Sample records for high density interconnect

  1. Sense and nonsense of logic-level optical interconnect: reflections on an experiment

    NASA Astrophysics Data System (ADS)

    Van Campenhout, Jan M.; Brunfaut, Marnik; Meeus, Wim; Dambre, Joni; De Wilde, Michiel

    2001-12-01

    Centimeter-range high-density optical interconnect between chips is coming into reach with current optical interconnect technology. Many theoretical studies have identified several good reasons why to use such types of interconnect as a replacement of various layers of the traditional electronic interconnect hierarchy. However, the true feasibility and usefulness of optical interconnects can only be established by actually building and evaluating them in a real system setting. This contribution reports on our experience in using short-range high-density optical inter-chip interconnects. It is based on the design and construction of a fully functional optoelectronic demonstrator system. We discuss the rationale for building the demonstrator in the first place, the implications of using many low-level optical interconnections in electronic systems, and the degree to which our expectations have been fulfilled by the demonstrator. The detailed description of the architecture, design and implementation of the demonstrator is not presented here, but can be found elsewhere in this issue.

  2. Advantages and Challenges of 10-Gbps Transmission on High-Density Interconnect Boards

    NASA Astrophysics Data System (ADS)

    Yee, Chang Fei; Jambek, Asral Bahari; Al-Hadi, Azremi Abdullah

    2016-06-01

    This paper provides a brief introduction to high-density interconnect (HDI) technology and its implementation on printed circuit boards (PCBs). The advantages and challenges of implementing 10-Gbps signal transmission on high-density interconnect boards are discussed in detail. The advantages (e.g., smaller via dimension and via stub removal) and challenges (e.g., crosstalk due to smaller interpair separation) of HDI are studied by analyzing the S-parameter, time-domain reflectometry (TDR), and transmission-line eye diagrams obtained by three-dimensional electromagnetic modeling (3DEM) and two-dimensional electromagnetic modeling (2DEM) using Mentor Graphics HyperLynx and Keysight Advanced Design System (ADS) electronic computer-aided design (ECAD) software. HDI outperforms conventional PCB technology in terms of signal integrity, but proper routing topology should be applied to overcome the challenge posed by crosstalk due to the tight spacing between traces.

  3. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  4. Planar high density sodium battery

    DOEpatents

    Lemmon, John P.; Meinhardt, Kerry D.

    2016-03-01

    A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.

  5. Trade-offs between lens complexity and real estate utilization in a free-space multichip global interconnection module.

    PubMed

    Milojkovic, Predrag; Christensen, Marc P; Haney, Michael W

    2006-07-01

    The FAST-Net (Free-space Accelerator for Switching Terabit Networks) concept uses an array of wide-field-of-view imaging lenses to realize a high-density shuffle interconnect pattern across an array of smart-pixel integrated circuits. To simplify the optics we evaluated the efficiency gained in replacing spherical surfaces with aspherical surfaces by exploiting the large disparity between narrow vertical cavity surface emitting laser (VCSEL) beams and the wide field of view of the imaging optics. We then analyzed trade-offs between lens complexity and chip real estate utilization and determined that there exists an optimal numerical aperture for VCSELs that maximizes their area density. The results provide a general framework for the design of wide-field-of-view free-space interconnection systems that incorporate high-density VCSEL arrays.

  6. Epidemics in interconnected small-world networks.

    PubMed

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  7. Ultra-precision fabrication of high density micro-optical backbone interconnections for data center and mobile application

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.

    2012-10-01

    A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.

  8. Home page | prc.gatech.edu | Georgia Institute of Technology | Atlanta, GA

    Science.gov Websites

    Interconnections & Assembly Low Cost Glass Interposers & Packages MEMS and Sensors GRA Opportunities addressing electrical, mechanical and thermal barriers. Low-cost Glass Interposer and Package Panel-based ultra-thin glass as a high performance, high I/O density, and low cost platform. Interconnections and

  9. Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Hu, Jingpeng; Wu, Shichao; Wang, Xiaolan; Zhang, Hui; Xu, Hui; Lian, Kun

    2018-04-01

    Three-dimensional interconnected porous graphitic carbon materials are synthesized via a combination of graphitization and activation process with rice straw as the carbon source. The physicochemical properties of the three-dimensional interconnected porous graphitic carbon materials are characterized by Nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The results demonstrate that the as-prepared carbon is a high surface area carbon material (a specific surface area of 3333 m2 g-1 with abundant mesoporous and microporous structures). And it exhibits superb performance in symmetric double layer capacitors with a high specific capacitance of 400 F g-1 at a current density of 0.1 A g-1, good rate performance with 312 F g-1 under a current density of 5 A g-1 and favorable cycle stability with 6.4% loss after 10000 cycles at a current density of 5 A g-1 in the aqueous electrolyte of 6M KOH. Thus, rice straw is a promising carbon source for fabricating inexpensive, sustainable and high performance supercapacitors' electrode materials.

  10. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities

    NASA Astrophysics Data System (ADS)

    Qin, Shengchun; Yao, Tinghui; Guo, Xin; Chen, Qiang; Liu, Dequan; Liu, Qiming; Li, Yali; Li, Junshuai; He, Deyan

    2018-05-01

    In this paper, we report an electrode architecture of molybdenum disulfide (MoS2)/nickel sulfide (Ni3S4) composite nanosheets anchored on interconnected carbon (C) shells (C@MoS2/Ni3S4). Electrochemical measurements indicate that the C@MoS2/Ni3S4 structure possesses excellent supercapacitive properties especially for long term cycling at high current densities. A specific capacitance as high as ∼640.7 F g-1 can still be delivered even after 10,000 cycles at a high current density of 20 A g-1. From comparison of microstructures and electrochemical properties of the related materials/structures, the improved performance of C@MoS2/Ni3S4 can be attributed to the relatively dispersedly distributed nanosheet-shaped MoS2/Ni3S4 that provides efficient contact with electrolyte and effectively buffers the volume change during charge/discharge processes, enhanced cycling stability by MoS2, and reduced equivalent series resistance by the interconnected C shells.

  11. Comparison of microrings and microdisks for high-speed optical modulation in silicon photonics

    NASA Astrophysics Data System (ADS)

    Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z.; Soref, Richard; Chen, Ray T.

    2018-03-01

    The past several decades have witnessed the gradual transition from electrical to optical interconnects, ranging from long-haul telecommunication to chip-to-chip interconnects. As one type of key component in integrated optical interconnect and high-performance computing, optical modulators have been well developed these past few years, including ultrahigh-speed microring and microdisk modulators. In this paper, a comparison between microring and microdisk modulators is well analyzed in terms of dimensions, static and dynamic power consumption, and fabrication tolerance. The results show that microdisks have advantages over microrings in these aspects, which gives instructions to the chip design of high-density integrated systems for optical interconnects and optical computing.

  12. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2018-02-13

    Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm 2 and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm 2 . We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.

  13. High density circuit technology, part 1

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    The metal (or dielectric) lift-off processes used in the semiconductor industry to fabricate high density very large scale integration (VLSI) systems were reviewed. The lift-off process consists of depositing the light-sensitive material onto the wafer and patterning first in such a manner as to form a stencil for the interconnection material. Then the interconnection layer is deposited and unwanted areas are lifted off by removing the underlying stencil. Several of these lift-off techniques were examined experimentally. The use of an auxiliary layer of polyimide to form a lift-off stencil offers considerable promise.

  14. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.

    PubMed

    Fu, Wenbin; Han, Weihua; Zha, Heming; Mei, Junfeng; Li, Yunxia; Zhang, Zemin; Xie, Erqing

    2016-09-21

    Nanostructured metal sulfides with excellent electrochemical activity and electrical conductivity are particularly promising for applications in high-performance energy storage devices. Here, we report on the facile synthesis of nanostructured CuS networks composed of interconnected nanoparticles as novel battery-type materials for asymmetric supercapacitors. We find that the CuS networks exhibit a high specific capacity of 49.8 mA g(-1) at a current density of 1 A g(-1), good rate capability and cycle stability. The superior performance could be attributed to the interconnected nanoparticles of CuS networks, which can facilitate electrolyte diffusion and provide fast electron pathways. Furthermore, an aqueous asymmetric supercapacitor has been assembled by using the CuS networks as the positive electrode and activated carbon as the negative electrode. The assembled device can work at a high operating voltage of 1.6 V and show a maximum energy density of 17.7 W h kg(-1) at a power density of 504 W kg(-1). This study indicates that the CuS networks have great potential for supercapacitor applications.

  15. Chip-scale integrated optical interconnects: a key enabler for future high-performance computing

    NASA Astrophysics Data System (ADS)

    Haney, Michael; Nair, Rohit; Gu, Tian

    2012-01-01

    High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide a seamless interconnect fabric spanning the intra-

  16. Chemically interconnected light-weight 3D-carbon nanotube solid network

    DOE PAGES

    Ozden, Sehmus; Tsafack, Thierry; Owuor, Peter S.; ...

    2017-03-31

    Owing to the weak physical interactions such as van der Waals and π-π interactions, which hold nanotubes together in carbon nanotube (CNT) bulk structures, the tubes can easily slide on each other. In creating covalent interconnection between individual carbon nanotube (CNT) structures we saw remarkable improvements in the properties of their three-dimensional (3D) bulk structures. The creation of such nanoengineered 3D solid structures with improved properties and low-density remains one of the fundamental challenges in real-world applications. We also report the scalable synthesis of low-density 3D macroscopic structure made of covalently interconnected nanotubes using free-radical polymerization method after functionalized CNTsmore » with allylamine monomers. The resulted interconnected highly porous solid structure exhibits higher mechanical properties, larger surface area and greater porosity than non-crosslinked nanotube structures. To gain further insights into the deformation mechanisms of nanotubes, fully atomistic reactive molecular dynamics simulations are used. Here we demonstrate one such utility in CO 2 uptake, whose interconnected solid structure performed better than non-interconnected structures.« less

  17. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  18. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Keywords: Extreme temperatures, High density CCGA qualification, CCGA reliability, solder joint failures, optical inspection, and x-ray inspection.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozden, Sehmus; Tsafack, Thierry; Owuor, Peter S.

    Owing to the weak physical interactions such as van der Waals and π-π interactions, which hold nanotubes together in carbon nanotube (CNT) bulk structures, the tubes can easily slide on each other. In creating covalent interconnection between individual carbon nanotube (CNT) structures we saw remarkable improvements in the properties of their three-dimensional (3D) bulk structures. The creation of such nanoengineered 3D solid structures with improved properties and low-density remains one of the fundamental challenges in real-world applications. We also report the scalable synthesis of low-density 3D macroscopic structure made of covalently interconnected nanotubes using free-radical polymerization method after functionalized CNTsmore » with allylamine monomers. The resulted interconnected highly porous solid structure exhibits higher mechanical properties, larger surface area and greater porosity than non-crosslinked nanotube structures. To gain further insights into the deformation mechanisms of nanotubes, fully atomistic reactive molecular dynamics simulations are used. Here we demonstrate one such utility in CO 2 uptake, whose interconnected solid structure performed better than non-interconnected structures.« less

  20. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is developed to address the IC packaging requirements beyond the ITRS projections and to introduce innovative design and fabrication concepts that will further advance the performance of the chip, the package, and the system board. The nano-structured interconnect technology simultaneously packages all the ICs intact in wafer form with quantum jump in the number of interconnections with the lowest electrical parasitics. The intrinsic properties of nano materials also enable several orders of magnitude higher interconnect densities with the best mechanical properties for the highest reliability and yet provide higher current and heat transfer densities. Nano-structured interconnects provides the ability to assemble the packaged parts on the system board without the use of underfill materials and to enable advanced analog/digital testing, reliability testing, and burn-in at wafer level. This thesis investigates the electrical and mechanical performance of nanostructured interconnections through modeling and test vehicle fabrication. The analytical models evaluate the performance improvements over solder and compliant interconnections. Test vehicles with nano-interconnections were fabricated using low cost electro-deposition techniques and assembled with various bonding interfaces. Interconnections were fabricated at 200 micron pitch to compare with the existing solder joints and at 50 micron pitch to demonstrate fabrication processes at fine pitches. Experimental and modeling results show that the proposed nano-interconnections could enhance the reliability and potentially meet all the system performance requirements for the emerging micro/nano-systems.

  1. LTCC interconnects in microsystems

    NASA Astrophysics Data System (ADS)

    Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag

    2006-06-01

    Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.

  2. Superconducting Multilayer High-Density Flexible Printed Circuit Board for Very High Thermal Resistance Interconnections

    NASA Astrophysics Data System (ADS)

    de la Broïse, Xavier; Le Coguie, Alain; Sauvageot, Jean-Luc; Pigot, Claude; Coppolani, Xavier; Moreau, Vincent; d'Hollosy, Samuel; Knarosovski, Timur; Engel, Andreas

    2018-05-01

    We have successively developed two superconducting flexible PCBs for cryogenic applications. The first one is monolayer, includes 552 tracks (10 µm wide, 20 µm spacing), and receives 24 wire-bonded integrated circuits. The second one is multilayer, with one track layer between two shielding layers interconnected by microvias, includes 37 tracks, and can be interconnected at both ends by wire bonding or by connectors. The first cold measurements have been performed and show good performances. The novelty of these products is, for the first one, the association of superconducting materials with very narrow pitch and bonded integrated circuits and, for the second one, the introduction of a superconducting multilayer structure interconnected by vias which is, to our knowledge, a world-first.

  3. Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Gan; Liu, Xiao-Xia

    2018-04-01

    Interconnected H0.12WO3ṡH2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm-2 (495.8 F g-1) at 2 mA cm-2. Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm-2. Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm-3 at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.

  4. Exploration of operator method digital optical computers for application to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.

  5. Can amorphization take place in nanoscale interconnects?

    PubMed

    Kumar, S; Joshi, K L; van Duin, A C T; Haque, M A

    2012-03-09

    The trend of miniaturization has highlighted the problems of heat dissipation and electromigration in nanoelectronic device interconnects, but not amorphization. While amorphization is known to be a high pressure and/or temperature phenomenon, we argue that defect density is the key factor, while temperature and pressure are only the means. For nanoscale interconnects carrying modest current density, large vacancy concentrations may be generated without the necessity of high temperature or pressure due to the large fraction of grain boundaries and triple points. To investigate this hypothesis, we performed in situ transmission electron microscope (TEM) experiments on 200 nm thick (80 nm average grain size) aluminum specimens. Electron diffraction patterns indicate partial amorphization at modest current density of about 10(5) A cm(-2), which is too low to trigger electromigration. Since amorphization results in drastic decrease in mechanical ductility as well as electrical and thermal conductivity, further increase in current density to about 7 × 10(5) A cm(-2) resulted in brittle fracture failure. Our molecular dynamics (MD) simulations predict the formation of amorphous regions in response to large mechanical stresses (due to nanoscale grain size) and excess vacancies at the cathode side of the thin films. The findings of this study suggest that amorphization can precede electromigration and thereby play a vital role in the reliability of micro/nanoelectronic devices.

  6. Si photonics technology for future optical interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Krishnamoorthy, Ashok V.

    2011-12-01

    Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.

  7. Rupture testing for the quality control of electrodeposited copper interconnections in high-speed, high-density circuits

    NASA Technical Reports Server (NTRS)

    Zakraysek, Louis

    1987-01-01

    Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.

  8. Experimental demonstration of the optical multi-mesh hypercube: scaleable interconnection network for multiprocessors and multicomputers.

    PubMed

    Louri, A; Furlonge, S; Neocleous, C

    1996-12-10

    A prototype of a novel topology for scaleable optical interconnection networks called the optical multi-mesh hypercube (OMMH) is experimentally demonstrated to as high as a 150-Mbit/s data rate (2(7) - 1 nonreturn-to-zero pseudo-random data pattern) at a bit error rate of 10(-13)/link by the use of commercially available devices. OMMH is a scaleable network [Appl. Opt. 33, 7558 (1994); J. Lightwave Technol. 12, 704 (1994)] architecture that combines the positive features of the hypercube (small diameter, connectivity, symmetry, simple routing, and fault tolerance) and the mesh (constant node degree and size scaleability). The optical implementation method is divided into two levels: high-density local connections for the hypercube modules, and high-bit-rate, low-density, long connections for the mesh links connecting the hypercube modules. Free-space imaging systems utilizing vertical-cavity surface-emitting laser (VCSEL) arrays, lenslet arrays, space-invariant holographic techniques, and photodiode arrays are demonstrated for the local connections. Optobus fiber interconnects from Motorola are used for the long-distance connections. The OMMH was optimized to operate at the data rate of Motorola's Optobus (10-bit-wide, VCSEL-based bidirectional data interconnects at 150 Mbits/s). Difficulties encountered included the varying fan-out efficiencies of the different orders of the hologram, misalignment sensitivity of the free-space links, low power (1 mW) of the individual VCSEL's, and noise.

  9. Optical Interconnections for VLSI Computational Systems Using Computer-Generated Holography.

    NASA Astrophysics Data System (ADS)

    Feldman, Michael Robert

    Optical interconnects for VLSI computational systems using computer generated holograms are evaluated in theory and experiment. It is shown that by replacing particular electronic connections with free-space optical communication paths, connection of devices on a single chip or wafer and between chips or modules can be improved. Optical and electrical interconnects are compared in terms of power dissipation, communication bandwidth, and connection density. Conditions are determined for which optical interconnects are advantageous. Based on this analysis, it is shown that by applying computer generated holographic optical interconnects to wafer scale fine grain parallel processing systems, dramatic increases in system performance can be expected. Some new interconnection networks, designed to take full advantage of optical interconnect technology, have been developed. Experimental Computer Generated Holograms (CGH's) have been designed, fabricated and subsequently tested in prototype optical interconnected computational systems. Several new CGH encoding methods have been developed to provide efficient high performance CGH's. One CGH was used to decrease the access time of a 1 kilobit CMOS RAM chip. Another was produced to implement the inter-processor communication paths in a shared memory SIMD parallel processor array.

  10. White beam analysis of coupling between precipitation and plasticdeformation during electromigration in a passivated Al(0.5wt. percent Cu)interconnect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, R.I.; Ice, G.E.; Tamura, N.

    2005-09-01

    The scaling of device dimensions with a simultaneous increase in functional density imposes a challenge to materials technology and reliability of interconnects. White beam X-ray microdiffraction is particularly well suited for the in situ study of electromigration. M.A. Krivoglaz theory was applied for the interpretation of white beam diffraction. The technique was used to probe microstructure in interconnects and has recently been able to monitor the onset of plastic deformation induced by mass transport during electromigration in Al(Cu) lines even before any macroscopic damage became visible. In the present paper, we demonstrate that the evolution of the dislocation structure duringmore » electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed geometrically necessary dislocations as well as geometrically necessary dislocation boundaries. When almost all unpaired dislocations and dislocation walls with the density n+ are parallel (as in the case of Al-based interconnects), the anisotropy in the scattering properties of the material becomes important, and the electrical properties of the interconnect depend strongly on the direction of the electric current relative to the orientation of the dislocation network. A coupling between the dissolution, growth and reprecipitation of Al2Cu precipitates and the electromigration-induced plastic deformation of grains in interconnects is observed.« less

  11. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, D.B.

    1988-06-06

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  12. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, David B.

    1991-01-01

    Integrated circuit chips are electrically connected to a silica wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin metal lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability.

  13. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  14. PICSiP: new system-in-package technology using a high bandwidth photonic interconnection layer for converged microsystems

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Töpper, Michael; Reichl, Herbert

    2009-05-01

    Technological frontiers between semiconductor technology, packaging, and system design are disappearing. Scaling down geometries [1] alone does not provide improvement of performance, less power, smaller size, and lower cost. It will require "More than Moore" [2] through the tighter integration of system level components at the package level. System-in-Package (SiP) will deliver the efficient use of three dimensions (3D) through innovation in packaging and interconnect technology. A key bottleneck to the implementation of high-performance microelectronic systems, including SiP, is the lack of lowlatency, high-bandwidth, and high density off-chip interconnects. Some of the challenges in achieving high-bandwidth chip-to-chip communication using electrical interconnects include the high losses in the substrate dielectric, reflections and impedance discontinuities, and susceptibility to crosstalk [3]. Obviously, the incentive for the use of photonics to overcome the challenges and leverage low-latency and highbandwidth communication will enable the vision of optical computing within next generation architectures. Supercomputers of today offer sustained performance of more than petaflops, which can be increased by utilizing optical interconnects. Next generation computing architectures are needed with ultra low power consumption; ultra high performance with novel interconnection technologies. In this paper we will discuss a CMOS compatible underlying technology to enable next generation optical computing architectures. By introducing a new optical layer within the 3D SiP, the development of converged microsystems, deployment for next generation optical computing architecture will be leveraged.

  15. Demonstration of fully enabled data center subsystem with embedded optical interconnect

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Worrall, Alex; Stevens, Paul; Miller, Allen; Wang, Kai; Schmidtke, Katharine

    2014-03-01

    The evolution of data storage communication protocols and corresponding in-system bandwidth densities is set to impose prohibitive cost and performance constraints on future data storage system designs, fuelling proposals for hybrid electronic and optical architectures in data centers. The migration of optical interconnect into the system enclosure itself can substantially mitigate the communications bottlenecks resulting from both the increase in data rate and internal interconnect link lengths. In order to assess the viability of embedding optical links within prevailing data storage architectures, we present the design and assembly of a fully operational data storage array platform, in which all internal high speed links have been implemented optically. This required the deployment of mid-board optical transceivers, an electro-optical midplane and proprietary pluggable optical connectors for storage devices. We present the design of a high density optical layout to accommodate the midplane interconnect requirements of a data storage enclosure with support for 24 Small Form Factor (SFF) solid state or rotating disk drives and the design of a proprietary optical connector and interface cards, enabling standard drives to be plugged into an electro-optical midplane. Crucially, we have also modified the platform to accommodate longer optical interconnect lengths up to 50 meters in order to investigate future datacenter architectures based on disaggregation of modular subsystems. The optically enabled data storage system has been fully validated for both 6 Gb/s and 12 Gb/s SAS data traffic conveyed along internal optical links.

  16. Microstructural characterization of ultra thin copper interconnects

    NASA Astrophysics Data System (ADS)

    Yang, Hee-Dong

    The present study investigates the defects related to reliability issues, such as physical failures developed during processing and end use. In the first part of this study, kinetic analysis using the Johnson-Mehl-Avrami (JMA) model demonstrates that a self-annealing mechanism in electroplated Cu films depends on the film properties, such as thickness and the amount of crystal defects in an as-deposited state. In order to obtain the evidence of such defects, the microstructural characterization of defects in ultra thin copper interconnects using transmission electron microscopy (TEM) is presented. Examination of the defects using TEM reveals that voids filled with gas form as a lens shape along the {110} habit planes of the copper matrix. In the second part of this study, methodology and results of an electro-thermal-fatigue (ETF) testing, designed for early detection of process defects, are presented. Such ETF testing combines high-density current electrical stressing and thermal cycling to accelerate the evolution of defects in Cu interconnects. In ETF testing, the evolution of defects provides the nucleation sites for voids which open or close during thermal cycling. Then, the accumulation of voids creates the change in resistance when they reach a critical size. As a result of voids evolution, the high current density and high joule heating create a transient resistance increase. ETF testing reveals two failure modes, and the mode-I failure has the importance in detecting defects. The number of cycles to failure in ETF testing decreases with higher current density, but the rate of thermal cycling has no effect. Results from this investigation suggest that impurities in the copper electrodeposition process must be carefully controlled to achieve reliable ultra thin copper interconnects.

  17. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  18. Designing an Electronics Data Package for Printed Circuit Boards (PCBs)

    DTIC Science & Technology

    2013-08-01

    finished PCB flatness deviation should be less than 0.010 inches per inch. 4  The minimum copper wall thickness of plated-thru holes should be...Memory Card International Association)  IPC-6015 MCM-L (Multi-Chip Module – Laminated )  IPC-6016 HDI (High Density Interconnect)  IPC-6018...Interconnect ICT In Circuit Tester IPC Association Connecting Electronics Industries MCM-L Multi-Chip Module – Laminated MIL Military NEMA National

  19. Thermoelectric Outer Planets Spacecraft (TOPS) electronic packaging and cabling development summary report

    NASA Technical Reports Server (NTRS)

    Dawe, R. H.; Arnett, J. C.

    1974-01-01

    Electronic packaging and cabling activities performed in support of the Thermoelectric Outer Planets Spacecraft (TOPS) Advanced Systems Technology (AST) project are detailed. It describes new electronic compartment, electronic assembly, and module concepts, and a new high-density, planar interconnection technique called discrete multilayer (DML). Development and qualification of high density cabling techniques, using small gage wire and microminiature connectors, are also reported.

  20. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  1. Niobium flex cable for low temperature high density interconnects

    NASA Astrophysics Data System (ADS)

    van Weers, H. J.; Kunkel, G.; Lindeman, M. A.; Leeman, M.

    2013-05-01

    This work describes the fabrication and characterization of a Niobium on polyimide flex cable suitable for sub-Kelvin temperatures. The processing used can be extended to high density interconnects and allows for direct integration with printed circuit boards. Several key parameters such as RRR, Tc, current carrying capability at 4 K and thermal conductivity in the range from 0.15 to 10 K have been measured. The average Tc was found to be 8.9 K, with a minimum of 8.3 K. Several samples allowed for more than 50 mA current at 4 K while remaining in the superconducting state. The thermal conductivity for this flex design is dominated by the polyimide, in our case Pyralin PI-2611, and is in good agreement with published thermal conductivity data for a polyimide called Upilex R. Registered trademark of Ube Industries, Japan.

  2. Substrate Engineered Interconnected Graphene Electrodes with Ultrahigh Energy and Power Densities for Energy Storage Applications.

    PubMed

    Chaichi, Ardalan; Wang, Ying; Gartia, Manas Ranjan

    2018-06-27

    Supercapacitors combine the advantages of electrochemical storage technologies such as high energy density batteries and high power density capacitors. At 5-10 W h kg -1 , the energy densities of current supercapacitors are still significantly lower than the energy densities of lead acid (20-35 W h kg -1 ), Ni-metal hydride (40-100 W h kg -1 ), and Li-ion (120-170 W h kg -1 ) batteries. Recently, graphene-based supercapacitors have shown an energy density of 40-80 W h kg -1 . However, their performance is mainly limited because of the reversible agglomeration and restacking of individual graphene layers caused by π-π interactions. The restacking of graphene layers leads to significant decrease of ion-accessible surface area and the low capacitance of graphene-based supercapacitors. Here, we introduce a microstructure substrate-based method to produce a fully delaminated and stable interconnected graphene structure using flash reduction of graphene oxide in a few seconds. With this structure, we achieve the highest amount of volumetric capacitance obtained so far by any type of a pure carbon-based material. The affordable and scalable production method is capable of producing electrodes with an energy density of 0.37 W h cm -3 and a power density of 416.6 W cm -3 . This electrode maintained more than 91% of its initial capacitance after 5000 cycles. Moreover, combining with ionic liquid, this solvent-free graphene electrode material is highly promising for on-chip electronics, micro-supercapacitors, as well as high-power applications.

  3. Electrical and Optical Performance Characteristics of 0.74-eV p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Jain, Raj K.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74-eV InGaAs, have demonstrated V(sub oc) = 3.2 volts, J(sub sc) = 70 mA/sq cm, and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (greater than 2 micron) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55-eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  4. InGaAs/InP Monolithic Interconnected Modules (MIM) for Thermophotovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Scheiman, David A.; Murray, Christopher S.; Riley, David R.

    2004-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between systems efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) devices series -connected on a single semi-insulating indium phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight series interconnected cells. MIM devices, produced from 0,74 eV InGAAs, have demonstrated V(sub infinity) = 3.23 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurement (less than 2 microns) of these devices indicate a reflectivity of less than 82%. MIM devices produced from 0.55 eV InGaAs have also been den=monstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM1) have been demonstrated.

  5. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  6. 1310nm VCSELs in 1-10Gb/s commercial applications

    NASA Astrophysics Data System (ADS)

    Jewell, Jack; Graham, Luke; Crom, Max; Maranowski, Kevin; Smith, Joseph; Fanning, Tom

    2006-02-01

    Beginning with 4 Gigabit/sec Fibre-Channel, 1310nm vertical-cavity surface-emitting lasers (VCSELs) are now entering the marketplace. Such VCSELs perform like distributed feedback lasers but have drive currents and heat dissipation like 850nm VCSELs, making them ideal for today's high-performance interconnects and the only choice for the next step in increased interconnection density. Transceiver performances at 4 and 10 Gigabits/sec over fiber lengths 10-40km are presented. The active material is extremely robust, resulting in excellent reliability.

  7. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors.

    PubMed

    Zhao, Xiao; Li, Ming; Dong, Hanwu; Liu, Yingliang; Hu, Hang; Cai, Yijin; Liang, Yeru; Xiao, Yong; Zheng, Mingtao

    2017-06-22

    Interconnected 3 D nanosheet networks of reduced graphene oxide decorated with carbon dots (rGO/CDs) are successfully fabricated through a simple one-pot hydrothermal process. The as-prepared rGO/CDs present appropriate 3 D interconnectivity and abundant stable oxygen-containing functional groups, to which we can attribute the excellent electrochemical performance such as high specific capacitance, good rate capability, and great cycling stability. Employed as binder-free electrodes for supercapacitors, the resulting rGO/CDs exhibit excellent long-term cycling stability (ca. 92 % capacitance retention after 20 000 charge/discharge cycles at current density of 10 A g -1 ) as well as a maximum specific capacitance of about 308 F g -1 at current density of 0.5 A g -1 , which is much higher than that of rGO (200 F g -1 ) and CDs (2.2 F g -1 ). This work provides a promising strategy to fabricate graphene-based nanomaterials with greatly boosted electrochemical performances by decoration of with CDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The potential benefits of photonics in the computing platform

    NASA Astrophysics Data System (ADS)

    Bautista, Jerry

    2005-03-01

    The increase in computational requirements for real-time image processing, complex computational fluid dynamics, very large scale data mining in the health industry/Internet, and predictive models for financial markets are driving computer architects to consider new paradigms that rely upon very high speed interconnects within and between computing elements. Further challenges result from reduced power requirements, reduced transmission latency, and greater interconnect density. Optical interconnects may solve many of these problems with the added benefit extended reach. In addition, photonic interconnects provide relative EMI immunity which is becoming an increasing issue with a greater dependence on wireless connectivity. However, to be truly functional, the optical interconnect mesh should be able to support arbitration, addressing, etc. completely in the optical domain with a BER that is more stringent than "traditional" communication requirements. Outlined are challenges in the advanced computing environment, some possible optical architectures and relevant platform technologies, as well roughly sizing these opportunities which are quite large relative to the more "traditional" optical markets.

  9. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high levelmore » of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.« less

  10. Plastic straw: future of high-speed signaling

    NASA Astrophysics Data System (ADS)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  11. Materials for High-Density Electronic Packaging and Interconnection

    DTIC Science & Technology

    1990-04-10

    play a prominent role in the future. Glass and Porcelain The earliest use of electronic ceramics was as insulators for carrying telegraph lines...Administration 61L & CORES , (Ot. stem. SAI WCJm 76. LOISS (C". SUMt *oW WVCf B’%2101 Constitution Avenue. N W Washington, D.C. 20418 Washington. D.C. 20301 G...Density Packaging 84 Tape Automated Bonding 87 Diamond 88 Superconductors 88 Composites 89 Materials for Very-High-Frequency Digital Systems 91

  12. Interconnected V2O5 nanoporous network for high-performance supercapacitors.

    PubMed

    Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G

    2012-09-26

    Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.

  13. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    NASA Astrophysics Data System (ADS)

    Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei

    2012-03-01

    We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  14. Multimode fiber for high-density optical interconnects

    NASA Astrophysics Data System (ADS)

    Bickham, Scott R.; Ripumaree, Radawan; Chalk, Julie A.; Paap, Mark T.; Hurley, William C.; McClure, Randy L.

    2017-02-01

    Data centers (DCs) are facing the challenge of delivering more capacity over longer distances. As line rates increase to 25 Gb/s and higher, DCs are being challenged with signal integrity issues due to the long electrical traces that require retiming. In addition, the density of interconnects on the front panel is limited by the size and power dissipation requirements of the pluggable modules. One proposal to overcome these issues is to use embedded optical transceivers in which optical fibers are used to transport data to and from the front panel. These embedded modules will utilize arrays of VCSEL or silicon-photonic transceivers, and in both cases, the capacity may be limited by the density of the optical connections on the chip. To address this constraint, we have prototyped optical fibers in which the glass and coating diameters are reduced to 80 and 125 microns, respectively. These smaller diameters enable twice as many optical interconnects in the same footprint, and this in turn will allow the transceiver arrays to be collinearly located on small chips with dimensions on the order of (5x5mm2)1,2. We have also incorporated these reduced diameter fibers into small, flexible 8-fiber ribbon cables which can simplify routing constraints inside modules and optical backplanes.

  15. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  16. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hao, Xiaodong; Wang, Jie; Ding, Bing; Wang, Ya; Chang, Zhi; Dou, Hui; Zhang, Xiaogang

    2017-06-01

    Bacterial cellulose (BC), a typical biomass prepared from the microbial fermentation process, has been proved that it can be an ideal platform for design of three-dimensional (3D) multifunctional nanomaterials in energy storage and conversion field. Here we developed a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors. The synthesized carbon nanofibers exhibited the features of interconnected 3D networks architecture, large surface area (624 m2 g-1), mesopores-dominated hierarchical porosity, and high graphitization degree. The as-prepared electrode (CN-BC) displayed a maximum specific capacitance of 302 F g-1 at a current density of 0.5 A g-1, high-rate capability and good cyclicity in 6 M KOH electrolyte. This work, together with cost-effective preparation strategy to make high-value utilization of cheap biomass, should have significant implications in the green and mass-producible energy storage.

  17. WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS

    NASA Astrophysics Data System (ADS)

    Kanellos, G. T.; Pleros, N.

    2017-02-01

    Multi-socket server boards have emerged to increase the processing power density on the board level and further flatten the data center networks beyond leaf-spine architectures. Scaling however the number of processors per board puts current electronic technologies into challenge, as it requires high bandwidth interconnects and high throughput switches with increased number of ports that are currently unavailable. On-board optical interconnection has proved the potential to efficiently satisfy the bandwidth needs, but their use has been limited to parallel links without performing any smart routing functionality. With CWDM optical interconnects already a commodity, cyclical wavelength routing proposed to fit the datacom for rack-to-rack and board-to-board communication now becomes a promising on-board routing platform. ICT-STREAMS is a European research project that aims to combine WDM parallel on-board transceivers with a cyclical AWGR, in order to create a new board-level, chip-to-chip interconnection paradigm that will leverage WDM parallel transmission to a powerful wavelength routing platform capable to interconnect multiple processors with unprecedented bandwidth and throughput capacity. Direct, any-to-any, on-board interconnection of multiple processors will significantly contribute to further flatten the data centers and facilitate east-west communication. In the present communication, we present ICT-STREAMS on-board wavelength routing architecture for multiple chip-to-chip interconnections and evaluate the overall system performance in terms of throughput and latency for several schemes and traffic profiles. We also review recent advances of the ICT-STREAMS platform key-enabling technologies that span from Si in-plane lasers and polymer based electro-optical circuit boards to silicon photonics transceivers and photonic-crystal amplifiers.

  18. Three-Dimensional Honeycomb-Like Porous Carbon with Both Interconnected Hierarchical Porosity and Nitrogen Self-Doping from Cotton Seed Husk for Supercapacitor Electrode.

    PubMed

    Chen, Hui; Wang, Gang; Chen, Long; Dai, Bin; Yu, Feng

    2018-06-08

    Hierarchical porous structures with surface nitrogen-doped porous carbon are current research topics of interest for high performance supercapacitor electrode materials. Herein, a three-dimensional (3D) honeycomb-like porous carbon with interconnected hierarchical porosity and nitrogen self-doping was synthesized by simple and cost-efficient one-step KOH activation from waste cottonseed husk (a-CSHs). The obtained a-CSHs possessed hierarchical micro-, meso-, and macro-pores, a high specific surface area of 1694.1 m²/g, 3D architecture, and abundant self N-doping. Owing to these distinct features, a-CSHs delivered high specific capacitances of 238 F/g and 200 F/g at current densities of 0.5 A/g and 20 A/g, respectively, in a 6 mol/L KOH electrolyte, demonstrating good capacitance retention of 84%. The assembled a-CSHs-based symmetric supercapacitor also displayed high specific capacitance of 52 F/g at 0.5 A/g, with an energy density of 10.4 Wh/Kg at 300 W/Kg, and 91% capacitance retention after 5000 cycles at 10 A/g.

  19. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  20. Immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is described by (jL) if no voids nucleate, and (jL/B) if voids nucleate.

  1. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing

    2013-11-01

    Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d

  2. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the chromium site, we could sinter the materials below 1400 C. The doping concentrations were adjusted so that the thermal expansion coefficient matched that of the zirconia electrolyte. Also, the investigation was focused on stoichiometric compositions so that the materials would have better stability. Co-sintering and chemical compatibility with zirconia electrolyte were examined by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy (line scanning and dot map). The results showed that the materials bond well, but do not react, with zirconia electrolyte. The electric conductivity of the materials measured at 900 C in air was about 20 S/cm.

  3. High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing

    NASA Astrophysics Data System (ADS)

    Guo, Liang

    2011-12-01

    Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.

  4. Mesoporous NiCo2O4 nano-needles supported by 3D interconnected carbon network on Ni foam for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Lu, Congxiang; Liu, Wen-wen; Pan, Hui; Tay, Beng Kang; Wang, Xingli; Liang, Kun; Wei, Xuezhe

    2018-05-01

    In this work, a three dimensional (3D) interconnected carbon network consisting of ultrathin graphite (UG) and carbon nanotubes (CNTs) on Ni foam is fabricated and employed as a novel type of substrate for mesoporous NiCo2O4 nano-needles. The successfully synthesized NiCo2O4 nano-needles/CNTs/UG on Ni foam has many advantages including facile electrolyte access and direct conducting pathways towards current collectors, which enable it to be a promising electrode material in battery-like electrochemical energy storage. Encouragingly, a high capacity of 135.1 mAh/g at the current density of 1 A/g, superior rate performance and also stable cycling for 1200 cycles at the current density of 5 A/g have been demonstrated in this novel material.

  5. Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, E.R.; Contreras L., E.; Garcia G., A.

    1987-01-20

    For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributionsmore » of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.« less

  6. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  7. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  8. Advanced materials and design for low temperature SOFCs

    DOEpatents

    Wachsman, Eric D.; Yoon, Heesung; Lee, Kang Taek; Camaratta, Matthew; Ahn, Jin Soo

    2016-05-17

    Embodiments of the invention are directed to SOFC with a multilayer structure comprising a porous ceramic cathode, optionally a cathodic triple phase boundary layer, a bilayer electrolyte comprising a cerium oxide comprising layer and a bismuth oxide comprising layer, an anion functional layer, and a porous ceramic anode with electrical interconnects, wherein the SOFC displays a very high power density at temperatures below 700.degree. C. with hydrogen or hydrocarbon fuels. The low temperature conversion of chemical energy to electrical energy allows the fabrication of the fuel cells using stainless steel or other metal alloys rather than ceramic conductive oxides as the interconnects.

  9. Materials for high-density electronic packaging and interconnection

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  10. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.

    PubMed

    Wang, Huanlei; Xu, Zhanwei; Kohandehghan, Alireza; Li, Zhi; Cui, Kai; Tan, Xuehai; Stephenson, Tyler James; King'ondu, Cecil K; Holt, Chris M B; Olsen, Brian C; Tak, Jin Kwon; Harfield, Don; Anyia, Anthony O; Mitlin, David

    2013-06-25

    We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.

