Sample records for high density surface

  1. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  2. Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2015-07-07

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  3. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons.

    PubMed

    Karthikeyan, Kaliyappan; Amaresh, Samuthirapandiyan; Lee, Sol Nip; Sun, Xueliang; Aravindan, Vanchiappan; Lee, Young-Gi; Lee, Yun Sung

    2014-05-01

    Very high surface area activated carbons (AC) are synthesized from pine cone petals by a chemical activation process and subsequently evaluated as an electrode material for supercapacitor applications in a nonaqueous medium. The maximum specific surface area of ∼3950 m(2)  g(-1) is noted for the material treated with a 1:5 ratio of KOH to pine cone petals (PCC5), which is much higher than that reported for carbonaceous materials derived from various other biomass precursors. A symmetric supercapacitor is fabricated with PCC5 electrodes, and the results showed enhanced supercapacitive behavior with the highest energy density of ∼61 Wh kg(-1). Furthermore, outstanding cycling ability is evidenced for such a configuration, and ∼90 % of the initial specific capacitance after 20,000 cycles under harsh conditions was observed. This result revealed that the pine-cone-derived high-surface-area AC can be used effectively as a promising electrode material to construct high-energy-density supercapacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Slip-additive migration, surface morphology, and performance on injection moulded high-density polyethylene closures.

    PubMed

    Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac

    2017-11-01

    The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Surface density of quasars in two high-latitude fields

    NASA Technical Reports Server (NTRS)

    Usher, P. D.; Green, R. F.; Huang, K. L.; Warnock, A., III

    1983-01-01

    Fourty-four objects selected for ultraviolet excess have been identified spectroscopically. The objects lie in two Palomar 1.2 m Schmidt fields in the north galactic polar cap, one of 7.7 sq deg centered on Kapteyn Selected Area 29, the other of 36 sq deg centered on SA 55. The objects are characterized by Color Classes (CC) 1A, 1, 1B, 1C, 2, and 3. Quasars comprise 75 percent of the CC 1A objects and 44 percent of the objects in the SA 29 field. Twelve quasars in the SA 29 field comprise a complete sample to B = 18.5 mag, and given an uncorrected surface density of 1.6 quasars/sq deg. This value is essentially that derived by Sandage (1969). Corrections are applied to account for the lack of high redshift quasars. An empirical correction is derived to account for lack of simultaneity in selection and photometry. A corrected lower limit to the surface density is estimated to be 1.85 quasars/sq deg to B = 18.5 mag.

  6. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    PubMed

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  7. High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing

    NASA Astrophysics Data System (ADS)

    Guo, Liang

    2011-12-01

    Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability

  8. Motor unit number estimation based on high-density surface electromyography decomposition.

    PubMed

    Peng, Yun; He, Jinbao; Yao, Bo; Li, Sheng; Zhou, Ping; Zhang, Yingchun

    2016-09-01

    To advance the motor unit number estimation (MUNE) technique using high density surface electromyography (EMG) decomposition. The K-means clustering convolution kernel compensation algorithm was employed to detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the representativeness of the SMUP pools were evaluated using a high-density weighted-average method. Mean numbers of motor units were estimated as 288±132, 155±87, 107±99 and 132±61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were lower than 10%. The new MUNE method allows a convenient and non-invasive collection of a large size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor unit number of proximal muscles. The present new MUNE method successfully avoids the use of intramuscular electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; as such the new MUNE method can minimize patient discomfort for MUNE tests. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  10. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  11. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    PubMed Central

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322

  12. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    NASA Astrophysics Data System (ADS)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  13. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.

    PubMed

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-26

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  14. High-power-density, high-energy-density fluorinated graphene for primary lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong

    2018-03-01

    Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx) with superior performance through a direct gas fluorination. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1073 Wh kg-1 and an excellent power density of 21460 W kg-1 at a high current density of 10 A g-1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  15. Examination of Post-stroke Alteration in Motor Unit Firing Behavior Using High Density Surface EMG Decomposition

    PubMed Central

    Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping

    2014-01-01

    Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239

  16. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  17. Active Free Surface Density Maps

    NASA Astrophysics Data System (ADS)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  18. A Novel Framework Based on FastICA for High Density Surface EMG Decomposition

    PubMed Central

    Chen, Maoqi; Zhou, Ping

    2015-01-01

    This study presents a progressive FastICA peel-off (PFP) framework for high density surface electromyogram (EMG) decomposition. The novel framework is based on a shift-invariant model for describing surface EMG. The decomposition process can be viewed as progressively expanding the set of motor unit spike trains, which is primarily based on FastICA. To overcome the local convergence of FastICA, a “peel off” strategy (i.e. removal of the estimated motor unit action potential (MUAP) trains from the previous step) is used to mitigate the effects of the already identified motor units, so more motor units can be extracted. Moreover, a constrained FastICA is applied to assess the extracted spike trains and correct possible erroneous or missed spikes. These procedures work together to improve the decomposition performance. The proposed framework was validated using simulated surface EMG signals with different motor unit numbers (30, 70, 91) and signal to noise ratios (SNRs) (20, 10, 0 dB). The results demonstrated relatively large numbers of extracted motor units and high accuracies (high F1-scores). The framework was also tested with 111 trials of 64-channel electrode array experimental surface EMG signals during the first dorsal interosseous (FDI) muscle contraction at different intensities. On average 14.1 ± 5.0 motor units were identified from each trial of experimental surface EMG signals. PMID:25775496

  19. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    PubMed

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Outcrop-scale fracture trace identification using surface roughness derived from a high-density point cloud

    NASA Astrophysics Data System (ADS)

    Okyay, U.; Glennie, C. L.; Khan, S.

    2017-12-01

    Owing to the advent of terrestrial laser scanners (TLS), high-density point cloud data has become increasingly available to the geoscience research community. Research groups have started producing their own point clouds for various applications, gradually shifting their emphasis from obtaining the data towards extracting more and meaningful information from the point clouds. Extracting fracture properties from three-dimensional data in a (semi-)automated manner has been an active area of research in geosciences. Several studies have developed various processing algorithms for extracting only planar surfaces. In comparison, (semi-)automated identification of fracture traces at the outcrop scale, which could be used for mapping fracture distribution have not been investigated frequently. Understanding the spatial distribution and configuration of natural fractures is of particular importance, as they directly influence fluid-flow through the host rock. Surface roughness, typically defined as the deviation of a natural surface from a reference datum, has become an important metric in geoscience research, especially with the increasing density and accuracy of point clouds. In the study presented herein, a surface roughness model was employed to identify fracture traces and their distribution on an ophiolite outcrop in Oman. Surface roughness calculations were performed using orthogonal distance regression over various grid intervals. The results demonstrated that surface roughness could identify outcrop-scale fracture traces from which fracture distribution and density maps can be generated. However, considering outcrop conditions and properties and the purpose of the application, the definition of an adequate grid interval for surface roughness model and selection of threshold values for distribution maps are not straightforward and require user intervention and interpretation.

  1. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control.

    PubMed

    Hoyo, Javier Del; Choi, Heejoo; Burge, James H; Kim, Geon-Hee; Kim, Dae Wook

    2017-06-20

    The control of surface errors as a function of spatial frequency is critical during the fabrication of modern optical systems. A large-scale surface figure error is controlled by a guided removal process, such as computer-controlled optical surfacing. Smaller-scale surface errors are controlled by polishing process parameters. Surface errors of only a few millimeters may degrade the performance of an optical system, causing background noise from scattered light and reducing imaging contrast for large optical systems. Conventionally, the microsurface roughness is often given by the root mean square at a high spatial frequency range, with errors within a 0.5×0.5  mm local surface map with 500×500 pixels. This surface specification is not adequate to fully describe the characteristics for advanced optical systems. The process for controlling and minimizing mid- to high-spatial frequency surface errors with periods of up to ∼2-3  mm was investigated for many optical fabrication conditions using the measured surface power spectral density (PSD) of a finished Zerodur optical surface. Then, the surface PSD was systematically related to various fabrication process parameters, such as the grinding methods, polishing interface materials, and polishing compounds. The retraceable experimental polishing conditions and processes used to produce an optimal optical surface PSD are presented.

  2. High density harp for SSCL linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  3. Healing of Fatigue Crack by High-Density Electropulsing in Austenitic Stainless Steel Treated with the Surface-Activated Pre-Coating

    PubMed Central

    Hosoi, Atsushi; Kishi, Tomoya; Ju, Yang

    2013-01-01

    A technique to heal a fatigue crack in austenitic stainless steel SUS316 by applying a controlled, high-density pulsed current was developed. A surface-activated pre-coating (SAPC), which eliminates the oxide layer and coats a Ni film on the crack surface, was used to improve the adhesion between crack surfaces. Cracks were observed by scanning electron microscopy before and after the application of high-density electropulsing. To evaluate the healing effect of the SAPC during crack propagation, fatigue tests were conducted under a constant stress intensity factor. The fatigue crack treated with the SAPC was found to be effectively healed as a result of electropulsing, and also showed a slower rate of crack propagation. PMID:28788327

  4. Excitation of high density surface plasmon polariton vortex array

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  5. High density nitrogen-vacancy sensing surface created via He{sup +} ion implantation of {sup 12}C diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinsasser, Ed E., E-mail: edklein@uw.edu; Stanfield, Matthew M.; Banks, Jannel K. Q.

    2016-05-16

    We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10{sup 17 }cm{sup −3} nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed 200 kHz spin resonance linewidth over 10 times narrower.

  6. EEG source localization: Sensor density and head surface coverage.

    PubMed

    Song, Jasmine; Davey, Colin; Poulsen, Catherine; Luu, Phan; Turovets, Sergei; Anderson, Erik; Li, Kai; Tucker, Don

    2015-12-30

    The accuracy of EEG source localization depends on a sufficient sampling of the surface potential field, an accurate conducting volume estimation (head model), and a suitable and well-understood inverse technique. The goal of the present study is to examine the effect of sampling density and coverage on the ability to accurately localize sources, using common linear inverse weight techniques, at different depths. Several inverse methods are examined, using the popular head conductivity. Simulation studies were employed to examine the effect of spatial sampling of the potential field at the head surface, in terms of sensor density and coverage of the inferior and superior head regions. In addition, the effects of sensor density and coverage are investigated in the source localization of epileptiform EEG. Greater sensor density improves source localization accuracy. Moreover, across all sampling density and inverse methods, adding samples on the inferior surface improves the accuracy of source estimates at all depths. More accurate source localization of EEG data can be achieved with high spatial sampling of the head surface electrodes. The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The Mass Surface Density Distribution of a High-Mass Protocluster forming from an IRDC and GMC

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael

    2016-01-01

    We study the probability distribution function (PDF) of mass surface densities of infrared dark cloud (IRDC) G028.36+00.07 and its surrounding giant molecular cloud (GMC). Such PDF analysis has the potential to probe the physical processes that are controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a high-mass, "super star cluster". We study mass surface densities in two ways. First, we use a combination of NIR, MIR and FIR extinction maps that are able to probe the bulk of the cloud structure that is not yet forming stars. This analysis also shows evidence for flattening of the IR extinction law as mass surface density increases, consistent with increasing grain size and/or growth of ice mantles. Second, we study the FIR and sub-mm dust continuum emission from the cloud, especially utlizing Herschel PACS and SPIRE images. We first subtract off the contribution of the foreground diffuse emission that contaminates these images. Next we examine the effects of background subtraction and choice of dust opacities on the derived mass surface density PDF. The final derived PDFs from both methods are compared, including also with other published studies of this cloud. The implications for theoretical models and simulations of cloud structure, including the role of turbulence and magnetic fields, are discussed.

  8. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    PubMed Central

    Ollila, O. H. Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is <1.4 nm2. Further, interfacial tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state. PMID:22995496

  9. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  10. Surface modified CF x cathode material for ultrafast discharge and high energy density

    DOE PAGES

    Dai, Yang; Zhu, Yimei; Cai, Sendan; ...

    2014-11-10

    Li/CF x primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CF x, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CF x. The modified CF x, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yieldingmore » a high-capacity performance and an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.« less

  11. Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers

    DOE PAGES

    Flippo, K. A.; Doss, F. W.; Kline, J. L.; ...

    2016-11-23

    While using a large volume high-energy-density fluid shear experiment ( 8.5 cm 3 ) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. Furthermore, by altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of severalmore » tens of electron volts and at near solid density. Moreover, simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.« less

  12. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  13. Method for Estimating the Charge Density Distribution on a Dielectric Surface.

    PubMed

    Nakashima, Takuya; Suhara, Hiroyuki; Murata, Hidekazu; Shimoyama, Hiroshi

    2017-06-01

    High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.

  14. Wireless sensor node for surface seawater density measurements.

    PubMed

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  15. Wireless Sensor Node for Surface Seawater Density Measurements

    PubMed Central

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986

  16. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng

    2018-01-01

    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  17. Controlling Surface Termination and Facet Orientation in Cu2O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and Density Functional Theory Study.

    PubMed

    Su, Yang; Li, Hongfei; Ma, Hanbin; Robertson, John; Nathan, Arokia

    2017-03-08

    Cu 2 O nanoparticles with controllable facets are of great significance for photocatalysis. In this work, the surface termination and facet orientation of Cu 2 O nanoparticles are accurately tuned by adjusting the amount of hydroxylamine hydrochloride and surfactant. It is found that Cu 2 O nanoparticles with Cu-terminated (110) or (111) surfaces show high photocatalytic activity, while other exposed facets show poor reactivity. Density functional theory simulations confirm that sodium dodecyl sulfate surfactant can lower the surface free energy of Cu-terminated surfaces, increase the density of exposed Cu atoms at the surfaces and thus benefit the photocatalytic activity. It also shows that the poor reactivity of the Cu-terminated Cu 2 O (100) surface is due to the high energy barrier of holes at the surface region.

  18. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water.

    PubMed

    Shen, Mengyan; Carey, James E; Crouch, Catherine H; Kandyla, Maria; Stone, Howard A; Mazur, Eric

    2008-07-01

    We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.

  19. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    PubMed

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  20. Incorporation of Ca and P on anodized titanium surface: Effect of high current density.

    PubMed

    Laurindo, Carlos A H; Torres, Ricardo D; Mali, Sachin A; Gilbert, Jeremy L; Soares, Paulo

    2014-04-01

    This study systematically evaluated the surface and corrosion characteristics of commercially pure titanium (grade 2) modified by plasma electrolytic oxidation (PEO) with high current density. The anodization process was carried out galvanostatically (constant current density) using a solution containing calcium glycerophosphate (0.02mol/L) and calcium acetate (0.15mol/L). The current densities applied were 400, 700, 1000 and 1200mA/cm(2) for a period of 15s. Composition, crystalline structure, morphology, roughness, wettability and "in-vitro" bioactivity test in SBF of the anodized layer were evaluated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, profilometry and contact angle measurements. Corrosion properties were evaluated by open circuit potential, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results show that the TiO2 oxide layers present an increase of thickness, porosity, roughness, wettability, Ca/P ratio, and bioactivity, with the applied current density up to 1000mA/cm(2). Corrosion resistance also increases with applied current density. It is observed that for 1200mA/cm(2), there is a degradation of the oxide layer. In general, the results suggest that the anodized TiO2 layer with better properties is formed with an applied current of 1000mA/cm(2). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

    PubMed

    Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo

    2014-09-15

    In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Gravitational lensing by a smoothly variable surface mass density

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Wambsganss, Joachim

    1989-01-01

    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  3. 1 μm-thickness ultra-flexible and high electrode-density surface electromyogram measurement sheet with 2 V organic transistors for prosthetic hand control.

    PubMed

    Fuketa, Hiroshi; Yoshioka, Kazuaki; Shinozuka, Yasuhiro; Ishida, Koichi; Yokota, Tomoyuki; Matsuhisa, Naoji; Inoue, Yusuke; Sekino, Masaki; Sekitani, Tsuyoshi; Takamiya, Makoto; Someya, Takao; Sakurai, Takayasu

    2014-12-01

    A 64-channel surface electromyogram (EMG) measurement sheet (SEMS) with 2 V organic transistors on a 1 μm-thick ultra-flexible polyethylene naphthalate (PEN) film is developed for prosthetic hand control. The surface EMG electrodes must satisfy the following three requirements; high mechanical flexibility, high electrode density and high signal integrity. To achieve high electrode density and high signal integrity, a distributed and shared amplifier (DSA) architecture is proposed, which enables an in-situ amplification of the myoelectric signal with a fourfold increase in EMG electrode density. In addition, a post-fabrication select-and-connect (SAC) method is proposed to cope with the large mismatch of organic transistors. The proposed SAC method reduces the area and the power overhead by 96% and 98.2%, respectively, compared with the use of conventional parallel transistors to reduce the transistor mismatch by a factor of 10.

  4. A comparison of UV surface brightness and HI surface densities for spiral galaxies

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Strom, C.

    1990-01-01

    Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies.

  5. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  6. High CD4(+) T-cell surface CXCR4 density as a risk factor for R5 to X4 switch in the course of HIV-1 infection.

    PubMed

    Fiser, Anne-Laure; Vincent, Thierry; Brieu, Natalie; Lin, Yea-Lih; Portalès, Pierre; Mettling, Clément; Reynes, Jacques; Corbeau, Pierre

    2010-12-15

    For unclear reasons, about 50% of HIV-infected subjects harbour CXCR4-using (X4) viral strains in addition of CCR5-using (R5) viral strains at late stages of the disease. One hypothesis is that a low CD4(+) T-cell surface CCR5 density could facilitate the emergence of X4 strains. Alternatively, one could argue that a high CD4(+) T-cell surface CXCR4 density that is observed in individuals presenting with X4 strains, could favour R5 to X4 switch. Here, we tested both hypotheses. In vivo, we observed by quantitative flow cytometry no difference in CD4(+) T-cell surface CCR5 densities between patients with or without X4 strains. In the course of an in vitro R5 infection, the delay of emergence of X4 mutants was similar between cells expressing 2 distinct cell surface CCR5 densities, but shorter (12 ± 0 days and 21 ± 0 days, respectively, P = 0.01) in cells expressing a high surface CXCR4 density as compared with cells with a low surface CXCR4 density. These data argue for a role of CXCR4 density, but not of CCR5 density, in the emergence of X4 strains. They are reassuring concerning the risk of inducing an R5 to X4 switch using CCR5 antagonists to treat HIV infection.

