NASA Astrophysics Data System (ADS)
Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.
2016-05-01
Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.
NASA Astrophysics Data System (ADS)
Guo, Liang
2011-12-01
Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.
Application of a high-energy-density permanent magnet material in underwater systems
NASA Astrophysics Data System (ADS)
Cho, C. P.; Egan, C.; Krol, W. P.
1996-06-01
This paper addresses the application of high-energy-density permanent magnet (PM) technology to (1) the brushless, axial-field PM motor and (2) the integrated electric motor/pump system for under-water applications. Finite-element analysis and lumped parameter magnetic circuit analysis were used to calculate motor parameters and performance characteristics and to conduct tradeoff studies. Compact, efficient, reliable, and quiet underwater systems are attainable with the development of high-energy-density PM material, power electronic devices, and power integrated-circuit technology.
High Density Polymer-Based Integrated Electgrode Array
Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.
2006-04-25
A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.
USDA-ARS?s Scientific Manuscript database
Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 datasets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum...
Fuketa, Hiroshi; Yoshioka, Kazuaki; Shinozuka, Yasuhiro; Ishida, Koichi; Yokota, Tomoyuki; Matsuhisa, Naoji; Inoue, Yusuke; Sekino, Masaki; Sekitani, Tsuyoshi; Takamiya, Makoto; Someya, Takao; Sakurai, Takayasu
2014-12-01
A 64-channel surface electromyogram (EMG) measurement sheet (SEMS) with 2 V organic transistors on a 1 μm-thick ultra-flexible polyethylene naphthalate (PEN) film is developed for prosthetic hand control. The surface EMG electrodes must satisfy the following three requirements; high mechanical flexibility, high electrode density and high signal integrity. To achieve high electrode density and high signal integrity, a distributed and shared amplifier (DSA) architecture is proposed, which enables an in-situ amplification of the myoelectric signal with a fourfold increase in EMG electrode density. In addition, a post-fabrication select-and-connect (SAC) method is proposed to cope with the large mismatch of organic transistors. The proposed SAC method reduces the area and the power overhead by 96% and 98.2%, respectively, compared with the use of conventional parallel transistors to reduce the transistor mismatch by a factor of 10.
Nan, Honghong; Yu, Liutao; Ma, Wenqin; Geng, Baoyou; Zhang, Xiaojun
2015-05-28
Flexible supercapacitors have recently attracted increasing attention as they show unique promising advantages, such as flexibility and shape diversity, and they are light-weight and so on. Herein, we designed a series of 3D porous spinous iron oxide materials synthesized on a thin iron plate through a facile method under mild conditions. The unique nanostructural features endow them with excellent electrochemical performance. The electrochemical properties of the integrated electrodes as active electrode materials for supercapacitors have been investigated using different electrochemical techniques including cyclic voltammetry, and galvanostatic charge-discharge in Na2SO4 and LiPF6/EC : DEC electrolyte solutions. These integrated electrodes showed high specific capacitance (as high as 524.6 F g(-1) at the current density of 1 A g(-1)) in 1.0 M Na2SO4 (see Table S1). Moreover, the integrated electrodes also show high power densities and high energy densities in a LiPF6/EC : DEC electrolyte solution; for example, the energy densities were 319.3, 252.5, 152.1, 74.13 and 38.6 W h kg(-1) at different power densities of 8.81, 21.59, 56.65, 92.09 and 152.64 kW kg(-1), respectively. Additionally, the flexible superior electrode exhibited excellent stability with capacitance retention of 92.9% after 5000 cycles. Therefore, such flexible integrated devices might be used in smart and portable electronics.
Ferroelectric thin-film capacitors and piezoelectric switches for mobile communication applications.
Klee, Mareike; van Esch, Harry; Keur, Wilco; Kumar, Biju; van Leuken-Peters, Linda; Liu, Jin; Mauczok, Rüdiger; Neumann, Kai; Reimann, Klaus; Renders, Christel; Roest, Aarnoud L; Tiggelman, Mark P J; de Wild, Marco; Wunnicke, Olaf; Zhao, Jing
2009-08-01
Thin-film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small, miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100 nF/mm2 for stacked capacitors combined with breakdown voltages of 90 V have been achieved. The integration of these high-density capacitors with extremely high breakdown voltage is a major accomplishment in the world of passive components and has not yet been reported for any other passive integration technology. Furthermore, thin-film tunable capacitors based on barium strontium titanate with high tuning range and high quality factor at 1 GHz have been demonstrated. Finally, piezoelectric thin films for piezoelectric switches with high switching speed have been realized.
Structural materials and components
NASA Technical Reports Server (NTRS)
Gagliani, John (Inventor); Lee, Raymond (Inventor)
1982-01-01
High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.
High-Throughput Density Measurement Using Magnetic Levitation.
Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M
2018-06-20
This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.
Bottom-up assembly of metallic germanium
NASA Astrophysics Data System (ADS)
Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, Lareine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.
2015-08-01
Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm-3) low-resistivity (10-4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.
Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2014-01-01
The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
USDA-ARS?s Scientific Manuscript database
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the pre...
Computing thermal Wigner densities with the phase integration method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beutier, J.; Borgis, D.; Vuilleumier, R.
2014-08-28
We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta andmore » coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.« less
Computing thermal Wigner densities with the phase integration method.
Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S
2014-08-28
We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.
Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes
Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.
2011-01-01
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568
Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materialsmore » also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.« less
Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure.
Guo, Kai; Wang, Xianfu; Hu, Lintong; Zhai, Tianyou; Li, Huiqiao; Yu, Neng
2018-06-01
Fiber supercapacitors have attracted tremendous attention as promising power source candidates for the next generation of wearable electronics, which are flexible, stretchable, and washable. Although asymmetric fiber supercapacitors with a high energy density have been achieved, their stretchability is no more than 200%, and they still face mechanical instability and an unreliable waterproof structure. This work develops a highly integrated structure for a waterproof, highly stretchable, and asymmetric fiber-shaped supercapacitor, which is assembled by integrating a helix-shaped asymmetric fiber supercapacitor into a bifunctional polymer. The asymmetric fiber supercapacitor demonstrates a working voltage of 1.6 V, a high energy density of 2.86 mW h/cm 3 , has unchanged capacitance after being immersed in water for 50 h, and retains 95% of its initial capacitance after 3000 cycles of stretching-releasing at a maximum strain of 400%. The extraordinary waterproof capability, the large stretching strain, and excellent stretching stability are attributed to the highly integrated structure design, which can also simplify the assembly process of stretchable, waterproof fiber supercapacitors.
Quantitative analysis of lentiviral transgene expression in mice over seven generations.
Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong
2010-10-01
Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken together, these data suggested that transgenic lines with long term stable expression and no position effect can be established by lentiviral transgenesis.
Free Flight Simulation: An Initial Examination of Air-Ground Integration Issues
NASA Technical Reports Server (NTRS)
Lozito, Sandra; McGann, Alison; Cashion, Patricia; Dunbar, Melisa; Mackintosh, Margaret; Dulchinos, Victoria; Jordan, Kevin; Remington, Roger (Technical Monitor)
2000-01-01
The concept of "free flight" is intended to emphasize more flexibility for operators in the National Airspace System (RTCA, 1995). This may include the potential for aircraft self-separation. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in an integrated air-ground environment. Participants were 10 commercial U.S. flight crews who flew the B747-400 simulator and 10 Denver ARTCC controllers who monitored traffic in an ATC simulation. A prototypic airborne alerting logic and flight deck display features were designed to allow for increased traffic and maneuvering information. Eight different scenarios representing different conflict types were developed. The effects of traffic density (high and low) and different traffic convergence angles (obtuse, acute, and right) were assessed. Conflict detection times were found to be lower for the flight crews in low density compared to high density scenarios. For the controllers, an interaction between density and convergence angle was revealed. Analyses on the controller detection times found longer detection times in the obtuse high density compared to obtuse low density, as well as the shortest detection times in the high density acute angle condition. Maneuvering and communication events are summarized, and a discussion of future research issues is provided.
Bottom-up assembly of metallic germanium.
Scappucci, Giordano; Klesse, Wolfgang M; Yeoh, LaReine A; Carter, Damien J; Warschkow, Oliver; Marks, Nigel A; Jaeger, David L; Capellini, Giovanni; Simmons, Michelle Y; Hamilton, Alexander R
2015-08-10
Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(-3)) low-resistivity (10(-4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.
Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel
NASA Technical Reports Server (NTRS)
Hunter, Don J.; Halpert, Gerald
1999-01-01
As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.
NASA Astrophysics Data System (ADS)
Barra, Adriano; Contucci, Pierluigi; Sandell, Rickard; Vernia, Cecilia
2014-02-01
How does immigrant integration in a country change with immigration density? Guided by a statistical mechanics perspective we propose a novel approach to this problem. The analysis focuses on classical integration quantifiers such as the percentage of jobs (temporary and permanent) given to immigrants, mixed marriages, and newborns with parents of mixed origin. We find that the average values of different quantifiers may exhibit either linear or non-linear growth on immigrant density and we suggest that social action, a concept identified by Max Weber, causes the observed non-linearity. Using the statistical mechanics notion of interaction to quantitatively emulate social action, a unified mathematical model for integration is proposed and it is shown to explain both growth behaviors observed. The linear theory instead, ignoring the possibility of interaction effects would underestimate the quantifiers up to 30% when immigrant densities are low, and overestimate them as much when densities are high. The capacity to quantitatively isolate different types of integration mechanisms makes our framework a suitable tool in the quest for more efficient integration policies.
Grid-Integrated Electric Drive Analysis for The Ohio State University |
thermal management analysis and simulations on a high-performance, high-speed drive-developed by The Ohio as a pilot study for the future generation of energy efficient, high power density, high-speed integrated medium/high-voltage drive systems. If successful, the proposed project will significantly advance
High-current electron gun with a planar magnetron integrated with an explosive-emission cathode
NASA Astrophysics Data System (ADS)
Kiziridi, P. P.; Ozur, G. E.
2017-05-01
A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.
Wang, Sen; Wu, Zhong-Shuai; Zheng, Shuanghao; Zhou, Feng; Sun, Chenglin; Cheng, Hui-Ming; Bao, Xinhe
2017-04-25
Micro-supercapacitors (MSCs) hold great promise as highly competitive miniaturized power sources satisfying the increased demand of smart integrated electronics. However, single-step scalable fabrication of MSCs with both high energy and power densities is still challenging. Here we demonstrate the scalable fabrication of graphene-based monolithic MSCs with diverse planar geometries and capable of superior integration by photochemical reduction of graphene oxide/TiO 2 nanoparticle hybrid films. The resulting MSCs exhibit high volumetric capacitance of 233.0 F cm -3 , exceptional flexibility, and remarkable capacity of modular serial and parallel integration in aqueous gel electrolyte. Furthermore, by precisely engineering the interface of electrode with electrolyte, these monolithic MSCs can operate well in a hydrophobic electrolyte of ionic liquid (3.0 V) at a high scan rate of 200 V s -1 , two orders of magnitude higher than those of conventional supercapacitors. More notably, the MSCs show landmark volumetric power density of 312 W cm -3 and energy density of 7.7 mWh cm -3 , both of which are among the highest values attained for carbon-based MSCs. Therefore, such monolithic MSC devices based on photochemically reduced, compact graphene films possess enormous potential for numerous miniaturized, flexible electronic applications.
Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.
Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J
2016-09-09
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.
Computational Silicon Nanophotonic Design
NASA Astrophysics Data System (ADS)
Shen, Bing
Photonic integration circuits (PICs) have received overwhelming attention in the past few decades due to various advantages over electronic circuits including absence of Joule effect and huge bandwidth. The most significant problem obstructing their commercial application is the integration density, which is largely determined by a signal wavelength that is in the order of microns. In this dissertation, we are focused on enhancing the integration density of PICs to warrant their practical applications. In general, we believe there are three ways to boost the integration density. The first is to downscale the dimension of individual integrated optical component. As an example, we have experimentally demonstrated an integrated optical diode with footprint 3 x 3 mum2, an integrated polarization beamsplitter with footprint 2.4 x 2.4 mum2, and a waveguide bend with effective bend radius as small as 0.65 mum. All these devices offer the smallest footprint when compared to their alternatives. A second option to increase integration density is to combine the function of multiple devices into a single compact device. To illustrate the point, we have experimentally shown an integrated mode-converting polarization beamsplitter, and a free-space to waveguide coupler and polarization beamsplitter. Two distinct functionalities are offered in one single device without significantly sacrificing the footprint. A third option for enhancing integration density is to decrease the spacing between the individual devices. For this case, we have experimentally demonstrated an integrated cloak for nonresonant (waveguide) and resonant (microring-resonator) devices. Neighboring devices are totally invisible to each other even if they are separated as small as lambda/2 apart. Inverse design algorithm is employed in demonstrating all of our devices. The basic premise is that, via nanofabrication, we can locally engineer the refractive index to achieve unique functionalities that are otherwise impossible. A nonlinear optimization algorithm is used to find the best permittivity distribution and a focused ion beam is used to define the fine nanostructures. Our future work lies in demonstrating active nanophotonic devices with compact footprint and high efficiency. Broadband and efficient silicon modulators, and all-optical and high-efficiency switches are envisioned with our design algorithm.
LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes
Singh, Parmit Kumar; Plumb, Matthew R.; Ferris, Andrea L.; Iben, James R.; Wu, Xiaolin; Fadel, Hind J.; Luke, Brian T.; Esnault, Caroline; Poeschla, Eric M.; Hughes, Stephen H.; Kvaratskhelia, Mamuka; Levin, Henry L.
2015-01-01
The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced. PMID:26545813
Divergence of activity expansions: Is it actually a problem?
NASA Astrophysics Data System (ADS)
Ushcats, M. V.; Bulavin, L. A.; Sysoev, V. M.; Ushcats, S. Yu.
2017-12-01
For realistic interaction models, which include both molecular attraction and repulsion (e.g., Lennard-Jones, modified Lennard-Jones, Morse, and square-well potentials), the asymptotic behavior of the virial expansions for pressure and density in powers of activity has been studied taking power terms of high orders into account on the basis of the known finite-order irreducible integrals as well as the recent approximations of infinite irreducible series. Even in the divergence region (at subcritical temperatures), this behavior stays thermodynamically adequate (in contrast to the behavior of the virial equation of state with the same set of irreducible integrals) and corresponds to the beginning of the first-order phase transition: the divergence yields the jump (discontinuity) in density at constant pressure and chemical potential. In general, it provides a statistical explanation of the condensation phenomenon, but for liquid or solid states, the physically proper description (which can turn the infinite discontinuity into a finite jump of density) still needs further study of high-order cluster integrals and, especially, their real dependence on the system volume (density).
High density electronic circuit and process for making
Morgan, William P.
1999-01-01
High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.
Li, Yun; Liu, Shikai; Qin, Zhenkui; Waldbieser, Geoff; Wang, Ruijia; Sun, Luyang; Bao, Lisui; Danzmann, Roy G.; Dunham, Rex; Liu, Zhanjiang
2015-01-01
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits. PMID:25428894
High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas
Kazyak, David C.; Zydlewski, Joseph D.
2012-01-01
Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.
Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory
NASA Astrophysics Data System (ADS)
Wouters, D. J.; Maes, D.; Goux, L.; Lisoni, J. G.; Paraschiv, V.; Johnson, J. A.; Schwitters, M.; Everaert, J.-L.; Boullart, W.; Schaekers, M.; Willegems, M.; Vander Meeren, H.; Haspeslagh, L.; Artoni, C.; Caputa, C.; Casella, P.; Corallo, G.; Russo, G.; Zambrano, R.; Monchoix, H.; Vecchio, G.; Van Autryve, L.
2006-09-01
Ferroelectric random access memory (FeRAM) is an attractive candidate technology for embedded nonvolatile memory, especially in applications where low power and high program speed are important. Market introduction of high-density FeRAM is, however, lagging behind standard complementary metal-oxide semiconductor (CMOS) because of the difficult integration technology. This paper discusses the major integration issues for high-density FeRAM, based on SrBi2Ta2O9 (strontium bismuth tantalate or SBT), in relation to the fabrication of our stacked cell structure. We have worked in the previous years on the development of SBT-FeRAM integration technology, based on a so-called pseudo-three-dimensional (3D) cell, with a capacitor that can be scaled from quasi two-dimensional towards a true three-dimensional capacitor where the sidewalls will importantly contribute to the signal. In the first phase of our integration development, we integrated our FeRAM cell in a 0.35μm CMOS technology. In a second phase, then, possibility of scaling of our cell is demonstrated in 0.18μm technology. The excellent electrical and reliability properties of the small integrated ferroelectric capacitors prove the feasibility of the technology, while the verification of the potential 3D effect confirms the basic scaling potential of our concept beyond that of the single-mask capacitor. The paper outlines the different material and technological challenges, and working solutions are demonstrated. While some issues are specific to our own cell, many are applicable to different stacked FeRAM cell concepts, or will become more general concerns when more developments are moving into 3D structures.
NASA Astrophysics Data System (ADS)
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-11-01
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g-1) at a current density of 2 A g-1, high-power density (11.98 kW kg-1) at a discharge current density of 40 A g-1 and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-12-21
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.98 kW kg(-1)) at a discharge current density of 40 A g(-1) and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Putz, Mihai V.
2009-01-01
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
High Density Memory Based on Quantum Device Technology
NASA Technical Reports Server (NTRS)
vanderWagt, Paul; Frazier, Gary; Tang, Hao
1995-01-01
We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.
Thermal Hotspots in CPU Die and It's Future Architecture
NASA Astrophysics Data System (ADS)
Wang, Jian; Hu, Fu-Yuan
Owing to the increasing core frequency and chip integration and the limited die dimension, the power densities in CPU chip have been increasing fastly. The high temperature on chip resulted by power densities threats the processor's performance and chip's reliability. This paper analyzed the thermal hotspots in die and their properties. A new architecture of function units in die - - hot units distributed architecture is suggested to cope with the problems of high power densities for future processor chip.
NASA Astrophysics Data System (ADS)
Chidambaram, Thenappan
III-V semiconductors are potential candidates to replace Si as a channel material in next generation CMOS integrated circuits owing to their superior carrier mobilities. Low density of states (DOS) and typically high interface and border trap densities (Dit) in high mobility group III-V semiconductors provide difficulties in quantification of Dit near the conduction band edge. The trap response above the threshold voltage of a MOSFET can be very fast, and conventional Dit extraction methods, based on capacitance/conductance response (CV methods) of MOS capacitors at frequencies <1MHz, cannot distinguish conducting and trapped carriers. In addition, the CV methods have to deal with high dispersion in the accumulation region that makes it a difficult task to measure the true oxide capacitance, Cox value. Another implication of these properties of III-V interfaces is an ambiguity of determination of electron density in the MOSFET channel. Traditional evaluation of carrier density by integration of the C-V curve, gives incorrect values for D it and mobility. Here we employ gated Hall method to quantify the D it spectrum at the high-K oxide/III-V semiconductor interface for buried and surface channel devices using Hall measurement and capacitance-voltage data. Determination of electron density directly from Hall measurements allows for obtaining true mobility values.
Diagnostics and results from coaxial plasma gun development for the PLX- α project
NASA Astrophysics Data System (ADS)
Case, A.; Brockington, S.; Cruz, E.; Witherspoon, F. D.
2016-10-01
We present results from the diagnostics used during development of the contoured gap coaxial plasma guns for the PLX- α project at LANL. Plasma-jet diagnostics include fast photodiodes for velocimetry, a ballistic pendulum for total plasmoid momentum, and interferometry for line integrated density. Deflectometry will be used for line integrated perpendicular density gradients. Time-resolved high-resolution spectroscopy using a novel detector and time-integrated survey spectroscopy are used for measurements of velocity and temperature, as well as impurities. We will also use a Faraday cup for density, fast imaging for plume geometry, and time-integrated imaging for overall light emission. Experimental results are compared to the desired target parameters for the plasma jets (up to n 2 ×1016cm-3 , v 50km / s , mass 5gm , radius = 4cm , and length 10cm). This work supported by the ARPA-E ALPHA Program.
High density electronic circuit and process for making
Morgan, W.P.
1999-06-29
High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.
Integrated semiconductor-magnetic random access memory system
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)
2001-01-01
The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.
Aluminum integral foams with tailored density profile by adapted blowing agents
NASA Astrophysics Data System (ADS)
Hartmann, Johannes; Fiegl, Tobias; Körner, Carolin
2014-05-01
The goal of the present work is the variation of the structure of aluminum integral foams regarding the thickness of the integral solid skin as well as the density profile. A modified die casting process, namely integral foam molding, is used in which an aluminum melt and blowing agent particles (magnesium hydride MgH2) are injected in a permanent steel mold. The high solidification rates at the cooled walls of the mold lead to the formation of a solid skin. In the inner region, hydrogen is released by thermal decomposition of MgH2 particles. Thus, the pore formation takes place parallel to the continuing solidification of the melt. The thickness of the solid skin and the density profile of the core strongly depend on the interplay between solidification velocity and kinetics of hydrogen release. By varying the melt and blowing agent properties, the structure of integral foams can be systematically changed to meet the requirements of the desired field of application of the produced component.
Integration of Fixed and Flexible Route Public Transportation Systems, Phase II
DOT National Transportation Integrated Search
2012-01-01
Conventional bus service (with fixed routes and schedules) has lower average cost than flexible bus service (with : demand-responsive routes) at high demand densities. At low demand densities flexible bus service has lower : average costs and provide...
An, Chunju; Fei, Xiaodong; Chen, Wenfeng; Zhao, Zhangwu
2012-04-01
The wheat aphid Schizaphis graminum (Rondani) displays wing dimorphism with both winged and wingless adult morphs. The winged morph is an adaptive microevolutionary response to undesirable environmental conditions, including undesirable population density, photoperiod, temperature, and host plant. Here we studied the integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in S. graminum. The present results show that these four factors all play roles in inducing alate aphids in S. graminum but population density is the most important under almost all circumstances. In importance, population density is followed by photoperiod, host plant, and temperature, in that order. These results indicate that ambient environmental factors are highly important to stimulation of alate aphids in S. graminum, especially when population density reaches 64 individuals per leaf. © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Chao; Song, Bing; Li, Qingjiang; Zeng, Zhongming
2018-03-01
We herein present a novel unidirectional threshold selector for cross-point bipolar RRAM array. The proposed Ag/amorphous Si based threshold selector showed excellent threshold characteristics in positive field, such as high selectivity ( 105), steep slope (< 5 mV/decade) and low off-state current (< 300 pA). Meanwhile, the selector exhibited rectifying characteristics in the high resistance state as well and the rectification ratio was as high as 103 at ± 1.5 V. Nevertheless, due to the high reverse current about 9 mA at - 3 V, this unidirectional threshold selector can be used as a selection element for bipolar-type RRAM. By integrating a bipolar RRAM device with the selector, experiments showed that the undesired sneak was significantly suppressed, indicating its potentiality for high-density integrated nonvolatile memory applications.
On high-order perturbative calculations at finite density
Ghisoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; ...
2016-12-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — aresult reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbativemore » orders.« less
NASA Astrophysics Data System (ADS)
Klee, M.; Boots, H.; Kumar, B.; van Heesch, C.; Mauczok, R.; Keur, W.; de Wild, M.; van Esch, H.; Roest, A. L.; Reimann, K.; van Leuken, L.; Wunnicke, O.; Zhao, J.; Schmitz, G.; Mienkina, M.; Mleczko, M.; Tiggelman, M.
2010-02-01
Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm2, high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85°C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
Čársky, Petr; Čurík, Roman; Varga, Štefan
2012-03-21
The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics
[Intelligent watch system for health monitoring based on Bluetooth low energy technology].
Wang, Ji; Guo, Hailiang; Ren, Xiaoli
2017-08-01
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
VLSI technology for smaller, cheaper, faster return link systems
NASA Technical Reports Server (NTRS)
Nanzetta, Kathy; Ghuman, Parminder; Bennett, Toby; Solomon, Jeff; Dowling, Jason; Welling, John
1994-01-01
Very Large Scale Integration (VLSI) Application-specific Integrated Circuit (ASIC) technology has enabled substantially smaller, cheaper, and more capable telemetry data systems. However, the rapid growth in available ASIC fabrication densities has far outpaced the application of this technology to telemetry systems. Available densities have grown by well over an order magnitude since NASA's Goddard Space Flight Center (GSFC) first began developing ASIC's for ground telemetry systems in 1985. To take advantage of these higher integration levels, a new generation of ASIC's for return link telemetry processing is under development. These new submicron devices are designed to further reduce the cost and size of NASA return link processing systems while improving performance. This paper describes these highly integrated processing components.
Recent progress in low-temperature-process monolithic three dimension technology
NASA Astrophysics Data System (ADS)
Yang, Chih-Chao; Hsieh, Tung-Ying; Huang, Wen-Hsien; Shen, Chang-Hong; Shieh, Jia-Min; Yeh, Wen-Kuan; Wu, Meng-Chyi
2018-04-01
Monolithic three-dimension (3D) integration is an ultimate alternative method of fabricating high density, high performance, and multi-functional integrated circuits. It offers the promise of being a new approach to increase system performance. How to manage the thermal impact of multi-tiered processes, such as dopant activation, source/drain silicidation, and channel formation, and to prevent the degradation of pre-existing devices/circuits become key challenges. In this paper, we provide updates on several important monolithic 3D works, particularly in sequentially stackable channels, and our recent achievements in monolithic 3D integrated circuit (3D-IC). These results indicate that the advanced 3D architecture with novel design tools enables ultrahigh-density stackable circuits to have superior performance and low power consumption for future artificial intelligence (AI) and internet of things (IoTs) application.
A high energy-density nickel-hydrogen battery design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, L.
1982-09-01
A light-weight Ni-H/sub 2/ battery design concept (projected energy-density 46.7 Whr/Kg or 21.2 Whr/Lb) suitable for immediate or near-term spacecraft integration is described. The proposed design does not violate proven and qualified design concepts, or critical electrochemical component designs or functions.
Large-Scale Document Automation: The Systems Integration Issue.
ERIC Educational Resources Information Center
Kalthoff, Robert J.
1985-01-01
Reviews current technologies for electronic imaging and its recording and transmission, including digital recording, optical data disks, automated image-delivery micrographics, high-density-magnetic recording, and new developments in telecommunications and computers. The role of the document automation systems integrator, who will bring these…
Low temperature ablation models made by pressure/vacuum application
NASA Technical Reports Server (NTRS)
Fischer, M. C.; Heier, W. C.
1970-01-01
Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.
Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
Li, Huiqiao; Wang, Yonggang; Na, Haitao; Liu, Haimei; Zhou, Haoshen
2009-10-28
A rechargeable Ni-Li battery, in which nickel hydroxide serving as a cathode in an aqueous electrolyte and Li metal serving as an anode in an organic electrolyte were integrated by a superionic conductor glass ceramic film (LISICON), was proposed with the expectation to combine the advantages of both a Li-ion battery and Ni-MH battery. It has the potential for an ultrahigh theoretical energy density of 935 Wh/kg, twice that of a Li-ion battery (414 Wh/kg), based on the active material in electrodes. A prototype Ni-Li battery fabricated in the present work demonstrated a cell voltage of 3.47 V and a capacity of 264 mAh/g with good retention during 50 cycles of charge/discharge. This battery system with a hybrid electrolyte provides a new avenue for the best combination of electrode/electrolyte/electrode to fulfill the potential of high energy density as well as high power density.