  11. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics.

    PubMed

    Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing

    2013-12-07

    Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.

  12. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  13. Reliability and Characteristics of Wafer-Level Chip-Scale Packages under Current Stress

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ying; Kung, Heng-Yu; Lai, Yi-Shao; Hsiung Tsai, Ming; Yeh, Wen-Kuan

    2008-02-01

    In this work, we present a novel approach and method for elucidating the characteristics of wafer-level chip-scale packages (WLCSPs) for electromigration (EM) tests. The die in WLCSP was directly attached to the substrate via a soldered interconnect. The shrinking of the area of the die that is available for power, and the solder bump also shrinks the volume and increases the density of electrons for interconnect efficiency. The bump current density now approaches to 106 A/cm2, at which point the EM becomes a significant reliability issue. As known, the EM failure depends on numerous factors, including the working temperature and the under bump metallization (UBM) thickness. A new interconnection geometry is adopted extensively with moderate success in overcoming larger mismatches between the displacements of components during current and temperature changes. Both environments and testing parameters for WLCSP are increasingly demanded. Although failure mechanisms are considered to have been eliminated or at least made manageable, new package technologies are again challenging its process, integrity and reliability. WLCSP technology was developed to eliminate the need for encapsulation to ensure compatibility with smart-mount technology (SMT). The package has good handing properties but is now facing serious reliability problems. In this work, we investigated the reliability of a WLCSP subjected to different accelerated current stressing conditions at a fixed ambient temperature of 125 °C. A very strong correlation exists between the mean time to failure (MTTF) of the WLCSP test vehicle and the mean current density that is carried by a solder joint. A series of current densities were applied to the WLCSP architecture; Black's power law was employed in a failure mode simulation. Additionally, scanning electron microscopy (SEM) was adopted to determine the differences existing between high- and low-current-density failure modes.

  14. Surfactant-Free Aqueous Synthesis of Pure Single-Crystalline SnSe Nanosheet Clusters as Anode for High Energy- and Power-Density Sodium-Ion Batteries.

    PubMed

    Yuan, Shuang; Zhu, Yun-Hai; Li, Wang; Wang, Sai; Xu, Dan; Li, Lin; Zhang, Yu; Zhang, Xin-Bo

    2017-01-01

    SnSe with 3D hierarchical nanostructure composed of interconnected single-crystal SnSe nanosheets is synthesized via a fast and effective strategy. Unexpectedly, when used as the anode material for Na-ion batteries (NIBs), the SnSe exhibits a high capacity (738 mA h g -1 ), superior rate capability (40 A g -1 ), and high energy density in a full cell. These results provide the possibility of SnSe use as NIBs anodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Three-Dimensional Bi₂Te₃ Networks of Interconnected Nanowires: Synthesis and Optimization.

    PubMed

    Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martín-González, Marisol

    2018-05-18

    Self-standing Bi₂Te₃ networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi₂Te₃ interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi₂Te₃ networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.

  16. High density circuit technology, part 2

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.

  17. High-performance solid state supercapacitors assembling graphene interconnected networks in porous silicon electrode by electrochemical methods using 2,6-dihydroxynaphthalen.

    PubMed

    Romanitan, Cosmin; Varasteanu, Pericle; Mihalache, Iuliana; Culita, Daniela; Somacescu, Simona; Pascu, Razvan; Tanasa, Eugenia; Eremia, Sandra A V; Boldeiu, Adina; Simion, Monica; Radoi, Antonio; Kusko, Mihaela

    2018-06-25

    The challenge for conformal modification of the ultra-high internal surface of nanoporous silicon was tackled by electrochemical polymerisation of 2,6-dihydroxynaphthalene using cyclic voltammetry or potentiometry and, notably, after the thermal treatment (800 °C, N 2 , 4 h) an assembly of interconnected networks of graphene strongly adhering to nanoporous silicon matrix resulted. Herein we demonstrate the achievement of an easy scalable technology for solid state supercapacitors on silicon, with excellent electrochemical properties. Accordingly, our symmetric supercapacitors (SSC) showed remarkable performance characteristics, comparable to many of the best high-power and/or high-energy carbon-based supercapacitors, their figures of merit matching under battery-like supercapacitor behaviour. Furthermore, the devices displayed high specific capacity values along with enhanced capacity retention even at ultra-high rates for voltage sweep, 5 V/s, or discharge current density, 100 A/g, respectively. The cycling stability tests performed at relatively high discharge current density of 10 A/g indicated good capacity retention, with a superior performance demonstrated for the electrodes obtained under cyclic voltammetry approach, which may be ascribed on the one hand to a better coverage of the porous silicon substrate and, on the other hand, to an improved resilience of the hybrid electrode to pore clogging.

  18. Quantitative analysis of dislocation arrangements induced by electromigration in a passivated Al (0.5 wt % Cu) interconnect

    NASA Astrophysics Data System (ADS)

    Barabash, R. I.; Ice, G. E.; Tamura, N.; Valek, B. C.; Bravman, J. C.; Spolenak, R.; Patel, J. R.

    2003-05-01

    Electromigration during accelerated testing can induce plastic deformation in apparently undamaged Al interconnect lines as recently revealed by white beam scanning x-ray microdiffraction. In the present article, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking during the early stages of electromigration. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined. The origin of the observed plastic deformation is considered in view of the constraints for dislocation arrangements under the applied electric field during electromigration.

  19. 3-D integrated heterogeneous intra-chip free-space optical interconnect.

    PubMed

    Ciftcioglu, Berkehan; Berman, Rebecca; Wang, Shang; Hu, Jianyun; Savidis, Ioannis; Jain, Manish; Moore, Duncan; Huang, Michael; Friedman, Eby G; Wicks, Gary; Wu, Hui

    2012-02-13

    This paper presents the first chip-scale demonstration of an intra-chip free-space optical interconnect (FSOI) we recently proposed. This interconnect system provides point-to-point free-space optical links between any two communication nodes, and hence constructs an all-to-all intra-chip communication fabric, which can be extended for inter-chip communications as well. Unlike electrical and other waveguide-based optical interconnects, FSOI exhibits low latency, high energy efficiency, and large bandwidth density, and hence can significantly improve the performance of future many-core chips. In this paper, we evaluate the performance of the proposed FSOI interconnect, and compare it to a waveguide-based optical interconnect with wavelength division multiplexing (WDM). It shows that the FSOI system can achieve significantly lower loss and higher energy efficiency than the WDM system, even with optimistic assumptions for the latter. A 1×1-cm2 chip prototype is fabricated on a germanium substrate with integrated photodetectors. Commercial 850-nm GaAs vertical-cavity-surface-emitting-lasers (VCSELs) and fabricated fused silica microlenses are 3-D integrated on top of the substrate. At 1.4-cm distance, the measured optical transmission loss is 5 dB, the crosstalk is less than -20 dB, and the electrical-to-electrical bandwidth is 3.3 GHz. The latter is mainly limited by the 5-GHz VCSEL.

  20. Optoelectronic interconnects for 3D wafer stacks

    NASA Astrophysics Data System (ADS)

    Ludwig, David E.; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as a means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper provides definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies are discussed.

  1. Optoelectronic interconnects for 3D wafer stacks

    NASA Astrophysics Data System (ADS)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  2. Structure that encapsulates lithium metal for high energy density battery anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Yan, Kai; Chu, Steven

    A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.

  3. Laser Direct Routing for High Density Interconnects

    NASA Astrophysics Data System (ADS)

    Moreno, Wilfrido Alejandro

    The laser restructuring of electronic circuits fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative that allows low-cost quick turnaround production with full circuit similarity between the Laser Restructured prototype and the customized product for mass production. Laser Restructurable VLSI (LRVLSI) would allow design engineers the capability to interconnect cells that implement generic logic functions and signal processing schemes to achieve a higher level of design complexity. LRVLSI of a particular circuit at the wafer or packaged chip level is accomplished using an integrated computer controlled laser system to create low electrical resistance links between conductors and to cut conductor lines. An infrastructure for rapid prototyping and quick turnaround using Laser Restructuring of VLSI circuits was developed to meet three main parallel objectives: to pursue research on novel interconnect technologies using LRVLSI, to develop the capability of operating in a quick turnaround mode, and to maintain standardization and compatibility with commercially available equipment for feasible technology transfer. The system is to possess a high degree of flexibility, high data quality, total controllability, full documentation, short downtime, a user-friendly operator interface, automation, historical record keeping, and error indication and logging. A specially designed chip "SLINKY" was used as the test vehicle for the complete characterization of the Laser Restructuring system. With the use of Design of Experiment techniques the Lateral Diffused Link (LDL), developed originally at MIT Lincoln Laboratories, was completely characterized and for the first time a set of optimum process parameters was obtained. With the designed infrastructure fully operational, the priority objective was the search for a substitute for the high resistance, high current leakage to substrate, and relatively low density Lateral Diffused Link. A high density Laser Vertical Link with resistance values below 10 ohms was developed, studied and tested using design of experiment methodologies. The vertical link offers excellent advantages in the area of quick prototyping of electronic circuits, but even more important, due to having similar characteristics to a foundry produced via, it gives quick transfer from the prototype system verification stage to the mass production stage.

  4. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels.

    PubMed

    Li, Panpan; Jin, Zhaoyu; Peng, Lele; Zhao, Fei; Xiao, Dan; Jin, Yong; Yu, Guihua

    2018-05-01

    Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self-standing and flexible electrode-based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self-assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber-shaping process. A proof-of-concept all-gel-state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm -3 (at power density of 30.77 mW cm -3 ), outperforming many fiber-shaped supercapacitors reported previously. The all-hydrogel design opens up opportunities in the fabrication of next-generation wearable and portable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. TCAD Analysis of Heating and Maximum Current Density in Carbon Nanofiber Interconnects

    DTIC Science & Technology

    2011-09-01

    a metallic MWCNT interconnect. From [20]. ....20  Figure 11.  Simple equivalent circuit model of a metallic MWCNT interconnect. From [20...Carbon Nanotube MWCNT Multi-Walled Carbon Nanotube SCU Santa Clara University Si Silicon SiO2 Silicon Dioxide SiC Silicon Carbide Au Gold...proven, multi-walled carbon nanotube ( MWCNT ) [2]. He later discovered single-walled carbon nanotubes (SWCNT) in 1993 [13]. Since Iijima’s discovery

  6. Optoelectronic Technology Consortium: Precompetitive Consortium for Optoelectronic Interconnect Technology

    DTIC Science & Technology

    1992-09-01

    demonstrating the producibility of optoelectronic components for high-density/high-data-rate processors and accelerating the insertion of this technology...technology development stage, OETC will advance the development of optical components, produce links for a multiboard processor testbed demonstration, and...components that are affordable, initially at <$100 per line, and reliable, with a li~e BER᝺-15 and MTTF >10 6 hours. Under the OETC program, Honeywell will

  7. What is the connection between true and false memories? The differential roles of interitem associations in recall and recognition.

    PubMed

    McEvoy, C L; Nelson, D L; Komatsu, T

    1999-09-01

    Veridical memory for presented list words and false memory for nonpresented but related items were tested using the Deese/Roediger and McDermott paradigm. The strength and density of preexisting connections among the list words, and from the list words to the critical items, were manipulated. The likelihood of producing false memories in free recall varied with the strength of connections from the list words to the critical items but was inversely related to the density of the interconnections among the list words. In contrast, veridical recall of list words was positively related to the density of the interconnections. A final recognition test showed that both false and veridical memories were more likely when the list words were more densely interconnected. The results are discussed in terms of an associative model of memory, Processing Implicit and Explicit Representations (PIER 2) that describes the influence of implicitly activated preexisting information on memory performance.

  8. A fast low-power optical memory based on coupled micro-ring lasers

    NASA Astrophysics Data System (ADS)

    Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.

    2004-11-01

    The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

  9. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors.

    PubMed

    Sevilla, Marta; Fuertes, Antonio B

    2014-05-27

    An easy, one-step procedure is proposed for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes. The procedure is based on the carbonization of an organic salt, i.e., potassium citrate, at a temperature in the 750-900 °C range. In this way, carbon particles made up of interconnected carbon nanosheets with a thickness of <80 nm are obtained. The porosity of the carbon nanosheets consists essentially of micropores distributed in two pore systems of 0.7-0.85 nm and 0.95-1.6 nm. Importantly, the micropore sizes of both systems can be enlarged by simply increasing the carbonization temperature. Furthermore, the carbon nanosheets possess BET surface areas in the ∼1400-2200 m(2) g(-1) range and electronic conductivities in the range of 1.7-7.4 S cm(-1) (measured at 7.1 MPa). These materials behave as high-performance supercapacitor electrodes in organic electrolyte and exhibit an excellent power handling ability and a superb robustness over long-term cycling. Excellent results were obtained with the supercapacitor fabricated from the material synthesized at 850 °C in terms of both gravimetric and volumetric energy and power densities. This device was able to deliver ∼13 Wh kg(-1) (5.2 Wh L(-1)) at an extremely high power density of 78 kW kg(-1) (31 kW L(-1)) and ∼30 Wh kg(-1) (12 Wh L(-1)) at a power density of 13 kW kg(-1) (5.2 kW L(-1)) (voltage range of 2.7 V).

  10. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes.

    PubMed

    Ghosh, Debasis; Lim, Joonwon; Narayan, Rekha; Kim, Sang Ouk

    2016-08-31

    Modern flexible consumer electronics require efficient energy storage devices with flexible free-standing electrodes. We report a simple and cost-effective route to a graphene-based composite aerogel encapsulating metal oxide nanoparticles for high energy density, free-standing, binder-free flexible pseudocapacitive electrodes. Hydrothermally synthesized Co3O4 nanoparticles are successfully housed inside the microporous graphene aerogel network during the room temperature interfacial gelation at the Zn surface. The resultant three-dimensional (3D) rGO-Co3O4 composite aerogel shows mesoporous quasiparallel layer stack morphology with a high loading of Co3O4, which offers numerous channels for ion transport and a 3D interconnected network for high electrical conductivity. All solid state asymmetric pseudocapacitors employing the composite aerogel electrodes have demonstrated high areal energy density of 35.92 μWh/cm(2) and power density of 17.79 mW/cm(2) accompanied by excellent cycle life.

  11. Three-Dimensional Nitrogen-Doped Hierarchical Porous Carbon as an Electrode for High-Performance Supercapacitors.

    PubMed

    Tang, Jing; Wang, Tao; Salunkhe, Rahul R; Alshehri, Saad M; Malgras, Victor; Yamauchi, Yusuke

    2015-11-23

    A facile and sustainable procedure for the synthesis of nitrogen-doped hierarchical porous carbons with a three-dimensional interconnected framework (NHPC-3D) was developed. The strategy, based on a colloidal crystal-templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self-polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well-preserved nitrogen doping after heat treatment. The obtained NHPC-3D possesses a high surface area of 1056 m(2)  g(-1) , a large pore volume of 2.56 cm(3)  g(-1) , and a high nitrogen content of 8.2 wt %. The NHPC-3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g(-1) at a current density of 2 A g(-1) . The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g(-1) in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion-transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC-3D as a promising candidate for electrode materials in supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Design, fabrication, and characterization of high density silicon photonic components

    NASA Astrophysics Data System (ADS)

    Jones, Adam Michael

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve eciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satised by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which ecient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modied racetrack resonator is then presented enabling extraction of insertion loss data for highly ecient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.

  13. Design Fabrication and Characterization of High Density Silicon Photonic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Adam

    2015-02-01

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve e ciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satis ed by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which e cient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling onmore » a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modi ed racetrack resonator is then presented enabling extraction of insertion loss data for highly e cient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.« less

  14. Supercapacitors: A Hierarchical Carbon Derived from Sponge-Templated Activation of Graphene Oxide for High-Performance Supercapacitor Electrodes (Adv. Mater. 26/2016).

    PubMed

    Xu, Jin; Tan, Ziqi; Zeng, Wencong; Chen, Guanxiong; Wu, Shuilin; Zhao, Yuan; Ni, Kun; Tao, Zhuchen; Ikram, Mujtaba; Ji, Hengxing; Zhu, Yanwu

    2016-07-01

    H. Ji, Y. Zhu, and co-workers demonstrate a 3D hierarchically porous carbon by introducing a polyurethane sponge to template graphene oxide into a 3D interconnected structure while KOH activation generates abundant micropores in its backbone. As described on page 5222, a supercapacitor assembled with this carbon material achieves a high energy density of 89 W h kg(-1) (64 W h L(-1) ) and outstanding power density due to its shortened ion transport distance in three dimensions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Interconnecting PV on New York City's Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K; Coddington, M; Burman, K

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in themore » five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.« less

  16. VCSELs for exascale computing, computer farms, and green photonics

    NASA Astrophysics Data System (ADS)

    Hofmann, Werner; Moser, Philip; Wolf, Philip; Larisch, Gunter; Li, Hui; Li, Wei; Lott, James; Bimberg, Dieter

    2012-11-01

    The bandwidth-induced communication bottleneck due to the intrinsic limitations of metal interconnects is inhibiting the performance and environmental friendliness of todaýs supercomputers, data centers, and in fact all other modern electrically interconnected and interoperable networks such as data farms and "cloud" fabrics. The same is true for systems of optical interconnects (OIs), where even when the metal interconnects are replaced with OIs the systems remain limited by bandwidth, physical size, and most critically the power consumption and lifecycle operating costs. Vertical-cavity surface-emitting lasers (VCSELs) are ideally suited to solve this dilemma. Global communication providers like Google Inc., Intel Inc., HP Inc., and IBM Inc. are now producing optical interconnects based on VCSELs. The optimal bandwidth per link may be analyzed by by using Amdahĺs Law and depends on the architecture of the data center and the performance of the servers within the data center. According to Google Inc., a bandwidth of 40 Gb/s has to be accommodated in the future. IBM Inc. demands 80 Tbps interconnects between solitary server chips in 2020. We recently realized ultrahigh bit rate VCSELs up to 49 Gb/s suited for such optical interconnects emitting at 980 nm. These devices show error-free transmission at temperatures up to 155°C and operate beyond 200°C. Single channel data-rates of 40 Gb/s were achieved up to 75°C. Record high energy efficiencies close to 50 fJ/bit were demonstrated for VCSELs emitting at 850 nm. Our devices are fabricated using a full three-inch wafer process, and the apertures were formed by in-situ controlled selective wet oxidation using stainless steel-based vacuum equipment of our own design. assembly, and operation. All device data are measured, recorded, and evaluated by our proprietary fully automated wafer mapping probe station. The bandwidth density of our present devices is expected to be scalable from about 100 Gbps/mm² to a physical limit of roughly 15 Tbps/mm² based on the current 12.5 Gb/s VCSEL technology. Still more energy-efficient and smaller volume laser diode devices dissipating less heat are mandatory for further up scaling of the bandwidth. Novel metal-clad VCSELs enable a reduction of the device's footprint for potentially ultrashort range interconnects by 1 to 2 orders of magnitude compared to conventional VCSELs thus enabling a similar increase of device density and bandwidth.

  17. High bit rate mass data storage device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.

  18. High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W., Jr.

    1998-10-01

    High performance, lattice-mismatched p/n InGaAs/lnP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1x1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6%more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6x10{sup {minus}6} A/cm{sup 2}. Jo values as low as 4.1x10{sup {minus}7} A/cm{sup 2} were also observed with a conventional planar cell geometry.« less

  19. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.

  20. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    PubMed Central

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724

  1. Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xin, Ling; Liu, Yong; Li, Baojun; Zhou, Xiang; Shen, Hui; Zhao, Wenxia; Liang, Chaolun

    2014-03-01

    Here, we report a facile hydrothermal approach for synthesizing anatase TiO2 hierarchical mesoporous submicrotubes (ATHMSs) with the aid of long-chain polymer as soft template. The TiO2 nanocrystals, with sizes of 6-8 nm, are well interconnected with each other to build tubular architectures with diameters of 0.3-1.5 μm and lengths of 10-25 μm. Such highly porous structures give rise to very large specific surface area of 201.9 m2 g-1 and 136.8 m2 g-1 for the as-prepared and annealed samples, respectively. By using structurally stable ATHMSs as anode materials for lithium-ion batteries, they exhibited high reversible capacity, long cycling life and excellent cycling stability. Even after 1000 cycles, such ATHMS electrodes retained a reversible discharge capacity as high as 150 mAh g-1 at the current density of 1700 mA g-1, maintaining 92% of the initial discharge capacity (163 mAh g-1).

  2. Early stage of plastic deformation in thin films undergoing electromigration

    NASA Astrophysics Data System (ADS)

    Valek, B. C.; Tamura, N.; Spolenak, R.; Caldwell, W. A.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Bravman, J. C.; Batterman, B. W.; Nix, W. D.; Patel, J. R.

    2003-09-01

    Electromigration occurs when a high current density drives atomic motion from the cathode to the anode end of a conductor, such as a metal interconnect line in an integrated circuit. While electromigration eventually causes macroscopic damage, in the form of voids and hillocks, the earliest stage of the process when the stress in individual micron-sized grains is still building up is largely unexplored. Using synchrotron-based x-ray microdiffraction during an in-situ electromigration experiment, we have discovered an early prefailure mode of plastic deformation involving preferential dislocation generation and motion and the formation of a subgrain structure within individual grains of a passivated Al (Cu) interconnect. This behavior occurs long before macroscopic damage (hillocks and voids) is observed.

  3. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zou, Kaixiang; Deng, Yuanfu; Chen, Juping; Qian, Yunqian; Yang, Yuewang; Li, Yingwei; Chen, Guohua

    2018-02-01

    Nitrogen-doped carbon with an ultra-high specific surface area and a hierarchically interconnected porous structure is synthesized in large scale from a green route, that is, the activation of bagasse via a one-step method using KOH and urea. KOH and urea play a synergistic effect for the enhancement of the specific surface area and the modification of pore size of the as-prepared material. Benefiting from the multiple synergistic roles originated from an ultra-high specific area (2905.4 m2 g-1), a high porous volume (2.05 mL g-1 with 75.6 vol% micropores, which is an ideal proportion of micropores for obtaining high specific capacitance), a suitable nitrogen content (2.63 wt%), and partial graphitization, the hierarchically interconnected porous N-doped carbon exhibits an excellent electrochemical performance with a high specific capacitance (350.8, 301.9, and 259.5 F g-1 at 1.0 A g-1 in acidic, alkaline, and neutral electrolytes, respectively), superior rate capability and excellent cycling stability (almost no capacitance loss up to 5000 cycles). Furthermore, the symmetric device assembled by this material achieves high energy densities of 39.1 and 23.5 Wh kg-1 at power densities of 1.0 and 20 kW kg-1, respectively, and exhibits an excellent long-term cycling stability (with capacitance retention above 95.0% after 10 000 cycles).

  4. An efficient optical architecture for sparsely connected neural networks

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Downie, John D.; Reid, Max B.

    1990-01-01

    An architecture for general-purpose optical neural network processor is presented in which the interconnections and weights are formed by directing coherent beams holographically, thereby making use of the space-bandwidth products of the recording medium for sparsely interconnected networks more efficiently that the commonly used vector-matrix multiplier, since all of the hologram area is in use. An investigation is made of the use of computer-generated holograms recorded on such updatable media as thermoplastic materials, in order to define the interconnections and weights of a neural network processor; attention is given to limits on interconnection densities, diffraction efficiencies, and weighing accuracies possible with such an updatable thin film holographic device.

  5. All-zigzag graphene nanoribbons for planar interconnect application

    NASA Astrophysics Data System (ADS)

    Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou

    2017-07-01

    A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.

  6. Tritium release from neutron-irradiated Li 2O sintered pellets: porosity dependence

    NASA Astrophysics Data System (ADS)

    Tanifuji, Takaaki; Yamaki, Daiju; Takahashi, Tadashi; Iwamoto, Akira

    2000-12-01

    The tritium release behaviour from sintered Li 2O pellets of various densities (71-98.5% theoretical density, T.D.) has been investigated by heating tests at a constant rate. It is shown that the tritium release rate depends on porosity at densities above 87% T.D., while no dependence was observed at densities below 86% T.D. The tritium release process is thought to consist of three stages described as follows: (1) the liberation of tritium trapped at point defects due to their recovery (peak at around 570 K); (2) the advection through interconnected pores via adsorption and desorption on their inner walls and diffusion in the gas phase of interconnected pores (peak at around 620 K); (3) the dissolution and release of tritium trapped in closed pores (peaks at around 700, 830 and 1000 K).

  7. High frequency sound propagation in a network of interconnecting streets

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.

    2012-12-01

    We propose a new model for the propagation of acoustic energy from a time-harmonic point source through a network of interconnecting streets in the high frequency regime, in which the wavelength is small compared to typical macro-lengthscales such as street widths/lengths and building heights. Our model, which is based on geometrical acoustics (ray theory), represents the acoustic power flow from the source along any pathway through the network as the integral of a power density over the launch angle of a ray emanating from the source, and takes into account the key phenomena involved in the propagation, namely energy loss by wall absorption, energy redistribution at junctions, and, in 3D, energy loss to the atmosphere. The model predicts strongly anisotropic decay away from the source, with the power flow decaying exponentially in the number of junctions from the source, except along the axial directions of the network, where the decay is algebraic.

  8. Surface inspection: Research and development

    NASA Technical Reports Server (NTRS)

    Batchelder, J. S.

    1987-01-01

    Surface inspection techniques are used for process learning, quality verification, and postmortem analysis in manufacturing for a spectrum of disciplines. First, trends in surface analysis are summarized for integrated circuits, high density interconnection boards, and magnetic disks, emphasizing on-line applications as opposed to off-line or development techniques. Then, a closer look is taken at microcontamination detection from both a patterned defect and a particulate inspection point of view.

  9. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.

    PubMed

    Chen, Wei; Xia, Chuan; Alshareef, Husam N

    2014-09-23

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50,000 cycles.

  10. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors

    PubMed Central

    Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio

    2013-01-01

    Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work. PMID:24336225

  11. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio

    2013-12-01

    Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work.

  12. High-speed, bi-directional dual-core fiber transmission system for high-density, short-reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.

    2015-03-01

    A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.

  13. Microwave synthesis of three-dimensional nickel cobalt sulfide nanosheets grown on nickel foam for high-performance asymmetric supercapacitors.

    PubMed

    Wang, Fangping; Li, Guifang; Zheng, Jinfeng; Ma, Jing; Yang, Caixia; Wang, Qizhao

    2018-04-15

    A facile and cost-effective microwave method is developed to prepare ternary nickel cobalt sulfide (NiCo 2 S 4 ) interconnected nanosheet arrays on nickel foam (NF). When acting as an electrochemical supercapacitor electrode material, the as-prepared NiCo 2 S 4 /NF shows a high specific capacitance of 1502 F g -1 at a current density of 1 A g -1 , and outstanding cycling stability of 91% capacitance retention after 8000 cycles. In addition, a asymmetric supercapacitor (ASC) is composed of NiCo 2 S 4 /NF as positive electrode and activated carbon as negative electrode, which exhibits a high energy density of 34.7 W h kg -1 at a power density of 750 W kg -1 and long-term cyclic stability (83.7% capacity retention after 8000 cycles). Even at a high power density of 15 kW kg -1 , it still remains an energy density of 17.9 W h kg -1 , which is able to light up a light-emitting diode. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  15. X-Ray Microdiffraction as a Probe to Reveal Flux Divergences in Interconnects

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Tamura, N.; Patel, J. R.

    2006-02-01

    Most reliability issues in interconnect systems occur at a local scale and many of them include the local build-up of stresses. Typical failure mechanisms are electromigration and stress voiding in interconnect lines and fatigue in surface acoustic wave devices. Thus a local probe is required for the investigation of these phenomena. In this paper the application of the Laue microdiffraction technique to investigate flux divergences in interconnect systems will be described. The deviatoric strain tensor of single grains can be correlated with the local microstructure, orientation and defect density. Especially the latter led to recent results about the correlation of stress build-up and orientation in Cu lines and electromigration-induced grain rotation in Cu and Al lines.

  16. The effect of an imposed current on the creep of tin silver copper interconnects

    NASA Astrophysics Data System (ADS)

    Kinney, Christopher Charles

    There has been substantial work done on the properties of solder interconnects due to the global transition to lead free electronics. These interconnects create an electrical connection, which current will pass through for much of the interconnects' lifespan. As such, it is imperative in the testing of any solder alloy to examine the mechanical, thermal, and microstructural behavior of the interconnect while it is under an imposed current. The imposed current drives several internal effects that may impact the behavior of the interconnect; creating a complicated state within the interconnect. This thesis is the first study of the couple between current and mechanical properties of these interconnects. Idealized SnAgCu interconnects were made consisting of double-shear specimens that contained paired solder joints, 400x400mum in cross-section, 200mum in thickness on a Cu substrate. Different representative microstructures were prepared by pre-treating the interconnects via electromigration and isothermal aging. Samples were tested with and without an imposed current, and at a variety of temperatures. These tests consistently yielded two unexpected results. First, the relative increase in creep rate, for a given imposed current, is nearly the same over a range of temperatures and starting microstructures. Second, when tests are done at equivalent temperatures (to compensate for Joule heating) the creep rate is lower when under an imposed current than under isothermal conditions. To explain this phenomena, internal gradients within the interconnects were investigated. The temperature profile was shown to be constant at a given current density. Given constant temperature, and a microstructure that includes interfacial voids, the effect of the imposed current on the vacancy concentration was examined. It was found that the current depletes the joint of vacancies, lowering the average creep rate, and introducing observable heterogeneities in the creep pattern. This result was also found to be dependant on the specific locations of the voids, which act as vacancy sources or sinks. The usual Dom equation then provides a very useful basis for evaluating the change of creep rate with current. Actual microelectronic devices were also examined under an imposed current. Due to the complex geometry and composition of the samples, lower current densities were necessitated. As such, current induced effects were lessened, yet comparisons show similar behavior to the idealized interconnects. Our idealized model was applied to these devices, and yielded activation energies consistent with previous data. Finally, lifetime reliability projections were made for use in the future design of lead free microelectronic devices.

  17. A proposed holistic approach to on-chip, off-chip, test, and package interconnections

    NASA Astrophysics Data System (ADS)

    Bartelink, Dirk J.

    1998-11-01

    The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must recognize—test is also performed using IC's. A system interconnection is proposed using multiple chips fabricated with conventional silicon processes, including MEMS technology. The system resembles an MCM that can be joined without committing to final assembly to perform at-speed testing. 50-Ohm test probes never load the circuit; only intended neighboring chips are ever connected. A `back-plane' chip provides the connection layers for both inter- and intra-chip signals and also serves as the probe card, in analogy with membrane probes now used for single-chip testing. Intra-chip connections, which require complicated connections during test that exactly match the product, are then properly made and all waveforms and loading conditions under test will be identical to those of the product. The major benefit is that all front-end chip technologies can be merged—logic, memory, RF, even passives. ESD protection is required only on external system connections. Manufacturing test information will accurately characterize process faults and thus avoid the Known-Good-Die problem that has slowed the arrival of conventional MCM's.

  18. Fabrication of Fresnel micro lens array in borosilicate glass by F2-laser ablation for glass interposer application

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen

    2014-03-01

    The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.

  19. High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W.

    1999-03-01

    High performance, lattice-mismatched p/n InGaAs/InP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1{percent} between the active InGaAs cell structure and the InP substrate. 1{times}1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6{percent}more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6{times}10{sup {minus}6}&hthinsp;A/cm{sup 2}. Jo values as low as 4.1{times}10{sup {minus}7}&hthinsp;A/cm{sup 2} were also observed with a conventional planar cell geometry. {copyright} {ital 1999 American Institute of Physics.}« less

  20. Operational parameters of an opto-electronic neural network employing fixed planar holographic interconnects

    NASA Astrophysics Data System (ADS)

    Keller, P. E.; Gmitro, A. F.

    1993-07-01

    A prototype neutral network system of multifaceted, planar interconnection holograms and opto-electronic neurons is analyzed. This analysis shows that a hologram fabricated with electron-beam lithography has the capacity to connect 6700 neuron outputs to 6700 neuron inputs, and that, the encoded synaptic weights have a precision of approximately 5 bits. Higher interconnection densities can be achieved by accepting a lower synaptic weight accuracy. For systems employing laser diodes at the outputs of the neurons, processing rates in the range of 45 to 720 trillion connections per second can potentially be achieved.

  1. 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wang, Yunhui; Peng, Yueying; Wang, Xin; Wang, Jing; Zhao, Jinbao

    2018-06-01

    In this work, N-doped biomass derived porous carbon (NSBDC) has been prepared utilizing low-cost agricultural waste-sugarcane bagasse as the prototype, and needle-like PANI as the dopant. NSBDC possesses a special 3D interconnected framework structure, superior hierarchical pores and suitable heteroatom doping level, which benefits a large number of applications on ion storage and high-rate ion transfer. Typically, the NSBDC exhibits the high specific capacitance (298 F g-1 at 1 A g-1) and rate capability (58.7% capacitance retention at 20 A g-1), as well as the high cycle stability (5.5% loss over 5000 cycles) in three-electrode systems. A two-electrode asymmetric system has been fabricated employing NSBDC and the precursor of NSBDC (sugarcane bagasse derived carbon/PANI composite) as the negative and positive electrodes, respectively, and an energy density as high as 49.4 Wh kg-1 is verified in this asymmetric system. A NSBDC-based whole symmetric supercapacitors has also been assembled, and it can easily light a 1.5 V bulb due to its high energy density (27.7 Wh kg-1). In addition, for expanding the application areas of NSBDC, it is also applied to lithium ion battery, and a high reversible capacity of 1148 mAh g-1 at 0.1 A g-1 is confirmed. Even at 5 A g-1, NSBDC can still deliver a high reversible capacity of 357 mAh g-1 after 200 cycles, indicating its superior lithium storage capability.

  2. Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Deng, Fangze; Yu, Lin; Cheng, Gao; Lin, Ting; Sun, Ming; Ye, Fei; Li, Yongfeng

    2014-04-01

    Two-dimensional ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper (CFP) are synthesized through a facile solvothermal method combined with a post thermal treatment. The well interconnected ultrathin NiCo2O4 nanosheets directly grown on the carbon nanofibers could allow for easy diffusion of the electrolyte, shorten the transport path of ion and electron and accommodate the strain during cycling. As a result, superior pseudocapacitive performance is achieved with large specific capacitance of 999 F g-1 at a high current density of 20 A g-1. The capacitance loss is 15.6% after 3000 cycles at a current density of 10 A g-1, displaying good cycle ability and high rate capability.

  3. Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications

    PubMed Central

    Gerardo, Carlos D.; Cretu, Edmond; Rohling, Robert

    2017-01-01

    This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω/☐. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 μm. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors’ knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates. PMID:28629134

  4. Using Ant Colony Optimization for Routing in VLSI Chips

    NASA Astrophysics Data System (ADS)

    Arora, Tamanna; Moses, Melanie

    2009-04-01

    Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.

  5. A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M

    NASA Astrophysics Data System (ADS)

    Wu, Tongyu; Zhang, Wei; Yin, Zejie

    2017-09-01

    A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.

  6. Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading

    NASA Astrophysics Data System (ADS)

    Li, Fanqun; Qin, Furong; Zhang, Kai; Fang, Jing; Lai, Yanqing; Li, Jie

    2017-09-01

    Facile and sustainable route is developed to convert biomass into hierarchically porous carbon matrix cooperating with highly conductive graphene. By tailoring the porosity of the carbon matrix to promote fast mass transfer and cooperating highly conductive interconnected graphene frameworks to accelerate the electron transport, the carbon sulfur cathodes simultaneously achieve high areal and gravimetric sulfur loading/content (6 mg cm-2/67 wt%) and deliver outstanding electrochemical performance. After 100 cyclic discharge-charge test at the current density of 0.2 C, the reversible capacity maintains at 707 mA h g-1.

  7. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  8. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  9. Interconnections in ULSI: Correlation and Crosstalk

    DTIC Science & Technology

    1992-12-31

    basic tool is electron beam lithography of poly (methyl methacrylate) (PMMA). The two central issues to creating very dense patterns as described...direct lithographic techniques. Fig. 2: Ti/Au (2 nm/15 nm) grating with 38 nm pitch fabricated by electron beam lithography using our high contrast...G. H. Bernstein, G. Bazan, and D. A. Hill, "Spatial Density of Lines in PMMA by Electron Beam Lithography ," Journal of Vacuum Science and Technology

  10. High-speed Si/GeSi hetero-structure Electro Absorption Modulator.

    PubMed

    Mastronardi, L; Banakar, M; Khokhar, A Z; Hattasan, N; Rutirawut, T; Bucio, T Domínguez; Grabska, K M; Littlejohns, C; Bazin, A; Mashanovich, G; Gardes, F Y

    2018-03-19

    The ever-increasing demand for integrated, low power interconnect systems is pushing the bandwidth density of CMOS photonic devices. Taking advantage of the strong Franz-Keldysh effect in the C and L communication bands, electro-absorption modulators in Ge and GeSi are setting a new standard in terms of device footprint and power consumption for next generation photonics interconnect arrays. In this paper, we present a compact, low power electro-absorption modulator (EAM) Si/GeSi hetero-structure based on an 800 nm SOI overlayer with a modulation bandwidth of 56 GHz. The device design and fabrication tolerant process are presented, followed by the measurement analysis. Eye diagram measurements show a dynamic ER of 5.2 dB at a data rate of 56 Gb/s at 1566 nm, and calculated modulator power is 44 fJ/bit.

  11. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon.

    PubMed

    Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei

    2014-12-01

    Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m(2) g(-1) with optimized pore volume of 1.21 cm(3) g(-1) (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g(-1) and 100 A g(-1) i.e., 265 F g(-1) and 182 F g(-1) in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg(-1) (550 W L(-1)) and energy density 70 W h kg(-1) (32 W h L(-1)) are achieved on the base of active material loading (~10 mg cm(2)) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices.

  12. From Rice Bran to High Energy Density Supercapacitors: A New Route to Control Porous Structure of 3D Carbon

    NASA Astrophysics Data System (ADS)

    Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei

    2014-12-01

    Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m2 g-1 with optimized pore volume of 1.21 cm3 g-1 (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g-1 and 100 A g-1 i.e., 265 F g-1 and 182 F g-1 in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg-1 (550 W L-1) and energy density 70 W h kg-1 (32 W h L-1) are achieved on the base of active material loading (~10 mg cm2) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices.

  13. An ultra-compact processor module based on the R3000

    NASA Astrophysics Data System (ADS)

    Mullenhoff, D. J.; Kaschmitter, J. L.; Lyke, J. C.; Forman, G. A.

    1992-08-01

    Viable high density packaging is of critical importance for future military systems, particularly space borne systems which require minimum weight and size and high mechanical integrity. A leading, emerging technology for high density packaging is multi-chip modules (MCM). During the 1980's, a number of different MCM technologies have emerged. In support of Strategic Defense Initiative Organization (SDIO) programs, Lawrence Livermore National Laboratory (LLNL) has developed, utilized, and evaluated several different MCM technologies. Prior LLNL efforts include modules developed in 1986, using hybrid wafer scale packaging, which are still operational in an Air Force satellite mission. More recent efforts have included very high density cache memory modules, developed using laser pantography. As part of the demonstration effort, LLNL and Phillips Laboratory began collaborating in 1990 in the Phase 3 Multi-Chip Module (MCM) technology demonstration project. The goal of this program was to demonstrate the feasibility of General Electric's (GE) High Density Interconnect (HDI) MCM technology. The design chosen for this demonstration was the processor core for a MIPS R3000 based reduced instruction set computer (RISC), which has been described previously. It consists of the R3000 microprocessor, R3010 floating point coprocessor and 128 Kbytes of cache memory.