  7. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  8. Textured-surface quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-08-25

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  9. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  10. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor.

    PubMed

    Singh, Kunwar Pal; Guo, Chunlei

    2017-06-21

    The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.

  11. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  12. Nanosecond pulsed electric field induced changes in cell surface charge density.

    PubMed

    Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi

    2017-09-01

    This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. On the probability distribution function of the mass surface density of molecular clouds. I

    NASA Astrophysics Data System (ADS)

    Fischera, Jörg

    2014-05-01

    The probability distribution function (PDF) of the mass surface density is an essential characteristic of the structure of molecular clouds or the interstellar medium in general. Observations of the PDF of molecular clouds indicate a composition of a broad distribution around the maximum and a decreasing tail at high mass surface densities. The first component is attributed to the random distribution of gas which is modeled using a log-normal function while the second component is attributed to condensed structures modeled using a simple power-law. The aim of this paper is to provide an analytical model of the PDF of condensed structures which can be used by observers to extract information about the condensations. The condensed structures are considered to be either spheres or cylinders with a truncated radial density profile at cloud radius rcl. The assumed profile is of the form ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 for arbitrary power n where ρc and r0 are the central density and the inner radius, respectively. An implicit function is obtained which either truncates (sphere) or has a pole (cylinder) at maximal mass surface density. The PDF of spherical condensations and the asymptotic PDF of cylinders in the limit of infinite overdensity ρc/ρ(rcl) flattens for steeper density profiles and has a power law asymptote at low and high mass surface densities and a well defined maximum. The power index of the asymptote Σ- γ of the logarithmic PDF (ΣP(Σ)) in the limit of high mass surface densities is given by γ = (n + 1)/(n - 1) - 1 (spheres) or by γ = n/ (n - 1) - 1 (cylinders in the limit of infinite overdensity). Appendices are available in electronic form at http://www.aanda.org

  14. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    PubMed

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    DOEpatents

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  16. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  17. Low capping group surface density on zinc oxide nanocrystals.

    PubMed

    Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M

    2014-09-23

    The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.

  18. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    NASA Astrophysics Data System (ADS)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  19. Surface density mapping of natural tissue by a scanning haptic microscope (SHM).

    PubMed

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide

    2013-02-01

    To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.

  20. Crystallographic perturbations to valence charge density and hydrogen-surface interactions

    NASA Astrophysics Data System (ADS)

    Ciston, James W.

    agreement with density functional theory (DFT) calculations. The BCPA model was also applied to an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about the bond-centered pseudoatom model, we found experimentally that the adatoms were in an anti-bonding state with the atoms directly below. We were also able to experimentally refine a charge transfer of 0.26+/-0.04 e- from each adatom site to the underlying layers. This was the first statistically significant refinement of site-specific bonding information at any surface utilizing x-ray diffraction data. Precession electron diffraction (PED) is a technique which is gaining increasing interest due to its ease of use and reduction of the dynamical scattering problem in electron diffraction. To further investigate the usefulness of this technique, we performed a systematic study of the effect of precession angle on the mineral andalusite where the semiangle was varied from 6.5 to 32 mrad in five discrete steps. We have shown that the intensities of kinematically forbidden reflections decayed exponentially as the precession semiangle (ϕ) was increased. Additionally, we have determined that charge density effects were best observed at moderately low angles (6.5-13 mrad) even though PED patterns became more kinematical in nature as the precession angle was increased further. We have also shown that the amount of interpretable information provided by direct methods phase inversion of the diffraction data increases monotonically but non-systematically as ϕ increases. We report an experimental and theoretical analysis of the ✓3x✓3-R30° and 2x2 reconstructions on the MgO (111) surface combining transmission electron microscopy, x-ray photoelectron spectroscopy, and reasonably accurate density functional calculations using the meta-GGA functional TPSS. We have not only conclusively solved the atomic structures of

  1. Surface tension and density of liquid In-Sn-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  2. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  3. Molecular surface mesh generation by filtering electron density map.

    PubMed

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  4. The effects of oil-in-water nanoemulsion polyethylene glycol surface density on intracellular stability, pharmacokinetics, and biodistribution in tumor bearing mice.

    PubMed

    Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina

    2015-04-01

    Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.

  5. Molecular simulation study of feruloyl esterase adsorption on charged surfaces: effects of surface charge density and ionic strength.

    PubMed

    Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian

    2015-10-06

    The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.

  6. Lactoperoxidase catalyzed radioiodination of cell surface immunoglobulin: incorporated radioactivity may not reflect relative cell surface Ig density. [/sup 125/I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilder, R.L.; Yuen, C.C.; Mage, R.G.

    1979-02-01

    Rabbit and mouse splenic lymphocytes were radioiodinated by the lactoperoxidase technique, extracted with non-ionic detergent, immunoprecipitated with high titered rabbit anti-kappa antisera, and compared by SDS-PAGE. Mouse sIg peaks were reproducibly larger in size than rabbit sIg peaks (often greater than 10 times). Neither differences in incorporation of label into the rabbit cell surface, nor differences in average sIg density explain this result. Total TCA-precipitable radioactivity was similar in each species. Estimation of the relative amounts of sIg in the mouse and rabbit showed similar average sIg densities. Differences in detergent solubility, proteolytic lability, or antisera used also do notmore » adequately account for this difference. Thus, these data indicate that radioactivity incorporated after lactoperoxidase catalyzed cell surface radioiodination may not reflect cell surface Ig density. Conclusions about cell surface density based upon relative incorporation of radioactivity should be confirmed by other approaches.« less

  7. Accurate identification of motor unit discharge patterns from high-density surface EMG and validation with a novel signal-based performance metric

    NASA Astrophysics Data System (ADS)

    Holobar, A.; Minetto, M. A.; Farina, D.

    2014-02-01

    Objective. A signal-based metric for assessment of accuracy of motor unit (MU) identification from high-density surface electromyograms (EMG) is introduced. This metric, so-called pulse-to-noise-ratio (PNR), is computationally efficient, does not require any additional experimental costs and can be applied to every MU that is identified by the previously developed convolution kernel compensation technique. Approach. The analytical derivation of the newly introduced metric is provided, along with its extensive experimental validation on both synthetic and experimental surface EMG signals with signal-to-noise ratios ranging from 0 to 20 dB and muscle contraction forces from 5% to 70% of the maximum voluntary contraction. Main results. In all the experimental and simulated signals, the newly introduced metric correlated significantly with both sensitivity and false alarm rate in identification of MU discharges. Practically all the MUs with PNR > 30 dB exhibited sensitivity >90% and false alarm rates <2%. Therefore, a threshold of 30 dB in PNR can be used as a simple method for selecting only reliably decomposed units. Significance. The newly introduced metric is considered a robust and reliable indicator of accuracy of MU identification. The study also shows that high-density surface EMG can be reliably decomposed at contraction forces as high as 70% of the maximum.

  8. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  9. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    NASA Astrophysics Data System (ADS)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  10. High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  11. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  12. Pim-1L Protects Cell Surface-Resident ABCA1 From Lysosomal Degradation in Hepatocytes and Thereby Regulates Plasma High-Density Lipoprotein Level.

    PubMed

    Katsube, Akira; Hayashi, Hisamitsu; Kusuhara, Hiroyuki

    2016-12-01

    ATP-binding cassette transporter A1 (ABCA1) exerts an atheroprotective action through the biogenesis of high-density lipoprotein in hepatocytes and prevents the formation of foam cells from macrophages. Controlling ABCA1 is a rational approach to improving atherosclerotic cardiovascular disease. Although much is known about the regulatory mechanism of ABCA1 synthesis, the molecular mechanism underpinning its degradation remains to be clearly described. ABCA1 possesses potential sites of phosphorylation by serine/threonine-protein kinase Pim-1 (Pim-1). Pim-1 depletion decreased the expression of cell surface-resident ABCA1 (csABCA1) and apolipoprotein A-I-mediated [ 3 H]cholesterol efflux in the human hepatoma cell line HepG2, but not in peritoneal macrophages from mice. In vitro kinase assay, immunoprecipitation, and immunocytochemistry suggested phosphorylation of csABCA1 by the long form of Pim-1 (Pim-1L). Cell surface biotinylation indicated that Pim-1L inhibited lysosomal degradation of csABCA1 involving the liver X receptor β, which interacts with csABCA1 and thereby protects it from ubiquitination and subsequent lysosomal degradation. Cell surface coimmunoprecipitation with COS-1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that Pim-1L-mediated phosphorylation of csABCA1 facilitated the interaction between csABCA1 and liver X receptor β and thereby stabilized the csABCA1-Pim-1L complex. Mice deficient in Pim-1 kinase activity showed lower expression of ABCA1 in liver plasma membranes and lower plasma high-density lipoprotein levels than control mice. Pim-1L protects hepatic csABCA1 from lysosomal degradation by facilitating the physical interaction between csABCA1 and liver X receptor β and subsequent stabilization of the csABCA1-Pim-1L complex and thereby regulates the circulating level of high-density lipoprotein. Our findings may aid the development of high-density lipoprotein-targeted therapy. © 2016 American Heart Association

  13. Atmospheric density (surface). [distribution with altitude at launching bases

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.; Brown, S. C.

    1973-01-01

    The variation of the density of the atmosphere at the surface from the average for any one station, and between the areas of interest, is small and should have no important effect on preflight spacecraft operations. The median density at the surface for five test ranges is given.

  14. Topology of Surface Ligands on Liposomes: Characterization Based on the Terms, Incorporation Ratio, Surface Anchor Density, and Reaction Yield.

    PubMed

    Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi

    2016-01-01

    The surface topology of ligands on liposomes is an important factor in active targeting in drug delivery systems. Accurately evaluating the density of anchors and bioactive functional ligands on a liposomal surface is critical for ensuring the efficient delivery of liposomes. For evaluating surface ligand density, it is necessary to clarify that on the ligand-modified liposomal surfaces, some anchors are attached to ligands but some are not. To distinguish between these situations, a key parameter, surface anchor density, was introduced to specify amount of total anchors on the liposomal surface. Second, the parameter reaction yield was introduced to identify the amount of ligand-attached anchors among total anchors, since the conjugation efficiency is not always the same nor 100%. Combining these independent parameters, we derived: incorporation ratio=surface anchor density×reaction yield. The term incorporation ratio defines the surface ligand density. Since the surface anchor density represents the density of polyethylene glycol (PEG) on the surfaces in most cases, it also determines liposomal function. It is possible to accurately characterize various PEG and ligand densities and to define the surface topologies. In conclusion, this quantitative methodology can standardize the liposome preparation process and qualify the modified liposomal surfaces.

  15. The Surface Density Distribution in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    The commonly used minimum mass power law representation of the pre-solar nebula is reanalyzed using a new cumulative-mass-model. This model predicts a smoother surface density approximation compared with methods based on direct computation of surface density. The density is quantified using two independent analytical formulations. First, a best-fit transcendental function is applied directly to the basic planetary data. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the solar nebula data. The latter model is shown to be a good approximation to the finite-size early Solar Nebula, and by extension to other extra solar protoplanetary disks.

  16. Study of a high performance evaporative heat transfer surface

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hamasaki, R. H.

    1977-01-01

    An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.

  17. Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces.

    PubMed

    Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert

    2017-11-29

    Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.

  18. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.

  19. Modification of Surface Density of a Porous Medium

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)

    2016-01-01

    A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.

  20. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    NASA Astrophysics Data System (ADS)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  1. Tuning surface grafting density of CeO2 nanocrystals with near- and supercritical solvent characteristics.

    PubMed

    Giroire, B; Slostowski, C; Marre, S; Aymonier, C; Aida, T; Hojo, D; Aoki, N; Takami, S; Adschiri, T

    2016-01-21

    In this work, the solvent effect on the synthesis of CeO2 nanocrystals synthesized in near- and supercritical alcohols is discussed. The materials prepared displayed a unique morphology of small nanocrystals (<10 nm) aggregated into larger nanospheres (∼100-200 nm). In such syntheses, alcohol molecules directly interact with the nanocrystal surface through alkoxide and carboxylate bondings. The grafting density was quantified from the weight loss measured using thermogravimetric analysis. A direct correlation between the grafting density and the alcohol chain length can be established. It was demonstrated that the shorter the alcohol chain length (i.e. methanol), the higher the surface coverage is. This trend is independent of the synthesis mode (batch or continuous). Additionally, an influence of the grafting density on the resulting nanocrystal size was established. It is suggested that the surface coverage has a high influence on the early stages of the nucleation and growth. Indeed, when high surface coverages are reached, all surface active sites are blocked, limiting the growth step and therefore leading to smaller particles. This effect was noticed with the materials prepared in the continuous mode where shorter reaction time was performed.

  2. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, PengFei; Qiu, Aici; State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode andmore » anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).« less

  3. Surface Snow Density of East Antarctica Derived from In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.

    2018-04-01

    Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.

  4. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    NASA Astrophysics Data System (ADS)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  5. On the probability distribution function of the mass surface density of molecular clouds. II.

    NASA Astrophysics Data System (ADS)

    Fischera, Jörg

    2014-11-01

    The probability distribution function (PDF) of the mass surface density of molecular clouds provides essential information about the structure of molecular cloud gas and condensed structures out of which stars may form. In general, the PDF shows two basic components: a broad distribution around the maximum with resemblance to a log-normal function, and a tail at high mass surface densities attributed to turbulence and self-gravity. In a previous paper, the PDF of condensed structures has been analyzed and an analytical formula presented based on a truncated radial density profile, ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 with central density ρc and inner radius r0, widely used in astrophysics as a generalization of physical density profiles. In this paper, the results are applied to analyze the PDF of self-gravitating, isothermal, pressurized, spherical (Bonnor-Ebert spheres) and cylindrical condensed structures with emphasis on the dependence of the PDF on the external pressure pext and on the overpressure q-1 = pc/pext, where pc is the central pressure. Apart from individual clouds, we also consider ensembles of spheres or cylinders, where effects caused by a variation of pressure ratio, a distribution of condensed cores within a turbulent gas, and (in case of cylinders) a distribution of inclination angles on the mean PDF are analyzed. The probability distribution of pressure ratios q-1 is assumed to be given by P(q-1) ∝ q-k1/ (1 + (q0/q)γ)(k1 + k2) /γ, where k1, γ, k2, and q0 are fixed parameters. The PDF of individual spheres with overpressures below ~100 is well represented by the PDF of a sphere with an analytical density profile with n = 3. At higher pressure ratios, the PDF at mass surface densities Σ ≪ Σ(0), where Σ(0) is the central mass surface density, asymptotically approaches the PDF of a sphere with n = 2. Consequently, the power-law asymptote at mass surface densities above the peak steepens from Psph(Σ) ∝ Σ-2 to Psph(Σ) ∝ Σ-3. The

  6. High-Energy-Density Shear Flow and Instability Experiments

    NASA Astrophysics Data System (ADS)

    Doss, F. W.; Flippo, K. A.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kline, J. L.

    2017-10-01

    High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models ability to function in the high-energy-density, inertial- fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of >= 100 km/s, which initiate a strong shear instability across an initially solid-density, 20 μm thick Al plate, variations of the experiment to details of the initial conditions have been performed. These variations have included increasing the fluid densities (by modifying the plate material from Al to Ti and Cu), imposing sinusoidal seed perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. Radiography of the unseeded layer has revealed the presence of emergent Kelvin-Helmholtz structures which may be analyzed to infer fluid-mechanical properties including turbulent energy density. This work is conducted by the US DOE by LANL under contract DE-0AC52-06NA25396. This abstract is LA-UR-16-24930.

  7. Impact of density information on Rayleigh surface wave inversion results

    NASA Astrophysics Data System (ADS)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  8. On the Origin of the High Column Density Turnover in the HI Column Density Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less

  9. Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang H. Oh; Eung Kim; Jong Lim

    2009-05-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is

  10. Surface tension and density of Si-Ge melts

    NASA Astrophysics Data System (ADS)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  11. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram.

    PubMed

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    In this study we have tested the hypothesis regarding the increase in synchronization with the onset of muscle fatigue. For this aim, we have investigated the difference in the synchronicity between high density surface electromyogram (sEMG) channels of the rested muscles and when at the limit of endurance. Synchronization was measured by computing and normalizing the mutual information between the sEMG signals recorded from the high-density array electrode locations. Ten volunteers (Age range: 21 and 35 years; Mean age = 26 years; Male = 6, Female = 4) participated in our experiment. The participants performed isometric dorsiflexion of their dominate foot at two levels of contraction; 40% and 80% of their maximum voluntary contraction (MVC) until task failure. During the experiment an array of 64 electrodes (16 by 4) placed over the TA parallel to the muscle fiber was used to record the HD-sEMG. Normalized Mutual Information (NMI) between electrodes was calculated using the HD-sEMG data and then analyzed. The results show that that the average NMI of the TA significantly increased during fatigue at both levels of contraction. There was a statistically significant difference between NMI of the rested muscle compared with it being at the point of task failure.

  12. Bonding of reusable surface insulation with low density silicone foams

    NASA Technical Reports Server (NTRS)

    Hiltz, A. A.; Hockridge, R. R.; Curtis, F. P.

    1972-01-01

    The development and evaluation of a reduced density, high reliable foamed bond strain isolation system for attaching reusable surface insulation to the space shuttle structure are reported. Included are data on virgin materials as well as on materials that received 100 cycles of exposure to 650 F for approximately 20 minutes per cycle. Room temperature vulcanizing silicon elastomers meet all the requirments for an adhesive bonding system.

  13. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in

  14. Optoelectronically probing the density of nanowire surface trap states to the single state limit

    NASA Astrophysics Data System (ADS)

    Dan, Yaping

    2015-02-01

    Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.

  15. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  16. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo.