Laminar composite structures for high power actuators
NASA Astrophysics Data System (ADS)
Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.
2017-05-01
Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.
Integrative Cardiac Health Project (ICHP)
2012-09-01
Body Mass Index 88 30.92 (6.1) 30.16 (6.0) -0.8 ɘ.00001 Total Cholesterol (mg/dl) 85 187.59 (39.4) 184.28 (37.5) -3.3 0.2845 High Density ...0.001 Total Cholesterol (mg/dl) 61 189.41 (42.4) 178.25 (38.1) -11.2 ɘ.05 High Density Lipids (mg/dl) 61 49.28 (13.7) 48.44 (12.8) -0.8 0.3427 Low...3.8) -1.1 ɘ.01 Total Cholesterol (mg/dl) 14 179.14 (46.2) 175.29 (43.6) -3.9 0.6836 High Density Lipids (mg/dl) 14 52.36 (10.8) 49.21 (7.2) -3.1
Design and analysis of a direct-drive wind power generator with ultra-high torque density
NASA Astrophysics Data System (ADS)
Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong
2015-05-01
In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.
Direct laser written polymer waveguides with out of plane couplers for optical chips
NASA Astrophysics Data System (ADS)
Landowski, Alexander; Zepp, Dominik; Wingerter, Sebastian; von Freymann, Georg; Widera, Artur
2017-10-01
Optical technologies call for waveguide networks featuring high integration densities, low losses, and simple operation. Here, we present polymer waveguides fabricated from a negative tone photoresist via two-photon-lithography in direct laser writing, and show a detailed parameter study of their performance. Specifically, we produce waveguides featuring bend radii down to 40 μ m, insertion losses of the order of 10 dB, and loss coefficients smaller than 0.81 dB mm-1, facilitating high integration densities in writing fields of 300 μ m×300 μ m. A novel three-dimensional coupler design allows for coupling control as well as direct observation of outputs in a single field of view through a microscope objective. Finally, we present beam-splitting devices to construct larger optical networks, and we show that the waveguide material is compatible with the integration of quantum emitters.
High-density amorphous ice: A path-integral simulation
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2012-09-01
Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Absil, Philippe P; Verheyen, Peter; De Heyn, Peter; Pantouvaki, Marianna; Lepage, Guy; De Coster, Jeroen; Van Campenhout, Joris
2015-04-06
Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.
Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells
Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie
2014-01-01
In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487
Three Dimensional High-Resolution Reconstruction of the Ionosphere Over the Very Large Array
2010-12-15
Watts Progress Report, Dec 10; 1 Final Report: Three Dimensional High-Resolution Reconstruction of the Ionosphere over the Very Large Array...proposed research is reconstruct the three-dimensional regional electron density profile of Earth’s ionosphere with spatial resolution of better than 10 km...10x better sensitivity to total electron content (TEC, or chord integrated density) in the ionosphere that does GPS. The proposal funds the
A high density two-dimensional electron gas in an oxide heterostructure on Si (001)
NASA Astrophysics Data System (ADS)
Jin, E. N.; Kornblum, L.; Kumah, D. P.; Zou, K.; Broadbridge, C. C.; Ngai, J. H.; Ahn, C. H.; Walker, F. J.
2014-11-01
We present the growth and characterization of layered heterostructures comprised of LaTiO3 and SrTiO3 epitaxially grown on Si (001). Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LaTiO3/SrTiO3 interfaces, consistent with the presence of an interfacial 2-dimensional electron gas (2DEG) at each interface. Sheet carrier densities of 8.9 × 1014 cm-2 per interface are observed. Integration of such high density oxide 2DEGs on silicon provides a bridge between the exceptional properties and functionalities of oxide 2DEGs and microelectronic technologies.
Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivancic, S.; Haberberger, D.; Habara, H.
Channeling experiments were performed that demonstrate the transport of high-intensity (>10¹⁸ W/cm²), multikilojoule laser light through a millimeter-sized, inhomogeneous (~300-μm density scale length) laser produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.
High volumetric power density, non-enzymatic, glucose fuel cells.
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.
High volumetric power density, non-enzymatic, glucose fuel cells
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576
Xiang, Chengxiang; Meng, Andrew C.; Lewis, Nathan S.
2012-01-01
Physical integration of a Ag electrical contact internally into a metal/substrate/microstructured Si wire array/oxide/Ag/electrolyte photoelectrochemical solar cell has produced structures that display relatively low ohmic resistance losses, as well as highly efficient mass transport of redox species in the absence of forced convection. Even with front-side illumination, such wire-array based photoelectrochemical solar cells do not require a transparent conducting oxide top contact. In contact with a test electrolyte that contained 50 mM/5.0 mM of the cobaltocenium+/0 redox species in CH3CN–1.0 M LiClO4, when the counterelectrode was placed in the solution and separated from the photoelectrode, mass transport restrictions of redox species in the internal volume of the Si wire array photoelectrode produced low fill factors and limited the obtainable current densities to 17.6 mA cm-2 even under high illumination. In contrast, when the physically integrated internal Ag film served as the counter electrode, the redox couple species were regenerated inside the internal volume of the photoelectrode, especially in regions where depletion of the redox species due to mass transport limitations would have otherwise occurred. This behavior allowed the integrated assembly to operate as a two-terminal, stand-alone, photoelectrochemical solar cell. The current density vs. voltage behavior of the integrated photoelectrochemical solar cell produced short-circuit current densities in excess of 80 mA cm-2 at high light intensities, and resulted in relatively low losses due to concentration overpotentials at 1 Sun illumination. The integrated wire array-based device architecture also provides design guidance for tandem photoelectrochemical cells for solar-driven water splitting. PMID:22904185
NASA Astrophysics Data System (ADS)
Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.
2015-11-01
Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.
High-Capacity, High-Voltage Composite Oxide Cathode Materials
NASA Technical Reports Server (NTRS)
Hagh, Nader M.
2015-01-01
This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.
Lithography for enabling advances in integrated circuits and devices.
Garner, C Michael
2012-08-28
Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.
Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.
Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua
2016-09-14
Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.
Happel, Max F K; Jeschke, Marcus; Ohl, Frank W
2010-08-18
Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.
Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun
2013-06-18
This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.
Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement
NASA Technical Reports Server (NTRS)
Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra
2015-01-01
We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.
Determination of PM mass emissions from an aircraft turbine engine using particle effective density
NASA Astrophysics Data System (ADS)
Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.
2014-12-01
Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.
A parameter study of the two-fluid solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil; Holzer, Thomas E.
1992-01-01
A two-fluid model of the solar wind was introduced by Sturrock and Hartle (1966) and Hartle and Sturrock (1968). In these studies the proton energy equation was integrated neglecting the heat conductive term. Later several authors solved the equations for the two-fluid solar wind model keeping the proton heat conductive term. Methods where the equations are integrated simultaneously outward and inward from the critical point were used. The equations were also integrated inward from a large heliocentric distance. These methods have been applied to cases with low coronal base electron densities and high base temperatures. In this paper we present a method of integrating the two-fluid solar wind equations using an iteration procedure where the equations are integrated separately and the proton flux is kept constant during the integrations. The technique is applicable for a wide range of coronal base densities and temperatures. The method is used to carry out a parameter study of the two-fluid solar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Nagaboopathy; Raghavan, Srinivasan; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012
2015-10-07
AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed atmore » an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.« less
Evolving targets for lipid-modifying therapy
Do, Rose Q; Nicholls, Stephen J; Schwartz, Gregory G
2014-01-01
The pathogenesis and progression of atherosclerosis are integrally connected to the concentration and function of lipoproteins in various classes. This review examines existing and emerging approaches to modify low-density lipoprotein and lipoprotein (a), triglyceride-rich lipoproteins, and high-density lipoproteins, emphasizing approaches that have progressed to clinical evaluation. Targeting of nuclear receptors and phospholipases is also discussed. PMID:25172365
MnO2 nanowires-decorated carbon fiber cloth as electrodes for aqueous asymmetric supercapacitor
NASA Astrophysics Data System (ADS)
Hong, Congcong; Wang, Xing; Yu, Houlin; Wu, Huaping; Wang, Jianshan; Liu, Aiping
Manganese dioxide nanowires (MnO2 NWs) anchored on carbon fiber cloth (CFC) were fabricated through a simple hydrothermal reaction and used as integrated electrodes for supercapacitor. The morphology-dependent electrochemical performance of MnO2 NWs was confirmed, yielding good capacitance performance with a high specific capacitance of 3.88Fṡcm‑2 at a charge-discharge current density of 5mAṡcm‑2 and excellent stability of 91.5% capacitance retention after 3000 cycles. Moreover, the composite electrodes were used to fabricate supercapacitors, which showed a high specific capacitance of 194mFṡcm‑2 at a charge-discharge current density of 2mAṡcm‑2 and high energy density of 0.108mWhṡcm‑2 at power density of 2mWṡcm‑2, foreboding its potential application for high-performance supercapacitor.
Forecasting Lightning Threat Using WRF Proxy Fields
NASA Technical Reports Server (NTRS)
McCaul, E. W., Jr.
2010-01-01
Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.
Pseudo-Boltzmann model for modeling the junctionless transistors
NASA Astrophysics Data System (ADS)
Avila-Herrera, F.; Cerdeira, A.; Roldan, J. B.; Sánchez-Moreno, P.; Tienda-Luna, I. M.; Iñiguez, B.
2014-05-01
Calculation of the carrier concentrations in semiconductors using the Fermi-Dirac integral requires complex numerical calculations; in this context, practically all analytical device models are based on Boltzmann statistics, even though it is known that it leads to an over-estimation of carriers densities for high doping concentrations. In this paper, a new approximation to Fermi-Dirac integral, called Pseudo-Boltzmann model, is presented for modeling junctionless transistors with high doping concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace
The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less
Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace; ...
2017-04-26
The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James
2017-02-01
Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.
Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.
Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming
2016-08-25
Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.
Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei
2015-01-01
The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773
Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei
2015-12-18
The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.
Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng
2016-10-05
The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.
NASA Astrophysics Data System (ADS)
Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Wu, Shishan; Yan, Chenglin
2015-10-01
We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm-3 (˜40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm-3, which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm-3 after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices.
Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Wu, Shishan; Yan, Chenglin
2015-10-23
We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm(-3) (∼40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm(-3), which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm(-3) after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices.
NASA Astrophysics Data System (ADS)
Gao, Zhiwen; Zhou, Youhe
2015-04-01
Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.
Phase transition in conjugated oligomers suspended in chloroform
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj
2015-08-01
Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.
NASA Technical Reports Server (NTRS)
Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana
2011-01-01
The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.
Wen, Weie; He, Zhonghu; Gao, Fengmei; Liu, Jindong; Jin, Hui; Zhai, Shengnan; Qu, Yanying; Xia, Xianchun
2017-01-01
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding. PMID:28848588
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
Renard, Charles; Molière, Timothée; Cherkashin, Nikolay; Alvarez, José; Vincent, Laetitia; Jaffré, Alexandre; Hallais, Géraldine; Connolly, James Patrick; Mencaraglia, Denis; Bouchier, Daniel
2016-05-04
Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm(-2) for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III-V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.
Study of the hard-disk system at high densities: the fluid-hexatic phase transition.
Mier-Y-Terán, Luis; Machorro-Martínez, Brian Ignacio; Chapela, Gustavo A; Del Río, Fernando
2018-06-21
Integral equations of uniform fluids have been considered unable to predict any characteristic feature of the fluid-solid phase transition, including the shoulder that arises in the second peak of the fluid-phase radial distribution function, RDF, of hard-core systems obtained by computer simulations, at fluid densities very close to the structural two-step phase transition. This reasoning is based on the results of traditional integral approximations, like Percus-Yevick, PY, which does not show such a shoulder in hard-core systems, neither in two nor three dimensions. In this work, we present results of three Ansätze, based on the PY theory, that were proposed to remedy the lack of PY analytical solutions in two dimensions. This comparative study shows that one of those Ansätze does develop a shoulder in the second peak of the RDF at densities very close to the phase transition, qualitatively describing this feature. Since the shoulder grows into a peak at still higher densities, this integral equation approach predicts the appearance of an orientational order characteristic of the hexatic phase in a continuous fluid-hexatic phase transition.
Effects of population density on corticosterone levels of prairie voles in the field
Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.
2015-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968
High density operation for reactor-relevant power exhaust
NASA Astrophysics Data System (ADS)
Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors
2015-08-01
With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.
NASA Astrophysics Data System (ADS)
Rechtenwald, Thomas; Frick, Thomas; Schmidt, Michael
The embedding stereolithography is an additive, hybrid process, which allows the construction of highly integrated 3D assemblies for the use in automotive applications. The flexible process of stereolithography is combined with the embedding of functional components and supplemented by the additive manufacturing of electrical or optical conductive structures. This combination of sub-processes implies a high potential regarding the obtainable integration density of mechatronical modules. This work considers basic restrictions, which limit the mechanical stability of the manufactured modules by calculating the superposition of residual and external stress using a thermo-mechanical finite element model and develops a procedure to qualify stereolithography matrix materials for the process of the embedding stereolithography.
Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project
NASA Astrophysics Data System (ADS)
Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas
2015-11-01
We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.
Path-integral approach to the Wigner-Kirkwood expansion.
Jizba, Petr; Zatloukal, Václav
2014-01-01
We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed.
Tang, Chun-hua; Yin, Xuesong; Gong, Hao
2013-11-13
Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.
High Z particle Apollo astronaut dosimetry with plastics
NASA Technical Reports Server (NTRS)
Benton, E. V.; Henke, R. P.
1972-01-01
On Apollo missions, the individual astronauts' high Z particle exposure is measured by means of Lexan polycarbonate plastic. These layers form one component of the passive dosimetry packets worn in the constant wear garment. They serve as threshold type, high Z, charged particle track detectors, recording only the very highly ionizing particles. The detectors yield information on the particles' charge, energy, and direction of travel. This data, in turn, is used to obtain the track fluence, the stopping particle density as an integral Z distribution, and the particles' integral LET spectrum. Some of the data gathered on Apollo missions 8-13 is presented.
Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun
2013-01-01
This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths areachieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition. PMID:28809285
Chip-scale integrated optical interconnects: a key enabler for future high-performance computing
NASA Astrophysics Data System (ADS)
Haney, Michael; Nair, Rohit; Gu, Tian
2012-01-01
High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide a seamless interconnect fabric spanning the intra-
NASA Astrophysics Data System (ADS)
Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie
2017-12-01
Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.
Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boboc, A.; Zabeo, L.; Murari, A.
The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good controlmore » of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.« less
NASA Technical Reports Server (NTRS)
Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.
2016-01-01
The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.
LTCC interconnects in microsystems
NASA Astrophysics Data System (ADS)
Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag
2006-06-01
Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.
A fast low-power optical memory based on coupled micro-ring lasers
NASA Astrophysics Data System (ADS)
Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.
2004-11-01
The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.
NASA Astrophysics Data System (ADS)
Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong
2017-06-01
The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.
2012-01-01
Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium. PMID:23046547
Redox electrodes comprised of polymer-modified carbon nanomaterials
NASA Astrophysics Data System (ADS)
Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team
2013-03-01
A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.
Double-cavity radiometer for high-flux density solar radiation measurements.
Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M
2007-04-20
A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.
Ultrasonic longitudinal waves to monitor the integration of titanium rods with host bone
NASA Astrophysics Data System (ADS)
Wang, Wentao; Lynch, Jerome P.
2017-04-01
Osseointegrated prostheses which integrate the prosthesis directly to the limb bone are being developed for patients that are unable to wear traditional socket prostheses. While osseointegration of the prosthesis offers amputees improvement in their quality of life, there remains a need to better understand the integration process that occurs between the bone and the prosthesis. Quantification of the degree of integration is important to track the recuperation process of the amputee, guide physical therapy regimes, and to identify when the state of integration may change (due to damage to the bone). This study explores the development of an assessment strategy for quantitatively assessing the degree of integration between an osseointegrated prosthesis and host bone. Specifically, the strategy utilizes a titanium rod prosthesis as a waveguide with guided waves used to assess the degree of integration. By controlling waveforms launched by piezoelectric wafers bonded on the percutaneous tip of the prosthesis, body waves are introduced into the waveguide with wave reflections at the boneprosthesis interface recorded by the same array. Changes in wave energy are correlated to changes at the contact interface between the titanium rod and the bone material. Both simulation and experimental tests are presented in this paper. Experimental testing is performed using a high-density polyethylene (HDPE) host because the elastic modulus and density of HDPE are close to that of human and animal bone. Results indicate high sensitivity of the longitudinal wave energy to rod penetration depth and confinement stress issued by the host bone.
Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Tongyu, WU; Wei, ZHANG; Haoxi, WANG; Yan, ZHOU; Zejie, YIN
2018-06-01
A synchronous demodulation system is proposed and deployed for CO2 dispersion interferometer on HL-2A, which aims at high plasma density measurements and real-time feedback control. In order to make sure that the demodulator and the interferometer signal are synchronous in phase, a phase adjustment (PA) method has been developed for the demodulation system. The method takes advantages of the field programmable gate array parallel and pipeline process capabilities to carry out high performance and low latency PA. Some experimental results presented show that the PA method is crucial to the synchronous demodulation system and reliable to follow the fast change of the electron density. The system can measure the line-integrated density with a high precision of 2.0 × 1018 m‑2.
NASA Astrophysics Data System (ADS)
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P
2015-02-01
We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.
High density circuit technology, part 1
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
The metal (or dielectric) lift-off processes used in the semiconductor industry to fabricate high density very large scale integration (VLSI) systems were reviewed. The lift-off process consists of depositing the light-sensitive material onto the wafer and patterning first in such a manner as to form a stencil for the interconnection material. Then the interconnection layer is deposited and unwanted areas are lifted off by removing the underlying stencil. Several of these lift-off techniques were examined experimentally. The use of an auxiliary layer of polyimide to form a lift-off stencil offers considerable promise.
Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space
NASA Technical Reports Server (NTRS)
Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer
2012-01-01
The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.
LTCC magnetic components for high density power converter
NASA Astrophysics Data System (ADS)
Lebourgeois, Richard; Labouré, Eric; Lembeye, Yves; Ferrieux, Jean-Paul
2018-04-01
This paper deals with multilayer magnetic components for power electronics application and specifically for high frequency switching. New formulations based on nickel-zinc-copper spinel ferrites were developed for high power and high frequency applications. These ferrites can be sintered at low temperature (around 900°C) which makes them compatible with the LTCC (Low Temperature Co-fired Ceramics) technology. Metallic parts of silver or gold can be fully integrated inside the ferrite while guaranteeing the integrity of both the ferrite and the metal. To make inductors or transformers with the required properties, it is mandatory to have nonmagnetic parts between the turns of the winding. Then it is essential to find a dielectric material, which can be co-sintered both with the ferrite and the metal. We will present the solution we found to this problem and we will describe the results we obtained for a multilayer co-sintered transformer. We will see that these new components have good performance compared with the state of the art and are very promising for developing high density switching mode power supplies.
NASA Astrophysics Data System (ADS)
Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.
2010-02-01
We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.
Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang
2017-08-09
We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.
2017-12-02
Report: Acquisition of an Advanced Thermal Analysis and Imaging System for Integration with Interdisciplinary Research and Education in Low Density...for Integration with Interdisciplinary Research and Education in Low Density Organic-Inorganic Materials Report Term: 0-Other Email: dmisra2
Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Mishra, Pankaj
2017-05-01
We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.
CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics
Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek
2014-01-01
Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460
GLOBAL INTEGRATED ISR: A BETTER ORGANIZATIONAL CONSTRUCT FOR AIR FORCE LD/HD ISR
2017-04-06
Mr. Kevin S. Williams, LeMay Center Intelligence Directorate, United States Air Force 6 April 2017 DISTRIBUTION A. Approved for public...E-8 intelligence , surveillance, and reconnaissance (ISR) aircraft it refers to as Low Density/High Demand (LD/HD). Current worldwide demand for LD...management GFMAP Global Force Management Allocation Plan GIISR global integrated intelligence , surveillance, and reconnaissance ISIS Islamic
NASA Technical Reports Server (NTRS)
Xie, Huikai (Inventor); Ngo, Khai D. T. (Inventor)
2013-01-01
A multi-layer film-stack and method for forming the multilayer film-stack is given where a series of alternating layers of conducting and dielectric materials are deposited such that the conducting layers can be selectively addressed. The use of the method to form integratable high capacitance density capacitors and complete the formation of an integrated power system-on-a-chip device including transistors, conductors, inductors, and capacitors is also given.
High-Performance Multi-Fuel AMTEC Power System
2000-12-01
AMTEC technology has demonstrated thermal to electric conversion efficiencies and power densities which make it an attractive option for meso-scaic...power generation. This report details development of an integrated, logistics-fueled, 500 W AMTEC power supply. The development targeted 2O% AMTEC ...cylindrical multi-tube/single cell AMTEC configuration with effective management of alkali metal flow; scaling down and integrating a multi-fuel micro-combustor
Sebastian Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez
2007-01-01
The island of Puerto Rico has both a high population density and a long history of ineffective land use planning. This study integrates geospatial technology and population census data to understand how people use and develop the lands. We define three new regions for Puerto Rico: Urban (16%), Densely Populated Rural (36%), and Sparsely Populated Rural (48%). Eleven...
Jäckel, David; Bakkum, Douglas J; Russell, Thomas L; Müller, Jan; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas
2017-04-20
We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11'000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.
Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua
2016-12-01
State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Saleem, Amin M.; Andersson, Rickard; Desmaris, Vincent; Enoksson, Peter
2018-01-01
Complete miniaturized on-chip integrated solid-state capacitors have been fabricated based on conformal coating of vertically aligned carbon nanofibers (VACNFs), using a CMOS temperature compatible microfabrication processes. The 5 μm long VACNFs, operating as electrode, are grown on a silicon substrate and conformally coated by aluminum oxide dielectric using atomic layer deposition (ALD) technique. The areal (footprint) capacitance density value of 11-15 nF/mm2 is realized with high reproducibility. The CMOS temperature compatible microfabrication, ultra-low profile (less than 7 μm thickness) and high capacitance density would enables direct integration of micro energy storage devices on the active CMOS chip, multi-chip package and passives on silicon or glass interposer. A model is developed to calculate the surface area of VACNFs and the effective capacitance from the devices. It is thereby shown that 71% of surface area of the VACNFs has contributed to the measured capacitance, and by using the entire area the capacitance can potentially be increased.
High-beta steady-state research with integrated modeling in the JT-60 Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, T.
2007-05-15
Improvement of high-beta performance and its long sustainment was obtained with ferritic steel tiles in the JT-60 Upgrade (JT-60U) [T. Fujita et al., Phys. Plasmas 50, 104 (2005)], which were installed inside the vacuum vessel to reduce fast ion loss by decreasing the toroidal field ripple. When a separation between the plasma surface and the wall was small, high-beta plasmas reached the ideal wall stability limit, i.e., the ideal magnetohydrodynamics stability limit with the wall stabilization. A small rotation velocity of 0.3% of the Alfven velocity was found to be effective for suppressing the resistive wall mode. Sustainment of themore » high normalized beta value of {beta}{sub N}=2.3 has been extended to 28.6 s ({approx}15 times the current diffusion time) by improvement of the confinement and increase in the net heating power. Based on the research in JT-60U experiments and first-principle simulations, integrated models of core, edge-pedestal, and scrape-off-layer (SOL) divertors were developed, and they clarified complex features of reactor-relevant plasmas. The integrated core plasma model indicated that the small amount of electron cyclotron (EC) current density of about half the bootstrap current density could effectively stabilize the neoclassical tearing mode by the localized EC current accurately aligned to the magnetic island center. The integrated edge-pedestal model clarified that the collisionality dependence of energy loss due to the edge-localized mode was caused by the change in the width of the unstable mode and the SOL transport. The integrated SOL-divertor model clarified the effect of the exhaust slot on the pumping efficiency and the cause of enhanced radiation near the X-point multifaceted asymmetric radiation from edge. Success in these consistent analyses using the integrated code indicates that it is an effective means to investigate complex plasmas and to control the integrated performance.« less
Path integral Monte Carlo and the electron gas
NASA Astrophysics Data System (ADS)
Brown, Ethan W.
Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
Athermal Photonic Devices and Circuits on a Silicon Platform
NASA Astrophysics Data System (ADS)
Raghunathan, Vivek
In recent years, silicon based optical interconnects has been pursued as an effective solution that can offer cost, energy, distance and bandwidth density improvements over copper. Monolithic integration of optics and electronics has been enabled by silicon photonic devices that can be fabricated using CMOS technology. However, high levels of device integration result in significant local and global temperature fluctuations that prove problematic for silicon based photonic devices. In particular, high temperature dependence of Si refractive index (thermo-optic (TO) coefficient) shifts the filter response of resonant devices that limit wavelength resolution in various applications. Active thermal compensation using heaters and thermo-electric coolers are the legacy solution for low density integration. However, the required electrical power, device foot print and number of input/output (I/O) lines limit the integration density. We present a passive approach to an athermal design that involves compensation of positive TO effects from a silicon core by negative TO effects of the polymer cladding. In addition, the design rule involves engineering the waveguide core geometry depending on the resonance wavelength under consideration to ensure desired amount of light in the polymer. We develop exact design requirements for a TO peak stability of 0 pm/K and present prototype performance of 0.5 pm/K. We explore the material design space through initiated chemical vapor deposition (iCVD) of 2 polymer cladding choices. We study the effect of cross-linking on the optical properties of a polymer and establish the superior performance of the co-polymer cladding compared to the homo-polymer. Integration of polymer clad devices in an electronic-photonic architecture requires the possibility of multi-layer stacking capability. We use a low temperature, high density plasma chemical vapor deposition of SiO2/SiN x to hermetically seal the athermal. Further, we employ visible light for post-fabrication trimming of athermal rings by sandwiching a thin photosensitive layer of As2S3 in between amorphous Si core and polymer top cladding. System design of an add-drop filter requires an optimum combination of channel counts performance and power handling capacity for maximum aggregate bandwidth. We establish the superior performance of athermal add-drop filter compared to a standard filter treating bandwidth as the figure-of-merit. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Effect of Surface Pressure Integration Methodology on Launch Vehicle Buffet Forcing Functions
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.
2016-01-01
The 2014 test of the Space Launch System (SLS) Rigid Buffet Model conducted at the NASA Langley Transonic Dynamics Tunnel employed an extremely high number of unsteady pressure transducers. The high channel count provided an opportunity to examine the effect of transducer placement on the resulting buffet forcing functions (BFFs). Rings of transducers on the forward half of the model were employed to simulate a single-body vehicle. The impact of transducer density, circumferential distribution, and loss of a single transducer on the resulting BFFs were examined. Rings of transducers on the aft half of the SLS model were employed to examine the effect of transducer density and circumferential distribution on BFFs for a multi-body configuration. Transducer placement considerations with respect to model size, facility infrastructure, and data acquisition system capabilities, which affect the integration process, are also discussed.
