polverino De Laureto, Patrizia; Zurdo, Jesús; Dobson, Christopher M; Fontana, Angelo
2004-07-23
Amyloid fibrils obtained after incubating hen egg-white lysozyme (HEWL) at pH 2.0 and 65 degrees C for extended periods of time have been found to consist predominantly of fragments of the protein corresponding to residues 49-100, 49-101, 53-100 and 53-101, derived largely from the partial acid hydrolysis of Asp-X peptide bonds. These internal fragments of HEWL encompass part of the beta-domain and all the residues forming the C-helix in the native protein, and contain two internal disulfide bridges Cys64-Cys80 and Cys76-Cys94. The complementary protein fragments, including helices A, B and D of the native protein, are not significantly incorporated into the network of fibrils, but remain largely soluble, in agreement with their predicted lower propensities to aggregate. Further analysis of the properties of different regions of HEWL to form amyloid fibrils was carried out by studying fragments produced by limited proteolysis of the protein by pepsin. Here, we show that only fragment 57-107, but not fragment 1-38/108-129, is able to generate well-defined amyloid fibrils under the conditions used. This finding is of particular importance, as the beta-domain and C-helix of the highly homologous human lysozyme have been shown to unfold locally in the amyloidogenic variant D67H, which is associated with the familial cases of systemic amyloidosis linked to lysozyme deposition. The identification of the highly amyloidogenic character of this region of the polypeptide chain provides strong support for the involvement of partially unfolded species in the initiation of the aggregation events that lead to amyloid deposition in clinical disease.
Curvature modulates the self-assembly of amphiphilic molecules.
Tian, Falin; Luo, Yu; Zhang, Xianren
2010-10-14
In this work, we used lattice Monte Carlo simulations and theoretical model calculations to show how the self-assembly of adsorbed amphiphilic molecules is affected by the local curvature of solid surfaces. It is found that, beyond a critical curvature value, solid surface geometry governs the spatial ordering of aggregates and may induce the morphological transitions. The simulation results show how the curvature of solid surfaces modulates the distribution of aggregates: the anisotropy in local curvature along and perpendicular to the cylindrical surfaces tends to generate orientationally ordered cylindrical micelles. To account for the morphological transitions induced by the local curvature of solid surfaces, we constructed a theoretical model which includes the Helfrich bending energy, the deformation energy of aggregates induced by solid surfaces, and the adsorption energy. The model calculations indicate that on highly curved solid surfaces the bending energy for bilayer structure sharply increases with surface curvature, which in turn induces the morphological transition from bilayer to cylindrical structure. Our results suggest that the local curvature provides a means of controlling the spatial organization of amphiphilic molecules.
Static optical designs for Wavefront Curvature Sensing
NASA Astrophysics Data System (ADS)
Bharmal, Nazim A.
2006-06-01
A bulk optic is presented, the Parallel Output Beamsplitter, which allows simultaneous imaging of two planes either side of the focus using static imaging optics. The POB is used to create novel optical configurations for Wavefront Curvature Sensing and two designs are presented. The first is suited to small-amplitude aberration measurements in situations where compactness, a large field of view, and high optical throughput are desirable. A laboratory experiment using a POB to make such a wavefront sensor was undertaken, and results are presented. The second design is a conceptual idea which offers image-scale invariant imaging of two planes whose conjugation satisfies the requirements of a conventional Wavefront Curvature Sensor concept.
Intrinsically disordered proteins drive membrane curvature
Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.
2015-01-01
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806
Intrinsically disordered proteins drive membrane curvature
NASA Astrophysics Data System (ADS)
Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.
2015-07-01
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
Intrinsically disordered proteins drive membrane curvature.
Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C
2015-07-24
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
NASA Astrophysics Data System (ADS)
Torgoev, Almaz; Havenith, Hans-Balder
2016-07-01
A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.
Curvature generation in nematic surfaces
NASA Astrophysics Data System (ADS)
Mostajeran, Cyrus
2015-06-01
In recent years there has been a growing interest in the study of shape formation using modern responsive materials that can be preprogrammed to undergo spatially inhomogeneous local deformations. In particular, nematic liquid crystalline solids offer exciting possibilities in this context. Considerable recent progress has been made in achieving a variety of shape transitions in thin sheets of nematic solids by engineering isolated points of concentrated Gaussian curvature using topological defects in the nematic director field across textured surfaces. In this paper, we consider ways of achieving shape transitions in thin sheets of nematic glass by generation of nonlocalized Gaussian curvature in the absence of topological defects in the director field. We show how one can blueprint any desired Gaussian curvature in a thin nematic sheet by controlling the nematic alignment angle across the surface and highlight specific patterns which present feasible initial targets for experimental verification of the theory.
NASA Astrophysics Data System (ADS)
Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan
2014-11-01
Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.
Amplification of curvature perturbations in cyclic cosmology
NASA Astrophysics Data System (ADS)
Zhang, Jun; Liu, Zhi-Guo; Piao, Yun-Song
2010-12-01
We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.
Amplification of curvature perturbations in cyclic cosmology
Zhang Jun; Liu Zhiguo; Piao Yunsong
2010-12-15
We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.
The Induction of Negative Curvature as a Mechanism of Cell Toxicity by Amyloidogenic Peptides
Smith, Pieter E. S.; Brender, Jeffrey R.; Ramamoorthy, Ayyalusamy
2009-01-01
The death of insulin-producing β-cells is a key step in the pathogenesis of type 2 diabetes. The amyloidogenic peptide Islet Amyloid Polypeptide (IAPP, also known as amylin) has been shown to disrupt β-cell membranes leading to β-cell death. Despite the strong evidence linking IAPP to the destruction of β-cell membrane integrity and cell death, the mechanism of IAPP toxicity is poorly understood. In particular, the effect of IAPP on the bilayer structure has largely been uncharacterized. In this study, we have determined the effect of the amyloidogenic and toxic hIAPP1-37 peptide and the non-toxic and non-amyloidogenic rIAPP1-37 peptide on membranes by a combination of DSC and solid-state NMR spectroscopy. We also characterized the toxic but largely non-amyloidogenic rIAPP1-19 and hIAPP1-19 fragments. DSC shows that both amyloidogenic (hIAPP1-37) and largely non-amyloidogenic (hIAPP1-19 and rIAPP1-19) toxic versions of the peptide strongly favor the formation of negative curvature in lipid bilayers, while the non-toxic full-length rat IAPP1-37 peptide does not. This result was confirmed by solid-state NMR spectroscopy which shows that in bicelles composed of regions of high curvature and low curvature, non-toxic rIAPP1-37 binds to the regions of low curvature while toxic rIAPP1-19 binds to regions of high curvature. Similarly, solid-state NMR spectroscopy shows that the toxic rIAPP1-19 peptide significantly disrupts the lipid bilayer structure, whereas the non-toxic rIAPP1-37 does not have a significant effect. These results indicate IAPP may induce the formation of pores by the induction of excess membrane curvature and can be used to guide the design of compounds that can prevent the cell-toxicity of IAPP. This mechanism may be important to understand the toxicity of other amyloidogenic proteins. Our solid-state NMR results also demonstrate the possibility of using bicelles to measure the affinity of biomolecules for negatively or positively curved regions of
Nanoscale Membrane Curvature detected by Polarized Localization Microscopy
NASA Astrophysics Data System (ADS)
Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin
Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.
Curvature-induced geometrical frustration in magnetic systems
Saxena, A.; Dandoloff, R.
1997-05-01
We study classical Heisenberg spins in the continuum limit (i.e., the nonlinear {sigma} model) on an elastic two-dimensional manifold with at least one nonconstant principal curvature. If the corresponding Euler-Lagrange equations support a soliton solution, the nonconstant curvature of the geometry induces geometrical frustration in the region of the soliton which is relieved by a deformation of the manifold in the region of the soliton. We illustrate these results on an elliptic cylinder where we find an elastic soliton in terms of the variable ellipticity along the axis of the cylinder. {copyright} {ital 1997} {ital The American Physical Society}
Raft Formation in Lipid Bilayers Coupled to Curvature
Sadeghi, Sina; Müller, Marcus; Vink, Richard L.C.
2014-01-01
We present computer simulations of a membrane in which the local composition is coupled to the local membrane curvature. At high temperatures (i.e., above the temperature of macroscopic phase separation), finite-sized transient domains are observed, reminiscent of lipid rafts. The domain size is in the range of hundred nanometers, and set by the membrane elastic properties. These findings are in line with the notion of the membrane as a curvature-induced microemulsion. At low temperature, the membrane phase separates. The transition to the phase-separated regime is continuous and belongs to the two-dimensional Ising universality class when the coupling to curvature is weak, but becomes first-order for strong curvature-composition coupling. PMID:25296311
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
NASA Astrophysics Data System (ADS)
Binder, Bernd
2009-03-01
In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the
Curvature of co-links uncovers hidden thematic layers in the World Wide Web.
Eckmann, Jean-Pierre; Moses, Elisha
2002-04-30
Beyond the information stored in pages of the World Wide Web, novel types of "meta-information" are created when pages connect to each other. Such meta-information is a collective effect of independent agents writing and linking pages, hidden from the casual user. Accessing it and understanding the interrelation between connectivity and content in the World Wide Web is a challenging problem [Botafogo, R. A. & Shneiderman, B. (1991) in Proceedings of Hypertext (Assoc. Comput. Mach., New York), pp. 63-77 and Albert, R. & Barabási, A.-L. (2002) Rev. Mod. Phys. 74, 47-97]. We demonstrate here how thematic relationships can be located precisely by looking only at the graph of hyperlinks, gleaning content and context from the Web without having to read what is in the pages. We begin by noting that reciprocal links (co-links) between pages signal a mutual recognition of authors and then focus on triangles containing such links, because triangles indicate a transitive relation. The importance of triangles is quantified by the clustering coefficient [Watts, D. J. & Strogatz, S. H. (1999) Nature (London) 393, 440-442], which we interpret as a curvature [Bridson, M. R. & Haefliger, A. (1999) Metric Spaces of Non-Positive Curvature (Springer, Berlin)]. This curvature defines a World Wide Web landscape whose connected regions of high curvature characterize a common topic. We show experimentally that reciprocity and curvature, when combined, accurately capture this meta-information for a wide variety of topics. As an example of future directions we analyze the neural network of Caenorhabditis elegans, using the same methods.