  14. From Rice Bran to High Energy Density Supercapacitors: A New Route to Control Porous Structure of 3D Carbon

    PubMed Central

    Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei

    2014-01-01

    Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m2 g−1 with optimized pore volume of 1.21 cm3 g−1 (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g−1 and 100 A g−1 i.e., 265 F g−1 and 182 F g−1 in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg−1 (550 W L−1) and energy density 70 W h kg−1 (32 W h L−1) are achieved on the base of active material loading (~10 mg cm2) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices. PMID:25434348

  15. Constructing Hierarchical Tectorum-like α-Fe2 O3 /PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors.

    PubMed

    Wang, Libin; Yang, Huiling; Liu, Xiaoxiao; Zeng, Rui; Li, Ming; Huang, Yunhui; Hu, Xianluo

    2017-01-19

    The design of complex heterostructured electrode materials that deliver superior electrochemical performances to their individual counterparts has stimulated intensive research on configuring supercapacitors with high energy and power densities. Herein we fabricate hierarchical tectorum-like α-Fe 2 O 3 /polypyrrole (PPy) nanoarrays (T-Fe 2 O 3 /PPy NAs). The 3D, and interconnected T-Fe 2 O 3 /PPy NAs are successfully grown on conductive carbon cloth through an easy self-sacrificing template and in situ vapor-phase polymerization route under mild conditions. The electrode made of the T-Fe 2 O 3 /PPy NAs exhibits a high areal capacitance of 382.4 mF cm -2 at a current density of 0.5 mA cm -2 and excellent reversibility. The solid-state asymmetric supercapacitor consisting of T-Fe 2 O 3 /PPy NAs and MnO 2 electrodes achieves a high energy density of 0.22 mWh cm -3 at a power density of 165.6 mW cm -3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    NASA Astrophysics Data System (ADS)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  17. Multi-petascale highly efficient parallel supercomputer

    DOEpatents

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  18. H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Chen, Haiyan; Li, Qinghua; Ma, Chunqing; Jin, Suyue; Liu, Zhichao

    2014-03-01

    Proton exchange membrane (PEM), transferring protons from anode to cathode, is a key component in a PEM fuel cell. In the current work, a new class of PEMs are synthesized benefiting from the imbibition behavior of three-dimensional (3D) polyacrylamide-graft-chitosan (PAAm-graft-chitosan) frameworks to H3PO4 aqueous solution. Interconnected 3D framework of PAAm-graft-chitosan provides tremendous space for holding proton-conducting H3PO4. The highest anhydrous proton conductivity of 0.13 S cm-1 at 165 °C is obtained. A fuel cell using a thick membrane as a PEM showed a peak power density of 405 mW cm-2 with O2 and H2 as the oxidant and fuel, respectively. Results indicate that the interconnected 3D framework provides superhighway for proton conduction. The valued merits on anhydrous proton conductivity, huge H3PO4 loading, and easy synthesis promise the new membranes to be good alternatives as high-temperature PEMs.

  19. A Thermal Model for Carbon Nanotube Interconnects

    PubMed Central

    Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay

    2013-01-01

    In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters. PMID:28348333

  20. Recent patents on Cu/low-k dielectrics interconnects in integrated circuits.

    PubMed

    Jiang, Qing; Zhu, Yong F; Zhao, Ming

    2007-01-01

    In past decades, the development of microelectronics has moved along with constant speed of scaling to maximize transistor density as driven by the need for electrical and functional performance. For further development, the propagation velocity of electromagnetic waves becomes increasingly important due to their unyielding constraints on interconnect delay. To minimize it, it was forced to the introduction of the Cu/low-k dielectric interconnects to very large scale integrated circuits (VLSI) where k denotes the dielectric constant. In addition, reliable barrier structures, which are the thinnest part among the device parts to maximize space availability for the actual Cu IWs, are required to prevent penetration of different materials. In light of the above statements, this review will focus recent patents and some studies on Cu interconnects including Cu interconnect wires, low-k dielectrics and related barrier materials as well manufacturing techniques in VLSI, which are one of the most essential concerns in microelectronic industry and decides the further development of VLSI. In addition, possible future development in this field is considered.

  1. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.

    PubMed

    Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan

    2014-07-22

    Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.

  2. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Lv, Bingjie; Li, Peipei; Liu, Yan; Lin, Shanshan; Gao, Bifen; Lin, Bizhou

    2018-04-01

    Nitrogen and phosphorus co-doped carbon hollow spheres (NPCHSs) have been prepared by a carbonization and subsequent chemical activation route using dehydrated polypyrrole hollow spheres as the precursor and KOH as the activating agent. NPCHSs are interconnected into a unique 3D porous network, which endows the as-prepared carbon to exhibit a large specific surface area of 1155 m2 g-1 and a high specific capacitance of 232 F g-1 at a current density of 1 A g-1. The as-obtained NPCHSs present a high-level heteroatom doping with N, O and P contents of 11.4, 6.7 and 3.5 wt%, respectively. The capacitance of NPCHSs has been retained at 89.1% after 5000 charge-discharge cycles at a relatively high current density of 5 A g-1. Such excellent performance suggests that NPCHSs are attractive electrode candidates for electrical double layer capacitors.

  3. Simulations of stress evolution and the current density scaling of electromigration-induced failure times in pure and alloyed interconnects

    NASA Astrophysics Data System (ADS)

    Park, Young-Joon; Andleigh, Vaibhav K.; Thompson, Carl V.

    1999-04-01

    An electromigration model is developed to simulate the reliability of Al and Al-Cu interconnects. A polynomial expression for the free energy of solution by Murray [Int. Met. Rev. 30, 211 (1985)] was used to calculate the chemical potential for Al and Cu while the diffusivities were defined based on a Cu-trapping model by Rosenberg [J. Vac. Sci. Technol. 9, 263 (1972)]. The effects of Cu on stress evolution and lifetime were investigated in all-bamboo and near-bamboo stud-to-stud structures. In addition, the significance of the effect of mechanical stress on the diffusivity of both Al and Cu was determined in all-bamboo and near-bamboo lines. The void nucleation and growth process was simulated in 200 μm, stud-to-stud lines. Current density scaling behavior for void-nucleation-limited failure and void-growth-limited failure modes was simulated in long, stud-to-stud lines. Current density exponents of both n=2 for void nucleation and n=1 for void growth failure modes were found in both pure Al and Al-Cu lines. Limitations of the most widely used current density scaling law (Black's equation) in the analysis of the reliability of stud-to-stud lines are discussed. By modifying the input materials properties used in this model (when they are known), this model can be adapted to predict the reliability of other interconnect materials such as pure Cu and Cu alloys.

  4. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  5. Initial results for the silicon monolithically interconnected solar cell product

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-01-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  6. Multiscale free-space optical interconnects for intrachip global communication: motivation, analysis, and experimental validation.

    PubMed

    McFadden, Michael J; Iqbal, Muzammil; Dillon, Thomas; Nair, Rohit; Gu, Tian; Prather, Dennis W; Haney, Michael W

    2006-09-01

    The use of optical interconnects for communication between points on a microchip is motivated by system-level interconnect modeling showing the saturation of metal wire capacity at the global layer. Free-space optical solutions are analyzed for intrachip communication at the global layer. A multiscale solution comprising microlenses, etched compound slope microprisms, and a curved mirror is shown to outperform a single-scale alternative. Microprisms are designed and fabricated and inserted into an optical setup apparatus to experimentally validate the concept. The multiscale free-space system is shown to have the potential to provide the bandwidth density and configuration flexibility required for global communication in future generations of microchips.

  7. Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-01-01

    Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.

  8. The Influence of Sn Orientation on the Electromigration of Idealized Lead-free Interconnects

    NASA Astrophysics Data System (ADS)

    Linares, Xioranny

    As conventional lead solders are being replaced by Pb-free solders in electronic devices, the reliability of solder joints in integrated circuits (ICs) has become a high concern. Due to the miniaturization of ICs and consequently solder joints, the current density through the solder interconnects has increased causing electrical damage known as electromigration. Electromigration, atomic and mass migration due to high electron currents, is one of the most urgent reliability issues delaying the implementation of Pb-free solder materials in electronic devices. The research on Pb-free solders has mainly focused on the qualitative understanding of failure by electromigration. There has been little progress however, on the quantitative analysis of electromigration because of the lack of available material parameters, such as the effective charge, (z*), the driving force for electromigration. The research herein uses idealized interconnects to measure the z* of electromigration of Cu in Sn-3.0Ag-0.5Cu (SAC305) alloy under different experimental conditions. Planar SAC 305 interconnects were sandwiched between two Cu pads and subject to uniaxial current. The crystallographic orientation of Sn in these samples were characterized with electron backscatter diffraction (EBSD) and wavelength dispersive spectroscopy (WDS) before and after electromigration testing. Results indicate that samples with the c-axis aligned perpendicular to current flow, polycrystalline, and those with a diffusion barrier on the cathode side all inhibit the growth of intermetallic compounds (IMC). The effective charge values of Cu in SAC 305 under the different conditions tested were quantified for the first time and included in this dissertation. The following research is expected to help verify and improve the electromigration model and identify the desirable conditions to inhibit damage by electromigration in Pb-free solder joints.

  9. Interconnect-free parallel logic circuits in a single mechanical resonator

    PubMed Central

    Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2011-01-01

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator. PMID:21326230

  10. Interconnect-free parallel logic circuits in a single mechanical resonator.

    PubMed

    Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H

    2011-02-15

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

  11. Template-directed fabrication of porous gas diffusion layer for magnesium air batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2015-11-01

    The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.

  12. Epidemic spreading between two coupled subpopulations with inner structures

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Tang, Ming; Gu, Changgui; Xu, Jinshan

    2017-10-01

    The structure of underlying contact network and the mobility of agents are two decisive factors for epidemic spreading in reality. Here, we study a model consisting of two coupled subpopulations with intra-structures that emphasizes both the contact structure and the recurrent mobility pattern of individuals simultaneously. We show that the coupling of the two subpopulations (via interconnections between them and round trips of individuals) makes the epidemic threshold in each subnetwork to be the same. Moreover, we find that the interconnection probability between two subpopulations and the travel rate are important factors for spreading dynamics. In particular, as a function of interconnection probability, the epidemic threshold in each subpopulation decreases monotonously, which enhances the risks of an epidemic. While the epidemic threshold displays a non-monotonic variation as travel rate increases. Moreover, the asymptotic infected density as a function of travel rate in each subpopulation behaves differently depending on the interconnection probability.

  13. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    NASA Astrophysics Data System (ADS)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier injection modulators and light-emitting diodes (LED) with drive voltage requirements below 1.5V. Measurement results show an optical link based on a 70MHz red LED work well at 300Mbps by using the pre-emphasis driver module. A traveling wave electrode (TWE) modulator structure is presented, including a novel design methodology to address process limitations imposed by a commercial silicon fabrication technology. Results from 3D full wave EM simulation demonstrate the application of the design methodology to achieve specifications, including phase velocity matching, insertion loss, and impedance matching. Results show the HBT-based TWE-EAM system has the bandwidth higher than 60GHz.

  14. Optics vs copper: from the perspective of "Thunderbolt" interconnect technology

    NASA Astrophysics Data System (ADS)

    Cheng, Hengju; Krause, Christine; Ko, Jamyuen; Gao, Miaobin; Liu, Guobin; Wu, Huichin; Qi, Mike; Lam, Chun-Chit

    2013-02-01

    Interconnect technology has been progressed at a very fast pace for the past decade. The signaling rates have steadily increased from 100:Mb/s to 25Gb/s. In every generation of interconnect technology evolution, optics always seems to take over at first, however, at the end, the cost advantage of copper wins over. Because of this, optical interconnects are limited to longer distance links where the attenuation in copper cable is too large for the integrated circuits to compensate. Optical interconnect has long been viewed as the premier solution in compared with copper interconnect. With the release of Thunderbolt technology, we are entering a new era in consumer electronics that runs at 10Gb/s line rate (20Gb/s throughput per connector interface). Thunderbolt interconnect technology includes both active copper cables and active optical cables as the transmission media which have very different physical characteristics. In order for optics to succeed in consumer electronics, several technology hurdles need to be cleared. For example, the optical cable needs to handle the consumer abuses such as pinch and bend. Also, the optical engine used in the active optical cable needs to be physically very small so that we don't change the looks and feels of the cable/connector. Most importantly, the cost of optics needs to come down significantly to effectively compete with the copper solution. Two interconnect technologies are compared and discussed on the relative cost, power consumption, form factor, density, and future scalability.

  15. Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.

    2009-01-01

    The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.

  16. Wireless Interconnects for Intra-chip & Inter-chip Transmission

    NASA Astrophysics Data System (ADS)

    Narde, Rounak Singh

    With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different configurations of antenna orientations and coolants. The return loss and transmission coefficients are simulated using ANSYS HFSS.

  17. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals

    PubMed Central

    Berényi, Antal; Somogyvári, Zoltán; Nagy, Anett J.; Roux, Lisa; Long, John D.; Fujisawa, Shigeyoshi; Stark, Eran; Leonardo, Anthony; Harris, Timothy D.

    2013-01-01

    Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function. PMID:24353300

  18. Rapid trench initiated recrystallization and stagnation in narrow Cu interconnect lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Brendan B.; Rizzolo, Michael; Prestowitz, Luke C.

    2015-10-26

    Understanding and ultimately controlling the self-annealing of Cu in narrow interconnect lines has remained a top priority in order to continue down-scaling of back-end of the line interconnects. Recently, it was hypothesized that a bottom-up microstructural transformation process in narrow interconnect features competes with the surface-initiated overburden transformation. Here, a set of transmission electron microscopy images which captures the grain coarsening process in 48 nm lines in a time resolved manner is presented, supporting such a process. Grain size measurements taken from these images have demonstrated that the Cu microstructural transformation in 48 nm interconnect lines stagnates after only 1.5 h atmore » room temperature. This stubborn metastable structure remains stagnant, even after aggressive elevated temperature anneals, suggesting that a limited internal energy source such as dislocation content is driving the transformation. As indicated by the extremely low defect density found in 48 nm trenches, a rapid recrystallization process driven by annihilation of defects in the trenches appears to give way to a metastable microstructure in the trenches.« less

  19. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  20. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02600a

  1. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure

    NASA Astrophysics Data System (ADS)

    Nakagaito, A. N.; Yano, H.

    2005-01-01

    A completely new kind of high-strength composite was manufactured using microfibrillated cellulose (MFC) derived from kraft pulp. Because of the unique structure of nano-order-scale interconnected fibrils and microfibrils greatly expanded in the surface area that characterizes MFC, it was possible to produce composites that exploit the extremely high strength of microfibrils. The Young’s modulus (E) and bending strength (σb) of composites using phenolic resin as binder achieved values up to 19 GPa and 370 MPa, respectively, with a density of 1.45 g/cm2, exhibiting outstanding mechanical properties for a plant-fiber-based composite.

  2. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Cai, Jie; Niu, Haitao; Wang, Hongxia; Shao, Hao; Fang, Jian; He, Jingren; Xiong, Hanguo; Ma, Chengjie; Lin, Tong

    2016-08-01

    Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.

  3. Copper Nanowire Production for Interconnect Applications

    NASA Technical Reports Server (NTRS)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  4. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  5. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  6. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  7. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

    DOE PAGES

    van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; ...

    2017-02-20

    The brain is capable of massively parallel information processing while consuming only ~1- 100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low energymore » (<10 pJ for 10 3 μm 2 devices) and voltage, displays >500 distinct, non-volatile conductance states within a ~1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODEs are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with 3D architectures, opening a path towards extreme interconnectivity comparable to the human brain.« less

  8. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan; Marinella, Matthew J.; Alec Talin, A.; Salleo, Alberto

    2017-04-01

    The brain is capable of massively parallel information processing while consuming only ~1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (<10 pJ for 103 μm2 devices), displays >500 distinct, non-volatile conductance states within a ~1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

  9. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing.

    PubMed

    van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J; Keene, Scott T; Faria, Grégorio C; Agarwal, Sapan; Marinella, Matthew J; Alec Talin, A; Salleo, Alberto

    2017-04-01

    The brain is capable of massively parallel information processing while consuming only ∼1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (<10 pJ for 10 3  μm 2 devices), displays >500 distinct, non-volatile conductance states within a ∼1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

  10. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors.

    PubMed

    Zhang, Fan; Tang, Yongbing; Liu, Hui; Ji, Hongyi; Jiang, Chunlei; Zhang, Jing; Zhang, Xiaolong; Lee, Chun-Sing

    2016-02-01

    Hybrid supercapacitors (HSCs) with lithium-ion battery-type anodes and electric double layer capacitor-type cathodes are attracting extensive attention and under wide investigation because of their combined merits of both high power and energy density. However, the performance of most HSCs is limited by low kinetics of the battery-type anode which cannot match the fast kinetics of the capacitor-type cathode. In this study, we have synthesized a three-dimensional (3D) porous composite with uniformly incorporated MoS2 flocculent nanostructure onto 3D graphene via a facile solution-processed method as an anode for high-performance HSCs. This composite shows significantly enhanced electrochemical performance due to the synergistic effects of the conductive graphene sheets and the interconnected porous structure, which exhibits a high rate capability of 688 mAh/g even at a high current density of 8 A/g and a stable cycling performance (997 mAh/g after 700 cycles at 2 A/g). Furthermore, by using this composite as the anode for HSCs, the HSC shows a high energy density of 156 Wh/kg at 197 W/kg, which also remains at 97 Wh/kg even at a high power density of 8314 W/kg with a stable cycling life, among the best results of the reported HSCs thus far.

  11. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Jingyuan; Li, Hongpeng; Zhang, Hongsen; Liu, Qi; Li, Rumin; Li, Bin; Wang, Jun

    2018-01-01

    The urgent need for sustainable development of human society has forced material scientists to explore novel materials starting from cheap natural precursors for next-generation energy storage devices by using environmentally friendly strategies. In this work, heteroatom-functionalized porous carbonaceous materials with 3D hierarchical and interconnected honeycomb-like structure have been successfully synthesized by using waste biomass pomelo peel as raw material through the combination of hydrothermal carbonization and followed KOH activation procedure. Benefiting from the unique honeycomb-like structure and high specific surface area, the as-obtained carbon material exhibits satisfactory capacitive behavior: 374 F/g at 0.1 A/g; excellent cycling stability of 92.5% capacitance retention over continuous 5000 cycles. More importantly, the as-assembled symmetric supercapacitors based on as-prepared electrode material can deliver high gravimetric and volumetric energy density of 20 W h/kg and 18.7 W h/L in 6 M KOH, respectively, as well as outstanding cycling stability. The obtained results demonstrate the possibility for taking full advantage of sustainable and large scale advanced carbon materials by choosing waste biomass, particularly the pomelo peel as a raw material.

  12. Oxide-confined 2D VCSEL arrays for high-density inter/intra-chip interconnects

    NASA Astrophysics Data System (ADS)

    King, Roger; Michalzik, Rainer; Jung, Christian; Grabherr, Martin; Eberhard, Franz; Jaeger, Roland; Schnitzer, Peter; Ebeling, Karl J.

    1998-04-01

    We have designed and fabricated 4 X 8 vertical-cavity surface-emitting laser (VCSEL) arrays intended to be used as transmitters in short-distance parallel optical interconnects. In order to meet the requirements of 2D, high-speed optical links, each of the 32 laser diodes is supplied with two individual top contacts. The metallization scheme allows flip-chip mounting of the array modules junction-side down on silicon complementary metal oxide semiconductor (CMOS) chips. The optical and electrical characteristics across the arrays with device pitch of 250 micrometers are quite homogeneous. Arrays with 3 micrometers , 6 micrometers and 10 micrometers active diameter lasers have been investigated. The small devices show threshold currents of 600 (mu) A, single-mode output powers as high as 3 mW and maximum wavelength deviations of only 3 nm. The driving characteristics of all arrays are fully compatible to advanced 3.3 V CMOS technology. Using these arrays, we have measured small-signal modulation bandwidths exceeding 10 GHz and transmitted pseudo random data at 8 Gbit/s channel over 500 m graded index multimode fiber. This corresponds to a data transmission rate of 256 Gbit/s per array of 1 X 2 mm2 footprint area.

  13. A High Performance VLSI Computer Architecture For Computer Graphics

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  14. A highly stretchable, transparent, and conductive polymer.

    PubMed

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan

    2017-03-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

  15. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1991-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  16. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1989-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  17. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1989-10-10

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  18. Potential Energy Landscape of the Liquid-Liquid Phase Transition in Water and the transformation between Low-Density and High-Density Amorphous Ice

    NASA Astrophysics Data System (ADS)

    Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.

  19. Issues of nanoelectronics: a possible roadmap.

    PubMed

    Wang, Kang L

    2002-01-01

    In this review, we will discuss a possible roadmap in scaling a nanoelectronic device from today's CMOS technology to the ultimate limit when the device fails. In other words, at the limit, CMOS will have a severe short channel effect, significant power dissipation in its quiescent (standby) state, and problems related to other essential characteristics. Efforts to use structures such as the double gate, vertical surround gate, and SOI to improve the gate control have continually been made. Other types of structures using SiGe source/drain, asymmetric Schottky source/drain, and the like will be investigated as viable structures to achieve ultimate CMOS. In reaching its scaling limit, tunneling will be an issue for CMOS. The tunneling current through the gate oxide and between the source and drain will limit the device operation. When tunneling becomes significant, circuits may incorporate tunneling devices with CMOS to further increase the functionality per device count. We will discuss both the top-down and bottom-up approaches in attaining the nanometer scale and eventually the atomic scale. Self-assembly is used as a bottom-up approach. The state of the art is reviewed, and the challenges of the multiple-step processing in using the self-assembly approach are outlined. Another facet of the scaling trend is to decrease the number of electrons in devices, ultimately leading to single electrons. If the size of a single-electron device is scaled in such a way that the Coulomb self-energy is higher than the thermal energy (at room temperature), a single-electron device will be able to operate at room temperature. In principle, the speed of the device will be fast as long as the capacitance of the load is also scaled accordingly. The single-electron device will have a small drive current, and thus the load capacitance, including those of interconnects and fanouts, must be small to achieve a reasonable speed. However, because the increase in the density (and/or functionality) of integrated circuits is the principal driver, the wiring or interconnects will increase and become the bottleneck for the design of future high-density and high-functionality circuits, particularly for single-electron devices. Furthermore, the massive interconnects needed in the architecture used today will result in an increase in load capacitance. Thus for single-electron device circuits, it is critical to have minimal interconnect loads. And new types of architectures with minimal numbers of global interconnects will be needed. Cellular automata, which need only nearest-neighbor interconnects, are discussed as a plausible example. Other architectures such as neural networks are also possible. Examples of signal processing using cellular automata are discussed. Quantum computing and information processing are based on quantum mechanical descriptions of individual particles correlated among each other. A quantum bit or qubit is described as a linear superposition of the wave functions of a two-state system, for example, the spin of a particle. With the interaction of two qubits, they are connected in a "wireless fashion" using wave functions via quantum mechanical interaction, referred to as entanglement. The interconnection by the nonlocality of wave functions affords a massive parallel nature for computing or so-called quantum parallelism. We will describe the potential and solid-state implementations of quantum computing and information, using electron spin and/or nuclear spin in Si and Ge. Group IV elements have a long coherent time and other advantages. The example of using SiGe for g factor engineering will be described.

  20. High-voltage space-plasma interactions measured on the PASP Plus test arrays

    NASA Astrophysics Data System (ADS)

    Guidice, Donald A.

    1995-10-01

    The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).

  1. High-voltage space-plasma interactions measured on the PASP Plus test arrays

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1995-01-01

    The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).

  2. Parallel Optical Random Access Memory (PORAM)

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.

    1989-01-01

    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.

  3. 3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.

    PubMed

    Ramadan, Mohamed; Abdellah, Ahmed M; Mohamed, Saad G; Allam, Nageh K

    2018-05-22

    Rational design of binder-free materials with high cyclic stability and high conductivity is a great need for high performance supercapacitors. We demonstrate a facile one-step synthesis method of binder-free MnO@C nanofibers as electrodes for supercapacitor applications. The topology of the fabricated nanofibers was investigated using FESEM and HRTEM. The X-ray photoelectron spectroscopy (XPS) and the X-ray diffraction (XRD) analyses confirm the formation of the MnO structure. The electrospun MnO@C electrodes achieve high specific capacitance of 578 F/g at 1 A/g with an outstanding cycling performance. The electrodes also show 127% capacity increasing after 3000 cycles. An asymmetric supercapacitor composed of activated carbon as the negative electrode and MnO@C as the positive electrode shows an ultrahigh energy density of 35.5 Wh/kg with a power density of 1000 W/kg. The device shows a superior columbic efficiency, cycle life, and capacity retention.

  4. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries.

    PubMed

    Qiu, Bao; Yin, Chong; Xia, Yonggao; Liu, Zhaoping

    2017-02-01

    As rechargeable Li-ion batteries have expanded their applications into on-board energy storage for electric vehicles, the energy and power must be increased to meet the new demands. Li-rich layered oxides are one of the most promising candidate materials; however, it is very difficult to make them compatible with high volumetric energy density and power density. Here, we develop an innovative approach to synthesize three-dimensional (3D) nanoporous Li-rich layered oxides Li[Li 0.144 Ni 0.136 Co 0.136 Mn 0.544 ]O 2 , directly occurring at deep chemical delithiation with carbon dioxide. It is found that the as-prepared material presents a micrometer-sized spherical structure that is typically composed of interconnected nanosized subunits with narrow distributed pores at 3.6 nm. As a result, this unique 3D micro-/nanostructure not only has a high tap density over 2.20 g cm -3 but also exhibits excellent rate capability (197.6 mA h g -1 at 1250 mA g -1 ) as an electrode. The excellent electrochemical performance is ascribed to the unique nanoporous micro-nanostructures, which facilitates the Li + diffusion and enhances the structural stability of the Li-rich layered cathode materials. Our work offers a comprehensive designing strategy to construct 3D nanoporous Li-rich layered oxides for both high volumetric energy density and power density in Li-ion batteries.

  5. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.

    PubMed

    Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M

    2009-12-15

    Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits.

  6. Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study

    NASA Astrophysics Data System (ADS)

    Lanzillo, Nicholas A.; Restrepo, Oscar D.; Bhosale, Prasad S.; Cruz-Silva, Eduardo; Yang, Chih-Chao; Youp Kim, Byoung; Spooner, Terry; Standaert, Theodorus; Child, Craig; Bonilla, Griselda; Murali, Kota V. R. M.

    2018-04-01

    We present a combined theoretical and experimental study on the electron transport characteristics across several representative interface structures found in back-end-of-line interconnect stacks for advanced semiconductor manufacturing: Cu/Ta(N)/Co/Cu and Cu/Ta(N)/Ru/Cu. In particular, we evaluate the impact of replacing a thin TaN barrier with Ta while considering both Co and Ru as wetting layers. Both theory and experiment indicate a pronounced reduction in vertical resistance when replacing TaN with Ta, regardless of whether a Co or Ru wetting layer is used. This indicates that a significant portion of the total vertical resistance is determined by electron scattering at the Cu/Ta(N) interface. The electronic structure of these nano-sized interconnects is analyzed in terms of the atom-resolved projected density of states and k-resolved transmission spectra at the Fermi level. This work further develops a fundamental understanding of electron transport and material characteristics in nano-sized interconnects.

  7. A macrochip interconnection network enabled by silicon nanophotonic devices.

    PubMed

    Zheng, Xuezhe; Cunningham, John E; Koka, Pranay; Schwetman, Herb; Lexau, Jon; Ho, Ron; Shubin, Ivan; Krishnamoorthy, Ashok V; Yao, Jin; Mekis, Attila; Pinguet, Thierry

    2010-03-01

    We present an advanced wavelength-division multiplexing point-to-point network enabled by silicon nanophotonic devices. This network offers strictly non-blocking all-to-all connectivity while maximizing bisection bandwidth, making it ideal for multi-core and multi-processor interconnections. We introduce one of the key components, the nanophotonic grating coupler, and discuss, for the first time, how this device can be useful for practical implementations of the wavelength-division multiplexing network using optical proximity communications. Finite difference time-domain simulation of the nanophotonic grating coupler device indicates that it can be made compact (20 microm x 50 microm), low loss (3.8 dB), and broadband (100 nm). These couplers require subwavelength material modulation at the nanoscale to achieve the desired functionality. We show that optical proximity communication provides unmatched optical I/O bandwidth density to electrical chips, which enables the application of wavelength-division multiplexing point-to-point network in macrochip with unprecedented bandwidth-density. The envisioned physical implementation is discussed. The benefits of such an interconnect network include a 5-6x improvement in latency when compared to a purely electronic implementation. Performance analysis shows that the wavelength-division multiplexing point-to-point network offers better overall performance over other optical network architectures.

  8. Quantifying Electromigration Processes in Sn-0.7Cu Solder with Lab-Scale X-Ray Computed Micro-Tomography

    NASA Astrophysics Data System (ADS)

    Mertens, James Charles Edwin

    For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (muXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale muXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging. In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering 'zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs. The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.

  9. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  10. Nanoporous Silica Thermal Insulation for Space Shuttle Cryogenic Tanks: A Case Study

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1999-01-01

    Nanoporous silica (with typical 10-50 nm porous radii) has been benchmarked for thermal insulators capable of maintaining a 150 K/cm temperature gradient. For cryogenic use in aerospace applications, the combined features for low-density, high thermal insulation factors, and low temperature compatibility are demonstrated in a prototype sandwich structure between two propulsion tanks. Theoretical modelling based on a nanoscale fractal structure suggest that the thermal conductivity scales proportionally (exponent, 1.7) with the material density-lower density increases the thermal insulation rating. Computer simulations, however, support the optimization tradeoff between material strength (Young moduli, proportional to density with exponent, 3.7), the characteristic (colloidal silica, less than 5 nm) particle size, and the thermal rating. The results of these simulations indicate that as nanosized particles are incorporated into the silica backbone, the resulting physical properties will be tailored by the smallest characteristic length and their fractal interconnections (dimension and fractal size). The application specifies a prototype panel which takes advantage of the processing flexibility inherent in sol-gel chemistry.

  11. Nitrogen-Superdoped 3D Graphene Networks for High-Performance Supercapacitors.

    PubMed

    Zhang, Weili; Xu, Chuan; Ma, Chaoqun; Li, Guoxian; Wang, Yuzuo; Zhang, Kaiyu; Li, Feng; Liu, Chang; Cheng, Hui-Ming; Du, Youwei; Tang, Nujiang; Ren, Wencai

    2017-09-01

    An N-superdoped 3D graphene network structure with an N-doping level up to 15.8 at% for high-performance supercapacitor is designed and synthesized, in which the graphene foam with high conductivity acts as skeleton and nested with N-superdoped reduced graphene oxide arogels. This material shows a highly conductive interconnected 3D porous structure (3.33 S cm -1 ), large surface area (583 m 2 g -1 ), low internal resistance (0.4 Ω), good wettability, and a great number of active sites. Because of the multiple synergistic effects of these features, the supercapacitors based on this material show a remarkably excellent electrochemical behavior with a high specific capacitance (of up to 380, 332, and 245 F g -1 in alkaline, acidic, and neutral electrolytes measured in three-electrode configuration, respectively, 297 F g -1 in alkaline electrolytes measured in two-electrode configuration), good rate capability, excellent cycling stability (93.5% retention after 4600 cycles), and low internal resistance (0.4 Ω), resulting in high power density with proper high energy density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Ye, Ke; Cheng, Kui; Yin, Jinling; Cao, Dianxue; Wang, Guiling

    2015-01-01

    In this report, graphene nanosheets (GNS)/nickel sulfide (NiS) based material for high-performance supercapacitor is prepared by "dip and dry" and electrodeposition methods. Commercial flexible make-up cottons (MCs) are chose as skeletons to construct homogeneous three-dimensional (3D) interconnected graphene-wrapped macro-networks, which can support structures for high loading of active electrode materials and facilitate the access of electrolytes to active electrode materials. The hybrid GNS/NiS based MCs (denoted as MCs@GNS@NiS) electrode yields relatively high specific capacitance of 775 F g-1 at a charge/discharge specific current of 0.5 A g-1 and good capacitance retention of 88.1% after 1000 cycles at 2 A g-1. Furthermore, the MCs@GNS@NiS electrode delivers a high energy density of 11.2 Wh kg-1 at even a high power density of 1008 W kg-1. Therefore, such low-cost and high-performance energy MCs based on GNS/NiS hierarchical nanostructures offer great promise in large-scale energy storage device applications.

  13. Self-Patterning of Silica/Epoxy Nanocomposite Underfill by Tailored Hydrophilic-Superhydrophobic Surfaces for 3D Integrated Circuit (IC) Stacking.

    PubMed

    Tuan, Chia-Chi; James, Nathan Pataki; Lin, Ziyin; Chen, Yun; Liu, Yan; Moon, Kyoung-Sik; Li, Zhuo; Wong, C P

    2017-03-15

    As microelectronics are trending toward smaller packages and integrated circuit (IC) stacks nowadays, underfill, the polymer composite filled in between the IC chip and the substrate, becomes increasingly important for interconnection reliability. However, traditional underfills cannot meet the requirements for low-profile and fine pitch in high density IC stacking packages. Post-applied underfills have difficulties in flowing into the small gaps between the chip and the substrate, while pre-applied underfills face filler entrapment at bond pads. In this report, we present a self-patterning underfilling technology that uses selective wetting of underfill on Cu bond pads and Si 3 N 4 passivation via surface energy engineering. This novel process, fully compatible with the conventional underfilling process, eliminates the issue of filler entrapment in typical pre-applied underfilling process, enabling high density and fine pitch IC die bonding.

  14. High-density percutaneous chronic connector for neural prosthetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnetsmore » are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.« less

  15. Individual pore and interconnection size analysis of macroporous ceramic scaffolds using high-resolution X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca

    2016-08-15

    The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting andmore » verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was validated successfully.« less

  16. Comparative Assessment of Tactics to Improve Primary Frequency Response Without Curtailing Solar Output in High Photovoltaic Interconnection Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; You, Shutang

    Power grid primary frequency response will be significantly impaired by Photovoltaic (PV) penetration increase because of the decrease in inertia and governor response. PV inertia and governor emulation requires reserving PV output and leads to solar energy waste. This paper exploits current grid resources and explores energy storage for primary frequency response under high PV penetration at the interconnection level. Based on the actual models of the U.S. Eastern Interconnection grid and the Texas grid, effects of multiple factors associated with primary frequency response, including the governor ratio, governor deadband, droop rate, fast load response. are assessed under high PVmore » penetration scenarios. In addition, performance of batteries and supercapacitors using different control strategies is studied in the two interconnections. The paper quantifies the potential of various resources to improve interconnection-level primary frequency response under high PV penetration without curtailing solar output.« less

  17. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  18. Report of the panel on international programs

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Fuchs, Karl W.; Ganeka, Yasuhiro; Gaur, Vinod; Green, Andrew A.; Siegfried, W.; Lambert, Anthony; Rais, Jacub; Reighber, Christopher; Seeger, Herman

    1991-01-01

    The panel recommends that NASA participate and take an active role in the continuous monitoring of existing regional networks, the realization of high resolution geopotential and topographic missions, the establishment of interconnection of the reference frames as defined by different space techniques, the development and implementation of automation for all ground-to-space observing systems, calibration and validation experiments for measuring techniques and data, the establishment of international space-based networks for real-time transmission of high density space data in standardized formats, tracking and support for non-NASA missions, and the extension of state-of-the art observing and analysis techniques to developing nations.

  19. 1/f noise measurements for faster evaluation of electromigration in advanced microelectronics interconnections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyne, Sofie, E-mail: sofie.beyne@imec.be; De Wolf, Ingrid; imec, Kapeldreef 75, B-3001 Leuven

    The use of 1/f noise measurements is explored for the purpose of finding faster techniques for electromigration (EM) characterization in advanced microelectronic interconnects, which also enable a better understanding of its underlying physical mechanisms. Three different applications of 1/f noise for EM characterization are explored. First, whether 1/f noise measurements during EM stress can serve as an early indicator of EM damage. Second, whether the current dependence of the noise power spectral density (PSD) can be used for a qualitative comparison of the defect concentration of different interconnects and consequently also their EM lifetime t50. Third, whether the activation energiesmore » obtained from the temperature dependence of the 1/f noise PSD correspond to the activation energies found by means of classic EM tests. In this paper, the 1/f noise technique has been used to assess and compare the EM properties of various advanced integration schemes and different materials, as they are being explored by the industry to enable advanced interconnect scaling. More concrete, different types of copper interconnects and one type of tungsten interconnect are compared. The 1/f noise measurements confirm the excellent electromigration properties of tungsten and demonstrate a dependence of the EM failure mechanism on copper grain size and distribution, where grain boundary diffusion is found to be a dominant failure mechanism.« less

  20. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  1. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  2. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  3. Interchip link system using an optical wiring method.

    PubMed

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  4. WDM package enabling high-bandwidth optical intrasystem interconnects for high-performance computer systems

    NASA Astrophysics Data System (ADS)

    Schrage, J.; Soenmez, Y.; Happel, T.; Gubler, U.; Lukowicz, P.; Mrozynski, G.

    2006-02-01

    From long haul, metro access and intersystem links the trend goes to applying optical interconnection technology at increasingly shorter distances. Intrasystem interconnects such as data busses between microprocessors and memory blocks are still based on copper interconnects today. This causes a bottleneck in computer systems since the achievable bandwidth of electrical interconnects is limited through the underlying physical properties. Approaches to solve this problem by embedding optical multimode polymer waveguides into the board (electro-optical circuit board technology, EOCB) have been reported earlier. The principle feasibility of optical interconnection technology in chip-to-chip applications has been validated in a number of projects. For reasons of cost considerations waveguides with large cross sections are used in order to relax alignment requirements and to allow automatic placement and assembly without any active alignment of components necessary. On the other hand the bandwidth of these highly multimodal waveguides is restricted due to mode dispersion. The advance of WDM technology towards intrasystem applications will provide sufficiently high bandwidth which is required for future high-performance computer systems: Assuming that, for example, 8 wavelength-channels with 12Gbps (SDR1) each are given, then optical on-board interconnects with data rates a magnitude higher than the data rates of electrical interconnects for distances typically found at today's computer boards and backplanes can be realized. The data rate will be twice as much, if DDR2 technology is considered towards the optical signals as well. In this paper we discuss an approach for a hybrid integrated optoelectronic WDM package which might enable the application of WDM technology to EOCB.

  5. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.

  6. Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials.

    PubMed

    Chen, Jin; Huang, Xingyi; Sun, Bin; Wang, Yuxin; Zhu, Yingke; Jiang, Pingkai

    2017-09-13

    The continuous evolution toward semiconductor technology in the "more-than-Moore" era and rapidly increasing power density of modern electronic devices call for advanced thermal interface materials (TIMs). Here, we report a novel strategy to construct flexible polymer nanocomposite TIMs for advanced thermal management applications. First, aligned polyvinyl alcohol (PVA) supported and interconnected 2D boron nitride nanosheets (BNNSs) composite fiber membranes were fabricated by electrospinning. Then, the nanocomposite TIMs were constructed by rolling the PVA/BNNS composite fiber membranes to form cylinders and subsequently vacuum-assisted impregnation of polydimethylsiloxane (PDMS) into the porous cylinders. The nanocomposite TIMs not only exhibit a superhigh through-plane thermal conductivity enhancement of about 10 times at a low BNNS loading of 15.6 vol % in comparison with the pristine PDMS but also show excellent electrical insulating property (i.e., high volume electrical resistivity). The outstanding thermal management capability of the nanocomposite TIMs was practically confirmed by capturing the surface temperature variations of a working LED chip integrated with the nanocomposite TIMs.