    PubMed

    Du, Xiao-Jiao; Wang, Ji-Long; Liu, Wei-Wei; Yang, Jin-Xian; Sun, Chun-Yang; Sun, Rong; Li, Hong-Jun; Shen, Song; Luo, Ying-Li; Ye, Xiao-Dong; Zhu, Yan-Hua; Yang, Xian-Zhu; Wang, Jun

    2015-11-01

    Poly(ethylene glycol) (PEG) is usually used to protect nanoparticles from rapid clearance in blood. The effects are highly dependent on the surface PEG density of nanoparticles. However, there lacks a detailed and informative study in PEG density and in vivo drug delivery due to the critical techniques to precisely control the surface PEG density when maintaining other nano-properties. Here, we regulated the polymeric nanoparticles' size and surface PEG density by incorporating poly(ε-caprolactone) (PCL) homopolymer into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) and adjusting the mass ratio of PCL to PEG-PCL during the nanoparticles preparation. We further developed a library of polymeric nanoparticles with different but controllable sizes and surface PEG densities by changing the molecular weight of the PCL block in PEG-PCL and tuning the molar ratio of repeating units of PCL (CL) to that of PEG (EG). We thus obtained a group of nanoparticles with variable surface PEG densities but with other nano-properties identical, and investigated the effects of surface PEG densities on the biological behaviors of nanoparticles in mice. We found that, high surface PEG density made the nanoparticles resistant to absorption of serum protein and uptake by macrophages, leading to a greater accumulation of nanoparticles in tumor tissue, which recuperated the defects of decreased internalization by tumor cells, resulting in superior antitumor efficacy when carrying docetaxel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  18. Orbital nodal surfaces: Topological challenges for density functionals

    NASA Astrophysics Data System (ADS)

    Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan

    2017-06-01

    Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.

  19. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGES

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  20. Is the bulk mode conversion important in high density helicon plasma?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro

    2016-06-15

    In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less

  1. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  2. Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment

    NASA Astrophysics Data System (ADS)

    Kiss, K.; Malinen, J.; Tokola, T.

    2016-06-01

    Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.

  3. The relation between high-density and very-high-density amorphous ice.

    PubMed

    Loerting, Thomas; Salzmann, Christoph G; Winkel, Katrin; Mayer, Erwin

    2006-06-28

    The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.

  4. Modulating the fixed charge density in silicon nitride films while monitoring the surface recombination velocity by photoluminescence imaging

    NASA Astrophysics Data System (ADS)

    Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud

    2015-04-01

    Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.

  5. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  6. High Surface Area Dendrite Nanoelectrodes for Electrochemistry

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan; Glover, Jennifer; Goyal, Saurabh; Simidjiysky, Svetoslav; Naughton, Michael

    2014-03-01

    Solution-based electrodeposition of metal using a low ion concentration, surface passivation agents, and/or electrochemical crystal conditioning has allowed for the formation of high surface area metal electrodes, useful for Raman spectroscopy and electrochemical sensors. Additionally, high frequency electrical oscillations have been used to electrically connect co-planar electrodes, a process called directed electrochemical nanowire assembly (DENA). These approaches aim to control the crystal face that metal atoms in solution will nucleate onto, thus causing anisotropic growth of metal crystals. However, DENA has not been used to create high surface area electrodes, and no study has been conducted on the effect of micron-scale surface topography on the initial nucleation of metal crystals on the electrode surface. When DENA is used to create a high surface area electrode, such a texture has a strong impact on the subsequent topography of the three dimensional dendritic structures by limiting the areal density of crystals on the electrode surface. Such structures both demonstrate unique physics concerning the nucleation of metal dendrites, and offer a unique and highly facile fabrication method of high surface area electrodes, useful for chemical and biological sensing. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  7. High-Stacking-Density, Superior-Roughness LDH Bridged with Vertically Aligned Graphene for High-Performance Asymmetric Supercapacitors.

    PubMed

    Guo, Wei; Yu, Chang; Li, Shaofeng; Yang, Juan; Liu, Zhibin; Zhao, Changtai; Huang, Huawei; Zhang, Mengdi; Han, Xiaotong; Niu, Yingying; Qiu, Jieshan

    2017-10-01

    The high-performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high-stacking-density, superior-roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH-NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well-developed open structure for fast mass transport. Moreover, the high-stacking-density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH-NF@VG can deliver a high capacitance of 2920 F g -1 at a current density of 2 A g -1 , and the asymmetric supercapacitor with the LDH-NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg -1 at a power density of 260 W kg -1 , with a high specific capacitance retention rate of 87% even after 10 000 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains.

    PubMed

    Ning, Yin; Fielding, Lee A; Ratcliffe, Liam P D; Wang, Yun-Wei; Meldrum, Fiona C; Armes, Steven P

    2016-09-14

    Polymerization-induced self-assembly (PISA) offers a highly versatile and efficient route to a wide range of organic nanoparticles. In this article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) [PSEM-PBzMA] diblock copolymer nanoparticles can be prepared with either a high or low PSEM stabilizer surface density using either RAFT dispersion polymerization in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization, respectively. We then use these model nanoparticles to gain new insight into a key topic in materials chemistry: the occlusion of organic additives into inorganic crystals. Substantial differences are observed for the extent of occlusion of these two types of anionic nanoparticles into calcite (CaCO3), which serves as a suitable model host crystal. A low PSEM stabilizer surface density leads to uniform nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v), while minimal occlusion occurs when using nanoparticles with a high PSEM stabilizer surface density. This counter-intuitive observation suggests that an optimum anionic surface density is required for efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of nanoparticles within crystals.

  9. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  10. Lunar Surface Material - Spacecraft Measurements of Density and Strength

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1969-01-01

    The relation of the density of the lunar surface layer to depth is probably best determined from spacecraft measurements of the bearing capacity as a function of depth. A comparison of these values with laboratory measurements of the bearing capacity of low-cohesion particulate materials as a function of the percentage of solid indicates that the bulk density at the lunar surface is about 1.1 grams per cubic centimeter and that it increases nearly linearly to about 1.6 grams per cubic centimeter at a depth of 5 centimeters.

  11. Global Distribution and Density of Constructed Impervious Surfaces.

    PubMed

    Elvidge, Christopher D; Tuttle, Benjamin T; Sutton, Paul C; Baugh, Kimberly E; Howard, Ara T; Milesi, Cristina; Bhaduri, Budhendra; Nemani, Ramakrishna

    2007-09-21

    We present the first global inventory of the spatial distribution and density ofconstructed impervious surface area (ISA). Examples of ISA include roads, parking lots,buildings, driveways, sidewalks and other manmade surfaces. While high spatialresolution is required to observe these features, the new product reports the estimateddensity of ISA on a one-km² grid based on two coarse resolution indicators of ISA - thebrightness of satellite observed nighttime lights and population count. The model wascalibrated using 30-meter resolution ISA of the USA from the U.S. Geological Survey.Nominally the product is for the years 2000-01 since both the nighttime lights andreference data are from those two years. We found that 1.05% of the United States landarea is impervious surface (83,337 km²) and 0.43 % of the world's land surface (579,703km²) is constructed impervious surface. China has more ISA than any other country(87,182 km²), but has only 67 m² of ISA per person, compared to 297 m² per person in theUSA. The distribution of ISA in the world's primary drainage basins indicates that watersheds damaged by ISA are primarily concentrated in the USA, Europe, Japan, China and India. The authors believe the next step for improving the product is to include reference ISA data from many more areas around the world.

  12. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    PubMed

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  13. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology

    PubMed Central

    2013-01-01

    Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Results Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. Conclusions A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions. PMID:23419192

  14. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  15. Range of Density Variability from Surface To 120 km Altitude

    NASA Technical Reports Server (NTRS)

    Smith, Orvel E.; Chenoweth, Halsey B.

    1961-01-01

    A re-entry space vehicle development program, such as Project Apollo, requires a knowledge of the variability of atmospheric density from the surface of the earth to re-entry altitude (120 km). This report summarizes the data on density given in the most recent literature on the subject. The range of atmospheric density with respect to the ARDC 1959 Model Atmosphere is determined and shown graphically. From the surface to 30 km altitude abundant information on density is available. From 30 to 90 km altitude the summarized reports of observations made at a limited number of stations have been used. Between 90 and 120 km altitude the density is somewhat speculative, there being but few measurements available. Therefore, the qualitative values for the variability of density above 30 km must be considered tentative. Variations of atmospheric density by latitude and seasons made it necessary to develop a family of curves rather than a single profile. Three curves are presented to show the range of density deviation versus altitudes with respect to the ARDC 1959 Model Atmosphere. Each curve is used for a specific latitude range and season.

  16. U.S.A. National Surface Rock Density Map - Part 2

    NASA Astrophysics Data System (ADS)

    Winester, D.

    2016-12-01

    A map of surface rock densities over the USA has been developed by the NOAA-National Geodetic Survey (NGS) as part of its Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Program. GRAV-D is part of an international effort to generate a North American gravimetric geoid for use as the vertical datum reference surface. As a part of modeling process, it is necessary to eliminate from the observed gravity data the topographic and density effects of all masses above the geoid. However, the long-standing tradition in geoid modeling, which is to use an average rock density (e.g. 2.67 g/cm3), does not adequately represent the variety of lithologies in the USA. The U.S. Geological Survey has assembled a downloadable set of surface geologic formation maps (typically 1:100,000 to 1:500, 000 scale in NAD27) in GIS format. The lithologies were assigned densities typical of their rock type (Part 1) and these variety of densities were then rasterized and averaged over one arc-minute areas. All were then transformed into WGS84 datum. Thin layers of alluvium and some water bodies (interpreted to be less than 40 m thick) have been ignored in deference to underlying rocks. Deep alluvial basins have not been removed, since they represent significant fraction of local mass. The initial assumption for modeling densities will be that the surface rock densities extend down to the geoid. If this results in poor modeling, variable lithologies with depth can be attempted. Initial modeling will use elevations from the SRTM DEM. A map of CONUS densities is presented (denser lithologies are shown brighter). While a visual map at this scale does show detailed features, digital versions are available upon request. Also presented are some pitfalls of using source GIS maps digitized from variable reference sources, including the infamous `state line faults.'

  17. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  18. High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions

    PubMed Central

    Li, Weiwei; Gao, Song; Wu, Liqiong; Qiu, Shengqiang; Guo, Yufen; Geng, Xiumei; Chen, Mingliang; Liao, Shutian; Zhu, Chao; Gong, Youpin; Long, Mingsheng; Xu, Jianbao; Wei, Xiangfei; Sun, Mengtao; Liu, Liwei

    2013-01-01

    The chemical vapor deposition (CVD) fabrication of high-density three-dimension graphene macroscopic objects (3D-GMOs) with a relatively low porosity has not yet been realized, although they are desirable for applications in which high mechanical and electrical properties are required. Here, we explore a method to rapidly prepare the high-density 3D-GMOs using nickel chloride hexahydrate (NiCl2·6H2O) as a catalyst precursor by CVD process at atmospheric pressure. Further, the free-standing 3D-GMOs are employed as electrolytic electrodes to remove various heavy metal ions. The robust 3D structure, high conductivity (~12 S/cm) and large specific surface area (~560 m2/g) enable ultra-high electrical adsorption capacities (Cd2+ ~ 434 mg/g, Pb2+ ~ 882 mg/g, Ni2+ ~ 1,683 mg/g, Cu2+ ~ 3,820 mg/g) from aqueous solutions and fast desorption. The current work has significance in the studies of both the fabrication of high-density 3D-GMOs and the removal of heavy metal ions. PMID:23821107

  19. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; ...

    2017-11-06

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less

  20. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less

  1. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    NASA Astrophysics Data System (ADS)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; Baxamusa, Salmaan H.; Lepró, Xavier; Ehrmann, Paul

    2017-11-01

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we do not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. We have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.

  2. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    NASA Astrophysics Data System (ADS)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  3. Proportional estimation of finger movements from high-density surface electromyography.

    PubMed

    Celadon, Nicolò; Došen, Strahinja; Binder, Iris; Ariano, Paolo; Farina, Dario

    2016-08-04

    The importance to restore the hand function following an injury/disease of the nervous system led to the development of novel rehabilitation interventions. Surface electromyography can be used to create a user-driven control of a rehabilitation robot, in which the subject needs to engage actively, by using spared voluntary activation to trigger the assistance of the robot. The study investigated methods for the selective estimation of individual finger movements from high-density surface electromyographic signals (HD-sEMG) with minimal interference between movements of other fingers. Regression was evaluated in online and offline control tests with nine healthy subjects (per test) using a linear discriminant analysis classifier (LDA), a common spatial patterns proportional estimator (CSP-PE), and a thresholding (THR) algorithm. In all tests, the subjects performed an isometric force tracking task guided by a moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that should be moved. The outcome measures were mean square error (nMSE) between the reference and generated trajectories normalized to the peak-to-peak value of the reference, the classification accuracy (CA), the mean amplitude of the false activations (MAFA) and, in the offline tests only, the Pearson correlation coefficient (PCORR). The offline tests demonstrated that, for the reduced number of electrodes (≤24), the CSP-PE outperformed the LDA with higher precision of proportional estimation and less crosstalk between the movement classes (e.g., 8 electrodes, median MAFA ~ 0.6 vs. 1.1 %, median nMSE ~ 4.3 vs. 5.5 %). The LDA and the CSP-PE performed similarly in the online tests (median nMSE < 3.6 %, median MAFA < 0.7 %), but the CSP-PE provided a more stable performance across the tested conditions (less improvement between different sessions). Furthermore, THR, exploiting topographical information about the single finger

  4. THE DISTRIBUTION OF MASS SURFACE DENSITIES IN A HIGH-MASS PROTOCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Wanggi; Tan, Jonathan C.; Ma, Bo

    2016-09-20

    We study the probability distribution function (PDF) of mass surface densities, Σ, of infrared dark cloud (IRDC) G028.37+00.07 and its surrounding giant molecular cloud. This PDF constrains the physical processes, such as turbulence, magnetic fields, and self-gravity, that are expected to be controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 pc, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a “super star cluster.” We study Σ in two ways.more » First, we use a combination of NIR and MIR extinction maps that are able to probe the bulk of the cloud structure up to Σ ∼ 1 g cm{sup −2}( A {sub V}≃ 200 mag). Second, we study the FIR and submillimeter dust continuum emission from the cloud utilizing Herschel -PACS and SPIRE images and paying careful attention to the effects of foreground and background contamination. We find that the PDFs from both methods, applied over a ∼20′(30 pc)-sized region that contains ≃1.5 × 10{sup 5} M {sub ⊙} and enclosing a minimum closed contour with Σ ≃ 0.013 g cm{sup −2} ( A {sub V} ≃ 3 mag), shows a lognormal shape with the peak measured at Σ ≃ 0.021 g cm{sup −2} ( A {sub V}≃ 4.7 mag). There is tentative evidence for the presence of a high-Σ power-law tail that contains from ∼3% to 8% of the mass of the cloud material. We discuss the implications of these results for the physical processes occurring in this cloud.« less

  5. The Distribution of Mass Surface Densities in a High-mass Protocluster

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael J.

    2016-09-01

    We study the probability distribution function (PDF) of mass surface densities, Σ, of infrared dark cloud (IRDC) G028.37+00.07 and its surrounding giant molecular cloud. This PDF constrains the physical processes, such as turbulence, magnetic fields, and self-gravity, that are expected to be controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 pc, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a “super star cluster.” We study Σ in two ways. First, we use a combination of NIR and MIR extinction maps that are able to probe the bulk of the cloud structure up to Σ ˜ 1 g cm-2(A V ≃ 200 mag). Second, we study the FIR and submillimeter dust continuum emission from the cloud utilizing Herschel-PACS and SPIRE images and paying careful attention to the effects of foreground and background contamination. We find that the PDFs from both methods, applied over a ˜20‧(30 pc)-sized region that contains ≃1.5 × 105 M ⊙ and enclosing a minimum closed contour with Σ ≃ 0.013 g cm-2 (A V ≃ 3 mag), shows a lognormal shape with the peak measured at Σ ≃ 0.021 g cm-2 (A V ≃ 4.7 mag). There is tentative evidence for the presence of a high-Σ power-law tail that contains from ˜3% to 8% of the mass of the cloud material. We discuss the implications of these results for the physical processes occurring in this cloud.

  6. Uncovering the density of nanowire surface trap states hidden in the transient photoconductance.

    PubMed

    Xu, Qiang; Dan, Yaping

    2016-09-21

    The gain of nanoscale photoconductors is closely correlated with surface trap states. Mapping out the density of surface trap states in the semiconductor bandgap is crucial for engineering the performance of nanoscale photoconductors. Traditional capacitive techniques for the measurement of surface trap states are not readily applicable to nanoscale devices. Here, we demonstrate a simple technique to extract the information on the density of surface trap states hidden in the transient photoconductance that is widely observed. With this method, we found that the density of surface trap states of a single silicon nanowire is ∼10(12) cm(-2) eV(-1) around the middle of the upper half bandgap.

  7. Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced α-Chymotrypsin Structure and Activity Alterations.

    PubMed

    Zhao, Xingchen; Hao, Fang; Lu, Dawei; Liu, Wei; Zhou, Qunfang; Jiang, Guibin

    2015-08-26

    Because of the special properties of carbon nanotubes (CNTs), their applications have been introduced to many fields. The biosafety of these emerging materials is of high concern concomitantly. Because CNTs may initially bind with proteins in biofluids before they exert biological effects, it is of great importance to understand how the target proteins interact with these exogenous nanomaterials. Here we investigated the interaction between α-chymotrypsin (α-ChT) and carboxylized multiwalled CNTs in a simulated biophysical environment utilizing the techniques of fluorescence, UV-vis, circular dichroism spectroscopy, ζ potential, atomic force microscopy, and bicinchoninic acid analysis. It was demonstrated that CNTs interacted with α-ChT through electrostatic forces, causing a decrement in the α-helix and an increment in the β-sheet content of the protein. The protein fluorescence was quenched in a static mode. The increase in the surface modification density of CNTs enhanced the protein absorption and decreased the enzymatic activity correspondingly. α-ChT activity inhibition induced by CNTs with low surface modification density exhibited noncompetitive characteristics; however, a competitive feature was observed when CNTs with high surface modification density interacted with the protein. An increase of the ionic strength in the reaction buffer may help to reduce the interaction between CNTs and α-ChT because the high ionic strength may favor the release of the protein from binding on a CNT surface modified with functional groups. Accordingly, the functionalization density on the CNT surface plays an important role in the regulation of their biological effects and is worthy of concern when new modified CNTs are developed.