Tuan, Chia-Chi; James, Nathan Pataki; Lin, Ziyin; Chen, Yun; Liu, Yan; Moon, Kyoung-Sik; Li, Zhuo; Wong, C P
2017-03-15
As microelectronics are trending toward smaller packages and integrated circuit (IC) stacks nowadays, underfill, the polymer composite filled in between the IC chip and the substrate, becomes increasingly important for interconnection reliability. However, traditional underfills cannot meet the requirements for low-profile and fine pitch in high density IC stacking packages. Post-applied underfills have difficulties in flowing into the small gaps between the chip and the substrate, while pre-applied underfills face filler entrapment at bond pads. In this report, we present a self-patterning underfilling technology that uses selective wetting of underfill on Cu bond pads and Si 3 N 4 passivation via surface energy engineering. This novel process, fully compatible with the conventional underfilling process, eliminates the issue of filler entrapment in typical pre-applied underfilling process, enabling high density and fine pitch IC die bonding.
Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing
2018-05-09
Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.
Douglas, Erica A.; Sheng, Josephine J.; Verley, Jason C.; ...
2015-06-04
We found that the demand for integration of near infrared optoelectronic functionality with silicon complementary metal oxide semiconductor (CMOS) technology has for many years motivated the investigation of low temperature germanium on silicon deposition processes. Our work describes the development of a high density plasma chemical vapor deposition process that uses a low temperature (<460 °C) in situ germane/argon plasma surface preparation step for epitaxial growth of germanium on silicon. It is shown that the germane/argon plasma treatment sufficiently removes SiO x and carbon at the surface to enable germanium epitaxy. Finally, the use of this surface preparation step demonstratesmore » an alternative way to produce germanium epitaxy at reduced temperatures, a key enabler for increased flexibility of integration with CMOS back-end-of-line fabrication.« less
Top-gate pentacene-based organic field-effect transistor with amorphous rubrene gate insulator
NASA Astrophysics Data System (ADS)
Hiroki, Mizuha; Maeda, Yasutaka; Ohmi, Shun-ichiro
2018-02-01
The scaling of organic field-effect transistors (OFETs) is necessary for high-density integration and for this, OFETs with a top-gate configuration are required. There have been several reports of damageless lithography processes for organic semiconductor or insulator layers. However, it is still difficult to fabricate scaled OFETs with a top-gate configuration. In this study, the lift-off process and the device characteristics of the OFETs with a top-gate configuration utilizing an amorphous (α) rubrene gate insulator were investigated. We have confirmed that α-rubrene shows an insulating property, and its extracted linear mobility was 2.5 × 10-2 cm2/(V·s). The gate length and width were 10 and 60 µm, respectively. From these results, the OFET with a top-gate configuration utilizing an α-rubrene gate insulator is promising for the high-density integration of scaled OFETs.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
NASA Astrophysics Data System (ADS)
Barón-Aznar, C.; Moreno-Jiménez, S.; Celis, M. A.; Lárraga-Gutiérrez, J. M.; Ballesteros-Zebadúa, P.
2008-08-01
Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScansoftware, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.
Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer.
Geier, Michael L; Moudgil, Karttikay; Barlow, Stephen; Marder, Seth R; Hersam, Mark C
2016-07-13
Single-walled carbon nanotube (SWCNT) transistors are among the most developed nanoelectronic devices for high-performance computing applications. While p-type SWCNT transistors are easily achieved through adventitious adsorption of atmospheric oxygen, n-type SWCNT transistors require extrinsic doping schemes. Existing n-type doping strategies for SWCNT transistors suffer from one or more issues including environmental instability, limited carrier concentration modulation, undesirable threshold voltage control, and/or poor morphology. In particular, commonly employed benzyl viologen n-type doping layers possess large thicknesses, which preclude top-gate transistor designs that underlie high-density integrated circuit layouts. To overcome these limitations, we report here the controlled n-type doping of SWCNT thin-film transistors with a solution-processed pentamethylrhodocene dimer. The charge transport properties of organorhodium-treated SWCNT thin films show consistent n-type behavior when characterized in both Hall effect and thin-film transistor geometries. Due to the molecular-scale thickness of the organorhodium adlayer, large-area arrays of top-gated, n-type SWCNT transistors are fabricated with high yield. This work will thus facilitate ongoing efforts to realize high-density SWCNT integrated circuits.
Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals
Schmittfull, Marcel; Vlah, Zvonimir
2016-11-28
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals thatmore » are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.« less
Si photonics technology for future optical interconnection
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Krishnamoorthy, Ashok V.
2011-12-01
Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.
NASA Astrophysics Data System (ADS)
Zhang, Huanhuan; Li, Jinyu; Gu, Cheng; Yao, Mingming; Yang, Bing; Lu, Ping; Ma, Yuguang
2016-11-01
The relatively low energy density is now a central issue hindering the development of supercapacitors as energy storage devices. Various approaches are thus developed to enhance the energy density, mainly centering on the fabrication of electrode materials or optimization of cell configurations. Compared with these approaches, modifications in electrolytes are much simple and versatile. Herein, we integrate the wide voltages endowed by organic electrolytes and the additional capacitances brought by redox mediators, to fabricate high energy density supercapacitors. On the basis of this idea, supercapacitors with poly(3,4-ethylenedioxythiophene) (PEDOT) as electrode material exhibit extended operating voltage of 1.5 V, extraordinary capacitance of 363 F g-1 and high energy density of 27.4 Wh kg-1. The redox mediators reported here, ferrocene and 4-oxo-2,2,6,6-tetramethylpiperidinooxy, are the first time being applied in supercapacitors, especially in the gel state. While providing additional faradaic capacitances, they also exhibit synergistic interaction with PEDOT and improve the cycling stability of supercapacitors.
Enabling Airspace Integration for High Density Urban Air Mobility
NASA Technical Reports Server (NTRS)
Mueller, Eric Richard
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Zheng, Shuanghao; Li, Zhilin; Wu, Zhong-Shuai; Dong, Yanfeng; Zhou, Feng; Wang, Sen; Fu, Qiang; Sun, Chenglin; Guo, Liwei; Bao, Xinhe
2017-04-25
Interfacial integration of a shape-engineered electrode with a strongly bonded current collector is the key for minimizing both ionic and electronic resistance and then developing high-power supercapacitors. Herein, we demonstrated the construction of high-power micro-supercapacitors (VG-MSCs) based on high-density unidirectional arrays of vertically aligned graphene (VG) nanosheets, derived from a thermally decomposed SiC substrate. The as-grown VG arrays showed a standing basal plane orientation grown on a (0001̅) SiC substrate, tailored thickness (3.5-28 μm), high-density structurally ordering alignment of graphene consisting of 1-5 layers, vertically oriented edges, open intersheet channels, high electrical conductivity (192 S cm -1 ), and strong bonding of the VG edges to the SiC substrate. As a result, the demonstrated VG-MSCs displayed a high areal capacitance of ∼7.3 mF cm -2 and a fast frequency response with a short time constant of 9 ms. Furthermore, VG-MSCs in both an aqueous polymer gel electrolyte and nonaqueous ionic liquid of 1-ethyl-3-methylimidazolium tetrafluoroborate operated well at high scan rates of up to 200 V s -1 . More importantly, VG-MSCs offered a high power density of ∼15 W cm -3 in gel electrolyte and ∼61 W cm -3 in ionic liquid. Therefore, this strategy of producing high-density unidirectional VG nanosheets directly bonded on a SiC current collector demonstrated the feasibility of manufacturing high-power compact supercapacitors.
NASA Technical Reports Server (NTRS)
Simon, M.; Mileant, A.
1986-01-01
The steady-state behavior of a particular type of digital phase-locked loop (DPLL) with an integrate-and-dump circuit following the phase detector is characterized in terms of the probability density function (pdf) of the phase error in the loop. Although the loop is entirely digital from an implementation standpoint, it operates at two extremely different sampling rates. In particular, the combination of a phase detector and an integrate-and-dump circuit operates at a very high rate whereas the loop update rate is very slow by comparison. Because of this dichotomy, the loop can be analyzed by hybrid analog/digital (s/z domain) techniques. The loop is modeled in such a general fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out as special cases.
NASA Technical Reports Server (NTRS)
Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.
2016-01-01
Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.
NASA Astrophysics Data System (ADS)
Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto
2018-04-01
Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.
Measurement of Initial Conditions at Nozzle Exit of High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.
2004-01-01
The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.
Ultrahigh-Energy Density Lithium-Ion Cable Battery Based on the Carbon-Nanotube Woven Macrofilms.
Wu, Ziping; Liu, Kaixi; Lv, Chao; Zhong, Shengwen; Wang, Qinghui; Liu, Ting; Liu, Xianbin; Yin, Yanhong; Hu, Yingyan; Wei, Di; Liu, Zhongfan
2018-05-01
Moore's law predicts the performance of integrated circuit doubles every two years, lasting for more than five decades. However, the improvements of the performance of energy density in batteries lag far behind that. In addition, the poor flexibility, insufficient-energy density, and complexity of incorporation into wearable electronics remain considerable challenges for current battery technology. Herein, a lithium-ion cable battery is invented, which is insensitive to deformation due to its use of carbon nanotube (CNT) woven macrofilms as the charge collectors. An ultrahigh-tap density of 10 mg cm -2 of the electrodes can be obtained, which leads to an extremely high-energy density of 215 mWh cm -3 . The value is approximately seven times than that of the highest performance reported previously. In addition, the battery displays very stable rate performance and lower internal resistance than conventional lithium-ion batteries using metal charge collectors. Moreover, it demonstrates excellent convenience for connecting electronics as a new strategy is applied, in which both electrodes can be integrated into one end by a CNT macrorope. Such an ultrahigh-energy density lithium-ion cable battery provides a feasible way to power wearable electronics with commercial viability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adam, Yahaya; Cecchi, Giuliano; Kgori, Patrick M.; Marcotty, Tanguy; Mahama, Charles I.; Abavana, Martin; Anderson, Benita; Paone, Massimo; Mattioli, Raffaele; Bouyer, Jérémy
2013-01-01
Background An integrated strategy of intervention against tsetse flies was implemented in the Upper West Region of Ghana (9.62°–11.00° N, 1.40°–2.76° W), covering an area of ≈18,000 km2 within the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign. Two species were targeted: Glossina tachinoides and Glossina palpalis gambiensis. Methodology/Principal Findings The objectives were to test the potentiality of the sequential aerosol technique (SAT) to eliminate riverine tsetse species in a challenging subsection (dense tree canopy and high tsetse densities) of the total sprayed area (6,745 km2) and the subsequent efficacy of an integrated strategy including ground spraying (≈100 km2), insecticide treated targets (20,000) and insecticide treated cattle (45,000) in sustaining the results of tsetse suppression in the whole intervention area. The aerial application of low-dosage deltamethrin aerosols (0.33–0.35 g a.i/ha) was conducted along the three main rivers using five custom designed fixed-wings Turbo thrush aircraft. The impact of SAT on tsetse densities was monitored using 30 biconical traps deployed from two weeks before until two weeks after the operations. Results of the SAT monitoring indicated an overall reduction rate of 98% (from a pre-intervention mean apparent density per trap per day (ADT) of 16.7 to 0.3 at the end of the fourth and last cycle). One year after the SAT operations, a second survey using 200 biconical traps set in 20 sites during 3 weeks was conducted throughout the intervention area to measure the impact of the integrated control strategy. Both target species were still detected, albeit at very low densities (ADT of 0.27 inside sprayed blocks and 0.10 outside sprayed blocks). Conclusions/Significance The SAT operations failed to achieve elimination in the monitored section, but the subsequent integrated strategy maintained high levels of suppression throughout the intervention area, which will contribute to improving animal health, increasing animal production and fostering food security. PMID:23516662
Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine
2018-03-07
Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available, and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these omics data sets into an integrated analysis. The classical penalized regression uses one penalty, but we incorporated individual penalties for each of the DNA-methylation sites. These individual penalties were guided by the strength of association between DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association to expression. Because of the complex pathways and interactions among genes, we investigated both the association between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge regression, and secondly, variable selection was performed through a modified version of the weighted lasso. When information from gene expressions was integrated, predictive performance was considerably improved, in terms of predictive mean square error, compared to classical penalized regression without data integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case. Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22 methylation sites as covariates, least square regression analyses resulted in R 2 =0.726, comparable to an average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.
Moosavifard, Seyyed Ebrahim; Shamsi, Javad; Altafi, Mohammad Kazem; Moosavifard, Zeinab Sadat
2016-11-18
3D LSG/CoNi 2 S 4 //LSG interdigitated microelectrodes have been firstly developed by a facile, scalable and low cost process for all-solid-state, flexible integrated asymmetric micro-supercapacitors. These devices can achieve energy densities of up to 49 W h l -1 which is comparable to those of lead acid batteries.
Monolithic 3D CMOS Using Layered Semiconductors.
Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming
2016-04-06
Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal management in MoS2 based integrated device using near-field radiation
NASA Astrophysics Data System (ADS)
Peng, Jiebin; Zhang, Gang; Li, Baowen
2015-09-01
Recently, wafer-scale growth of monolayer MoS2 films with spatial homogeneity is realized on SiO2 substrate. Together with the latest reported high mobility, MoS2 based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS2, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS2 to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS2 and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS2 sheet. Therefore, an efficient thermal management strategy for MoS2 integrated device is proposed: Graphene sheet is brought into close proximity, 10-20 nm from MoS2 device; heat energy transfer from MoS2 to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.
Azandémè-Hounmalon, Ginette Y.; Fellous, Simon; Kreiter, Serge; Fiaboe, Komi K. M.; Subramanian, Sevgan; Kungu, Miriam; Martin, Thibaud
2014-01-01
Studying distribution is necessary to understand and manage the dynamics of species with spatially structured populations. Here we studied the distribution in Tetranychus evansi and T. urticae, two mite pests of tomato, in the scope of evaluating factors that can influence the effectiveness of Integrated Pest Management strategies. We found greater positive density-dependent distribution with T. evansi than T. urticae when assayed on single, detached tomato leaves. Indeed, T. evansi distribution among leaflets increased with initial population density while it was high even at low T. urticae densities. Intensity and rate of damage to whole plants was higher with T. evansi than T. urticae. We further studied the circadian migration of T. evansi within plant. When T. evansi density was high the distribution behavior peaked between 8 am and 3 pm and between 8 pm and 3 am local time of Kenya. Over 24 h the total number of mites ascending and descending was always similar and close to the total population size. The gregarious behavior of T. evansi combined with its rapid population growth rate, may explain why few tomato plants can be severely damaged by T. evansi and how suddenly all the crop can be highly infested. However the localisation and elimination of the first infested plants damaged by T. evansi could reduce the risk of outbreaks in the entire crop. These findings suggest also that an acaricide treated net placed on the first infested plants could be very effective to control T. evansi. Moreover circadian migration would therefore accentuate the efficiency of an acaricide treated net covering the infested plants. PMID:24743580
Laser drilling of vias in dielectric for high density multilayer LSHI thick film circuits
NASA Technical Reports Server (NTRS)
Cocca, T.; Dakesian, S.
1977-01-01
A design analysis of a high density multilevel thick film digital microcircuit used for large scale integration is presented. The circuit employs 4 mil lines, 4 mil spaces and requires 4 mil diameter vias. Present screened and fired thick film technology is limited on a production basis to 16 mil square vias. A process whereby 4 mil diameter vias can be fabricated in production using laser technology was described along with a process to produce 4 mil diameter vias for conductor patterns which have 4 mil lines and 4 mil spacings.
NASA Astrophysics Data System (ADS)
Donkov, Sava; Stefanov, Ivan Z.
2018-03-01
We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.
2008-08-11
Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.
NASA Technical Reports Server (NTRS)
Block, Jon E.; Friedlander, Anne L.; Brooks, George A.; Steiger, Peter; Stubbs, Harrison A.
1989-01-01
The effect of weight bearing activity on the bone density was investigated in athletes by comparing the measures of bone density of athletes engaged in weight-training programs with those of polo players and nonexercising subjects. All subjects had measurements of spinal trabecular and integral bone density by quantitative tomography, as well as determinations of hip bone density by dual photon absorptiometry. Results confirmed previous findings by Block et al. (1987) of significantly greater bone density among highly trained athletes compared with nonexercising subjects of similar age. Results also indicated that athletes engaged in non-weight-bearing forms of rigorous exercise had greater levels of bone density. However, as the participants in this study were exceptional athletes, engaged in a strenuous sport with both aerobic and heavy resistance components, a confirmation of these data is needed, using larger samples of individuals.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Gallagher, Molly; Usero, Antonio
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less
Constraining LLSVP Buoyancy With Tidal Tomography
NASA Astrophysics Data System (ADS)
Lau, H. C. P.; Mitrovica, J. X.; Davis, J. L.; Tromp, J.; Yang, H. Y.; Al-Attar, D.
2017-12-01
Using a global GPS data set of high precision measurements of the Earth's body tide, we perform a tomographic inversion to constrain the integrated buoyancy of the Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle. As a consequence of the long-wavelength and low frequency nature of the Earth's body tide, these observations are particularly sensitivity to LLSVP buoyancy, a property of Earth's mantle that remains a source of ongoing debate. Using a probabilistic approach we find that the data are best fit when the bottom two thirds ( 700 km) of the LLSVPs have an integrated excess density of 0.60%. The detailed distribution of this buoyancy, for example whether it primarily resides in a thin layer at the base of the mantle, will require further testing and the augmentation of the inversions to include independent data sets (e.g., seismic observations). In any case, our inference of excess density requires the preservation of chemical heterogeneity associated with the enrichment of high-density chemical components, possibly linked to subducted oceanic plates and/or primordial material, in the deep mantle. This conclusion has important implications for the stability of these structures and, in turn, the history and ongoing evolution of the Earth system.
Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Wells
PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means ofmore » accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.« less
Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan
2018-01-01
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because ofmore » error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints, including exactness for all one-electron densities, and provides an excellent, fit 1.0 the 223 molecular enthalpies of formation of the G3/99 set and the 42 reaction barrier heights of the BH42/03 set, improving both (but especially the latter) over most semilocal functionals and global hybrids. Exact constraints, physical insights, and paradigm examples hopefully suppress 'overfitting'.« less
Outcomes of Grazing Impacts between Sub-Neptunes in Kepler Multis
NASA Astrophysics Data System (ADS)
Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic
2018-01-01
Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.
High resolution microtomography for density and spatial infomation about wood structures
Barbara Illman; Betsy Dowd
1999-01-01
Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...
Digital MOS integrated circuits
NASA Astrophysics Data System (ADS)
Elmasry, M. I.
MOS in digital circuit design is considered along with aspects of digital VLSI, taking into account a comparison of MOSFET logic circuits, 1-micrometer MOSFET VLSI technology, a generalized guide for MOSFET miniaturization, processing technologies, novel circuit structures for VLSI, and questions of circuit and system design for VLSI. MOS memory cells and circuits are discussed, giving attention to a survey of high-density dynamic RAM cell concepts, one-device cells for dynamic random-access memories, variable resistance polysilicon for high density CMOS Ram, high performance MOS EPROMs using a stacked-gate cell, and the optimization of the latching pulse for dynamic flip-flop sensors. Programmable logic arrays are considered along with digital signal processors, microprocessors, static RAMs, and dynamic RAMs.
Advantages and Challenges of 10-Gbps Transmission on High-Density Interconnect Boards
NASA Astrophysics Data System (ADS)
Yee, Chang Fei; Jambek, Asral Bahari; Al-Hadi, Azremi Abdullah
2016-06-01
This paper provides a brief introduction to high-density interconnect (HDI) technology and its implementation on printed circuit boards (PCBs). The advantages and challenges of implementing 10-Gbps signal transmission on high-density interconnect boards are discussed in detail. The advantages (e.g., smaller via dimension and via stub removal) and challenges (e.g., crosstalk due to smaller interpair separation) of HDI are studied by analyzing the S-parameter, time-domain reflectometry (TDR), and transmission-line eye diagrams obtained by three-dimensional electromagnetic modeling (3DEM) and two-dimensional electromagnetic modeling (2DEM) using Mentor Graphics HyperLynx and Keysight Advanced Design System (ADS) electronic computer-aided design (ECAD) software. HDI outperforms conventional PCB technology in terms of signal integrity, but proper routing topology should be applied to overcome the challenge posed by crosstalk due to the tight spacing between traces.
Adaptive focus for deep tissue using diffuse backscatter
NASA Astrophysics Data System (ADS)
Kress, Jeremy; Pourrezaei, Kambiz
2014-02-01
A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.
An ultra-compact processor module based on the R3000
NASA Astrophysics Data System (ADS)
Mullenhoff, D. J.; Kaschmitter, J. L.; Lyke, J. C.; Forman, G. A.
1992-08-01
Viable high density packaging is of critical importance for future military systems, particularly space borne systems which require minimum weight and size and high mechanical integrity. A leading, emerging technology for high density packaging is multi-chip modules (MCM). During the 1980's, a number of different MCM technologies have emerged. In support of Strategic Defense Initiative Organization (SDIO) programs, Lawrence Livermore National Laboratory (LLNL) has developed, utilized, and evaluated several different MCM technologies. Prior LLNL efforts include modules developed in 1986, using hybrid wafer scale packaging, which are still operational in an Air Force satellite mission. More recent efforts have included very high density cache memory modules, developed using laser pantography. As part of the demonstration effort, LLNL and Phillips Laboratory began collaborating in 1990 in the Phase 3 Multi-Chip Module (MCM) technology demonstration project. The goal of this program was to demonstrate the feasibility of General Electric's (GE) High Density Interconnect (HDI) MCM technology. The design chosen for this demonstration was the processor core for a MIPS R3000 based reduced instruction set computer (RISC), which has been described previously. It consists of the R3000 microprocessor, R3010 floating point coprocessor and 128 Kbytes of cache memory.
Topics in global convergence of density estimates
NASA Technical Reports Server (NTRS)
Devroye, L.
1982-01-01
The problem of estimating a density f on R sup d from a sample Xz(1),...,X(n) of independent identically distributed random vectors is critically examined, and some recent results in the field are reviewed. The following statements are qualified: (1) For any sequence of density estimates f(n), any arbitrary slow rate of convergence to 0 is possible for E(integral/f(n)-fl); (2) In theoretical comparisons of density estimates, integral/f(n)-f/ should be used and not integral/f(n)-f/sup p, p 1; and (3) For most reasonable nonparametric density estimates, either there is convergence of integral/f(n)-f/ (and then the convergence is in the strongest possible sense for all f), or there is no convergence (even in the weakest possible sense for a single f). There is no intermediate situation.
Kujur, Alice; Upadhyaya, Hari D.; Shree, Tanima; Bajaj, Deepak; Das, Shouvik; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20–0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9–39.7%) associated with three agronomic traits, which were mapped within <1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (~15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement. PMID:25942004
A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay
2016-01-14
Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when dischargingmore » at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.« less
Blenda, Anna; Fang, David D.; Rami, Jean-François; Garsmeur, Olivier; Luo, Feng; Lacape, Jean-Marc
2012-01-01
A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutum×G. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous AT and DT chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per AT/DT chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton. PMID:23029214
NASA Technical Reports Server (NTRS)
Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)
1991-01-01
Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.
Planar-integrated single-crystalline perovskite photodetectors
Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.
2015-01-01
Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941
Integration of magnetic bearings in the design of advanced gas turbine engines
NASA Technical Reports Server (NTRS)
Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.
1994-01-01
Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj, P. Markondeya; Lee, Baik-Woo; Kang, Nam-Kee
System integration and miniaturization demands are driving integrated thin film capacitor technologies towards ultrahigh capacitance densities for noise-free power supply, power conversion and efficient power management. Hydrothermal route can deposit crystalline ferroelectric films at low temperatures of less than 150 C. It is hence an attractive route for integrating high permittivity thin film capacitors on organic, silicon or flex substrates. However, hydrothermal films are not commercialized so far because of their inferior insulation characteristics. Embedded hydroxyl groups are attributed to be the cause for high leakage currents, temperature dependent properties and lower Breakdown Voltages (BDVs). This paper discusses the dielectricmore » characteristics such as capacitance density, leakage currents and Temperature Coefficient of Capacitance (TCC) of hydrothermal barium titanate films and correlates them to the embedded water and OH groups, film morphology, stoichiometry and crystallinity. With thermal treatment, majority of the OH groups can be removed leading to improved insulation characteristics. The room temperature I-V characteristics agreed with ionic conduction models for films baked at 160 C while higher baking temperatures of above 300 C resulted in Poole-Frenkel type conduction. A brief perspective is provided on the suitability of hydrothermal thin film capacitors for power supply applications.« less
Quantum crystallographic charge density of urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
NASA Astrophysics Data System (ADS)
Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean
2017-04-01
We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.
NASA Astrophysics Data System (ADS)
Meeßen, C.; Sippel, J.; Scheck-Wenderoth, M.; Heine, C.; Strecker, M. R.
2018-02-01
Previous thermomechanical modeling studies indicated that variations in the temperature and strength of the crystalline crust might be responsible for the juxtaposition of domains with thin-skinned and thick-skinned crustal deformation along strike the foreland of the central Andes. However, there is no evidence supporting this hypothesis from data-integrative models. We aim to derive the density structure of the lithosphere by means of integrated 3-D density modeling, in order to provide a new basis for discussions of compositional variations within the crust and for future thermal and rheological modeling studies. Therefore, we utilize available geological and geophysical data to obtain a structural and density model of the uppermost 200 km of the Earth. The derived model is consistent with the observed Bouguer gravity field. Our results indicate that the crystalline crust in northern Argentina can be represented by a lighter upper crust (2,800 kg/m3) and a denser lower crust (3,100 kg/m3). We find new evidence for high bulk crustal densities >3,000 kg/m3 in the northern Pampia terrane. These could originate from subducted Puncoviscana wackes or pelites that ponded to the base of the crystalline crust in the late Proterozoic or indicate increasing bulk content of mafic material. The precise composition of the northern foreland crust, whether mafic or felsic, has significant implications for further thermomechanical models and the rheological behavior of the lithosphere. A detailed sensitivity analysis of the input parameters indicates that the model results are robust with respect to the given uncertainties of the input data.
NASA Astrophysics Data System (ADS)
Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.
NASA Astrophysics Data System (ADS)
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-02-01
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg-1 and 84.6 Wh kg-1 at power densities of 731.25 W kg-1 and 24375 W kg-1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-02-03
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-01-01
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg−1 and 84.6 Wh kg−1 at power densities of 731.25 W kg−1 and 24375 W kg−1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode. PMID:28155853
Orientational alignment in cavity quantum electrodynamics
NASA Astrophysics Data System (ADS)
Keeling, Jonathan; Kirton, Peter G.