Curvature of co-links uncovers hidden thematic layers in the World Wide Web
Eckmann, Jean-Pierre; Moses, Elisha
2002-01-01
Beyond the information stored in pages of the World Wide Web, novel types of “meta-information” are created when pages connect to each other. Such meta-information is a collective effect of independent agents writing and linking pages, hidden from the casual user. Accessing it and understanding the interrelation between connectivity and content in the World Wide Web is a challenging problem [Botafogo, R. A. & Shneiderman, B. (1991) in Proceedings of Hypertext (Assoc. Comput. Mach., New York), pp. 63–77 and Albert, R. & Barabási, A.-L. (2002) Rev. Mod. Phys. 74, 47–97]. We demonstrate here how thematic relationships can be located precisely by looking only at the graph of hyperlinks, gleaning content and context from the Web without having to read what is in the pages. We begin by noting that reciprocal links (co-links) between pages signal a mutual recognition of authors and then focus on triangles containing such links, because triangles indicate a transitive relation. The importance of triangles is quantified by the clustering coefficient [Watts, D. J. & Strogatz, S. H. (1999) Nature (London) 393, 440–442], which we interpret as a curvature [Bridson, M. R. & Haefliger, A. (1999) Metric Spaces of Non-Positive Curvature (Springer, Berlin)]. This curvature defines a World Wide Web landscape whose connected regions of high curvature characterize a common topic. We show experimentally that reciprocity and curvature, when combined, accurately capture this meta-information for a wide variety of topics. As an example of future directions we analyze the neural network of Caenorhabditis elegans, using the same methods. PMID:11972019
Curvature of co-links uncovers hidden thematic layers in the World Wide Web
NASA Astrophysics Data System (ADS)
Eckmann, Jean-Pierre; Moses, Elisha
2002-04-01
Beyond the information stored in pages of the World Wide Web, novel types of "meta-information" are created when pages connect to each other. Such meta-information is a collective effect of independent agents writing and linking pages, hidden from the casual user. Accessing it and understanding the interrelation between connectivity and content in the World Wide Web is a challenging problem [Botafogo, R. A. & Shneiderman, B. (1991) in Proceedings of Hypertext (Assoc. Comput. Mach., New York), pp. 63-77 and Albert, R. & Barabási, A.-L. (2002) Rev. Mod. Phys. 74, 47-97]. We demonstrate here how thematic relationships can be located precisely by looking only at the graph of hyperlinks, gleaning content and context from the Web without having to read what is in the pages. We begin by noting that reciprocal links (co-links) between pages signal a mutual recognition of authors and then focus on triangles containing such links, because triangles indicate a transitive relation. The importance of triangles is quantified by the clustering coefficient [Watts, D. J. & Strogatz, S. H. (1999) Nature (London) 393, 440-442], which we interpret as a curvature [Bridson, M. R. & Haefliger, A. (1999) Metric Spaces of Non-Positive Curvature (Springer, Berlin)]. This curvature defines a World Wide Web landscape whose connected regions of high curvature characterize a common topic. We show experimentally that reciprocity and curvature, when combined, accurately capture this meta-information for a wide variety of topics. As an example of future directions we analyze the neural network of Caenorhabditis elegans, using the same methods.
Space Curvature and the "Heavy Banana 'Paradox.'"
ERIC Educational Resources Information Center
Gruber, Ronald P.; And Others
1991-01-01
Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)
Space Curvature and the "Heavy Banana 'Paradox.'"
ERIC Educational Resources Information Center
Gruber, Ronald P.; And Others
1991-01-01
Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)
Curvature-induced lipid segregation
NASA Astrophysics Data System (ADS)
Zheng, Bin; Meng, Qing-Tian; B. Selinger Robin, L.; V. Selinger, Jonathan; Ye, Fang-Fu
2015-06-01
We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes. Project supported by the Hundred-Talent Program of the Chinese Academy of Sciences (FY) and the National Science Foundation of USA via Grant DMR-1106014 (RLBS, JVS).
Quantum complexity and negative curvature
NASA Astrophysics Data System (ADS)
Brown, Adam R.; Susskind, Leonard; Zhao, Ying
2017-02-01
As time passes, once simple quantum states tend to become more complex. For strongly coupled k -local Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system—classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.
Curvatures Estimation in Orientation Selection
1991-01-31
than is-obtained in length-tuning measurements . Hence, over a limited range, increasing the size or gain of the small RF has a similar effect . The...the remaining larger, lower curvature units to represent the curve. An indirect test involves measuring the time for the effect to set in, with and...31Jan 91 By, Steen .Zcke * ax . Cnadr tDistribution/ Steen .Zcke *MaxS. ynaer ~ Availability Codes Dist Special Computer Vision and Robotics Laboratory
Curvature-Driven Lipid Sorting in Biomembranes
Callan-Jones, Andrew; Sorre, Benoit; Bassereau, Patricia
2011-01-01
It has often been suggested that the high curvature of transport intermediates in cells may be a sufficient means to segregate different lipid populations based on the relative energy costs of forming bent membranes. In this review, we present in vitro experiments that highlight the essential physics of lipid sorting at thermal equilibrium: It is driven by a trade-off between bending energy, mixing entropy, and interactions between species. We collect evidence that lipid sorting depends strongly on lipid–lipid and protein–lipid interactions, and hence on the underlying composition of the membrane and on the presence of bound proteins. PMID:21421916
Spacetime Curvature and Higgs Stability after Inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2015-12-11
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.
Disformal invariance of curvature perturbation
Motohashi, Hayato; White, Jonathan E-mail: jwhite@post.kek.jp
2016-02-01
We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.
Substrate curvature regulates cell migration
NASA Astrophysics Data System (ADS)
He, Xiuxiu; Jiang, Yi
2017-06-01
Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.
Substrate curvature regulates cell migration.
He, Xiuxiu; Jiang, Yi
2017-05-23
Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.
Clinical workflow for spinal curvature measurement with portable ultrasound
NASA Astrophysics Data System (ADS)
Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor
2016-03-01
PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.
Machine Learning Models for Detection of Regions of High Model Form Uncertainty in RANS
NASA Astrophysics Data System (ADS)
Ling, Julia; Templeton, Jeremy
2015-11-01
Reynolds Averaged Navier Stokes (RANS) models are widely used because of their computational efficiency and ease-of-implementation. However, because they rely on inexact turbulence closures, they suffer from significant model form uncertainty in many flows. Many RANS models make use of the Boussinesq hypothesis, which assumes a non-negative, scalar eddy viscosity that provides a linear relation between the Reynolds stresses and the mean strain rate. In many flows of engineering relevance, this eddy viscosity assumption is violated, leading to inaccuracies in the RANS predictions. For example, in near wall regions, the Boussinesq hypothesis fails to capture the correct Reynolds stress anisotropy. In regions of flow curvature, the linear relation between Reynolds stresses and mean strain rate may be inaccurate. This model form uncertainty cannot be quantified by simply varying the model parameters, as it is rooted in the model structure itself. Machine learning models were developed to detect regions of high model form uncertainty. These machine learning models consisted of binary classifiers that predicted, on a point-by-point basis, whether or not key RANS assumptions were violated. These classifiers were trained and evaluated for their sensitivity, specificity, and generalizability on a database of canonical flows.
Nonlinear Sorting, Curvature Generation, and Crowding of Endophilin N-BAR on Tubular Membranes
Zhu, Chen; Das, Sovan L.; Baumgart, Tobias
2012-01-01
The curvature of biological membranes is controlled by membrane-bound proteins. For example, during endocytosis, the sorting of membrane components, vesicle budding, and fission from the plasma membrane are mediated by adaptor and accessory proteins. Endophilin is a peripherally binding membrane protein that functions as an endocytic accessory protein. Endophilin's membrane tubulation capacity is well known. However, to understand the thermodynamic and mechanical aspects of endophilin function, experimental measurements need to be compared to quantitative theoretical models. We present measurements of curvature sorting and curvature generation of the endophilin A1 N-BAR domain on tubular membranes pulled from giant unilamellar vesicles. At low concentration, endophilin functions primarily as a membrane curvature sensor; at high concentrations, it also generates curvature. We determine the spontaneous curvature induced by endophilin and observe sigmoidal curvature/composition coupling isotherms that saturate at high membrane tensions and protein solution concentrations. The observation of saturation is supported by a strong dependence of lateral diffusion coefficients on protein density on the tether membrane. We develop a nonlinear curvature/composition coupling model that captures our experimental observations. Our model predicts a curvature-induced phase transition among two states with varying protein density and membrane curvature. This transition could act as a switch during endocytosis. PMID:22768939
Calculation of Scale-Dependent Curvatures of Geological Surfaces
NASA Astrophysics Data System (ADS)
Bergbauer, S.; Mukerji, T.; Pollard, D. D.; Hennings, P. H.
2001-12-01
A comparison between a spectral and a factorial kriging analysis is presented for the calculation of scale -dependent normal surface curvatures. Knowledge of scale -dependent curvatures of geological surfaces plays an important role in quantitative structural geology. Often, curvature analyses of geological surfaces, such as horizon tops, are performed to estimate the strain resulting from deformation. The final shape of the horizon, however, is a superposition of natural structures of different sizes ranging from the grain scale to the basin scale. Performing a curvature analysis on the raw data often leads to patchy, un-interpretable surface curvatures. Separating the surface curvature of the overall structure from the curvature of minor surface undulations can therefore be crucial in any quantitative structural analysis that uses the absolute value of surface curvature. The two methods are applied to a seismically mapped and depth-converted horizon of domal structures from the North Sea to investigate their applicability in a sub-surface context. For the spectral analysis the surface is transformed into a discrete frequency spectrum. When the overall curvature of the horizon is of interest, only the low-frequency components of the spectrum are used for the curvature analysis. The frequency bin width is determined such that only those frequencies that make up the overall surface structure are used, and that aliasing is minimized. The remaining high-frequency spectrum can be added back to address quantitatively the alias introduced by this filtering. In geostatistical factorial kriging analyses, the spatial covariance (variogram) is estimated from the data, and modeled as a sum of independent factors with different ranges. Short range variogram factors correspond to high frequency spectral components of the surface while long range factors contribute low frequency components. Using the modeled variogram, factorial kriging filters out the desired long range
On the determination of curvature and dynamical dark energy
Virey, J-M; Taxil, P; Talon-Esmieu, D; Ealet, A; Tilquin, A E-mail: talon@cppm.in2p3.fr E-mail: taxil@cpt.univ-mrs.fr
2008-12-15
Constraining simultaneously the dark energy (DE) equation of state and the curvature of the universe is difficult due to strong degeneracies. To circumvent this problem when analyzing data it is usual to assume flatness to constrain the DE or, conversely, to assume that the DE is a cosmological constant to constrain the curvature. In this paper, we quantify the impact of such assumptions with an eye to future large surveys. We simulate future data for type Ia supernovae, the cosmic microwave background and baryon acoustic oscillations for a large range of fiducial cosmologies allowing a small spatial curvature. We take into account a possible time evolution of DE through a parameterized equation of state: w(a) = w{sub 0}+(1-a)w{sub a}. We then fit the simulated data with a wrong assumption on the curvature or on the DE parameters. For a fiducial {Lambda}CDM cosmology, if flatness is incorrectly assumed in the fit and if the true curvature is within the ranges 0.01<{Omega}{sub k}<0.03 and -0.07<{Omega}{sub k}<-0.01, one will be led to conclude erroneously that an evolving DE is present, even with high statistics. On the other hand, models with curvature and dynamical DE can be confused with a flat {Lambda}CDM model when the fit ignores a possible DE evolution. We find that, in the future, with high statistics, such risks of confusion should be limited, but they are still possible, and biases in the cosmological parameters might be important. We conclude by recalling that, in the future, it will be mandatory to perform some complete multi-probe analyses, leaving the DE parameters as well as the curvature as free parameters.