  8. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  9. Selectivity of conventional electrodes for recording motor evoked potentials: An investigation with high-density surface electromyography.

    PubMed

    Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne

    2017-06-01

    The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.

  10. A topological screening heuristic for low-energy, high-index surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  11. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  12. Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.

    2017-05-01

    We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.

  13. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  14. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Treesearch

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  15. Borehole density on the surface of living Porites corals as an indicator of sedimentation in Hong Kong.

    PubMed

    Xie, James Y; Wong, Jane C Y; Dumont, Clement P; Goodkin, Nathalie; Qiu, Jian-Wen

    2016-07-15

    Borehole density on the surface of Porites has been used as an indicator of water quality in the Great Barrier Reef. We assessed the relationship between borehole density on Porites and eight water quality parameters across 26 sites in Hong Kong. We found that total borehole densities on the surface of Porites at 16 of the studied sites were high (>1000individualsm(-2)), with polychaetes being the dominant bioeroders. Sedimentation rate was correlated positively with total borehole density and polychaete borehole density, with the latter relationship having a substantially higher correlation of determination. None of the environmental factors used were significantly correlated with bivalve borehole density. These results provide a baseline for assessing future changes in coral bioerosion in Hong Kong. This present study also indicates that polychaete boreholes can be used as a bioindicator of sedimentation in the South China Sea region where polychaetes are numerically dominant bioeroders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    PubMed

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  17. Modifying Current Collectors to Produce High Volumetric Energy Density and Power Density Storage Devices.

    PubMed

    Khani, Hadi; Dowell, Timothy J; Wipf, David O

    2018-06-27

    We develop zirconium-templated NiO/NiOOH nanosheets on nickel foam and polypyrrole-embedded in exfoliated carbon fiber cloth as complementary electrodes for an asymmetric battery-type supercapacitor device. We achieve high volumetric energy and power density by the modification of commercially available current collectors (CCs). The modified CCs provide the source of active material, actively participate in the charge storage process, provide a larger surface area for active material loading, need no additional binders or conductive additives, and retain the ability to act as the CC. Nickel foam (NF) CCs are modified by use of a soft-templating/solvothermal treatment to generate NiO/NiOOH nanosheets, where the NF is the source of Ni for the synthesis. Carbon-fiber cloth (CFC) CCs are modified by an electrochemical oxidation/reduction process to generate exfoliated core-shell structures (ECFC). Electropolymerization of pyrrole into the shell structure produces polypyrrole embedded in exfoliated core-shell material (PPy@rECFC). Battery-type supercapacitor devices are produced with NiO/NiOOH@NF and PPy@rECFC as positive and negative electrodes, respectively, to demonstrate the utility of this approach. Volumetric energy densities for the full-cell device are in the range of 2.60-4.12 mWh cm -3 with corresponding power densities in the range of 9.17-425.58 mW cm -3 . This is comparable to thin-film lithium-ion batteries (0.3-10 mWh cm -3 ) and better than some commercial supercapacitors (<1 mWh cm -3 ). 1 The energy and power density is impressive considering that it was calculated using the entire cell volume (active materials, separator, and both CCs). The full-cell device is highly stable, retaining 96% and 88% of capacity after 2000 and 5000 cycles, respectively. These results demonstrate the utility of directly modifying the CCs and suggest a new method to produce high volumetric energy density and power density storage devices.

  18. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.

    PubMed

    Ringeisen, Bradley R; Henderson, Emily; Wu, Peter K; Pietron, Jeremy; Ray, Ricky; Little, Brenda; Biffinger, Justin C; Jones-Meehan, Joanne M

    2006-04-15

    A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.

  19. Gurtin-Murdoch surface elasticity theory revisit: An orbital-free density functional theory perspective

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Wei, Yihai; Guo, Xu

    2017-12-01

    In the present paper, the well-established Gurtin-Murdoch theory of surface elasticity (Gurtin and Murdoch, 1975, 1978) is revisited from an orbital-free density functional theory (OFDFT) perspective by taking the boundary layer into consideration. Our analysis indicates that firstly, the quantities introduced in the Gurtin-Murdoch theory of surface elasticity can all find their explicit expressions in the derived OFDFT-based theoretical model. Secondly, the derived expression for surface energy density captures a competition between the surface normal derivatives of the electron density and the electrostatic potential, which well rationalises the onset of signed elastic constants that are observed both experimentally and computationally. Thirdly, the established model naturally yields an inversely linear relationship between the materials surface stiffness and its size, which conforms to relevant findings in literature. Since the proposed OFDFT-based model is established under arbitrarily imposed boundary condition of electron density, electrostatic potential and external load, it also has the potential of being used to investigate the electro-mechanical behaviour of nanoscale materials manifesting surface effect.

  20. High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors

    DOEpatents

    Kreiskott, Sascha [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Arendt, Paul N [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM; Bronisz, Lawrence E [Los Alamos, NM

    2009-03-31

    A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.

  1. High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction.

    PubMed

    Saberi Safaei, Tina; Mepham, Adam; Zheng, Xueli; Pang, Yuanjie; Dinh, Cao-Thang; Liu, Min; Sinton, David; Kelley, Shana O; Sargent, Edward H

    2016-11-09

    Conversion of CO 2 to CO powered by renewable electricity not only reduces CO 2 pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO 2 reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures. The high local electric field enhances CO 2 concentration at the catalytic active sites, lowering the activation barrier. Here we engineer the nucleation and growth of next-generation Au nanostructures. The electroplating overpotential was manipulated to generate an appreciably increased density of honed nanoneedles. Using this approach, we report the first application of sequential electrodeposition to increase the density of sharp tips in CO 2 electroreduction. Selective regions of the primary nanoneedles are passivated using a thiol SAM (self-assembled monolayer), and then growth is concentrated atop the uncovered high-energy planes, providing new nucleation sites that ultimately lead to an increase in the density of the nanosharp structures. The two-step process leads to a new record in CO 2 to CO reduction, with a geometric current density of 38 mA/cm 2 at -0.4 V (vs reversible hydrogen electrode), and a 15-fold improvement over the best prior reports of electrochemical surface area (ECSA) normalized current density.

  2. Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors.

    PubMed

    Zang, Xining; Shen, Caiwei; Kao, Emmeline; Warren, Roseanne; Zhang, Ruopeng; Teh, Kwok Siong; Zhong, Junwen; Wei, Minsong; Li, Buxuan; Chu, Yao; Sanghadasa, Mohan; Schwartzberg, Adam; Lin, Liwei

    2018-02-01

    While electrochemical supercapacitors often show high power density and long operation lifetimes, they are plagued by limited energy density. Pseudocapacitive materials, in contrast, operate by fast surface redox reactions and are shown to enhance energy storage of supercapacitors. Furthermore, several reported systems exhibit high capacitance but restricted electrochemical voltage windows, usually no more than 1 V in aqueous electrolytes. Here, it is demonstrated that vertically aligned carbon nanotubes (VACNTs) with uniformly coated, pseudocapacitive titanium disulfide (TiS 2 ) composite electrodes can extend the stable working range to over 3 V to achieve a high capacitance of 195 F g -1 in an Li-rich electrolyte. A symmetric cell demonstrates an energy density of 60.9 Wh kg -1 -the highest among symmetric pseudocapacitors using metal oxides, conducting polymers, 2D transition metal carbides (MXene), and other transition metal dichalcogenides. Nanostructures prepared by an atomic layer deposition/sulfurization process facilitate ion transportation and surface reactions to result in a high power density of 1250 W kg -1 with stable operation over 10 000 cycles. A flexible solid-state supercapacitor prepared by transferring the TiS 2 -VACNT composite film onto Kapton tape is demonstrated to power a 2.2 V light emitting diode (LED) for 1 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhi, Mingjia; Manivannan, Ayyakkannu; Meng, Fanke; Wu, Nianqiang

    2012-06-01

    This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 F g-1 for the whole electrode and 900 F g-1 for the MnO2 shell at a scan rate of 2 mV s-1. Good cycling stability, high energy density (80.2 Wh kg-1) and high power density (57.7 kW kg-1) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors.

  4. Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.

    PubMed

    Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R

    2013-07-01

    The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.

  5. Nanosilver particle formation on a high surface area titanate.

    PubMed

    Shi, Meng; Lin, Christopher C H; Wu, Lan; Holt, Christopher M B; Mitlin, David; Kuznicki, Steven M

    2010-12-01

    Titanium based molecular sieves, such as ETS-10, have the ability to exchange silver ions and subsequently support self assembly of stable silver nanoparticles when heated. We report that a high surface area sodium titanate (resembling ETS-2) displays a similar ability to self template silver nanoparticles on its surface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show high concentrations of silver nanoparticles on the surface of this sodium titanate, formed by thermal reduction of exchanged silver cations. The nanoparticles range in size from 4 to 12 nm, centered at around 6 nm. In addition to SEM and TEM, XRD and surface area analysis were used to characterize the material. The results indicate that this sodium titanate has a high surface area (>263 m2/g), and high ion exchange capacity for silver (30+ wt%) making it an excellent substrate for the exchange and generation of uniform, high-density silver nanoparticles.

  6. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  7. Density-functional calculations of the surface tension of liquid Al and Na

    NASA Technical Reports Server (NTRS)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  8. Hydroetching of high surface area ceramics using moist supercritical fluids

    DOEpatents

    Fryxell, Glen; Zemanian, Thomas S.

    2004-11-02

    Aerogels having a high density of hydroxyl groups and a more uniform pore size with fewer bottlenecks are described. The aerogel is exposed to a mixture of a supercritical fluid and water, whereupon the aerogel forms a high density of hydroxyl groups. The process also relaxes the aerogel into a more open uniform internal structure, in a process referred to as hydroetching. The hydroetching process removes bottlenecks from the aerogels, and forms the hydrogels into more standard pore sizes while preserving their high surface area.

  9. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  10. Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qizheng; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City 315016; State Key Lab of New Fine Ceramics and Fine Processing, Tsinghua University, Beijing City 100084

    2016-08-22

    Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm withmore » the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.« less

  11. A promising high-energy-density material.

    PubMed

    Zhang, Wenquan; Zhang, Jiaheng; Deng, Mucong; Qi, Xiujuan; Nie, Fude; Zhang, Qinghua

    2017-08-03

    High-energy density materials represent a significant class of advanced materials and have been the focus of energetic materials community. The main challenge in this field is to design and synthesize energetic compounds with a highest possible density and a maximum possible chemical stability. Here we show an energetic compound, [2,2'-bi(1,3,4-oxadiazole)]-5,5'-dinitramide, is synthesized through a two-step reaction from commercially available reagents. It exhibits a surprisingly high density (1.99 g cm -3 at 298 K), poor solubility in water and most organic solvents, decent thermal stability, a positive heat of formation and excellent detonation properties. The solid-state structural features of the synthesized compound are also investigated via X-ray diffraction and several theoretical techniques. The energetic and sensitivity properties of the explosive compound are similar to those of 2, 4, 6, 8, 10, 12-(hexanitrohexaaza)cyclododecane (CL-20), and the developed compound shows a great promise for potential applications as a high-energy density material.High energy density materials are of interest, but density is the limiting factor for many organic compounds. Here the authors show the formation of a high density energetic compound from a two-step reaction between commercially available compounds that exhibit good heat thermal stability and detonation properties.

  12. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  13. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.

    PubMed

    Liu, Kai; Bai, Yaocai; Zhang, Lei; Yang, Zhongbo; Fan, Qikui; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-06-08

    Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications.

  14. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    NASA Astrophysics Data System (ADS)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  15. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface.

    PubMed

    Cha, Kyoung Je; Kong, Sun-Young; Lee, Ji Soo; Kim, Hyung Woo; Shin, Jae-Yeon; La, Moonwoo; Han, Byung Woo; Kim, Dong Sung; Kim, Hyun-Jung

    2017-10-12

    Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.

  16. High density dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, G.L.

    1996-09-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm{sup 3} of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm{sup {minus}3} with U{sub 3}Si{sub 2} as fuel. High-density uranium compounds offer no real density advantage over U{sub 3}Si{sub 2} and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U{sub 3}Si has approximately a 30% higher uranium density but the density of the U{sub 6}X compounds would yield the factormore » 1.5 needed to achieve 9 g cm{sup {minus}3} uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure {alpha}-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic {gamma} phase at low temperatures where normally {alpha} phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing.« less

  17. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  18. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    PubMed

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-09

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  19. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model*

    PubMed Central

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-01-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host

  20. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model.

    PubMed

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-04-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host

  1. Internal processes affecting surfaces of low-density satellites - Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Head, J. W.

    1979-01-01

    Possible significant physical processes on low-density (icy) satellites, particularly Ganymede and Callisto, are outlined, and the relations of these interior processes to the formation and evolution of satellite surfaces are discussed. A variety of mechanisms is shown to lead to interior melting in early satellite history and a configuration characterized by a predominantly water ice lithosphere overlying a mantle containing liquid water. Physical processes capable of affecting the lithosphere of an ice-silicate body and thus creating observable surface features are assessed, including tectonic stresses from tidal deformation and volume changes, gravitational effects on density differences and water volcanism. The residence time of surface features on icy bodies produced by the outlined processes and by impact cratering is considered, and a tentative outline of the geologic history of Ganymede and Callisto is presented. Observations from Voyager and Galileo are expected to provide evidence on the evolution and geologic history of low-density satellites.

  2. Size-Dependency of the Surface Ligand Density of Liposomes Prepared by Post-insertion.

    PubMed

    Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi

    2017-01-01

    In the active targeting of a drug delivery system (DDS), the density of the ligand on the functionalized liposome determines its affinity for binding to the target. To evaluate these densities on the surface of different sized liposomes, 4 liposomes with various diameters (188, 137, 70, 40 nm) were prepared and their surfaces were modified with fluorescently labeled ligand-lipid conjugates by the post-insertion method. Each liposomal mixture was fractionated into a series of fractions using size exclusion chromatography (SEC), and the resulting liposome fractions were precisely analyzed and the surface ligand densities calculated. The data collected using this methodology indicate that the density of the ligand on a particle is greatly dependent on the size of the liposome. This, in turn, indicates that smaller liposomes (75-40 nm) tend to possess higher densities. For developing active targeting systems, size and the density of the ligands are two important and independent factors that can affect the efficiency of a system as it relates to medical use.

  3. From density to interface fluctuations: The origin of wavelength dependence in surface tension

    NASA Astrophysics Data System (ADS)

    Hiester, Thorsten

    2008-12-01

    The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension γ(q) can be defined and expressed in terms of the direct correlation function c(r,r') , the equilibrium density profile ρ0(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or γ(q) , respectively. This result generalizes the Mecke-Dietrich surface tension γMD(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning γMD(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].

  4. Experimental design to generate strong shear layers in a high-energy-density plasma

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Gillespie, R. S.; Grosskopf, M. J.; Weaver, J. L.; Velikovich, A. L.; Visco, A.; Ditmar, J. R.

    2010-06-01

    The development of a new experimental system for generating a strong shear flow in a high-energy-density plasma is described in detail. The targets were designed with the goal of producing a diagnosable Kelvin-Helmholtz (KH) instability, which plays an important role in the transition turbulence but remains relatively unexplored in the high-energy-density regime. To generate the shear flow the Nike laser was used to drive a flow of Al plasma over a low-density foam surface with an initial perturbation. The interaction of the Al and foam was captured with a spherical crystal imager using 1.86 keV X-rays. The selection of the individual targets components is discussed and results are presented.

  5. High-Density Stretchable Electrode Grids for Chronic Neural Recording

    PubMed Central

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F.; Buzsáki, György; Vörös, János

    2018-01-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. PMID:29488263

  6. STIR Proposal For Research Area 2.1.2 Surface Energy Balance: Transient Soil Density Impacts Land Surface Characteristics and Characterization

    DTIC Science & Technology

    2015-12-22

    not shown). The relatively small differences were likely associated with differences in surface albedo and longwave radiation from soil surface. Ground...SECURITY CLASSIFICATION OF: Soil density is commonly treated as static in studies on land surface property dynamics. Magnitudes of errors associated...with this assumption are largely unknown. Objectives of this preliminary investigation were to: i) quantify effects of soil density variation on soil

  7. Interfacially Optimized, High Energy Density Nanoparticle-Polymer Composites for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas

    Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).

  8. Low-mode internal tides and balanced dynamics disentanglement in altimetric observations: Synergy with surface density observations

    NASA Astrophysics Data System (ADS)

    Ponte, Aurélien L.; Klein, Patrice; Dunphy, Michael; Le Gentil, Sylvie

    2017-03-01

    The performance of a tentative method that disentangles the contributions of a low-mode internal tide on sea level from that of the balanced mesoscale eddies is examined using an idealized high resolution numerical simulation. This disentanglement is essential for proper estimation from sea level of the ocean circulation related to balanced motions. The method relies on an independent observation of the sea surface water density whose variations are 1/dominated by the balanced dynamics and 2/correlate with variations of potential vorticity at depth for the chosen regime of surface-intensified turbulence. The surface density therefore leads via potential vorticity inversion to an estimate of the balanced contribution to sea level fluctuations. The difference between instantaneous sea level (presumably observed with altimetry) and the balanced estimate compares moderately well with the contribution from the low-mode tide. Application to realistic configurations remains to be tested. These results aim at motivating further developments of reconstruction methods of the ocean dynamics based on potential vorticity dynamics arguments. In that context, they are particularly relevant for the upcoming wide-swath high resolution altimetric missions (SWOT).