2018-05-01
We consider the orientational alignment of dipoles due to strong matter-light coupling for a nonvanishing density of excitations. We compare various approaches to this problem in the limit of large numbers of emitters and show that direct Monte Carlo integration, mean-field theory, and large deviation methods match exactly in this limit. All three results show that orientational alignment develops in the presence of a macroscopically occupied polariton mode and that the dipoles asymptotically approach perfect alignment in the limit of high density or low temperature.
Density-matrix-based algorithm for solving eigenvalue problems
NASA Astrophysics Data System (ADS)
Polizzi, Eric
2009-03-01
A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.
Tao, Qian; Milles, Julien; VAN Huls VAN Taxis, Carine; Lamb, Hildo J; Reiber, Johan H C; Zeppenfeld, Katja; VAN DER Geest, Rob J
2012-01-01
Integration of preprocedural delayed enhanced magnetic resonance imaging (DE-MRI) with electroanatomical voltage mapping (EAVM) may provide additional high-resolution substrate information for catheter ablation of scar-related ventricular tachycardias (VT). Accurate and fast image integration of DE-MRI with EAVM is desirable for MR-guided ablation. Twenty-six VT patients with large transmural scar underwent catheter ablation and preprocedural DE-MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation-and-rotation model and high-density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high-density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). During VT ablation procedures, accurate integration of EAVM and DE-MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. © 2011 Wiley Periodicals, Inc.
I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies
NASA Technical Reports Server (NTRS)
Maloney, Philip; Black, John H.
1988-01-01
Observations of emission in the J = 1-0 rotational transition of interstellar CO are used to obtain column densities and masses of hydrogen. By taking into account the effects of variations in molecular cloud parameters on conversion factors between integrated CO intensity and molecular hydrogen column density, it is shown that conversion factors are very sensitive to the kinetic temperature of the emitting gas. Results indicate that the gas temperatures in systems with high star formation rates can be quite high, and it is suggested that use of a standard conversion factor will lead to systematic overestimation of the amount of molecular gas.
Effects of population density on corticosterone levels of prairie voles in the field.
Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M
2016-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Urbic, T.; Holovko, M. F.
2011-10-01
Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.
Urbic, T.; Holovko, M. F.
2011-01-01
Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes–Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334
Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin
2018-04-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.
Wang, Xueqin; Dou, Lvye; Yu, Jianyong
2018-01-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm−3, rapid recovery from 80% strain, zero Poisson’s ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form. PMID:29719867
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; ...
2015-07-22
The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe 2 monolayer crystals with SiO 2, and the exposed locations are selectively and totally converted to MoS 2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe 2/MoS 2 heterojunctions in predefinedmore » patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.« less
Millot, M.; Celliers, P. M.; Sterne, P. A.; ...
2018-04-18
Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less
NASA Astrophysics Data System (ADS)
Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.
2018-04-01
Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millot, M.; Celliers, P. M.; Sterne, P. A.
Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less
Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook
2013-01-01
Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R.; Lee, Jaekwang; Basile, Leonardo; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Ivanov, Ilia N.; Xiao, Kai; Yoon, Mina; Geohegan, David B.
2015-01-01
The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices. PMID:26198727
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are the marker of choice for many researchers due to their abundance and the high-throughput methods available for their multiplex analysis. Only recently have SNP markers been available to researchers in soybean [Glycine max (L.) Merr.] with the release of th...
Ultrahigh Energy Density in SrTiO3 Film Capacitors.
Hou, Chuangming; Huang, Weichuan; Zhao, Wenbo; Zhang, Dalong; Yin, Yuewei; Li, Xiaoguang
2017-06-21
Solid-state dielectric film capacitors with high-energy-storage density will further promote advanced electronic devices and electrical power systems toward miniaturization, lightweight, and integration. In this study, the influence of interface and thickness on energy storage properties of SrTiO 3 (STO) films grown on La 0.67 Sr 0.33 MnO 3 (LSMO) electrode are systematically studied. The cross-sectional high resolution transmission electron microscopy reveals an ion interdiffusion layer and oxygen vacancies at the STO/LSMO interface. The capacitors show good frequency stability and increased dielectric constant with increasing STO thickness (410-710 nm). The breakdown strength (E b ) increases with decreasing STO thickness and reaches 6.8 MV/cm. Interestingly, the E b under positive field is enhanced significantly and an ultrahigh energy density up to 307 J/cm 3 with a high efficiency of 89% is realized. The enhanced E b may be related to the modulation of local electric field and redistribution of oxygen vacancies at the STO/LSMO interface. Our results should be helpful for potential strategies to design devices with ultrahigh energy density.
Hoffmann, Stefan A; Wohltat, Christian; Müller, Kristian M; Arndt, Katja M
2017-01-01
For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.
2015-01-01
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112
Wafer level reliability for high-performance VLSI design
NASA Technical Reports Server (NTRS)
Root, Bryan J.; Seefeldt, James D.
1987-01-01
As very large scale integration architecture requires higher package density, reliability of these devices has approached a critical level. Previous processing techniques allowed a large window for varying reliability. However, as scaling and higher current densities push reliability to its limit, tighter control and instant feedback becomes critical. Several test structures developed to monitor reliability at the wafer level are described. For example, a test structure was developed to monitor metal integrity in seconds as opposed to weeks or months for conventional testing. Another structure monitors mobile ion contamination at critical steps in the process. Thus the reliability jeopardy can be assessed during fabrication preventing defective devices from ever being placed in the field. Most importantly, the reliability can be assessed on each wafer as opposed to an occasional sample.
Calibration of phase contrast imaging on HL-2A Tokamak
NASA Astrophysics Data System (ADS)
Yu, Y.; Gong, S. B.; Xu, M.; Xiao, C. J.; Jiang, W.; Zhong, W. L.; Shi, Z. B.; Wang, H. J.; Wu, Y. F.; Yuan, B. D.; Lan, T.; Ye, M. Y.; Duan, X. R.; HL-2A Team
2017-10-01
Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3 × 1013 m-2/mV, indicating a high sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zillich, Robert E., E-mail: robert.zillich@jku.at
2015-11-15
We construct an accurate imaginary time propagator for path integral Monte Carlo simulations for heterogeneous systems consisting of a mixture of atoms and molecules. We combine the pair density approximation, which is highly accurate but feasible only for the isotropic interactions between atoms, with the Takahashi–Imada approximation for general interactions. We present finite temperature simulations results for energy and structure of molecules–helium clusters X{sup 4}He{sub 20} (X=HCCH and LiH) which show a marked improvement over the Trotter approximation which has a 2nd-order time step bias. We show that the 4th-order corrections of the Takahashi–Imada approximation can also be applied perturbativelymore » to a 2nd-order simulation.« less
Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A
2018-02-09
It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stone, David B.; Urrea, Laura J.; Aine, Cheryl J.; Bustillo, Juan R.; Clark, Vincent P.; Stephen, Julia M.
2011-01-01
In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder. PMID:21807011
Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D
2016-07-07
High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.
Comparison of microrings and microdisks for high-speed optical modulation in silicon photonics
NASA Astrophysics Data System (ADS)
Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z.; Soref, Richard; Chen, Ray T.
2018-03-01
The past several decades have witnessed the gradual transition from electrical to optical interconnects, ranging from long-haul telecommunication to chip-to-chip interconnects. As one type of key component in integrated optical interconnect and high-performance computing, optical modulators have been well developed these past few years, including ultrahigh-speed microring and microdisk modulators. In this paper, a comparison between microring and microdisk modulators is well analyzed in terms of dimensions, static and dynamic power consumption, and fabrication tolerance. The results show that microdisks have advantages over microrings in these aspects, which gives instructions to the chip design of high-density integrated systems for optical interconnects and optical computing.
Huang, Huabing; Gong, Peng; Cheng, Xiao; Clinton, Nick; Li, Zengyuan
2009-01-01
Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from LiDAR data. The LiDAR camera image is matched to the aerial image with an automated keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was obtained. A local maximum filter, watershed segmentation, and object-oriented image segmentation are used to obtain tree height and crown width. Results indicate that the camera data collected by the integrated LiDAR system plays an important role in registration with aerial imagery. The synthesis with aerial imagery increases the accuracy of forest structural parameter extraction when compared to only using the low density LiDAR data. PMID:22573971
Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin
2017-07-25
An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.
NASA Astrophysics Data System (ADS)
Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.
2007-09-01
Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.
Milojkovic, Predrag; Christensen, Marc P; Haney, Michael W
2006-07-01
The FAST-Net (Free-space Accelerator for Switching Terabit Networks) concept uses an array of wide-field-of-view imaging lenses to realize a high-density shuffle interconnect pattern across an array of smart-pixel integrated circuits. To simplify the optics we evaluated the efficiency gained in replacing spherical surfaces with aspherical surfaces by exploiting the large disparity between narrow vertical cavity surface emitting laser (VCSEL) beams and the wide field of view of the imaging optics. We then analyzed trade-offs between lens complexity and chip real estate utilization and determined that there exists an optimal numerical aperture for VCSELs that maximizes their area density. The results provide a general framework for the design of wide-field-of-view free-space interconnection systems that incorporate high-density VCSEL arrays.
Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS
NASA Astrophysics Data System (ADS)
Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve
2018-02-01
Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.
Cao, Yufei; Cai, Kaiming; Hu, Pingan; Zhao, Lixia; Yan, Tengfei; Luo, Wengang; Zhang, Xinhui; Wu, Xiaoguang; Wang, Kaiyou; Zheng, Houzhi
2015-01-01
A critical challenge for the integration of optoelectronics is that photodetectors have relatively poor sensitivities at the nanometer scale. Generally, a large electrodes spacing in photodetectors is required to absorb sufficient light to maintain high photoresponsivity and reduce the dark current. However, this will limit the optoelectronic integration density. Through spatially resolved photocurrent investigation, we find that the photocurrent in metal-semiconductor-metal (MSM) photodetectors based on layered GaSe is mainly generated from the region close to the metal-GaSe interface with higher electrical potential. The photoresponsivity monotonically increases with shrinking the spacing distance before the direct tunneling happens, which was significantly enhanced up to 5,000 AW−1 for the bottom Ti/Au contacted device. It is more than 1,700-fold improvement over the previously reported results. The response time of the Ti/Au contacted devices is about 10–20 ms and reduced down to 270 μs for the devices with single layer graphene as metallic electrodes. A theoretical model has been developed to well explain the photoresponsivity for these two types of device configurations. Our findings realize reducing the size and improving the performance of 2D semiconductor based MSM photodetectors simultaneously, which could pave the way for future high density integration of optoelectronics with high performances. PMID:25632886
Integrated modeling of high βN steady state scenario on DIII-D
Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...
2018-01-10
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less
The integrated design and archive of space-borne signal processing and compression coding
NASA Astrophysics Data System (ADS)
He, Qiang-min; Su, Hao-hang; Wu, Wen-bo
2017-10-01
With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.
Integrated modeling of high βN steady state scenario on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less
Integrated modeling of high βN steady state scenario on DIII-D
NASA Astrophysics Data System (ADS)
Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.
2018-01-01
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.
High-temperature, high-power-density thermionic energy conversion for space
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.
3D Integration for Wireless Multimedia
NASA Astrophysics Data System (ADS)
Kimmich, Georg
The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology providers.
Wei, Peng-Hu; Cong, Fei; Chen, Ge; Li, Ming-Chu; Yu, Xin-Guang; Bao, Yu-Hai
2017-02-01
Diffusion tensor imaging-based navigation is unable to resolve crossing fibers or to determine with accuracy the fanning, origin, and termination of fibers. It is important to improve the accuracy of localizing white matter fibers for improved surgical approaches. We propose a solution to this problem using navigation based on track density imaging extracted from high-definition fiber tractography (HDFT). A 28-year-old asymptomatic female patient with a left-lateral ventricle meningioma was enrolled in the present study. Language and visual tests, magnetic resonance imaging findings, both preoperative and postoperative HDFT, and the intraoperative navigation and surgery process are presented. Track density images were extracted from tracts derived using full q-space (514 directions) diffusion spectrum imaging (DSI) and integrated into a neuronavigation system. Navigation accuracy was verified via intraoperative records and postoperative DSI tractography, as well as a functional examination. DSI successfully represented the shape and range of the Meyer loop and arcuate fasciculus. Extracted track density images from the DSI were successfully integrated into the navigation system. The relationship between the operation channel and surrounding tracts was consistent with the postoperative findings, and the patient was functionally intact after the surgery. DSI-based TDI navigation allows for the visualization of anatomic features such as fanning and angling and helps to identify the range of a given tract. Moreover, our results show that our HDFT navigation method is a promising technique that preserves neural function. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Upadhyay, Bhanu B.; Jha, Jaya; Takhar, Kuldeep; Ganguly, Swaroop; Saha, Dipankar
2018-05-01
We have observed that the estimation of two-dimensional electron gas density is dependent on the device geometry. The geometric contribution leads to the anomalous estimation of the GaN based heterostructure properties. The observed discrepancy is found to originate from the anomalous area dependent capacitance of GaN based Schottky diodes, which is an integral part of the high electron mobility transistors. The areal capacitance density is found to increase for smaller radii Schottky diodes, contrary to a constant as expected intuitively. The capacitance is found to follow a second order polynomial on the radius of all the bias voltages and frequencies considered here. In addition to the quadratic dependency corresponding to the areal component, the linear dependency indicates a peripheral component. It is further observed that the peripheral to areal contribution is inversely proportional to the radius confirming the periphery as the location of the additional capacitance. The peripheral component is found to be frequency dependent and tends to saturate to a lower value for measurements at a high frequency. In addition, the peripheral component is found to vanish when the surface is passivated by a combination of N2 and O2 plasma treatments. The cumulative surface state density per unit length of the perimeter of the Schottky diodes as obtained by the integrated response over the distance between the ohmic and Schottky contacts is found to be 2.75 × 1010 cm-1.
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
A white noise approach to the Feynman integrand for electrons in random media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grothaus, M., E-mail: grothaus@mathematik.uni-kl.de; Riemann, F., E-mail: riemann@mathematik.uni-kl.de; Suryawan, H. P., E-mail: suryawan@mathematik.uni-kl.de
2014-01-15
Using the Feynman path integral representation of quantum mechanics it is possible to derive a model of an electron in a random system containing dense and weakly coupled scatterers [see F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)]. The main goal of this paper is to give a mathematically rigorous realization of the corresponding Feynman integrand in dimension one based on the theory of white noise analysis. We refine and apply a Wick formula for the product of a square-integrable function with Donsker's delta functions and usemore » a method of complex scaling. As an essential part of the proof we also establish the existence of the exponential of the self-intersection local times of a one-dimensional Brownian bridge. As a result we obtain a neat formula for the propagator with identical start and end point. Thus, we obtain a well-defined mathematical object which is used to calculate the density of states [see, e.g., F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)].« less
Multifunctional smart composites with integrated carbon nanotube yarn and sheet
NASA Astrophysics Data System (ADS)
Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark
2017-04-01
Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.
Song, Jong-Won; Hirao, Kimihiko
2015-10-14
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang
2018-02-13
Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.
Servo-integrated patterned media by hybrid directed self-assembly.
Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David
2014-11-25
A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.
Passive Gust Alleviation for a Flying Wing Aircraft
2013-01-10
250 Poisson ratio - 0.3 Density g/cm 3 ρ 1.57 Ply thickness mm t 0.131 Fibre volume % Vf 57.7 Once the material was chosen, the initial...high aspect ratio in flying wing configuration. It is aimed at minimizing the gust response of the aircraft by using the PGAD integrated at the wing... ratio in flying wing configuration. It is aimed at minimizing the gust response of the aircraft by using the PGAD integrated at the wing tip. The
NASA Astrophysics Data System (ADS)
Pendurti, Srinivas
InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.
Developments in the Material Fabrication and Performance of LiMn2O4 dCld Cathode Material
2016-06-13
Lithium manganese spinel; Lithium rechargeable batteries , Lithium - ion battery ...requirements. Lithium and lithium - ion battery systems are highly sought after for rechargeable applications due to their high energy density (Wh/L...further optimization, the robust LixMn2O4-dCld spinel materials will be promising active materials for future integration into lithium - ion batteries
Senkowski, Daniel; Saint-Amour, Dave; Kelly, Simon P; Foxe, John J
2007-07-01
In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.
Optimal integration of daylighting and electric lighting systems using non-imaging optics
NASA Astrophysics Data System (ADS)
Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.
2007-09-01
Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.
Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico
NASA Astrophysics Data System (ADS)
Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.
2016-03-01
Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature.
Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico
Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.
2016-01-01
Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature. PMID:26936335
Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission
NASA Astrophysics Data System (ADS)
Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.
2009-06-01
Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br
Comparison of direct and flow integration based charge density population analyses.
Francisco, E; Martín Pendas, A; Blanco, M A; Costales, A
2007-12-06
Different exhaustive and fuzzy partitions of the molecular electron density (rho) into atomic densities (rho(A)) are used to compute the atomic charges (Q(A)) of a representative set of molecules. The Q(A)'s derived from a direct integration of rho(A) are compared to those obtained from integrating the deformation density rho(def) = rho - rho(0) within each atomic domain. Our analysis shows that the latter methods tend to give Q(A)'s similar to those of the (arbitrary) reference atomic densities rho(A)(0) used in the definition of the promolecular density, rho(0) = SigmaArho(A)(0). Moreover, we show that the basis set independence of these charges is a sign not of their intrinsic quality, as commonly stated, but of the practical insensitivity on the basis set of the atomic domains that are employed in this type of methods.
Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs
NASA Astrophysics Data System (ADS)
Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.
2017-02-01
Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.
High density circuit technology, part 2
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.
2017-01-01
Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346
Tompkins, Adrian M; Ermert, Volker
2013-02-18
The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.
Shorebird use of South Carolina managed and natural coastal wetlands
Weber, Louise M.; Haig, Susan M.
1996-01-01
While many migrating and wintering shorebird (Charadriiformes) species face declines in quality and quantity of natural stopover sites, diked wetlands managed for shorebirds may provide supplemental habitat. We describe an integrative shorebird-waterfowl management strategy used at Tom Yawkey Wildlife Center on South Island, South Carolina, during 3 winter-spring seasons (1991-93). We compared shorebird use and invertebrate density between diked, managed wetlands and adjacent natural coastal mudflat areas. About 3,000 shorebirds overwintered each year at the site. Migration numbers peaked at 15,000-19,000 during late May. In 1991, shorebird density and absolute numbers were higher (P < 0.05) in managed wetlands at high tide than natural mudflats at low tide. In 1993, we counted shorebird density at low tide both in managed wetlands and Mother Norton Shoals, the largest natural area. During February, shorebird frequency was higher in Mother Norton Shoals and lower in managed wetlands than expected values based on area (P < 0.005). In contrast, from March to May, shorebird frequency was higher in managed wetlands and lower in natural mudflats than expected (P < 0.005 for each month). Invertebrate density from March to May was generally greater in managed wetlands than at Mother Norton Shoals, which may explain shorebird preference during that time. Greater invertebrate density did not explain the pattern in February. Mean water depth in managed wetlands for each shorebird species was <5 cm except for American avocet (Recurvirostra americana) which used deeper water (xI? = 8.4 cm, SD = 4.5). Results indicate that an integrative shorebird-waterfowl management strategy provides supplemental shorebird habitat at high tide, and managed wetlands can be preferred to local natural mudflat areas at low tide.
2013-01-01
Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Results Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. Conclusions A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions. PMID:23419192
Development and integration of pharmacist clinical services into the patient-centered medical home.
Berdine, Hildegarde J; Skomo, Monica L
2012-01-01
To describe the development of pharmacist clinical services within a primary care physician practice using a standardized business plan, the extent of clinical pharmacy service integration into the patient-centered medical home (PCMH), and the clinical changes in the pharmacist's patient cohort. A two-physician primary care/occupational care practice in Pittsburgh, PA, from May 2007 to December 2011. Pharmacist-led clinic receives physician referrals for medication management, adherence, and disease management services. Pharmacist practice in a primary care setting with emphasis on integration of clinical services into the medical home model designed by the American Academy of Family Physicians. Characterization of the patient's pharmacist and services provided by the pharmacist. Glycosylated hemoglobin (A1C), body mass index (BMI), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triglycerides, and blood pressure. The top five primary referral reasons were diabetes self-management, weight management, medication adherence, hypertension, and dyslipidemia management. Improvements in clinical parameters were demonstrated for lipids and A1C at 1 and 2 years after baseline. Statistically significant improvements in BMI also were observed. The pharmacist developed and integrated clinical services into a primary care practice, became an integral member of the clinical team in the two-physician PCMH, and improved patient outcomes.
Demonstration of x-ray fluorescence imaging of a high-energy-density plasma.
MacDonald, M J; Keiter, P A; Montgomery, D S; Biener, M M; Fein, J R; Fournier, K B; Gamboa, E J; Klein, S R; Kuranz, C C; LeFevre, H J; Manuel, M J-E; Streit, J; Wan, W C; Drake, R P
2014-11-01
Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.
Visual attention to food cues in obesity: an eye-tracking study.
Doolan, Katy J; Breslin, Gavin; Hanna, Donncha; Murphy, Kate; Gallagher, Alison M
2014-12-01
Based on the theory of incentive sensitization, the aim of this study was to investigate differences in attentional processing of food-related visual cues between normal-weight and overweight/obese males and females. Twenty-six normal-weight (14M, 12F) and 26 overweight/obese (14M, 12F) adults completed a visual probe task and an eye-tracking paradigm. Reaction times and eye movements to food and control images were collected during both a fasted and fed condition in a counterbalanced design. Participants had greater visual attention towards high-energy-density food images compared to low-energy-density food images regardless of hunger condition. This was most pronounced in overweight/obese males who had significantly greater maintained attention towards high-energy-density food images when compared with their normal-weight counterparts however no between weight group differences were observed for female participants. High-energy-density food images appear to capture visual attention more readily than low-energy-density food images. Results also suggest the possibility of an altered visual food cue-associated reward system in overweight/obese males. Attentional processing of food cues may play a role in eating behaviors thus should be taken into consideration as part of an integrated approach to curbing obesity. © 2014 The Obesity Society.
Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize.
Ross, Nanci J
2011-01-01
Ecology and ethnobotany were integrated to assess the impact of ancient Maya tree-dominated home gardens (i.e., "forest gardens"), which contained a diversity of tree species used for daily household needs, on the modern tree species composition of a Mesoamerican forest. Researchers have argued that the ubiquity of these ancient gardens throughout Mesoamerica led to the dominance of species useful to Maya in the contemporary forest, but this pattern may be localized depending on ancient land use. The tested hypothesis was that species composition would be significantly different between areas of dense ancient residential structures (high density) and areas of little or no ancient settlement (low density). Sixty-three 400-m2 plots (31 high density and 32 low density) were censused around the El Pilar Archaeological Reserve in northwestern Belize. Species composition was significantly different, with higher abundances of commonly utilized "forest garden" species still persisting in high-density forest areas despite centuries of abandonment. Subsequent edaphic analyses only explained 5% of the species composition differences. This research provides data on the long-term impacts of Maya forests gardens for use in development of future conservation models. For Mesoamerican conservation programs to work, we must understand the complex ecological and social interactions within an ecosystem that developed in intimate association with humans.
Urbic, T; Holovko, M F
2011-10-07
Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. © 2011 American Institute of Physics
NASA Technical Reports Server (NTRS)
Payne, R. W. (Principal Investigator)
1981-01-01
The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.
Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.
Liu, Yuanda; Ang, Kah-Wee
2017-07-25
Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.
NASA Astrophysics Data System (ADS)
Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan
2017-03-01
Lithium-sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium-sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density.
Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan
2017-01-01
Lithium–sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium–sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density. PMID:28262801
2012-08-10
local radiation density. At millimeter wavelengths the background is dominated by the cosmic microwave background (CMB; Kamenetzky et al. 2011), but the...the observed continuum flux density Fν,obs as Jν,ext = Iν,CB + 9 16 Fν,obs Ω , (1) where Iν,CB is the sum of the CMB and cosmic IR background . We take...data, likely due to an imperfect subtraction of the telescope background , and we remove this feature using a higher order baseline fit. The integrated
A novel ultrasonic method for measuring breast density and breast cancer risk
NASA Astrophysics Data System (ADS)
Glide-Hurst, Carri K.; Duric, Neb; Littrup, Peter J.
2008-03-01
Women with high mammographic breast density are at 4- to 6-fold increased risk of developing breast cancer compared to women with fatty breasts. However, current breast density estimations rely on mammography, which cannot provide accurate volumetric breast representation. Therefore, we explored two techniques of breast density evaluation via ultrasound tomography. A sample of 93 patients was imaged with our clinical prototype; each dataset contained 45-75 tomograms ranging from near the chest wall through the nipple. Whole breast acoustic velocity was determined by creating image stacks and evaluating the sound speed frequency distribution. Ultrasound percent density (USPD) was determined by segmenting high sound speed areas from each tomogram using k-means clustering, integrating over the entire breast, and dividing by total breast area. Both techniques were independently evaluated using two mammographic density measures: (1) qualitative, determined by a radiologist's visual assessment using BI-RADS Categories, and (2) quantitative, via semi-automatic segmentation to calculate mammographic percent density (MPD) for craniocaudal and medio-lateral oblique mammograms. ~140 m/s difference in acoustic velocity was observed between fatty and dense BI-RADS Categories. Increased sound speed was found with increased BI-RADS Category and quantitative MPD. Furthermore, strong positive associations between USPD, BI-RADS Category, and calculated MPD were observed. These results confirm that utilizing sound speed, both for whole-breast evaluation and segmenting locally, can be implemented to evaluate breast density.
High speed digital holography for density and fluctuation measurements (invited).
Thomas, C E; Baylor, L R; Combs, S K; Meitner, S J; Rasmussen, D A; Granstedt, E M; Majeski, R P; Kaita, R
2010-10-01
The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼40,000 fps at ∼64×4 pixels) with resolutions up to 640×512 pixels suitable for use with a CO(2) laser are readily available, if expensive.
Zhao, Lina; Lu, Zengxing; Zhang, Fengyuan; Tian, Guo; Song, Xiao; Li, Zhongwen; Huang, Kangrong; Zhang, Zhang; Qin, Minghui; SujuanWu; Lu, Xubing; Zeng, Min; Gao, Xingsen; Dai, Jiyan; Liu, Jun-Ming
2015-01-01
Ultrahigh density well-registered oxide nanocapacitors are very essential for large scale integrated microelectronic devices. We report the fabrication of well-ordered multiferroic BiFeO3 nanocapacitor arrays by a combination of pulsed laser deposition (PLD) method and anodic aluminum oxide (AAO) template method. The capacitor cells consist of BiFeO3/SrRuO3 (BFO/SRO) heterostructural nanodots on conductive Nb-doped SrTiO3 (Nb-STO) substrates with a lateral size of ~60 nm. These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops. Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions. These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch2) nonvolatile memories and other oxide nanoelectronic devices. PMID:25853937
NASA Astrophysics Data System (ADS)
Abramo, M. C.; Caccamo, C.; Costa, D.; Munaò, G.