Teng, Zhongzhao; Sadat, Umar; Ji, Guangyu; Zhu, Chengcheng; Young, Victoria E; Graves, Martin J; Gillard, Jonathan H
2011-03-01
High mechanical stress condition over the fibrous cap (FC) has been widely accepted as a contributor to plaque rupture. The relationships between the stress, lumen curvature, and FC thickness have not been explored in detail. In this study, we investigate lumen irregularity-dependent relationships between mechanical stress conditions, local FC thickness (LT(FC)), and lumen curvature (LC(lumen)). Magnetic resonance imaging slices of carotid plaque from 100 patients with delineated atherosclerotic components were used. Two-dimensional structure-only finite element simulations were performed for the mechanical analysis, and maximum principal stress (stress-P₁) at all integral nodes along the lumen was obtained. LT(FC) and LC(lumen) were computed using the segmented contour. The lumen irregularity (L-δir) was defined as the difference between the largest and the smallest lumen curvature. The results indicated that the relationship between stress-P₁, LT(FC), and LC(lumen) is largely dependent on L-δir. When L-δir ≥ .31 (irregular lumen), stress-P₁ strongly correlated with lumen curvature and had a weak/no correlation with local FC thickness, and in 73.4% of magnetic resonance (MR) slices, the critical stress (maximum of stress-P₁ over the diseased region) was found at the site where the lumen curvature was large. When L-δir ≤ 0.28 (relatively round lumen), stress-P₁ showed a strong correlation with local FC thickness but weak/no correlation with lumen curvature, and in 71.7% of MR slices, the critical stress was located at the site of minimum FC thickness. Using lumen irregularity as a method of identifying vulnerable plaque sites by referring to the lumen shape is a novel and simple method, which can be used for mechanics-based plaque vulnerability assessment.
NASA Astrophysics Data System (ADS)
Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan
2016-03-01
We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.
Long-time behavior of material-surface curvature in isotropic turbulence
NASA Technical Reports Server (NTRS)
Girimaji, S. S.
1992-01-01
The behavior at large times of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. The main objectives are: to study the asymptotic behavior of the pdf curvature as a function of initial curvature and shape; and to establish whether the curvature of an initially plane material element goes to a stationary probability distribution. The evidence available in the literature about the asymptotic curvature-pdf of initially flat surfaces is ambiguous, and the conjecture is that it is quasi-stationary. In this work several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times the moments of the logarithm of curvature are independent of the initial pdf of curvature. This, it is argued, supports the view that the curvature attains a stationary distribution at long times. It is also shown that, irrespective of initial shape or curvature, the shape of any material element at long times is cylindrical with a high probability.
Detonation Front Curvatures and Detonation Rates
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark
2015-06-01
We have normalized the LLNL library of detonation front curvatures by dividing lags by the edge lag and radii by the edge radius. We then fit the normalized data to the equation L = AR2 + BR8, where L is the normalized lag and R is the normalized radius. We attribute the quadratic term to thermal processes and the 8th-power term to shock processes. We compare the % of the quadratic term J at the edge with detonation rates obtained from the size effect. One class of results is made up of fine-grained, uniform explosives with large lags, where a low detonation rate leads to a high J and vice versa. This provides a rough way of estimating unknown rates if the unknown explosive is of high quality. The other, equally-large class contains rough-grained materials, often with small lags and small radii. These have curves that do not fit the equation but superfically often look quadratic. Some HMX and PETN curvatures even show a ``sombrero'' effect. Code models show that density differences of 0.03 g/cc in ram-pressed parts can cause pseudo-quadratic curves and even sombreros. Modeling is used to illustrate J at the lowest and highest possible detonation rates. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Turning maneuvers in sharks: Predicting body curvature from axial morphology.
Porter, Marianne E; Roque, Cassandra M; Long, John H
2009-08-01
Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size-matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r(2) values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non-vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming. (c) 2009 Wiley-Liss, Inc.
Salvage penile curvature correction surgery.
Hsieh, Cheng-Hsing; Chen, Heng-Shuen; Lee, Wen-Yuan; Chen, Kuo-Liang; Chang, Chao-Hsiang; Hsu, Geng-Long
2010-01-01
It is commonly believed that coarser suture materials should be used to provide sufficient tenacity in surgery for penile curvature correction. We report our 15-year experience of fine sutures in a second operation in 31 patients who underwent prior curvature correction elsewhere with coarser sutures, resulting in recurrent penile curvature. Suture materials used in prior surgeries in these patients were either 2-0 or 3-0 nylon sutures. In this series, all 31 patients underwent a modified Nesbit procedure at the level of the collagen bundles using finer sutures. Prior to July 1998, 10 men underwent salvage surgery using 4-0 polyglactin sutures. Thereafter, we adapted 6-0 nylon sutures for another 21 patients. We categorized the patients into the polyglactin (n = 10) and nylon (n = 21) groups respectively. Overall, 29 patients were available for follow-up while using the abridged 5-item version of the International Index of Erectile Function (IIEF-5) scoring system, with 21 patients in the nylon group. We have found cavernosography a practical and reliable method to objectively assess penile morphology in these patients. The penile morphology both subjectively and objectively was excellent in all patients, except for 1 in each group. Erectile function restoration showed a trend of satisfaction in the polyglactin group and based on IIEF-5 was significantly improved in the nylon group (14.2 ± 3.6 vs 21.9 ± 2.1, n = 20, P < .001). These results suggest that in penile tunical surgery, fine sutures such as 6-0 nylon may result in better penile morphology and functional outcomes.
Grechy, L; Iori, F; Corbett, R W; Gedroyc, W; Duncan, N; Caro, C G; Vincent, P E
2017-07-26
Arterio-Venous Fistulae (AVF) are regarded as the "gold standard" method of vascular access for patients with End-Stage Renal Disease (ESRD) who require haemodialysis. However, up to 60% of AVF do not mature, and hence fail, as a result of Intimal Hyperplasia (IH). Unphysiological flow and oxygen transport patterns, associated with the unnatural and often complex geometries of AVF, are believed to be implicated in the development of IH. Previous studies have investigated the effect of arterial curvature on blood flow in AVF using idealized planar AVF configurations and non-pulsatile inflow conditions. The present study takes an important step forwards by extending this work to more realistic non-planar brachiocephalic AVF configurations with pulsatile inflow conditions. Results show that forming an AVF by connecting a vein onto the outer curvature of an arterial bend does not, necessarily, suppress unsteady flow in the artery. This finding is converse to results from a previous more idealized study. However, results also show that forming an AVF by connecting a vein onto the inner curvature of an arterial bend can suppress exposure to regions of low wall shear stress and hypoxia in the artery. This finding is in agreement with results from a previous more idealized study. Finally, results show that forming an AVF by connecting a vein onto the inner curvature of an arterial bend can significantly reduce exposure to high WSS in the vein. The results are important, as they demonstrate that in realistic scenarios arterial curvature can be leveraged to reduce exposure to excessively low/high levels of WSS and regions of hypoxia in AVF. This may in turn reduce rates of IH and hence AVF failure.
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao
2017-09-19
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs
Jiang, Peng; Li, Deshi; Sun, Tao
2017-01-01
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960
Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes.
Hung, Yu-Fu; Schwarten, Melanie; Hoffmann, Silke; Willbold, Dieter; Sklan, Ella H; Koenig, BerndW
2015-07-21
Dengue virus (DENV) is an important human pathogen causing millions of disease cases and thousands of deaths worldwide. Non-structural protein 4A (NS4A) is a vital component of the viral replication complex (RC) and plays a major role in the formation of host cell membrane-derived structures that provide a scaffold for replication. The N-terminal cytoplasmic region of NS4A(1-48) is known to preferentially interact with highly curved membranes. Here, we provide experimental evidence for the stable binding of NS4A(1-48) to small liposomes using a liposome floatation assay and identify the lipid binding sequence by NMR spectroscopy. Mutations L6E;M10E were previously shown to inhibit DENV replication and to interfere with the binding of NS4A(1-48) to small liposomes. Our results provide new details on the interaction of the N-terminal region of NS4A with membranes and will prompt studies of the functional relevance of the curvature sensitive membrane anchor at the N-terminus of NS4A.
Rodríguez-García, R; Arriaga, L R; Mell, M; Moleiro, L H; López-Montero, I; Monroy, F
2009-03-27
We study thermal undulations of giant bilayer vesicles by flickering spectroscopy. The experimental fluctuation spectra are scrutinized in view of the classical Helfrich theory. Pure bending modes are revealed to be unable to predict the large fluctuations systematically found at a high wave vector. Hybrid curvature-dilational modes are then invoked as a more efficient mode of motion in producing high curvatures. A bimodal spectrum of the thermal undulations has been theoretically developed for the shell-like topology. Reconciliation between experiments and theory is achieved when this bimodal spectrum is considered.
Measurement of curvature and twist of a deformed object using digital holography
Chen Wen; Quan Chenggen; Cho Jui Tay
2008-05-20
Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method.
Mirror with thermally controlled radius of curvature
Neil, George R.; Shinn, Michelle D.
2010-06-22
A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.