  9. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography

    PubMed Central

    Botter, Alberto; Bourguignon, Mathieu; Jousmäki, Veikko; Hari, Riitta

    2015-01-01

    Cortex-muscle coherence (CMC) reflects coupling between magnetoencephalography (MEG) and surface electromyography (sEMG), being strongest during isometric contraction but absent, for unknown reasons, in some individuals. We used a novel nonmagnetic high-density sEMG (HD-sEMG) electrode grid (36 mm × 12 mm; 60 electrodes separated by 3 mm) to study effects of sEMG recording site, electrode derivation, and rectification on the strength of CMC. Monopolar sEMG from right thenar and 306-channel whole-scalp MEG were recorded from 14 subjects during 4-min isometric thumb abduction. CMC was computed for 60 monopolar, 55 bipolar, and 32 Laplacian HD-sEMG derivations, and two derivations were computed to mimic “macroscopic” monopolar and bipolar sEMG (electrode diameter 9 mm; interelectrode distance 21 mm). With unrectified sEMG, 12 subjects showed statistically significant CMC in 91–95% of the HD-sEMG channels, with maximum coherence at ∼25 Hz. CMC was about a fifth stronger for monopolar than bipolar and Laplacian derivations. Monopolar derivations resulted in most uniform CMC distributions across the thenar and in tightest cortical source clusters in the left rolandic hand area. CMC was 19–27% stronger for HD-sEMG than for “macroscopic” monopolar or bipolar derivations. EMG rectification reduced the CMC peak by a quarter, resulted in a more uniformly distributed CMC across the thenar, and provided more tightly clustered cortical sources than unrectifed sEMGs. Moreover, it revealed CMC at ∼12 Hz. We conclude that HD-sEMG, especially with monopolar derivation, can facilitate detection of CMC and that individual muscle anatomy cannot explain the high interindividual CMC variability. PMID:26354317

  10. Evaluation of normal swallowing functions by using dynamic high-density surface electromyography maps.

    PubMed

    Zhu, Mingxing; Yu, Bin; Yang, Wanzhang; Jiang, Yanbing; Lu, Lin; Huang, Zhen; Chen, Shixiong; Li, Guanglin

    2017-11-21

    Swallowing is a continuous process with substantive interdependencies among different muscles, and it plays a significant role in our daily life. The aim of this study was to propose a novel technique based on high-density surface electromyography (HD sEMG) for the evaluation of normal swallowing functions. A total of 96 electrodes were placed on the front neck to acquire myoelectric signals from 12 healthy subjects while they were performing different swallowing tasks. HD sEMG energy maps were constructed based on the root mean square values to visualize muscular activities during swallowing. The effects of different volumes, viscosities, and head postures on the normal swallowing process were systemically investigated by using the energy maps. The results showed that the HD sEMG energy maps could provide detailed spatial and temporal properties of the muscle electrical activity, and visualize the muscle contractions that closely related to the swallowing function. The energy maps also showed that the swallowing time and effort was also explicitly affected by the volume and viscosity of the bolus. The concentration of the muscular activities shifted to the opposite side when the subjects turned their head to either side. The proposed method could provide an alternative method to physiologically evaluate the dynamic characteristics of normal swallowing and had the advantage of providing a full picture of how different muscle activities cooperate in time and location. The findings from this study suggested that the HD sEMG technique might be a useful tool for fast screening and objective assessment of swallowing disorders or dysphagia.

  11. Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria.

    PubMed

    Hassan, Marwa M; Ranzoni, Andrea; Phetsang, Wanida; Blaskovich, Mark A T; Cooper, Matthew A

    2017-02-15

    Many bacterial pathogens have now acquired resistance toward commonly used antibiotics, such as the glycopeptide antibiotic vancomycin. In this study, we show that immobilization of vancomycin onto a nanometer-scale solid surface with controlled local density can potentiate antibiotic action and increase target affinity of the drug. Magnetic nanoparticles were conjugated with vancomycin and used as a model system to investigate the relationship between surface density and drug potency. We showed remarkable improvement in minimum inhibitory concentration against vancomycin-resistant strains with values of 13-28 μg/mL for conjugated vancomycin compared to 250-4000 μg/mL for unconjugated vancomycin. Higher surface densities resulted in enhanced affinity toward the bacterial target compared to that of unconjugated vancomycin, as measured by a competition experiment using a surrogate ligand for bacterial Lipid II, N-Acetyl-l-Lys-d-Ala-d-Ala. High density vancomycin nanoparticles required >64 times molar excess of ligand (relative to the vancomycin surface density) to abrogate antibacterial activity compared to only 2 molar excess for unconjugated vancomycin. Further, the drug-nanoparticle conjugates caused rapid permeabilization of the bacterial cell wall within 2 h, whereas no effect was seen with unconjugated vancomycin, suggesting additional modes of action for the nanoparticle-conjugated drug. Hence, immobilization of readily available antibiotics on nanocarriers may present a general strategy for repotentiating drugs that act on bacterial membranes or membrane-bound targets but have lost effectiveness against resistant bacterial strains.

  12. Effect of surface charge density on the affinity of oxide nanoparticles for the vapor-water interface.

    PubMed

    Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen

    2013-04-23

    Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

  13. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    PubMed

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  14. Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke

    2018-04-01

    The surface density of protoplanetary disks is a fundamental parameter that still remains largely unconstrained due to uncertainties in the dust-to-gas ratio and CO abundance. In this talk I will present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. I will provide an initial proof of concept of our model through an application to the disk TW Hya where we are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. Using this method we derive disks that may be much more massive than previously thought, often approaching the limit of gravitational stability.

  15. On the dependence of charge density on surface curvature of an isolated conductor

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kolahal

    2016-03-01

    A study of the relation between the electrostatic charge density at a point on a conducting surface and the curvature of the surface (at that point) is presented. Two major papers in the scientific literature on this topic are reviewed and the apparent discrepancy between them is resolved. Hence, a step is taken towards obtaining a general analytic formula for relating the charge density with surface curvature of conductors. The merit of this formula and its limitations are discussed.

  16. High Density Diffusion-Free Nanowell Arrays

    PubMed Central

    Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter

    2012-01-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968

  17. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.

    2015-11-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.

  18. Near Surface Stoichiometry in UO 2 : A Density Functional Theory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-01-01

    The mechanisms of oxygen stoichiometry variation in UO 2at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variationmore » is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  19. Near surface stoichiometry in UO 2: A density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-08-01

    The mechanisms of oxygen stoichiometry variation in UO 2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the nearmore » surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  20. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.

    PubMed

    Ku, Bon Ki; Evans, Douglas E

    2012-04-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density

  1. High Density Waves of the Bacterium Pseudomonas aeruginosa in Propagating Swarms Result in Efficient Colonization of Surfaces

    PubMed Central

    Du, Huijing; Xu, Zhiliang; Anyan, Morgen; Kim, Oleg; Leevy, W. Matthew; Shrout, Joshua D.; Alber, Mark

    2012-01-01

    This work describes a new, to our knowledge, strategy of efficient colonization and community development where bacteria substantially alter their physical environment. Many bacteria move in groups, in a mode described as swarming, to colonize surfaces and form biofilms to survive external stresses, including exposure to antibiotics. One such bacterium is Pseudomonas aeruginosa, which is an opportunistic pathogen responsible for both acute and persistent infections in susceptible individuals, as exampled by those for burn victims and people with cystic fibrosis. Pseudomonas aeruginosa often, but not always, forms branched tendril patterns during swarming; this phenomena occurs only when bacteria produce rhamnolipid, which is regulated by population-dependent signaling called quorum sensing. The experimental results of this work show that P. aeruginosa cells propagate as high density waves that move symmetrically as rings within swarms toward the extending tendrils. Biologically justified cell-based multiscale model simulations suggest a mechanism of wave propagation as well as a branched tendril formation at the edge of the population that depends upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. Therefore, P. aeruginosa efficiently colonizes surfaces by controlling the physical forces responsible for expansion of thin liquid film and by propagating toward the tendril tips. The model predictions of wave speed and swarm expansion rate as well as cell alignment in tendrils were confirmed experimentally. The study results suggest that P. aeruginosa responds to environmental cues on a very short timescale by actively exploiting local physical phenomena to develop communities and efficiently colonize new surfaces. PMID:22947877

  2. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  3. Capillary waves and the decay of density correlations at liquid surfaces

    NASA Astrophysics Data System (ADS)

    Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro

    2016-12-01

    Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.

  4. Simultaneous solution of the geoid and the surface density anomalies

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.

    2012-04-01

    The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed

  5. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  6. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application

    DOE PAGES

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; ...

    2015-11-24

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87%more » when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. Finally, the combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.« less

  7. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  8. Regulation of Kv2.1 K+ conductance by cell surface channel density

    PubMed Central

    Fox, Philip D.; Loftus, Rob J.; Tamkun, Michael M.

    2013-01-01

    The Kv2.1 voltage-gated K+ channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are non-conducting. Using TIRF microscopy the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared to K+ channel conductance measured by whole-cell voltage-clamp of the same cell. This approach indicated that as channel density increases non-clustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the non-conducting state with 17% conducting K+ at higher surface densities. The non-conducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immuno-fluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared to the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 days, respectively. Together these data indicate that the non-conducting state depends primarily on surface density as opposed to cluster location and that this non-conducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K+ conductance further supports a non-conducting role for Kv2.1 in excitable tissues. PMID:23325261

  9. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    PubMed

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optical Coherence Tomography Identifies Lower Labial Salivary Gland Surface Density in Cystic Fibrosis

    PubMed Central

    Nowak, Jan K.; Grulkowski, Ireneusz; Karnowski, Karol; Wojtkowski, Maciej; Walkowiak, Jaroslaw

    2015-01-01

    The labial minor salivary glands (LSGs) are easily accessible mucus-secreting structures of the alimentary tract that may provide new information on the basis of gastrointestinal complications of cystic fibrosis (CF). It was shown that they are destructed in the course of cystic fibrosis. We employed wide-field, micrometer resolution in vivo optical coherence tomography to assess the surface density of LSGs in 18 patients with CF and 18 healthy subjects. The median LSGs’ surface densities in CF patients, and in the control group were 4.32 glands/cm2 and 6.58 glands/cm2, respectively (p = 0.006; Mann-Whitney U test). A lower LSG surface density is a previously unrecognized CF-related pathology of the alimentary tract. PMID:25622042

  11. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low thatmore » a large proportion of the substrate surface is bare.« less

  12. Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.

    2016-12-01

    We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.

  13. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  14. High-speed digital holography for neutral gas and electron density imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granstedt, E. M., E-mail: egranstedt@gmail.com; Thomas, C. E.; Kaita, R.

    2016-05-15

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO{sub 2} laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1–25 μs pulses from a continuous-wave CO{sub 2} laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfullymore » reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations.« less

  15. High density diffusion-free nanowell arrays.

    PubMed

    Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter

    2012-08-03

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.

  16. Surface electrochemical properties of red mud (bauxite residue): zeta potential and surface charge density.

    PubMed

    Liu, Yanju; Naidu, Ravendra; Ming, Hui

    2013-03-15

    The surface electrochemical properties of red mud (bauxite residue) from different alumina refineries in Australia and China were studied by electrophoresis and measuring surface charge density obtained from acid/base potentiometric titrations. The electrophoretic properties were measured from zeta potentials obtained in the presence of 0.01 and 0.001 M KNO(3) over a wide pH range (3.5-10) by titration. The isoelectric point (IEP) values were found to vary from 6.35 to 8.70 for the red mud samples. Further investigation into the surface charge density of one sample (RRM) by acid/base potentiometric titration showed similar results for pH(PZC) with pH(IEP) obtained from electrokinetic measurements. The pH(IEP) determined from zeta potential measurements can be used as a characteristic property of red mud. The minerals contained in red mud contributed to the different values of pH(IEP) of samples obtained from different refineries. Different relationships of pH(IEP) with Al/Fe and Al/Si ratios (molar basis) were also found for different red mud samples. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Variability in goethite surface site density: evidence from proton and carbonate sorption.

    PubMed

    Villalobos, Mario; Trotz, Maya A; Leckie, James O

    2003-12-15

    Goethite is a representative iron oxide in natural environments due to its abundance and thermodynamic stability and may be responsible for many surface-mediated processes, including ion retention and mobility in aqueous settings. A large variability in morphologies and specific surface areas of goethite crystals exists but little work has been done to compare surface reactivity between them. The present work offers experimental evidence for the existence of an inverse relationship between sorption capacity for protons and carbonate ions and specific surface area of goethite for three synthetic goethite preparations spanning surface area differences by a factor of 2. An explanation for this was found by assuming a variable reactive site density between preparations in direct relationship to their sorption capacity based on congruency of carbonate sorption computed on a per-site basis. Previous evidence of maximum sorption capacities supports this explanation, and site density ratios between the goethites studied here were obtained. Triple layer surface complexation modeling was successful in describing adsorption data for all goethite preparations using equal stoichiometries. A new formulation of standard state for activities of surface species based on a 1.0 mole fraction of sites on the solid allowed transformation of the conventional molar concentration-based affinity constants to values based on site occupancy. In this fashion, by applying the appropriate site density ratios, a single set of affinity constant values was found that described accurately the adsorption data for all preparations.

  18. Near-surface bulk densities of asteroids derived from dual-polarization radar observations

    NASA Astrophysics Data System (ADS)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.

    2017-09-01

    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  19. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    PubMed

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  20. Determination of the density of surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyamov, G., E-mail: Gulyamov1949@rambler.ru; Sharibaev, N. U.

    2011-02-15

    The temporal dependence of thermal generation of electrons from occupied surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure is studied. It is established that, at low temperatures, the derivative of the probability of depopulation of occupied surface states with respect to energy is represented by the Dirac {delta} function. It is shown that the density of states of a finite number of discrete energy levels under high-temperature measurements manifests itself as a continuous spectrum, whereas this spectrum appears discrete at low temperatures. A method for processing the continuous spectrum of the density of surface states is suggested thatmore » method makes it possible to determine the discrete energy spectrum. The obtained results may be conducive to an increase in resolution of the method of non-stationary spectroscopy of surface states.« less

  1. Microelectromechanical high-density energy storage/rapid release system

    NASA Astrophysics Data System (ADS)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  2. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    PubMed

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  3. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  4. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  5. Durable High-Density Data Storage

    NASA Technical Reports Server (NTRS)

    Lamartine, Bruce C.; Stutz, Roger A.

    1996-01-01

    The focus ion beam (FIB) micromilling process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate that the useful life of data written on silicon or gold-coated silicon to be on the order of a few thousand years without the need to rewrite the data every few years. The process uses an ion beam to carve material from the surface, much like stone cutters in ancient civilizations removed material from stone. The deeper the information is carved into the media, the longer the expected life of the information. The process can record information in three formats: (1) binary at densities of 23 Gbits/square inch, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus, it is possible to record, in a human-viewable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the remaining higher density information.

  6. Silane coupling agent bearing a photoremovable succinimidyl carbonate for patterning amines on glass and silicon surfaces with controlled surface densities.

    PubMed

    Nakayama, Hidekazu; Nakanishi, Jun; Shimizu, Takahiro; Yoshino, Yutaro; Iwai, Hideo; Kaneko, Shingo; Horiike, Yasuhiro; Yamaguchi, Kazuo

    2010-03-01

    Patterned immobilization of synthetic and biological ligands on material surfaces with controlled surface densities is important for various bioanalytical and cell biological purposes. This paper describes the synthesis, characterization, and application of a novel silane coupling agent bearing a photoremovable succinimidyl carbonate, which enables the photopatterning of various primary amines on glass and silicon surfaces. The silane coupling agent is 1-[5-methoxy-2-nitro-4-(3-trimethoxysilylpropyloxy)phenyl]ethyl N-succinimidyl carbonate. The distinct feature of this molecule is that it has a photocleavable 2-nitrobenzyl switch between a trimethoxysilyl group and a succinimidyl carbonate, each reactive to the hydroxy groups of inorganic oxides and primary amines. Based on this molecular design, the compound allows for the one-step introduction of succinimidyl carbonates onto the surface of glass and silicon, immobilization of primary amines, and region-selective and dose-dependent release of the amines by near-UV irradiation. Therefore, we were able to pattern amine ligands on the substrates in given surface densities and arbitrary geometries by controlling the doses and regions of photoirradiation. These features were verified by UV-vis spectroscopy, contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM). The compound was applied to form a chemical density gradient of amino-biotin on a silicon substrate in a range of 0.87-0.12 chains/nm(2) by controlling photoirradiation under a standard fluorescence microscope. Furthermore, we also succeeded in forming a chemical density gradient at a lower surface density range (0.15-0.011 chains/nm(2)) on the substrate by diluting the feed amino-biotin with an inert control amine.

  7. Analysis by oxygen atom number density measurement of high-speed hydrophilic treatment of polyimide using atmospheric pressure microwave plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, S.

    2015-03-30

    This paper describes the fundamental experimental data of the plasma surface modification of the polyimide using atmospheric pressure microwave plasma source. The experimental results were discussed from the point of view of the radical’s behavior, which significantly affects the modification mechanism. The purpose of the study is to examine how the value of the oxygen atom density will affect the hydrophilic treatment in the upstream region of the plasma where gas temperature is very high. The surface modification experiments were performed by setting the polyimide film sample in the downstream region of the plasma. The degree of the modification wasmore » measured by a water contact angle measurement. The water contact angle decreased less than 30 degrees within 1 second treatment time in the upstream region. Very high speed modification was observed. The reason of this high speed modification seems that the high density radical which contributes the surface modification exist in the upstream region of the plasma. This tendency is supposed to the measured relatively high electron density (~10{sup 15}cm{sup −3}) at the center of the plasma. We used the electric heating catalytic probe method for oxygen radical measurement. An absolute value of oxygen radical density was determined by catalytic probe measurement and the results show that ~10{sup 15}cm{sup −3} of the oxygen radical density in the upstream region and decreases toward downstream region. The experimental results of the relation of the oxygen radical density and hydrophilic modification of polyimide was discussed.« less

  8. Complete reduction of high-density UO2 to metallic U in molten Li2O-LiCl

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Lee, Jeong

    2017-10-01

    The large size and high density of spent fuel pellets make it difficult to use the pellets directly in electrolytic reduction (also called as oxide reduction, OR) for pyroprocessing owing to the slow diffusion of molten Li2O-LiCl salt electrolyte into the pellets. In this study, we investigated complete OR of high-density UO2 to metallic U without any remaining UO2. Only partial reductions near the surface of high-density UO2 pellets were observed under operation conditions employing fast electrolysis rate that allowed previously complete reduction of low-density UO2 pellets. Complete reduction of high-density UO2 pellets was observed at fast electrolysis rate when the pellet size was reduced. The complete reduction of high-density UO2 pellets without size reduction was achieved at slow electrolysis rate, which allowed sufficient chemical reduction of UO2 with the lithium metal generated by the cathode reaction.