  7. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    PubMed

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  8. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Ni, Wei; Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun; Zhang, Yun; Wu, Hao; Li, Xiaodong; Wang, Bin

    2017-08-01

    Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li-S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li+ ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g-1 at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg-1 and power density of 1901 Wh kg-1, which greatly improve the energy/power density of traditional lithium-sulfur batteries and will be promising for further commercial applications.

  9. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  10. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE PAGES

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan; ...

    2017-09-08

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  11. Optical interconnects for satellite payloads: overview of the state-of-the-art

    NASA Astrophysics Data System (ADS)

    Vervaeke, Michael; Debaes, Christof; Van Erps, Jürgen; Karppinen, Mikko; Tanskanen, Antti; Aalto, Timo; Harjanne, Mikko; Thienpont, Hugo

    2010-05-01

    The increased demand of broadband communication services like High Definition Television, Video On Demand, Triple Play, fuels the technologies to enhance the bandwidth of individual users towards service providers and hence the increase of aggregate bandwidths on terrestial networks. Optical solutions clearly leverage the bandwidth appetite easily whereas electrical interconnection schemes require an ever-increasing effort to counteract signal distortions at higher bitrates. Dense wavelength division multiplexing and all-optical signal regeneration and switching solve the bandwidth demands of network trunks. Fiber-to-the-home, and fiber-to-the-desk are trends towards providing individual users with greatly increased bandwidth. Operators in the satellite telecommunication sector face similar challenges fuelled by the same demands as for their terrestial counterparts. Moreover, the limited number of orbital positions for new satellites set the trend for an increase in payload datacommunication capacity using an ever-increasing number of complex multi-beam active antennas and a larger aggregate bandwidth. Only satellites with very large capacity, high computational density and flexible, transparent fully digital payload solutions achieve affordable communication prices. To keep pace with the bandwidth and flexibility requirements, designers have to come up with systems requiring a total digital througput of a few Tb/s resulting in a high power consuming satellite payload. An estimated 90 % of the total power consumption per chip is used for the off-chip communication lines. We have undertaken a study to assess the viability of optical datacommunication solutions to alleviate the demands regarding power consumption and aggregate bandwidth imposed on future satellite communication payloads. The review on optical interconnects given here is especially focussed on the demands of the satellite communication business and the particular environment in which the optics have to perform their functionality: space.

  12. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Tan, Yongtao; Yang, Yunlong; Zhao, Xiaoning; Liu, Ying; Niu, Lengyuan; Tichnell, Brandon; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen

    2018-02-01

    In this work, biomass pomelo peel is used to fabricate the porous activated carbon microsheets, and diammonium hydrogen phosphate (DHP) is employed to dual-dope carbon with nitrogen and phosphorus elements. With the benefit of DHP inducement and dual-doping of nitrogen and phosphorus, the prepared carbon material has a higher carbon yield, and exhibits higher specific surface area (about 807.7 m2/g), and larger pore volume (about 0.4378 cm3/g) with hierarchically structure of interconnected thin microsheets compared to the pristine carbon. The material exhibits not only high specific capacitance (240 F/g at 0.5 A/g), but also superior cycling performance (approximately 100% of capacitance retention after 10,000 cycles at 2 A/g) in 2 M KOH aqueous electrolyte. Furthermore, the assembled symmetric electrochemical capacitor in 1 M Na2SO4 aqueous electrolyte exhibits a high energy density of 11.7 Wh/kg at a power density of 160 W/kg.

  13. Relaxed tolerance adiabatic silicon coupler for high I/O port-density optical interconnects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fard, Erfan; Norwood, Robert A.; Peyghambarian, Nasser N.; Koch, Thomas L.

    2017-02-01

    Widespread deployment of silicon photonics will benefit strongly from improved high-port-density interconnect solutions between chips, interposers, and other waveguide fabrics. We present an adiabatic silicon waveguide to polymer waveguide coupler design incorporating strong vertical asymmetries offering high efficiency, small footprint, and improved tolerance to lateral misalignment. The design incorporates a standard 450nm-wide silicon waveguide tapered down to 50nm over a distance of 200μm with a 1.6μm-thick polymer waveguide having a 4μm-wide core atop the taper. The coupler exhibits <0.1dB loss for both TE and TM modes based on 3-dimensional finite element modeling. Moreover, the modeled device exhibits less than 0.1dB excess loss with lateral misalignment of +/-2μm between polymer and silicon waveguide for TE mode, and 0.2dB excess loss with +/-1.6μm offset for the TM mode, and 1dB excess loss for both TE and TM modes with +/-2.7μm misalignment. This taper design should enable reduction in manufacturing costs due to a reduced on-chip footprint and the potential for lower-precision, higher-throughput assembly tools. The authors would like to acknowledge the support of AIM Photonics. This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-15-2-5220. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.

  14. Three-dimensional graphene networks as a new substrate for immobilization of laccase and dopamine and its application in glucose/O2 biofuel cell.

    PubMed

    Zhang, Yijia; Chu, Mi; Yang, Lu; Tan, Yueming; Deng, Wenfang; Ma, Ming; Su, Xiaoli; Xie, Qingji

    2014-08-13

    We report here three-dimensional graphene networks (3D-GNs) as a novel substrate for the immobilization of laccase (Lac) and dopamine (DA) and its application in glucose/O2 biofuel cell. 3D-GNs were synthesized with an Ni(2+)-exchange/KOH activation combination method using a 732-type sulfonic acid ion-exchange resin as the carbon precursor. The 3D-GNs exhibited an interconnected network structure and a high specific surface area. DA was noncovalently functionalized on the surface of 3D-GNs with 3,4,9,10-perylene tetracarboxylic acid (PTCA) as a bridge and used as a novel immobilized mediating system for Lac-based bioelectrocatalytic reduction of oxygen. The 3D-GNs-PTCA-DA nanocomposite modified glassy carbon electrode (GCE) showed stable and well-defined redox current peaks for the catechol/o-quinone redox couple. Due to the mediated electron transfer by the 3D-GNs-PTCA-DA nanocomposite, the Nafion/Lac/3D-GNs-PTCA-DA/GCE exhibited high catalytic activity for oxygen reduction. The 3D-GNs are proven to be a better substrate for Lac and its mediator immobilization than 2D graphene nanosheets (2D-GNs) due to the interconnected network structure and high specific surface area of 3D-GNs. A glucose/O2 fuel cell using Nafion/Lac/3D-GNs-PTCA-DA/GCE as the cathode and Nafion/glucose oxidase/ferrocence/3D-GNs/GCE as the anode can output a maximum power density of 112 μW cm(-2) and a short-circuit current density of 0.96 mA cm(-2). This work may be helpful for exploiting the popular 3D-GNs as an efficient electrode material for many other biotechnology applications.

  15. Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors.

    PubMed

    Wang, Kun; Wang, Ning; He, Jianjiang; Yang, Ze; Shen, Xiangyan; Huang, Changshui

    2017-11-22

    Here, we apply three-dimensional (3D) architecture graphdiyne nanosheet (GDY-NS) as anode materials for sodium-ion storage devices achieving high energy and power performance along with excellent cyclic ability. The contribution of 3D architecture nanostructure and intramolecular pores of the GDY-NS can substantially optimize the sodium storage behavior through the accommodated intramolecular pore, 3D interconnective porous structure, and increased activity sites to facilitate a fast sodium-ion-diffusion channel. The contribution of butadiyne linkages and the formation of a stable solid electrolyte interface layer are directly confirmed through the in situ Raman measurement. The GDY-NS-based sodium-ion batteries exhibit a stable reversible capacity of approximately 812 mAh g -1 at a current density of 0.05 A g -1 ; they maintain more than 405 mAh g -1 over 1000 cycles at a current density of 1 A g -1 . Furthermore, the sodium-ion capacitors could deliver a capacitance more than 200 F g -1 over 3000 cycles at 1 A g -1 and display an initial specific energy as high as 182.3 Wh kg -1 at a power density of 300 W kg -1 and maintain specific energy of 166 Wh kg -1 even at a power density of 15 000 W kg -1 . The high energy and power density along with excellent cyclic performance based on the GDY-NS anode offers a great potential toward application on next-generation energy storage devices.

  16. Collisionless effects on beam-return current systems in solar flares

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Rowland, H. L.

    1985-01-01

    A theoretical study of the beam-return current system (BRCS) in solar flares shows that the precipitating electrons modify the way in which the return current (RC) is carried by the background plasma. In particular it is found that the RC is not carried by the bulk of the electrons but by a small number of high-velocity electrons. For beam/plasma densities exceeding approximately 0.001, this can reduce the effects of collisions and heating by the RC. For higher-density beams, where the RC could be unstable to current-driven instabilities, the effects of strong turbulence anomalous resistivity prevent the appearance of such instabilities. The main conclusion is that the BRCS is interconnected, and that the beam-generated strong turbulence determines how the RC is carried.

  17. High-Penetration Photovoltaic Planning Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection tomore » the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.« less

  18. Physical Properties of 3D Interconnected Graphite Networks - Aerographite

    DTIC Science & Technology

    2015-10-30

    Figure 1.2: Influence of toluene injection rate per time on Aerographite density...................... 6 Figure 1.3: Influence of toluene injection ...densities ........................... 20 Figure 3.15: Capacitance as a function of carbon precursor injection rate .............................. 20...At a constant temperature profile of 200° C in the injection zone and 760° C in main zone, a carbon precursor (toluene) is injected with a

  19. Additive manufacturing and analysis of high frequency interconnects for microwave devices

    NASA Astrophysics Data System (ADS)

    Harper, Elicia K.

    Wire bond interconnects have been the main approach to interconnecting microelectronic devices within a package. Conventional wirebonding however offers little control of the impedance of the interconnect and also introduces parasitic inductance that can degrade performance at microwave frequencies. The size and compactness of microchips is often an issue when it comes to attaching wirebonds to the microchip or other components within a microwave module. This work demonstrates the use of additive manufacturing for printing interconnects directly between bare die microchips and other components within a microwave module. A test structure was developed consisting of a GaAs microchip sandwiched between two alumina blocks patterned with coplanar waveguides (CPW). A printed dielectric ink is used to fill the gap between the alumina CPW blocks and the GaAs chip. Conductive interconnects are printed on top of the dielectric bridge material to connect the CPW traces to the bonding pads on the GaAs microchip. Simulations of these structures were modeled in the electromagnetics simulation tool by ANSYS, high frequency structure simulation (HFSS), to optimize the printed interconnects at 1-40 GHz (ANSYS Inc., Canonsburg, PA). The dielectric constant and loss tangent of the simulated dielectric was varied along with the dimensions of the conductive interconnects. The best combination of dielectric properties and interconnect dimensions was chosen for impedance matching by analyzing the insertion losses and return losses. A dielectric ink, which was chosen based on the simulated results, was experimentally printed between the two CPW blocks and the GaAs chip and subsequently cured. The conductive interconnects were then printed with an aerosol jet printer, connecting the CPW traces to the bonding pads on the GaAs microchip. The experimental prototype was then measured with a network analyzer and the measured data were compared to simulations. Results show good agreement between the simulated and measured S-parameters. This work demonstrates the potential for using additive manufacturing technology to create impedance- matched interconnects between high frequency ICs and other module components such as high frequency CPW transmission lines.

  20. Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Suo; Liu, Songhang; Zhang, Jianqiu; Wang, Yong

    2015-10-01

    Environmental pollution and energy deficiency are two key issues for the sustainable development of the modern society. Polyurethane foam is a typical commercial polymer with a large production quantity and its waste needs to be recycled. Lithium-sulfur battery is a promising energy-storage device with high energy density and low cost, but its demerits such as poor conductivity of the sulfur and severe capacity degradation due to the soluble lithium polysulfides are still a big challenge. This work reports a facile method to prepare nitrogen-doped porous carbon (NPC) from the polyurethane foam (PUF) waste and use it as a reservoir to impregnate sulfur for lithium-sulfur batteries. The obtained NPC has a unique interconnected sheet-like porous morphology with a large surface area of 1315 m2 g-1. The NPC-S composite delivers a large reversible capacity of 1118 mAh g-1 with good cycling performances and excellent high-rate capabilities. A large reversible capacity of 460 mAh g-1 can be retained at a large current of 5C (8.35 A g-1) after 100 cycles.

  1. Chip-scale thermal management of high-brightness LED packages

    NASA Astrophysics Data System (ADS)

    Arik, Mehmet; Weaver, Stanton

    2004-10-01

    The efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. Light emitting diodes, LEDs, are a strong candidate for the next generation, general illumination applications. LEDs are making great strides in terms of lumen performance and reliability, however the barrier to widespread use in general illumination still remains the cost or $/Lumen. LED packaging designers are pushing the LED performance to its limits. This is resulting in increased drive currents, and thus the need for lower thermal resistance packaging designs. As the power density continues to rise, the integrity of the package electrical and thermal interconnect becomes extremely important. Experimental results with high brightness LED packages show that chip attachment defects can cause significant thermal gradients across the LED chips leading to premature failures. A numerical study was also carried out with parametric models to understand the chip active layer temperature profile variation due to the bump defects. Finite element techniques were utilized to evaluate the effects of localized hot spots at the chip active layer. The importance of "zero defects" in one of the more popular interconnect schemes; the "epi down" soldered flip chip configuration is investigated and demonstrated.

  2. Characterizing wind power resource reliability in southern Africa

    DOE PAGES

    Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam

    2015-08-29

    Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less

  3. Characterizing wind power resource reliability in southern Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam

    Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less

  4. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering

    PubMed Central

    Feng, Pei; Niu, Man; Gao, Chengde; Peng, Shuping; Shuai, Cijun

    2014-01-01

    In this study, nano-hydroxyapatite scaffolds with high mechanical strength and an interconnected porous structure were prepared using NTSS for the first time. The first step was performed using a laser characterized by the rapid heating to skip the surface diffusion and to obtain the driving force for grain boundary diffusion. Additionally, the interconnected porous structure was achieved by SLS. The second step consisted of isothermal heating in a furnace at a lower temperature (T2) than that of the laser beam to further increase the density and to suppress grain growth by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The results indicated that the mechanical properties first increased and then decreased as T2 was increased from 1050 to 1250°C. The optimal fracture toughness, compressive strength and stiffness were 1.69 MPam1/2, 18.68 MPa and 245.79 MPa, respectively. At the optimal point, the T2 was 1100°C, the grain size was 60 nm and the relative density was 97.6%. The decrease in mechanical properties was due to the growth of grains and the decomposition of HAP. The cytocompatibility test results indicated that cells adhered and spread well on the scaffolds. A bone-like apatite layer formed, indicating good bioactivity. PMID:24998362

  5. A highly stretchable, transparent, and conductive polymer

    DOE PAGES

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; ...

    2017-03-10

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm undermore » 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.« less

  6. A highly stretchable, transparent, and conductive polymer

    PubMed Central

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I.; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F.; Murmann, Boris; Bao, Zhenan

    2017-01-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects. PMID:28345040

  7. Microwave-Assisted Rapid Synthesis of Self-Assembled T-Nb2 O5 Nanowires for High-Energy Hybrid Supercapacitors.

    PubMed

    Yang, Huiling; Xu, Henghui; Wang, Libin; Zhang, Lei; Huang, Yunhui; Hu, Xianluo

    2017-03-23

    Recently ion-intercalation hybrid supercapacitors, with high energy density at high power density, have been widely investigated to meet ever-increasing practical demands. Here, a unique hybrid supercapacitor has been designed and fabricated using self-assembled orthorhombic-phase niobium oxide@carbon (T-Nb 2 O 5 @C) nanowires as an anode and commercially available activated carbon as a cathode. The 3D-interconnected T-Nb 2 O 5 @C nanowires have been synthesized through a highly efficient microwave-solvothermal method, combined with subsequent thermal treatment. The experimental parameters (e.g., time and temperature) can be easily programmed, and the synthesis time can be significantly shortened, thus enabling the buildup of abundant recipes for the engineering of scaled-up production. The Li-ion intercalation pseudocapacitance electrode, made from the as-formed self-assembled T-Nb 2 O 5 @C nanowires, shows excellent charge storage and transfer capability. When assembled into a hybrid supercapacitor with a cathode of activated carbon, a high energy density of 60.6 Wh kg -1 and a high power density of 8.5 kW kg -1 with outstanding stability are achieved. In virtue of easy optimization and programmability of the synthetic strategy, and the remarkable electrochemical performance, the self-assembled T-Nb 2 O 5 @C nanowires offer a promising anode for asymmetric hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. MINE: Module Identification in Networks

    PubMed Central

    2011-01-01

    Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434

  9. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  10. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.

    PubMed

    Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal

    2012-09-01

    The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A MIMO-Inspired Rapidly Switchable Photonic Interconnect Architecture (Postprint)

    DTIC Science & Technology

    2009-07-01

    capabilities of future systems. Highspeed optical processing has been looked to as a means for eliminating this interconnect bottleneck. Presented...here are the results of a study for a novel optical (integrated photonic) processor which would allow for a high-speed, secure means for arbitrarily...regarded as a Multiple Input Multiple Output (MIMO) architecture. 15. SUBJECT TERMS Free-space optical interconnects, Optical Phased Arrays, High-Speed

  12. Highly conductive metal interconnects on three-dimensional objects fabricated with omnidirectional ink jet printing technology

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasunori; Wada, Hikaru; Izumi, Konami; Tokito, Shizuo

    2017-05-01

    In this work, we demonstrate that highly conductive metal interconnects can be fabricated on the surface of three-dimensional objects using “omnidirectional ink jet” (OIJ) printing technology. OIJ printing technology makes it possible to perform ink jet printing in all directions by combining the motion of a 6-axis vertically articulated robot with precise positioning and a thermal drying process, which allows for the printing of stacked layers. By using OIJ technology, we were the first to successfully fabricate printed interconnect layers having a very low electrical resistance of 12 mΩ over a 10 mm length. Moreover, the results of the high-current test demonstrated that the printed interconnects can withstand high-current-flow of 5 A for 30 min or more.

  13. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  14. Cantilever testing of sintered-silver interconnects

    DOE PAGES

    Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.; ...

    2017-10-19

    Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less

  15. Cantilever testing of sintered-silver interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.

    Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less

  16. Computer-Aided Design/Manufacturing (CAD/M) for High-Speed Interconnect.

    DTIC Science & Technology

    1981-10-01

    are frequency sensitive and hence lend themselves to frequency domain ananlysis . Most of the classical microwave analysis is handled in the frequency ...capability integrated into a time-domain analysis program. This approach allows determination of frequency -dependent transmission line (interconnect...the items to consider in any interconnect study is that of the frequency range of interest. This determines whether the interconnections must be treated

  17. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1988-05-26

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  18. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  19. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.

    PubMed

    Close, Gael F; Yasuda, Shinichi; Paul, Bipul; Fujita, Shinobu; Wong, H-S Philip

    2008-02-01

    Due to their excellent electrical properties, metallic carbon nanotubes are promising materials for interconnect wires in future integrated circuits. Simulations have shown that the use of metallic carbon nanotube interconnects could yield more energy efficient and faster integrated circuits. The next step is to build an experimental prototype integrated circuit using carbon nanotube interconnects operating at high speed. Here, we report the fabrication of the first stand-alone integrated circuit combining silicon transistors and individual carbon nanotube interconnect wires on the same chip operating above 1 GHz. In addition to setting a milestone by operating above 1 GHz, this prototype is also a tool to investigate carbon nanotubes on a silicon-based platform at high frequencies, paving the way for future multi-GHz nanoelectronics.

  20. Construction of Nitrogen-Doped Carbon-Coated MoSe2 Microspheres with Enhanced Performance for Lithium Storage.

    PubMed

    Tang, Wangjia; Xie, Dong; Shen, Tong; Wang, Xiuli; Wang, Donghuang; Zhang, Xuqing; Xia, Xinhui; Wu, Jianbo; Tu, Jiangping

    2017-09-18

    Exploring advanced anode materials with highly reversible capacity have gained great interests for large-scale lithium storage. A facile two-step method is developed to synthesize nitrogen-doped carbon coated MoSe 2 microspheres via hydrothermal plus thermal polymerization. The MoSe 2 microspheres composed of interconnected nanoflakes are homogeneously coated by a thin nitrogen-doped carbon (N-C) layer. As an anode for lithium ion batteries, the MoSe 2 /N-C composite shows better reversibility, smaller polarization, and higher electrochemical reactivity as compared to the unmodified MoSe 2 microspheres. The MoSe 2 /N-C electrode delivers a high specific capacity of 698 mAh g -1 after 100 cycles at a current density of 100 mA g -1 and good high rate performance (471 mAh g -1 at a high current density of 2000 mA g -1 ). The improved electrochemical performance is attributed to the conductive N-C coating and hierarchical microsphere structure with fast ion/electron transfer characteristics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Architectural and engineering issues for building an optical Internet

    NASA Astrophysics Data System (ADS)

    St. Arnaud, Bill

    1998-10-01

    Recent developments in high density Wave Division Multiplexing fiber systems allows for the deployment of a dedicated optical Internet network for large volume backbone pipes that does not require an underlying multi-service SONET/SDH and ATM transport protocol. Some intrinsic characteristics of Internet traffic such as its self similar nature, server bound congestion, routing and data asymmetry allow for highly optimized traffic engineered networks using individual wavelengths. By transmitting GigaBit Ethernet or SONET/SDH frames natively over WDM wavelengths that directly interconnect high performance routers the original concept of the Internet as an intrinsically survivable datagram network is possible. Traffic engineering, restoral, protection and bandwidth management of the network must now be carried out at the IP layer and so new routing or switching protocols such as MPLS that allow for uni- directional paths with fast restoral and protection at the IP layer become essential for a reliable production network. The deployment of high density WDM municipal and campus networks also gives carriers and ISPs the flexibility to offer customers as integrated and seamless set of optical Internet services.

  2. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Zeng, Yan; Wang, Liyuan; Li, Nan; Chen, Cheng; Li, Cuiyu; Li, Jing; Lv, Hanming; Kuang, Liyun; Tian, Xu

    2017-07-01

    Elemental phosphorus (P) is extensively explored as promising anode candidates due to its abundance, low-cost and high theoretical specific capacity. However, it is of great challenge for P-based materials as practical high-energy-density and long-cycling anodes for its large volume expansion and low conductibility. Here, we significantly improve both cycling and rate performance of red P by cladding the nanoconfined P film on interconnected multi-walled carbon nanotube networks (P-MWCNTs composite) via facile wet ball-milling. The red P-MWCNTs anode presents a superior high reversible capacity of 1396.6 mAh g-1 on the basis of P-MWCNTs composite weight at 50 mA g-1 with capacity retention reaching at ∼90% over 50 cycles. Even at 1000 mA g-1, it still maintains remarkable specific reversible capacity of 934.0 mAh g-1. This markedly enhanced performance is ascribed to synergistic advantages of this unique structure: Intimate contacts between nanosized red P and entangled MWCNTs not only shorten the transmission routes of ions through MWCNTs toward red P, but also motivate the access with electrolyte to open structures of P film. Besides, the confined nanosized P film moderate volume expansions effectively and the entangled MWCNTs networks acted as conductive channels activate high ionic/electronic conductivity of the whole electrodes.

  3. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor

    NASA Astrophysics Data System (ADS)

    Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan

    2016-10-01

    The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g-1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g-1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g-1 at ~1 A g-1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials.

  4. Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from Moringa oleifera Branches for High-Performance Supercapacitors.

    PubMed

    Cai, Yijin; Luo, Ying; Xiao, Yong; Zhao, Xiao; Liang, Yeru; Hu, Hang; Dong, Hanwu; Sun, Luyi; Liu, Yingliang; Zheng, Mingtao

    2016-12-07

    In this paper, we demonstrate that Moringa oleifera branches, a renewable biomass waste with abundant protein content, can be employed as novel precursor to synthesize three-dimensional heteroatom-doped and hierarchical egg-box-like carbons (HEBLCs) by a facile room-temperature pretreatment and direct pyrolysis process. The as-prepared HEBLCs possess unique egg-box-like frameworks, high surface area, and interconnected porosity as well as the doping of heteroatoms (oxygen and nitrogen), endowing its excellent electrochemical performances (superior capacity, high rate capability, and outstanding cycling stability). Therefore, the resultant HEBLC manifests a maximum specific capacitance of 355 F g -1 at current density of 0.5 A g -1 and remarkable rate performance. Moreover, 95% of capacitance retention of HEBLCs can be also achieved after 20 000 charge-discharge cycles at an extremely high current density (20 A g -1 ), indicating a prominent cycling stability. Furthermore, the as-assembled HEBLC//HEBLC symmetric supercapacitor displays a superior energy density of 20 Wh kg -1 in aqueous electrolyte and remarkable capacitance retention (95.6%) after 10 000 charge-discharge cycles. This work provides an environmentally friendly and reliable method to produce higher-valued carbon nanomaterials from renewable biomass wastes for energy storage applications.

  5. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density.

    PubMed

    Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei

    2013-11-13

    Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.

  6. Accurate Modeling Method for Cu Interconnect

    NASA Astrophysics Data System (ADS)

    Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko

    This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.

  7. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    PubMed

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-08-19

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.

  8. Interconnected Porous Polymers with Tunable Pore Throat Size Prepared via Pickering High Internal Phase Emulsions.

    PubMed

    Xu, Hongyun; Zheng, Xianhua; Huang, Yifei; Wang, Haitao; Du, Qiangguo

    2016-01-12

    Interconnected macroporous polymers were prepared by copolymerizing methyl acrylate (MA) via Pickering high internal phase emulsion (HIPE) templates with modified silica particles. The pore structure of the obtained polymer foams was observed by field-emission scanning electron microscopy (FE-SEM). Gas permeability was characterized to evaluate the interconnectivity of macroporous polymers. The polymerization shrinkage of continuous phase tends to form open pores while the solid particles surrounding the droplets act as barriers to produce closed pores. These two conflicting factors are crucial in determining the interconnectivity of macroporous polymers. Thus, poly-Pickering HIPEs with high permeability and well-defined pore structure can be achieved by tuning the MA content, the internal phase fraction, and the content of modified silica particles.

  9. The Need for Optical Means as an Alternative for Electronic Computing

    NASA Technical Reports Server (NTRS)

    Adbeldayem, Hossin; Frazier, Donald; Witherow, William; Paley, Steve; Penn, Benjamin; Bank, Curtis; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    An increasing demand for faster computers is rapidly growing to encounter the fast growing rate of Internet, space communication, and robotic industry. Unfortunately, the Very Large Scale Integration technology is approaching its fundamental limits beyond which the device will be unreliable. Optical interconnections and optical integrated circuits are strongly believed to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by conventional electronics. This paper demonstrates two ultra-fast, all-optical logic gates and a high-density storage medium, which are essential components in building the future optical computer.

  10. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.

    PubMed

    Shah, Furqan A; Omar, Omar; Suska, Felicia; Snis, Anders; Matic, Aleksandar; Emanuelsson, Lena; Norlindh, Birgitta; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora. Despite higher total bone-implant contact for Ti6Al4V (39±4%) than CoCr (27±4%), bone formation patterns were similar, e.g., densification around the implant, and gradual ingrowth into the porous network, with more bone in the outer half (periphery) than the inner half (centre). Raman spectroscopy revealed no major differences in mineral crystallinity, the apatite-to-collagen ratio, or the carbonate-to-phosphate ratio. Energy dispersive X-ray spectroscopy showed similar Ca/P ratio of the interfacial tissue adjacent to both materials. Osteocytes made direct contact with CoCr and Ti6Al4V. While osteocyte density and distribution in the new-formed bone were largely similar for the two alloys, higher osteocyte density was observed at the periphery of the porous network for CoCr, attributable to slower remodelling and a different biomechanical environment. The results demonstrate the possibility to achieve bone ingrowth into open-pore CoCr constructs, and attest to the potential for fabricating customised osseointegrated CoCr implants for load-bearing applications. Although cobalt chromium (CoCr) based alloys are used extensively in orthopaedic surgery, stress shielding due to the high stiffness of CoCr is of concern. To reduce the stiffness mismatch between CoCr and bone, CoCr and Ti6Al4V implants having an interconnected open-pore architecture were prepared by electron beam melting (EBM). After six months of submerged healing in sheep, both alloys showed similar patterns of bone formation, with densification around the implant and gradual ingrowth into the porous network. The molecular and elemental composition of the interfacial tissue was similar for both alloys. Osteocytes made direct contact with both alloys, with similar overall osteocyte density and distribution. The work attests to the potential for achieving osseointegration of EBM manufactured porous CoCr implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  12. The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Farnan, I.; Salje, E. K. H.

    2001-02-01

    A quantitative analysis of 29Si nuclear magnetic resonance spectra of radiation damaged, natural zircons showed that the local structure in crystalline and amorphous regions depend explicitly on radiation dose. Nonpercolating amorphous islands of high density "glass" within the crystalline matrix show a low interconnectivity of SiO4 tetrahedra. This structural state is quite different from that of the high dose, percolating regions of low density glass with more polymerised tetrahedra. A continuous nonlinear dose dependence between the high and low density glass states is reported. A continuous evolution of the local structure of the crystalline phase up to the percolation point is also reported. No phase separation into binary oxides was observed. The total number of permanently displaced atoms per α-recoil event is ˜3800 atoms for low radiation doses and decreases to ˜2000 atoms for 10×1018 α events/g. No indication of partitioning of paramagnetic impurities between crystalline and amorphous regions was found for these natural zircons. The amorphous fractions of the metamict zircons were determined as a function of their accumulated radiation dose. These values coincide closely with those recently determined by x-ray diffraction studies. They are much greater than previously assumed based on density measurements. The dose dependence is consistent with the concept of direct impact amorphization in the atomic cascade following an α-recoil event.

  13. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  14. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOEpatents

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  15. Optical interconnection networks for high-performance computing systems

    NASA Astrophysics Data System (ADS)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  16. MOCVD Growth of III-V Photodetectors and Light Emitters for Integration of Optoelectronic Devices on Si substrates

    NASA Astrophysics Data System (ADS)

    Geng, Yu

    With the increase of clock speed and wiring density in integrated circuits, inter-chip and intra-chip interconnects through conventional electrical wires encounter increasing difficulties because of the large power loss and bandwidth limitation. Optical interconnects have been proposed as an alternative to copper-based interconnects and are under intense study due to their large data capacity, high data quality and low power consumption. III-V compound semiconductors offer high intrinsic electron mobility, small effective electron mass and direct bandgap, which make this material system advantageous for high-speed optoelectronic devices. The integration of III-V optoelectronic devices on Si substrates will provide the combined advantage of a high level of integration and large volume production of Si-based electronic circuitry with the superior electrical and optical performance of III-V components, paving the way to a new generation of hybrid integrated circuits. In this thesis, the direct heteroepitaxy of photodetectors (PDs) and light emitters using metal-organic chemical vapor deposition for the integration of photonic devices on Si substrates were studied. First we studied the selective-area growth of InP/GaAs on patterned Si substrates for PDs. To overcome the loading effect, a multi-temperature composite growth technique for GaAs was developed. By decreasing various defects such as dislocations and anti-phase domains, the GaAs and InP buffer layers are with good crystalline quality and the PDs show high speed and low dark current performance both at the edge and center of the large growth well. Then the growth and fabrication of GaAs/AlGaAs QW lasers were studied. Ellipsometry was used to calibrate the Al composition of AlGaAs. Thick p and n type AlGaAs with a mirrorlike surface were grown by high V/III ratio and high temperature. The GaAs/AlGaAs broad area QW laser was successfully grown and fabricated on GaAs substrate and showed a pulsed lasing result with a threshold current density of about 800 A/cm2. For the integration of lasers on Si substrate, quantum dot (QD) lasers were studied. A flow-and-stop process of TBA was used to grow InAs QDs with the in-situ monitor EpiRas. QDs with a PL wavelength of ˜1.3 mum were grown on GaAs and Si substrates. To decrease the PL degradation problem caused by the contaminations from AlGaAs, an InGaAs insertion layer was inserted in between the AlGaAs and QDs region. Microdisk and a-Si waveguide lasers are designed and fabricated.

  17. 77 FR 24695 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Services Agreement between High Majestic Interconnect and HMI to be effective 6/16/2012. Filed Date: 4/17..., LLC. Description: CFA Between HMI, HMII, and High Majestic Interconnection to be effective 6/16/2012...

  18. Magnetically-guided assembly of microfluidic fibers for ordered construction of diverse netlike modules

    NASA Astrophysics Data System (ADS)

    Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-12-01

    In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.

  19. Highly stretchable carbon aerogels.

    PubMed

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  20. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  1. Advanced packaging for Integrated Micro-Instruments

    NASA Technical Reports Server (NTRS)

    Lyke, James L.

    1995-01-01

    The relationship between packaging, microelectronics, and micro-electrical-mechanical systems (MEMS) is an important one, particularly when the edges of performance boundaries are pressed, as in the case of miniaturized systems. Packaging is a sort of physical backbone that enables the maximum performance of these systems to be realized, and the penalties imposed by conventional packing approaches is particularly limiting for MEMS devices. As such, advanced packaging approaches, such as multi-chip modules (MCM's) have been touted as a true means of electronic 'enablement' for a variety of application domains. Realizing an optimum system of packaging, however, in not as simple as replacing a set of single chip packages with a substrate of interconnections. Research at Phillips Laboratory has turned up a number of integrating options in the two- and three-dimensional rending of miniature systems with physical interconnection structures with intrinsically high performance. Not only do these structures motivate the redesign of integrated circuits (IC's) for lower power, but they possess interesting features that provide a framework for the direct integration of MEMS devices. Cost remains a barrier to the application of MEMS devices, even in space systems. Several innovations are suggested that will result in lower cost and more rapid cycle time. First, the novelty of a 'constant floor plan' MCM which encapsulates a variety of commonly used components into a stockable, easily customized assembly is discussed. Next, the use of low-cost substrates is examined. The anticipated advent of ultra-high density interconnect (UHDI) is suggested as the limit argument of advanced packaging. Finally, the concept of a heterogeneous 3-D MCM system is outlined that allows for the combination of different compatible packaging approaches into a uniformly dense structure that could also include MEMS-based sensors.

  2. The growth of high density network of MOF nano-crystals across macroporous metal substrates - Solvothermal synthesis versus rapid thermal deposition

    NASA Astrophysics Data System (ADS)

    Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.

    2018-01-01

    Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.

  3. Embedded optical interconnect technology in data storage systems

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard C. A.; Hopkins, Ken; Milward, Dave; Muggeridge, Malcolm

    2010-05-01

    As both data storage interconnect speeds increase and form factors in hard disk drive technologies continue to shrink, the density of printed channels on the storage array midplane goes up. The dominant interconnect protocol on storage array midplanes is expected to increase to 12 Gb/s by 2012 thereby exacerbating the performance bottleneck in future digital data storage systems. The design challenges inherent to modern data storage systems are discussed and an embedded optical infrastructure proposed to mitigate this bottleneck. The proposed solution is based on the deployment of an electro-optical printed circuit board and active interconnect technology. The connection architecture adopted would allow for electronic line cards with active optical edge connectors to be plugged into and unplugged from a passive electro-optical midplane with embedded polymeric waveguides. A demonstration platform has been developed to assess the viability of embedded electro-optical midplane technology in dense data storage systems and successfully demonstrated at 10.3 Gb/s. Active connectors incorporate optical transceiver interfaces operating at 850 nm and are connected in an in-plane coupling configuration to the embedded waveguides in the midplane. In addition a novel method of passively aligning and assembling passive optical devices to embedded polymer waveguide arrays has also been demonstrated.

  4. Optomechanical Design and Characterization of a Printed-Circuit-Board-Based Free-Space Optical Interconnect Package

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.

    1999-09-01

    We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.

  5. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    PubMed Central

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070

  6. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Lu; Zhang, Mingyi; Zhang, Xitian; Zhang, Zhiguo

    2017-10-01

    Novel 3D Ti3C2 aerogel has been first synthesized by a simple EDA-assisted self-assembly process. Its inside are channels and pores structure. The interconnected aerogel structure could efficiently restrain restacking of Ti3C2 flakes. Thus, it exhibits a large specific surface area as high as 176.3 m2 g-1. The electrochemical performances have been measured. The Ti3C2 aerogel achieves a quite high areal capacitance of 1012.5 mF cm-2 for the mass loading of 15 mg at a scan rate of 2 mV s-1 in 1 M KOH electrolyte. An asymmetric supercapacitor (ASC) has been assembled by using the Ti3C2 aerogel electrode as the negative electrode and electrospinning carbon nanofiber film as the positive electrode. The device can deliver a high energy density of 120.0 μWh cm-2 and a maximum power density of 26123 μW cm-2. A lamp panel with nineteen red light-emitting diodes has been powered by two ASCs in series.

  7. Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project. Revised

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.

  8. Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2004-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.

  9. Cavitation transition in the energy landscape: Distinct tensile yielding behavior in strongly and weakly attractive systems.

    PubMed

    Altabet, Y Elia; Fenley, Andreia L; Stillinger, Frank H; Debenedetti, Pablo G

    2018-03-21

    Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρ S . The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρ S in the thermodynamic limit, this interconnected network develops gradually, starting at ρ S , even at infinite system size.

  10. Interconnected Cavernous Structure of Bacterial Fruiting Bodies

    DOE PAGES

    Harvey, Cameron W.; Du, Huijing; Xu, Zhiliang; ...

    2012-12-27

    The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicelular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to Imitations at different imaging methods. A new technique using Infrared Opticalmore » Coherence Tomography (OCT) revealed previously unknown details of the Internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative nigh and low spore density regions. Here, to make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The Integration of novel OCT experimental techniques with computational simulations can provide new insight Into the mechanisms that can give rise to the pattern formation seen In other biological systems such as dlctyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.« less

  11. Cavitation transition in the energy landscape: Distinct tensile yielding behavior in strongly and weakly attractive systems

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Fenley, Andreia L.; Stillinger, Frank H.; Debenedetti, Pablo G.

    2018-03-01

    Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρS. The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρS in the thermodynamic limit, this interconnected network develops gradually, starting at ρS, even at infinite system size.

  12. Non-identical multiplexing promotes chimera states

    NASA Astrophysics Data System (ADS)

    Ghosh, Saptarshi; Zakharova, Anna; Jalan, Sarika

    2018-01-01

    We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world complex systems can promote chimera states in a sparse homogeneous first layer.

  13. Fan-out Estimation in Spin-based Quantum Computer Scale-up.

    PubMed

    Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R

    2017-10-17

    Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.

  14. High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo 2O 4/CNT nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jie; Wu, Jianzhong; Wu, Zexing

    In this paper, 3D-transition binary metal oxides have been considered as promising anode materials for lithium-ion batteries with improved reversible capacity, structural stability and electronic conductivity compared with single metal oxides. Here, carbon nanotube supported NiCo 2O 4 nanoparticles (NiCo 2O 4/CNT) with 3D hierarchical hollow structure are fabricated via a simple one-pot method. The NiCo 2O 4 nanoparticles with interconnected pores are consists of small nanocrystals. When used as anode material for the lithium-ion battery, NiCo 2O 4/CNT exhibits enhanced electrochemical performance than that of Co 3O 4/CNT and NiO/CNT. Moreover, ultra-high discharge/charge stability was obtained for 4000 cyclesmore » at a current density of 5 A g –1. The superior battery performance of NiCo 2O 4 nanoparticles is probably attributed to the special structural features and physical characteristics, including integrity, hollow structure with interconnected pores, which providing sufficient accommodation for the volume change during charge/discharge process. Besides, the consisting of ultra-small crystals enhanced the utility of active material, and intimate interaction with CNTs improved the electron-transfer rate.« less

  15. High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo 2O 4/CNT nanocomposite

    DOE PAGES

    Wang, Jie; Wu, Jianzhong; Wu, Zexing; ...