Characterizing repulsive gravity with curvature eigenvalues
NASA Astrophysics Data System (ADS)
Luongo, Orlando; Quevedo, Hernando
2014-10-01
Repulsive gravity has been investigated in several scenarios near compact objects by using different intuitive approaches. Here, we propose an invariant method to characterize regions of repulsive gravity, associated to black holes and naked singularities. Our method is based upon the behavior of the curvature tensor eigenvalues, and leads to an invariant definition of a repulsion radius. The repulsion radius determines a physical region, which can be interpreted as a repulsion sphere, where the effects due to repulsive gravity naturally arise. Further, we show that the use of effective masses to characterize repulsion regions can lead to coordinate-dependent results whereas, in our approach, repulsion emerges as a consequence of the spacetime geometry in a completely invariant way. Our definition is tested in the spacetime of an electrically charged Kerr naked singularity and in all its limiting cases. We show that a positive mass can generate repulsive gravity if it is equipped with an electric charge or an angular momentum. We obtain reasonable results for the spacetime regions contained inside the repulsion sphere whose size and shape depend on the value of the mass, charge and angular momentum. Consequently, we define repulsive gravity as a classical relativistic effect by using the geometry of spacetime only.
Aguilar Gutierrez, Oscar F; Herrera Valencia, Edtson E; Rey, Alejandro D
2017-10-01
Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible polymer solutions, to buckling of liquid columns, tomembrane cell wall functioning. We present a micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic fluids and fluid membranes.The derived model, aimed at high curvature and high rate of change of curvature in liquid surfaces and membranes, introduces additional viscous modes not included in the widely used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids.The kinematic tensors that emerge from theparallel surface parameterization are the interfacial rate of deformation and the surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possibledissipative planar and non-planar modes. The curvature dissipation function that accounts for bending, torsion and twist rates is derived and analyzed under several constraints, including the important inextensional bending mode.A representative application of the curvature dissipation model to the periodic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases with frequency, and why the 100kHz frequency range is selected. These results contribute to characterize curvature dissipation in membranes and liquid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
Brokaw, Charles J
2002-10-01
Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella. Copyright 2002 Wiley-Liss, Inc.
a Curvature Based Adaptive Neighborhood for Individual Point Cloud Classification
NASA Astrophysics Data System (ADS)
He, E.; Chen, Q.; Wang, H.; Liu, X.
2017-09-01
As a key step in 3D scene analysis, point cloud classification has gained a great deal of concerns in the past few years. Due to the uneven density, noise and data missing in point cloud, how to automatically classify the point cloud with a high precision is a very challenging task. The point cloud classification process typically includes the extraction of neighborhood based statistical information and machine learning algorithms. However, the robustness of neighborhood is limited to the density and curvature of the point cloud which lead to a label noise behavior in classification results. In this paper, we proposed a curvature based adaptive neighborhood for individual point cloud classification. Our main improvement is the curvature based adaptive neighborhood method, which could derive ideal 3D point local neighborhood and enhance the separability of features. The experiment result on Oakland benchmark dataset shows that the proposed method can effectively improve the classification accuracy of point cloud.
Waterfall field in hybrid inflation and curvature perturbation
Gong, Jinn-Ouk; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp
2011-03-01
We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.
Dynamic lumbar curvature measurement in acute and chronic low back pain sufferers.
Williams, Jonathan Mark; Haq, Inam; Lee, Raymond Y
2012-11-01
(1) To determine the reliability of a novel fiber-optic method to dynamically measure lumbar curvature in low back pain (LBP) sufferers, and (2) to investigate the dynamic lumbar curvature in acute and chronic LBP sufferers. Cross-sectional study. Physiotherapy clinic. Acute (n=20) and chronic (n=20) LBP sufferers recruited from general practitioner and therapist referrals. Not applicable. A fiber-optic device was used to measure curvature through time during flexion, lifting, and extension movements. Repeated-measures reliability for curvature-time curves was tested using coefficients of multiple correlation (CMCs) and root mean square error, and for peak curvature values intraclass correlation coefficients (ICCs) and mean absolute errors were used. Acute and chronic LBP groups were compared using peak curvatures and sequencing of curvature change. The fiber-optic method was shown to be highly reliable in measuring both whole lumbar and lower lumbar curvature with CMC values >.81 and ICC values >.99. Chronic LBP sufferers displayed greater peak curvatures during flexion and lifting for the whole lumbar spine and lifting for the lower lumbar spine. The sequencing behavior demonstrated that the quartile of movement associated with the greatest curvature change was the second for flexion and lifting and first and second for extension across both groups. No significant differences in sequencing were demonstrated between the 2 groups. This method is reliable for dynamic lumbar curvature measurement in back pain sufferers and is a viable option for clinicians. Acute LBP sufferers display less kyphosis during flexion and lifting. Sequencing of curvature change is similar across the 2 groups. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Radius of curvature controlled mirror
Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.
2006-01-17
A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.
Protein-Induced Membrane Curvature Alters Local Membrane Tension
Rangamani, Padmini; Mandadap, Kranthi K.; Oster, George
2014-01-01
Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. PMID:25099814
Three-dimensional ultrasound palmprint recognition using curvature methods
NASA Astrophysics Data System (ADS)
Iula, Antonio; Nardiello, Donatella
2016-05-01
Palmprint recognition systems that use three-dimensional (3-D) information of the palm surface are the most recently explored techniques to overcome some two-dimensional palmprint difficulties. These techniques are based on light structural imaging. In this work, a 3-D ultrasound palmprint recognition system is proposed and evaluated. Volumetric images of a region of the human hand are obtained by moving an ultrasound linear array along its elevation direction and one by one acquiring a number of B-mode images, which are then grouped in a 3-D matrix. The acquisition time was contained in about 5 s. Much information that can be exploited for 3-D palmprint recognition is extracted from the ultrasound volumetric images, including palm curvature and other under-skin information as the depth of the various traits. The recognition procedure developed in this work is based on the analysis of the principal curvatures of palm surface, i.e., mean curvature image, Gaussian curvature image, and surface type. The proposed method is evaluated by performing verification and identification experiments. Preliminary results have shown that the proposed system exhibits an acceptable recognition rate. Further possible improvements of the proposed technique are finally highlighted and discussed.
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results.
[The relationship between upper airway curvature and obstructive sleep apnea and hypopnea syndrome].
Zhu, Min; Lu, Xiao-feng; Shi, Hui-min
2007-08-01
The fluid flow through curved tubes has characteristics that an increase in the curvature induces pressure losses as well as higher resistance in the same region. The purpose of this study is to analyze the relationship between upper airway curvature and obstructive sleep apnea and hypopnea syndrome(OSAHS). 18 male OSAHS patients were paired by age with 18 males with no snoring. The mean AHI was 58.8. The supine lateral cephalometric films were obtained from CT and analysed using curvature software. Data were presented as mean and paired t test was conducted using SPSS10.0 software package. Correlative analysis was performed to indicate the relationship between BMI and AHI, curvature and BMI, respectively. The airway curvature was significantly different between the two groups(P<0.01). The curvature radius was significantly correlative with BMI (P<0.01), but not with AHI(P>0.05). Upper airway curvature was related significantly to the pathogenesis of OSAHS. An increase of curvature on anterior wall of velopharynx in OSAHS patients can change the pressure and resistance distribution in upper airway.
High School Attrition Rates Across Texas Education Service Center Regions
ERIC Educational Resources Information Center
Johnson, Roy
2008-01-01
The examination of historical trend data on the number and percent of students lost from public school enrollment prior to graduation from high school is becoming increasingly important since distinct trends are emerging on a regional basis. This study examines regional trends in Texas on the number and percent of students lost from public high…
Streamline curvature effects on turbulent boundary layers
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Chambers, T. L.
1976-01-01
A theoretical tool has been developed for predicting, in a nonempirical manner, effects of streamline curvature and coordinate-system rotation on turbulent boundary layers. The second-order closure scheme developed by Wilcox and Traci has been generalized for curved streamline flow and for flow in a rotating coordinate system. A physically based straightforward argument shows that curvature/rotation primarily affects the turbulent mixing energy; the argument yields suitable curvature/rotation terms which are added to the mixing-energy equation. Singular-perturbation solutions valid in the wall layer of a curved-wall boundary layer and a fully developed rotating channel flow demonstrate that, with the curvature/rotation terms, the model predicts the curved-wall and the rotating coordinate system laws of the wall. Results of numerical computations of curved-wall boundary layers and of rotating channel flow show that curvature/rotation effects can be computed accurately with second-order closure.
Importance of plan curvature in watershed modeling
NASA Astrophysics Data System (ADS)
Boll, J.; Ribail, J.; Zhao, M.
2016-12-01
A hillslope's hydrologic response to precipitation events is largely controlled by the topographic features of a given hillslope, specifically the profile and plan curvature. Many models simplify hillslope topography and ignore the curvature properties, and some use alternate measures such as a topographic index or the hillslope width function. Models that ignore curvature properties may be calibrated to produce the statistically acceptable integrated response of runoff at a watershed outlet, but incorporating these properties is necessary to model accurately hydrologic processes such as surface flow, erosion, subsurface lateral flow, location of runoff generation and drainage response. In this study, we evaluated the sensitivity of rainfall-runoff modelling to profile and plan curvature in two models. In the first model, the Water Erosion Prediction Project (WEPP) model, hillslope uses a representative width to the hillslope by dividing the drainage area by the average surface channel length. Profile curvature is preserved with a limited spatial resolution due to the number of overland flow elements. In the second model, the distributed Soil Moisture Routing (SMR) model, the geographic information system uses the D8 algorithm to capture profile and plan curvature. Sensitivity to topographic features was tested for three profile curvatures (convex, concave, straight) combined with three plan curvatures (diverging, converging, uniform) resulting in a total of nine hillslopes. Each hillslope was subjected to different rainfall events to detect threshold behavior for when topographic features cannot be ignored. Our findings indicate that concave and convex plan curvature need to be included when subsurface flow processes are the dominant flow process for surface flow runoff generation. We present thresholds for acceptable cases when profile and plan curvature can be simplified in larger spatial hydrologic units.
Negative voltage bandgap reference with multilevel curvature compensation technique
NASA Astrophysics Data System (ADS)
Xi, Liu; Qian, Liu; Xiaoshi, Jin; Yongrui, Zhao; Lee, Jong-Ho
2016-05-01
A novel high-order curvature compensation negative voltage bandgap reference (NBGR) based on a novel multilevel compensation technique is introduced. Employing an exponential curvature compensation (ECC) term with many high order terms in itself, in a lower temperature range (TR) and a multilevel curvature compensation (MLCC) term in a higher TR, a flattened and better effect of curvature compensation over the TR of 165 °C (-40 to 125 °C) is realised. The MLCC circuit adds two convex curves by using two sub-threshold operated NMOS. The proposed NBGR implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm BCD technology demonstrates an accurate voltage of -1.183 V with a temperature coefficient (TC) as low as 2.45 ppm/°C over the TR of 165 °C at a -5.0 V power supply; the line regulation is 3 mV/V from a -5 to -2 V supply voltage. The active area of the presented NBGR is 370 × 180 μm2. Project supported by the Fund of Liaoning Province Education Department (No. L2013045).