2014-09-01
We report an atomistic molecular dynamics determination of the phase diagram of a rigid-cage model of C36. We first show that free energies obtained via thermodynamic integrations along isotherms displaying "van der Waals loops," are fully reproduced by those obtained via isothermal-isochoric integration encompassing only stable states. We find that a similar result also holds for isochoric paths crossing van der Waals regions of the isotherms, and for integrations extending to rather high densities where liquid-solid coexistence can be expected to occur. On such a basis we are able to map the whole phase diagram of C36, with resulting triple point and critical temperatures about 1770 K and 2370 K, respectively. We thus predict a 600 K window of existence of a stable liquid phase. Also, at the triple point density, we find that the structural functions and the diffusion coefficient maintain a liquid-like character down to 1400-1300 K, this indicating a wide region of possible supercooling. We discuss why all these features might render possible the observation of the melting of C36 fullerite and of its liquid state, at variance with what previously experienced for C60.
Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.
Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao
2016-08-10
Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.
Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles
NASA Astrophysics Data System (ADS)
Jeon, Sumin; Kim, Minwoo; Jia, Jingyuan; Park, Jin-Hong; Lee, Sungjoo; Song, Young Jae
2018-05-01
Black phosphorus (BP), a new family of two dimensional (2D) layered materials, is an attractive material for future electronic, photonic and chemical sensing devices, thanks to its high carrier density and a direct bandgap of 0.3-2.0 eV, depending on the number of layers. Controllability over the properties of BP by electrical or chemical modulations is one of the critical requirements for future various device applications. Herein, we report a new doping method of BP by integration of density-controlled monolayer MoS2 nanoparticles (NPs). MoS2 NPs with different density were synthesized by chemical vapor deposition (CVD) and transferred onto a few-layer BP channel, which induced a p-doping effect. Scanning electron microscopy (SEM) confirmed the size and distribution of MoS2 NPs with different density. Raman and X-ray photoelectron spectroscopy (XPS) were measured to confirm the oxidation on the edge of MoS2 NPs and a doping effect of MoS2 NPs on a BP channel. The doping mechanism was explained by a charge transfer by work function differences between BP and MoS2 NPs, which was confirmed by Kelvin probe force microscopy (KPFM) and electrical measurements. The hole concentration of BP was controlled with different densities of MoS2 NPs in a range of 1012-1013 cm-2.
Connection formulas for thermal density functional theory
Pribram-Jones, A.; Burke, K.
2016-05-23
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
Integrated anode structure for passive direct methanol fuel cells with neat methanol operation
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui
2014-02-01
A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.
NASA Astrophysics Data System (ADS)
Deng, Fangze; Yu, Lin; Cheng, Gao; Lin, Ting; Sun, Ming; Ye, Fei; Li, Yongfeng
2014-04-01
Two-dimensional ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper (CFP) are synthesized through a facile solvothermal method combined with a post thermal treatment. The well interconnected ultrathin NiCo2O4 nanosheets directly grown on the carbon nanofibers could allow for easy diffusion of the electrolyte, shorten the transport path of ion and electron and accommodate the strain during cycling. As a result, superior pseudocapacitive performance is achieved with large specific capacitance of 999 F g-1 at a high current density of 20 A g-1. The capacitance loss is 15.6% after 3000 cycles at a current density of 10 A g-1, displaying good cycle ability and high rate capability.
Di Stefano, Danilo Alessio; Perrotti, Vittoria; Greco, Gian Battista; Cappucci, Claudia; Arosio, Paolo; Piattelli, Adriano; Iezzi, Giovanna
2018-06-01
Implant site preparation may be adjusted to achieve the maximum possible primary stability. The aim of this investigation was to study the relation among bone-to-implant contact at insertion, bone density, and implant primary stability intra-operatively measured by a torque-measuring implant motor, when implant sites were undersized or tapped. Undersized (n=14), standard (n=13), and tapped (n=13) implant sites were prepared on 9 segments of bovine ribs. After measuring bone density using the implant motor, 40 implants were placed, and their primary stability assessed by measuring the integral of the torque-depth insertion curve. Bovine ribs were then processed histologically, the bone-to-implant contact measured and statistically correlated to bone density and the integral. Bone-to-implant contact and the integral of the torque-depth curve were significantly greater for undersized sites than tapped sites. Moreover, a correlation between bone to implant contact, the integral and bone density was found under all preparation conditions. The slope of the bone-to-implant/density and integral/density lines was significantly greater for undersized sites, while those corresponding to standard prepared and tapped sites did not differ significantly. The integral of the torque-depth curve provided reliable information about bone-to-implant contact and primary implant stability even in tapped or undersized sites. The linear relations found among the parameters suggests a connection between extent and modality of undersizing and the corresponding increase of the integral and, consequently, of primary stability. These results might help the physician determine the extent of undersizing needed to achieve the proper implant primary stability, according to the planned loading protocol.
Photodiodes integration on a suspended ridge structure VOA using 2-step flip-chip bonding method
NASA Astrophysics Data System (ADS)
Kim, Seon Hoon; Kim, Tae Un; Ki, Hyun Chul; Kim, Doo Gun; Kim, Hwe Jong; Lim, Jung Woon; Lee, Dong Yeol; Park, Chul Hee
2015-01-01
In this works, we have demonstrated a VOA integrated with mPDs, based on silica-on-silicon PLC and flip-chip bonding technologies. The suspended ridge structure was applied to reduce the power consumption. It achieves the attenuation of 30dB in open loop operation with the power consumption of below 30W. We have applied two-step flipchip bonding method using passive alignment to perform high density multi-chip integration on a VOA with eutectic AuSn solder bumps. The average bonding strength of the two-step flip-chip bonding method was about 90gf.
Ma, Hao; Moore, Paul H; Liu, Zhiyong; Kim, Minna S; Yu, Qingyi; Fitch, Maureen M M; Sekioka, Terry; Paterson, Andrew H; Ming, Ray
2004-01-01
A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya. PMID:15020433
An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce
Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W.
2013-01-01
We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. PMID:23550116
An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce.
Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W
2013-04-09
We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F 7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. Copyright © 2013 Truco et al.
Weinberg, Marc S; Shachar, Shlomit S; Muss, Hyman B; Deal, Allison M; Popuri, Karteek; Yu, Hyeon; Nyrop, Kirsten A; Alston, Shani M; Williams, Grant R
2018-05-01
Skeletal muscle loss, commonly known as sarcopenia, is highly prevalent and prognostic of adverse outcomes in oncology. However, there is limited information on adults with early breast cancer and examination of other skeletal muscle indices, despite the potential prognostic importance. This study characterizes and examines age-related changes in body composition of adults with early breast cancer and describes the creation of a novel integrated muscle measure. Female patients diagnosed with stage I-III breast cancer with abdominal computerized tomography (CT) scans within 12 weeks from diagnosis were identified from local tumor registry (N = 241). Skeletal muscle index (muscle area per height [cm 2 /m 2 ]), skeletal muscle density, and subcutaneous and visceral adipose tissue areas, were determined from CT L3 lumbar segments. We calculated a novel integrated skeletal measure, skeletal muscle gauge, which combines skeletal muscle index and density (SMI × SMD). 241 patients were identified with available CT imaging. Median age 52 years and range of 23-87. Skeletal muscle index and density significantly decreased with age. Using literature based cut-points, older adults (≥65 years) had significantly higher proportions of sarcopenia (63 vs 28%) and myosteatosis (90 vs 11%) compared to younger adults (<50 years). Body mass index was positively correlated with skeletal muscle index and negatively correlated with muscle density. Skeletal muscle gauge correlated better with increasing age (ρ = 0.52) than with either skeletal muscle index (ρ = 0.20) or density (ρ = 0.46). Wide variations and age-related changes in body composition metrics were found using routinely obtained abdominal CT imaging. Skeletal muscle index and density provide independent, complementary information, and the product of the two metrics, skeletal muscle gauge, requires further research to explore its impact on outcomes in women with curable breast cancer. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen
2014-03-01
The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.
Thermal management in MoS{sub 2} based integrated device using near-field radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jiebin; Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg; Li, Baowen
2015-09-28
Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance,more » the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.« less
Stone, David B; Urrea, Laura J; Aine, Cheryl J; Bustillo, Juan R; Clark, Vincent P; Stephen, Julia M
2011-10-01
In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis
NASA Technical Reports Server (NTRS)
Fuhry, Douglas Paul
1988-01-01
The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.
NASA Astrophysics Data System (ADS)
Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao
2018-05-01
A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.
NASA Astrophysics Data System (ADS)
Chen, Zhen; Wei, Zhengying; Wei, Pei; Chen, Shenggui; Lu, Bingheng; Du, Jun; Li, Junfeng; Zhang, Shuzhe
2017-12-01
In this work, a set of experiments was designed to investigate the effect of process parameters on the relative density of the AlSi10Mg parts manufactured by SLM. The influence of laser scan speed v, laser power P and hatch space H, which were considered as the dominant parameters, on the powder melting and densification behavior was also studied experimentally. In addition, the laser energy density was introduced to evaluate the combined effect of the above dominant parameters, so as to control the SLM process integrally. As a result, a high relative density (> 97%) was obtained by SLM at an optimized laser energy density of 3.5-5.5 J/mm2. Moreover, a parameter-densification map was established to visually select the optimum process parameters for the SLM-processed AlSi10Mg parts with elevated density and required mechanical properties. The results provide an important experimental guidance for obtaining AlSi10Mg components with full density and gradient functional porosity by SLM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane
2015-12-21
The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.
Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.
2017-07-01
We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.
Phase comparator apparatus and method
Coffield, F.E.
1985-02-01
This invention finds especially useful application for interferometer measurements made in plasma fusion devices (e.g., for measuring the line integral of electron density in the plasma). Such interferometers typically use very high intermediate frequencies (e.g., on the order of 10 to 70 MHz) and therefore the phase comparison circuitry should be a high speed circuit with a linear transfer characteristic so as to accurately differentiate between small fractions of interference fringes.
NASA Technical Reports Server (NTRS)
Aanstoos, J. V.; Snyder, W. E.
1981-01-01
Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort.
NASA Astrophysics Data System (ADS)
James, R. W.; Chamberlin, A.; Azzari, P.; Crilly, P.; Emami, T.; Hopson, J.; Karama, J.; Green, A.; Paolino, R. N.; Sandri, E.; Turk, J.; Wicke, M.; Cgapl Team
2017-10-01
The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas ( 20-30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX has constructed a protected Langmuir probe where raw data will be collected, compared to the RF compensated probe and used to measure the plasma's density, temperature, and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations are being integrated into the existing diagnostics and control architecture. Progress on the construction of the RF coupling system, Helicon Mode development, and magnetic coils, along with observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY17.
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce; ...
2018-01-11
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah
2015-11-01
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.
Jones, Stephanie G.; Riedner, Brady A.; Smith, Richard F.; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.
2014-01-01
Study Objectives: Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Design: Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Setting: Sleep laboratory. Patients or Participants: Nine subjects with AHI > 10 and nine matched controls. Interventions: N/A. Measurements and Results: Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. Conclusion: This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process. Citation: Jones SG; Riedner BA; Smith RF; Ferrarelli F; Tononi G; Davidson RJ; Benca RM. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study. SLEEP 2014;37(2):399-407. PMID:24497668
NASA Astrophysics Data System (ADS)
Li, Meng; He, Hanwei
2018-05-01
A high-performance supercapacitor both considered high power and high energy density is needed for its applications such as portable electronics and electric vehicles. Herein, we construct a high-performance ruthenium oxide/graphene (RuO2-ERG) composite directly grown on Ni foam through cyclic voltammetric deposition process. The RuO2-ERG composite with sandwich structure is achieved effectively from a mixed solution of graphene oxide and ruthenium trichloride in the -1.4 V to 1.0 V potential range at a scan rate of 5 mV s-1. The electrochemical performance is optimized by tuning the concentration of the ruthenium trichloride. This integrative RuO2-ERG composite electrode can effectively maintains the accessible surface for redox reaction and stable channels for electrolyte penetration, leading to an improved electrochemical performance. Symmetrical aqueous supercapacitors based on RuO2-ERG electrodes exhibit a wider operational voltage window of 1.5 V. The optimized RuO2-ERG electrode displays a superior specific capacitance with 89% capacitance retention upon increasing the current density by 50 times. A high energy density of 43.8 W h kg-1 at a power density of 0.75 kW kg-1 is also obtained, and as high as 39.1 W h kg-1 can be retained at a power density of 37.5 kW kg-1. In addition, the capacitance retention is still maintained at 92.8% even after 10,000 cycles. The excellent electrochemical performance, long-term cycle stability, and the ease of preparation demonstrate that this typical RuO2-ERG electrode has great potentialities to develop high-performance supercapacitors.
Comparison of Satellite based Ion Density Measurements with Digisonde electron density measurements
NASA Astrophysics Data System (ADS)
Wilson, G.; Balthazor, R. L.; Reinisch, B. W.; McHarg, M.; Maldonado, C.
2017-12-01
The integrated Miniaturized Electrostatic Analyzer (IMESA) flying on the STPSat-3 satellite has collected more than 3 years of ion density data. This instrument is the first in a constellation of up to 6 instruments. We plan on integrating the data from all IMESAs into an approiate ionospheric model. OUr first step is to validate the IMESA data and calibrate the instrument. In this presentation we discuss our process for preparing IMESA data and comparing it to ground based measurements. Lastly, we present a number of comparisons between IMESA ion density measurements and digisonde electron density measurements.
Identifications of Four Integral Sources in the Galactic Plane via CHANDRA Localizations
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Chaty, Sylvain; Rodriquez, Jerome; Foschini, Luigi; Walter, Roland; Kaaret, Philip
2006-01-01
Hard X-ray imaging of the Galactic plane by the INTEGRAL satellite is uncovering large numbers of 20-100 keV "IGR" sources. We present results from Chandra, INTEGRAL, optical, and IR observations of four IGR sources: three sources in the Norma region of the Galaxy(1GR J16195-4945,IGR J16207-5129, and IGR J16167-4957) and one that is closer to the Galactic center (IGR 5171 95-4100). In all four cases, one relatively bright Chandra source is seen in the INTEGRAL error circle, and these are likely to be the soft X-ray counterparts of the IGR sources. They have hard 0.3-10 keV spectra with power-law photon indices of Gamma = 0.5-1.1. While many previously studied IGR sources show high column densities (NH approx. 10(exp 23)-10(exp 24)/sq cm), only IGR J16195-4945 has a column density that could be as high as 10(exp 23)/sq cm. Using optical and IR sky survey catalogs and our own photometry, we have obtained identifications for all four sources. The J-band magnitudes are in the range 14.9-10.4, and we have used the optical/IR spectral energy distributions (SEDs) to constrain the nature of the sources. Blackbody components with temperature lower limits of >9400 K for IGR J16195-4945 and >18,000 K for IGR J16207-5129 indicate that these are very likely high-mass X-ray binaries (HMXBs). However, for IGR 516167-4957 and IGR J17195-4100, low extinction and the SEDs indicate later spectral types for the putative companions, suggesting that these are not HMXBs.
Unmanned Systems In Integrating Cross domain Naval Fires
2016-06-01
requirement for the battery . Lithium - Ion batteries have the remarkable characteristic of high energy density. A Lithium -Sulphur-Dioxide battery can...163 xi LIST OF FIGURES Figure 1. NPS Warfare Innovation Continuum...during the Warfare Innovation Workshop during Enrichment Week, September 2015. This four-day forum brought together students and faculty, defense
Practical Application of Sheet Lead for Sound Barriers.
ERIC Educational Resources Information Center
Lead Industries Association, New York, NY.
Techniques for improving sound barriers through the use of lead sheeting are described. To achieve an ideal sound barrier a material should consist of the following properties--(1) high density, (2) freedom from stiffness, (3) good damping capacity, and (4) integrity as a non-permeable membrane. Lead combines these desired properties to a greater…
USDA-ARS?s Scientific Manuscript database
Commercial and experimental genetic resources were used to investigate genetic pleiotropic factors that influence age at puberty, litter-size and reproductive longevity. The phenotypes were complemented by high-density genotyping and whole genome and RNA sequencing. The SNPs from Porcine SNP60 BeadA...
NASA Astrophysics Data System (ADS)
Thakur, S.; Maiti, S.; Acharya, A.; Paul, T.; Besra, N.; Sarkar, S.; Chattopadhyay, K. K.
2018-04-01
Possibility of integration of manifold functionalities coupled with novel interface phenomenon generation in geometrically intricate hierarchical nanoform has made them greatly pertinent from both research and technological point of view. Here, oxide based hybrid has been realized by integrating 1D TiO2 nanorod with 2D MnO2 nanoflake via low temperature chemical route. Meticulous tunability over the hierarchical morphology was achieved by subtle variation of reaction parameter which in turn created difference in MnO2 growth over TiO2. Morphological features of the samples were examined by FESEM and TEM. Hybrid samples exhibited high electrochemical performance than pristine TiO2 nanorods. Registered electrochemical performance from TiO2-MnO2 hybrid was found to be ˜1024F/g at a current density of 0.66A/g which is ˜100 fold than TiO2 at same current density. Such enhanced performance is accounted from higher surface area and electrical conductivity of the hybrid.
Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair
NASA Astrophysics Data System (ADS)
Erickson, Isaac E.
2011-12-01
Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 kPa, nearly 10-fold greater than previous reports of integration with MSC-based constructs. Furthermore, we demonstrated the durability of this repair system by applying dynamic loading and showed its functional contribution to the distribution of compressive loads across the repair space. Overall, the studies contained within this thesis offer the first MSC-based tissue engineering strategy that successfully recapitulates native mechanical function while also demonstrating the potential for complete functional cartilage repair.
Examining boreal peatland vulnerability to wildfire: a cross-scale perspective (Invited)
NASA Astrophysics Data System (ADS)
Thompson, D. K.; Waddington, J. M.; Parisien, M.; Simpson, B. N.; Morris, P. J.; Kettridge, N.
2013-12-01
The contemporary state of peatlands in boreal western Canada is largely a reflection of the equilibrium between peat accumulation and a natural wildfire disturbance regime. However, additional disturbances of climate change and direct anthropogenic impacts are compounding natural wildfire disturbance, leading to the potential of more severe fire and in cases complete ecosystem shifts away from peatlands altogether. Here we present a cross-scale perspective on the vulnerability of peatlands to wildfire in the context of cumulative anthropogenic impacts. At the plot scale, laboratory burning and modelling has identified the exposure of high density humified peat at the surface as being more vulnerable to deep combustion compared to low-density features such as hummock microforms. At the stand scale, studies of tree impacts on moss light availability has identified critically high tree densities where combustion-resistant Sphagnum mosses are out-competed by drier and more flammable feathermosses. Widespread resource development has created seismic lines, cutlines, and associated linear disturbances at densities approaching 1.5 km km-2 in some areas. Our modelling of wind and solar radiation across varying linear disturbance widths and canopy heights reveals increased risk of wildfire ignition and spread at specific width-height ratios. Regionally, we show that streamflow observations can offer insight into drought and seasonal wildfire risk in peatland-dominated portions of the boreal plain. Integrated wildfire management in the boreal forest can benefit from the inclusion of these cross-scale processes and feedbacks we have identified when balancing the often competing interests of ecosystem integrity, economics, and community protection.
Variational and robust density fitting of four-center two-electron integrals in local metrics
NASA Astrophysics Data System (ADS)
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł
2008-09-01
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Variational and robust density fitting of four-center two-electron integrals in local metrics.
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjaergaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Host, Stinne; Salek, Paweł
2008-09-14
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team
2018-04-01
Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.
IIIV/Si Nanoscale Lasers and Their Integration with Silicon Photonics
NASA Astrophysics Data System (ADS)
Bondarenko, Olesya
The rapidly evolving global information infrastructure requires ever faster data transfer within computer networks and stations. Integrated chip scale photonics can pave the way to accelerated signal manipulation and boost bandwidth capacity of optical interconnects in a compact and ergonomic arrangement. A key building block for integrated photonic circuits is an on-chip laser. In this dissertation we explore ways to reduce the physical footprint of semiconductor lasers and make them suitable for high density integration on silicon, a standard material platform for today's integrated circuits. We demonstrated the first room temperature metalo-dielectric nanolaser, sub-wavelength in all three dimensions. Next, we demonstrated a nanolaser on silicon, showing the feasibility of its integration with this platform. We also designed and realized an ultracompact feedback laser with edge-emitting structure, amenable for in-plane coupling with a standard silicon waveguide. Finally, we discuss the challenges and propose solutions for improvement of the device performance and practicality.
Active C4 Electrodes for Local Field Potential Recording Applications
Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M. Selim; Knepper, Ronald
2016-01-01
Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μVrms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented. PMID:26861324
NASA Astrophysics Data System (ADS)
Tu, Hongen; Xu, Yong
2012-07-01
This paper reports a simple flexible electronics technology that is compatible with silicon-on-insulator (SOI) complementary-metal-oxide-semiconductor (CMOS) processes. Compared with existing technologies such as direct fabrication on flexible substrates and transfer printing, the main advantage of this technology is its post-SOI-CMOS compatibility. Consequently, high-performance and high-density CMOS circuits can be first fabricated on SOI wafers using commercial foundry and then be integrated into flexible substrates. The yield is also improved by eliminating the transfer printing step. Furthermore, this technology allows the integration of various sensors and microfluidic devices. To prove the concept of this technology, flexible MOSFETs have been demonstrated.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Li, Fuhua; Chen, Xiaohan; Zhao, Yongzhen; Huang, Long; Zheng, Hongkun; Xiang, Jianhai
2015-01-01
The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species. PMID:26503227
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley
2015-11-01
Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
Development of a PEMFC Power System with Integrated Balance of Plant
NASA Technical Reports Server (NTRS)
Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.
2012-01-01
Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Mink, Justine E; Rojas, Jhonathan P; Logan, Bruce E; Hussain, Muhammad M
2012-02-08
Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m(2) of current density and 392 mW/m(3) of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society
Absolute calibration of Phase Contrast Imaging on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Yu, Yi; Gong, Shaobo; Xu, Min; Wu, Yifan; Yuan, Boda; Ye, Minyou; Duan, Xuru; HL-2A Team Team
2017-10-01
Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3-1013 m-2/mV, indicating a high sensitivity. Supported by the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB120002, 2013GB107001).
Spiers Memorial Lecture. Molecular mechanics and molecular electronics.
Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R
2006-01-01
We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.
Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling
2016-01-01
A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881
Rain drop size densities over land and over sea
NASA Astrophysics Data System (ADS)
Bumke, Karl
2010-05-01
A detailed knowledge of rain drop size densities is an essential presumption with respect to remote sensing of precipitation. Since maritime and continental aerosol is significantly different yielding to differences in cloud drop size densities, maritime and continental rain drop size densities may be different, too. In fact only a little is known about differences in rain drop size densities between land and sea due to a lack of suitable data over the sea. To fill in this gap measurements were performed during the recent 10 years at different locations in Germany and on board of research vessels over the Baltic Sea, the North Sea, Atlantic, Indian, and Pacific Ocean. Measurements were done by using an optical disdrometer (ODM 470, Großklaus et al., 1998), which is designed especially to perform precipitation measurements on moving ships and under high wind speeds. Temporal resolution of measurements is generally 1 minute, total number of time series is about 220000. To investigate differences in drop size densities over land and over sea measurements have been divided into four classes on the basis of prevailing continental or maritime influence: land measurements, coastal measurements, measurements in areas of semi-enclosed seas, and open sea measurements. In general differences in drop size densities are small between different areas. A Kolmogoroff Smirnoff test does not give any significant difference between drop size densities over land, coastal areas, semi-enclosed, and open seas at an error rate of 5%. Thus, it can be concluded that there are no systematic differences between maritime and continental drop size densities. The best fit of drop size densities is an exponential decay curve, N(D ) = 6510m -3mm -1mm0.14h- 0.14×R-0.14×exp(- 4.4mm0.25h-0.25×R- 0.25×D mm -1), it is estimated by using the method of least squares. N(D) is the drop size density normalized by the resolution of the optical disdrometer, D the diameter of rain drops in mm, and R the precipitation rate in mmh-1.The precipitation rate dependent factor in the exponential is similar to that given by Marshall and Palmer (1948). The intercept parameter, in the original Marshall Palmer formulation not depending on the rain rate, is also of the same order. A number of recent publications have shown that drop size densities of convective and stratiform rain show significant differences, too. Several procedures have been developed in the past to decide, whether precipitation is of stratiform or convective character. Here two of them are used, temporal variability in rain rates and additional information by weather radar data for the South Western Baltic Sea. Main result is that differences in drop size densities depend on the integration time of measurements. For integration times of 1 minute no significant differences can be detected at an error rate of 5%, while integration times of 10 minutes yield to significant differences between drop size densities of prevailing stratiform and convective rain. References: Großklaus, M., K.Uhlig, and L.Hasse, 1998: An Optical Disdrometer for Use in High Wind Speeds, Journal of Atmospheric and Oceanic Technology Vol. 15(4). 1051-1059 Marshall, J.S. and W.M.K.Palmer, 1948: The distribution of rain drops with size, J. Meteor., 5, 165-166
Forcing of the Coupled Ionosphere-Thermosphere (IT) System During Magnetic Storms
NASA Technical Reports Server (NTRS)
Huang, Cheryl; Huang, Yanshi; Su, Yi-Jiun; Sutton, Eric; Hairston, Marc; Coley, W. Robin; Doornbos, Eelco; Zhang, Yongliang
2014-01-01
Poynting flux shows peaks around auroral zone AND inside polar cap. Energy enters IT system at all local times in polar cap. Track-integrated flux at DMSP often peaks at polar latitudes- probably due to increased area of polar cap during storm main phases. center dot lon temperatures at DMSP show large increases in polar region at all local times; cusp and auroral zones do not show distinctively high Ti. center dot I on temperatures in the polar cap are higher than in the auroral zones during quiet times. center dot Neutral densities at GRACE and GOCE show maxima at polar latitudes without clear auroral signatures. Response is fast, minutes from onset to density peaks. center dot GUVI observations of O/N2 ratio during storms show similar response as direct measurements of ion and neutral densities, i.e. high temperatures in polar cap during prestorm quiet period, heating proceeding from polar cap to lower latitudes during storm main phase. center dot Discrepancy between maps of Poynting flux and of ion temperatures/neutral densities suggests that connection between Poynting flux and Joule heating is not simple.
Hierarchy of forward-backward stochastic Schrödinger equation
NASA Astrophysics Data System (ADS)
Ke, Yaling; Zhao, Yi
2016-07-01
Driven by the impetus to simulate quantum dynamics in photosynthetic complexes or even larger molecular aggregates, we have established a hierarchy of forward-backward stochastic Schrödinger equation in the light of stochastic unravelling of the symmetric part of the influence functional in the path-integral formalism of reduced density operator. The method is numerically exact and is suited for Debye-Drude spectral density, Ohmic spectral density with an algebraic or exponential cutoff, as well as discrete vibrational modes. The power of this method is verified by performing the calculations of time-dependent population differences in the valuable spin-boson model from zero to high temperatures. By simulating excitation energy transfer dynamics of the realistic full FMO trimer, some important features are revealed.