    2017-05-17

    In this paper, 3D-transition binary metal oxides have been considered as promising anode materials for lithium-ion batteries with improved reversible capacity, structural stability and electronic conductivity compared with single metal oxides. Here, carbon nanotube supported NiCo 2O 4 nanoparticles (NiCo 2O 4/CNT) with 3D hierarchical hollow structure are fabricated via a simple one-pot method. The NiCo 2O 4 nanoparticles with interconnected pores are consists of small nanocrystals. When used as anode material for the lithium-ion battery, NiCo 2O 4/CNT exhibits enhanced electrochemical performance than that of Co 3O 4/CNT and NiO/CNT. Moreover, ultra-high discharge/charge stability was obtained for 4000 cyclesmore » at a current density of 5 A g –1. The superior battery performance of NiCo 2O 4 nanoparticles is probably attributed to the special structural features and physical characteristics, including integrity, hollow structure with interconnected pores, which providing sufficient accommodation for the volume change during charge/discharge process. Besides, the consisting of ultra-small crystals enhanced the utility of active material, and intimate interaction with CNTs improved the electron-transfer rate.« less

  16. Frequency Response Assessment and Enhancement of the U.S. Power Grids towards Extra-High Photovoltaic Generation Penetrations – an Industry Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; You, Shutang; Tan, Jin

    Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less

  17. Frequency Response Assessment and Enhancement of the U.S. Power Grids towards Extra-High Photovoltaic Generation Penetrations – an Industry Perspective

    DOE PAGES

    Liu, Yong; You, Shutang; Tan, Jin; ...

    2018-01-30

    Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less

  18. 11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode

    DTIC Science & Technology

    2012-01-30

    drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor

  19. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    PubMed Central

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  20. High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects

    NASA Technical Reports Server (NTRS)

    Schutt-Aine, Jose E.

    1996-01-01

    The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.

  1. Towards energy-efficient photonic interconnects

    NASA Astrophysics Data System (ADS)

    Demir, Yigit; Hardavellas, Nikos

    2015-03-01

    Silicon photonics have emerged as a promising solution to meet the growing demand for high-bandwidth, low-latency, and energy-efficient on-chip and off-chip communication in many-core processors. However, current silicon-photonic interconnect designs for many-core processors waste a significant amount of power because (a) lasers are always on, even during periods of interconnect inactivity, and (b) microring resonators employ heaters which consume a significant amount of power just to overcome thermal variations and maintain communication on the photonic links, especially in a 3D-stacked design. The problem of high laser power consumption is particularly important as lasers typically have very low energy efficiency, and photonic interconnects often remain underutilized both in scientific computing (compute-intensive execution phases underutilize the interconnect), and in server computing (servers in Google-scale datacenters have a typical utilization of less than 30%). We address the high laser power consumption by proposing EcoLaser+, which is a laser control scheme that saves energy by predicting the interconnect activity and opportunistically turning the on-chip laser off when possible, and also by scaling the width of the communication link based on a runtime prediction of the expected message length. Our laser control scheme can save up to 62 - 92% of the laser energy, and improve the energy efficiency of a manycore processor with negligible performance penalty. We address the high trimming (heating) power consumption of the microrings by proposing insulation methods that reduce the impact of localized heating induced by highly-active components on the 3D-stacked logic die.

  2. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor

    PubMed Central

    Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan

    2016-01-01

    The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g−1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g−1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g−1 at ~1 A g−1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials. PMID:27762284

  3. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    PubMed

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  4. An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes.

    PubMed

    Wei, Chengzhuo; Xu, Qi; Chen, Zeqi; Rao, Weida; Fan, Lingling; Yuan, Ye; Bai, Zikui; Xu, Jie

    2017-08-01

    A novel all-solid-state yarn supercapacitor (YSC) has been fabricated by using the cotton yarns coated with polypyrrole (PPy) nanotubes. The interconnected network structure of PPy can increase the surface area as well as the electrode/electrolyte interface area, thus resulting in improved electrochemical performance. For the proposed YSC, a high areal-specific capacitance of 74.0mFcm -2 and a desirable energy density of 7.5μWhcm -2 are achieved. The flexibility of the YSC demonstrates that it is suitable for the integration as flexible power sources in wearable electronic textiles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dielectric cracking produced by electromigration in microelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Chiras, S.; Clarke, D. R.

    2000-12-01

    The development of stress during electromigration along Al lines, constrained within a dielectric in a coplanar test configuration, is measured. It is shown that, above a certain threshold current density, cracking of the dielectric is induced in the vicinity of the anode. Cracking of the dielectric leads to loss of mechanical constraint on the aluminum conductor which, in turn, leads to increases in electrical resistance with continued current flow. The electromigration-induced stresses are determined from the measured frequency shifts induced in a novel ruby strain sensor embedded immediately beneath the interconnect line on a sapphire substrate. The transparency of the sapphire substrate also facilitated the observation of a hitherto unreported form of dielectric cracking, namely cracking from the interconnect along internal interfaces. The observations of dielectric cracking are in agreement with a recent fracture mechanics model. Analysis of the stress data, together with the results of finite element calculations of the strain energy release rate for crack extension, gives a quantitative estimate of the effective valence Z*(=1.3±0.2) for aluminum.

  6. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET

    PubMed Central

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. PMID:22901374

  7. InP tunnel junction for InGaAs/InP tandem solar cells

    NASA Technical Reports Server (NTRS)

    Vilela, M. F.; Freundlich, A.; Bensaoula, A.; Medelci, N.; Renaud, P.

    1995-01-01

    Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450-530 C). We have previously shown that CBE is perfectly suited toward the fabrication of complex photovoltaic devices such as InP/InGaAs monolithically integrated tandem solar cells, because its low process temperature preserves the electrical characteristics of the InGaAs tunnel junction commonly used as an ohmic interconnect. In this work using CBE for the fabrication of optically transparent (with respect to the bottom cell) InP tunnel diodes is demonstrated. Epitaxial growth were performed in a Riber CBE 32 system using PH3 and TMIn as III and V precursors. Solid Be (p-type) and Si (n-type) have been used as doping sources, allowing doping levels up to 2 x 10(exp -19)/cu cm and 1 x 10(exp -19)/cu cm for n and p type respectively. The InP tunnel junction characteristics and the influence of the growth's conditions (temperature, growth rate) over its performance have been carefully investigated. InP p(++)/n(++) tunnel junction with peak current densities up to 1600 A/sq cm and maximum specific resistivities (V(sub p)/I(sub p) - peak voltage to peak current ratio) in the range of 10(exp -4) Omega-sq cm were obtained. The obtained peak current densities exceed the highest results previously reported for their lattice matched counterparts, In(0.53)Ga( 0.47)As and should allow the realization of improved minimal absorption losses in the interconnect InP/InGaAs tandem devices for Space applications. Owing to the low process temperature required for the top cell, these devices exhibit almost no degradation of its characteristics after the growth of subsequent thick InP layer suggesting minimal doping cross diffusion in the narrow space-charge region (approximately 1-5 nm) of the device. The fabrication of tandem devices using InP tunnel diodes as interconnect is in progress and will be reported at the conference.

  8. Rapid Anastomosis of Endothelial Progenitor Cell–Derived Vessels with Host Vasculature Is Promoted by a High Density of Cotransplanted Fibroblasts

    PubMed Central

    Chen, Xiaofang; Aledia, Anna S.; Popson, Stephanie A.; Him, Linda; Hughes, Christopher C.W.

    2010-01-01

    To ensure survival of engineered implantable tissues thicker than approximately 2–3 mm, convection of nutrients and waste products to enhance the rate of transport will be required. Creating a network of vessels in vitro, before implantation (prevascularization), is one potential strategy to achieve this aim. In this study, we developed three-dimensional engineered vessel networks in vitro by coculture of endothelial cells (ECs) and fibroblasts in a fibrin gel for 7 days. Vessels formed by cord blood endothelial progenitor cell–derived ECs (EPC-ECs) in the presence of a high density of fibroblasts created an interconnected tubular network within 4 days, compared with 5–7 days in the presence of a low density of fibroblasts. Vessels derived from human umbilical vein ECs (HUVECs) in vitro showed similar kinetics. Implantation of the prevascularized tissues into immune-compromised mice, however, revealed a dramatic difference in the ability of EPC-ECs and HUVECs to form anastomoses with the host vasculature. Vascular beds derived from EPC-ECs were perfused within 1 day of implantation, whereas no HUVEC vessels were perfused at day 1. Further, while almost 90% of EPC-EC–derived vascular beds were perfused at day 3, only one-third of HUVEC-derived vascular beds were perfused. In both cases, a high density of fibroblasts accelerated anastomosis by 2–3 days. We conclude that both EPC-ECs and a high density of fibroblasts significantly accelerate the rate of functional anastomosis, and that prevascularizing an engineered tissue may be an effective strategy to enhance convective transport of nutrients in vivo. PMID:19737050

  9. Nano-RuO2 -Decorated Holey Graphene Composite Fibers for Micro-Supercapacitors with Ultrahigh Energy Density.

    PubMed

    Zhai, Shengli; Wang, Chaojun; Karahan, Huseyin Enis; Wang, Yanqing; Chen, Xuncai; Sui, Xiao; Huang, Qianwei; Liao, Xiaozhou; Wang, Xin; Chen, Yuan

    2018-06-07

    Compactness and versatility of fiber-based micro-supercapacitors (FMSCs) make them promising for emerging wearable electronic devices as energy storage solutions. But, increasing the energy storage capacity of microscale fiber electrodes, while retaining their high power density, remains a significant challenge. Here, this issue is addressed by incorporating ultrahigh mass loading of ruthenium oxide (RuO 2 ) nanoparticles (up to 42.5 wt%) uniformly on nanocarbon-based microfibers composed largely of holey reduced graphene oxide (HrGO) with a lower amount of single-walled carbon nanotubes as nanospacers. This facile approach involes (1) space-confined hydrothermal assembly of highly porous but 3D interconnected carbon structure, (2) impregnating wet carbon structures with aqueous Ru 3+ ions, and (3) anchoring RuO 2 nanoparticles on HrGO surfaces. Solid-state FMSCs assembled using those fibers demonstrate a specific volumetric capacitance of 199 F cm -3 at 2 mV s -1 . Fabricated FMSCs also deliver an ultrahigh energy density of 27.3 mWh cm -3 , the highest among those reported for FMSCs to date. Furthermore, integrating 20 pieces of FMSCs with two commercial flexible solar cells as a self-powering energy system, a light-emitting diode panel can be lit up stably. The current work highlights the excellent potential of nano-RuO 2 -decorated HrGO composite fibers for constructing micro-supercapacitors with high energy density for wearable electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reliability of spring interconnects for high channel-count polyimide electrode arrays

    NASA Astrophysics Data System (ADS)

    Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas

    2018-05-01

    Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.

  11. Next generation space interconnect research and development in space communications

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  12. Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects.

    PubMed

    Jeon, Sanghun; Song, Ihun; Lee, Sungsik; Ryu, Byungki; Ahn, Seung-Eon; Lee, Eunha; Kim, Young; Nathan, Arokia; Robertson, John; Chung, U-In

    2014-11-05

    A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reliability assessment of ceramic column grid array (CCGA717) interconnect packages under extreme temperatures for space applications (-185°C to +125°C)

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2010-02-01

    Ceramic Column Grid Array packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performance, compatibility with standard surface-mount packaging assembly processes, etc. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, payload electronics, etc. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short and long-term space missions. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide have been assembled, inspected non-destructively and subsequently subjected to extreme temperature thermal cycling to assess the reliability for future deep space, short and long-term, extreme temperature missions. In this investigation, the employed temperature range covers from -185°C to +125°C extreme thermal environments. The test hardware consists of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The CCGA717 package is 33 mm × 33 mm with a 27×27 array of 80%/20% Pb/Sn columns on a 1.27 mm pitch. The resistance of daisy-chained, CCGA interconnects were continuously monitored as a function of thermal cycling. Electrical resistance measurements as a function of thermal cycling are reported and the tests to date have shown significant change in daisy chain resistance as a function of thermal cycling. The change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. This paper will describe the experimental test results of CCGA testing under wide extreme temperatures. Standard Weibull analysis tools were used to extract the Weibull parameters to understand the CCGA failures. Optical inspection results clearly indicate that the solder joints of columns with the board and the ceramic package have failed as a function of thermal cycling. The first failure was observed at 137th thermal cycle and 63.2% failures of daisy chains have occurred at about 664 thermal cycles. The shape parameter extracted from Weibull plot was about 1.47 which indicates the failures were related to failures occurred during the flat region or useful life region of standard bath tub curve. Based on this experimental test data one can use the CCGAs for the temperature range studied for ~100 thermal cycles (ΔT = 310°C, 5oC/minute, and 15 minutes dwell) with high degree of confidence for high reliability space and other applications.

  14. Comparative Analysis and Considerations for PV Interconnection Standards in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutionsmore » implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.« less

  15. Transient and Dynamic Stability Analysis | Grid Modernization | NREL

    Science.gov Websites

    are investigating the impact of high penetrations of wind and solar power on the frequency response ) Transient Stability and Frequency Response of the US Western Interconnection under Conditions of High Wind Subcontract Report (2013) Frequency Response of the US Eastern Interconnection under Condition of High Wind

  16. Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2013-01-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages of high interconnect density, very good thermal and electrical performance, and compatibility with standard surface-mount packaging assembly processes. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. Certain planetary satellites require operations of thermally uncontrolled hardware under extremely cold and hot temperatures with large diurnal temperature change from day to night. The planetary protection requires the hardware to be baked at +125 C for 72 hours to kill microbugs to avoid any biological contamination, especially for sample return missions. Therefore, the present CCGA package reliability research study has encompassed the temperature range of 185 to +125 C to cover various NASA deep space missions. Advanced 1152 and 1272 CCGA packaging interconnects technology test hardware objects have been subjected to ex treme temperature thermal cycles from 185 to +125 C. X-ray inspections of CCGA packages have been made before thermal cycling. No anomalous behavior and process problems were observed in the x-ray images. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of increasing number of thermal cycles. Electrical continuity measurements of daisy chains have shown no anomalies, even until 596 thermal cycles. Optical inspections of hardware have shown a significant fatigue for CCGA 1152 packages over CCGA 1272 packages. No catastrophic failures have been observed yet in the results. Process qualification and assembly are required to optimize the CCGA assembly processes. Optical inspections of CCGA boards have been made after 258 and 596 thermal cycles. Corner columns have started showing significant fatigue per optical inspection results.

  17. Factors Underlying Bursting Behavior in a Network of Cultured Hippocampal Neurons Exposed to Zero Magnesium

    PubMed Central

    Mangan, Patrick S.; Kapur, Jaideep

    2010-01-01

    Factors contributing to reduced magnesium-induced neuronal action potential bursting were investigated in primary hippocampal cell culture at high and low culture density. In nominally zero external magnesium medium, pyramidal neurons from high-density cultures produced recurrent spontaneous action potential bursts superimposed on prolonged depolarizations. These bursts were partially attenuated by the NMDA receptor antagonist D-APV. Pharmacological analysis of miniature excitatory postsynaptic currents (EPSCs) revealed 2 components: one sensitive to D-APV and another to the AMPA receptor antagonist DNQX. The components were kinetically distinct. Participation of NMDA receptors in reduced magnesium-induced synaptic events was supported by the localization of the NR1 subunit of the NMDA receptor with the presynaptic vesicular protein synaptophysin. Presynaptically, zero magnesium induced a significant increase in EPSC frequency likely attributable to increased neuronal hyperexcitability induced by reduced membrane surface charge screening. Mean quantal content was significantly increased in zero magnesium. Cells from low-density cultures did not exhibit action potential bursting in zero magnesium but did show increased EPSC frequency. Low-density neurons had less synaptophysin immunofluorescence and fewer active synapses as determined by FM1-43 analysis. These results demonstrate that multiple factors are involved in network bursting. Increased probability of transmitter release presynaptically, enhanced NMDA receptor-mediated excitability postsynaptically, and extent of neuronal interconnectivity contribute to initiation and maintenance of elevated network excitability. PMID:14534286

  18. A nanoporous MXene film enables flexible supercapacitors with high energy storage.

    PubMed

    Fan, Zhimin; Wang, Youshan; Xie, Zhimin; Xu, Xueqing; Yuan, Yin; Cheng, Zhongjun; Liu, Yuyan

    2018-05-14

    MXene films are attractive for use in advanced supercapacitor electrodes on account of their ultrahigh density and pseudocapacitive charge storage mechanism in sulfuric acid. However, the self-restacking of MXene nanosheets severely affects their rate capability and mass loading. Herein, a free-standing and flexible modified nanoporous MXene film is fabricated by incorporating Fe(OH)3 nanoparticles with diameters of 3-5 nm into MXene films and then dissolving the Fe(OH)3 nanoparticles, followed by low calcination at 200 °C, resulting in highly interconnected nanopore channels that promote efficient ion transport without compromising ultrahigh density. As a result, the modified nanoporous MXene film presents an attractive volumetric capacitance (1142 F cm-3 at 0.5 A g-1) and good rate capability (828 F cm-3 at 20 A g-1). Furthermore, it still displays a high volumetric capacitance of 749 F cm-3 and good flexibility even at a high mass loading of 11.2 mg cm-2. Therefore, this flexible and free-standing nanoporous MXene film is a promising electrode material for flexible, portable and compact storage devices. This study provides an efficient material design for flexible energy storage devices possessing high volumetric capacitance and good rate capability even at a high mass loading.

  19. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Moosavifard, Seyyed E; El-Kady, Maher F; Rahmanifar, Mohammad S; Kaner, Richard B; Mousavi, Mir F

    2015-03-04

    The increasing demand for energy has triggered tremendous research efforts for the development of lightweight and durable energy storage devices. Herein, we report a simple, yet effective, strategy for high-performance supercapacitors by building three-dimensional pseudocapacitive CuO frameworks with highly ordered and interconnected bimodal nanopores, nanosized walls (∼4 nm) and large specific surface area of 149 m(2) g(-1). This interesting electrode structure plays a key role in providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. This electrode demonstrates excellent electrochemical performance with a specific capacitance of 431 F g(-1) (1.51 F cm(-2)) at 3.5 mA cm(-2) and retains over 70% of this capacitance when operated at an ultrafast rate of 70 mA cm(-2). When this highly ordered CuO electrode is assembled in an asymmetric cell with an activated carbon electrode, the as-fabricated device demonstrates remarkable performance with an energy density of 19.7 W h kg(-1), power density of 7 kW kg(-1), and excellent cycle life. This work presents a new platform for high-performance asymmetric supercapacitors for the next generation of portable electronics and electric vehicles.

  20. Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Hui, Kwun Nam; Hui, Kwan San; Tang, Zikang; Jadhav, V. V.; Xia, Qi Xun

    2016-10-01

    Hierarchical chestnut-like manganese cobalt oxide (MnCo2O4) nanoneedles (NNs) are successfully grown on nickel foam using a facile and cost-effective hydrothermal method. High resolution TEM image further verifies that the chestnut-like MnCo2O4 structure is assembled by numerous 1D MnCo2O4 nanoneedles, which are formed by numerous interconnected MnCo2O4 nanoparticles with grain diameter of ∼10 nm. The MnCo2O4 electrode exhibits high specific capacitance of 1535 F g-1 at 1 A g-1 and good rate capability (950 F g-1 at 10 A g-1) in a 6 M KOH electrolyte. An asymmetric supercapacitor is fabricated using MnCo2O4 NNs on Ni foam (MnCo2O4 NNs/NF) as the positive electrode and graphene/NF as the negative electrode. The device shows an operation voltage of 1.5 V and delivers a high energy density of ∼60.4 Wh kg-1 at a power density of ∼375 W kg-1. Moreover, the device exhibits an excellent cycling stability of 94.3% capacitance retention after 12000 cycles at 30 A g-1. This work demonstrates that hierarchical chestnut-like MnCo2O4 NNs could be a promising electrode for the high performance energy storage devices.

  1. High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors.

    PubMed

    Huang, Zi-Hang; Song, Yu; Feng, Dong-Yang; Sun, Zhen; Sun, Xiaoqi; Liu, Xiao-Xia

    2018-04-24

    Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO 2 with ultrahigh mass loading of 10 mg cm -2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO 2 nanosheets and secondary one-dimensional α-MnO 2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO 2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm -2 (or a specific capacitance of 304 F g -1 ) at 3 mA cm -2 and an excellent rate capability comparable to those of low mass loading MnO 2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO 2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm -3 at the power density of 0.28 W cm -3 for aqueous ASC and 8.0 mWh cm -3 at 0.65 W cm -3 for all-solid ASC), superior to most state-of-the-art supercapacitors.

  2. Controlling microstructure and mechanical properties of the new microelectronic interconnect alloys

    NASA Astrophysics Data System (ADS)

    Mutuku, Francis M.

    An in-depth understanding of the physics of solidification could lead to the optimization of the properties of micro-electronic interconnects. Sn is the base material in the billions of interconnects in devices such as smart phones. These interconnects are formed by melting and solidifying a solder alloy (e.g. SnAgCu) in situ. But Sn has a low symmetry structure, Sn nucleation from the solder melt is complex and the morphology of the Sn and Sn alloys precipitates that form during solidification can vary tremendously (along with resultant mechanical properties). The effect of processing parameters on the solidification behavior, microstructure, and properties must be carefully addressed. Strong evidence adduced in this study shows that under many conditions, when cooling near eutectic SnAgCu from the melt, Ag3Sn nucleates before beta-Sn. The difficulty in the nucleation of beta-Sn provides a window of time between the nucleation of Ag3Sn precipitates and of beta-Sn solidification within which the Ag3Sn precipitate morphology can be manipulated. Thus distinct variations in precipitate number density, and inter-particle spacing were observed for different thermal histories, e.g. for different cooling rates. The average number density of Ag3Sn particles and the area of the pseudo-eutectic phase were observed to increase with increase in the Ag concentration, and with increase in the cooling rate. The shear strength and shear fatigue life increased with increase in the area fraction of the pseudo-eutectic phase. Upon aging of SnAgCu solder joints at an elevated temperature, the Ag3Sn particles coarsened, and became less effective in impeding dislocation motion. Consequently, the shear strength and shear fatigue performance degraded. On the other hand, alloys with constituents that formed solid solutions in Sn, such as small concentrations of Bi or Sb registered less degradation in both shear strength and shear fatigue life upon aging.

  3. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction.

    PubMed

    Kim, Chang-Shik; Jung, Kyung-Hye; Kim, Hun; Kim, Chan-Bong; Kang, Inn-Kyu

    2016-01-01

    After tumor resection, bone reconstruction such as skull base reconstruction using interconnected porous structure is absolutely necessary. In this study, porous scaffolds for bone reconstruction were prepared using heat-pressing and salt-leaching methods. High-density polyethylene (HDPE) and poly(ethylene-co-acrylic acid) (PEAA) were chosen as the polymer composites for producing a porous scaffold of high mechanical strength and having high reactivity with biomaterials such as collagen, respectively. The porous structure was observed through surface images, and its intrusion volume and porosity were measured. Owing to the carboxylic acids on PEAA, collagen was successfully grafted onto the porous HDPE/PEAA scaffold, which was confirmed by FT-IR spectroscopy and electron spectroscopy for chemical analysis. Osteoblasts were cultured on the collagen-grafted porous scaffold, and their adhesion, proliferation, and differentiation were investigated. The high viability and growth of the osteoblasts suggest that the collagen-grafted porous HDPE/PEAA is a promising scaffold material for bone generation.

  4. Synthesis and Characterization of Three Dimensional Nanostructures Based on Interconnected Carbon Nanomaterials

    NASA Astrophysics Data System (ADS)

    Koizumi, Ryota

    This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.

  5. Clad metals, roll bonding and their applications for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Lichun; Yang, Zhenguo; Jha, Bijendra; Xia, Guanguang; Stevenson, Jeffry W.

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  6. A Solar Thermophotovoltaic Electric Generator for Remote Power Applications

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1998-01-01

    We have successfully demonstrated that a solar thermophotovoltaic (TPV) system with a SiC graybody emitter and the monolithic interconnected module device technology can be realized. A custom-designed solar cavity was made to house the SiC emitter and the MIM strings for testing in a Stirling dish solar concentrator. Five 1x1-cm MIMs, with a bandgap of 0.74 eV,were mounted on a specially designed water-cooled heatsink and were electrically connected in series to form a string. Two such strings were fabricated and tested, as well as high-performance 2x2-cm MIMs with a bandgap of 0.74 eV. Very high output power density values between 0.82 and 0.90 W/sq cm were observed for an average emitter temperature of 1501 K.

  7. High-mobility and low-operating voltage organic thin film transistor with epoxy based siloxane binder as the gate dielectric

    NASA Astrophysics Data System (ADS)

    Tewari, Amit; Gandla, Srinivas; Pininti, Anil Reddy; Karuppasamy, K.; Böhm, Siva; Bhattacharyya, Arup R.; McNeill, Christopher R.; Gupta, Dipti

    2015-09-01

    This paper reports the fabrication of pentacene-based organic thin-film transistors using a dielectric material, Dynasylan ®SIVO110. The devices exhibit excellent performance characterized by a low threshold voltage of -1.4 V (operating voltage: 0 to -4 V) together with a mobility of 1.9 cm2 V-1s-1. These results are promising because it uses only a single layer of dielectric without performing any intermediate treatment. The reason is attributed to the high charge storage capacity of the dielectric (κ ˜ 20.02), a low interfacial trap density (2.56 × 1011cm-2), and favorable pentacene film morphology consisting of large and interconnected grains having an average size of 234 nm.

  8. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    NASA Astrophysics Data System (ADS)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin

    2013-05-01

    The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.

  9. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.

    2015-01-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614

  10. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  11. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    PubMed

    Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  12. Impact of Data Transmission over 10 Gbps on High-Density and Low-Cost Optoelectronic Module with Polynorbornene Waveguides

    NASA Astrophysics Data System (ADS)

    Ito, Yuka; Terada, Shinsuke; Arai, Shinya; Fujiwara, Makoto; Mori, Tetsuya; Choki, Koji; Fukushima, Takafumi; Koyanagi, Mitsumasa

    2012-04-01

    We proposed a rigid/flex optoelectronic (O/E) module with 48-channel polymeric waveguides for short-distance board-level optical interconnection. A flexible O/E test module was fabricated in the following two steps by using standard packaging processes. First, two vertical cavity surface emitting laser diodes (VCSELs) and one VCSEL driver (VD) were flip-chip bonded to a completed flexible printed circuit board (PCB), and two photodiodes (PDs) and one transimpedance amplifier/limiting amplifier (TIA/LA) to another flexible PCB. Second, the two flexible PCBs were attached with a polynorbornene (PNB) sheet in which high-density PNB waveguides were formed by UV exposure. Active areas of VCSELs and PDs on the flexible PCBs were aligned to micromirrors of the waveguides with -6 µm offset toward the signal propagation direction. We successfully demonstrated data transmission over 10 Gbps and low inter-channel crosstalk of less than -20 dB was achieved in the flexible O/E test module with 120-mm-long and 62.5-µm-pitch waveguides.

  13. Thermal Characterization for a Modular 3-D Multichip Module

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Plante, Jeannette; Shaw, Harry

    2000-01-01

    NASA Goddard Space Flight Center has designed a high-density modular 3-D multichip module (MCM) for future spaceflight use. This MCM features a complete modular structure, i.e., each stack can be removed from the package without damaging the structure. The interconnection to the PCB is through the Column Grid Array (CGA) technology. Because of its high-density nature, large power dissipation from multiple layers of circuitry is anticipated and CVD diamond films are used in the assembly for heat conduction enhancement. Since each stacked layer dissipates certain amount of heat, designing effective heat conduction paths through each stack and balancing the heat dissipation within each stack for optimal thermal performance become a challenging task. To effectively remove the dissipated heat from the package, extensive thermal analysis has been performed with finite element methods. Through these analyses, we are able to improve the thermal design and increase the total wattage of the package for maximum electrical performance. This paper provides details on the design-oriented thermal analysis and performance enhancement. It also addresses issues relating to contact thermal resistance between the diamond film and the metallic heat conduction paths.

  14. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg-1 and 84.6 Wh kg-1 at power densities of 731.25 W kg-1 and 24375 W kg-1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  15. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.

    PubMed

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-03

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  16. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    PubMed Central

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-01-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg−1 and 84.6 Wh kg−1 at power densities of 731.25 W kg−1 and 24375 W kg−1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode. PMID:28155853

  17. Survey of critical failure events in on-chip interconnect by fault tree analysis

    NASA Astrophysics Data System (ADS)

    Yokogawa, Shinji; Kunii, Kyousuke

    2018-07-01

    In this paper, a framework based on reliability physics is proposed for adopting fault tree analysis (FTA) to the on-chip interconnect system of a semiconductor. By integrating expert knowledge and experience regarding the possibilities of failure on basic events, critical issues of on-chip interconnect reliability will be evaluated by FTA. In particular, FTA is used to identify the minimal cut sets with high risk priority. Critical events affecting the on-chip interconnect reliability are identified and discussed from the viewpoint of long-term reliability assessment. The moisture impact is evaluated as an external event.

  18. Stress redistribution and damage in interconnects caused by electromigration

    NASA Astrophysics Data System (ADS)

    Chiras, Stefanie Ruth

    Electromigration has long been recognized as a phenomenon that induces mass redistribution in metals which, when constrained, can lead to the creation of stress. Since the development of the integrated circuit, electromigration. in interconnects, (the metal lines which carry current between devices in integrated circuits), has become a reliability concern. The primary failure mechanism in the interconnects is usually voiding, which causes electrical resistance increases in the circuit. In some cases, however, another failure mode occurs, fracture of the surrounding dielectric driven by electromigration induced compressive stresses within the interconnect. It is this failure mechanism that is the focus of this thesis. To study dielectric fracture, both residual processing stresses and the development of electromigration induced stress in isolated, constrained interconnects was measured. The high-resolution measurements were made using two types of piezospectroscopy, complemented by finite element analysis (FEA). Both procedures directly measured stress in the underlying or neighboring substrate and used FEA to determine interconnect stresses. These interconnect stresses were related to the effected circuit failure mode through post-test scanning electron microscopy and resistance measurements taken during electromigration testing. The results provide qualitative evidence of electromigration driven passivation fracture, and quantitative analysis of the theoretical model of the failure, the "immortal" interconnect concept.

  19. Opportunities and Benefits for Increasing Transmission Capacity between the US Eastern and Western Interconnections

    NASA Astrophysics Data System (ADS)

    Figueroa-Acevedo, Armando L.

    Historically, the primary justification for building wide-area transmission lines in the US and around the world has been based on reliability and economic criteria. Today, the influence of renewable portfolio standards (RPS), Environmental Protection Agency (EPA) regulations, transmission needs, load diversity, and grid flexibility requirements drives interest in high capacity wide-area transmission. By making use of an optimization model to perform long-term (15 years) co-optimized generation and transmission expansion planning, this work explored the benefits of increasing transmission capacity between the US Eastern and Western Interconnections under different policy and futures assumptions. The model assessed tradeoffs between investments in cross-interconnection HVDC transmission, AC transmission needs within each interconnection, generation investment costs, and operational costs, while satisfying different policy compliance constraints. Operational costs were broken down into the following market products: energy, up-/down regulation reserve, and contingency reserve. In addition, the system operating flexibility requirements were modeled as a function of net-load variability so that the flexibility of the non-wind/non-solar resources increases with increased wind and solar investment. In addition, planning reserve constraints are imposed under the condition that they be deliverable to the load. Thus, the model allows existing and candidate generation resources for both operating reserves and deliverable planning reserves to be shared throughout the interconnections, a feature which significantly drives identification of least-cost investments. This model is used with a 169-bus representation of the North American power grid to design four different high-capacity wide-area transmission infrastructures. Results from this analysis suggest that, under policy that imposes a high-renewable future, the benefits of high capacity transmission between the Eastern and Western Interconnections outweigh its cost. A sensitivity analysis is included to test the robustness of each design under different future assumptions and approximate upper and lower bounds for cross-seam transmission between the Eastern and Western Interconnections.

  20. Effect of Interfacial characteristics of metal clad polymeric substrates on electrical high frequency interconnection performance

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R. R.; Ponchak, G. E.; Liu, D. C.

    1984-01-01

    Etched metallic conductor lines on metal clad polymeric substrates are used for electronic component interconnections. Significant signal losses are observed for microstrip conductor lines used for interconnecting high frequency devices. At these frequencies, the electronic signal travels closer to the metal-polymer interface due to the skin effect. Copper-teflon interfaces were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to determine the interfacial properties. Data relating roughness of the copper film to signal losses was compared to theory. Films used to enhance adhesion are found, to contribute to these losses.

  1. Identifying high-risk areas for sporadic measles outbreaks: lessons from South Africa.

    PubMed

    Sartorius, Benn; Cohen, C; Chirwa, T; Ntshoe, G; Puren, A; Hofman, K

    2013-03-01

    To develop a model for identifying areas at high risk for sporadic measles outbreaks based on an analysis of factors associated with a national outbreak in South Africa between 2009 and 2011. Data on cases occurring before and during the national outbreak were obtained from the South African measles surveillance programme, and data on measles immunization and population size, from the District Health Information System. A Bayesian hierarchical Poisson model was used to investigate the association between the risk of measles in infants in a district and first-dose vaccination coverage, population density, background prevalence of human immunodeficiency virus (HIV) infection and expected failure of seroconversion. Model projections were used to identify emerging high-risk areas in 2012. A clear spatial pattern of high-risk areas was noted, with many interconnected (i.e. neighbouring) areas. An increased risk of measles outbreak was significantly associated with both the preceding build-up of a susceptible population and population density. The risk was also elevated when more than 20% of infants in a populous area had missed a first vaccine dose. The model was able to identify areas at high risk of experiencing a measles outbreak in 2012 and where additional preventive measures could be undertaken. The South African measles outbreak was associated with the build-up of a susceptible population (owing to poor vaccine coverage), high prevalence of HIV infection and high population density. The predictive model developed could be applied to other settings susceptible to sporadic outbreaks of measles and other vaccine-preventable diseases.

  2. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors

    PubMed Central

    El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.

    2017-01-01

    A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV−vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization. PMID:28216668

  3. Development and Application of HVOF Sprayed Spinel Protective Coating for SOFC Interconnects

    NASA Astrophysics Data System (ADS)

    Thomann, O.; Pihlatie, M.; Rautanen, M.; Himanen, O.; Lagerbom, J.; Mäkinen, M.; Varis, T.; Suhonen, T.; Kiviaho, J.

    2013-06-01

    Protective coatings are needed for metallic interconnects used in solid oxide fuel cell (SOFC) stacks to prevent excessive high-temperature oxidation and evaporation of chromium species. These phenomena affect the lifetime of the stacks by increasing the area-specific resistance (ASR) and poisoning of the cathode. Protective MnCo2O4 and MnCo1.8Fe0.2O4 coatings were applied on ferritic steel interconnect material (Crofer 22 APU) by high velocity oxy fuel spraying. The substrate-coating systems were tested in long-term exposure tests to investigate their high-temperature oxidation behavior. Additionally, the ASRs were measured at 700 °C for 1000 h. Finally, a real coated interconnect was used in a SOFC single-cell stack for 6000 h. Post-mortem analysis was carried out with scanning electron microscopy. The deposited coatings reduced significantly the oxidation of the metal, exhibited low and stable ASR and reduced effectively the migration of chromium.

  4. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

    PubMed

    Kramschuster, Adam; Turng, Lih-Sheng

    2010-02-01

    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.

  5. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.

    PubMed

    Peng, Chengxin; Wen, Zubiao; Qin, Yao; Schmidt-Mende, Lukas; Li, Chongzhong; Yang, Shihe; Shi, Donglu; Yang, Jinhu

    2014-03-01

    Three-dimensional nanoporous carbon with interconnected vesicle-like pores (1.5-4.2 nm) has been prepared through a low-cost, template-free approach from petroleum coke precursor by KOH activation. It is found that the thin pore walls are highly graphitized and consist of only three to four layers of graphene, which endows the material with an unusually high specific surface area (2933 m(2)  g(-1) ) and good conductivity. With such unique structural characteristics, if used as supercapacitor electrodes in ionic liquid (IL) electrolytes, the graphitized carbon nanovesicle (GCNV) material displays superior performance, such as high energy densities up to 145.9 Wh kg(-1) and a high combined energy-power delivery, and an energy density of 97.6 Wh kg(-1) can be charged in 47 s at 60 °C. This demonstrates that the energy output of the GCNV-based supercapacitors is comparable to that of batteries, and the power output is one order of magnitude higher. Moreover, the synergistic effect of the GCNVs and the IL electrolyte on the extraordinary performance of the GCNV supercapacitors has been analyzed and discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of La2O3 content and particle size on the long-term stability and thermal cycling property of La2O3-dispersed SUS430 alloys for SOFC interconnect materials

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Won; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Seung-Bok; Lee, Jong-Won; Lim, Tak-Hyoung; Park, Seok-Joo; Hong, Jong-Eun; Shim, Joon-Hyung

    2017-11-01

    We developed oxide-dispersed alloys as interconnect materials for a solid oxide fuel cell by adding La2O3 to SUS430 ferritic steels. For this purpose, we prepared two types of La2O3 with different particle sizes and added different amounts of La2O3 to SUS430 powder. Then, we mixed the powders using a high energy ball mill, so that nano-sized as well as micro-sized oxide particles were able to mix uniformly with the SUS430 powders. After preparing hexahedral green samples using uni-axial and cold isostatic presses, we were finally able to obtain oxide-dispersed alloys having high relative densities after firing at 1,400 °C under hydrogen atmosphere. The nano-sized La2O3 dispersed alloys showed properties superior to those of micro-sized dispersed alloys in terms of long-term stability and thermal cycling. Moreover, we determined the optimum amounts of added La2O3. Finally we were able to develop a new oxide-dispersed alloy showing excellent properties of low area specific resistance (16.23 mΩ cm2) after 1000 h at 800 °C, and no degradation after 10 iterations of thermal cycling under oxidizing atmosphere.

  7. Three dimensional carbon-bubble foams with hierarchical pores for ultra-long cycling life supercapacitors.

    PubMed

    Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao

    2018-07-06

    Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g -1 , demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g -1 . These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.

  8. Three dimensional carbon-bubble foams with hierarchical pores for ultra-long cycling life supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao

    2018-07-01

    Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g‑1, demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g‑1. These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.

  9. Optical interconnection and packaging technologies for advanced avionics systems

    NASA Astrophysics Data System (ADS)

    Schroeder, J. E.; Christian, N. L.; Cotti, B.

    1992-09-01

    An optical backplane developed to demonstrate the advantages of high-performance optical interconnections and supporting technologies and designed to be compatible with standard avionics racks is described. The hardware demonstrates the three basic components of optical interconnects: optical sources, an optical signal distribution network, and optical receivers. Results from characterization and environmental tests, including a demonstration of the reliable transmission of serial data at a 1 Gb/s, are reported.

  10. Field programmable gate arrays: Evaluation report for space-flight application

    NASA Technical Reports Server (NTRS)

    Sandoe, Mike; Davarpanah, Mike; Soliman, Kamal; Suszko, Steven; Mackey, Susan

    1992-01-01

    Field Programmable Gate Arrays commonly called FPGA's are the newer generation of field programmable devices and offer more flexibility in the logic modules they incorporate and in how they are interconnected. The flexibility, the number of logic building blocks available, and the high gate densities achievable are why users find FPGA's attractive. These attributes are important in reducing product development costs and shortening the development cycle. The aerospace community is interested in incorporating this new generation of field programmable technology in space applications. To this end, a consortium was formed to evaluate the quality, reliability, and radiation performance of FPGA's. This report presents the test results on FPGA parts provided by ACTEL Corporation.