  9. The evolution equation for the flame surface density in turbulent premixed combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Poinsot, T.

    1992-01-01

    One central ingredient in flamelet models for turbulent premixed combustion is the flame surface density. This quantity conveys most of the effects of the turbulence on the rate of energy release and is obtained via a modeled transport equation, called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact, but unclosed, formulation for the turbulent Sigma-equation. In this exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the flame surface density and the turbulent flame stretch are not available from experiments and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the obvious, complementary approach to get basic information on these fundamental quantities. Three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, the effects of the Lewis number on the rate of production of flame surface area are described in great detail and meaningful comparisons with flamelet models can be performed. The analysis reveals in particular the tendency of the models to overpredict flame surface dissipation as well as their inability to reproduce variations due to thermo-diffusive phenomena. Thanks to the detailed information produced by a DNS-based analysis, this type of comparison not only underscores the shortcomings of current models but also suggests ways to improve them.

  10. Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight.

    PubMed

    Heinen, Silke; Weinhart, Marie

    2017-03-07

    For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 R g /l) of the latter coating was found to be lower than 1

  11. X-Ray Fluorescence Determination of the Surface Density of Chromium Nanolayers

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Chernjaeva, E. A.; Tumanova, A. N.; Ershov, A. A.

    2014-01-01

    An auxiliary system consisting of thin-film layers of chromium deposited on a polymer film substrate is used to construct calibration curves for the relative intensities of the K α lines of chromium on bulk substrates of different elements as functions of the chromium surface density in the reference samples. Correction coefficients are calculated to take into account the absorption of primary radiation from an x-ray tube and analytical lines of the constituent elements of the substrate. A method is developed for determining the surface density of thin films of chromium when test and calibration samples are deposited on substrates of different materials.

  12. Toward the Limits of Uniformity of Mixed Metallicity SWCNT TFT Arrays with Spark-Synthesized and Surface-Density-Controlled Nanotube Networks.

    PubMed

    Kaskela, Antti; Mustonen, Kimmo; Laiho, Patrik; Ohno, Yutaka; Kauppinen, Esko I

    2015-12-30

    We report the fabrication of thin film transistors (TFTs) from networks of nonbundled single-walled carbon nanotubes with controlled surface densities. Individual nanotubes were synthesized by using a spark generator-based floating catalyst CVD process. High uniformity and the control of SWCNT surface density were realized by mixing of the SWCNT aerosol in a turbulent flow mixer and monitoring the online number concentration with a condensation particle counter at the reactor outlet in real time. The networks consist of predominantly nonbundled SWCNTs with diameters of 1.0-1.3 nm, mean length of 3.97 μm, and metallic to semiconducting tube ratio of 1:2. The ON/OFF ratio and charge carrier mobility of SWCNT TFTs were simultaneously optimized through fabrication of devices with SWCNT surface densities ranging from 0.36 to 1.8 μm(-2) and channel lengths and widths from 5 to 100 μm and from 100 to 500 μm, respectively. The density optimized TFTs exhibited excellent performance figures with charge carrier mobilities up to 100 cm(2) V(-1) s(-1) and ON/OFF current ratios exceeding 1 × 10(6), combined with high uniformity and more than 99% of devices working as theoretically expected.

  13. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  14. Plasma modification of sisal and high-density polyethylene composites : effect on mechanical properties

    Treesearch

    A.R. Martin; S. Manolache; L.H.C. Mattoso; R.M. Rowell; F. Denes

    2000-01-01

    Sisal fibers and finely powdered high-density polyethylene were surface functionalized using dichlorosilane (DS) under R-F plasma conditions to improve interfacial adhesion between the two dissimilar substrates. The functionalized polyethylene (70%) and sisal (30%) were compounded on four different ways using thermokinetic mixer and injected molded into composites...

  15. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    PubMed

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  16. “Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- T c superconductors

    DOE PAGES

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d -wave nodal lines (nodal gap) contrasts the common understanding of the d -wave pairing symmetry, which challenges the present theories for the high- T c superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high- T c superconductors.« less

  17. Isotopic tracing for calculating the surface density of arginine-glycine-aspartic acid-containing peptide on allogeneic bone.

    PubMed

    Hou, Xiao-bin; Hu, Yong-cheng; He, Jin-quan

    2013-02-01

    To investigate the feasibility of determining the surface density of arginine-glycine-aspartic acid (RGD) peptides grafted onto allogeneic bone by an isotopic tracing method involving labeling these peptides with (125) I, evaluating the impact of the input concentration of RGD peptides on surface density and establishing the correlation between surface density and their input concentration. A synthetic RGD-containing polypeptide (EPRGDNYR) was labeled with (125) I and its specific radioactivity calculated. Reactive solutions of RGD peptide with radioactive (125) I-RGD as probe with input concentrations of 0.01 mg/mL, 0.10 mg/mL, 0.50 mg/mL, 1.00 mg/mL, 2.00 mg/mL and 4.00 mg/mL were prepared. Using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a cross-linking agent, reactions were induced by placing allogeneic bone fragments into reactive solutions of RGD peptide of different input concentrations. On completion of the reactions, the surface densities of RGD peptides grafted onto the allogeneic bone fragments were calculated by evaluating the radioactivity and surface areas of the bone fragments. The impact of input concentration of RGD peptides on surface density was measured and a curve constructed. Measurements by a radiodensity γ-counter showed that the RGD peptides had been labeled successfully with (125) I. The allogeneic bone fragments were radioactive after the reaction, demonstrating that the RGD peptides had been successfully grafted onto their surfaces. It was also found that with increasing input concentration, the surface density increased. It was concluded that the surface density of RGD peptides is quantitatively related to their input concentration. With increasing input concentration, the surface density gradually increases to saturation value. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  18. Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering

    Treesearch

    Nicole M. Stark; Laurent M. Matuana

    2004-01-01

    Although wood–plastic composites have become more accepted and used in recent years and are promoted as low-maintenance, high-durability building products, they do experience a color change and a loss in mechanical properties with accelerated weathering. In this study, we attempted to characterize the modulus-of-elasticity (MOE) loss of photostabilized high- density...

  19. High crustal density at Mafic Mound in South Pole-Aitken Basin

    NASA Astrophysics Data System (ADS)

    James, P. B.; Kiefer, W. S.

    2017-12-01

    The bulk density of a planetary surface is dependent on the porosity and composition of the crust, which are quantities of interest for exploration as well as science. We present new methods for characterizing noise in gravity data, which allow us to include more high-degree data, reduce uncertainties, and resolve smaller features. We apply these methods to an enigmatic geologic complex in the lunar South Pole-Aitken basin called "Mafic Mound". We studied Mafic Mound using GRAIL gravity [1] and the predicted gravity from a LOLA lunar shape model ("gravity-from-topography"), and these datasets are tapered within a 50-km radius. We apply a spectral taper between spherical harmonic degrees l=150 and l=585; the lower limit is selected so as to limit sensitivity to the crust-mantle interface, and the upper limit corresponds to a 2:1 signal/noise ratio [2]. A weighted linear regression of filtered gravity and gravity-from-topography reveals a density of 3190 ± 110 kg/m3 at Mafic Mound. This is a remarkably high density: similar analyses at six adjacent terrains yield densities 400-610 kg/m3 less dense than Mafic Mound. However, two lines of evidence suggest that this high estimate for bulk density may be influenced by the internal structure of Mafic Mound. First, gravity has a weaker correlation with topography in Mafic Mound than in any of the surrounding terrains, as would be expected if subsurface mass concentrations contributed heavily to the gravity anomaly. Second, a high-pass filter (l > 300) of gravity yields a lower density estimate of 2760 ± 110 kg/m3, which is only about 110 kg/m3 denser than the surrounding terrains. Forward modeling reveals that approximately half of the high-pass gravity signal energy is produced by masses at depths shallower than 3 km. We conclude that Mafic Mound is underlain at several kilometers depth by high-density crust, caused by some combination of relatively low porosity and relatively high grain densities. While alternative

  20. Foldable, High Energy Density Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Suresh, Shravan

    CNMs (0.7 mg/cm2) as compared to metallic foils (5-10 mg/cm2). We show that the energy density of the fully foldable battery with CMF current collectors can be up to 2-fold higher than conventional LIBs at realistic mass loading (5mg/cm2) of the electrode materials. Therefore, not only does the CMF impart shape conformability, it also significantly boosts the energy density of the device by removing the dead weight of the batteries. Silicon (Si) shows enormous potential as the next generation anode material in Lithium-ion batteries due to its high energy denisty. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. Such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. In Chapters 4 and 5, we propose two solutions to incorporate Si films in foldable batteries. We show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current-collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface by creating a slippery interface and reducing the stress transfer across the interface. The graphene-draped Si films on CNM exhibit long cycle life (> 1000 charge/discharge steps) with an average specific capacity of 806 mAh/g. The volumetric capacity averaged over 1000 cycles of charge/discharge is 2821 mAh/cm3 which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration. In Chapter 5, an alternate strategy has been explored to stabilize

  1. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    PubMed

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  2. Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography.

    PubMed

    Zhou, Boran; Zhang, Xiaoming

    2018-05-23

    Lung mass density is directly associated with lung pathology. Computed Tomography (CT) evaluates lung pathology using the Hounsfield unit (HU) but not lung density directly. We have developed a lung ultrasound surface wave elastography (LUSWE) technique to measure the surface wave speed of superficial lung tissue. The objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue using a deep neural network (DNN) and synthetic data of wave speed measurements with LUSWE. The synthetic training dataset of surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE (788,000 in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 1024 neurons for each layer and trained for 10 epochs with a batch size of 4096 and a learning rate of 0.001 with three types of optimizers. The test dataset (4000) of wave speeds at three excitation frequencies (100, 150, and 200 Hz) and shear elasticity of superficial lung tissue was used to predict the lung density and evaluate its accuracy compared with predefined lung mass densities. This technique was then validated on a sponge phantom experiment. The obtained results showed that predictions matched well with test dataset (validation accuracy is 0.992) and experimental data in the sponge phantom experiment. This method may be useful to analyze lung mass density by using the DNN model together with the surface wave speed and lung stiffness measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The evolution equation for the flame surface density in turbulent premixed combustion

    NASA Technical Reports Server (NTRS)

    Trouve, Arnaud

    1993-01-01

    The mean reaction rate in flamelet models for turbulent premixed combustion depends on two basic quantities: a mean chemical rate, called the flamelet speed, and the flame surface density. Our previous work had been primarily focused on the problem of the structure and topology of turbulent premixed flames, and it was then determined that the flamelet speed, when space-averaged, is only weakly sensitive to the turbulent flow field. Consequently, the flame surface density is the key quantity that conveys most of the effects of the turbulence on the rate of energy release. In flamelet models, this quantity is obtained via a modeled transport equation called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact but unclosed formulation for the turbulent Sigma-equation. In the exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the turbulent flame stretch as well as the flame surface density is not available from experiments, and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the alternative approach to get basic information on these fundamental quantities. In the present work, three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, our objective is to extract the turbulent flame stretch from the DNS data base and then perform extensive comparisons with flamelet models. Thanks to the detailed information produced by the DNS-based analysis, it is expected that this type of comparison will not only

  4. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  5. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE PAGES

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...

    2017-06-12

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  6. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  7. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.

    PubMed

    Almeda, Dariela; Wang, Biran; Auguste, Debra T

    2015-02-01

    Liposomes may be engineered to target inflamed endothelium by mimicking ligand-receptor interactions between leukocytes and cytokine-activated endothelial cells (ECs). The upregulation and assembly of vascular cell adhesion molecule-1 (VCAM1) and E-selectin on the cell membrane upon exposure to cytokines have shown potential for drug delivery vehicles to target sites of chronic endothelial inflammation, such as atherosclerosis and cancer. Herein, we characterized EC surfaces by measuring the E-selectin and VCAM1 surface densities and adhesion forces of aVCAM1 and aE-selectin to ECs. We quantified the antibody density, ratio, and diffusivity of liposomes to achieve significant binding and internalization. At 1 h, the 1:1 ratio of VCAM1:E-selectin antibodies was significantly higher than 1:0 and 0:1. Significant binding and uptake was achieved at aE-selectin densities as low as 400 molecules/μm(2). The highest levels of binding and uptake were achieved when using a 1:1 ratio of VCAM1:E-selectin antibodies at a density of 1000 molecules/μm(2); this density is 85% lower than previous reports. The binding and uptake of functionalized liposomes were reduced to levels comparable to IgG functionalized liposomes upon a 10-fold reduction in liposome membrane diffusivity. We conclude with a liposomal design that discriminates between healthy and inflamed endothelium while reducing antibody surface presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  9. Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.

    PubMed

    Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E

    2018-05-08

    We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.

  10. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  11. Measuring opacities for high energy density matter

    DOE PAGES

    Bailey, James E.

    2015-07-01

    How does energy propagate from the solar core to the surface of the sun, where it emerges to warm the Earth? How old are the stellar systems that host the numerous exoplanets that have now been discovered outside our solar system? How does radiation penetrate and heat an inertial fusion capsule? The answers to these seemingly disparate questions hinge on knowledge of the fundamental material property that controls the absorption of radiation: opacity. Opacity plays a critical role for many high energy density (HED) systems and is highly important for the NNSA stewardship mission. In addition, laboratory astrophysics research servesmore » as a conduit for establishing collaborations between the NNSA laboratories, between the NNSA laboratories and universities, and between the NNSA laboratories and our international partners. Exposure to open peer review sharpens the research capabilities and interactions of NNSA scientists with students and professors as a natural path for recruiting the next generation of stockpile stewards.« less

  12. Nitrogen-doped Carbon Microfiber with Wrinkled Surface for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Ruili; Pan, Lixia; Jiang, Jianzhong; Xi, Xin; Liu, Xiaoxue; Wu, Dongqing

    2016-02-01

    In this work, nitrogen-doped carbon microfiber (NCMF) is fabricated via a facile co-assembly of natural silk and graphene oxide (GO) and the following thermal treatment. The amphiphilic nature of GO endows NCMF a crumpled surface with a high surface area of 115 m2 g-1. As the binder-free electrode in electrical double-layer capacitors, NCMF shows an excellent capacitance of 196 F g-1 at scan rate of 5 mV s-1, which is almost four times higher than that of the pristine CMF from silk (55 F g-1). Additionally, the capacitance of NCMF can be kept around 92 F g-1 at a high scan rate of 300 mV s-1 even after 10000 cycles. More importantly, a high energy density (≈22.7 μW h cm-2) and power density (≈10.26 mW cm-2) are achieved by the all-solid-state supercapacitor based on NCMF.

  13. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.

    PubMed

    Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik

    2011-12-27

    Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.

  14. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.

    PubMed

    Lego, Béatrice; François, Marion; Skene, W G; Giasson, Suzanne

    2009-05-05

    The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.

  15. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  16. Institute for High Energy Density Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, Alan

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  17. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  18. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    PubMed

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  19. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  20. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    PubMed

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    NASA Astrophysics Data System (ADS)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  2. Loop formation of microtubules during gliding at high density

    NASA Astrophysics Data System (ADS)

    Liu, Lynn; Tüzel, Erkan; Ross, Jennifer L.

    2011-09-01

    The microtubule cytoskeleton, including the associated proteins, forms a complex network essential to multiple cellular processes. Microtubule-associated motor proteins, such as kinesin-1, travel on microtubules to transport membrane bound vesicles across the crowded cell. Other motors, such as cytoplasmic dynein and kinesin-5, are used to organize the cytoskeleton during mitosis. In order to understand the self-organization processes of motors on microtubules, we performed filament-gliding assays with kinesin-1 motors bound to the cover glass with a high density of microtubules on the surface. To observe microtubule organization, 3% of the microtubules were fluorescently labeled to serve as tracers. We find that microtubules in these assays are not confined to two dimensions and can cross one other. This causes microtubules to align locally with a relatively short correlation length. At high density, this local alignment is enough to create 'intersections' of perpendicularly oriented groups of microtubules. These intersections create vortices that cause microtubules to form loops. We characterize the radius of curvature and time duration of the loops. These different behaviors give insight into how crowded conditions, such as those in the cell, might affect motor behavior and cytoskeleton organization.

  3. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths--do we observe the mineral surface?

    PubMed

    Andersson, M P; Hem, C P; Schultz, L N; Nielsen, J W; Pedersen, C S; Sand, K K; Okhrimenko, D V; Johnsson, A; Stipp, S L S

    2014-11-13

    We have measured infrared spectra from several types of calcite: chalk, freshly cultured coccoliths produced by three species of algae, natural calcite (Iceland Spar), and two types of synthetic calcite. The most intense infrared band, the asymmetric carbonate stretch vibration, is clearly asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory for bulk calcite and several calcite surface systems allows for assignment of the infrared bands. The two peaks that make up the asymmetric carbonate stretch band come from the bulk (narrow Lorenzian) and from a combination of two effects (broad Gaussian): the surface or near surface of calcite and line broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also allowed us to quantify the amount of polysaccharides associated with the coccoliths. The amount of polysaccharides left in chalk, demonstrated to be present in other work, is below the IR detection limit, which is 0.5% by mass.

  4. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less

  5. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  6. Method and apparatus for measuring surface density of explosive and inert dust in stratified layers

    DOEpatents

    Sapko, Michael J.; Perlee, Henry E.

    1988-01-01

    A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

  7. Acoustic Sensing Based on Density Shift of Microspheres by Surface Binding of Gold Nanoparticles.

    PubMed

    Miyagawa, Akihisa; Inoue, Yoshinori; Harada, Makoto; Okada, Tetsuo

    2017-01-01

    Herein, we propose a concept for sensing based on density changes of microparticles (MPs) caused by a biochemical reaction. The MPs are levitated by a combined acoustic-gravitational force at a position determined by the density and compressibility. Importantly, the levitation is independent of the MPs sizes. When gold nanoparticles (AuNPs) are bound on the surface of polymer MPs through a reaction, the density of the MPs dramatically increases, and their levitation position in the acoustic-gravitational field is lowered. Because the shift of the levitation position is proportional to the number of AuNPs bound on one MP, we can determine the number of molecules involved in the reaction. The avidin-biotin reaction is used to demonstrate the effectiveness of this concept. The number of molecules involved in the reaction is very small because the reaction space is small for an MP; thus, the method has potential for highly sensitive detection.