The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling.
Nguyen, Duc D; Wei, Guo-Wei
2017-01-05
This article explores the impact of surface area, volume, curvature, and Lennard-Jones (LJ) potential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust analytical expressions for maximum, minimum, mean, and Gaussian curvatures of solvent-solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth dielectric profile. Extensive correlation analysis is performed to examine the linear dependence of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean curvature, and Gaussian curvature for solvation modeling. It is found that surface area and surfaces enclosed volumes are highly correlated to each other's, and poorly correlated to various curvatures for six test sets of molecules. Different curvatures are weakly correlated to each other for six test sets of molecules, but are strongly correlated to each other within each test set of molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solvation models. Our numerical results reveal that the LJ potential plays a vital role in nonpolar solvation modeling, especially for molecules involving strong van der Waals interactions. It is found that curvatures are at least as important as surface area or surface enclosed volume in nonpolar solvation modeling. In conjugation with the GPB model, various curvature-based nonpolar solvation models are shown to offer some of the best solvation free energy predictions for a wide range of test sets. For example, root mean square errors from a model constituting surface area, volume, mean curvature, and LJ potential are less than 0.42 kcal/mol for all test sets. © 2016 Wiley Periodicals, Inc.
Localized tearing modes in the magnetotail driven by curvature effects
NASA Technical Reports Server (NTRS)
Sundaram, A. K.; Fairfield, D. H.
1995-01-01
The stability of collisionless tearing modes is examined in the presence of curvature drift resonances and the trapped particle effects. A kinetic description for both electrons and ions is employed to investigate the stability of a two-dimensional equilibrium model. The main features of the study are to treat the ion dynamics properly by incorporating effects associated with particle trajectories in the tail fields and to include the linear coupling of trapped particle modes. Generalized dispersion relations are derived in several parameter regimes by considering two important sublayers of the reconnecting region. For a typical choice of parameters appropriate to the current sheet region, we demonstrate that localized tearing modes driven by ion curvature drift resonance effects are excited in the current sheet region with growth time of the order of a few seconds. Also, we examine nonlocal characteristics of tearing modes driven by curvature effects and show that modes growing in a fraction of a second arise when mode widths are larger than the current sheet width. Further, we show that trapped particle effects, in an interesting frequency regime, significantly enhance the growth rate of the tearing mode. The relevance of this theory for substorm onset phase and other features of the substorms is briefly discussed.
Programming curvature using origami tessellations
NASA Astrophysics Data System (ADS)
Dudte, Levi H.; Vouga, Etienne; Tachi, Tomohiro; Mahadevan, L.
2016-05-01
Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures--we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.
Ionic liquid tunes microemulsion curvature.
Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng
2009-02-17
Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems.
Curvature function and coarse graining
NASA Astrophysics Data System (ADS)
Díaz-Marín, Homero; Zapata, José A.
2010-12-01
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifold) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions have encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to "local details" ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function F_S (A) defined below. It covers the holonomy function in the sense that exp {F_S (A)} = Hol(l= partial S, A).
Curvature function and coarse graining
Diaz-Marin, Homero; Zapata, Jose A.
2010-12-15
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifold) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions have encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to ''local details'' ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function F{sub S}(A) defined below. It covers the holonomy function in the sense that expF{sub S}(A)=Hol(l={partial_derivative}S,A).
Soliton curvatures of surfaces and spaces
Konopelchenko, B.G.
1997-01-01
An intrinsic geometry of surfaces and three-dimensional Riemann spaces is discussed. In the geodesic coordinates the Gauss equation for two-dimensional Riemann spaces (surfaces) is reduced to the one-dimensional Schr{umlt o}dinger equation, where the Gaussian curvature plays a role of potential. The use of this fact provides an infinite set of explicit expressions for curvature and metric of surface. A special case is governed by the KdV equation for the Gaussian curvature. Integrable dynamics of curvature via the KdV equation, higher KdV equations, and 2+1-dimensional integrable equations with breaking solitons is considered. For a special class of three-dimensional Riemann spaces the relation between metric and scalar curvature is given by the two-dimensional stationary Schr{umlt o}dinger or perturbed string equations. This provides us an infinite family of Riemann spaces with explicit scalar curvature and metric. Particular class of spaces and their integrable evolutions are described by the Nizhnik{endash}Veselov{endash}Novikov equation and its higher analogs. Surfaces and three-dimensional Riemann spaces with large curvature and slow dependence on the variable are considered. They are associated with the Burgers and Kadomtsev{endash}Petviashvili equations, respectively. {copyright} {ital 1997 American Institute of Physics.}
Mapping High-Frequency Waves in the Reconnection Diffusion Region
NASA Astrophysics Data System (ADS)
Viberg, H.; Khotyaintsev, Y. V.; Vaivads, A.; Andre, M.
2012-12-01
We study the occurrence of high frequency waves, between the electron cyclotron and plasma frequency, in a reconnection diffusion region in the Earth's magnetotail at a distance of about 19 RE from the Earth. Most of the wave activity is concentrated in the separatrix regions, with no significant activity observed in the inflow and outflow regions. Different types of waves are observed at the outer part of the separatrix region depending on the plasma characteristics in the inflow region. For the cold ~100 eV lobe plasma in the inflow we observe Langmuir waves which are generated by the bump-on-tail instability of a several keV electron beam propagating in the cold background plasma. For the hotter ~1 keV inflow plasma, which is similar to the plasmasheet population, electron cyclotron waves are observed in this region, most probably generated by low energy (several tens of eV) electron beams. Deeper into the separatrix region (closer to the current sheet), we observe mostly electrostatic solitary waves (ESWs) in association with two counter-streaming electron beams: low energy beam towards the X-line, and high energy beam away from the X-line. Observations of HF waves provide important information about electron dynamics in the diffusion region, and allow for precise mapping of kinetic boundaries.
Atkinson, L; Adams, E S
1997-11-01
Genetic markers were obtained for the termite Nasutitermes corniger by DSCP (double-strand conformation polymorphism) analysis of PCR-amplified mitochondrial control region DNA. This procedure revealed twenty-one haplotypes in forty-four colonies, whereas a restriction fragment length polymorphism analysis detected only nine haplotypes. Sequence analysis of DSCP fragments of contrasting mobilities suggests that the electrophoretic haplotypes are caused by DNA curvature in this highly AT-rich region. DSCP markers showed that some termite colonies contained maternally unrelated queens, each of which produced worker offspring. This pattern is consistent with nest founding by unrelated queens. Due to the availability of conserved primers for the mtDNA control region, DSCP analysis may readily reveal comparatively high levels of variation in a wide variety of organisms.
Intracellular magnetophoresis of amyloplasts and induction of root curvature
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Hasenstein, K. H.
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Intracellular magnetophoresis of amyloplasts and induction of root curvature.
Kuznetsov, O A; Hasenstein, K H
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Symmetric curvature descriptors for label-free analysis of DNA
Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo
2014-01-01
High-resolution microscopy techniques such as electron microscopy, scanning tunnelling microscopy and atomic force microscopy represent well-established, powerful tools for the structural characterization of adsorbed DNA molecules at the nanoscale. Notably, the analysis of DNA contours allows mapping intrinsic curvature and flexibility along the molecular backbone. This is particularly suited to address the impact of the base-pairs sequence on the local conformation of the strands and plays a pivotal role for investigations relating the inherent DNA shape and flexibility to other functional properties. Here, we introduce novel chain descriptors aimed to characterize the local intrinsic curvature and flexibility of adsorbed DNA molecules with unknown orientation. They consist of stochastic functions that couple the curvatures of two nanosized segments, symmetrically placed on the DNA contour. We show that the fine mapping of the ensemble-averaged functions along the molecular backbone generates characteristic patterns of variation that highlight all pairs of tracts with large intrinsic curvature or enhanced flexibility. We demonstrate the practical applicability of the method for DNA chains imaged by atomic force microscopy. Our approach paves the way for the label-free comparative analysis of duplexes, aimed to detect nanoscale conformational changes of physical or biological relevance in large sample numbers. PMID:25248631
Origins of chemoreceptor curvature sorting in Escherichia coli
Draper, Will; Liphardt, Jan
2017-01-01
Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems. PMID:28322223
Intracellular magnetophoresis of amyloplasts and induction of root curvature
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Hasenstein, K. H.
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Magnetic curvature effects on plasma interchange turbulence
Li, B. Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.
2016-06-15
The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.
Impact of curvature on topological defects
NASA Astrophysics Data System (ADS)
Mesarec, L.; Góźdź, W.; Iglič, A.; Kralj, S.
2017-01-01
We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. In particular, in oblate ellipsoids the extrinsic and intrinsic elastic terms enforce conflicting tendencies to positions of TDs.
End-Stopping Predicts Curvature Tuning along the Ventral Stream.
Ponce, Carlos R; Hartmann, Till S; Livingstone, Margaret S
2017-01-18
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or "domains") acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias
End-Stopping Predicts Curvature Tuning along the Ventral Stream
Hartmann, Till S.; Livingstone, Margaret S.
2017-01-01
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. SIGNIFICANCE STATEMENT The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or “domains”) acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a
Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells.
Rosholm, Kadla R; Leijnse, Natascha; Mantsiou, Anna; Tkach, Vadym; Pedersen, Søren L; Wirth, Volker F; Oddershede, Lene B; Jensen, Knud J; Martinez, Karen L; Hatzakis, Nikos S; Bendix, Poul Martin; Callan-Jones, Andrew; Stamou, Dimitrios
2017-07-01
The targeted spatial organization (sorting) of Gprotein-coupled receptors (GPCRs) is essential for their biological function and often takes place in highly curved membrane compartments such as filopodia, endocytic pits, trafficking vesicles or endosome tubules. However, the influence of geometrical membrane curvature on GPCR sorting remains unknown. Here we used fluorescence imaging to establish a quantitative correlation between membrane curvature and sorting of three prototypic class A GPCRs (the neuropeptide Y receptor Y2, the β1 adrenergic receptor and the β2 adrenergic receptor) in living cells. Fitting of a thermodynamic model to the data enabled us to quantify how sorting is mediated by an energetic drive to match receptor shape and membrane curvature. Curvature-dependent sorting was regulated by ligands in a specific manner. We anticipate that this curvature-dependent biomechanical coupling mechanism contributes to the sorting, trafficking and function of transmembrane proteins in general.