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties
NASA Astrophysics Data System (ADS)
Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting
2018-02-01
The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.
Biomaterial-Mediated Delivery of Degradative Enzymes to Improve Meniscus Integration and Repair
Qu, Feini; Lin, Jung-Ming G.; Esterhai, John L.; Fisher, Matthew B.; Mauck, Robert L.
2013-01-01
Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by promoting cell growth, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the meniscus as a test platform, we sought to develop an enzyme-releasing scaffold that enhances integrative repair. We hypothesized that the high ECM density and low cellularity present physical and biologic barriers to endogenous healing, and that localized collagenase treatment might expedite cell migration to the wound edge and tissue remodeling. To test this hypothesis, we fabricated a delivery system in which collagenase was stored inside electrospun poly(ethylene oxide) (PEO) nanofibers and released upon hydration. In vitro results showed that partial digestion of the wound interface improved repair by creating a microenvironment that facilitated cell migration, proliferation, and matrix deposition. Specifically, treatment with high-dose collagenase led to a 2-fold increase in cell density at the wound margin and a 2-fold increase in integrative tissue compared to untreated controls at 4 weeks (p≤0.05). Furthermore, when composite scaffolds containing both collagenase-releasing and structural fiber fractions were placed inside meniscal tears in vitro, enzyme release acted locally and resulted in a positive cellular response similar to that of global treatment with aqueous collagenase. This innovative approach of targeted enzyme delivery may aid the many patients that exhibit meniscal tears by promoting integration of the defect, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:23376132
Quantitative Interferometry in the Severe Acoustic Environment of Resonant Supersonic Jets
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Raman, Ganesh
1999-01-01
Understanding fundamental fluidic dynamic and acoustic processes in high-speed jets requires quantitative velocity, density and temperature measurements. In this paper we demonstrate a new, robust Liquid Crystal Point Diffraction Interferometer (LCPDI) that includes phase stepping and can provide accurate data even in the presence of intense acoustic fields. This novel common path interferometer (LCPDI) was developed to overcome difficulties with the Mach Zehnder interferometer in vibratory environments and is applied here to the case of a supersonic shock- containing jet. The environmentally insensitive LCPDI that is easy to align and capable of measuring optical wavefronts with high accuracy is briefly described, then integrated line of sight density data from the LCPDI for two underexpanded jets are presented.
High density submicron magnetoresistive random access memory (invited)
NASA Astrophysics Data System (ADS)
Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.
1999-04-01
Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.
High crustal density at Mafic Mound in South Pole-Aitken Basin
NASA Astrophysics Data System (ADS)
James, P. B.; Kiefer, W. S.
2017-12-01
The bulk density of a planetary surface is dependent on the porosity and composition of the crust, which are quantities of interest for exploration as well as science. We present new methods for characterizing noise in gravity data, which allow us to include more high-degree data, reduce uncertainties, and resolve smaller features. We apply these methods to an enigmatic geologic complex in the lunar South Pole-Aitken basin called "Mafic Mound". We studied Mafic Mound using GRAIL gravity [1] and the predicted gravity from a LOLA lunar shape model ("gravity-from-topography"), and these datasets are tapered within a 50-km radius. We apply a spectral taper between spherical harmonic degrees l=150 and l=585; the lower limit is selected so as to limit sensitivity to the crust-mantle interface, and the upper limit corresponds to a 2:1 signal/noise ratio [2]. A weighted linear regression of filtered gravity and gravity-from-topography reveals a density of 3190 ± 110 kg/m3 at Mafic Mound. This is a remarkably high density: similar analyses at six adjacent terrains yield densities 400-610 kg/m3 less dense than Mafic Mound. However, two lines of evidence suggest that this high estimate for bulk density may be influenced by the internal structure of Mafic Mound. First, gravity has a weaker correlation with topography in Mafic Mound than in any of the surrounding terrains, as would be expected if subsurface mass concentrations contributed heavily to the gravity anomaly. Second, a high-pass filter (l > 300) of gravity yields a lower density estimate of 2760 ± 110 kg/m3, which is only about 110 kg/m3 denser than the surrounding terrains. Forward modeling reveals that approximately half of the high-pass gravity signal energy is produced by masses at depths shallower than 3 km. We conclude that Mafic Mound is underlain at several kilometers depth by high-density crust, caused by some combination of relatively low porosity and relatively high grain densities. While alternative interpretations exist, this is consistent with intrusive magmatism and suggests a volcanic origin for Mafic Mound. An integration of LOLA-derived topography indicates a volume of 1.4×103 cubic kilometers of intrusively and extrusively placed volcanic material. [1] Konopliv, A. S. et al. (2014), GRL 41, 1452-1458 [2] James, P. B. et al. (2017), LPSC 41 #2199
Mixed-signal 0.18μm CMOS and SiGe BiCMOS foundry technologies for ROIC applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Racanelli, Marco; Scott, Mike; Hurwitz, Paul; Zwingman, Robert; Chaudhry, Samir; Jordan, Scott
2010-10-01
Today's readout integrated-circuits (ROICs) require a high level of integration of high performance analog and low power digital logic. TowerJazz offers a commercial 0.18μm CMOS technology platform for mixed-signal, RF, and high performance analog applications which can be used for ROIC applications. The commercial CA18HD dual gate oxide 1.8V/3.3V and CA18HA dual gate oxide 1.8V/5V RF/mixed signal processes, consisting of six layers of metallization, have high density stacked linear MIM capacitors, high-value resistors, triple-well isolation and thick top aluminum metal. The CA18HA process also has scalable drain extended LDMOS devices, up to 40V Vds, for high-voltage sensor applications, and high-performance bipolars for low noise requirements in ROICs. Also discussed are the available features of the commercial SBC18 SiGe BiCMOS platform with SiGe NPNs operating up to 200/200GHz (fT/fMAX frequencies in manufacturing and demonstrated to 270 GHz fT, for reduced noise and integrated RF capabilities which could be used in ROICs. Implementation of these technologies in a thick film SOI process for integrated RF switch and power management and the availability of high fT vertical PNPs to enable complementary BiCMOS (CBiCMOS), for RF enabled ROICs, are also described in this paper.
Using Solar Radio Burst Integrated Fluxes to Predict Energetic Proton Flux Increases.
1982-08-31
Energy Density, ET, of the radio burst, an integration across the frequency interval of the time-integrated radio fluxes at each frequency, was found to...integrated flux or energy at five frequencies in the 600- to 8800-MHz frequency interval and related them to the peak proton flux of the associated... energy of the burst normalized to its peak flux. One other characteristic of the radio burst to which Croom 13 referred was the total energy density, ET
Experimental investigation of 4 K pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Gao, J. L.; Matsubara, Y.
During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching time. Nowadays it offers small losses, high speed and the potential for large scale integration and is superior to semiconducting devices in many ways — apart from the need for cooling by liquid helium for devices based on classical superconductors like niobium, or cooling by liquid nitrogen or cryocoolers (40K to 77K) for high-T c superconductors like YBa 2Cu 3O 7. This article gives a short overview over the current state of the art on typical devices out of the main application areas of superconducting electronics.
Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele
2016-04-01
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.
NASA Astrophysics Data System (ADS)
Connor, H. K.; Carter, J. A.
2017-12-01
Soft X-rays can be emitted when highly charged solar wind ions and exospheric neutrals exchange electrons. Astrophysics missions, such as XMM-Newton and ROSAT X-ray telescopes, have found that such solar wind charge exchange happens at the Earth's exosphere. The Earth's magnetosphere can be imaged via soft X-rays in order to understand its interaction with solar wind. Consequently, two soft X-ray telescope missions (CuPID and SMILE) are scheduled to launch in 2019 and 2021. They will provide wide field-of-view soft X-ray images of the Earth's dayside magnetosphere. The imagers will track the location and movement of the cusps, magnetopause, and bow shock in response to solar wind variations. To support these missions, an understanding of exospheric neutral density profile is needed. The neutral density is one of the controlling factors of soft X-ray signals. Strong neutral density can help to obtain high-resolution and high-cadence of soft X-ray images. In this study, we estimate the exospheric neutral density at 10 RE subsolar point using XMM X-ray observations, Cluster plasma observations, and OpenGGCM global magnetosphere - ionosphere MHD model. XMM-Newton observes line-of-sight, narrow field-of-view, integrated soft X-ray emissions when it looks through the dayside magnetosphere. OpenGGCM reproduces soft X-ray signals seen by the XMM spacecraft, assuming exospheric neutral density as a function of the neutral density at the 10RE subsolar point and the radial distance. Cluster observations are used to confirm OpenGGCM plasma results. Finally, we deduce the neutral density at 10 RE subsolar point by adjusting the model results to the XMM-Newton soft X-ray observations.
Jiang, Jianyong; Zhang, Xin; Dan, Zhenkang; Ma, Jing; Lin, Yuanhua; Li, Ming; Nan, Ce-Wen; Shen, Yang
2017-09-06
Polymer nanocomposite dielectrics with high energy density and low loss are major enablers for a number of applications in modern electronic and electrical industry. Conventional fabrication of nanocomposites by solution routes involves equilibrium process, which is slow and results in structural imperfections, hence high leakage current and compromised reliability of the nanocomposites. We propose and demonstrate that a nonequilibrium process, which synergistically integrates electrospinning, hot-pressing and thermal quenching, is capable of yielding nanocomposites of very high quality. In the nonequilibrium nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and BaTiO 3 nanoparticles (BTO_nps), an ultrahigh Weibull modulus β of ∼30 is achieved, which is comparable to the quality of the bench-mark biaxially oriented polypropylene (BOPP) fabricated with melt-extrusion process by much more sophisticated and expensive industrial apparatus. Favorable phase composition and small crystalline size are also induced by the nonequilibrium process, which leads to concomitant enhancement of electric displacement and breakdown strength of the nanocomposite hence a high energy density of ∼21 J/cm 3 . Study on the polarization behavior and phase transformation at high electric field indicates that BTO_nps could facilitate the phase transformation from α- to β-polymorph at low electric field.
Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)
NASA Technical Reports Server (NTRS)
Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.
1991-01-01
The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.
Mining and integration of pathway diagrams from imaging data.
Kozhenkov, Sergey; Baitaluk, Michael
2012-03-01
Pathway diagrams from PubMed and World Wide Web (WWW) contain valuable highly curated information difficult to reach without tools specifically designed and customized for the biological semantics and high-content density of the images. There is currently no search engine or tool that can analyze pathway images, extract their pathway components (molecules, genes, proteins, organelles, cells, organs, etc.) and indicate their relationships. Here, we describe a resource of pathway diagrams retrieved from article and web-page images through optical character recognition, in conjunction with data mining and data integration methods. The recognized pathways are integrated into the BiologicalNetworks research environment linking them to a wealth of data available in the BiologicalNetworks' knowledgebase, which integrates data from >100 public data sources and the biomedical literature. Multiple search and analytical tools are available that allow the recognized cellular pathways, molecular networks and cell/tissue/organ diagrams to be studied in the context of integrated knowledge, experimental data and the literature. BiologicalNetworks software and the pathway repository are freely available at www.biologicalnetworks.org. Supplementary data are available at Bioinformatics online.
CD16b associates with high-density, detergent-resistant membranes in human neutrophils
Fernandes, Maria J. G.; Rollet-Labelle, Emmanuelle; Paré, Guillaume; Marois, Sébastien; Tremblay, Marie-Lisane; Teillaud, Jean-Luc; Naccache, Paul H.
2005-01-01
CD16b is unique in that it is the only Fc receptor linked to the plasma membrane by a GPI (glycosylphosphatidylinositol) anchor. GPI-anchored proteins often preferentially localize to DRMs (detergent-resistant membranes) that are rich in sphingolipids and cholesterol and play an important role in signal transduction. Even though the responses to CD16b engagement have been intensively investigated, the importance of DRM integrity for CD16b signalling has not been characterized in human neutrophils. We provide direct evidence that CD16b constitutively partitions with both low- and high-density DRMs. Moreover, upon CD16b engagement, a significant increase in the amount of the receptor is observed in high-density DRMs. Similarly to CD16b, CD11b also resides in low- and high-density DRMs. In contrast with CD16b, the partitioning of CD11b in DRMs does not change in response to CD16b engagement. We also provide evidence for the implication of Syk in CD16b signalling and its partitioning to DRMs in resting and activated PMNs (polymorphonuclear neutrophils). Additionally, DRM-disrupting agents, such as nystatin and methyl-β-cyclodextrin, alter cellular responses to CD16b receptor ligation. Notably, a significant increase in the mobilization of intracellular Ca2+ and in tyrosine phosphorylation of intracellular substrates after CD16b engagement is observed. Altogether, the results of this study provide evidence that high-density DRMs play a role in CD16b signalling in human neutrophils. PMID:16171455
Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density
NASA Technical Reports Server (NTRS)
Scott, James R.
2011-01-01
Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.
Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing
2013-02-14
Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.
Chen, Chin-Hui; Klamkin, Jonathan; Nicholes, Steven C; Johansson, Leif A; Bowers, John E; Coldren, Larry A
2009-09-01
We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10 microm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.
NASA Technical Reports Server (NTRS)
Beatty, R.
1971-01-01
Metallization-related failure mechanisms were shown to be a major cause of integrated circuit failures under accelerated stress conditions, as well as in actual use under field operation. The integrated circuit industry is aware of the problem and is attempting to solve it in one of two ways: (1) better understanding of the aluminum system, which is the most widely used metallization material for silicon integrated circuits both as a single level and multilevel metallization, or (2) evaluating alternative metal systems. Aluminum metallization offers many advantages, but also has limitations particularly at elevated temperatures and high current densities. As an alternative, multilayer systems of the general form, silicon device-metal-inorganic insulator-metal, are being considered to produce large scale integrated arrays. The merits and restrictions of metallization systems in current usage and systems under development are defined.
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.
2005-01-01
Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.
Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M
2014-02-01
Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.
NASA Astrophysics Data System (ADS)
Geng, Yu
With the increase of clock speed and wiring density in integrated circuits, inter-chip and intra-chip interconnects through conventional electrical wires encounter increasing difficulties because of the large power loss and bandwidth limitation. Optical interconnects have been proposed as an alternative to copper-based interconnects and are under intense study due to their large data capacity, high data quality and low power consumption. III-V compound semiconductors offer high intrinsic electron mobility, small effective electron mass and direct bandgap, which make this material system advantageous for high-speed optoelectronic devices. The integration of III-V optoelectronic devices on Si substrates will provide the combined advantage of a high level of integration and large volume production of Si-based electronic circuitry with the superior electrical and optical performance of III-V components, paving the way to a new generation of hybrid integrated circuits. In this thesis, the direct heteroepitaxy of photodetectors (PDs) and light emitters using metal-organic chemical vapor deposition for the integration of photonic devices on Si substrates were studied. First we studied the selective-area growth of InP/GaAs on patterned Si substrates for PDs. To overcome the loading effect, a multi-temperature composite growth technique for GaAs was developed. By decreasing various defects such as dislocations and anti-phase domains, the GaAs and InP buffer layers are with good crystalline quality and the PDs show high speed and low dark current performance both at the edge and center of the large growth well. Then the growth and fabrication of GaAs/AlGaAs QW lasers were studied. Ellipsometry was used to calibrate the Al composition of AlGaAs. Thick p and n type AlGaAs with a mirrorlike surface were grown by high V/III ratio and high temperature. The GaAs/AlGaAs broad area QW laser was successfully grown and fabricated on GaAs substrate and showed a pulsed lasing result with a threshold current density of about 800 A/cm2. For the integration of lasers on Si substrate, quantum dot (QD) lasers were studied. A flow-and-stop process of TBA was used to grow InAs QDs with the in-situ monitor EpiRas. QDs with a PL wavelength of ˜1.3 mum were grown on GaAs and Si substrates. To decrease the PL degradation problem caused by the contaminations from AlGaAs, an InGaAs insertion layer was inserted in between the AlGaAs and QDs region. Microdisk and a-Si waveguide lasers are designed and fabricated.
Molecular Electronic Shift Registers
NASA Technical Reports Server (NTRS)
Beratan, David N.; Onuchic, Jose N.
1990-01-01
Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.
Integrated narrowband optical filter based on embedded subwavelength resonant grating structures
Grann, Eric B.; Sitter, Jr., David N.
2000-01-01
A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
A frontier shortleaf pine stand in the old-growth Cross Timbers of Oklahoma
K. Chris Cerny; David W. Stahle; Don C. Bragg
2016-01-01
We investigated an old-growth oak-shortleaf pine (Pinus echinata) stand of high ecological integrity in east-central Oklahoma located west of the continuous native distribution of shortleaf pine. With the exception of an abundance of shortleaf pine, the basal area (17.2 m2/ha), density (559.6 trees/ha), and species...
Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.
2004-01-01
Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Lipinski, J
2015-06-15
Purpose: To develop a physics-based model for accurate quantification of the cross-sectional area (CSA) of coronary arteries in CT angiography by measuring the integrated density to account for the partial volume effect. Methods: In this technique the integrated density of the object as compared with its local background is measured to account for the partial volume effect. Normal vessels were simulated as circles with diameters in the range of 0.1–3mm. Diseased vessels were simulated as 2, 3, and 4mm diameter vessels with 10–90% area stenosis, created by inserting circular plaques. A simplified two material model was used with the lumenmore » as 8mg/ml Iodine and background as lipid. The contrast-to-noise ratio between lumen and background was approximately 26. Linear fits to the known CSA were calculated. The precision and accuracy of the measurement were quantified using the root-mean-square fit deviations (RMSD) and errors to the known CSA (RMSE). Results compared to manual segmentation of the vessel lumen. To assess the impact of random variations, coefficients of variation (CV) from 10 simulations for each vessel were computed to determine reliability. Measurements with CVs less than 10% were considered reliable. Results: For normal vessels, the precision and accuracy of the integrated density technique were 0.12mm{sup 2} and 0.28mm{sup 2}, respectively. The corresponding results for manual segmentation were 0.27mm{sup 2} and 0.43mm{sup 2}. For diseased vessels, the precision and accuracy of the integrated density technique were 0.14mm{sup 2} and 0.19mm{sup 2}. Corresponding results for manual segmentation were 0.42mm{sup 2} and 0.71mm{sup 2}. Reliable CSAs were obtained for normal vessels with diameters larger than 1 mm and for diseased vessels with area as low as 1.26mm2. Conclusion: The CSA based on integrated density showed improved precision and accuracy as compared with manual segmentation in simulation. These results indicate the potential of using integrated density to quantify CSA of coronary arteries in CT angiography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Torabzadeh, M
2015-06-15
Purpose: To investigate the feasibility of quantifying the cross-sectional area (CSA) of coronary arteries using integrated density in a physics-based model with a phantom study. Methods: In this technique the total integrated density of the object as compared with its local background is measured so it is possible to account for the partial volume effect. The proposed method was compared to manual segmentation using CT scans of a 10 cm diameter Lucite cylinder placed inside a chest phantom. Holes with cross-sectional areas from 1.4 to 12.3 mm{sup 2} were drilled into the Lucite and filled with iodine solution, producing amore » contrast-to-noise ratio of approximately 26. Lucite rods 1.6 mm in diameter were used to simulate plaques. The phantom was imaged with and without the Lucite rods placed in the holes to simulate diseased and normal arteries, respectively. Linear regression analysis was used, and the root-mean-square deviations (RMSD) and errors (RMSE) were computed to assess the precision and accuracy of the measurements. In the case of manual segmentation, two readers independently delineated the lumen in order to quantify the inter-reader variability. Results: The precision and accuracy for the normal vessels using the integrated density technique were 0.32 mm{sup 2} and 0.32 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.51 mm{sup 2} and 0.56 mm{sup 2}. In the case of diseased vessels, the precision and accuracy of the integrated density technique were 0.46 mm{sup 2} and 0.55 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.75 mm{sup 2} and 0.98 mm{sup 2}. The mean percent difference for the two readers was found to be 8.4%. Conclusion: The CSA based on integrated density had improved precision and accuracy as compared with manual segmentation in a Lucite phantom. The results indicate the potential for using integrated density to improve CSA measurements in CT angiography.« less
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Motomura, Taisei; Ando, Akira; Kasashima, Yuji; Kikunaga, Kazuya; Uesugi, Fumihiko; Hara, Shiro
2014-10-01
A high density argon plasma produced in a compact helicon source is transported by a convergent magnetic field to the central region of a substrate located downstream of the source. The magnetic field converging near the source exit is applied by a solenoid and further converged by installing a permanent magnet (PM) behind the substrate, which is located downstream of the source exit. Then a higher plasma density above 5 × 1012 cm-3 can be obtained in 0.2 Pa argon near the substrate, compared with the case without the PM. As no noticeable changes in the radially integrated density near the substrate and the power transfer efficiency are detected when testing the source with and without the PM, it can be deduced that the convergent field provided by the PM plays a role in constricting the plasma rather than in improving the plasma production. Furthermore it is applied to physical ion etching of silicon and aluminum substrates; then high etching rates of 6.5 µm min-1 and 8 µm min-1 are obtained, respectively.
Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.
Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang
2016-01-26
An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.
Nonequilibrium calculations of the role of electron impact in the production of NO and its emissions
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-04-01
We review our recent work on nonequilibrium modelling of the density of nitric oxide and its infrared emissions in the Earth's upper atmosphere. The aim of these studies was to investigate the contribution of electron impact excitation to the NO density and the sensitivity of this process to the electron impact cross sections. The results are compared with satellite measurements of NO densities in equatorial and auroral high-latitude conditions and with rocket measurements of infrared emissions in auroral conditions. Particular findings are that electron impact excitation of N2 makes a significant contribution to the NO density at altitudes around 105 km and to auroral infrared emissions for the (1 → 0) ground-state emission from NO. The sensitivity of the NO fundamental emissions to various measured and theoretical integral cross sections is investigated and found to be significant.
NASA Astrophysics Data System (ADS)
Kligys, M.; Laukaitis, A.; Sinica, M.; Sezemanas, G.; Dranseika, N.
2008-03-01
The study deals with experimental investigations into the fire hazard of a composite of density 150-350 kg/m3 made of aerated concrete and crushed expanded polystyrene waste. The results of fire tests showed that a single-flame source of low heat output (0.07 kW) did not influence the origination and spread of flame on the surface of test specimens, regardless their density. Upon exposing the specimens to a single burning item of moderate heat output (30.0 kW), during the first 600 s of exposure, neither flaming particles nor droplets originated, nor a lateral flame spread on the long specimen wing was observed. In the case of high heat output (112 kW), the specimens of densities 150 and 250 kg/m3 started to burn, but those of density 150 kg/m3, in addition, lost their integrity.
Bipolar plates for PEM fuel cells
NASA Astrophysics Data System (ADS)
Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.
The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.
Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach.
Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole
2015-01-01
The ability to recognize, understand and interpret other's actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON.
Density structure of the lithosphere in the southwestern United States and its tectonic significance
Kaban, M.K.; Mooney, W.D.
2001-01-01
We calculate a density model of the lithosphere of the southwestern United States through an integrated analysis of gravity, seismic refraction, drill hole, and geological data. Deviations from the average upper mantle density are as much as ?? 3%. A comparison with tomographic images of seismic velocities indicates that a substantial part (>50%) of these density variations is due to changes in composition rather than temperature. Pronounced mass deficits are found in the upper mantle under the Basin and Range Province and the northern part of the California Coast Ranges and adjacent ocean. The density structure of the northern and central/southern Sierra Nevada is remarkably different. The central/southern part is anomalous and is characterized by a relatively light crust underlain by a higher-density upper mantle that may be associated with a cold, stalled subducted plate. High densities are also determined within the uppermost mantle beneath the central Transverse Ranges and adjoining continental slope. The average density of the crystalline crust under the Great Valley and western Sierra Nevada is estimated to be up to 200 kg m~3 higher than the regional average, consistent with tectonic models for the obduction of oceanic crust and uppermost mantle in this region.
Interface investigation of solution processed high- κ ZrO2/Si MOS structure by DLTS
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Mondal, Sandip; Rao, Ksr Koteswara
The interfacial region is dominating due to the continuous downscaling and integration of high- k oxides in CMOS applications. The accurate characterization of high- k oxides/semiconductor interface has the significant importance towards its usage in memory and thin film devices. The interface traps at the high - k /semiconductor interface can be quantified by deep level transient spectroscopy (DLTS) with better accuracy in contrast to capacitance-voltage (CV) and conductance technique. We report the fabrication of high- k ZrO2 films on p-Si substrate by a simple and inexpensive sol-gel spin-coating technique. Further, the ZrO2/Si interface is characterized through DLTS. The flat-band voltage (VFB) and the density of slow interface states (oxide trapped charges) extracted from CV characteristics are 0.37 V and 2x10- 11 C/cm2, respectively. The activation energy, interface state density and capture cross-section quantified by DLTS are EV + 0.42 eV, 3.4x1011 eV- 1 cm- 2 and 5.8x10- 18 cm2, respectively. The high quality ZrO2 films own high dielectric constant 15 with low leakage current density might be an appropriate insulating layer in future electronic application. The low value of interface state density and capture cross-section are the indication of high quality interface and the defect present at the interface may not affect the device performance to a great extent. The DLTS study provides a broad understanding about the traps present at the interface of spin-coated ZrO2/Si.
In-situ Testing of the EHT High Gain and Frequency Ultra-Stable Integrators
NASA Astrophysics Data System (ADS)
Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Lotz, Dan
2014-10-01
Eagle Harbor Technologies (EHT) has developed a long-pulse integrator that exceeds the ITER specification for integration error and pulse duration. During the Phase I program, EHT improved the RPPL short-pulse integrators, added a fast digital reset, and demonstrated that the new integrators exceed the ITER integration error and pulse duration requirements. In Phase II, EHT developed Field Programmable Gate Array (FPGA) software that allows for integrator control and real-time signal digitization and processing. In the second year of Phase II, the EHT integrator will be tested at a validation platform experiment (HIT-SI) and tokamak (DIII-D). In the Phase IIB program, EHT will continue development of the EHT integrator to reduce overall cost per channel. EHT will test lower cost components, move to surface mount components, and add an onboard Field Programmable Gate Array and data acquisition to produce a stand-alone system with lower cost per channel and increased the channel density. EHT will test the Phase IIB integrator at a validation platform experiment (HIT-SI) and tokamak (DIII-D). Work supported by the DOE under Contract Number (DE-SC0006281).
NASA Astrophysics Data System (ADS)
Jourde, K.; Gibert, D.; Marteau, J.
2015-04-01
This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.