  8. Anomalous low strain induced by surface charge in nanoporous gold with low relative density.

    PubMed

    Liu, Feng; Ye, Xing-Long; Jin, Hai-Jun

    2017-07-26

    The surface stress induced axial strain in a fiber-like solid is larger than its radical strain, and is also greater than the radical strain in similar-sized spherical solids. It is thus envisaged that the surface-induced macroscopic dimension change (i.e., actuation strain) in nanoporous gold (NPG) increases with decreasing relative density, or alternatively, with an increasing ratio between volumes of fiber-like ligaments and sphere-like nodes. In this study, electrochemical actuations of NPG with similar structure sizes, same (oxide-covered) surface state but different relative densities were characterized in situ in response to surface charging/discharging. We found that the actuation strain amplitude did not increase, but decreased dramatically with decreasing relative density of NPG, in contrast to the above prediction. The actuation strain decreased abruptly when the relative density of NPG was decreased to below 0.25, when the Au content in the AuAg precursor was below 20 at%. Further studies indicate that this anomalous behavior cannot be explained by potential- or size-dependences of the elasticity, the structure difference arising from different dealloying rates, or additional strain induced by the external load during dilatometry experiments. In NPG with low relative density, mutual movements of nano-ligaments may occur in the pore space and disconnected regions, which may compensate the local strain in ligaments and account for the anomalous low actuation strain in macroscopic NPG samples.

  9. Surface effects on mean inner potentials studied using density functional theory.

    PubMed

    Pennington, Robert S; Boothroyd, Chris B; Dunin-Borkowski, Rafal E

    2015-12-01

    Quantitative materials characterization using electron holography frequently requires knowledge of the mean inner potential, but reported experimental mean inner potential measurements can vary widely. Using density functional theory, we have simulated the mean inner potential for materials with a range of different surface conditions and geometries. We use both "thin-film" and "nanowire" specimen geometries. We consider clean bulk-terminated surfaces with different facets and surface reconstructions using atom positions from both structural optimization and experimental data and we also consider surfaces both with and without adsorbates. We find that the mean inner potential is surface-dependent, with the strongest dependency on surface adsorbates. We discuss the outlook and perspective for future mean inner potential measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Near surface bulk density estimates of NEAs from radar observations and permittivity measurements of powdered geologic material

    NASA Astrophysics Data System (ADS)

    Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An

    2018-05-01

    The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.

  11. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang

    2018-03-01

    The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the (Q 2 + Q 3)/(Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).

  12. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang

    2018-06-01

    The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the ( Q 2 + Q 3)/( Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).

  13. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  14. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.

    2018-03-01

    We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (< 0.5 m), even lower density (0.33-0.56 g cm-3, μ = 0.45 g cm-3) unsaturated weathering crust. Ice density data from 10 shallow (0.9-1.1 m) ice cores along an 800 m transect suggest an average 14-18 cm of specific meltwater storage within this low-density ice. Water saturation of this ice is confirmed through measurable water levels (1-29 cm above hole bottoms, μ = 10 cm) in 84 % of cryoconite holes and rapid refilling of 83 % of 1 m drilled holes sampled along the transect. These findings are consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide and confirm the potential for substantial transient meltwater storage within porous low-density ice on the Greenland ice sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.

  15. Exposing high-energy surfaces by rapid-anneal solid phase epitaxy

    DOE PAGES

    Wang, Y.; Song, Y.; Peng, R.; ...

    2017-08-08

    The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less

  16. A Microelectromechanical High-Density Energy Storage/Rapid Release System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.

    1999-07-21

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed,more » fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.« less

  17. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.

    PubMed

    Lee, Jongho; Fearing, Ronald S

    2012-10-30

    Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.

  18. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture

    PubMed Central

    Hämmerle, Martin; Höfle, Bernhard

    2014-01-01

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383

  19. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  20. High Precision 2-D Grating Groove Density Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxiao; McEntaffer, Randall; Tedesco, Ross

    2017-08-01

    Our research group at Penn State University is working on producing X-ray reflection gratings with high spectral resolving power and high diffraction efficiency. To estimate our fabrication accuracy, we apply a precise 2-D grating groove density measurement to plot groove density distributions of gratings on 6-inch wafers. In addition to plotting a fixed groove density distribution, this method is also sensitive to measuring the variation of the groove density simultaneously. This system can reach a measuring accuracy (ΔN/N) of 10-3. Here we present this groove density measurement and some applications.

  1. Assembly of high-density lipoprotein.

    PubMed

    Yokoyama, Shinji

    2006-01-01

    Mammalian somatic cells do not catabolize cholesterol and need to export it for its homeostasis at the levels of cells and whole bodies. This reaction may reduce intracellularly accumulated cholesterol in excess and would contribute to prevention or regression of the initial stage of atherosclerosis. High-density lipoprotein (HDL) is thought to play a main role in this reaction, and 2 independent mechanisms are proposed for this reaction. First, cholesterol is exchanged in a nonspecific physicochemical manner between cell surface and extracellular lipoproteins, and cholesterol esterification on HDL provides a driving force for net removal of cell cholesterol. Second, apolipoproteins directly interact with cells and generate HDL by removing cellular phospholipid and cholesterol. This reaction is a major source of plasma HDL and is mediated by a membrane protein, ABCA1. Lipid-free or lipid-poor helical apolipoproteins primarily recruit cellular phospholipid to assemble HDL particles, and cholesterol enrichment in these particles is regulated independently. ABCA1 is a rate-limiting factor of the HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 includes modulation of its calpain-mediated degradation.

  2. A high-mobility electronic system at an electrolyte-gated oxide surface

    DOE PAGES

    Gallagher, Patrick; Lee, Menyoung; Petach, Trevor A.; ...

    2015-03-12

    Electrolyte gating is a powerful technique for accumulating large carrier densities at a surface. Yet this approach suffers from significant sources of disorder: electrochemical reactions can damage or alter the sample, and the ions of the electrolyte and various dissolved contaminants sit Angstroms from the electron system. Accordingly, electrolyte gating is well suited to studies of superconductivity and other phenomena robust to disorder, but of limited use when reactions or disorder must be avoided. Here we demonstrate that these limitations can be overcome by protecting the sample with a chemically inert, atomically smooth sheet of hexagonal boron nitride. We illustratemore » our technique with electrolyte-gated strontium titanate, whose mobility when protected with boron nitride improves more than 10-fold while achieving carrier densities nearing 10 14 cm –2. In conclusion, our technique is portable to other materials, and should enable future studies where high carrier density modulation is required but electrochemical reactions and surface disorder must be minimized.« less

  3. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  4. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  5. A first determination of the surface density of galaxy clusters at very low x-ray fluxes

    NASA Technical Reports Server (NTRS)

    Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo

    1995-01-01

    We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.

  6. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  7. Determination of the surface charge density and temperature dependence of purple membrane by electric force microscopy.

    PubMed

    Du, Huiwen; Li, Denghua; Wang, Yibing; Wang, Chenxuan; Zhang, Dongdong; Yang, Yan-lian; Wang, Chen

    2013-08-29

    We report here the measurement of the temperature-dependent surface charge density of purple membrane (PM) by using electrostatic force microscopy (EFM). The surface charge density was measured to be 3.4 × 10(5) e/cm(2) at room temperature and reaches the minimum at around 52 °C. The initial decrease of the surface charge density could be attributed to the reduced dipole alignment because of the thermally induced protein mobility in PM. The increase of charge density at higher temperature could be ascribed to the weakened interaction between proteins and the lipids, which leads to the exposure of the charged amino acids. This work could be a benefit to the direct assessment of the structural stability and electric properties of biological membranes at the nanoscale.

  8. Sulfurized activated carbon for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  9. PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES

    DOEpatents

    McNees, R.A. Jr.; Taylor, A.J.

    1963-12-31

    A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)

  10. Extracting dielectric fixed charge density on highly doped crystalline-silicon surfaces using photoconductance measurements

    NASA Astrophysics Data System (ADS)

    To, A.; Hoex, B.

    2017-11-01

    A novel method for the extraction of fixed interface charge, Qf, and the surface recombination parameters, Sn0 and Sp0, from the injection-level dependent effective minority carrier lifetime measurements is presented. Unlike conventional capacitance-voltage measurements, this technique can be applied to highly doped surfaces provided the surface carrier concentration transitions into strong depletion or inversion with increased carrier injection. By simulating the injection level dependent Auger-corrected inverse lifetime curve of symmetrically passivated and diffused samples after sequential annealing and corona charging, it was revealed that Qf, Sn0, and Sp0 have unique signatures. Therefore, these important electronic parameters, in some instances, can independently be resolved. Furthermore, it was shown that this non-linear lifetime behaviour is exhibited on both p-type and n-type diffused inverted surfaces, by demonstrating the approach with phosphorous diffused n+pn+ structures and boron diffused p+np+ structures passivated with aluminium oxide (AlOx) and silicon nitride, respectively (SiNx). The results show that the approximation of a mid-gap Shockley-Read-Hall defect level with equal capture cross sections is able to, in the samples studied in this work, reproduce the observed injection level dependent lifetime behaviour.

  11. Approximate solution for the electronic density profile at the surface of jellium

    NASA Astrophysics Data System (ADS)

    Schmickler, Wolfgang; Henderson, Douglas

    1984-09-01

    A simple family of trial functions for the electronic density at the surface of jellium, which accounts for Friedel oscillations and incorporates the Budd-Vannimenus theorem, is proposed. The free parameters are determined by energy minimization. Model calculations give good results for the work function and for the induced surface charge in the presence of an external field.

  12. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  13. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  14. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of

  15. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    NASA Astrophysics Data System (ADS)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by

  16. Density Banding in Coral Skeletons: A Biotic Response to Sea Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Oehlert, A. M.; Piggot, A. M.; Yau, P. M.; Fouke, B. W.

    2008-12-01

    Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. This provides a sensitive reconstructive tool for paleothermometry, paleoclimatology and paleoecology. However, the detailed mechanisms controlling aragonite nucleation and crystallization events and the rate of skeletal growth remain uncertain. The organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles (annual mean variation in SST is 29° C in mid-September to 26° C in late February). Samples were collected in the following three contextual modes: 1) at two sites (Water Plant and Playa Kalki) along a lateral 25 km spatial transect; 2) across a vertical bathymetric gradient from 5 to 15 m water depth at each site; and 3) at strategic time periods spanning the 3° C annual variations in SST. Preliminary results indicate that skeletal density banding is also expressed in the organic matrix, permitting biochemical characterization and correlation of the organic matrix banding to the skeletal banding. In addition, both surficial and ectodermal mucins were characterized in terms of total protein content, abundance and location of their anionic, cationic, and neutral macromolecular constituents. Furthermore, the ratio of mucocytes in the oral ectoderm to gastrodermal symbiotic zooxanthellae has permitted estimates of seasonal carbon allocation by

  17. Spherical Al-substituted ɑ-nickel hydroxide with high tapping density applied in Ni-MH battery

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Hua; Feng, Qing-Ping; Wang, Man; Huang, Gui-Wen

    2016-10-01

    Spherical Al-substituted ɑ-Ni(OH)2 with high tapping density are prepared with controlled crystallization method, where the synthesis parameters are previously calculated out according to theoretical analysis. The formation mechanism of Ni(OH)2 particles is analyzed based on theoretical calculation, the optimal conditions for the formation of spherical Al-substituted ɑ-Ni(OH)2 with high tapping density are figured out and a formula indicates the restrictions among main synthesis parameters is derived, which is reference meaningful for the synthesis of commercialized electrode powders. Synthesized by using the calculated parameters, the obtained ɑ-Ni(OH)2 shows uniform spherical morphology, high crystal phase purity and reasonable high tapping density of 1.37 g cm-3, which demonstrates the feasibility of the derived formula. Since the electrical conductivity of the pure Ni(OH)2 is quite low, 5 wt% of CoOOH are coated on the ɑ-Ni(OH)2 surface to improve their electrochemical performances. The synthesized CoOOH coated ɑ-Ni(OH)2 shows relative high specific capacity of 327 mAh g-1 at 0.1 C and acceptable high-rate dischargeability. The simultaneously achieving of high tapping density and high specific capacity in ɑ-Ni(OH)2 makes it own the great potential to be applied in new generation of Ni-MH batteries.

  18. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.

    PubMed

    Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J

    2017-01-01

    Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.

  19. Normal and abnormal evolution of argon metastable density in high-density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less

  20. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    PubMed

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  1. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  2. Models for Experimental High Density Housing

    NASA Astrophysics Data System (ADS)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  3. Predicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory.

    PubMed

    Aarons, Jolyon; Jones, Lewys; Varambhia, Aakash; MacArthur, Katherine E; Ozkaya, Dogan; Sarwar, Misbah; Skylaris, Chris-Kriton; Nellist, Peter D

    2017-07-12

    Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

  4. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  5. Surface microstructure and high temperature corrosion resistance of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Zhao, Limin; He, Dongyun

    2013-10-01

    The surface microstructure of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam (HCPEB) with long pulse duration of 200 μs was characterized by using optical microscopy, scanning electron microscopy and X-ray diffractometry. The distribution of chemical composition in modified surface layer was measured with electron probe micro-analyzer. The high temperature corrosion resistance of FeCrAl coating was tested in a saturated Na2SO4 and K2SO4 solution at 650 °C. After HCPEB irradiation, the coarse surface of arc-sprayed coating was changed as discrete bulged nodules with smooth and compact appearance. When using low energy density of 20 J/cm2, the surface modified layer was continuous entirely with an average melting depth of ˜30 μm. In the surface remelted layer, Fe and Cr elements gave a uniform distribution, while Al and O elements agglomerated particularly at the concave part between nodule structures to form α-Al2O3 phase. After high temperature corrosion tests, the FeCrAl coating treated with HCPEB of 20 J/cm2 remained a glossy surface with weight increment of ˜51 mg/cm2, decreased by 20% as compared to the initial sample. With the increasing energy density of HCPEB irradiation, the integrity of surface modified layer got segmented due to the formation of larger bulged nodules and cracks at the concave parts. For the HCPEB irradiation of 40 J/cm2, the high temperature corrosion resistance of FeCrAl coating was deteriorated drastically.

  6. Ultrahigh-density sub-10 nm nanowire array formation via surface-controlled phase separation.

    PubMed

    Tian, Yuan; Mukherjee, Pinaki; Jayaraman, Tanjore V; Xu, Zhanping; Yu, Yongsheng; Tan, Li; Sellmyer, David J; Shield, Jeffrey E

    2014-08-13

    We present simple, self-assembled, and robust fabrication of ultrahigh density cobalt nanowire arrays. The binary Co-Al and Co-Si systems phase-separate during physical vapor deposition, resulting in Co nanowire arrays with average diameter as small as 4.9 nm and nanowire density on the order of 10(16)/m(2). The nanowire diameters were controlled by moderating the surface diffusivity, which affected the lateral diffusion lengths. High resolution transmission electron microscopy reveals that the Co nanowires formed in the face-centered cubic structure. Elemental mapping showed that in both systems the nanowires consisted of Co with undetectable Al or Si and that the matrix consisted of Al with no distinguishable Co in the Co-Al system and a mixture of Si and Co in the Co-Si system. Magnetic measurements clearly indicate anisotropic behavior consistent with shape anisotropy. The dynamics of nanowire growth, simulated using an Ising model, is consistent with the experimental phase and geometry of the nanowires.

  7. High-resolution Compton scattering study of the electron momentum density in Al

    NASA Astrophysics Data System (ADS)

    Ohata, T.; Itou, M.; Matsumoto, I.; Sakurai, Y.; Kawata, H.; Shiotani, N.; Kaprzyk, S.; Mijnarends, P. E.; Bansil, A.

    2000-12-01

    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's and their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are, however, discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff that is broader, and display a tail that is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.

  8. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    PubMed

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

  9. Repairability of CAD/CAM high-density PMMA- and composite-based polymers.

    PubMed

    Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna

    2015-11-01

    The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate

  10. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    PubMed Central

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  11. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-04-01

    Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.

  12. Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization

    NASA Astrophysics Data System (ADS)

    Rashid, Zahra; Soleimani, Masoud; Ghahremanzadeh, Ramin; Vossoughi, Manouchehr; Esmaeili, Elaheh

    2017-12-01

    The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic nanoparticles can efficiently conjugate to a monoclonal antibody, specific to PSMA, which was confirmed by enzyme-linked immune sorbent assay (ELISA). Thus, this kind of functionalized magnetic nanoparticles is promising to be utilized in the improvement of ELISA-based biosensors and also will be effective in a variety of biomedical applications such as cell separation, diagnosis, and monitoring of human diseases.

  13. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  14. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    PubMed

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  15. Ultralow energy ion beam surface modification of low density polyethylene.

    PubMed

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  16. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    NASA Astrophysics Data System (ADS)

    Altamore, C.; Tringali, C.; Sparta', N.; Di Marco, S.; Grasso, A.; Ravesi, S.