Sha, Haoyan; Faller, Roland
2016-07-20
Quantum chemistry calculations were performed to investigate the effect of the surface curvature of a Boron Nitride (BN) nanotube/nanosheet on gas adsorption. Curved boron nitride layers with different curvatures interacting with a number of different gases including noble gases, oxygen, and water on both their convex and concave sides of the surface were studied using density functional theory (DFT) with a high level dispersion corrected functional. Potential energy surfaces of the gas molecules interacting with the selected BN surfaces were investigated. In addition, the charge distribution and electrostatic potential contour of the selected BN surfaces are discussed. The results reveal how the curvature of the BN surfaces affects gas adsorption. In particular, small curvatures lead to a slight difference in the physisorption energy, while large curvatures present distinct potential energy surfaces, especially for the short-range repulsion.
Non-perturbative approach for curvature perturbations in stochastic δ N formalism
Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp
2014-10-01
In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.
Turbine component casting core with high resolution region
Kamel, Ahmed; Merrill, Gary B.
2014-08-26
A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.
The High Latitude D Region During Electron Precipitation Events
NASA Technical Reports Server (NTRS)
Hargreaves, J. K.; Collis, P. N.; Korth, A.
1984-01-01
The fluxes of energetic electrons entering the high-latitude atmosphere during auroral radio absorption events and their effect on the electron density in the auroral D region are discussed. An attempt was made to calculate the radio absorption during precipitation events from the fluxes of energetic electrons measured at geosynchronous orbit, and then to consider the use of absorption measurements to indicate the magnetospheric particle fluxes, the production rates, and electron densities in the D region.
Reposition sense of lumbar curvature with flexed and asymmetric lifting postures.
Wilson, Sara E; Granata, Kevin P
2003-03-01
Reposition sense of lumbar curvature was assessed as a function of trunk flexion, trunk asymmetry, and target lumbar curvature using a repeated-measures design and an active-active proprioception paradigm. The objectives of the research were to measure the ability of the subjects to sense and control the lumbar curvature in different lifting postures and to see if error in the lumbar curvature would increase in high-risk postures. The risk of low back disorders (LBDs) is related to trunk posture, with greater risk reported in flexed and asymmetric trunk positions. Spinal posture, including trunk position and lumbar lordosis, influences spinal stability. Hence, the ability to accurately sense and control spinal curvature may be an important factor in the control of LBD risk. Eleven subjects were trained to assume specified lumbar curvatures using visual feedback. The ability of the subjects to reproduce this curvature without feedback was then assessed. This procedure was repeated for different trunk postures, including flexion and asymmetry, and with different target lumbar curvatures. These measurements demonstrated reposition error was increased in flexed trunk positions but was unchanged with trunk asymmetry. This increase in reposition error with flexion was diminished when the target posture and lumbar curvature were highly flexed and kyphotic. This research suggests that it may be difficult to control spinal curvature in flexed positions, leading to an increased risk of injury. For jobs in which flexed working postures are unavoidable, therefore, it is important to minimize potentially unstable events such as slipping or shifting loads to avoid injury.
Mean curvature flow of a hyperbolic surface
Ovchinnikov, Yu. N.; Sigal, I. M.
2011-12-15
A four-parameter family of self-similar solutions is obtained to the mean curvature flow equation for a surface. This family is shown to be stable with respect to a small deformation of a hyperbolic surface. At time instant t*, a singular point is formed within a finite time interval, that is accompanied by a change in the topology of the surface. The solution is continued beyond the singular point. A relationship between the parameters describing the hyperbolic surface before and after the change in the surface topology is obtained. A particular case is analyzed when the unperturbed surface is a cylinder. A cylindrical surface is weakly unstable with respect to a perturbation in the form of a 'wide neck.' At the final stage of the development of the neck when its transverse size becomes much less than the cylinder radius at large distances from the neck, the surface flow in a wide region in the neighborhood of the neck is described by a universal two-parameter family of self-similar solutions. These solutions are stable with respect to small perturbations of the surface.
Glauber theory and the quantum coherence of curvature inhomogeneities
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2017-02-01
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose–Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third- and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Detonation front curvatures and detonation rates
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark
2017-01-01
Many detonation front curvatures are reviewed. Most are of the Shock Dynamics type, which are described as a combination of quadratic and 8th power-of-the-radius curves. The integrated fraction of the 8th power curve is taken as a measure of curvature, which we are able to relate to the logarithm of the detonation rate. This provides a means of estimating the rates of some unknown explosives from the curvature. Using the edge lag divided by the radius is an even better way. A second group of curvatures are almost or purely quadratic. This is probably not associated with density gradients but may be caused by low sound speeds. A final group of "sombreros" show curvy fronts for ideal explosives, which appear to be caused by density gradients.
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin
2016-01-01
Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins. PMID:26745422
Role of feature curvature in contact guidance
Mathur, Anurag; Moore, Simon W.; Sheetz, Michael P.; Hone, James
2012-01-01
This study examines the role of feature curvature in cellular topography sensing. To separate the effects of feature size and curvature, we have developed a method to fabricate grooved substrates whose radius of curvature (r) is varied from under 10 nm to 400 nm, while all other dimensions are kept constant. With increasing r up to 200 nm, mouse embryonic fibroblasts increased their spread area, but reduced their polarization (aspect ratio). Interestingly, on features with an r of 200 and 400 nm - where there was very little effect on spreading area and polarization - we find that internal structures such as stress fibers are nevertheless still strongly aligned to the topography. These findings are of importance to studies of both tissue engineering and curvature sensing proteins. PMID:22426288
Gravitational energy in quadratic-curvature gravities.
Deser, S; Tekin, Bayram
2002-09-02
We define energy (E) and compute its values for gravitational systems involving terms quadratic in curvature. There are significant differences, both conceptually and concretely, from Einstein theory. For D=4, all purely quadratic models admit constant curvature vacua with arbitrary Lambda, and E is the "cosmological" Abbott-Deser (AD) expression; instead, E always vanishes in flat, Lambda=0, background. For combined Einstein-quadratic curvature systems without explicit Lambda-term vacuum must be flat space, and E has the usual Arnowitt-Deser-Misner form. A Lambda-term forces unique de Sitter vacuum, with E the sum of contributions from Einstein and quadratic parts to the AD form. We also discuss the effects on energy definition of higher curvature terms and of higher dimension.
Spline-Based Smoothing of Airfoil Curvatures
NASA Technical Reports Server (NTRS)
Li, W.; Krist, S.
2008-01-01
Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been
Curvature Analysis of Cardiac Excitation Wavefronts
2013-04-01
computational cardiac-cell network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Curvature Analysis of Cardiac...network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Index Terms Cardiac excitation waves...isopotentials, Bézier curves, curvature, cardiac arrhythmia and fibrillation Ç 1 INTRODUCTION AN estimated 81,000,000 American adults, more than onein three
Curvature tensors unified field equations on SEXn
NASA Astrophysics Data System (ADS)
Chung, Kyung Tae; Lee, Il Young
1988-09-01
We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.
Instant curvature measurement for microcantilever sensors
Jeon, Sangmin; Thundat, Thomas
2004-08-09
A multiple-point deflection technique has been developed for the instant measurement of microcantilever curvature. Eight light-emitting diodes are focused on various positions of a gold-coated silicon cantilever through optical fibers, and temperature change or chemical adsorption induces cantilever bending. The deflection at each point on the cantilever is measured with subnanometer precision by a position-sensitive detector, and thus the curvature of the cantilever is obtained.
Wang, Tuo; Hong, Mei
2015-04-07
A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static (31)P NMR spectra of magnetically oriented 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the ability to generate a high-curvature phase. Two-dimensional (2D) (31)P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. (31)P- and (13)C-detected (1)H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the (31)P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. On the basis of this resolution, 2D (1)H-(31)P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not DHPC (31)P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the amphipathic helix induces high membrane curvature and localizes the protein to this phase, in good
Wang, Tuo; Hong, Mei
2015-01-01
A wide variety of membrane proteins induce membrane curvature for function, thus it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state NMR methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static 31P NMR spectra of magnetically oriented DMPC/DHPC bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the peptide with the ability to generate a high-curvature phase. 2D 31P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. 31P- and 13C-detected 1H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the 31P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. Based on this resolution, 2D 1H-31P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not the DHPC 31P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the M2 amphipathic helix induces high membrane curvature and localizes the protein to this phase, in excellent agreement with the membrane-scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are
Regions of High Excitation in the Nebula around Eta Carinae
NASA Astrophysics Data System (ADS)
Martin, J. C.; Davidson, K.
2005-05-01
The circumstellar environment around Eta Carinae is polluted by a complicated field of ejecta which is the product of several historic eruptions. At least two regions are uniquely characterized by narrow high excitation emission features: the Wiegelt Knots and Strontium "Filament." We have produced the first sub-arcsecond spatial maps of high excitation emission from individual spectral features within a few arcseconds of the central star. These maps provide helpful insights into the general shape of these regions, their probable origins, and the excitation mechanism which powers them.
Spherical gravitational curvature boundary-value problem
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2016-08-01
Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.
Nonadditive Compositional Curvature Energetics of Lipid Bilayers
NASA Astrophysics Data System (ADS)
Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.
2016-09-01
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.
The role of curvature in entanglement
NASA Astrophysics Data System (ADS)
Buck, Gregory
2015-10-01
Which tangles more readily: curly hair or straight hair? A perhaps natural thought, supported by some theoretical evidence, is to associate curvature and entanglement, and assume that they would grow together-that an increase in one fosters an increase in the other. However we have biological examples such as DNA in the chromosome, and mechanical examples such as coiled telephone cords, in which much more curvature is employed than is required for the packing, and in which tangling is presumably detrimental. We offer a resolution to this conundrum. We show, that at least for simple but generally applicable models, the relationship between curvature and entanglement is subtle: if we keep filament density constant and increase curvature, the entanglement initially increases, passes through a maximum, then decreases, so there is a regime where increasing curvature increases entanglement, and there is also a regime where increasing curvature decreases entanglement. This has implications for filament packing in many circumstances, and in particular for the compaction structure of DNA in the cell-it provides a straightforward argument for the view that one purpose of DNA coiling and supercoiling is to inhibit entanglement. It also tells us to expect that wavy hair-neither the straightest nor the curliest-tangles most readily.