Dong, Yanfeng; Zheng, Shuanghao; Qin, Jieqiong; Zhao, Xuejun; Shi, Haodong; Wang, Xiaohui; Chen, Jian; Wu, Zhong-Shuai
2018-03-27
High-energy-density lithium-sulfur (Li-S) batteries hold promise for next-generation portable electronic devices, but are facing great challenges in rational construction of high-performance flexible electrodes and innovative cell configurations for actual applications. Here we demonstrated an all-MXene-based flexible and integrated sulfur cathode, enabled by three-dimensional alkalized Ti 3 C 2 MXene nanoribbon (a-Ti 3 C 2 MNR) frameworks as a S/polysulfides host (a-Ti 3 C 2 -S) and two-dimensional delaminated Ti 3 C 2 MXene (d-Ti 3 C 2 ) nanosheets as interlayer on a polypropylene (PP) separator, for high-energy and long-cycle Li-S batteries. Notably, an a-Ti 3 C 2 MNR framework with open interconnected macropores and an exposed surface area guarantees high S loading and fast ionic diffusion for prompt lithiation/delithiation kinetics, and the 2D d-Ti 3 C 2 MXene interlayer remarkably prevents the shuttle effect of lithium polysulfides via both chemical absorption and physical blocking. As a result, the integrated a-Ti 3 C 2 -S/d-Ti 3 C 2 /PP electrode was directly used for Li-S batteries, without the requirement of a metal current collector, and exhibited a high reversible capacity of 1062 mAh g -1 at 0.2 C and enhanced capacity of 632 mAh g -1 after 50 cycles at 0.5 C, outperforming the a-Ti 3 C 2 -S/PP electrode (547 mAh g -1 ) and conventional a-Ti 3 C 2 -S on an Al current collector (a-Ti 3 C 2 -S/Al) (597 mAh g -1 ). Furthermore, the all-MXene-based integrated cathode displayed outstanding rate capacity of 288 mAh g -1 at 10 C and long-life cyclability. Therefore, this proposed strategy of constructing an all-MXene-based cathode can be readily extended to assemble a large number of MXene-derived materials, from a group of 60+ MAX phases, for applications such as various batteries and supercapacitors.
Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki; Park, Changyong; Wang, Yanbin; Shen, Guoyin
2015-07-01
Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10(5) frames/second (fps) in air and up to ∼10(4) fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.
NASA Technical Reports Server (NTRS)
Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan
2017-01-01
NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.
Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF
NASA Astrophysics Data System (ADS)
Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.
2017-10-01
A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tangaromsuk, Jantana; Borole, Abhijeet P; Kruatrachue, Maleeya
2008-01-01
BACKGROUND: A single-stage reactor, in which the growth of bacterial culture, induction of desulfurizing enzymes, and desulfurization reaction are carried out in a single step, was adopted to investigate desulfurization of DBT at high cell densities. IGTS8 was used as the biocatalyst. Optimal condition for the bacterial growth and DBT desulfurization were also investigated. RESULTS: Optimization of fermentation conditions was necessary to obtain high cell densities including controlling accumulation of acetate. Under optimal operating conditions, the maximum OD600 was measured to be 26.6 at 118 h of cultivation. When biodesulfurization of DBT in model oil with a high cell densitymore » culture of IGTS8 was investigated, accumulation of sulfate was found to limit the extent of desulfurization. A sulfate removal step was added to obtain a single-stage integrated biodesulfurization process. Sulfate removal was achieved via an aqueous bleed stream and use of a separation unit to recycle the organic phase. CONCLUSION : A proof of principle of a complete system capable of biocatalyst growth, induction, desulfurization and by-product separation was demonstrated. This system enables simplification of the biodesulfurization process and has potential to lower the operating cost of the bioprocess.« less
Developments in the CCP4 molecular-graphics project.
Potterton, Liz; McNicholas, Stuart; Krissinel, Eugene; Gruber, Jan; Cowtan, Kevin; Emsley, Paul; Murshudov, Garib N; Cohen, Serge; Perrakis, Anastassis; Noble, Martin
2004-12-01
Progress towards structure determination that is both high-throughput and high-value is dependent on the development of integrated and automatic tools for electron-density map interpretation and for the analysis of the resulting atomic models. Advances in map-interpretation algorithms are extending the resolution regime in which fully automatic tools can work reliably, but at present human intervention is required to interpret poor regions of macromolecular electron density, particularly where crystallographic data is only available to modest resolution [for example, I/sigma(I) < 2.0 for minimum resolution 2.5 A]. In such cases, a set of manual and semi-manual model-building molecular-graphics tools is needed. At the same time, converting the knowledge encapsulated in a molecular structure into understanding is dependent upon visualization tools, which must be able to communicate that understanding to others by means of both static and dynamic representations. CCP4 mg is a program designed to meet these needs in a way that is closely integrated with the ongoing development of CCP4 as a program suite suitable for both low- and high-intervention computational structural biology. As well as providing a carefully designed user interface to advanced algorithms of model building and analysis, CCP4 mg is intended to present a graphical toolkit to developers of novel algorithms in these fields.
3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites
NASA Astrophysics Data System (ADS)
Tabiai, Ilyass; Therriault, Daniel
Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.
Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi
2016-02-05
We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.
NASA Astrophysics Data System (ADS)
Vinciguerra, T.; Chittams, A.; Dadzie, J.; Deskins, T.; Goncalves, V.; M'Bagui Matsanga, C.; Zakaria, R.; Ehrman, S.; Dickerson, R. R.
2015-12-01
Over the past several years, the combined utilization of hydraulic fracturing and horizontal drilling has led to a rapid increase in natural gas production, especially from the Marcellus Shale. To explore the impact of this activity downwind on regions with no natural gas production, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was used to generate 48-hour back-trajectories for summer, daytime hours from the years 2007-2014 in the Baltimore, MD and Washington, D.C. areas where hourly ethane measurements are available from Photochemical Assessment Monitoring Stations (PAMS). For each of the years investigated, unconventional well counts were obtained for counties in the surrounding states of Pennsylvania, Ohio, West Virginia, and Virginia, and counties exceeding a threshold of 0.05 wells/km2 were designated as counties with a high density of wells. The back-trajectories for each year were separated into two groups: those which passed through counties containing a high density of wells, and those which did not. Back-trajectories passing through high-density counties were further screened by applying a height criterion where trajectories beyond 10% above the mixing layer were excluded. Preliminary results indicate that air parcels with back-trajectories passing within the boundary layer of counties with a high density of unconventional natural gas wells correspond to significantly greater concentrations of observed ethane at these downwind monitors.
Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac
2017-11-01
The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
2012-01-01
Background Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. Results The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186) was C03, and the chromosome with smallest number of markers (99) was C09. Conclusions This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps. PMID:23033896
Speckle measurements of density and temperature profiles in a model gas circuit breaker
NASA Astrophysics Data System (ADS)
Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.
2015-01-01
Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.
NASA Astrophysics Data System (ADS)
Radice, Stefania; Lince Klinger, Federico; Maffini, M. Natalia; Pinotti, Lucio P.; Demartis, Manuel; D´Eramo, Fernando J.; Giménez, Mario; Coniglio, Jorge E.
2018-03-01
The Guacha Corral shear zone (GCSZ) is represented by mylonites that were developed under amphibolites facies conditions from migmatitic protoliths. In this contribution, geophysical, petrological and structural data were combined to determine the 3D geometry of the GCSZ. New gravimetric, magnetometric and structural studies, along an E-W profile, were integrated with existing magnetotelluric and seismological data from a representative regional database of the Eastern Sierras Pampeanas. The zonation of different fabrics across the GCSZ suggests that the pre-existing heterogeneities of the protoliths played a key role in governing the degree of metamorphism of different regions. The low gravity anomalies observed in the GCSZ suggest a transitional boundary zone between the migmatitic and mylonitic domains, where highly deformed shear bands are interspersed with undeformed rocks, presenting gradual contacts. The mylonites in this shear zone show a considerably reduced density when compared to the migmatite protoliths. The density of the rocks gradually increases with depth until it reaches that of the protolith. These changes in the gravity values in response to density changes allowed us to infer a listric geometry at depth of the GCSZ. Low gravity anomalies in the profiles, in regions where high density rocks (migmatites) outcrop at the surface, modeled as buried granitic plutons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanbin; Shen, Guoyin
2014-12-23
Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.
2014-04-01
technology described in this proposal was first commercialized in 2004. It has been installed in 35 states and 5 countries primarily on residential ...temperatures. o Rainwater harvesting systems help reduce demands on potable water systems and help crowded cities manage stormwater drainage problems...of high density polyisocyanurate rigid insulation board installed over the existing roof and between the sub-purlins with the top layer taped to
El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.
2015-01-01
Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542
El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B
2015-04-07
Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems.
DE 1 observations of type 1 counterstreaming electrons and field-aligned currents
NASA Technical Reports Server (NTRS)
Lin, C. S.; Burch, J. L.; Barfield, J. N.; Sugiura, M.; Nielsen, E.
1984-01-01
Dynamics Explorer 1 satellite observations of plasma and magnetic fields during type one counterstreaming electron events are presented. Counterstreaming electrons are observed at high altitudes in the region of field-aligned current. The total current density computed from the plasma data in the 18-10,000 eV energy range is generally about 1-2 micro-A/sq m. For the downward current, low-energy electrons contribute more than 40 percent of the total plasma current density integrated above 18 eV. For the upward current, such electrons contribute less than 50 percent of that current density. Electron beams in the field-aligned direction are occasionally detected. The pitch angle distributions of counterstreaming electrons are generally enhanced at both small and large pitch angles. STARE simultaneous observations for one DE 1 pass indicated that the field-aligned current was closed through Pedersen currents in the ionosphere. The directions of the ionospheric current systems are consistent with the DE 1 observations at high altitudes.
Injector design for liner-on-target gas-puff experiments
NASA Astrophysics Data System (ADS)
Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.
2017-11-01
We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.
Injector design for liner-on-target gas-puff experiments.
Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N
2017-11-01
We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.
Enzymatic Conversion of CO2 to Bicarbonate in Functionalized Mesoporous Silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yuehua; Chen, Baowei; Qi, Wen N.
2012-05-01
We report here that carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in functionalized mesoporous silica (FMS) with super-high loading density (up to 0.5 mg of protein/mg of FMS) due to the dominant electrostatic interaction. The binding of CA to HOOC-FMS can result in the protein’s conformational change comparing to the enzyme free in solution, but can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency. The electrostatically bound CA can bemore » released by changing pH. The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. This work opens up a new approach converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.« less
NASA Astrophysics Data System (ADS)
Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui
2018-04-01
In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.
Butterflies Do Not Alter Conspecific Avoidance in Response to Variation in Density.
Jaumann, Sarah; Snell-Rood, Emilie C
2017-08-01
High conspecific densities are associated with increased levels of intraspecific competition and a variety of negative effects on performance. However, changes in life history strategy could compensate for some of these effects. For instance, females in crowded conditions often have fewer total offspring, but they may invest more in each one. Such investment could include the production of larger offspring, more time spent engaging in parental care, or more choosy decisions about where offspring are placed. For animals that have a relatively immobile juvenile stage, the costs of competition can be particularly high. Females may be able to avoid such costs by investing more in individual reproductive decisions, rearing young or laying eggs in locations away from other females. We tested the hypothesis that conspecific density cues during juvenile and adult life stages lead to changes in life history strategy, including both reproduction and oviposition choices. We predicted that high-density cues during the larval and adult stages of female Pieris rapae butterflies lead to lower fecundity but higher conspecific avoidance during oviposition, compared to similar low-density cues. We used a 2×2 factorial design to examine the effects of low and high conspecific density during the larval and adult stages of butterflies on avoidance behavior and fecundity. We found that past information about conspecific density did not matter; all butterflies exhibited similar levels of fecundity and a low level of conspecific avoidance during oviposition regardless of their previous experience as larvae and adults. These results suggest that P. rapae females use a fixed, rather than flexible, conspecific avoidance strategy when making oviposition decisions, and past information about conspecific density has no effect on life history and current reproductive investment. We speculate that this may be partially because past conspecific density per se is not a reliable cue for predicting current density and levels of competition, and thus it does not affect the development of life history strategies in this system. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen
2018-03-14
Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.
Net field-aligned currents observed by Triad
NASA Technical Reports Server (NTRS)
Sugiura, M.; Potemra, T. A.
1975-01-01
From the Triad magnetometer observation of a step-like level shift in the east-west component of the magnetic field at 800 km altitude, the existence of a net current flowing into or away from the ionosphere in a current layer was inferred. The current direction is toward the ionosphere on the morning side and away from it on the afternoon side. The field aligned currents observed by Triad are considered as being an important element in the electro-dynamical coupling between the distant magnetosphere and the ionosphere. The current density integrated over the thickness of the layer increases with increasing magnetic activity, but the relation between the current density and Kp in individual cases is not a simple linear relation. An extrapolation of the statistical relation to Kp = 0 indicates existence of a sheet current of order 0.1 amp/m even at extremely quiet times. During periods of higher magnetic activity an integrated current of approximately 1 amp/m and average current density of order 0.000001 amp/sq m are observed. The location and the latitudinal width of the field aligned current layer carrying the net current very roughly agree with those of the region of high electron intensities in the trapping boundary.
Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology
NASA Astrophysics Data System (ADS)
Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun
2017-11-01
Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density <10 mg cm-3 and the stable \\bar{E}˜ {\\bar{ρ }}2 scaling through all range of relative density, indicates an advantage over the previous stochastic metal foams. Overall, this initiator-integrated 3D printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.
The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...
High energy density capacitors for low cost applications
NASA Astrophysics Data System (ADS)
Iyore, Omokhodion David
Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a comparison of the structural, chemical and electrical properties of the neat and crosslinked films. Chapter 5 investigates the reliability and lifetime of PVDF-HFP thin films via time-zero and time-dependent dielectric breakdown. A power law relationship between the breakdown strength and characteristic breakdown time was determined, allowing extrapolation of lifetime at a desired operating voltage. The dissertation concludes with a summary and project outlook in chapter 7.
NASA Astrophysics Data System (ADS)
de la Broïse, Xavier; Le Coguie, Alain; Sauvageot, Jean-Luc; Pigot, Claude; Coppolani, Xavier; Moreau, Vincent; d'Hollosy, Samuel; Knarosovski, Timur; Engel, Andreas
2018-05-01
We have successively developed two superconducting flexible PCBs for cryogenic applications. The first one is monolayer, includes 552 tracks (10 µm wide, 20 µm spacing), and receives 24 wire-bonded integrated circuits. The second one is multilayer, with one track layer between two shielding layers interconnected by microvias, includes 37 tracks, and can be interconnected at both ends by wire bonding or by connectors. The first cold measurements have been performed and show good performances. The novelty of these products is, for the first one, the association of superconducting materials with very narrow pitch and bonded integrated circuits and, for the second one, the introduction of a superconducting multilayer structure interconnected by vias which is, to our knowledge, a world-first.
Recent progress in preparation and application of microfluidic chip electrophoresis
NASA Astrophysics Data System (ADS)
Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao
2015-05-01
Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin
2015-07-21
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin
2015-01-01
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105
Transparent nanotubular capacitors based on transplanted anodic aluminum oxide templates.
Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Wu, Wenhui; Yue, Jin; Liu, Chang
2015-03-11
Transparent AlZnO/Al2O3/AlZnO nanocapacitor arrays have been fabricated by atomic layer deposition in anodic aluminum oxide templates transplanted on the AlZnO/glass substrates. A high capacitance density of 37 fF/μm(2) is obtained, which is nearly 5.8 times bigger than that of planar capacitors. The capacitance density almost remains the same in a broad frequency range from 1 kHz to 200 kHz. Moreover, a low leakage current density of 1.7 × 10(-7) A/cm(2) at 1 V has been achieved. The nanocapacitors exhibit an average optical transmittance of more than 80% in the visible range, and thus open the door to practical applications in transparent integrated circuits.
NASA Astrophysics Data System (ADS)
Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong
2017-08-01
Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.
NASA Astrophysics Data System (ADS)
Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Scott, D.; van der Werf, P. P.
2017-11-01
We present a new measurement of the evolving galaxy far-IR luminosity function (LF) extending out to redshifts z ≃ 5, with resulting implications for the level of dust-obscured star formation density in the young Universe. To achieve this, we have exploited recent advances in sub-mm/mm imaging with SCUBA-2 on the James Clerk Maxwell Telescope and the Atacama Large Millimeter/Submillimeter Array, which together provide unconfused imaging with sufficient dynamic range to provide meaningful coverage of the luminosity-redshift plane out to z > 4. Our results support previous indications that the faint-end slope of the far-IR LF is sufficiently flat that comoving luminosity density is dominated by bright objects (≃L*). However, we find that the number density/luminosity of such sources at high redshifts has been severely overestimated by studies that have attempted to push the highly confused Herschel SPIRE surveys beyond z ≃ 2. Consequently, we confirm recent reports that cosmic star formation density is dominated by UV-visible star formation at z > 4. Using both direct (1/Vmax) and maximum likelihood determinations of the LF, we find that its high-redshift evolution is well characterized by continued positive luminosity evolution coupled with negative density evolution (with increasing redshift). This explains why bright sub-mm sources continue to be found at z > 5, even though their integrated contribution to cosmic star formation density at such early times is very small. The evolution of the far-IR galaxy LF thus appears similar in form to that already established for active galactic nuclei, possibly reflecting a similar dependence on the growth of galaxy mass.
NASA Astrophysics Data System (ADS)
Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin
2014-04-01
Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies
Variations of Strahl Properties with Fast and Slow Solar Wind
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris
2008-01-01
The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.
Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.
Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I
2014-03-24
Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.
Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals
Berényi, Antal; Somogyvári, Zoltán; Nagy, Anett J.; Roux, Lisa; Long, John D.; Fujisawa, Shigeyoshi; Stark, Eran; Leonardo, Anthony; Harris, Timothy D.
2013-01-01
Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function. PMID:24353300
A thermosyphon heat pipe cooler for high power LEDs cooling
NASA Astrophysics Data System (ADS)
Li, Ji; Tian, Wenkai; Lv, Lucang
2016-08-01
Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.
Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays
NASA Astrophysics Data System (ADS)
Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.
1994-07-01
Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.
To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira; ...
2016-11-30
The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira
The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less
The Need for Optical Means as an Alternative for Electronic Computing
NASA Technical Reports Server (NTRS)
Adbeldayem, Hossin; Frazier, Donald; Witherow, William; Paley, Steve; Penn, Benjamin; Bank, Curtis; Whitaker, Ann F. (Technical Monitor)
2001-01-01
An increasing demand for faster computers is rapidly growing to encounter the fast growing rate of Internet, space communication, and robotic industry. Unfortunately, the Very Large Scale Integration technology is approaching its fundamental limits beyond which the device will be unreliable. Optical interconnections and optical integrated circuits are strongly believed to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by conventional electronics. This paper demonstrates two ultra-fast, all-optical logic gates and a high-density storage medium, which are essential components in building the future optical computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JaeHwa Koh; DuckJoo Yoon; Chang H. Oh
2010-07-01
An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.
Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine.
Timothy B. Harrington; Laura T. Rader-Dixon; John W. Jr. Taylor
2003-01-01
Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a...
High bit rate mass data storage device
NASA Technical Reports Server (NTRS)
1973-01-01
The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.
Determining integral density distribution in the mach reflection of shock waves
NASA Astrophysics Data System (ADS)
Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.
2017-05-01
We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.
NASA Astrophysics Data System (ADS)
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee
2015-11-01
The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.
Bourke, Peter M; van Geest, Geert; Voorrips, Roeland E; Jansen, Johannes; Kranenburg, Twan; Shahin, Arwa; Visser, Richard G F; Arens, Paul; Smulders, Marinus J M; Maliepaard, Chris
2018-05-02
Polyploid species carry more than two copies of each chromosome, a condition found in many of the world's most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realise all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops. polymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops. polymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polymapR. Chris Maliepaard chris.maliepaard@wur.nl or Roeland E. Voorrips roeland.voorrips@wur.nl. Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Cun; He, An; Yong, Huadong
We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agreemore » with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.« less
Seetharam, Divya; Mineo, Chieko; Gormley, Andrew K; Gibson, Linda L; Vongpatanasin, Wanpen; Chambliss, Ken L; Hahner, Lisa D; Cummings, Melissa L; Kitchens, Richard L; Marcel, Yves L; Rader, Daniel J; Shaul, Philip W
2006-01-06
Vascular disease risk is inversely related to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL provides vascular protection are unclear. The disruption of endothelial monolayer integrity is an important contributing factor in multiple vascular disorders, and vascular lesion severity is tempered by enhanced endothelial repair. Here, we show that HDL stimulates endothelial cell migration in vitro in a nitric oxide-independent manner via scavenger receptor B type I (SR-BI)-mediated activation of Rac GTPase. This process does not require HDL cargo molecules, and it is dependent on the activation of Src kinases, phosphatidylinositol 3-kinase, and p44/42 mitogen-activated protein kinases. Rapid initial stimulation of lamellipodia formation by HDL via SR-BI, Src kinases, and Rac is also demonstrable. Paralleling the in vitro findings, carotid artery reendothelialization after perivascular electric injury is blunted in apolipoprotein A-I(-/-) mice, and reconstitution of apolipoprotein A-I expression rescues normal reendothelialization. Furthermore, reendothelialization is impaired in SR-BI(-/-) mice. Thus, HDL stimulates endothelial cell migration via SR-BI-initiated signaling, and these mechanisms promote endothelial monolayer integrity in vivo.
High-Mass X-ray Binaries in hard X- rays
NASA Astrophysics Data System (ADS)
Lutovinov, Alexander
We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.
Nanostructure array plasmas generated by femtosecond pulses at highly relativistic intensities
NASA Astrophysics Data System (ADS)
Hollinger, R. C.; Wong, Y.; Wong, S.; Rockwood, A.; Glasby, J.; Shlyaptsev, V.; Rocca, J. J.; Capeluto, M. G.; Kaymak, V.; Pukhov, A.
2017-10-01
The irradiation of high aspect ratio ordered nanostructure arrays with ultra-high contrast femtosecond laser pulses of relativistic intensity provides a unique combination of nearly complete optical absorption and drastically enhanced light penetration into near-solid density targets. This allows the material to be volumetrically heated deep into the ultra-high energy density regime. In previous experiments we have shown that irradiation of Ni and Au nanostructures with femtosecond pulses focused to an intensity of 5x1018 Wcm-2 generate multi-KeV near solid density plasmas in which atoms are ionized to the Ni+26 and Au+52 charge states. Here we present the first results of the irradiation of nanostructure arrays with highly relativistic pulses of intensities up to 5x1021Wcm-2. Silver and Rhodium nanowire arrays were irradiated with frequency-doubled pulses of 30 fs duration from a petawatt-class Ti:Sa laser. Time integrated x-ray spectra show the presence of He-like and Li-like emission. Results of experiments conducted with a variety of different nanowires diameters with a range of interwire spacings will be presented and compared to the result of 3D particle-in-cell-simulations. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy.
NASA Astrophysics Data System (ADS)
Jourde, K.; Gibert, D.; Marteau, J.
2015-08-01
This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.
European trends in greenhouse gases emissions from integrated solid waste management.
Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio
2015-01-01
The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).
NASA's 3D Flight Computer for Space Applications
NASA Technical Reports Server (NTRS)
Alkalai, Leon
2000-01-01
The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).
Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures
NASA Technical Reports Server (NTRS)
Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.
2011-01-01
Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on C/C were shown to perform well at temperatures exceeding 3,500 F (.1,925 C). The melt-infiltrated CMC-lined C/C composites offered a lower density than Cf/SiC. The melt-infiltrated composites offer greater use temperature than Cf/SiC because of the more refractory ceramic matrices and the C/C substructure provides greater high-temperature strength. The progress made in this work will allow multiple high-temperature components used in oxidizing environments to take advantage of the low density and high strength of C/C combined with the high-temperature oxidation resistance of melt-infiltrated CMCs.
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Spectra of random operators with absolutely continuous integrated density of states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com
2014-04-15
The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.
Characterization and optimization of the HyperV PLX- α coaxial-gun plasma jet
NASA Astrophysics Data System (ADS)
Case, Andrew; Brockington, Sam; Cruz, Edward; Witherspoon, F. Douglas
2017-10-01
We present results from characterizing and optimizing performance of the contoured gap coaxial plasma guns under development for the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. Plasma jet diagnostics include fast photodiodes for velocimetry and interferometry for line integrated density. Additionally we present results from spectroscopy, both time resolved high resolution spectroscopy using a novel detector and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. Fast imaging gives plume geometry and time integrated imaging gives overall light emission. Results from a novel long record length camera developed by HyperV will also be presented. Experimental results are compared to the desired target parameters for the plasma jets. The target values for the plasmoid are velocity of 50 km/s, mass of 3.5 mg, and length of 10 cm. The best results so far from the exploration of parameter space for gun operation are: 4 mg at >50 km/s, with a length of 10 cm. Peak axial density 34 cm downstream from the muzzle is 2 ×1016 cm-3. This work supported by the ARPA-E ALPHA Program under contract DE-AR0000566.
Patel, Malkeshkumar; Kim, Joondong
2017-12-01
In this data article, the excitonic ZnO/NiO heterojunction device (Patel et al., 2017) [1] was measured for the integrated photocurrent density and reproducibility. Photograph of the prepared devices of ZnO/NiO on the FTO/glass is presented. Integrated photocurrent density as a function of photon energy from the sunlight is presented. Quantum efficiency measurement system (McScienceK3100, Korea) compliance with International Measurement System was employed to measure ZnO/NIO devices. These data are shown for the 300-440 nm of segment of the sunlight (AM1.5G, http://rredc.nrel.gov/solar/spectra/am1.5/). Reproducibility measure of ZnO/NiO device was presented for nine devices with the estimated device performance parameters including the open circuit voltage, short circuit current density, fill factor and power conversion efficiency.
Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors
Huang, Yue; Mason, Andrew J.
2013-01-01
This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616
Lab-on-CMOS integration of microfluidics and electrochemical sensors.
Huang, Yue; Mason, Andrew J
2013-10-07
This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.
NASA Astrophysics Data System (ADS)
Stark, D. P.; Bunker, A. J.; Ellis, R. S.; Eyles, L. P.; Lacy, M.
2007-04-01
We present a new measurement of the integrated stellar mass per comoving volume at redshift 5 determined via spectral energy fitting drawn from a sample of 214 photometrically selected galaxies with z'850LP<26.5 in the southern GOODS field. Following recent procedures introduced by Eyles et al., we estimate stellar masses for various subsamples for which reliable and unconfused Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most luminous sources with z=4.92 provides a firm lower limit to the stellar mass density of 1×106 Msolar Mpc-3. Several galaxies in this subsample have masses of order 1011 Msolar, implying that significant earlier activity occurred in massive systems. We then consider a larger sample whose photometric redshifts in the publicly available GOODS-MUSIC catalog lie in the range 4.4
Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments
NASA Astrophysics Data System (ADS)
Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.
2016-10-01
We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.