  11. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  12. Multiband Radio Frequency Interconnect (MRFI) Technology For Next Generation Mobile/Airborne Computing Systems

    DTIC Science & Technology

    2017-02-01

    enable high scalability and reconfigurability for inter-CPU/Memory communications with an increased number of communication channels in frequency ...interconnect technology (MRFI) to enable high scalability and re-configurability for inter-CPU/Memory communications with an increased number of communication ...testing in the University of California, Los Angeles (UCLA) Center for High Frequency Electronics, and Dr. Afshin Momtaz at Broadcom Corporation for

  13. Electromigration resistance in a short three-contact interconnect tree

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Choi, Z.-S.; Thompson, C. V.; Gan, C. L.; Pey, K. L.; Choi, W. K.; Hwang, N.

    2006-05-01

    Electromigration has been characterized in via-terminated interconnect lines with additional vias in the middle, creating two adjacent segments that can be stressed independently. The mortality of a segment was found to depend on the direction and magnitude of the current in the adjacent segment, confirming that there is not a fixed value of the product of the current density and segment length, jL, that defines immortality in individual segments that are part of a multisegment interconnect tree. Instead, it is found that the probability of failure of a multisegment tree increases with the increasing value of an effective jL product defined in earlier work. However, contrary to expectations, the failures were still observed when (jL)eff was less than the critical jL product for which lines were found to be immortal in single-segment test structures. It is argued that this is due to reservoir effects associated with unstressed segments or due to liner failure at the central via. Multisegment test structures are therefore shown to reveal more types of failure mechanisms and mortality conditions that are not found in tests with single-segment structures.

  14. Next Generation Space Interconnect Standard (NGSIS): a modular open standards approach for high performance interconnects for space

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick

    2017-04-01

    The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.

  15. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.

  16. Method for reworkable packaging of high speed, low electrical parasitic power electronics modules through gate drive integration

    DOEpatents

    Passmore, Brandon; Cole, Zach; Whitaker, Bret; Barkley, Adam; McNutt, Ty; Lostetter, Alexander

    2016-08-02

    A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.

  17. High-speed and low-power repeater for VLSI interconnects

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Mallick, P. S.

    2017-10-01

    This paper proposes a repeater for boosting the speed of interconnects with low power dissipation. We have designed and implemented at 45 and 32 nm technology nodes. Delay and power dissipation performances are analyzed for various voltage levels at these technology nodes using Spice simulations. A significant reduction in delay and power dissipation are observed compared to a conventional repeater. The results show that the proposed high-speed low-power repeater has a reduced delay for higher load capacitance. The proposed repeater is also compared with LPTG CMOS repeater, and the results shows that the proposed repeater has reduced delay. The proposed repeater can be suitable for high-speed global interconnects and has the capacity to drive large loads.

  18. Enhancing the Properties of Conductive Polymer Hydrogels by Freeze-Thaw Cycles for High-Performance Flexible Supercapacitors.

    PubMed

    Li, Wanwan; Lu, Han; Zhang, Ning; Ma, Mingming

    2017-06-14

    We report that a postsynthesis physical process (freeze-thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline-poly(vinyl alcohol) hydrogel after five freeze-thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g -1 ). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm -2 and 210 F·g -1 ) and high energy density (18.7 W·h·kg -1 ), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge-discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze-thaw cycles for enhancing the performance of functional hydrogels.

  19. Flip chip bumping technology—Status and update

    NASA Astrophysics Data System (ADS)

    Juergen Wolf, M.; Engelmann, Gunter; Dietrich, Lothar; Reichl, Herbert

    2006-09-01

    Flip chip technology is a key driver for new complex system architectures and high-density packaging, e.g. sensor or pixel devices. Bumped wafers/dice as key elements become very important in terms of general availability at low cost, high yield and quality level. Today, different materials, e.g. Au, Ni, AuSn, SnAg, SnAgCu, SnCu, etc., are used for flip chip interconnects and different bumping approaches are available. Electroplating is the technology of choice for high-yield wafer bumping for small bump sizes and pitches. Lead-free solder bumps require an increase in knowledge in the field of under bump metallization (UBM) and the interaction of bump and substrate metallization, the formation and growth of intermetallic compounds (IMCs) during liquid- and solid-phase reactions. Results of a new bi-layer UBM of Ni-Cu which is especially designed for small-sized lead-free solder bumps will be discussed.

  20. 11.72-sq cm Active-Area Wafer Interconnected PiN Diode Pulsed at 64 kA Dissipates 382 J and Exhibits an Action of 1.7 MA(sup 2)-s

    DTIC Science & Technology

    2012-01-30

    calculated action exceeded 1.7 MA2 -s. Preliminary efforts on high voltage diode interconnection have produced quarter wafer interconnected PiN...was packaged in a “hockey-puck” configuration and pulsed to 64 kA, dissipating 382 J with a calculated action exceeding 1.7 MA2 -s. II. FULL...epitaxial layers are utilized. 11.72-cm2 Active-area Wafer Interconnected PiN Diode pulsed at 64 kA dissipates 382 J and exhibits an action of 1.7 MA2 -s

  1. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  2. Interconnect patterns for printed organic thermoelectric devices with large fill factors

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.

    2017-09-01

    Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.

  3. Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Rubber.

    PubMed

    Luo, Wei; Wu, Tongfei; Chen, Biqiong; Liang, Mei; Zou, Huawei

    2017-12-13

    Highly stretchable and durable conductors are significant to the development of wearable devices, robots, human-machine interfaces, and other artificial intelligence products. Although many respectable methods have been reported, it is still a challenge to fabricate stretchable conductors with a large elastic limit, high conductivity, and excellent reliability in rapid, effective, and economic ways. Herein, a facile method is offered to fabricate high-performance stretchable tubular conductors (TCs) based on a macroconfined structure of expanded graphite (EG) in rubber tubing by simply physical packing. The maximum original electrical conductivity of TCs reached a high value of 160.6 S/cm. Meanwhile, TCs showed more insensitive response of conductivity to increasing tensile strain compared to the TCs encapsulated with liquid metal or ionic liquid. The conductivity and effective stretchability of TCs can be adjusted by varying the packing density of EG. A low gauge factor below 3 was reached even under 400% stretching for TCs with a packing density of 1.233 g/cm 3 . The excellent resilience and good stability of conductivity of TCs during dynamic stretching-releasing cycles are attributed to the stable and rapid reconstruction of the percolation network of EG particles. The combination of high conductivity, tunable stretchability, and good reliability renders potential applications to TCs, such as highly stretchable interconnects or strain sensors, in human motion detection.

  4. Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material

    NASA Astrophysics Data System (ADS)

    Shi, Waipeng; Zhang, Yingmeng; Key, Julian; Shen, Pei Kang

    2018-03-01

    An efficient synthesis method to grow well attached NiO nanobelts from 3D graphene sheets (3DGS) is reported herein. Ni-ion exchanged resin provides the initial Ni reactant portion, which serves both as a catalyst to form 3DGS and then as a seeding agent to grow the NiO nanobelts. The macroporous structure of 3DGS provides NiO containment to achieve a high cycling stability of up to 445 mAh g-1 after 360 cycles (and >112% capacity retention after 515 cycles) at a high current density of 2 A g-1. With a 26.8 wt.% content of NiO on 3DGS, increases in specific and volumetric capacity were 41.6 and 75.7% respectively over that of 3DGS at matching current densities. Therefore, the seeded growth of NiO nanobelts from 3DGS significantly boosts volumetric capacity, while 3DGS enables high rate long term cycling of the NiO. The high rate cycling stability of NiO on 3DGS can be attributed to (i) good attachment and contact to the large surface of 3DGS, (ii) high electron conductivity and rapid Li-ion transfer (via the interconnected, highly conductive graphitized walls of 3DGS) and (iii) buffering void space in 3DGS to contain volume expansion of NiO during charge/discharge.

  5. Localized solar collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasemi, Hadi; Marconnet, Amy Marie; Chen, Gang

    A localized heating structure, and method of forming same, for use in solar systems includes a thermally insulating layer having interconnected pores, a density of less than about 3000 kg/m.sup.3, and a hydrophilic surface, and an expanded carbon structure adjacent to the thermally insulating layer. The expanded carbon structure has a porosity of greater than about 80% and a hydrophilic surface.

  6. Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors.

    PubMed

    Liu, Shude; Sankar, Kalimuthu Vijaya; Kundu, Aniruddha; Ma, Ming; Kwon, Jang-Yeon; Jun, Seong Chan

    2017-07-05

    Transition-metal-based heteronanoparticles are attracting extensive attention in electrode material design for supercapacitors owing to their large surface-to-volume ratios and inherent synergies of individual components; however, they still suffer from limited interior capacity and cycling stability due to simple geometric configurations, low electrochemical activity of the surface, and poor structural integrity. Developing an elaborate architecture that endows a larger surface area, high conductivity, and mechanically robust structure is a pressing need to tackle the existing challenges of electrode materials. This work presents a supercapacitor electrode consisting of honeycomb-like biphasic Ni 5 P 4 -Ni 2 P (Ni x P y ) nanosheets, which are interleaved by large quantities of nanoparticles. The optimized Ni x P y delivers an ultrahigh specific capacity of 1272 C g -1 at a current density of 2 A g -1 , high rate capability, and stability. An asymmetric supercapacitor employing as-synthesized Ni x P y as the positive electrode and activated carbon as the negative electrode exhibits significantly high power and energy densities (67.2 W h kg -1 at 0.75 kW kg -1 ; 20.4 W h kg -1 at 15 kW kg -1 ). These results demonstrate that the novel nanostructured Ni x P y can be potentially applied in high-performance supercapacitors.

  7. Clad metals by roll bonding for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, L.; Jha, B.; Yang, Zhenguo; Xia, Guang-Guang; Stevenson, Jeffry W.; Singh, Prabhakar

    2006-08-01

    High-temperature oxidation-resistant alloys are currently considered as a candidate material for construction of interconnects in intermediate-temperature solid oxide fuel cells. Among these alloys, however, different groups of alloys demonstrate different advantages and disadvantages, and few, if any, can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as one approach in fabricating metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated. This paper provides a brief overview of the cladding approach and discusses the viability of this technology to fabricate the metallic layered-structure interconnects.

  8. Advanced Flip Chips in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    The use of underfill materials is necessary with flip-chip interconnect technology to redistribute stresses due to mismatching coefficients of thermal expansion (CTEs) between dissimilar materials in the overall assembly. Underfills are formulated using organic polymers and possibly inorganic filler materials. There are a few ways to apply the underfills with flip-chip technology. Traditional capillary-flow underfill materials now possess high flow speed and reduced time to cure, but they still require additional processing steps beyond the typical surface-mount technology (SMT) assembly process. Studies were conducted using underfills in a temperature range of -190 to 85 C, which resulted in an increase of reliability by one to two orders of magnitude. Thermal shock of the flip-chip test articles was designed to induce failures at the interconnect sites (-40 to 100 C). The study on the reliability of flip chips using underfills in the extreme temperature region is of significant value for space applications. This technology is considered as an enabling technology for future space missions. Flip-chip interconnect technology is an advanced electrical interconnection approach where the silicon die or chip is electrically connected, face down, to the substrate by reflowing solder bumps on area-array metallized terminals on the die to matching footprints of solder-wettable pads on the chosen substrate. This advanced flip-chip interconnect technology will significantly improve the performance of high-speed systems, productivity enhancement over manual wire bonding, self-alignment during die joining, low lead inductances, and reduced need for attachment of precious metals. The use of commercially developed no-flow fluxing underfills provides a means of reducing the processing steps employed in the traditional capillary flow methods to enhance SMT compatibility. Reliability of flip chips may be significantly increased by matching/tailoring the CTEs of the substrate material and the silicon die or chip, and also the underfill materials. Advanced packaging interconnects technology such as flip-chip interconnect test boards have been subjected to various extreme temperature ranges that cover military specifications and extreme Mars and asteroid environments. The eventual goal of each process step and the entire process is to produce components with 100 percent interconnect and satisfy the reliability requirements. Underfill materials, in general, may possibly meet demanding end use requirements such as low warpage, low stress, fine pitch, high reliability, and high adhesion.

  9. Strategic siting and regional grid interconnections key to low-carbon futures in African countries

    PubMed Central

    Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M.; Callaway, Duncan S.

    2017-01-01

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental–impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation. PMID:28348209

  10. Strategic siting and regional grid interconnections key to low-carbon futures in African countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Grace C.; Deshmukh, Ranjit; Ndhlukula, Kudakwashe

    2017-03-27

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental– impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quicklymore » served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. In conclusion, the overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.« less

  11. Strategic siting and regional grid interconnections key to low-carbon futures in African countries.

    PubMed

    Wu, Grace C; Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M; Callaway, Duncan S

    2017-04-11

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental-impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with "no-regrets" options-or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

  12. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    NASA Astrophysics Data System (ADS)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  13. Flexible Chip Scale Package and Interconnect for Implantable MEMS Movable Microelectrodes for the Brain

    PubMed Central

    Jackson, Nathan; Muthuswamy, Jit

    2009-01-01

    We report here a novel approach called MEMS microflex interconnect (MMFI) technology for packaging a new generation of Bio-MEMS devices that involve movable microelectrodes implanted in brain tissue. MMFI addresses the need for (i) operating space for movable parts and (ii) flexible interconnects for mechanical isolation. We fabricated a thin polyimide substrate with embedded bond-pads, vias, and conducting traces for the interconnect with a backside dry etch, so that the flexible substrate can act as a thin-film cap for the MEMS package. A double gold stud bump rivet bonding mechanism was used to form electrical connections to the chip and also to provide a spacing of approximately 15–20 µm for the movable parts. The MMFI approach achieved a chip scale package (CSP) that is lightweight, biocompatible, having flexible interconnects, without an underfill. Reliability tests demonstrated minimal increases of 0.35 mΩ, 0.23 mΩ and 0.15 mΩ in mean contact resistances under high humidity, thermal cycling, and thermal shock conditions respectively. High temperature tests resulted in an increase in resistance of > 90 mΩ when aluminum bond pads were used, but an increase of ~ 4.2 mΩ with gold bond pads. The mean-time-to-failure (MTTF) was estimated to be at least one year under physiological conditions. We conclude that MMFI technology is a feasible and reliable approach for packaging and interconnecting Bio-MEMS devices. PMID:20160981

  14. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  15. Condiment-Derived 3D Architecture Porous Carbon for Electrochemical Supercapacitors.

    PubMed

    Qian, Wenjing; Zhu, Jingyue; Zhang, Ye; Wu, Xiao; Yan, Feng

    2015-10-07

    The one-step synthesis of porous carbon nanoflakes possessing a 3D texture is achieved by cooking (carbonization) a mixture containing two condiments, sodium glutamate (SG) and sodium chloride, which are commonly used in kitchens. The prepared 3D porous carbons are composed of interconnected carbon nanoflakes and possess instinct heteroatom doping such as nitrogen and oxygen, which furnishes the electrochemical activity. The combination of micropores and mesopores with 3D configurations facilitates persistent and fast ion transport and shorten diffusion pathways for high-performance supercapacitor applications. Sodium glutamate carbonized at 800 °C exhibits high charge storage capacity with a specific capacitance of 320 F g(-1) in 6 m KOH at a current density of 1 A g(-1) and good stability over 10,000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liao, Kexuan; Gao, Jialu; Fan, Jinchen; Mo, Yao; Xu, Qunjie; Min, Yulin

    2017-12-01

    In this work, novel three-dimensional (3D) boron and nitrogen-co-doped three-dimensional (3D) graphene frameworks (BN-GFs) supporting rod-like polyaniline (PANI) are facilely prepared and used as electrodes for high-performance supercapacitors. The results demonstrated that BN-GFs with tuned electronic structure can not only provide a large surface area for rod-like PANI to anchor but also effectively facilitate the ion transfer and charge storage in the electrode. The PANI/BN-GF composite with wrinkled boron and nitrogen-co-doped graphene sheets interconnected by rod-like PANI exhibits excellent capacitive properties with a maximum specific capacitance of 596 F/g at a current density of 0.5 A/g. Notably, they also show excellent cycling stability with more than 81% capacitance retention after 5000 charge-discharge cycles.

  17. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    PubMed

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  18. A Solar Thermophotovoltaic Electric Generator for Remote Power Applications

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1998-01-01

    We have successfully demonstrated that a solar thermophotovoltaic (TPV) system with a SiC graybody emitter and the monolithic interconnected module device technology can be realized. A custom-designed solar cavity was made to house the SiC emitter and the Monolithic Integrated Module (MIM) strings for testing in a Stirling dish solar concentrator. Five 1x1-cm MIMs, with a bandgap of 0.74 eV, were mounted on a specially designed water-cooled heatsink and were electrically connected in series to form a string. Two such strings were fabricated and tested, as well as high-performance 2x2-cm MIMs with a bandgap of 0.74 eV. Very high output power density values between 0.82 and 0.90 W/ square cm were observed for an average emitter temperature of 1501 K.

  19. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life

    NASA Astrophysics Data System (ADS)

    Zha, Daosong; Fu, Yongsheng; Zhang, Lili; Zhu, Junwu; Wang, Xin

    2018-02-01

    Nickel cobalt sulfides (NiCo-S) are promising electrode materials for high-performance supercapacitors but normally show poor rate capability and unsatisfactory long-term endurance. To overcome these disadvantages, a properly constructed electrode architecture with abundant electron transport channels, excellent electronic conductivity and robust structural stability is required. Herein, considering that in situ transformation can mostly retain the specific structural advantages of the precursors, a two-step strategy is purposefully developed to construct a binder-free electrode composed of interconnected NiCo-S nanosheets on Ni foam (NiCo-S/NF), in which NiCo-S/NF is synthesized via the in situ sulfuration of networked acetate anion-intercalated nickel cobalt layered double hydroxide nanosheets loaded on Ni foam (A-NiCo-LDH/NF). Noticeably, the optimized Ni1Co1-S/NF exhibits an ultrahigh specific capacitance of 2553.9 F g-1 at 0.5 A g-1, excellent rate capability (1898.1 F g-1 at 50 A g-1) and superior cycling stability (nearly 90% capacitance retention after 10,000 cycles). Furthermore, the assembled asymmetric supercapacitor based on Ni1Co1-S/NF demonstrates a high energy density of 58.1 Wh kg-1 at a power density of 796 W kg-1 and impressive long-term durability even after a repeated charge/discharge process as long as 70,000 cycles (∼92% capacitance retention). The attractive properties endow the Ni1Co1-S/NF electrode with significant potential for high-performance energy storage devices.

  20. Formation of g-C3N4@Ni(OH)2 Honeycomb Nanostructure and Asymmetric Supercapacitor with High Energy and Power Density.

    PubMed

    Dong, Bitao; Li, Mingyan; Chen, Sheng; Ding, Dawei; Wei, Wei; Gao, Guoxin; Ding, Shujiang

    2017-05-31

    Nickel hydroxide (Ni(OH) 2 ) has been regarded as a potential next-generation electrode material for supercapacitor owing to its attractive high theoretical capacitance. However, practical application of Ni(OH) 2 is hindered by its lower cycling life. To overcome the inherent defects, herein we demonstrate a unique interconnected honeycomb structure of g-C 3 N 4 and Ni(OH) 2 synthesized by an environmentally friendly one-step method. In this work, g-C 3 N 4 has excellent chemical stability and supports a perpendicular charge-transporting direction in charge-discharge process, facilitating electron transportation along that direction. The as-prepared composite exhibits higher specific capacities (1768.7 F g -1 at 7 A g -1 and 2667 F g -1 at 3 mV s -1 , respectively) compared to Ni(OH) 2 aggregations (968.9 F g -1 at 7 A g -1 ) and g-C 3 N 4 (416.5 F g -1 at 7 A g -1 ), as well as better cycling performance (∼84% retentions after 4000 cycles). As asymmetric supercapacitor, g-C 3 N 4 @Ni(OH) 2 //graphene exhibits high capacitance (51 F g -1 ) and long cycle life (72% retentions after 8000 cycles). Moreover, high energy density of 43.1 Wh kg -1 and power density of 9126 W kg -1 has been achieved. This attractive performance reveals that g-C 3 N 4 @Ni(OH) 2 with honeycomb architecture could find potential application as an electrode material for high-performance supercapacitors.

  1. Stability of solid oxide fuel cell materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A.

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  2. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-07-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g-1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm-2 and high energy density of 10/39 Wh kg-1 at power of 52/286 kW kg-1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.

  3. High-rate serial interconnections for embedded and distributed systems with power and resource constraints

    NASA Astrophysics Data System (ADS)

    Sheynin, Yuriy; Shutenko, Felix; Suvorova, Elena; Yablokov, Evgenej

    2008-04-01

    High rate interconnections are important subsystems in modern data processing and control systems of many classes. They are especially important in prospective embedded and on-board systems that used to be multicomponent systems with parallel or distributed architecture, [1]. Modular architecture systems of previous generations were based on parallel busses that were widely used and standardised: VME, PCI, CompactPCI, etc. Busses evolution went in improvement of bus protocol efficiency (burst transactions, split transactions, etc.) and increasing operation frequencies. However, due to multi-drop bus nature and multi-wire skew problems the parallel bussing speedup became more and more limited. For embedded and on-board systems additional reason for this trend was in weight, size and power constraints of an interconnection and its components. Parallel interfaces have become technologically more challenging as their respective clock frequencies have increased to keep pace with the bandwidth requirements of their attached storage devices. Since each interface uses a data clock to gate and validate the parallel data (which is normally 8 bits or 16 bits wide), the clock frequency need only be equivalent to the byte rate or word rate being transmitted. In other words, for a given transmission frequency, the wider the data bus, the slower the clock. As the clock frequency increases, more high frequency energy is available in each of the data lines, and a portion of this energy is dissipated in radiation. Each data line not only transmits this energy but also receives some from its neighbours. This form of mutual interference is commonly called "cross-talk," and the signal distortion it produces can become another major contributor to loss of data integrity unless compensated by appropriate cable designs. Other transmission problems such as frequency-dependent attenuation and signal reflections, while also applicable to serial interfaces, are more troublesome in parallel interfaces due to the number of additional cable conductors involved. In order to compensate for these drawbacks, higher quality cables, shorter cable runs and fewer devices on the bus have been the norm. Finally, the physical bulk of the parallel cables makes them more difficult to route inside an enclosure, hinders cooling airflow and is incompatible with the trend toward smaller form-factor devices. Parallel busses worked in systems during the past 20 years, but the accumulated problems dictate the need for change and the technology is available to spur the transition. The general trend in high-rate interconnections turned from parallel bussing to scalable interconnections with a network architecture and high-rate point-to-point links. Analysis showed that data links with serial information transfer could achieve higher throughput and efficiency and it was confirmed in various research and practical design. Serial interfaces offer an improvement over older parallel interfaces: better performance, better scalability, and also better reliability as the parallel interfaces are at their limits of speed with reliable data transfers and others. The trend was implemented in major standards' families evolution: e.g. from PCI/PCI-X parallel bussing to PCIExpress interconnection architecture with serial lines, from CompactPCI parallel bus to ATCA (Advanced Telecommunications Architecture) specification with serial links and network topologies of an interconnection, etc. In the article we consider a general set of characteristics and features of serial interconnections, give a brief overview of serial interconnections specifications. In more details we present the SpaceWire interconnection technology. Have been developed for space on-board systems applications the SpaceWire has important features and characteristics that make it a prospective interconnection for wide range of embedded systems.

  4. 3D interconnect metrology in CMS/ITRI

    NASA Astrophysics Data System (ADS)

    Ku, Y. S.; Shyu, D. M.; Hsu, W. T.; Chang, P. Y.; Chen, Y. C.; Pang, H. L.

    2011-05-01

    Semiconductor device packaging technology is rapidly advancing, in response to the demand for thinner and smaller electronic devices. Three-dimensional chip/wafer stacking that uses through-silicon vias (TSV) is a key technical focus area, and the continuous development of this novel technology has created a need for non-contact characterization. Many of these challenges are novel to the industry due to the relatively large variety of via sizes and density, and new processes such as wafer thinning and stacked wafer bonding. This paper summarizes the developing metrology that has been used during via-middle & via-last TSV process development at EOL/ITRI. While there is a variety of metrology and inspection applications for 3D interconnect processing, the main topics covered here are via CD/depth measurement, thinned wafer inspection and wafer warpage measurement.

  5. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance

    NASA Astrophysics Data System (ADS)

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-03-01

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08857g

  6. Microgroove fabrication with excimer laser ablation techniques for optical fiber array alignment purposes

    NASA Astrophysics Data System (ADS)

    Naessens, Kris; Van Hove, An; Coosemans, Thierry; Verstuyft, Steven; Vanwassenhove, Luc; Van Daele, Peter; Baets, Roel G.

    2000-11-01

    Currently, an ever increasing need for bandwidth, compactness and efficiency characterizes the world of interconnect and data communication. This tendency has already led to serial links being gradually replaced by parallel optical interconnect solutions. However, as the maximum capacity for the latter will be reached in the near future, new approaches are required to meet demand. One possible option is to switch to 2D parallel implementations of fiber arrays. In this paper we present the fabrication of a 2D connector for coupling a 4x8 array of plastic optical fibers to RCLED or VCSEL arrays. The connector consists primarily of dedicated PMMA plates in which arrays of 8 precisely dimensioned grooves at a pitch of 250 micrometers are introduced. The trenches are each 127 micrometers deep and their width is optimized to allow fixation of plastic optical fibers. We used excimer laser ablation for prototype fabrication of these alignment microstructures. In a later stage, the plates can be replicated using standard molding techniques. The laser ablation technique is extremely well suited for rapid prototyping and proves to be a versatile process yielding high accuracy dimensioning and repeatability of features in a wide diversity of materials. The dependency of the performance in terms of quality of the trenches (bottom roughness) and wall angle on various parameters (wavelength, energy density, pulse frequency and substrate material) is discussed. The fabricated polymer sheets with grooves are used to hold optical fibers by means of a UV-curable adhesive. In a final phase, the plates are stacked and glued in order to realize the 2D-connector of plastic optical fibers for short distance optical interconnects.

  7. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

    2010-09-01

    Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

  8. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  9. Recent Development of SOFC Metallic Interconnect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnectmore » materials, and coatings for metallic interconnect materials.« less

  10. Induction soldering of photovoltaic system components

    DOEpatents

    Kumaria, Shashwat; de Leon, Briccio

    2015-11-17

    A method comprises positioning a pair of photovoltaic wafers in a side-by-side arrangement. An interconnect is placed on the pair of wafers such that the interconnect overlaps both wafers of the pair, solder material being provided between the interconnect and the respective wafers. A solder head is then located adjacent the interconnect, and the coil is energized to effect inductive heating of the solder material. The solder head comprises an induction coil shaped to define an eye, and a magnetic field concentrator located at least partially in the eye of the coil. The magnetic field concentrator defines a passage extending axially through the eye of the coil, and may be of a material with a high magnetic permeability.

  11. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2015-12-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Carbon fiber on polyimide ultra-microelectrodes

    NASA Astrophysics Data System (ADS)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.

  13. Carbon fiber on polyimide ultra-microelectrodes.

    PubMed

    Gillis, Winthrop F; Lissandrello, Charles A; Shen, Jun; Pearre, Ben W; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Otchy, Timothy M; Gardner, Timothy J

    2018-02-01

    Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.

  14. Edge Density Imaging: Mapping the Anatomic Embedding of the Structural Connectome Within the White Matter of the Human Brain

    PubMed Central

    Owen, Julia P.; Chang, Yi-Shin; Mukherjee, Pratik

    2015-01-01

    The structural connectome has emerged as a powerful tool to characterize the network architecture of the human brain and shows great potential for generating important new biomarkers for neurologic and psychiatric disorders. The edges of the cerebral graph traverse white matter to interconnect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Mapping the paths of the connectome edges could elucidate the relative importance of individual white matter tracts to the overall network topology of the brain and also lead to a better understanding of the effect of regionally-specific white matter pathology on cognition and behavior. In this work, we introduce edge density imaging (EDI), which maps the number of network edges that pass through every white matter voxel. Test-retest analysis shows good to excellent reliability for edge density (ED) measurements, with consistent results using different cortical and subcortical parcellation schemes and different diffusion MR imaging acquisition parameters. We also demonstrate that ED yields complementary information to both traditional and emerging voxel-wise metrics of white matter microstructure and connectivity, including fractional anisotropy, track density, fiber orientation dispersion and neurite density. Our results demonstrate spatially ordered variations of ED throughout the white matter, notably including greater ED in posterior than anterior cerebral white matter. The EDI framework is employed to map the white matter regions that are enriched with pathways connecting rich club nodes and also those with high densities of intra-modular and inter-modular edges. We show that periventricular white matter has particularly high ED and high densities of rich club edges, which is significant for diseases in which these areas are selectively affected, ranging from white matter injury of prematurity in infants to leukoaraiosis in the elderly. Using edge betweenness centrality, we identify specific white matter regions involved in a large number of shortest paths, some containing highly connected rich club edges while others are relatively isolated within individual modules. Overall, these findings reveal an intricate relationship between white matter anatomy and the structural connectome, motivating further exploration of EDI for biomarkers of cognition and behavior. PMID:25592996

  15. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice.

    PubMed

    Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W; Poole, Peter H

    2016-12-14

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.

  16. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.; Poole, Peter H.

    2016-12-01

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.

  17. Scaling induced performance challenges/limitations of on-chip metal interconnects and comparisons with optical interconnects

    NASA Astrophysics Data System (ADS)

    Kapur, Pawan

    The miniaturization paradigm for silicon integrated circuits has resulted in a tremendous cost and performance advantage. Aggressive shrinking of devices provides faster transistors and a greater functionality for circuit design. However, scaling induced smaller wire cross-sections coupled with longer lengths owing to larger chip areas, result in a steady deterioration of interconnects. This degradation in interconnect trends threatens to slow down the rapid growth along Moore's law. This work predicts that the situation is worse than anticipated. It shows that in the light of technology and reliability constraints, scaling induced increase in electron surface scattering, fractional cross section area occupied by the highly resistive barrier, and realistic interconnect operation temperature will lead to a significant rise in effective resistivity of modern copper based interconnects. We start by discussing various technology factors affecting copper resistivity. We, next, develop simulation tools to model these effects. Using these tools, we quantify the increase in realistic copper resistivity as a function of future technology nodes, under various technology assumptions. Subsequently, we evaluate the impact of these technology effects on delay and power dissipation of global signaling interconnects. Modern long on-chip wires use repeaters, which dramatically improves their delay and bandwidth. We quantify the repeated wire delays and power dissipation using realistic resistance trends at future nodes. With the motivation of reducing power, we formalize a methodology, which trades power with delay very efficiently for repeated wires. Using this method, we find that although the repeater power comes down, the total power dissipation due to wires is still found to be very large at future nodes. Finally, we explore optical interconnects as a possible substitute, for specific interconnect applications. We model an optical receiver and waveguides. Using this we assess future optical system performance. Finally, we compare the delay and power of future metal interconnects with that of optical interconnects for global signaling application. We also compare the power dissipation of the two approaches for an upper level clock distribution application. We find that for long on-chip communication links, optical interconnects have lower latencies than future metal interconnects at comparable levels of power dissipation.

  18. N-enriched multilayered porous carbon derived from natural casings for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Zongying; Li, Yu; Li, Dandan; Wang, Dawei; Zhao, Jing; Wang, Zhifeng; Banis, Mohammad N.; Hu, Yongfeng; Zhang, Huaihao

    2018-06-01

    In this study, N-enriched multilayered porous activated carbon (LPAC), using natural casings as precursor, was fabricated by a facile carbonization and subsequent KOH activation procedure. The influence of the mass ratio of KOH to carbonized material on pore-structure and surface element composition of LPACs was investigated by a variety of means, such as SEM, HRTEM, BET, Raman, XRD, XPS and XAS. Owing to the unique multilayered texture and nitrogen (N) and oxygen (O) rich feature of natural casings, the resulting LPACs possess interconnected and developed porous structure with N- and O-enriched functional groups, contributing to larger pseudocapacitance. With the rise of mass ratio, the specific surface area (SSA) and average pore size of LPACs increased. The final materials were endowed with a desirable SSA (3100 m2 g-1) and high N content (6.34 at.%). Meanwhile, N- and O-enriched LPAC-4 exhibited a high specific capacitance (307.5 F g-1 at a current density of 0.5 A g-1 in 6 M KOH aqueous solution), excellent rate performance (63.4% capacitance retention at 20 A g-1) and good cycling stability (7.1% capacitance loss after 5000 cycles). Furthermore, the assembled symmetrical supercapacitor (LPAC-4//LPAC-4) with a wide voltage window of 1.4 V delivered a remarkable energy density of 11.6 Wh kg-1 at a power density of 297 W kg-1. These results suggested that unique LPACs derived from natural casings are a promising material for supercapacitors.

  19. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology

    NASA Astrophysics Data System (ADS)

    Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun

    2017-11-01

    Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density <10 mg cm-3 and the stable \\bar{E}˜ {\\bar{ρ }}2 scaling through all range of relative density, indicates an advantage over the previous stochastic metal foams. Overall, this initiator-integrated 3D printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, H. P.; Basso, T. S.; Kroposki, B.

    The Department of Energy (DOE) Distributed Power Program (DPP) is conducting work to complete, validate in the field, and support the development of a national interconnection standard for distributed energy resources (DER), and to address the institutional and regulatory barriers slowing the commercial adoption of DER systems. This work includes support for the IEEE standards, including P1547 Standard for Interconnecting Distributed Resources with Electric Power Systems, P1589 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems, and the P1608 Application Guide. Work is also in progress on system integration research and development (R&D) on themore » interface and control of DER with local energy systems. Additional efforts are supporting high-reliability power for industry, evaluating innovative concepts for DER applications, and exploring plug-and-play interface and control technologies for intelligent autonomous interconnection systems. This paper summarizes (1) the current status of the IEEE interconnection standards and application guides in support of DER, and (2) the R&D in progress at the National Renewable Energy Laboratory (NREL) for interconnection and system integration and application of distributed energy resources.« less

  1. Electrochemical Migration of Fine-Pitch Nanopaste Ag Interconnects

    NASA Astrophysics Data System (ADS)

    Tsou, Chia-Hung; Liu, Kai-Ning; Lin, Heng-Tien; Ouyang, Fan-Yi

    2016-12-01

    With the development of intelligent electronic products, usage of fine-pitch interconnects has become mainstream in high performance electronic devices. Electrochemical migration (ECM) of interconnects would be a serious reliability problem under temperature, humidity and biased voltage environments. In this study, ECM behavior of nanopaste Ag interconnects with pitch size from 20 μm to 50 μm was evaluated by thermal humidity bias (THB) and water drop (WD) tests with deionized water through in situ leakage current-versus-time (CVT) curve. The results indicate that the failure time of ECM in fine-pitch samples occurs within few seconds under WD testing and it increases with increasing pitch size. The microstructure examination indicated that intensive dendrite formation of Ag through the whole interface was found to bridge the two electrodes. In the THB test, the CVT curve exhibited two stages, incubation and ramp-up; failure time of ECM was about 173.7 min. In addition, intensive dendrite formation was observed only at the protrusion of the Ag interconnects due to the concentration of the electric field at the protrusion of the Ag interconnects.

  2. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    PubMed Central

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  3. 3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/Fe3C for efficient oxygen reduction reaction and supercapacitor.

    PubMed

    Li, Guoning; Zhang, Jiajun; Li, Weisong; Fan, Kai; Xu, Chunjian

    2018-05-17

    Hierarchical porous N-doped carbon with Fe/Fe3C nanoparticles, high content of N dopants (10.51 wt%), and a 3D interconnected porous architecture constructed by flake-like nanostructure was facilely prepared by carbonization of a zeolitic imidazolate framework-8 (ZIF-8) as a self-sacrificing template and potassium ferricyanide (PF) as a multifunctional iron precursor. The unique porous structure can offer a continuous pathway for electron transfer and shorten the mass transfer pathway, which contribute to both an oxygen reduction reaction (ORR) and a supercapacitor. The influence of the carbonization temperature and iron content on the performance of ORR and supercapacitor was investigated. The as-prepared composites carbonized at 800 °C (Fe-CZIF-800-10) displayed comparable ORR activity with Pt/C in alkaline media as well as excellent long-term stability, superb methanol tolerance, and appreciable onset potential in acid media. Moreover, Fe-CZIF-800-10 exhibited excellent capacity of 246 F g-1 at a current density of 0.5 A g-1 and stability in 6 M KOH. This report provides a facile approach to prepare hierarchical porous Fe/N-doped carbon as a promising electrode material for both fuel cell and supercapacitor applications.

  4. 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na3 V2 (PO4 )3 @Carbon Paper Cathode for Sodium-Ion Batteries.

    PubMed

    Kretschmer, Katja; Sun, Bing; Zhang, Jinqiang; Xie, Xiuqiang; Liu, Hao; Wang, Guoxiu

    2017-03-01

    Sodium-ion batteries (NIBs) are an emerging technology, which can meet increasing demands for large-scale energy storage. One of the most promising cathode material candidates for sodium-ion batteries is Na 3 V 2 (PO 4 ) 3 due to its high capacity, thermal stability, and sodium (Na) Superionic Conductor 3D (NASICON)-type framework. In this work, the authors have significantly improved electrochemical performance and cycling stability of Na 3 V 2 (PO 4 ) 3 by introducing a 3D interconnected conductive network in the form of carbon fiber derived from ordinary paper towel. The free-standing Na 3 V 2 (PO 4 ) 3 -carbon paper (Na 3 V 2 (PO 4 ) 3 @CP) hybrid electrodes do not require a metallic current collector, polymeric binder, or conducting additives to function as a cathode material in an NIB system. The Na 3 V 2 (PO 4 ) 3 @CP cathode demonstrates extraordinary long term cycling stability for 30 000 deep charge-discharge cycles at a current density of 2.5 mA cm -2 . Such outstanding cycling stability can meet the stringent requirements for renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    NASA Technical Reports Server (NTRS)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  6. Foldable, High Energy Density Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of CNMs (0.7 mg/cm2) as compared to metallic foils (5-10 mg/cm2). We show that the energy density of the fully foldable battery with CMF current collectors can be up to 2-fold higher than conventional LIBs at realistic mass loading (5mg/cm2) of the electrode materials. Therefore, not only does the CMF impart shape conformability, it also significantly boosts the energy density of the device by removing the dead weight of the batteries. Silicon (Si) shows enormous potential as the next generation anode material in Lithium-ion batteries due to its high energy denisty. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. Such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. In Chapters 4 and 5, we propose two solutions to incorporate Si films in foldable batteries. We show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current-collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface by creating a slippery interface and reducing the stress transfer across the interface. The graphene-draped Si films on CNM exhibit long cycle life (> 1000 charge/discharge steps) with an average specific capacity of 806 mAh/g. The volumetric capacity averaged over 1000 cycles of charge/discharge is 2821 mAh/cm3 which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration. In Chapter 5, an alternate strategy has been explored to stabilize Si films by utilizing the role of a slippery interface in stabilizing Si. In this study, graphene films were used as a buffer layer on which Si films were deposited. Here, instead of a highly elastic matrix (as seen in Chapter 4), a slippery interface was used to stabilize Si. It was observed that due to the slippery interface, the Si films were stable and could retain a capacity of 900 mAh/g. These Si films also possessed a volumetric capacity of 5462 mAh/cm3. On the other hand, Si films with a rigid interface were completely eviscerated with a capacity retention of only 180 mAh/g. Thus, this thesis presents new ideas to achieve foldable high energy density Lithium Ion Battery. We also hope that this thesis serves as a platform for researchers to further explore this field.

  7. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauder, C.