Nonadditive Compositional Curvature Energetics of Lipid Bilayers.
Sodt, A J; Venable, R M; Lyman, E; Pastor, R W
2016-09-23
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.
Anisotropic Cosmology and Curvature Invariants.
NASA Astrophysics Data System (ADS)
Skea, James E. F.
greater when non-axisymmetric cosmologies are considered. In the limit where the particle production is switched on at the Planck time (t _{rm Pl}), isotropisation is found to occur at _{Omega } 10^5 t_ {rm Pl}, compatible with restrictions on anistropy at that time. Particle production is not found to isotropise Bianchi VIII and IX cosmologies. In Part 3, we study the structure of various curvature invariants and, following a suggestion by Karlhede, we investigate their relationship to horizons in particular space-times. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Bao, Xueyang; Sandvol, Eric; Ni, James; Hearn, Thomas; Chen, Yongshun John; Shen, Yang
2011-08-01
The Q of regional seismic phases Lg and Pg within the crust is assumed as a proxy for crustal Qβ and Qα, which is used as a constraint of crustal rheology. We measure regional-phase Q of the eastern Tibetan Plateau and adjacent areas. This method eliminates contributions from source and site responses and is an improvement on the Two-Station Method (TSM). We have generated tomographic images of crustal attenuation anomalies with resolution as high as 1°. In general we observe low Q in the northernmost portions of the Tibetan Plateau and high Q in the more tectonically stable regions such as the interior of the Qaidam basin. The calculated site responses appear to correlate with topography or sediment thickness. Furthermore the relationship between earthquake magnitudes and calculated source terms suggest that the RTM method effectively removes the source response and may be used as an alternative to source magnitude.
High beta and second stability region transport and stability analysis
Not Available
1990-06-12
This document summarizes progress made on the research of high beta and second region transport and stability. In the area second stability region studies we report on an investigation of the possibility of second region access in the center of TFTR supershots.'' The instabilities found may coincide with experimental observation. Significant progress has been made on the resistive stability properties of high beta poloidal supershot'' discharges. For these studies profiles were taken from the TRANSP transport analysis code which analyzes experimental data. Invoking flattening of the pressure profile on mode rational surfaces causes tearing modes to persist into the experimental range of interest. Further, the experimental observation of the modes seems to be consistent with the predictions of the MHD model. In addition, code development in several areas has proceeded.
Distorted Plane Waves on Manifolds of Nonpositive Curvature
NASA Astrophysics Data System (ADS)
Ingremeau, Maxime
2017-03-01
We will consider the high frequency behaviour of distorted plane waves on manifolds of nonpositive curvature which are Euclidean or hyperbolic near infinity, under the assumption that the curvature is negative close to the trapped set of the geodesic flow and that the topological pressure associated to half the unstable Jacobian is negative. We obtain a precise expression for distorted plane waves in the high frequency limit, similar to the one in Guillarmou and Naud (Am J Math 136:445-479, 2014) in the case of convex co-compact manifolds. In particular, we will show {L_{loc}^∞} bounds on distorted plane waves that are uniform with frequency. We will also show a small-scale equidistribution result for the real part of distorted plane waves, which implies sharp bounds for the volume of their nodal sets.
Cam radius of curvature modification for improved manufacturability
Doughty, S.
1995-12-31
The design of IC engine cams using the popular polynomial design techniques often results in very high accelerations (and associated high contact forces) as the follower approaches the base circle. In those same parts of the cam action, the cam radius of curvature is likely to change signs, going from convex to concave, and this leads to manufacturing difficulties. When the cam is concave, the radius of the grinding wheel that can be used in manufacture is controlled by the minimum concave radius of curvature of the cam, and this is often much smaller than the wheel size that would result in most economic production. Further, the arc of contact is extended, resulting in loss of coolant flow and rapid loss of wheel dress. A solution is presented, based on substituting a convex circular arc to replace a segment of the cam profile including the concavity. The ramifications of such a modification with regard to the follower motion is also presented.
Strong curvature effects in Neumann wave problems
Willatzen, M.; Pors, A.; Gravesen, J.
2012-08-15
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schroedinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.
Strong curvature effects in Neumann wave problems
NASA Astrophysics Data System (ADS)
Willatzen, M.; Pors, A.; Gravesen, J.
2012-08-01
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schrödinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.
CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION
Kaganovich, Alexander; Lyubarsky, Yuri
2010-10-01
The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.
Instability in bacterial populations and the curvature tensor
NASA Astrophysics Data System (ADS)
Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia
2016-09-01
In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.
Evaluation of Spatial Anisotropy by Curvature Analysis of Elliptical Targets
Aleci, Carlo; Piana, Giulio; Anselmino, Franco
2010-01-01
Spatial relationship perception (SRP), defined as the function able to detect the difference between the perceived extent of a shape along the x/y cardinal coordinates, has been investigated in 42 eyes of 21 emmetropic subjects by means of a psychophysical test conceived on purpose. Aiming to the highest sensibility and since curvature detection is reckoned as an hyperacuity, elliptical stimuli have been chosen to measure the spatial relationship anisotropy (SRA) in the visual system. Observers turned out to be able to detect curvature differences along the elliptical contour as low as 33.6 sec arc, which in terms of SRP means an aspect ratio (i.e. the ratio between the height and the width of the ellipse) as low as 1.0022-1.0035. By comparing these results with those obtained in previous investigations from other curvature discrimination tasks, it is argued that recognition threshold is conditioned by the amount of space anisotropy of the visual system. Indeed, in about half of the recruited subjects, vertical/horizontal anisotropy is found to a certain extent and such SRA correlates with the recognition threshold (r= 0.69, p<0.01). There is direct evidence of visual spatial distortion and in particular increased anisotropy in neuro-ophtalmological diseases such as hemianopia and around scotomatous regions in the visual field. Thence, apart from theoretical considerations in physiological field, results collected in this study may be regarded as normative data for future clinical investigations. PMID:20802805
Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids
Mostajeran, Cyrus; Ware, Taylor H.; White, Timothy J.
2016-01-01
We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains. PMID:27279777
Autonomic straightening after gravitropic curvature of cress roots
NASA Technical Reports Server (NTRS)
Stankovic, B.; Volkmann, D.; Sack, F. D.
1998-01-01
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62 degrees and 88 degrees after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle -36 degrees closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.
Autonomic Straightening after Gravitropic Curvature of Cress Roots1
Stanković, Bratislav; Volkmann, Dieter; David Sack, Fred
1998-01-01
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation. PMID:9662531
Gravitropic curvature of maize roots is not preceded by rootcap asymmetry
NASA Technical Reports Server (NTRS)
Sack, F. D.; Hasenstein, K. H.; Blair, A.
1990-01-01
We tested whether the first response to gravistimulation is an asymmetry in the root tip that results from differential growth of the rootcap itself. The displacement of markers on the rootcap surface of maize (Zea mays L. cv. Merit) roots was quantified from videotaped images using customized software. The method was sensitive enough to detect marker displacements down to 15 microns and root curvature as early as 8 min after gravistimulation. No differential growth of the upper and lower sides of the cap occurred before or during root curvature. Fewer than a third of all gravistimulated roots developed an asymmetrical outline of the root tip after curvature had started, and this asymmetry did not occur in the rootcap itself. Our data support the view that the regions of gravitropic sensing and curvature are spatially separate during all phases of gravitropism in maize roots.
High Plains Regional Ground-water Study web site
Qi, Sharon L.
2000-01-01
Now available on the Internet is a web site for the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program- High Plains Regional Ground-Water Study. The purpose of the web site is to provide public access to a wide variety of information on the USGS investigation of the ground-water resources within the High Plains aquifer system. Typical pages on the web site include the following: descriptions of the High Plains NAWQA, the National NAWQA Program, the study-area setting, current and past activities, significant findings, chemical and ancillary data (which can be downloaded), listing and access to publications, links to other sites about the High Plains area, and links to other web sites studying High Plains ground-water resources. The High Plains aquifer is a regional aquifer system that underlies 174,000 square miles in parts of eight States (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming). Because the study area is so large, the Internet is an ideal way to provide project data and information on a near real-time basis. The web site will be a collection of living documents where project data and information are updated as it becomes available throughout the life of the project. If you have an interest in the High Plains area, you can check this site periodically to learn how the High Plains NAWQA activities are progressing over time and access new data and publications as they become available.
Actin filament curvature biases branching direction
NASA Astrophysics Data System (ADS)
Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel
2012-02-01
Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.
NASA Astrophysics Data System (ADS)
Deepan, Balakrishnan; Quan, Chenggen; Tay, Cho Jui
2016-12-01
A fringe analysis algorithm for determination of slope, curvature, and twist from a single fringe pattern in digital speckle-shearing interferometry is proposed. A method for estimation of biased curvature and twist maps from fringe orientation and fringe density maps is employed. The curvature and twist maps obtained are further processed by B-spline interpolation to achieve high quality curvature and twist maps. A derivative-based regularized phase tracker (RPT) utilizes these predetermined curvature and twist maps for determination of a slope map from a single shearography fringe pattern. The proposed model requires less computational time and it overcomes the limitations of the RPT model. The method is validated with an experimental fringe pattern. The results show that this method is robust against speckle noise and it is able to retrieve accurate slope, curvature, and twist maps from a single shearography fringe pattern.
High dispersion observations of selected regions in the Orion Nebula
NASA Astrophysics Data System (ADS)
Boeshaar, G. O.; Harvel, C. A.; Mallama, A. D.; Perry, P. M.; Thompson, R. W.; Turnrose, B.
High resolution spectral observations were made of several regions of the Orion Nebula near theta (2) Ori A using the IUE. The positions were selected using a moderate spatial resolution map from a previous low dispersion IUE survery of this section of the nebula. With the SWP and LWR cameras, 28 pectra were obtained of the bright bar, three Taylor-Munch cloudlets, and several surrounding locations. Emission lines of He, C, N, O, Mg, and Si allow a characterization of these cloudlets and of the gas in and around the bar. Small aperture observations provide radial velocity information for the ultraviolet emission of these features. These data show ionization variations from region to region and are suggestive of stellar wind interactions between the cloudlets and theta(2) Ori A.