SDSS-IV MaNGA: environmental dependence of stellar age and metallicity gradients in nearby galaxies
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Wang, Huiyuan; Ge, Junqiang; Mao, Shude; Li, Cheng; Li, Ran; Mo, Houjun; Goddard, Daniel; Bundy, Kevin; Li, Hongyu; Nair, Preethi; Lin, Lihwai; Long, R. J.; Riffel, Rogério; Thomas, Daniel; Masters, Karen; Bizyaev, Dmitry; Brownstein, Joel R.; Zhang, Kai; Law, David R.; Drory, Niv; Roman Lopes, Alexandre; Malanushenko, Olena
2017-03-01
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA (Mapping Nearby Galaxies at APO) integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV - r colour and environments, as identified by both the large-scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV - r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
Transport simulation of EAST long-pulse H-mode discharge with integrated modeling
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.
2018-04-01
In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.
Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R; McQueen, Philip G; Yang, Andrew X; Mizuguchi, Takeshi; Grewal, Shiv I S; Levin, Henry L
2015-11-01
Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. Copyright © 2015 by the Genetics Society of America.
Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R.; McQueen, Philip G.; Yang, Andrew X.; Mizuguchi, Takeshi; Grewal, Shiv I. S.; Levin, Henry L.
2015-01-01
Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and −9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. PMID:26358720
A Computer Code for Fully-Coupled Rocket Nozzle Flows (FULLNOZ)
1975-04-01
surface (i.e. each integration It would be useful to incorporate an "initializing" scheme which utilizes comb tstion chamber properties as initial...density is greater than the critical electron density. (During the initial stages of the expansion process , where particle tempera- tures are very high it...34iW to19Cs*4909too xs *d99$900 wool ?* 0. SeFC16, .t) .6?900 1, 3x *,30?%I0 to 41,171 0I. 9"CI ,."v *?’o.9 A3 qhbs99r.oo, v.U118 0.1 ,t It Od Cs Sol-C
A spectroscopic study using line ratios of lithiumlike ions in a laser-produced plasma
NASA Astrophysics Data System (ADS)
Moreno, J. C.; Goldsmith, S.; Griem, H. R.
1989-02-01
Spectra of highly ionized titanium and calcium in the extreme ultraviolet region were observed in laser-produced plasmas using the OMEGA 24 beam (351 nm) laser system at the University of Rochester. The plasmas were produced using glass microballoon targets coated with a layer of a medium Z element and a layer of parylene (CH). Time-integrated electron temperatures and densities were obtained by comparing measured line intensity ratios of lithiumlike charge states of Ti and Ca to numerical calculations from a collisional-radiative model. The variation of line intensity ratios with electron density and temperature using the collisional-radiative model is discussed.
NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.« less
ERIC Educational Resources Information Center
Shaw, Mike
2003-01-01
Integrates story telling into a science activity on the density of liquids in order to increase student interest. Shows the relationship between mass and volume ratio and how they determine density. Includes teacher notes. (YDS)
Summary of measurements of high-LET particle radiation in U.S. manned space missions.
Benton, E V; Peterson, D D; Henke, R P
1977-01-01
A summary of measurements of high-LET particle radiation inside U.S. manned spacecraft is given for ASTP (Apollo Soyuz Test Project), Skylab and Apollo missions. The results include particle fluxes, integral LET spectra, and stopping-density charge distributions derived from measurements made in plastic nuclear track detectors worn by astronauts and located at various positions inside spacecraft. The results presented for different missions cover a wide range of shielding depth and missions type.
NASA Technical Reports Server (NTRS)
Ou, Danny; Trifu, Roxana; Caggiano, Gregory
2013-01-01
A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.
2013-01-01
Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011
NASA Astrophysics Data System (ADS)
Qie, G.; Wang, G.; Wang, M.
2016-12-01
Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images
Tensor hypercontraction. II. Least-squares renormalization
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Tensor hypercontraction. II. Least-squares renormalization.
Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David
2012-12-14
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Development of a High Reliability Compact Air Independent PEMFC Power System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Wynne, Bob
2013-01-01
Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Zhang, Heng; Wang, Xuefei; Shen, Zhenbin; Xu, Jiejie; Qin, Jing; Sun, Yihong
2015-10-01
Tumor-associated macrophages (TAMs), the most predominant tumor-infiltrating immune cells, are emerging prognostic factors and therapeutic targets for personalized therapy against malignant neoplasms. We aimed to evaluate the prognostic significance of diametrically polarized TAMs in gastric cancer and generate a predictive nomogram to refine a risk stratification system. We evaluated polarized functional status of infiltrated TAMs by immunohistochemical staining of CD68, CD11c, and CD206 in 180 consecutive gastric cancer patients from Zhongshan Hospital, Shanghai, China. Prognostic values were assessed in these patients. We created a predictive nomogram by integrating polarized TAMs with the TNM staging system for overall survival of gastric cancer patients. CD68(+) TAMs display polarized programs comprising CD11c(+) proinflammatory macrophages (M1) and CD206(+) immunosuppressive macrophages (M2) that configure versatile infiltration files in gastric cancer. CD11c(+) TAMs negatively correlated with lymph node metastasis (p = 0.012), whereas CD206(+) TAMs correlated with the Lauren classification (p = 0.031). No prognostic difference was observed for overall survival for CD68 density (high vs low, p = 0.1031), whereas high versus low CD11c density (p < 0.0001) and low vs high CD206 density (p = 0.0105) indicate better overall survival. Multivariate Cox regression analysis identified CD11c and CD206 as independent prognostic factors (p < 0.001 and p = 0.030, respectively), which could be integrated with the TNM staging system to generate a predictive nomogram for patient outcomes. Infiltration of polarized TAMs, a novel identified independent prognostic factor, could be combined with the TNM stage to refine a risk stratification system and better stratify patients with different prognosis. Tipping TAMs to an antitumoral phenotype might be a promising therapeutic target for postoperative treatment.
NASA Astrophysics Data System (ADS)
Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.
2017-06-01
We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.
High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepler, Keith D.; Slater, Michael
This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less
Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing
2003-01-01
SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.
NASA Astrophysics Data System (ADS)
Bock, James Joseph
1994-01-01
We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.
Real-time electron density measurements from Cotton-Mouton effect in JET machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brombin, M.; Electrical Engineering Department, Padova University, via Gradenigo 6-A, 35131 Padova; Boboc, A.
Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements formore » a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.« less
NASA Technical Reports Server (NTRS)
Israel, F. P.; Mahoney, M. J.; Howarth, N.
1992-01-01
We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.
Ronnenberg, Katrin; Strauß, Egbert; Siebert, Ursula
2016-09-09
The grey partridge (Perdix perdix) and the common pheasant (Phasianus colchicus) are galliform birds typical of arable lands in Central Europe and exhibit a partly dramatic negative population trend. In order to understand general habitat preferences we modelled grey partridge and common pheasant densities over the entire range of Lower Saxony. Spatially explicit developments in bird densities were modelled using spatially explicit trends of crop cultivation. Pheasant and grey partridge densities counted annually by over 8000 hunting district holders over 10 years in a range of 3.7 Mio ha constitute a unique dataset (wildlife survey of Lower Saxony). Data on main landscape groups, functional groups of agricultural crops (consisting of 9.5 million fields compiled by the Integrated Administration and Control System) and landscape features were aggregated to 420 municipalities. To model linear 8 or 10 year population trends (for common pheasant and grey partridge respectively) we use rho correlation coefficients of densities, but also rho coefficients of agricultural crops. All models confirm a dramatic decline in population densities. The habitat model for the grey partridge shows avoidance of municipalities with a high proportion of woodland and water areas, but a preference for areas with a high proportion of winter grains and high crop diversity. The trend model confirms these findings with a linear positive effect of diversity on grey partridge population development. Similarly, the pheasant avoids wooded areas but showed some preference for municipalities with open water. The effect of maize was found to be positive at medium densities, but negative at very high proportions. Winter grains, landscape features and high crop diversity are favorable. The positive effect of winter grains and higher crop diversity is also supported by the trend model. The results show the strong importance of diverse crop cultivation. Most incentives favor the cultivation of specific crops, which results in large areas of monocultures. The results confirm the importance of sustainable agricultural policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, A.; Burke, K.
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
NASA Technical Reports Server (NTRS)
Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.
2015-01-01
A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.
Ye, Jianglin; Tan, Huabing; Wu, Shuilin; Ni, Kun; Pan, Fei; Liu, Jie; Tao, Zhuchen; Qu, Yan; Ji, Hengxing; Simon, Patrice; Zhu, Yanwu
2018-05-17
High-performance yet flexible micro-supercapacitors (MSCs) hold great promise as miniaturized power sources for increasing demand of integrated electronic devices. Herein, this study demonstrates a scalable fabrication of multilayered graphene-based MSCs (MG-MSCs), by direct laser writing (DLW) of stacked graphene films made from industry-scale chemical vapor deposition (CVD). Combining the dry transfer of multilayered CVD graphene films, DLW allows a highly efficient fabrication of large-areal MSCs with exceptional flexibility, diverse planar geometry, and capability of customer-designed integration. The MG-MSCs exhibit simultaneously ultrahigh energy density of 23 mWh cm -3 and power density of 1860 W cm -3 in an ionogel electrolyte. Notably, such MG-MSCs demonstrate an outstanding flexible alternating current line-filtering performance in poly(vinyl alcohol) (PVA)/H 2 SO 4 hydrogel electrolyte, indicated by a phase angle of -76.2° at 120 Hz and a resistance-capacitance constant of 0.54 ms, due to the efficient ion transport coupled with the excellent electric conductance of the planar MG microelectrodes. MG-polyaniline (MG-PANI) hybrid MSCs fabricated by DLW of MG-PANI hybrid films show an optimized capacitance of 3.8 mF cm -2 in PVA/H 2 SO 4 hydrogel electrolyte; an integrated device comprising MG-MSCs line filtering, MG-PANI MSCs, and pressure/gas sensors is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min
2017-10-25
Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.
Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach
Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P.; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole
2015-01-01
Background The ability to recognize, understand and interpret other’s actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Method Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Results Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. Conclusion While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON. PMID:26317222
Irradiation performance of U-Mo monolithic fuel
Meyer, M. K.; Gan, J.; Jue, J. F.; ...
2014-04-01
High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less
IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.K. Meyer; J. Gan; J.-F. Jue
2014-04-01
High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less
NASA Astrophysics Data System (ADS)
Cai, Xiang; Song, Yu; Sun, Zhen; Guo, Di; Liu, Xiao-Xia
2017-10-01
In-situ growing of energy storage materials on graphene-based substrates/current collectors with low defect is a good way to boost electron transport and so enhance rate capability for the obtained electrode. Herein, high-quality graphene-like nanopetals are partially exfoliated from graphite foil (GF) through a facile and fast cathodic process. Three-dimensional porous structure is established for the afforded cathodically-exfoliated graphite foil (CEG), with many graphene-like nanopetals vertically anchoring on the graphite substrate. A hierarchical structure is constructed by the following electrochemical growth of Co-Ni double hydroxide nanopetals on the graphene atop CEG. The double hydroxide in the obtained electrode with the optimized Co2+/Ni2+ molar ratio, Co0.75Ni0.25(OH)2-CEG, displays much improved rate capability and so can deliver a high specific capacitance of 1460 F g-1 at an ultra-high current density of 100 A g-1. An asymmetric device is assembled by using Co0.75Ni0.25(OH)2-CEG as cathode, which demonstrates a high energy density of 31.6 Wh kg-1 at an ultra-high power density of 21.5 kW kg-1, showing the potential of the hierarchical composite electrode for high power application. The device also displays good stability, it can retain more than 90% of its capacitance after 10000 galvanostatic charge-discharge cycles.
Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection.
Song, Linan; Ahn, Soohyoun; Walt, David R
2006-02-15
We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.
Comparative atmosphere structure experiment
NASA Technical Reports Server (NTRS)
Sommer, S.
1974-01-01
Atmospheric structure of outer planets as determined by pressure, temperature, and accelerometers is reviewed and results obtained from the PAET earth entry are given. In order to describe atmospheric structure, entry is divided into two regimes, high and low speed. Acceleration is then measured: from these measurements density is determined as a function of time. The equations of motion are integrated to determine velocity, flight path angle, and altitude as a function of time. Density is then determined as a function of altitude from the previous determinations of density and altitude as a function of time. Hydrostatic equilibrium was assumed to determine pressure as a function of altitude. Finally the equation of space applied to determine temperature as a function of altitude, if the mean molecular weight is known. The mean molecular weight is obtained independently from either the low speed experiment or from the composition experiments.
Low-index discontinuity terahertz waveguides
NASA Astrophysics Data System (ADS)
Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich
2006-10-01
A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.
Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.
Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu
2015-09-28
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.
Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics
NASA Astrophysics Data System (ADS)
Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung
2015-09-01
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.
Shamloo, Amir; Mohammadaliha, Negar; Heilshorn, Sarah C; Bauer, Amy L
2016-04-01
A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness, cell-matrix adhesion and cross-linking, deeper understanding of the most important biomechanical or biochemical properties of the ECM causing changes in sprout morphogenesis is crucial. Here, we implemented both computational and experimental methods to analyze the mechanisms responsible for the influence of ECM density on the sprout formation that is difficult to be investigated comprehensively using each of these single methods. For this purpose, we first utilized an innovative approach to quantify the correspondence of the simulated collagen fibril density to the collagen density in the experimental part. Comparing the results of the experimental study and computational model led to some considerable achievements. First, we verified the results of the computational model using the experimental results. Then, we reported parameters such as the ratio of proliferating cells to migrating cells that was difficult to obtain from experimental study. Finally, this integrative system led to gain an understanding of the possible mechanisms responsible for the effect of ECM density on angiogenesis. The results showed that stable and long sprouts were observed at an intermediate collagen matrix density of 1.2 and 1.9 mg/ml due to a balance between the number of migrating and proliferating cells. As a result of weaker connections between the cells and matrix, a lower collagen matrix density (0.7 mg/ml) led to unstable and broken sprouts. However, higher matrix density (2.7 mg/ml) suppressed sprout formation due to the high level of matrix entanglement, which inhibited cell migration. This study also showed that extracellular matrix density can influence sprout branching. Our experimental results support this finding.
ERIC Educational Resources Information Center
Brunori, Gianluca; Rossi, Adanella
2007-01-01
One of the key factors for the success of development strategies in rural areas is the setting up of appropriate governance patterns, whose main outcome is a fluid communication between public and private organisations and an effective integration of objectives and policies. Through a "post-rural" approach, this paper aims to analyse an…
2006-11-01
fabricated. Of the molecules, the fac- Ir(dfppy)(dfppz)2 compound had the blue-est emission with the highest quantum efficiency . Phosphorescent...phosphorescent lifetimes, high quantum efficiencies and good stability. The emission color can be readily tuned from blue/green to red by judicious... electroluminescent efficiency as a function of current density plotted against the luminance. Fig. 3 Illustration of an
Surface inspection: Research and development
NASA Technical Reports Server (NTRS)
Batchelder, J. S.
1987-01-01
Surface inspection techniques are used for process learning, quality verification, and postmortem analysis in manufacturing for a spectrum of disciplines. First, trends in surface analysis are summarized for integrated circuits, high density interconnection boards, and magnetic disks, emphasizing on-line applications as opposed to off-line or development techniques. Then, a closer look is taken at microcontamination detection from both a patterned defect and a particulate inspection point of view.
Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; ...
2015-10-06
General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ showsmore » at least two other stable noncollinear (45° and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO 3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.« less
Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis
Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert
2016-01-01
Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257
Niobium flex cable for low temperature high density interconnects
NASA Astrophysics Data System (ADS)
van Weers, H. J.; Kunkel, G.; Lindeman, M. A.; Leeman, M.
2013-05-01
This work describes the fabrication and characterization of a Niobium on polyimide flex cable suitable for sub-Kelvin temperatures. The processing used can be extended to high density interconnects and allows for direct integration with printed circuit boards. Several key parameters such as RRR, Tc, current carrying capability at 4 K and thermal conductivity in the range from 0.15 to 10 K have been measured. The average Tc was found to be 8.9 K, with a minimum of 8.3 K. Several samples allowed for more than 50 mA current at 4 K while remaining in the superconducting state. The thermal conductivity for this flex design is dominated by the polyimide, in our case Pyralin PI-2611, and is in good agreement with published thermal conductivity data for a polyimide called Upilex R. Registered trademark of Ube Industries, Japan.
Methods and systems for rapid prototyping of high density circuits
Palmer, Jeremy A [Albuquerque, NM; Davis, Donald W [Albuquerque, NM; Chavez, Bart D [Albuquerque, NM; Gallegos, Phillip L [Albuquerque, NM; Wicker, Ryan B [El Paso, TX; Medina, Francisco R [El Paso, TX
2008-09-02
A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.
Design, fabrication, and evaluation of on-chip micro-supercapacitors
NASA Astrophysics Data System (ADS)
Beidaghi, Majid; Chen, Wei; Wang, Chunlei
2011-06-01
Development of miniaturized electronic systems has stimulated the demand for miniaturized power sources that can be integrated into such systems. Among the different micro power sources micro electrochemical energy storage and conversion devices are particularly attractive because of their high efficiency and relatively high energy density. Electrochemical micro-capacitors or micro-supercapacitors offer higher power density compared to micro-batteries and micro-fuel cells. In this paper, development of on-chip micro-supercapacitors based on interdigitated C-MEMS electrode microarrays is introduced. C-MEMS electrodes are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of EDLC or pseudo-capacitive materials. Recent advancements in fabrication methods of C-MEMS based micro-supercapacitors are discussed and electrochemical properties of C-MEMS electrodes and it composites are reviewed.
Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui
2016-01-01
Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274
Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui
2016-08-12
Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.
NASA Astrophysics Data System (ADS)
Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui
2016-08-01
Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry.
Carrad, D J; Mostert, A B; Ullah, A R; Burke, A M; Joyce, H J; Tan, H H; Jagadish, C; Krogstrup, P; Nygård, J; Meredith, P; Micolich, A P
2017-02-08
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types-electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high-density integrated bioelectronic circuitry.
The extrudate swell of HDPE: Rheological effects
NASA Astrophysics Data System (ADS)
Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.
2017-05-01
The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow
NASA Astrophysics Data System (ADS)
Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.
2015-12-01
We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).
Integrated Scenario Modeling of NSTX Advanced Plasma Configurations
NASA Astrophysics Data System (ADS)
Kessel, Charles; Synakowski, Edward
2003-10-01
The Spherical Torus will provide an attractive fusion energy source if it can demonstrate the following major features: high elongation and triangularity, 100% non-inductive current with a credible path to high bootstrap fractions, non-solenoidal startup and current rampup, high beta with stabilization of RWM instabilities, and sufficiently high energy confinement. NSTX has specific experimental milestones to examine these features, and integrated scenario modeling is helping to understand how these configurations might be produced and what tools are needed to access this operating space. Simulations with the Tokamak Simulation Code (TSC), CURRAY, and JSOLVER/BALMSC/PEST2 have identified fully non-inductively sustained, high beta plasmas that rely on strong plasma shaping accomplished with a PF coil modification, off-axis current drive from Electron Bernstein Waves (EBW), flexible on-axis heating and CD from High Harmonic Fast Wave (HHFW) and Neutral Beam Injection (NBI), and density control. Ideal MHD stability shows that with wall stabilization through plasma rotation and/or RWM feedback coils, a beta of 40% is achievable, with 100% non-inductive current sustained for 4 current diffusion times. Experimental data and theory are combined to produce a best extrapolation to these regimes, which is continuously improved as the discharges approach these parameters, and theoretical/computational methods expand. Further investigations and development for integrated scenario modeling on NSTX is discussed.
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Gallimore, Alec D.; Jacobson, David (Technical Monitor)
2003-01-01
Floating potential and ion current density measurements were taken on the laboratory model NASA-173Mv2 in order to improve understanding of the physical processes affecting Hall thruster performance at high specific impulse. Floating potential was measured on discharge chamber centerline over axial positions spanning 10 mm from the anode to 100 mm downstream of the exit plane. Ion current density was mapped radially up to 300 mm from thruster centerline over axial positions in the very-near-field (10 to 250 mm from the exit plane). All data were collected using a planar probe in conjunction with a high-speed translation stage to minimize probe-induced thruster perturbations. Measurements of floating potential at a xenon flow rate of 10 mg/s have shown that the acceleration layer moved upstream 3 1 mm when the voltage increased from 300 to 600 V. The length of the acceleration layer was 14 2 mm and was approximately constant with voltage and magnetic field. Ion current density measurements indicated the annular ion beam crossed the thruster centerline 163 mm downstream of the exit plane. Radial integration of the ion current density at the cathode plane provided an estimate of the ion current fraction. At 500 V and 5 mg/s, the ion current fraction was calculated as 0.77.
NASA Astrophysics Data System (ADS)
Tang, Xiaohui; Lui, Yu Hui; Chen, Bolin; Hu, Shan
2017-06-01
A hybrid electrochemical capacitor (EC) with enhanced energy density is realized by integrating functionalized carbon nanotube (FCNT) electrodes with redox-active electrolyte that has a neutral pH value (1 M Na2SO4 and 0.5 M KBr mixed aqueous solution). The negative electrode shows an electric double layer capacitor-type behavior. On the positive electrode, highly reversible Br-/Br3- redox reactions take place, presenting a battery-type behavior, which contributes to increase the capacitance of the hybrid cell. The voltage window of the whole cell is extended up to 1.5 V because of the high over-potentials of oxygen and hydrogen evolution reactions in the neutral electrolyte. Compared with raw CNT, the FCNT has better wettability in the aqueous electrolyte and contributes to increase the electric double layer capacitance of the cell. As a result, the maximum energy density of 28.3 Wh kg-1 is obtained from the hybrid EC at 0.5 A g-1 without sacrificing its power density, which is around 4 times larger than that of the electrical double layer capacitor constructed by FCNT electrodes and 1 M Na2SO4 electrolyte. Moreover, the discharge capacity retained 86.3% of its initial performance after 10000 cycles of galvanostatic charge and discharge test (10 A/g), suggesting its long life cycle even at high current loading.
Sahu, B B; Yin, Y Y; Tsutsumi, T; Hori, M; Han, Jeon G
2016-05-14
Control of the plasma densities and energies of the principal plasma species is crucial to induce modification of the plasma reactivity, chemistry, and film properties. This work presents a systematic and integrated approach to the low-temperature deposition of hydrogenated amorphous silicon nitride films looking into optimization and control of the plasma processes. Radiofrequency (RF) and ultrahigh frequency (UHF) power are combined to enhance significantly the nitrogen plasma and atomic-radical density to enforce their effect on film properties. This study presents an extensive investigation of the influence of combining radiofrequency (RF) and ultrahigh frequency (UHF) power as a power ratio (PR = RF : UHF), ranging from 4 : 0 to 0 : 4, on the compositional, structural, and optical properties of the synthesized films. The data reveal that DF power with a characteristic bi-Maxwellian electron energy distribution function (EEDF) is effectively useful for enhancing the ionization and dissociation of neutrals, which in turn helps in enabling high rate deposition with better film properties than that of SF operations. Utilizing DF PECVD, a wide-bandgap of ∼3.5 eV with strong photoluminescence features can be achieved only by using a high-density plasma and high nitrogen atom density at room temperature. The present work also proposes the suitability of the DF PECVD approach for industrial applications.
Liu, Shaohui; Xue, Shuangxi; Xiu, Shaomei; Shen, Bo; Zhai, Jiwei
2016-05-17
Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm(3) at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm(3) at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong
2015-07-15
Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at framemore » rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.« less
Ross, M P; Shumlak, U
2016-10-01
The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 10 20 m -2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.
Microstructure characterization via stereological relations — A shortcut for beginners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabst, Willi, E-mail: pabstw@vscht.cz; Gregorová, Eva; Uhlířová, Tereza
Stereological relations that can be routinely applied for the quantitative characterization of microstructures of heterogeneous single- and two-phase materials via global microstructural descriptors are reviewed. It is shown that in the case of dense, single-phase polycrystalline materials (e.g., transparent yttrium aluminum garnet ceramics) two quantities have to be determined, the interface density (or, equivalently, the mean chord length of the grains) and the mean curvature integral density (or, equivalently, the Jeffries grain size), while for two-phase materials (e.g., highly porous, cellular alumina ceramics), one additional quantity, the volume fraction (porosity), is required. The Delesse–Rosiwal law is recalled and size measuresmore » are discussed. It is shown that the Jeffries grain size is based on the triple junction line length density, while the mean chord length of grains is based on the interface density (grain boundary area density). In contrast to widespread belief, however, these two size measures are not alternative, but independent (and thus complementary), measures of grain size. Concomitant with this fact, a clear distinction between linear and planar grain size numbers is proposed. Finally, based on our concept of phase-specific quantities, it is shown that under certain conditions it is possible to define a Jeffries size also for two-phase materials and that the ratio of the mean chord length and the Jeffries size has to be considered as an invariant number for a certain type of microstructure, i.e., a characteristic value that is independent of the absolute size of the microstructural features (e.g., grains, inclusions or pores). - Highlights: • Stereology-based image analysis is reviewed, including error considerations. • Recipes are provided for measuring global metric microstructural descriptors. • Size measures are based on interface density and mean curvature integral density. • Phase-specific quantities and a generalized Jeffries size are introduced. • Linear and planar grain size numbers are clearly distinguished and explained.« less
3D printed high density, reversible, chip-to-chip microfluidic interconnects.
Gong, Hua; Woolley, Adam T; Nordin, Gregory P
2018-02-13
Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm 2 and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm 2 . We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.
Biofunctionalized silicon nitride platform for sensing applications.
Hoi, Hiofan; Rezaie, Salva S; Gong, Lu; Sen, Payel; Zeng, Hongbo; Montemagno, Carlo; Gupta, Manisha
2018-04-15
Silicon nitride (SiN x ) based biosensors have the potential to converge on the technological achievements of semiconductor microfabrication and biotechnology. Development of biofunctionalized SiN x surface and its integration with other devices will allow us to integrate the biosensing capability with probe control, data acquisition and data processing. Here we use the hydrogen plasma generated by inductively coupled plasma-reactive ion etching (ICP-RIE) technique to produce amino-functionality on the surface of SiN x which can then be readily used for biomolecule immobilization. ICP-RIE produces high-density hydrogen ions/radicals at low energy, which produces high-density amino group on the SiN x surface within a short duration of time and with minimal surface damage. In this work, we have demonstrated selective amination of SiN x surface as compared to Si surface. The as-activated SiN x surface can be readily biofunctionalized with both protein and oligonucleotide through covalent immobilization. N-5-azido-2-nitrobenzoyloxysuccinimide, a photoactivable amino reactive bifunctional crosslinker, was used and greater than 90% surface coverage was achieved for protein immobilization. In addition, ssDNA immobilization and hybridization with its complemented strand was shown. Thus, we demonstrate a uniform, reliable, fast and economical technique for creating biofunctionalized SiN x surface that can be used for developing compact high-sensitivity biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Makarevich, Roman A.
2016-04-01
A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.
NASA Astrophysics Data System (ADS)
Alfaro-Cuello, M.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Amram, P.
2015-10-01
We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and Hα emission, stellar continuum, velocity dispersion, electron density, Hα equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(Hα) ˜ 14 × 1041 erg s-1 and the star formation rate, SFR ˜11 M⊙ yr-1 for the central merging region of HCG 31A+C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.