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems thatmore » interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.« less

  9. Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte

    NASA Astrophysics Data System (ADS)

    Hongahally Basappa, Rajendra; Ito, Tomoko; Morimura, Takao; Bekarevich, Raman; Mitsuishi, Kazutaka; Yamada, Hirotoshi

    2017-09-01

    Garnet-type solid electrolytes are one of key materials to enable practical usage of lithium metal anode for high-energy-density batteries. However, it suffers from lithium growth in pellets on charging, which causes short circuit. In this study, grain boundaries of Li6.5La3Zr1.5Ta0.5O12 (LLZT) pellets are modified with Li2CO3 and LiOH to investigate the influence of the microstructure of grain boundaries on lithium growth and to study the mechanism of the lithium growth. In spite of similar properties (relative density of ca. 96% and total ionic conductivity of 7 × 10-4 S cm-1 at 25 °C), the obtained pellets exhibit different tolerance on the short circuit. The LLZT pellets prepared from LiOH-modified LLZT powders exhibit rather high critical current density of 0.6 mA cm-2, at which short circuit occurs. On the other hand, the LLZT pellets without grain boundary modification short-circuited at 0.15 mA cm-2. Microstructural analyses by means of SEM, STEM and EIS suggest that lithium grows through interconnected open voids, and reveal that surface layers such as Li2CO3 and LiOH are not only plug voids but also facilitate the sintering of LLZT to suppress the lithium growth. The results indicate a strategy towards short-circuit-free lithium metal batteries.

  10. High-performance supercapacitor based on three-dimensional flower-shaped Li4Ti5O12-graphene hybrid and pine needles derived honeycomb carbon.

    PubMed

    Xing, Ling-Li; Wu, Xu; Huang, Ke-Jing

    2018-06-05

    A three-dimensional (3D) flower-shaped Li 4 Ti 5 O 12 -graphene (Gr) hybrid micro/nanostructures and pine needles derived carbon nanopores (PNDCN) has been prepared by using the effective hydrothermal process. Due to the unique micro/nanostructures which can provide abundant surface active sites, the obtained 3D Li 4 Ti 5 O 12 -Gr displays a high specific capacitance of 706.52 F g -1 at 1 A g -1 . The prepared PNDCN also exhibits high specific capacitance of 314.50 F g -1 at 1 A g -1 benefiting from its interconnected honeycomb-like hierarchical and open structure, which facilitates the diffusion and reaction of electrolyte ions and enables an isotropic charging/discharging process. An asymmetric supercapacitor utilizing Li 4 Ti 5 O 12 -Gr as positive electrode and PNDCN as negative electrode has been fabricated, it delivers a high energy density of 35.06 Wh kg -1 at power density of 800.08 W kg -1 and outstanding cycling stability with 90.18% capacitance retention after 2000 cycles. The fabrication process presented in this work is facile, cost-effective, and environmentally benign, offering a feasible solution for manufacturing next-generation high-performance energy storage devices. Copyright © 2018. Published by Elsevier Inc.

  11. Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography.

    PubMed

    Ishigure, Takaaki; Nitta, Yosuke

    2010-06-21

    We successfully fabricate a polymer optical waveguide with multiple graded-index (GI) cores directly on a substrate utilizing the soft-lithography method. A UV-curable polymer (TPIR-202) supplied from Tokyo Ohka Kogyo Co., Ltd. is used, and the GI cores are formed during the curing process of the core region, which is similar to the preform process we previously reported. We experimentally confirm that near parabolic refractive index profiles are formed in the parallel cores (more than 50 channels) with 40 microm x 40 microm size at 250-microm pitch. Although the loss is still as high as 0.1 approximately 0.3 dB/cm at 850 nm, which is mainly due to scattering loss inherent to the polymer matrix, the scattering loss attributed to the waveguide's structural irregularity could be sufficiently reduced by a graded refractive index profile. For comparison, we fabricate step-index (SI)-core waveguides with the same materials by means of the same process. Then, we evaluate the inter-channel crosstalk in the SI- and GI-core waveguides under almost the same conditions. It is noteworthy that remarkable crosstalk reduction (5 dB and beyond) is confirmed in the GI-core waveguides, since the propagating modes in GI-cores are tightly confined near the core center and less optical power is found near the core cladding boundary. This significant improvement in the inter-channel crosstalk allows the GI-core waveguides to be utilized for extra high-density on-board optical interconnections.

  12. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  13. Flexible Chip Scale Package and Interconnect for Implantable MEMS Movable Microelectrodes for the Brain.

    PubMed

    Jackson, Nathan; Muthuswamy, Jit

    2009-04-01

    We report here a novel approach called MEMS microflex interconnect (MMFI) technology for packaging a new generation of Bio-MEMS devices that involve movable microelectrodes implanted in brain tissue. MMFI addresses the need for (i) operating space for movable parts and (ii) flexible interconnects for mechanical isolation. We fabricated a thin polyimide substrate with embedded bond-pads, vias, and conducting traces for the interconnect with a backside dry etch, so that the flexible substrate can act as a thin-film cap for the MEMS package. A double gold stud bump rivet bonding mechanism was used to form electrical connections to the chip and also to provide a spacing of approximately 15-20 µm for the movable parts. The MMFI approach achieved a chip scale package (CSP) that is lightweight, biocompatible, having flexible interconnects, without an underfill. Reliability tests demonstrated minimal increases of 0.35 mΩ, 0.23 mΩ and 0.15 mΩ in mean contact resistances under high humidity, thermal cycling, and thermal shock conditions respectively. High temperature tests resulted in an increase in resistance of > 90 mΩ when aluminum bond pads were used, but an increase of ~ 4.2 mΩ with gold bond pads. The mean-time-to-failure (MTTF) was estimated to be at least one year under physiological conditions. We conclude that MMFI technology is a feasible and reliable approach for packaging and interconnecting Bio-MEMS devices.

  14. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene.

    PubMed

    Xie, Xu; Ju, Long; Feng, Xiaofeng; Sun, Yinghui; Zhou, Ruifeng; Liu, Kai; Fan, Shoushan; Li, Qunqing; Jiang, Kaili

    2009-07-01

    We report a simple and effective way of fabricating high-quality carbon nanoscrolls (CNSs), using isopropyl alcohol solution to roll up monolayer graphene predefined on SiO(2)/Si substrates. Transmission electron microscopy studies reveal that the CNS has a tube-like structure with a hollow core surrounded by graphene walls 0.35 nm apart. Raman spectroscopy studies show that the CNS is free of significant defects, and the electronic structure and phonon dispersion are slightly different from those of two-dimensional graphene. Finally, the CNS-based device is fabricated, directly on the SiO(2)/Si substrate. Electrical-transport measurements show that its resistance is weakly gate-dependent but strongly temperature-dependent. In addition, the CNS can sustain a high current density up to 5 x 10(7) A/cm(2), indicating that it is a good candidate for microcircuit interconnects. The controlled fabrication of high-quality CNSs may open up new opportunities for both fundamental and applied research of CNSs.

  15. A novel FPGA-programmable switch matrix interconnection element in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Hashemi, Sara; Rahimi Azghadi, Mostafa; Zakerolhosseini, Ali; Navi, Keivan

    2015-04-01

    The Quantum-dot cellular automata (QCA) is a novel nanotechnology, promising extra low-power, extremely dense and very high-speed structure for the construction of logical circuits at a nanoscale. In this paper, initially previous works on QCA-based FPGA's routing elements are investigated, and then an efficient, symmetric and reliable QCA programmable switch matrix (PSM) interconnection element is introduced. This element has a simple structure and offers a complete routing capability. It is implemented using a bottom-up design approach that starts from a dense and high-speed 2:1 multiplexer and utilise it to build the target PSM interconnection element. In this study, simulations of the proposed circuits are carried out using QCAdesigner, a layout and simulation tool for QCA circuits. The results demonstrate high efficiency of the proposed designs in QCA-based FPGA routing.

  16. Collagen scaffolds derived from a marine source and their biocompatibility.

    PubMed

    Song, Eun; Yeon Kim, So; Chun, Taehoon; Byun, Hyun-Jung; Lee, Young Moo

    2006-05-01

    The primary sources of industrial collagens are calf skin and bone. However, these carry a high risk of bovine spongiform encephalopathy or transmissible spongiform encephalopathy. In this study, a novel form of acid-soluble collagen was extracted from jellyfish in an effort to obtain an alternative and safer collagen. Porous scaffolds composed of jellyfish collagen were prepared by freeze-drying and cross-linking with 1-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide to be used in tissue engineering applications. Enzymatic degradation kinetics of jellyfish collagen scaffolds were controlled by EDC/NHS-cross-linking density. Results from an MTT assay indicated that jellyfish collagen exhibited higher cell viability than other naturally derived biomaterials, including bovine collagen, gelatin, hyaluronic acid, and glucan. Jellyfish collagen scaffolds also had a highly porous and interconnected pore structure, which is useful for an high-density cell seeding, an efficient nutrient and an oxygen supply to the cells cultured in the three-dimensional matrices. To determine whether jellyfish collagen evokes any specific inflammatory response compared to that induced by bovine collagen or gelatin, we measured the levels of pro-inflammatory cytokines and antibody secretions and monitored the population changes of immune cells after in vivo implantation. Jellyfish collagen was found to induce an immune response at least comparable to those caused by bovine collagen and gelatin.

  17. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.

    PubMed

    Yao, Yan; McDowell, Matthew T; Ryu, Ill; Wu, Hui; Liu, Nian; Hu, Liangbing; Nix, William D; Cui, Yi

    2011-07-13

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g(-1) with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure.

  18. High Resolution Fabrication of Interconnection Lines Using Picosecond Laser and Controlled Deposition of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev

    In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.

  19. Novel Highly Parallel and Systolic Architectures Using Quantum Dot-Based Hardware

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Benny N.; Spotnitz, Matthew

    1997-01-01

    VLSI technology has made possible the integration of massive number of components (processors, memory, etc.) into a single chip. In VLSI design, memory and processing power are relatively cheap and the main emphasis of the design is on reducing the overall interconnection complexity since data routing costs dominate the power, time, and area required to implement a computation. Communication is costly because wires occupy the most space on a circuit and it can also degrade clock time. In fact, much of the complexity (and hence the cost) of VLSI design results from minimization of data routing. The main difficulty in VLSI routing is due to the fact that crossing of the lines carrying data, instruction, control, etc. is not possible in a plane. Thus, in order to meet this constraint, the VLSI design aims at keeping the architecture highly regular with local and short interconnection. As a result, while the high level of integration has opened the way for massively parallel computation, practical and full exploitation of such a capability in many applications of interest has been hindered by the constraints on interconnection pattern. More precisely. the use of only localized communication significantly simplifies the design of interconnection architecture but at the expense of somewhat restricted class of applications. For example, there are currently commercially available products integrating; hundreds of simple processor elements within a single chip. However, the lack of adequate interconnection pattern among these processing elements make them inefficient for exploiting a large degree of parallelism in many applications.

  20. High Coherence Qubit packaging

    NASA Astrophysics Data System (ADS)

    Pappas, David P.; Wu, Xian; Olivadese, Salvatore B.; Adiga, V. P.; Hertzberg, Jared B.; Bronn, Nicholas T.; Chow, Jerry M.; NIST Team; IBM Team

    Development of sockets and associated interconnects for multi-qubit chips is presented. Considerations include thermalization, RF hygiene, non-magnetic environment, and self-alignment of the chips to allow for rapid testing, scalable integration, and high coherence operation. The sockets include wirebond free, vertical take-off launches with pogopins. This allows for high interconnectivity to non-trivial topology of qubits. Furthermore, vertical grounding is accomplished to reduce chip modes and suppress box modes. Low energy loss and high phase coherence is observed using this paradigm. We acknowledge support from IARPA, LPS, and the NIST Quantum Based Metrology Initiative.

  1. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.

    2014-02-03

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (∼3.36 × 10{sup −4} cm{sup 3}) without using any metallic gridmore » or a special interconnections.« less

  2. Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.

    PubMed

    Zhao, Enbo; Qin, Chuanli; Jung, Hong-Ryun; Berdichevsky, Gene; Nese, Alper; Marder, Seth; Yushin, Gleb

    2016-04-26

    Porous carbons suffer from low specific capacitance, while intercalation-type active materials suffer from limited rate when used in asymmetric supercapacitors. We demonstrate that nanoconfinement of intercalation-type lithium titanate (Li4Ti5O12) nanoparticles in carbon nanopores yielded nanocomposite materials that offer both high ion storage density and rapid ion transport through open and interconnected pore channels. The use of titanate increased both the gravimetric and volumetric capacity of porous carbons by more than an order of magnitude. High electrical conductivity of carbon and the small size of titanate crystals allowed the composite electrodes to achieve characteristic charge and discharge times comparable to that of the electric double-layer capacitors. The proposed composite synthesis methodology is simple, scalable, and applicable for a broad range of active intercalation materials, while the produced composite powders are compatible with commercial electrode fabrication processes.

  3. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to DC electrical stressing.

    PubMed

    Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R

    2011-07-01

    We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.

  4. Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries.

    PubMed

    Breitung, Ben; Aguiló-Aguayo, Noemí; Bechtold, Thomas; Hahn, Horst; Janek, Jürgen; Brezesinski, Torsten

    2017-10-12

    Si holds great promise as an alloying anode material for Li-ion batteries with improved energy density because of its high theoretical specific capacity and favorable operation voltage range. However, the large volume expansion of Si during electrochemical reaction with Li and the associated adverse effects strongly limit its prospect for application. Here, we report on the use of three-dimensional instead of flat current collectors for high-capacity Si anodes in an attempt to mitigate the loss of electrical contact of active electrode regions as a result of structural disintegration with cycling. The current collectors were produced by technical embroidery and consist of interconnected Cu wires of diameter <150 µm. In comparison to Si/Li cells using a conventional Cu foil current collector, the embroidered microwire network-based cells show much enhanced capacity and reversibility due to a higher degree of tolerance to cycling.

  5. Double negative acoustic metastructure for attenuation of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu

    2018-03-01

    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  6. mpiGraph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Adam

    2007-05-22

    MpiGraph consists of an MPI application called mpiGraph written in C to measure message bandwidth and an associated crunch_mpiGraph script written in Perl to process the application output into an HTMO report. The mpiGraph application is designed to inspect the health and scalability of a high-performance interconnect while under heavy load. This is useful to detect hardware and software problems in a system, such as slow nodes, links, switches, or contention in switch routing. It is also useful to characterize how interconnect performance changes with different settings or how one interconnect type compares to another.

  7. Heterogeneously integrated microsystem-on-a-chip

    DOEpatents

    Chanchani, Rajen [Albuquerque, NM

    2008-02-26

    A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.

  8. Morphological Control of Mesoporosity and Nanoparticles within Co3O4-CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance.

    PubMed

    Pradhan, Amaresh C; Uyar, Tamer

    2017-10-18

    The one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co 3 O 4 -CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co 3 O 4 -CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co 3 O 4 -CuO NFs but also single mesoporous Co 3 O 4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co 3 O 4 nanofibers framework (Co 3 O 4 -CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co 3 O 4 -CuO NFs is due to the internal charge transfer between Co 2+ to Co 3+ and Cu 2+ , proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co 3 O 4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co 3 O 4 -CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co 3 O 4 -CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co 3 O 4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic activity of composite Co 3 O 4 -CuO NFs is attributed to the formation of mesoporosity and interconnected NPs within NFs framework, quantum confinement, extended light absorption property, internal charge transfer, and effective photogenerated charge separations.

  9. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  10. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Kuo, L.J.H.; Vora, S.D.

    1995-02-21

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La{sub 1{minus}x}M{sub x}Cr{sub 1{minus}y}N{sub y}O{sub 3}, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075--0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO){sub 12}(Al{sub 2}O{sub 3}){sub 7} flux particles including Ca and Al dopant, and LaCrO{sub 3} interconnection particles, preferably undoped LaCrO{sub 3}, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and (C) heat treating the interconnection layer at from about 1,200 to 1,350 C to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power. 4 figs.

  11. A first-principles analysis of ballistic conductance, grain boundary scattering and vertical resistance in aluminum interconnects

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Lanzillo, Nicholas A.; Bhosale, Prasad; Gall, Daniel; Quon, Roger

    2018-05-01

    We present an ab initio evaluation of electron scattering mechanisms in Al interconnects from a back-end-of-line (BEOL) perspective. We consider the ballistic conductance as a function of nanowire size, as well as the impact of surface oxidation on electron transport. We also consider several representative twin grain boundaries and calculate the specific resistivity and reflection coefficients for each case. Lastly, we calculate the vertical resistance across the Al/Ta(N)/Al and Cu/Ta(N)/Cu interfaces, which are representative of typical vertical interconnect structures with diffusion barriers. Despite a high ballistic conductance, the calculated specific resistivities at grain boundaries are 70-100% higher in Al than in Cu, and the vertical resistance across Ta(N) diffusion barriers are 60-100% larger for Al than for Cu. These results suggest that in addition to the well-known electromigration limitations in Al interconnects, electron scattering represents a major problem in achieving low interconnect line resistance at fine dimensions.

  12. Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2003-01-01

    A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick-film metalization-based wirebond electrical interconnection system was also tested in an extremely dynamic thermal environment to assess thermal reliability. The I-V curve1 of a SiC high-temperature diode was measured in oxidizing air at 500 C for 1000 hr to electrically test the Au thick-film material-based die-attach assembly.

  13. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge

    NASA Astrophysics Data System (ADS)

    Moussa, Mahmoud; El-Kady, Maher F.; Wang, Hao; Michimore, Andrew; Zhou, Qinqin; Xu, Jian; Majeswki, Peter; Ma, Jun

    2015-02-01

    We in this study used a commercial grade kitchen sponge as the scaffold where both graphene platelets (GnPs) and polyaniline (PANi) nanorods were deposited. The high electrical conductivity of GnPs (1460 S cm-1) enhances the pseudo-capacitive performance of PANi grown vertically on the GnPs basal planes; the interconnected pores of the sponge provide sufficient inner surface between the GnPs/PANi composite and the electrolyte, which thus facilitates ion diffusion during charge and discharge processes. When the composite electrode was used to build a supercapacitor with two-electrode configuration, it exhibited a specific capacitance of 965.3 F g-1 at a scan rate of 10 mV s-1 in 1.0 M H2SO4 solution. In addition, the composite Nyquist plot showed no semicircle at high frequency corresponding to a low equivalent series resistance of 0.35 Ω. At 100 mV s-1, the supercapacitor demonstrated an energy density of 34.5 Wh kg-1 and a power density of 12.4 kW kg-1 based on the total mass of the active materials on both electrodes. To demonstrate the performance, we built an array consisting of three cells connected in series, which lit up a red light emitting diode for five minutes. This simple method holds promise for high-performance yet low-cost electrodes for supercapacitors.

  14. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  15. Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors.

    PubMed

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-19

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp(2) carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp(2) carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  16. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    PubMed Central

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-01-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance. PMID:25134517

  17. Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements.

    PubMed

    Shi, Yantao; Zhu, Chao; Wang, Lin; Li, Wei; Fung, Kwok Kwong; Wang, Ning

    2013-01-02

    Through a rapid and template-free precipitation approach, we synthesized an asymmetric panel-like ZnO hierarchical architecture (PHA) for photoanodes of dye-sensitized solar cells (DSCs). The two sides of the PHA are constructed differently using densely interconnected, mono-crystalline and ultrathin ZnO nanosheets. By mixing these PHAs with ZnO nanoparticles (NPs), we developed an effective and feasible strategy to improve the electrical transport and photovoltaic performance of the composite photoanodes of DSCs. The highly crystallized and interconnected ZnO nanosheets largely minimized the total grain boundaries within the composite photoanodes and thus served as direct pathways for the transport and effective collection of free electrons. Through low-temperature (200 °C) annealing, these novel composite photoanodes achieved high conversion efficiencies of up to 5.59% for ZnO-based quasi-solid DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    NASA Astrophysics Data System (ADS)

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  19. Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer.

    PubMed

    Bag, Santanu; Patel, Romesh J; Bunha, Ajaykumar; Grand, Caroline; Berrigan, J Daniel; Dalton, Matthew J; Leever, Benjamin J; Reynolds, John R; Durstock, Michael F

    2016-01-13

    Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance. In this work, we demonstrate a novel tandem polymer solar cell that combines low band gap poly isoindigo [P(T3-iI)-2], which is easily synthesized in kilogram quantities, with a novel Cr/MoO3 interconnecting layer. Cr/MoO3 is shown to be greater than 80% transparent above 375 nm and an efficient interconnecting layer for P(T3-iI)-2 and PCDTBT, leading to 6% power conversion efficiencies under AM 1.5G illumination. These results serve to extend the range of interconnecting layer materials for tandem cell fabrication by establishing, for the first time, that a thin, evaporated layer of Cr/MoO3 can work as an effective interconnecting layer in a tandem polymer solar cells made with scalable photoactive materials.

  20. Study of complete interconnect reliability for a GaAs MMIC power amplifier

    NASA Astrophysics Data System (ADS)

    Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao

    2018-05-01

    By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.

  1. Performance of WCN diffusion barrier for Cu multilevel interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeon; Ju, Byeong-Kwon; Kim, Yong Tae

    2018-04-01

    The electrical and thermal properties of a WCN diffusion barrier have been studied for Cu multilevel interconnects. The WCN has been prepared using an atomic layer deposition system with WF6-CH4-NH3-H2 gases and has a very low resistivity of 100 µΩ cm and 96.9% step coverage on the high-aspect-ratio vias. The thermally stable WCN maintains an amorphous state at 800 °C and Cu/WCN contact resistance remains within a 10% deviation from the initial value after 700 °C. The mean time to failure suggests that the Cu/WCN interconnects have a longer lifetime than Cu/TaN and Cu/WN interconnects because WCN prevents Cu migration owing to the stress evolution from tensile to compressive.

  2. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  3. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    PubMed

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.

    PubMed

    Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon

    2016-06-22

    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.

  5. Fast, Massively Parallel Data Processors

    NASA Technical Reports Server (NTRS)

    Heaton, Robert A.; Blevins, Donald W.; Davis, ED

    1994-01-01

    Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.

  6. High-resolution determination of the stress in individual interconnect lines and the variation due to electromigration

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Chiras, S.; Clarke, D. R.; Suo, Z.

    1995-08-01

    Large tensile stresses usually exist in metallic interconnect lines on silicon substrates as a result of thermal mismatch. When a current is subsequently passed any divergence of atomic flux can create superimposed stress variations along the line. Together, these stresses can significantly influence the growth of voids and therefore affect interconnect reliability. In this work, a high-resolution (˜2 μm) optical spectroscopy method has been used to measure the localized stresses around passivated aluminum lines on a silicon wafer, both as-fabricated and after electromigration testing. The method is based on the piezospectroscopic properties of silicon, specifically the frequency shift of the Raman line at 520 R cm-1. By focusing a laser beam at points adjacent to the aluminum lines, the Raman signal was excited and collected. The stresses in the aluminum lines can then be derived from the stresses in the silicon using finite element methods. Large variations of stress along an electromigration-tested line were observed and compared to a theoretical model based on differences in effective diffusivities from grain to grain in a polycrystalline interconnect line.

  7. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals

    PubMed Central

    Zhao, Yao; Wei, Jinquan; Vajtai, Robert; Ajayan, Pulickel M.; Barrera, Enrique V.

    2011-01-01

    Creating highly electrically conducting cables from macroscopic aggregates of carbon nanotubes, to replace metallic wires, is still a dream. Here we report the fabrication of iodine-doped, double-walled nanotube cables having electrical resistivity reaching ∼10−7 Ω.m. Due to the low density, their specific conductivity (conductivity/weight) is higher than copper and aluminum and is only just below that of the highest specific conductivity metal, sodium. The cables exhibit high current-carrying capacity of 104∼105 A/cm2 and can be joined together into arbitrary length and diameter, without degradation of their electrical properties. The application of such nanotube cables is demonstrated by partly replacing metal wires in a household light bulb circuit. The conductivity variation as a function of temperature for the cables is five times smaller than that for copper. The high conductivity nanotube cables could find a range of applications, from low dimensional interconnects to transmission lines. PMID:22355602

  8. In situ emulsification using a non-uniform alternating electric field

    NASA Astrophysics Data System (ADS)

    Choi, Suhwan; Saveliev, Alexei V.

    2014-08-01

    We report an electric field based method for in situ emulsification of water droplets immersed in a continuous oil phase. High density water-in-oil emulsions are generated using non-uniform ac electric fields applied between needle and plate electrodes. An initial water droplet is entrained in the area of high electric field near the needle electrode where it is dispersed under the influence of high electric stresses. Breakup mechanisms responsible for a gradual dispersion of the water droplets are investigated. Identified mechanisms involve drop elongation to a cylindrical shape followed by a capillary breakup, ac electrospraying from individual water droplets, and formation and breakup of bead-like structures comprised by the water droplets interconnected by thin water bridges. Water droplets with diameters close to 1 μm and a narrow size distribution are formed at long processing times. The generated emulsion has a well-defined boundary and is confined near the needle electrode in a shape resembling a pendant drop.

  9. Stretchable multilayer self-aligned interconnects fabricated using excimer laser photoablation and in situ masking

    NASA Astrophysics Data System (ADS)

    Lin, Kevin L.; Jain, Kanti

    2009-02-01

    Stretchable interconnects are essential to large-area flexible circuits and large-area sensor array systems, and they play an important role towards the realization of the realm of systems which include wearable electronics, sensor arrays for structural health monitoring, and sensor skins for tactile feedback. These interconnects must be reliable and robust for viability, and must be flexible, stretchable, and conformable to non-planar surfaces. This research describes the design, modeling, fabrication, and testing of stretchable interconnects on polymer substrates using metal patterns both as functional interconnect layers and as in-situ masks for excimer laser photoablation. Excimer laser photoablation is often used for patterning of polymers and thin-film metals. The fluences for photoablation of polymers are generally much lower than the threshold fluence for removal or damage of high-thermallyconductive metals; thus, metal thin films can be used as in-situ masks for polymers if the proper fluence is used. Selfaligned single-layer and multi-layer interconnects of various designs (rectilinear and 'meandering') have been fabricated, and certain 'meandering' interconnect designs can be stretched up to 50% uniaxially while maintaining good electrical conductivity and structural integrity. These results are compared with Finite Element Analysis (FEA) models and are observed to be in good accordance with them. This fabrication approach eliminates masks and microfabrication processing steps as compared to traditional fabrication approaches; furthermore, this technology is scalable for large-area sensor arrays and electronic circuits, adaptable for a variety of materials and interconnects designs, and compatible with MEMS-based capacitive sensor technology.

  10. Disruptive Technologies in Workmanship: pH-neutral Flux, CDM ESD Events, HDI PCBs

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette F.

    2010-01-01

    This slide presentation describes what it calls "disruptive technologies", i.e., "Low-end disruption" occurs when the rate at which products improve exceeds the rate at which customers can adopt the new performance. Therefore, at some point the performance of the product overshoots the needs of certain customer segments. At this point, a disruptive technology may enter the market and provide a product which has lower performance than the incumbent but which exceeds the requirements of certain segments, thereby gaining a foothold in the market. This concept is viewed in impacting incumbent technologies Rosin Flux, with a pH-neutral water soluble Flux; electrostatic discharge models being disrupted by the charge device model (CDM) concept; and High Density Interconnect Printed Circuit Boards (HDI PCB).

  11. Applications considerations in the system design of highly concurrent multiprocessors

    NASA Technical Reports Server (NTRS)

    Lundstrom, Stephen F.

    1987-01-01

    A flow model processor approach to parallel processing is described, using very-high-performance individual processors, high-speed circuit switched interconnection networks, and a high-speed synchronization capability to minimize the effect of the inherently serial portions of applications on performance. Design studies related to the determination of the number of processors, the memory organization, and the structure of the networks used to interconnect the processor and memory resources are discussed. Simulations indicate that applications centered on the large shared data memory should be able to sustain over 500 million floating point operations per second.

  12. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    2016-03-01

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.

  13. Boundary pressure of inter-connection of Fe-Ni-S melt in olivine based on in-situ X-ray tomography: Implication to core formation in asteroids

    NASA Astrophysics Data System (ADS)

    Terasaki, H.; Urakawa, S.; Uesugi, K.; Nakatsuka, A.; Funakoshi, K.; Ohtani, E.

    2011-12-01

    Interconnectivity of Fe-alloy melt in crystalline silicates is important property for the core formation mechanism in planetary interior. In previous studies, the interconnectivity of Fe-alloy melt has been studied based on textural observation of recovered samples from high pressure and temperature. However, there is no observation under high pressure and temperature. We have developed 80-ton uni-axial press for X-ray computed micro-tomography (X-CT) and performed X-CT measurement under high pressure (Urakawa et al. 2010). Here we report X-CT measurement of Fe-Ni-S melt in crystalline olivine and interconnectivity of the melt up to 3.5 GPa and 1273 K. X-CT measurements were carried out at BL20B2 beamline, SPring-8 synchrotron facility. The sample was powder mixture of Fe-Ni-S and olivine, which was enclosed in graphite capsule. Heating was performed using a cylindrical graphite furnace. Pressure was generated using opposed toroidal-shape WC anvil. The uni-axial press was set on the rotational stage and X-ray radiography image of the sample was collected using CCD camera from 0°to 180°with 0.3° step. 3-D image of the sample was obtained by reconstructing the 2-D radiography image. The 3-D CT image shows that the size of the Fe-Ni-S melt increased significantly compared to that before melting below 2.5 GPa, suggesting that the melt was interconnected in olivine crystals. On the other hand, 3-D texture of the sample at 3.5 GPa did not show difference from that before melting. Therefore, the boundary of inter-connection of Fe-Ni-S melt is likely to locate between 2.5 and 3.5 GPa. This result is important application for the core formation mechanism especially in small bodies, such as differentiated asteroids.

  14. Chip-to-chip interconnects based on 3D stacking of optoelectrical dies on Si

    NASA Astrophysics Data System (ADS)

    Duan, P.; Raz, O.; Smalbrugge, B. E.; Duis, J.; Dorren, H. J. S.

    2012-01-01

    We demonstrate a new approach to increase the optical interconnection bandwidth density by stacking the opto-electrical dies directly on the CMOS driver. The suggested implementation is aiming to provide a wafer scale process which will make the use of wire bonding redundant and will allow for impedance matched metallic wiring between the electronic driving circuit and its opto-electronic counter part. We suggest the use of a thick photoresist ramp between CMOS driver and opto-electrical dies surface as the bridge for supporting co-plannar waveguides (CPW) electrically plated with lithographic accuracy. In this way all three dimensions of the interconnecting metal layer, width, length and thickness can be completely controlled. In this 1st demonstration all processing is done on commercially available devices and products, and is compatible with CMOS processing technology. To test the applicability of CPW instead of wire bonds for interconnecting the CMOS circuit and opto-electronic chips, we have made test samples and tested their performance at speeds up to 10 Gbps. In this demonstration, a silicon substrate was used on which we evaporated gold co-planar waveguides (CPW) to mimic a wire on the driver. An optical link consisting of a VCSEL chip and a photodiode chip has been assembled and fully characterized using optical coupling into and out of a multimode fiber (MMF). A 10 Gb/s 27-1 NRZ PRBS signal transmitted from one chip to another chip was detected error free. A 4 dB receiver sensitivity penalty is measured for the integrated device compared to a commercial link.

  15. Parallel scalability of Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.

    2015-03-01

    Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.

  16. Three-dimensionally interconnected Si frameworks derived from natural halloysite clay: a high-capacity anode material for lithium-ion batteries.

    PubMed

    Wan, Hao; Xiong, Hao; Liu, Xiaohe; Chen, Gen; Zhang, Ning; Wang, Haidong; Ma, Renzhi; Qiu, Guanzhou

    2018-05-23

    On account of its high theoretical capacity, silicon (Si) has been regarded as a promising anode material for Li-ion batteries. Extracting Si content from earth-abundant and low-cost aluminosilicate minerals, rather than from artificial silica (SiO2) precursors, is a more favorable and practical method for the large-scale application of Si anodes. In this work, three-dimensionally interconnected (3D-interconnected) Si frameworks with a branch diameter of ∼15 nm are prepared by the reduction of amorphous SiO2 nanotubes derived from natural halloysite clay. Benefiting from their nanostructure, the as-prepared 3D-interconnected Si frameworks yield high reversible capacities of 2.54 A h g-1 at 0.1 A g-1 after 50 cycles, 1.87 A h g-1 at 0.5 A g-1 after 200 cycles, and 0.97 A h g-1 at 2 A g-1 after a long-term charge-discharge process of 500 cycles, remarkably outperforming the commercial Si material. Further, when the as-prepared Si frameworks and commercial LiCoO2 cathodes are paired in full cells, a high anode capacity of 0.98 A h g-1 is achieved after 100 cycles of rapid charge/discharge at 2 A g-1. This work provides a new strategy for the synthesis of high-capacity Si anodes derived from natural aluminosilicate clay.

  17. Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Y. Y.; Anantha, P.; Tan, C. S., E-mail: tancs@ntu.edu.sg

    2016-06-27

    An enhanced copper paste, formulated by copper micro- and nano-particles mixture, is reported to prevent paste cracking and obtain an improved packing density. The particle mixture of two different sizes enables reduction in porosity of the micro-paste and resolves the cracking issue in the nano-paste. In-situ temperature and resistance measurements indicate that the mixed paste has a lower densification temperature. Electrical study also shows a ∼12× lower sheet resistance of 0.27 Ω/sq. In addition, scanning electron microscope image analysis confirms a ∼50% lower porosity, which is consistent with the thermal and electrical results. The 3:1 (micro:nano, wt. %) mixed pastemore » is found to have the strongest synergistic effect. This phenomenon is discussed further. Consequently, the mixed paste is a promising material for potential low temperature 3D interconnects fabrication.« less

  18. Development and production integration of a planarized AlCu interconnect process for submicron CMOS

    NASA Astrophysics Data System (ADS)

    Brown, Kevin C.; Hill, Rodney; Reddy, Krishna; Gadepally, Kamesh

    1995-09-01

    A planarized aluminum alloy interconnect has been developed as an alternative to tungsten plugs for a 0.65 (mu) CMOS technology. Contact resistance can increase with either an inadequate RF sputter clean or titanium that is too thin to reduce the native oxide. Diffusion barrier results show that a minimum amount of titanium nitride, whether deposited conventionally or with collimation, is necessary for low junction leakage and good sort yield. Stacked contacts and vias are supported while via resistance and defect density are improved. Electrical bridging due to silicon residues from AlSiCu can be minimized with metal overetching, but not to the extent of AlCu. Sidewall pitting was observed to be due to galvanic corrosion from copper precipitate formation. Overall yield has been improved along with decreased wafer cost compared to conventional tungsten plug technology.

  19. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    NASA Astrophysics Data System (ADS)

    Qaiser, N.; Khan, S. M.; Nour, M.; Rehman, M. U.; Rojas, J. P.; Hussain, M. M.

    2017-11-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  20. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    PubMed

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Parallel interconnect for a novel system approach to short distance high information transfer data links

    NASA Astrophysics Data System (ADS)

    Raskin, Glenn; Lebby, Michael S.; Carney, F.; Kazakia, M.; Schwartz, Daniel B.; Gaw, Craig A.

    1997-04-01

    The OPTOBUSTM family of products provides for high performance parallel interconnection utilizing optical links in a 10-bit wide bi-directional configuration. The link is architected to be 'transparent' in that it is totally asynchronous and dc coupled so that it can be treated as a perfect cable with extremely low skew and no losses. An optical link consists of two identical transceiver modules and a pair of connectorized 62.5 micrometer multi mode fiber ribbon cables. The OPTOBUSTM I link provides bi- directional functionality at 4 Gbps (400 Mbps per channel), while the OPTOBUSTM II link will offer the same capability at 8 Gbps (800 Mbps per channel). The transparent structure of the OPTOBUSTM links allow for an arbitrary data stream regardless of its structure. Both the OPTOBUSTM I and OPTOBUSTM II transceiver modules are packaged as partially populated 14 by 14 pin grid arrays (PGA) with optical receptacles on one side of the module. The modules themselves are composed of several elements; including passives, integrated circuits optoelectronic devices and optical interface units (OIUs) (which consist of polymer waveguides and a specially designed lead frame). The initial offering of the modules electrical interface utilizes differential CML. The CML line driver sinks 5 mA of current into one of two pins. When terminated with 50 ohm pull-up resistors tied to a voltage between VCC and VCC-2, the result is a differential swing of plus or minus 250 mV, capable of driving standard PECL I/Os. Future offerings of the OPTOBUSTM links will incorporate LVDS and PECL interfaces as well as CML. The integrated circuits are silicon based. For OPTOBUSTM I links, a 1.5 micrometer drawn emitter NPN bipolar process is used for the receiver and an enhanced 0.8 micrometer CMOS process for the laser driver. For OPTOBUSTM II links, a 0.8 micrometer drawn emitter NPN bipolar process is used for the receiver and the driver IC utilizes 0.8 micrometer BiCMOS technology. The OPTOBUSTM architecture uses AlGaAs vertical cavity surface emitting lasers (VCSELs) at 850 nm in conjunction with unique opto-electronic packaging concepts. Most laser based transmitter subsystems are incapable of carrying an arbitrary NRZ data stream at high data rates. The receiver subsystem utilizes a conventional GaAs PIN photo-detector. In parallel interconnect systems. The design must take into account the simultaneous switching noise from the neighboring systems. If not well controlled, the high density of the multiple interconnects can limit the sensitivity and therefore the performance of the system. The packaging approach of the VCSEL and PIN arrays allow for high bandwidths and provide the coupling mechanisms necessary to interface to the 62.5 micrometer multi mode fiber. To allow for extremely high electrical signals the OPTOBUSTM package utilizes a multilayer tape automated bonded (TAB) lead frame. The lead frame contains separate signal and ground layers. The ground layer successfully provides for a pseudo-coaxial environment (low inductance and effective signal coupling to the ground plane).

  2. In-Situ Synthesis of NiMoO4 on Ni Foam as a Binder-Free Electrode for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Chiu, Ta-Wei

    Transition metal oxides have attracted much attention for electrode materials of supercapacitors due to their outstanding capacitive behavior. One of them is NiMoO4 with the high electrochemical activity of Ni. Constricted by its intrinsically poor electrical conductivity and limited electroactive sites of aggregated NiMoO4, the capacitive performance of NiMoO 4 are far below expectation. Directly growth of NiMoO4 on nickel foam to fabricate binder-free electrodes is proposed to solve the issues. In this thesis, we successfully constructed interconnected NiMoO4 nanosheets on the Ni foam by a designed reaction between H2MoO 4 aqueous solution and Ni foam. The effects of H2MoO 4 concentration and reaction time were systematically investigated. The best electrochemical performance of NiMoO4 electrodes can be obtained with 0.005 M H2MoO4 for 80 hours. The maximum areal capacitance can reach 0.724 F/cm2 followed with outstanding rate capability (70.1% capacitance retention when current density increase from 1 mA/cm2 to 10 mA/cm2). The excellent areal capacitance and rate capability may be attributed to its interconnected NiMoO 4 nanosheets and good adhesion between electroactive materials and current collector.

  3. Doped Tricalcium Phosphate Scaffolds by Thermal Decomposition of Naphthalene: Mechanical Properties and In vivo Osteogenesis in a Rabbit Femur Model

    PubMed Central

    Ke, Dongxu; Dernell, William; Bandyopadhyay, Amit; Bose, Susmita

    2015-01-01

    Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64 ± 3.54 % density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2, pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone (PCL) coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity with high compressive mechanical strength and better bioactivity. Results show that SrO/SiO2 doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications. PMID:25504889

  4. Nanoantenna couplers for metal-insulator-metal waveguide interconnects

    NASA Astrophysics Data System (ADS)

    Onbasli, M. Cengiz; Okyay, Ali K.