Lipids, curvature, and nano-medicine*
Mouritsen, Ole G
2011-01-01
The physical properties of the lamellar lipid-bilayer component of biological membranes are controlled by a host of thermodynamic forces leading to overall tensionless bilayers with a conspicuous lateral pressure profile and build-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes. In particular, the average molecular shape and the propensity of the different lipid and protein species for forming non-lamellar and curved structures are a source of structural transitions and control of biological function. The effects of different lipids, sterols, and proteins on membrane structure are discussed and it is shown how one can take advantage of the curvature-stress modulations brought about by specific molecular agents, such as fatty acids, lysolipids, and other amphiphilic solutes, to construct intelligent drug-delivery systems that function by enzymatic triggering via curvature. Practical applications: The simple concept of lipid molecular shape and how it impacts on the structure of lipid aggregates, in particular the curvature and curvature stress in lipid bilayers and liposomes, can be exploited to construct liposome-based drug-delivery systems, e.g., for use as nano-medicine in cancer therapy. Non-lamellar-forming lysolipids and fatty acids, some of which may be designed to be prodrugs, can be created by phospholipase action in diseased tissues thereby providing for targeted drug release and proliferation of molecular entities with conical shape that break down the permeability barrier of the target cells and may hence enhance efficacy. PMID:22164124
Seismic Curvature Estimation Based on Combining Gradient Structure Tensor and Multi-window
NASA Astrophysics Data System (ADS)
Wang, X.; Zhao, H.; Chen, W.
2016-12-01
Geometric attribute, which can be extracted from seismic exploration data, is one of the most important kinds of seismic attributes. Curvature attribute is one of the most useful geometric attribute in 3D seismic data interpretation. It is proved that curvature is related to fault, fracture and oil-gas production. However, curvature attribute is obtained by calculate the partial derivatives of the dip of seismic events. Therefore, estimating dips with high precision is very important. We propose one seismic dip estimating method based on combining gradient structure tensor and multi-window technology, and estimate curvature based on this estimated dips. Firstly, we obtain instantaneous amplitude(IA) and instantaneous phase(IP) through complex trace analysis. Secondly, we construct gradient structural tensor(GST) is based on IP, and do eigendecomposition on GST to estimated seismic dips precisely. Meanwhile, we also utilize multi-window technology to promote estimating precision of seismic dips. Finally, we compute structure curvature (include most-negative curvature, most-positive curvature and so on) based on estimated seismic dips. We verify the effectiveness and precision of our method by apply our method to one synthetic seismic data and two real 3D field data.
Singh, Devinder K; Bailey, Martin; Lee, Raymond
2010-01-01
Singh DK, Bailey M, Lee R. Biplanar measurement of thoracolumbar curvature in older adults using an electromagnetic tracking device. To develop a new biplanar method of thoracolumbar curvature measurement by using an electromagnetic tracking device and to study the effects of aging on the thoracolumbar curvature. Cross-sectional study. Human movement laboratory. Healthy (N=52, 26 younger and 26 older) volunteers. Not applicable. An electromagnetic tracking device was used to trace the thoracolumbar curvature by recording the positions of the spinous processes of the spine. The coordinates of the curvature were fitted with polynomial equations, and the magnitudes of thoracic kyphosis, lumbar lordosis, and lateral thoracic and lumbar curves were determined. The present technique was shown to be highly reliable in measuring thoracolumbar curvature with an intraclass correlation coefficient of more than .90. The mean thoracic kyphosis (-46.95 degrees +/-11.41 degrees ) in the older adults was significantly larger than that in the younger adults (-38.82 degrees +/-9.86 degrees ) (P<.01). However, there were no significant differences in lumbar lordosis and lateral curvatures between the 2 subject groups. The present study provided evidence of an increase in thoracic kyphosis in older adults. The method of measurement presented in this study was found to provide reliable biplanar data that will be useful in a clinical setting. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dymond, Marcus K
2016-08-01
Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. © 2016 The Author(s).
2016-01-01
Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4–7 × 10−12 N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo. These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697
Tonnesen, Asger; Christensen, Sune M; Tkach, Vadym; Stamou, Dimitrios
2014-01-07
Transmembrane proteins are embedded in cellular membranes of varied lipid composition and geometrical curvature. Here, we studied for the first time the allosteric effect of geometrical membrane curvature on transmembrane protein structure and function. We used single-channel optical analysis of the prototypic transmembrane β-barrel α-hemolysin (α-HL) reconstituted on immobilized single small unilamellar liposomes of different diameter and therefore curvature. Our data demonstrate that physiologically abundant geometrical membrane curvatures can enforce a dramatic allosteric regulation (1000-fold inhibition) of α-HL permeability. High membrane curvatures (1/diameter ~1/40 nm(-1)) compressed the effective pore diameter of α-HL from 14.2 ± 0.8 Å to 11.4 ± 0.6 Å. This reduction in effective pore area (~40%) when combined with the area compressibility of α-HL revealed an effective membrane tension of ~50 mN/m and a curvature-imposed protein deformation energy of ~7 kBT. Such substantial energies have been shown to conformationally activate, or unfold, β-barrel and α-helical transmembrane proteins, suggesting that membrane curvature could likely regulate allosterically the structure and function of transmembrane proteins in general. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Membrane tension controls the assembly of curvature-generating proteins
NASA Astrophysics Data System (ADS)
Simunovic, Mijo; Voth, Gregory A.
2015-05-01
Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell.
Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Gogotsi, Yury G.; Yushin, Gleb; Portet, Cristelle
2010-01-01
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors
Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.
2011-01-31
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Couple sex therapy for dysfunctions associated with congenital penile curvature.
Zukerman, Z; Goldberg, I; Neri, A; Ovadia, J
1988-05-01
Three couples presented to our clinic with congenital ventral curvature of the penis resulting in unconsummated marriage in 2 cases and dyspareunia in 1. Intensive sex therapy was initiated, including use of vaginal dilators for vaginismus and dyspareunia, sex education, sensate focus exercises, and sexual techniques and methods to increase communication. Two highly motivated couples succeeded in having painless, normal, pleasurable sexual relations after short-term sex therapy. The problems of couple 3 were compounded by the wife's admitted lesbianism. However, this patient insisted on corrective surgery for her husband but she divorced him shortly thereafter. This nonsurgical approach for the treatment of sexual dysfunction secondary to penile curvature appears to be effective in selected cases. When corrective surgery is undertaken sex therapy is recommended to reinforce the operative results.
DNA Origami with Complex Curvatures in Three-Dimensional Space
Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao
2011-04-14
We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.
Relationship between peptide amino acid sequence and membrane curvature generation
NASA Astrophysics Data System (ADS)
Schmidt, Nathan; Kuo, David; Hwee Lai, Ghee; Mishra, Abhijit; Wong, Gerard
2012-02-01
Amphipathic peptides and amphipathic domains in proteins can perturb and restructure biological membranes. For example, it is believed that the cationic, amphipathic motif found in membrane active antimicrobial peptides (AMPs) is responsible for their membrane disruption mechanisms of action. And ApoA-I, the main apolipoprotein in high density lipoprotein contains a series of amphipathic α-helical repeats which are responsible for its lipid associating properties. We use small angle x-ray scattering (SAXS) to investigate the interaction of model cell membranes with prototypical AMPs and consensus peptides derived from the helical structural motif of ApoA-I. The relationship between peptide sequence and the peptide-induced changes in membrane curvature and topology is examined. By comparing the membrane rearrangement and corresponding phase behavior induced by these two distinct classes of membrane restructuring peptides we will discuss the role of amino acid sequence on membrane curvature generation.
On the curvature effect of thin membranes
NASA Astrophysics Data System (ADS)
Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James
2013-01-01
We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
HEREDITARY DISTAL FORELEG CURVATURE IN THE RABBIT
Pearce, Louise
1960-01-01
An inwardly directed curvature of the distal segment of both forelegs of the rabbit has been described. The condition was detected at 2 to 3 weeks of age, developed rapidly, and reached its final and permanent stage at 2 to 3 months of age. Only the distal epiphysis of the ulna was primarily affected and this in the form of a massive chondrodystrophic lesion accompanied by a progressive curvature of the shaft. The curvature of the growing radius was a secondary effect due to the firm, immovable, anatomical connection of the ulna and radius. The positional changes of the wrist and paw were likewise effects secondary to the changed form of the ulna and radius. The bowing abnormality occurred only in certain families of pure bred Beveren, Belgian, French Silver, and Dutch rabbits and was found to be inherited. The mode of inheritance was on the basis of a single recessive unit factor (5). PMID:13733755
Principal curvature for infrared small target detection
NASA Astrophysics Data System (ADS)
Zhao, Yao; Pan, Haibin; Du, Changping; Zheng, Yao
2015-03-01
Small target detection in infrared image with complex background and low signal-noise ratio is an important and difficult task in the infrared target tracking system. In this paper, a principal curvature-based method is proposed. The principal curvatures of target pixels are negative and their absolute values are larger than that of background pixels and noise pixels in a Gaussian-blurred infrared image. The proposed filter takes a composite function of the curvatures for detection. An approximate model is also built for optimizing the parameters. Experimental results show that the proposed algorithm is effective and adaptable for infrared small target detection in complex background. Compared with several popular methods, the proposed algorithm demonstrates significant improvement on detection performance in terms of the parameters of signal clutter ratio gain, background suppression factor and ROC.
Evaluating an impact origin for Mercury's high-magnesium region
NASA Astrophysics Data System (ADS)
Frank, Elizabeth A.; Potter, Ross W. K.; Abramov, Oleg; James, Peter B.; Klima, Rachel L.; Mojzsis, Stephen J.; Nittler, Larry R.
2017-03-01
During its four years in orbit around Mercury, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft's X-ray Spectrometer revealed a large geochemical terrane in the northern hemisphere that hosts the highest Mg/Si, S/Si, Ca/Si, and Fe/Si and lowest Al/Si ratios on the planet. Correlations with low topography, thin crust, and a sharp northern topographic boundary led to the proposal that this high-Mg region is the remnant of an ancient, highly degraded impact basin. Here we use a numerical modeling approach to explore the feasibility of this hypothesis and evaluate the results against multiple mission-wide data sets and resulting maps from MESSENGER. We find that an 3000 km diameter impact basin easily exhumes Mg-rich mantle material but that the amount of subsequent modification required to hide basin structure is incompatible with the strength of the geochemical anomaly, which is also present in maps of Gamma Ray and Neutron Spectrometer data. Consequently, the high-Mg region is more likely to be the product of high-temperature volcanism sourced from a chemically heterogeneous mantle than the remains of a large impact event.