    2010-08-01

    State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times.

  5. Feasibility of optically interconnected parallel processors using wavelength division multiplexing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deri, R.J.; De Groot, A.J.; Haigh, R.E.

    1996-03-01

    New national security demands require enhanced computing systems for nearly ab initio simulations of extremely complex systems and analyzing unprecedented quantities of remote sensing data. This computational performance is being sought using parallel processing systems, in which many less powerful processors are ganged together to achieve high aggregate performance. Such systems require increased capability to communicate information between individual processor and memory elements. As it is likely that the limited performance of today`s electronic interconnects will prevent the system from achieving its ultimate performance, there is great interest in using fiber optic technology to improve interconnect communication. However, little informationmore » is available to quantify the requirements on fiber optical hardware technology for this application. Furthermore, we have sought to explore interconnect architectures that use the complete communication richness of the optical domain rather than using optics as a simple replacement for electronic interconnects. These considerations have led us to study the performance of a moderate size parallel processor with optical interconnects using multiple optical wavelengths. We quantify the bandwidth, latency, and concurrency requirements which allow a bus-type interconnect to achieve scalable computing performance using up to 256 nodes, each operating at GFLOP performance. Our key conclusion is that scalable performance, to {approx}150 GFLOPS, is achievable for several scientific codes using an optical bus with a small number of WDM channels (8 to 32), only one WDM channel received per node, and achievable optoelectronic bandwidth and latency requirements. 21 refs. , 10 figs.« less

  6. Application Of Ti-Based Self-Formation Barrier Layers To Cu Dual-Damascene Interconnects

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhiro; Ohmori, Kazuyuki; Kohama, Kazuyuki; Mori, Kenichi; Maekawa, Kazuyoshi; Asai, Koyu; Murakami, Masanori

    2010-11-01

    Cu interconnects have been used extensively in ULSI devices. However, large resistance-capacitance delay and poor device reliability have been critical issues as the device feature size has reduced to nanometer scale. In order to achieve low resistance and high reliability of Cu interconnects, we have applied a thin Ti-based self-formed barrier (SFB) using Cu(Ti) alloy seed to 45nm-node dual damascene interconnects and evaluated its performance. The line resistance and via resistance decreased significantly, compared with those of conventional Ta/TaN barriers. The stress migration performance was also drastically improved using the SFB process. A performance of time dependent dielectric breakdown revealed superior endurance. These results suggest that the Ti-based SFB process is one of the most promising candidates for advanced Cu interconnects. TEM and X-ray photoelectron spectroscopy observations for characterization of the Ti-based SFB structure were also performed. The Ti-based SFB consisted of mainly amorphous Ti oxides. Amorphous or crystalline Ti compounds such as TiC, TiN, and TiSi formed beneath Cu alloy films, and the formation varied with dielectric.

  7. Neural Network Model For Fast Learning And Retrieval

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Macukow, Bohdan

    1989-05-01

    An approach to learning in a multilayer neural network is presented. The proposed network learns by creating interconnections between the input layer and the intermediate layer. In one of the new storage prescriptions proposed, interconnections are excitatory (positive) only and the weights depend on the stored patterns. In the intermediate layer each mother cell is responsible for one stored pattern. Mutually interconnected neurons in the intermediate layer perform a winner-take-all operation, taking into account correlations between stored vectors. The performance of networks using this interconnection prescription is compared with two previously proposed schemes, one using inhibitory connections at the output and one using all-or-nothing interconnections. The network can be used as a content-addressable memory or as a symbolic substitution system that yields an arbitrarily defined output for any input. The training of a model to perform Boolean logical operations is also described. Computer simulations using the network as an autoassociative content-addressable memory show the model to be efficient. Content-addressable associative memories and neural logic modules can be combined to perform logic operations on highly corrupted data.

  8. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.

    PubMed

    Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin

    2018-05-30

    Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrospun N-doped Hierarchical Porous Carbon Nanofiber with Improved Graphitization Degree for High Performance Lithium Ion Capacitor.

    PubMed

    Li, Baohua; Shi, Ruiying; Han, Cuiping; Xu, Xiaofu; Qing, Xianying; Xu, Lei; Li, Hongfei; Li, Junqin; Wong, Ching-Ping

    2018-05-14

    Lithium ion capacitor (LIC) has been regarded as a promising device to combine the merits of lithium ion batteries and supercapacitors, which can meet the requirements for both high energy and power density. The development of advanced electrode is the key. Herein, we demonstrate the bottom-up synthesis of activated carbon nanofiber (a-PANF) with hierarchical porous structure and high graphitization degree. Electrospinning is employed to prepare interconnected fiber network with macropores and ferric acetylacetonate is introduced as both mesopore creating agent and graphitic catalyst to increase the graphitization degree. Furthermore, chemical activation enlarges the specific surface area by producing rich micropores. Half cell evaluation of the as-prepared a-PANF displays a discharge capacity of 80 mAh g-1 at 0.1 A g-1 within 2~4.5 V and no capacity fading after 1000 cycles at 2 A g-1, which is significantly higher than conventional activated carbon. Furthermore, the as-assembled LIC with a-PANF cathode and Fe3O4 anode achieves a superior energy density of 124.6 Wh kg-1 at a specific power of 93.8 W kg-1, and remains 103.7 Wh kg-1 at 4687.5 W kg-1, demonstrating the promising application of a-PANF as potential electrode candidates for efficient energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Constraining the Epoch of Reionization from the Observed Properties of the High-z Universe

    NASA Astrophysics Data System (ADS)

    Salvador-Solé, Eduard; Manrique, Alberto; Guzman, Rafael; Rodríguez Espinosa, José Miguel; Gallego, Jesús; Herrero, Artemio; Mas-Hesse, J. Miguel; Marín Franch, Antonio

    2017-01-01

    We combine observational data on a dozen independent cosmic properties at high-z with the information on reionization drawn from the spectra of distant luminous sources and the cosmic microwave background (CMB) to constrain the interconnected evolution of galaxies and the intergalactic medium since the dark ages. The only acceptable solutions are concentrated in two narrow sets. In one of them reionization proceeds in two phases: a first one driven by Population III stars, completed at z˜ 10, and after a short recombination period a second one driven by normal galaxies, completed at z˜ 6. In the other set both kinds of sources work in parallel until full reionization at z˜ 6. The best solution with double reionization gives excellent fits to all the observed cosmic histories, but the CMB optical depth is 3σ larger than the recent estimate from the Planck data. Alternatively, the best solution with single reionization gives less good fits to the observed star formation rate density and cold gas mass density histories, but the CMB optical depth is consistent with that estimate. We make several predictions, testable with future observations, that should discriminate between the two reionization scenarios. As a byproduct our models provide a natural explanation to some characteristic features of the cosmic properties at high-z, as well as to the origin of globular clusters.

  11. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    PubMed

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (S BET : 3301 m 2 g -1 ), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g -1 at 90 A g -1 for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg -1 or 53 Wh L -1 has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  12. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  13. Aerogels Derived from Polymer Nanofibers and Their Applications.

    PubMed

    Qian, Zhenchao; Wang, Zhen; Zhao, Ning; Xu, Jian

    2018-03-08

    Aerogels are gels in which the solvent is supplanted by air while the pores and networks are largely maintained. Owing to their low bulk density, high porosity, and large specific surface area (SSA), aerogels are promising for many applications. Various inorganic aerogels, e.g., silica aerogels, are intensively studied. However, the mechanical brittleness of common inorganic aerogels has seriously restricted their applications. In the past decade, nanofibers have been developed as building blocks for the construction of aerogels to improve their mechanical property. Unlike traditional frameworks constructed by interconnected particles, nanofibers can form chemically cross-linked and/or physically entangled 3D skeletons, thus showing flexibility instead of brittleness. Therefore, excellent elasticity and toughness, ultralow density, high SSA, and tunable chemical composition can be expected for the polymer nanofiber-derived aerogels (PNAs). In this review, recent research progress in the fabrication, properties, and applications of PNAs is summarized. Various nanofibers, including nanocelluloses, nanochitins, and electrospun nanofibers are included, as well as carbon nanofibers from the corresponding organic precursors. Typical applications in supercapacitors, electrocatalysts for oxygen reduction reaction, flexible electrodes, oil absorbents, adsorbents, tissue engineering, stimuli-responsive materials, and catalyst carriers, are presented. Finally, the challenges and future development of PNAs are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  15. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    NASA Astrophysics Data System (ADS)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation was critical for bonding carbon nanotubes to sintered silver. A step by step process is described that allows the production of solder-carbon nanotubes and silver-carbon nanotubes interconnects. 4-point probe electrical characterisation of the interconnects was performed and the interconnects were shown to have a resistivity of 5.0 x 10-4 Ωcm for solder-carbon nanotubes and 5.2 x 10-4 Ωcm for silver-carbon nanotubes interconnects. Ramp to failure tests carried out on solder-carbon nanotubes interconnects showed current carrying capacity of 0.75 MA/cm2, only one order of magnitude lower than copper.

  16. Low-power, transparent optical network interface for high bandwidth off-chip interconnects.

    PubMed

    Liboiron-Ladouceur, Odile; Wang, Howard; Garg, Ajay S; Bergman, Keren

    2009-04-13

    The recent emergence of multicore architectures and chip multiprocessors (CMPs) has accelerated the bandwidth requirements in high-performance processors for both on-chip and off-chip interconnects. For next generation computing clusters, the delivery of scalable power efficient off-chip communications to each compute node has emerged as a key bottleneck to realizing the full computational performance of these systems. The power dissipation is dominated by the off-chip interface and the necessity to drive high-speed signals over long distances. We present a scalable photonic network interface approach that fully exploits the bandwidth capacity offered by optical interconnects while offering significant power savings over traditional E/O and O/E approaches. The power-efficient interface optically aggregates electronic serial data streams into a multiple WDM channel packet structure at time-of-flight latencies. We demonstrate a scalable optical network interface with 70% improvement in power efficiency for a complete end-to-end PCI Express data transfer.

  17. Flexible Fe2O3 and V2O5 nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors.

    PubMed

    Jiang, He; Niu, Hao; Yang, Xue; Sun, Zhiqin; Li, Fuzhi; Wang, Qian; Qu, Fengyu

    2018-04-16

    Flexible highly porous Fe2O3 and V2O5 nanofibers are synthesized by a facile electrospinning method followed by calcination treatment and directly used as binder-free electrodes for high-performance supercapacitors. These Fe2O3 and V2O5 nanofibers interconnect with each other and construct three-dimensional hierarchical porous films with high specific surface area. Benefiting from the unique structural features, the intriguing binder-free Fe2O3 and V2O5 porous nanofiber electrodes possess high specific capacitance of 255 F g-1 and 256 F g-1 at 2 mV s-1 in 1 M Na2SO4 electrolyte, respectively. An all-solid-state asymmetric supercapacitor is fabricated using Fe2O3 and V2O5 nanofibers as negative and positive electrodes, respectively, and the all-solid-state asymmetric supercapacitor can be operated up to 1.8 V attributed to the wide and opposite potential window of both electrodes. The assembled all-solid-state asymmetric supercapacitor achieves a high energy density up to 32.2 Wh kg-1 at an average power density of 128.7 W kg-1 as well as excellent cycling stability and power capability. The effective and facile synthesis method and superior electrochemical performance provided in this work make electrospun Fe2O3 and V2O5 nanofibers promising electrode materials for high performance asymmetric supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors.

    PubMed

    Yao, Yonggang; Jiang, Feng; Yang, Chongyin; Fu, Kun Kelvin; Hayden, John; Lin, Chuan-Fu; Xie, Hua; Jiao, Miaolun; Yang, Chunpeng; Wang, Yilin; He, Shuaiming; Xu, Fujun; Hitz, Emily; Gao, Tingting; Dai, Jiaqi; Luo, Wei; Rubloff, Gary; Wang, Chunsheng; Hu, Liangbing

    2018-05-17

    Carbon nanomaterials are desirable candidates for lightweight, highly conductive, and corrosion-resistant current collectors. However, a key obstacle is their weak interconnection between adjacent nanostructures, which renders orders of magnitude lower electrical conductivity and mechanical strength in the bulk assemblies. Here we report an "epitaxial welding" strategy to engineer carbon nanotubes (CNTs) into highly crystalline and interconnected structures. Solution-based polyacrylonitrile was conformally coated on CNTs as "nanoglue" to physically join CNTs into a network, followed by a rapid high-temperature annealing (>2800 K, overall ∼30 min) to graphitize the polymer coating into crystalline layers that also bridge the adjacent CNTs to form an interconnected structure. The contact-welded CNTs (W-CNTs) exhibit both a high conductivity (∼1500 S/cm) and a high tensile strength (∼120 MPa), which are 5 and 20 times higher than the unwelded CNTs, respectively. In addition, the W-CNTs display chemical and electrochemical stabilities in strong acidic/alkaline electrolytes (>6 mol/L) when potentiostatically stressing at both cathodic and anodic potentials. With these exceptional properties, the W-CNT films are optimal as high-performance current collectors and were demonstrated in the state-of-the-art aqueous battery using a "water-in-salt" electrolyte.

  19. Interconnect Performance Evaluation of SGI Altix 3700 BX2, Cray X1, Cray Opteron Cluster, and Dell PowerEdge

    NASA Technical Reports Server (NTRS)

    Fatoohi, Rod; Saini, Subbash; Ciotti, Robert

    2006-01-01

    We study the performance of inter-process communication on four high-speed multiprocessor systems using a set of communication benchmarks. The goal is to identify certain limiting factors and bottlenecks with the interconnect of these systems as well as to compare these interconnects. We measured network bandwidth using different number of communicating processors and communication patterns, such as point-to-point communication, collective communication, and dense communication patterns. The four platforms are: a 512-processor SGI Altix 3700 BX2 shared-memory machine with 3.2 GB/s links; a 64-processor (single-streaming) Cray XI shared-memory machine with 32 1.6 GB/s links; a 128-processor Cray Opteron cluster using a Myrinet network; and a 1280-node Dell PowerEdge cluster with an InfiniBand network. Our, results show the impact of the network bandwidth and topology on the overall performance of each interconnect.

  20. Rich club network analysis shows distinct patterns of disruption in frontotemporal dementia and Alzheimer’s disease

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Villalon-Reina, Julio E.; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Joshi, Aditi; Barsuglia, Joseph; Thompson, Paul M.

    2015-01-01

    Diffusion imaging and brain connectivity analyses can reveal the underlying organizational patterns of the human brain, described as complex networks of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-weighted images from 64 participants – 15 patients with behavioral variant frontotemporal (bvFTD) dementia, 19 with early-onset Alzheimer’s disease (EOAD), and 30 healthy elderly controls. Based on whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We examined how bvFTD and EOAD disrupt the weighted ‘rich club’ – a network property where high-degree network nodes are more interconnected than expected by chance. bvFTD disrupts both the nodal and global organization of the network in both low- and high-degree regions of the brain. EOAD targets the global connectivity of the brain, mainly affecting the fiber density of high-degree (highly connected) regions that form the rich club network. These rich club analyses suggest distinct patterns of disruptions among different forms of dementia. PMID:26161050

  1. Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Cao, Hailiang; Zhou, Xufeng; Zhang, Yiming; Chen, Liang; Liu, Zhaoping

    2013-12-01

    Polyaniline/graphene nanocomposites with microspherical morphology and porous structure are prepared as electrode materials for supercapacitors. Using few-layer graphene obtained by liquid phase exfoliation of graphite as the raw material, porous graphene microspheres are produced by spray drying, and are then employed as the substrates for the growth of polyaniline nanowire arrays by in situ polymerization. In the composite, interconnected graphene sheets with few structural defects constitute a high-efficient conductive network to improve the electrical conductivity of polyaniline. Furthermore, the microspherical architecture prevents restacking of polyaniline/graphene composite nanosheets, thus facilitates fast diffusion of electrolytes. Consequently, the nanocomposite exhibits excellent electrochemical performance. A specific capacitance of 338 F g-1 is reached in 1 M H2SO4 at a scan rate of 20 mV s-1, and a high capacity retention rate of 87.4% after 10,000 cycles at a current density of 3 A g-1 can be achieved, which suggests that the polyaniline/graphene composite with such kind of 3D architecture is a promising electrode material for high-performance supercapacitors.

  2. Three phase power conversion system for utility interconnected PV applications

    NASA Astrophysics Data System (ADS)

    Porter, David G.

    1999-03-01

    Omnion Power Engineering Corporation has developed a new three phase inverter that improves the cost, reliability, and performance of three phase utility interconnected photovoltaic inverters. The inverter uses a new, high manufacturing volume IGBT bridge that has better thermal performance than previous designs. A custom easily manufactured enclosure was designed. Controls were simplified to increase reliability while maintaining important user features.

  3. Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV).

    PubMed

    Shen, Wen-Wei; Chen, Kuan-Neng

    2017-12-01

    3D integration with through-silicon via (TSV) is a promising candidate to perform system-level integration with smaller package size, higher interconnection density, and better performance. TSV fabrication is the key technology to permit communications between various strata of the 3D integration system. TSV fabrication steps, such as etching, isolation, metallization processes, and related failure modes, as well as other characterizations are discussed in this invited review paper.

  4. Stretchable interconnections for flexible electronic systems.

    PubMed

    Jianhui, Lin; Bing, Yan; Xiaoming, Wu; Tianling, Ren; Litian, Liu

    2009-01-01

    Sensors, actuators and integrated circuits (IC) can be encapsulated together on an elastic substrate, which makes a flexible electronic system. In this system, electrical interconnections that can sustain large and reversible stretching are in great need. This paper is devoted to the fabrication of highly stretchable metal interconnections. Transfer printing technology is utilized, which mainly involves the transfer of 100-nm-thick gold ribbons from silicon wafers to pre-stretched elastic substrates. After the elastic substrates relax from the pre-strain, the gold ribbons buckle and form wavy geometries. These wavy geometries change in shapes to accommodate the applied strain and can be reversely stretched without cracks or fractures occurring, which will greatly raise the stretchability of the gold ribbons. As an application example, some of these wavy ribbons can accommodate high levels of stretching (up to 100%) and bending (with curvature radius down to 1.20 mm). Moreover, the efficiency and reliability of the transfer, especially for slender ribbons, have been increased due to the improvement of the technology. All the characteristics above will permit making stretchable gold conductors as interconnections for flexible electronic systems such as implantable medical systems and smart clothes.

  5. Lithography for enabling advances in integrated circuits and devices.

    PubMed

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  6. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1996-01-01

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  7. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1996-03-19

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  8. Optical Material Characterization Using Microdisk Cavities

    NASA Astrophysics Data System (ADS)

    Michael, Christopher P.

    Since Jack Kilby recorded his "Monolithic Idea" for integrated circuits in 1958, microelectronics companies have invested billions of dollars in developing the silicon material system to increase performance and reduce cost. For decades, the industry has made Moore's Law, concerning cost and transistor density, a self-fulfilling prophecy by integrating technical and material requirements vertically down their supply chains and horizontally across competitors in the market. At recent technology nodes, the unacceptable scaling behavior of copper interconnects has become a major design constraint by increasing latency and power consumption---more than 50% of the power consumed by high speed processors is dissipated by intrachip communications. Optical networks at the chip scale are a potential low-power high-bandwidth replacement for conventional global interconnects, but the lack of efficient on-chip optical sources has remained an outstanding problem despite significant advances in silicon optoelectronics. Many material systems are being researched, but there is no ideal candidate even though the established infrastructure strongly favors a CMOS-compatible solution. This thesis focuses on assessing the optical properties of materials using microdisk cavities with the intention to advance processing techniques and materials relevant to silicon photonics. Low-loss microdisk resonators are chosen because of their simplicity and long optical path lengths. A localized photonic probe is developed and characterized that employs a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test tightly arranged devices and to help prototype new fabrication methods. A case study in AlxGa1-xAs illustrates how the optical scattering and absorption losses can be obtained from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its high Er3+ density and the control offered by the precise epitaxy. The growth and fabrication methods are discussed. Spectral measurements at cryogenic and room temperatures show negligible background losses and resonant Er3+ absorption strong enough to produce cavity-polaritons that persist to above 361 K. Cooperative relaxation and upconversion limit the optical performance in the telecommunications bands by transferring the excitations to quenching sites or by further exciting the ions up to visible transitions. Future prospects and alternative applications for Er2O3 and other epitaxial rare-earth oxides are also considered.

  9. High-precision, large-domain three-dimensional manipulation of nano-materials for fabrication nanodevices

    PubMed Central

    2011-01-01

    Nanoscaled materials are attractive building blocks for hierarchical assembly of functional nanodevices, which exhibit diverse performances and simultaneous functions. We innovatively fabricated semiconductor nano-probes of tapered ZnS nanowires through melting and solidifying by electro-thermal process; and then, as-prepared nano-probes can manipulate nanomaterials including semiconductor/metal nanowires and nanoparticles through sufficiently electrostatic force to the desired location without structurally and functionally damage. With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices. Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property. This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication. PMID:21794151

  10. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    PubMed

    Zou, Yuqin; Wang, Shuangyin

    2015-07-07

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.

  11. Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okawa, David

    Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less

  12. Review of silicon photonics: history and recent advances

    NASA Astrophysics Data System (ADS)

    Ye, Winnie N.; Xiong, Yule

    2013-09-01

    Silicon photonics has attracted tremendous attention and research effort as a promising technology in optoelectronic integration for computing, communications, sensing, and solar harvesting. Mainly due to the combination of its excellent material properties and the complementary metal-oxide semiconductor (CMOS) fabrication processing technology, silicon has becoming the material choice for photonic and optoelectronic circuits with low cost, ultra-compact device footprint, and high-density integration. This review paper provides an overview on silicon photonics, by highlighting the early work from the mid-1980s on the fundamental building blocks such as silicon platforms and waveguides, and the main milestones that have been achieved so far in the field. A summary of reported work on functional elements in both passive and active devices, as well as the applications of the technology in interconnect, sensing, and solar cells, is identified.

  13. Evolution of optical fibre cabling components at CERN: Performance and technology trends analysis

    NASA Astrophysics Data System (ADS)

    Shoaie, Mohammad Amin; Meroli, Stefano; Machado, Simao; Ricci, Daniel

    2018-05-01

    CERN optical fibre infrastructure has been growing constantly over the past decade due to ever increasing connectivity demands. The provisioning plan and fibre installation of this vast laboratory is performed by Fibre Optics and Cabling Section at Engineering Department. In this paper we analyze the procurement data for essential fibre cabling components during a five-year interval to extract the existing trends and anticipate future directions. The analysis predicts high contribution of LC connector and an increasing usage of multi-fibre connectors. It is foreseen that single-mode fibres become the main fibre type for mid and long-range installations while air blowing would be the major installation technique. Performance assessment of various connectors shows that the expanded beam ferrule is favored for emerging on-board optical interconnections thanks to its scalable density and stable return-loss.

  14. Fabrication and electrical characterization of silicon nanowires based resistors

    NASA Astrophysics Data System (ADS)

    Ni, L.; Demami, F.; Rogel, R.; Salaün, A. C.; Pichon, L.

    2009-11-01

    Silicon nanowires (SiNWs) are synthesized via the Vapor-Liquid-Solid (VLS) mechanism using gold (Au) as metal catalyst and silane (SiH4) as precursor gas. Au nanoparticles are employed as liquid droplets catalysis during the SiNWs growth performed in a hot wall LPCVD reactor at 480°C and 40 Pa. SiNWs local synthesis at micron scale is demonstrated using classical optical photolithography process. SiNWs grow with high density anchored at the dedicated catalyst islands. This resulting network is used to interconnect two heavily doped polysilicon interdigitated electrodes leading to the formation of electrical resistors in a coplanar structure. Current-voltage (I-V) characteristics highlight a symmetric shape. The temperature dependence of the electrical resistance is activated, with activation energy of 0.47 eV at temperatures greater than 300K.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, C. A., E-mail: cstephe3@nd.edu; Stillwell, R. A.; Wistey, M. A.

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge{sub 1−x}C{sub x} (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge{sub 0.998}C{sub 0.002} shows a bandgap reduction supporting these results. Growth of Ge{sub 0.998}C{sub 0.002} using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III–V materials due to a larger electronmore » population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.« less

  16. How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?

    NASA Astrophysics Data System (ADS)

    Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani

    2017-11-01

    In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium-nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (~2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs.

  17. Evaluating habitat for black-footed ferrets: Revision of an existing model

    USGS Publications Warehouse

    Biggins, Dean E.; Lockhart, J. Michael; Godbey, Jerry L.

    2006-01-01

    Black-footed ferrets (Mustela nigripes) are highly dependent on prairie dogs (Cynomys spp.) as prey, and prairie dog colonies are the only known habitats that sustain black-footed ferret populations. An existing model used extensively for evaluating black-footed ferret reintroduction habitat defined complexes by interconnecting colonies with 7-km line segments. Although the 7-km complex remains a useful construct, we propose additional, smaller-scale evaluations that consider 1.5-km subcomplexes. The original model estimated the carrying capacity of complexes based on energy requirements of ferrets and density estimates of their prairie dog prey. Recent data have supported earlier contentions of intraspecific competition and intrasexual territorial behavior in ferrets. We suggest a revised model that retains the fixed linear relationship of the existing model when prairie dog densities are <18/ha and uses a curvilinear relationship that reflects increasing effects of ferret territoriality when there are 18–42 prairie dogs per hectare. We discuss possible effects of colony size and shape, interacting with territoriality, as justification for the exclusion of territorial influences if a prairie dog colony supports only a single female ferret. We also present data to support continued use of active prairie dog burrow densities as indices suitable for broad-scale estimates of prairie dog density. Calculation of percent of complexes that are occupied by prairie dog colonies was recommended as part of the original habitat evaluation process. That attribute has been largely ignored, resulting in rating anomalies.

  18. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities.

    PubMed

    Wu, Ping; Wang, Hui; Tang, Yawen; Zhou, Yiming; Lu, Tianhong

    2014-03-12

    A novel type of 3D porous Si-G micro/nanostructure (i.e., 3D interconnected network of graphene-wrapped porous silicon spheres, Si@G network) was constructed through layer-by-layer assembly and subsequent in situ magnesiothermic-reduction methodology. Compared with bare Si spheres, the as-synthesized Si@G network exhibits markedly enhanced anodic performance in terms of specific capacity, cycling stability, and rate capability, making it an ideal anode candidate for high-energy, long-life, and high-power lithium-ion batteries.

  19. Eastern Renewable Generation Integration Study: Redefining What’s Possible for Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron

    NREL project manager Aaron Bloom introduces NREL’s Eastern Renewable Generation Integration Study (ERGIS) and high-performance computing capabilities and new methodologies that allowed NREL to model operations of the Eastern Interconnection at unprecedented fidelity. ERGIS shows that the Eastern Interconnection can balance the variability and uncertainty of wind and solar photovoltaics at a 5-minute level, for one simulated year.

  20. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  1. DEVELOPMENT OF THE “RICH CLUB” IN BRAIN CONNECTIVITY NETWORKS FROM 438 ADOLESCENTS & ADULTS AGED 12 TO 30

    PubMed Central

    Dennis, Emily L.; Jahanshad, Neda; Toga, Arthur W.; McMahon, Katie L.; de Zubicaray, Greig I.; Hickie, Ian; Wright, Margaret J.; Thompson, Paul M.

    2014-01-01

    The ‘rich club’ coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development. PMID:24827471

  2. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    PubMed

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  3. Wedge-Shaped GaN Nanowalls: A Potential Candidate for Two-Dimensional Electronics and Spintronics

    NASA Astrophysics Data System (ADS)

    Deb, Swarup; Dhar, Subhabrata

    Schrödingerand Poisson equations are solved self-consistently in order to obtain the potential and charge density distribution in n-type GaN nanowalls tapered along c-axis by different angles. The study shows two-dimensional (2D) quantum confinement of electrons in the central vertical plane of the wall for the entire range of tapering. Calculation of room temperature electron mobility in the 2D channel shows a steady decrease with the increase of the inclination angle of the side facets with respect to the base. However, it is interesting to note that the mobility remains to be much larger than that of bulk GaN even for the inclination angle of 65∘. The properties of high mobility and the vertical orientation of the 2DEG plane in this system can be exploited in fabricating highly conducting transparent interconnects and field effect transistors, which can lead to large scale integration of 2D devices in future.

  4. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance

    NASA Astrophysics Data System (ADS)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-01

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  5. Novel optical interconnect devices applying mask-transfer self-written method

    NASA Astrophysics Data System (ADS)

    Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu

    2012-01-01

    The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.

  6. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection.

    PubMed

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-08-01

    We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.

  7. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M

    2014-01-07

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.

  8. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Patrick

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  9. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  10. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    PubMed

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.

  11. High-density interconnect substrates and device packaging using conductive composites

    NASA Astrophysics Data System (ADS)

    Gandhi, Pradeep; Gallagher, Catherine; Matijasevic, Goran

    1998-02-01

    High-end printed circuit board manufacturing technology is receiving increasing attention due to higher functionality in smaller form factors. This is evident from the industry efforts to produced reliable microvias and related trace features to pack as much circuit density as possible. Cost, density and performance requirements have prodded entry into a market that was mainly reserved for ceramic and molded packages for the last forty years. To successfully meet the demanding specifications of this market segment, a worldwide effort is underway for the development of new materials, processes and equipment. A novel base technology that is applicable to most of the major packaging and redistribution elements in an electronic module is presented.High density multilayer circuits with landless blind and buried vias can be fabricated by filling the conductor paste into photoimaged dielectrics and thermally processing it at a relatively lower temperature. Via layers are prepared directly on the inherently planarized circuit layer in an identical fashion. Because these composite materials are applied in an additive fabrication method, metal substrates can be employed for high thermal dissipation and excellent CTE control over a wide temperature range. The conductor material is based on interpenetrating polymer and metal networks that are formed in situ from metal particles and a thermosetting flux/binder. The metal network is formed when the alloy particles melt and react with adjacent high melting point metal particle. Interaction also occurs between the alloy particles and pad, lead or previous trace metallizations provided they are solderable by alloys of tin. The new alloy composition created by the interdiffusion process within the bulk material has a higher melting point than the original alloy and thus solidifies immediately upon formation. This metallurgical reaction, known as transient liquid phase sintering, is facilitated by the polymer mixture. INtegration of the polymer and metal networks is maintained by utilizing a thermosetting polymer system that cures simultaneously with the metallurgical reaction. Although similar in concept and performance to cermet inks, these compositions differ in that their process temperatures are compatible with conventional printed wiring board materials and that the polymeric binder remains to provide adhesion and fatigue resistance to the metallurgical network.

  12. The influence of microstructure on the probability of early failure in aluminum-based interconnects

    NASA Astrophysics Data System (ADS)

    Dwyer, V. M.

    2004-09-01

    For electromigration in short aluminum interconnects terminated by tungsten vias, the well known "short-line" effect applies. In a similar manner, for longer lines, early failure is determined by a critical value Lcrit for the length of polygranular clusters. Any cluster shorter than Lcrit is "immortal" on the time scale of early failure where the figure of merit is not the standard t50 value (the time to 50% failures), but rather the total probability of early failure, Pcf. Pcf is a complex function of current density, linewidth, line length, and material properties (the median grain size d50 and grain size shape factor σd). It is calculated here using a model based around the theory of runs, which has proved itself to be a useful tool for assessing the probability of extreme events. Our analysis shows that Pcf is strongly dependent on σd, and a change in σd from 0.27 to 0.5 can cause an order of magnitude increase in Pcf under typical test conditions. This has implications for the web-based two-dimensional grain-growth simulator MIT/EmSim, which generates grain patterns with σd=0.27, while typical as-patterned structures are better represented by a σd in the range 0.4 - 0.6. The simulator will consequently overestimate interconnect reliability due to this particular electromigration failure mode.

  13. DDGIPS: a general image processing system in robot vision

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Ying, Jun; Ye, Xiuqing; Gu, Weikang

    2000-10-01

    Real-Time Image Processing is the key work in robot vision. With the limitation of the hardware technique, many algorithm-oriented firmware systems were designed in the past. But their architectures were not flexible enough to achieve a multi-algorithm development system. Because of the rapid development of microelectronics technique, many high performance DSP chips and high density FPGA chips have come to life, and this makes it possible to construct a more flexible architecture in real-time image processing system. In this paper, a Double DSP General Image Processing System (DDGIPS) is concerned. We try to construct a two-DSP-based FPGA-computational system with two TMS320C6201s. The TMS320C6x devices are fixed-point processors based on the advanced VLIW CPU, which has eight functional units, including two multipliers and six arithmetic logic units. These features make C6x a good candidate for a general purpose system. In our system, the two TMS320C6201s each has a local memory space, and they also have a shared system memory space which enables them to intercommunicate and exchange data efficiently. At the same time, they can be directly inter-connected in star-shaped architecture. All of these are under the control of a FPGA group. As the core of the system, FPGA plays a very important role: it takes charge of DPS control, DSP communication, memory space access arbitration and the communication between the system and the host machine. And taking advantage of reconfiguring FPGA, all of the interconnection between the two DSP or between DSP and FPGA can be changed. In this way, users can easily rebuild the real-time image processing system according to the data stream and the task of the application and gain great flexibility.

  14. DDGIPS: a general image processing system in robot vision

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Ying, Jun; Ye, Xiuqing; Gu, Weikang

    2000-10-01

    Real-Time Image Processing is the key work in robot vision. With the limitation of the hardware technique, many algorithm-oriented firmware systems were designed in the past. But their architectures were not flexible enough to achieve a multi- algorithm development system. Because of the rapid development of microelectronics technique, many high performance DSP chips and high density FPGA chips have come to life, and this makes it possible to construct a more flexible architecture in real-time image processing system. In this paper, a Double DSP General Image Processing System (DDGIPS) is concerned. We try to construct a two-DSP-based FPGA-computational system with two TMS320C6201s. The TMS320C6x devices are fixed-point processors based on the advanced VLIW CPU, which has eight functional units, including two multipliers and six arithmetic logic units. These features make C6x a good candidate for a general purpose system. In our system, the two TMS320C6210s each has a local memory space, and they also have a shared system memory space which enable them to intercommunicate and exchange data efficiently. At the same time, they can be directly interconnected in star- shaped architecture. All of these are under the control of FPGA group. As the core of the system, FPGA plays a very important role: it takes charge of DPS control, DSP communication, memory space access arbitration and the communication between the system and the host machine. And taking advantage of reconfiguring FPGA, all of the interconnection between the two DSP or between DSP and FPGA can be changed. In this way, users can easily rebuild the real-time image processing system according to the data stream and the task of the application and gain great flexibility.

  15. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres.

    PubMed

    Ishikawa, Kunio; Arifta, Tya Indah; Hayashi, Koichiro; Tsuru, Kanji

    2018-03-26

    Carbonate apatite (CO 3 Ap) blocks have attracted considerable attention as an artificial bone substitute material because CO 3 Ap is a component of and shares properties with bone, including high osteoconductivity and replacement by bone similar to autografts. In this study, we fabricated an interconnected porous CO 3 Ap block using α-tricalcium phosphate (TCP) spheres and evaluated the tissue response to this material in a rabbit tibial bone defect model. Interconnected porous α-TCP, the precursor of interconnected porous CO 3 Ap, could not be fabricated directly by sintering α-TCP spheres. It was therefore made via a setting reaction with α-TCP spheres, yielding interconnected porous calcium-deficient hydroxyapatite that was subjected to heat treatment. Immersing the interconnected porous α-TCP in Na-CO 3 -PO 4 solution produced CO 3 Ap, which retained the interconnected porous structure after the dissolution-precipitation reaction. The diametral tensile strength and porosity of the porous CO 3 Ap were 1.8 ± 0.4 MPa and 55% ± 3.2%, respectively. Both porous and dense (control) CO 3 Ap showed excellent tissue response and good osteoconductivity. At 4 weeks after surgery, approximately 15% ± 4.9% of the tibial bone defect was filled with new bone when reconstruction was performed using porous CO 3 Ap; this amount was five times greater than that obtained with dense CO 3 Ap. At 12 weeks after surgery, for porous CO 3 Ap, approximately 47% of the defect was filled with new bone as compared to 16% for dense CO 3 Ap. Thus, the interconnected porous CO 3 Ap block is a promising artificial bone substitute material for the treatment of bone defects caused by large fractures or bone tumor resection. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  16. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or reset beam. The operating conditions were studied to generate two stable states between the VCSOA pair. The entire functionality test was implemented with free space optical components.

  17. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds.

    PubMed

    Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol, Jon; Szabo, Peter; Burri, Harsha Vardhan Reddy; Canali, Chiara; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2015-10-01

    One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting process. The PVA mould network defines the channels and is dissolved after curing the polymer casted around it. The printing parameters determined the PVA filament density in the sacrificial structure and this density resulted in different stiffness of the corresponding elastomer replica. It was possible to achieve 80% porosity corresponding to about 150 cm(2)/cm(3) surface to volume ratio. The process is easily scalable as demonstrated by fabricating a 75 cm(3) scaffold with about 16,000 interconnected channels (about 1m(2) surface area) and with a channel to channel distance of only 78 μm. To our knowledge this is the largest scaffold ever to be produced with such small feature sizes and with so many structured channels. The fabricated scaffolds were applied for in-vitro culturing of hepatocytes over a 12-day culture period. Smaller scaffolds (6×4 mm) were tested for cell culturing and could support homogeneous cell growth throughout the scaffold. Presumably, the diffusion of oxygen and nutrient throughout the channel network is rapid enough to support cell growth. In conclusion, the described process is scalable, compatible with cell culture, rapid, and inexpensive. Copyright © 2015. Published by Elsevier B.V.

  18. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Yu, Dingshan; Goh, Kunli; Wang, Hong; Wei, Li; Jiang, Wenchao; Zhang, Qiang; Dai, Liming; Chen, Yuan

    2014-07-01

    Micro-supercapacitors are promising energy storage devices that can complement or even replace batteries in miniaturized portable electronics and microelectromechanical systems. Their main limitation, however, is the low volumetric energy density when compared with batteries. Here, we describe a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets. The nanomaterials form mesoporous structures of large specific surface area (396 m2 g-1) and high electrical conductivity (102 S cm-1). We develop a scalable method to continuously produce the fibres using a silica capillary column functioning as a hydrothermal microreactor. The resultant fibres show a specific volumetric capacity as high as 305 F cm-3 in sulphuric acid (measured at 73.5 mA cm-3 in a three-electrode cell) or 300 F cm-3 in polyvinyl alcohol (PVA)/H3PO4 electrolyte (measured at 26.7 mA cm-3 in a two-electrode cell). A full micro-supercapacitor with PVA/H3PO4 gel electrolyte, free from binder, current collector and separator, has a volumetric energy density of ~6.3 mWh cm-3 (a value comparable to that of 4 V-500 µAh thin-film lithium batteries) while maintaining a power density more than two orders of magnitude higher than that of batteries, as well as a long cycle life. To demonstrate that our fibre-based, all-solid-state micro-supercapacitors can be easily integrated into miniaturized flexible devices, we use them to power an ultraviolet photodetector and a light-emitting diode.

  19. Eastern Renewable Generation Integration Study: Redefining What’s Possible for Renewable Energy

    ScienceCinema

    Bloom, Aaron

    2018-01-16

    NREL project manager Aaron Bloom introduces NREL’s Eastern Renewable Generation Integration Study (ERGIS) and high-performance computing capabilities and new methodologies that allowed NREL to model operations of the Eastern Interconnection at unprecedented fidelity. ERGIS shows that the Eastern Interconnection can balance the variability and uncertainty of wind and solar photovoltaics at a 5-minute level, for one simulated year.

  20. An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary; Boyce, Lee

    1997-01-01

    This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.

Top