    2010-02-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (105) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 101 Hz to 106 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl2/Ar chemistry. The relationship between the etch rate and the Cl2/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl2/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  17. Role of Surface Charge Density in Nanoparticle-templated Assembly of Bromovirus Protein Cages

    PubMed Central

    Daniel, Marie-Christine; Tsvetkova, Irina B.; Quinkert, Zachary T.; Murali, Ayaluru; De, Mrinmoy; Rotello, Vincent M.; Kao, C. Cheng; Dragnea, Bogdan

    2010-01-01

    Self-assembling icosahedral protein cages have potencially useful physical and chemical characteristics for a variety of nanotechnology applications, ranging from therapeutic or diagnostic vectors to building blocks for hierarchical materials. For application-specific functional control of protein cage assemblies, a deeper understanding of the interaction between the protein cage and its payload is necessary. Protein-cage encapsulated nanoparticles, with their well-defined surface chemistry, allow for systematic control over key parameters of encapsulation such as the surface charge, hydrophobicity, and size. Independent control over these variables allows experimental testing of different assembly mechanism models. Previous studies done with Brome mosaic virus capsids and negatively-charged gold nanoparticles indicated that the result of the self-assembly process depends on the diameter of the particle. However, in these experiments, the surface-ligand density was maintained at saturation levels, while the total charge and the radius of curvature remained coupled variables, making the interpretation of the observed dependence on the core size difficult. The current work furnishes evidence of a critical surface charge density for assembly through an analysis aimed at decoupling the surface charge the core size. PMID:20575505

  18. Effect of Instrument Lubricants on the Surface Degree of Conversion and Crosslinking Density of Nanocomposites.

    PubMed

    de Paula, Felipe Costa; Valentin, Regis de Souza; Borges, Boniek Castillo Dutra; Medeiros, Maria Cristina Dos Santos; de Oliveira, Raiza Freitas; da Silva, Ademir Oliveira

    2016-01-01

    The surface degree of conversion and crosslink density of composites should not be affected by the use of instrument lubricants in order to provide long-lasting tooth restorations. This study aimed to analyze the effect of instrument lubricants on the degree of conversion and crosslink density of nanocomposites. Samples (N = 10) were fabricated according to the composites (Filtek Z350 XT, 3M ESPE, St. Paul, MN, USA; and IPS Empress Direct, Ivoclar Vivadent AG, Schaan, Liechtenstein and lubricants used (Adper Single Bond 2 and Scotchbond Multi-Purpose bonding agent adhesive systems, 3M ESPE; 70% ethanol, absolute ethanol, and no lubricant). Single composite increments were inserted into a Teflon mold using the same dental instrument. The composite surface was then modeled using a brush wiped with each adhesive system and a spatula wiped with each ethanol. The control group was fabricated with no additional modeling. The surface degree of conversion and crosslink density were measured by Fourier transform infrared spectroscopy and the hardness decrease test, respectively. Data were analyzed using two-way analysis of variance and the Tukey's test (p < 0.05). Filtek Z350 XT showed statistically similar degree of conversion regardless of the lubricant used, whereas the use of adhesive systems and 70% ethanol decreased the degree of conversion for IPS Empress Direct. Only Scotchbond Multi-Purpose bonding agent decreased crosslink density for Filtek Z350 XT, whereas both adhesive systems decreased crosslink density for IPS Empress Direct. Filtek Z350 XT appeared to be less sensitive to the effects of lubricants, and absolute ethanol did not affect the degree of conversion and crosslink density of the nanocomposites tested. Although the use of lubricants may be recommended to minimize the stickiness of dental instruments and composite resin, dentists should choose materials that do not have a negative effect on the surface properties of composites. Only the use of

  19. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model

    NASA Astrophysics Data System (ADS)

    Salazar-Camacho, Carlos; Villalobos, Mario

    2010-04-01

    We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in

  20. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    PubMed

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  1. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality

    PubMed Central

    Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.

    2017-01-01

    We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509

  2. Quasi-Lagrangian measurements of density surface fluctuations and power spectra in the stratosphere

    NASA Technical Reports Server (NTRS)

    Quinn, Elizabeth P.; Holzworth, Robert H.

    1987-01-01

    Pressure and temperature data from eight superpressure balloon flights at 26 km in the southern hemisphere stratosphere are analyzed. The balloons, which float on a constant density surface, travel steadily westward during summer and eastward during winter, as expected from local climatology. Two types of fluctuations are observed: neutral buoyancy oscillations (NBO) of around 4 min, and 0.1- to 1-hour oscillations that are characterized as small-amplitude density surface fluctuations. Lapse rates and densities are calculated and found to agree well with the expected values. Examples of wave damping and simultaneous fluctuation at two nearby balloons are presented. Spectral analysis is performed clearly showing the NBO and that the majority of the power is in the mesoscale range. Spectral slopes of power versus frequency are measured to be on the average -2.18 + or - 0.24 for pressure and -1.72 + or - 0.24 for temperature. These slopes are compared to the predictions of turbulence theories and the theory of a universal gravity wave spectrum.

  3. Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density.

    PubMed

    Liu, Shaohui; Xue, Shuangxi; Xiu, Shaomei; Shen, Bo; Zhai, Jiwei

    2016-05-17

    Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm(3) at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm(3) at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.

  4. High throughput nonparametric probability density estimation.

    PubMed

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  5. High throughput nonparametric probability density estimation

    PubMed Central

    Farmer, Jenny

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803

  6. High-density marker imputation accuracy in sixteen French cattle breeds.

    PubMed

    Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal

    2013-09-03

    Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No

  7. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    NASA Astrophysics Data System (ADS)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  8. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  9. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  10. Problems in determining the surface density of the Galactic disk

    NASA Technical Reports Server (NTRS)

    Statler, Thomas S.

    1989-01-01

    A new method is presented for determining the local surface density of the Galactic disk from distance and velocity measurements of stars toward the Galactic poles. The procedure is fully three-dimensional, approximating the Galactic potential by a potential of Staeckel form and using the analytic third integral to treat the tilt and the change of shape of the velocity ellipsoid consistently. Applying the procedure to artificial data superficially resembling the K dwarf sample of Kuijken and Gilmore (1988, 1989), it is shown that the current best estimates of local disk surface density are uncertain by at least 30 percent. Of this, about 25 percent is due to the size of the velocity sample, about 15 percent comes from uncertainties in the rotation curve and the solar galactocentric distance, and about 10 percent from ignorance of the shape of the velocity distribution above z = 1 kpc, the errors adding in quadrature. Increasing the sample size by a factor of 3 will reduce the error to 20 percent. To achieve 10 percent accuracy, observations will be needed along other lines of sight to constrain the shape of the velocity ellipsoid.

  11. Adsorption properties of AlN on Si(111) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting

    2018-04-01

    In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.

  12. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio

  13. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less

  14. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  15. Broken rotational symmetry on the Fermi surface of a high-Tc superconductor

    DOE PAGES

    Ramshaw, B. J.; Harrison, N.; Sebastian, S. E.; ...

    2017-02-13

    Broken fourfold rotational (C 4) symmetry is observed in the experimental properties of several classes of unconventional superconductors. It has been proposed that this symmetry breaking is important for superconducting pairing in these materials, but in the high-T c cuprates this broken symmetry has never been observed on the Fermi surface. Here we report a pronounced anisotropy in the angle dependence of the interlayer magnetoresistance of the underdoped high transition temperature (high-T c) superconductor YBa 2Cu 3O 6.58, directly revealing broken C 4 symmetry on the Fermi surface. Moreover, we demonstrate that this Fermi surface has C 2 symmetry ofmore » the type produced by a uniaxial or anisotropic density-wave phase. This establishes the central role of C 4 symmetry breaking in the Fermi surface reconstruction of YBa 2Cu 3O 6+δ , and suggests a striking degree of universality among unconventional superconductors.« less

  16. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

    PubMed

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie

    2013-02-07

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.

  17. Effect of wood flour content on the optical color, surface chemistry, mechanical and morphological properties of wood flour/recycled high density polyethylene (rHDPE) composite

    NASA Astrophysics Data System (ADS)

    Sheng, Chan Kok; Amin, Khairul Anuar Mat; Kee, Kwa Bee; Hassan, Mohd Faiz; Ali, E. Ghapur E.

    2018-05-01

    In this study, effect of wood flour content on the color, surface chemistry, mechanical properties and surface morphology of wood-plastic composite (WPC) on different mixture ratios of recycled high density polyethylene (rHDPE) and wood flour were investigated in detail. The presence of wood flour in the composite indicates a significant total color change and a decrease of lightness. Functional groups of wood flour in WPC can be seen clearer from the Fourier transform infrared (FTIR) spectra as the wood flour content increases. The mechanical tensile testing shows that the tensile strength of Young's modulus is improved, whereas the strain and elongation at break were reduced by the addition of wood flour. The gap between the wood flour microvoid fibre and rHDPE matrix becomes closer when the wood flour content is increased as observed by scanning electron microscope (SEM) image. This finding implies a significant improvement on the interaction of interfacial adhesion between the rHDPE matrix and wood flour filler in the present WPC.

  18. The post-pinatubo evolution of stratospheric aerosol surface area density as inferred from SAGE 2

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Thomason, L. W.

    1994-01-01

    Following the eruption of Mount Pinatubo in June of 1991, the aerosol mass loading of the stratosphere increased from -1 Mt to approximately 30 Mt. This change in aerosol loading was responsible for numerous radiative and chemical changes observed within the stratosphere. As a result, the ability to quantify aerosol properties on a global basis during this period is important. Aerosol surface area density is a critical parameter in governing the rates of heterogeneous reactions, such as ClONO2 plus H2O yields HNO3 plus HOCl, which influence the stratospheric abundance of ozone. Following the eruption of Mt. Pinatubo, measurements by the Stratospheric Aerosol and Gas Experiment (SAGE 2) indicated that the stratospheric aerosol surface area density increased by as much as a factor of 100. Using SAGE 2 multi-wavelength aerosol extinction data, aerosol surface area density as well as mass are derived for the period following the eruption of Mt. Pinatubo through the present.

  19. Effect of Ionic Strength and Surface Charge Density on the Kinetics of Cellulose Nanocrystal Thin Film Swelling.

    PubMed

    Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D

    2017-08-01

    This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.

  20. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    PubMed

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  1. Immobilization of heparin/poly-(L)-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior.

    PubMed

    Liu, Tao; Liu, Yang; Chen, Yuan; Liu, Shihui; Maitz, Manfred F; Wang, Xue; Zhang, Kun; Wang, Jian; Wang, Yuan; Chen, Junying; Huang, Nan

    2014-05-01

    Restenosis, thrombosis formation and delayed endothelium regeneration continue to be problematic for coronary artery stent therapy. To improve the hemocompatibility of the cardiovascular implants and selectively direct vascular cell behavior, a novel kind of heparin/poly-l-lysine (Hep/PLL) nanoparticle was developed and immobilized on a dopamine-coated surface. The stability and structural characteristics of the nanoparticles changed with the Hep:PLL concentration ratio. A Hep density gradient was created on a surface by immobilizing nanoparticles with various Hep:PLL ratios on a dopamine-coated surface. Antithrombin III binding quantity was significantly enhanced, and in plasma the APTT and TT times as coagulation tests were prolonged, depending on the Hep density. A low Hep density is sufficient to prevent platelet adhesion and activation. The sensitivity of vascular cells to the Hep density is very different: high Hep density inhibits the growth of all vascular cells, while low Hep density could selectively inhibit smooth muscle cell hyperplasia but promote endothelial progenitor cells and endothelial cell proliferation. These observations provide important guidance for modification of surface heparinization. We suggest that this method will provide a potential means to construct a suitable platform on a stent surface for selective direction of vascular cell behavior with low side effects. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Optimization of Methods for Articular Cartilage Surface Tissue Engineering: Cell Density and Transforming Growth Factor Beta Are Critical for Self-Assembly and Lubricin Secretion.

    PubMed

    Iwasa, Kenjiro; Reddi, A Hari

    2017-07-01

    Lubricin/superficial zone protein (SZP)/proteoglycan4 (PRG4) plays an important role in boundary lubrication in articular cartilage. Lubricin is secreted by superficial zone chondrocytes and synoviocytes of the synovium. The specific objective of this investigation is to optimize the methods for tissue engineering of articular cartilage surface. The aim of this study is to investigate the effect of cell density on the self-assembly of superficial zone chondrocytes and lubricin secretion as a functional assessment. Superficial zone chondrocytes were cultivated as a monolayer at low, medium, and high densities. Chondrocytes at the three different densities were treated with transforming growth factor beta (TGF-β)1 twice a week or daily, and the accumulated lubricin in the culture medium was analyzed by immunoblots and quantitated by enzyme-linked immunosorbent assay (ELISA). Cell numbers in low and medium densities were increased by TGF-β1; whereas cell numbers in high-density cell cultures were decreased by twice-a-week treatment of TGF-β1. On the other hand, the cell numbers were maintained by daily TGF-β treatment. Immunoblots and quantitation of lubricin by ELISA analysis indicated that TGF-β1 stimulated lubricin secretion by superficial zone chondrocytes at all densities with twice-a-week TGF-β treatment. It is noteworthy that the daily treatment of TGF-β1 increased lubricin much higher compared with twice-a-week treatment. These data demonstrate that daily treatment is optimal for the TGF-β1 response in a higher density of monolayer cultures. These findings have implications for self-assembly of surface zone chondrocytes of articular cartilage for application in tissue engineering of articular cartilage surface.

  3. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density.

    PubMed

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C P; Liu, Hong

    2015-09-14

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg(-1) at a power density of 600 W kg(-1). The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.

  4. Supercapacitors based on highly dispersed polypyrrole-reduced graphene oxide composite with a folded surface

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Zhou, Xi; Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-08-01

    Highly dispersed polypyrrole particles were decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composite, which obtained a folded surface, shows remarkable performance as the electrode material of supercapacitors. The specific capacitance reaches 564.1 F g-1 at a current density of 1 A g-1 and maintains 86.4 % after 1000 charging-discharging cycles at a current density of 20 A g-1, which indicates a good cycling stability. Furthermore, the prepared supercapacitor demonstrates an ultrahigh energy density of 50.13 Wh kg-1 at power density of 0.40 kW kg-1, and remains of 45.33 Wh kg-1 even at high power density of 8.00 kW kg-1, which demonstrate that the hybrid supercapacitor can be a promising energy storage system for fast and efficient energy storage in the future.

  5. Measuring the binding stoichiometry of HIV-1 Gag to very-low-density oligonucleotide surfaces using surface plasmon resonance spectroscopy.

    PubMed

    Stephen, Andrew G; Datta, Siddhartha A K; Worthy, Karen M; Bindu, Lakshman; Fivash, Matthew J; Turner, Kevin B; Fabris, Daniele; Rein, Alan; Fisher, Robert J

    2007-09-01

    The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.

  6. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers.

    PubMed

    Lycett-Brown, Daniel; Luo, Kai H

    2016-11-01

    A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.

  7. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3

  8. Electron density in surface barrier discharge emerging at argon/water interface: quantification for streamers and leaders

    NASA Astrophysics Data System (ADS)

    Cvetanović, Nikola; Galmiz, Oleksandr; Synek, Petr; Zemánek, Miroslav; Brablec, Antonín; Hoder, Tomáš

    2018-02-01

    Optical emission spectroscopy, fast intensified CCD imaging and electrical measurements were applied to investigate the basic plasma parameters of surface barrier discharge emerging from a conductive water electrode. The discharge was generated at the triple-line interface of atmospheric pressure argon gas and conductive water solution at the fused silica dielectrics using a sinusoidal high-voltage waveform. The spectroscopic methods of atomic line broadening and molecular spectroscopy were used to determine the electron densities and the gas temperature in the active plasma. These parameters were obtained for both applied voltage polarities and resolved spatially. Two different spectral signatures were identified in the spatially resolved spectra resulting in electron densities differing by two orders of magnitude. It is shown that two discharge mechanisms take a place: the streamer and the leader one, with electron densities of 1014 and 1016 cm-3, respectively. This spectroscopic evidence is supported by the combined diagnostics of electrical current measurements and phase-resolved intensified CCD camera imaging.

  9. High-density marker imputation accuracy in sixteen French cattle breeds

    PubMed Central

    2013-01-01

    Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at

  10. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities.

    PubMed

    Choi, Bong Gill; Yang, Minho; Hong, Won Hi; Choi, Jang Wook; Huh, Yun Suk

    2012-05-22

    In order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO(2) was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO(2)/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current increase to 35 A/g. Moreover, when the MnO(2)/e-CMG composite electrode was asymmetrically assembled with an e-CMG electrode, the assembled full cell shows remarkable cell performance: energy density of 44 Wh/kg, power density of 25 kW/kg, and excellent cycle life.

  11. High-Throughput Density Measurement Using Magnetic Levitation.

    PubMed

    Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M

    2018-06-20

    This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.

  12. GaAsSb bandgap, surface fermi level, and surface state density studied by photoreflectance modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Tsai, J. T.; Su, I. C.; Lin, H. C.; Lu, Y. T.; Chiu, P. C.; Chyi, J. I.

    2012-05-01

    The bandgap, surface Fermi level, and surface state density of a series of GaAs1-xSbx surface intrinsic-n+ structures with GaAs as substrate are determined for various Sb mole fractions x by the photoreflectance modulation spectroscopy. The dependence of the bandgap on the mole composition x is in good agreement with previous measurements as well as predictions calculated using the dielectric model of Van Vechten and Bergstresser in Phys. Rev. B 1, 3551 (1970). For a particular composition x, the surface Fermi level is always strongly pinned within the bandgap of GaAs1-xSbx and we find its variation with composition x is well described by a function EF = 0.70 - 0.192 x for 0 ≦ x ≦ 0.35, a result which is notably different from that reported by Chouaib et al. [Appl. Phys. Lett. 93, 041913 (2008)]. Our results suggest that the surface Fermi level is pinned at the midgap of GaAs and near the valence band of the GaSb.

  13. High-speed ethanol micro-droplet impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Fujita, Yuta; Kiyama, Akihito; Tagawa, Yoshiyuki

    2016-11-01

    Recently, droplet impact draws great attention in the fluid mechanics. In previous work, micro-droplet impact on a solid surface at velocities up to 100 m s-1 was studied. However the study was only on water micro-droplets. In this study, we experimentally investigate high-speed impact of ethanol micro-droplets in order to confirm the feature about maximum spreading radius with another liquid. A droplet is generated from a laser-induced high-speed liquid jet. The diameter of droplets is around 80 μm and the velocity is larger than 30 m s-1. The surface tension of ethanol is 22.4 mNm-1 and density is 789 kgm-3. Weber number ranges We >1000. By using a high-speed camera, we investigate the deformation of droplets as a function of Weber number. This work was supported by JSPS KAKENHI Grant Number JP26709007.

  14. GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.

    2013-03-01

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures

  15. High density tape/head interface study

    NASA Technical Reports Server (NTRS)

    Csengery, L. C.

    1983-01-01

    The high energy (H sub c approximately or = to 650 oersteds) tapes and high track density (84 tracks per inch) heads investigated had, as its goal, the definition of optimum combinations of head and tape, including the control required of their interfacial dynamics that would enable the manufacture of high rate (150 Mbps) digital tape recorders for unattended space flight.

  16. A density functional theory study on the acetylene cyclotrimerization on Pd-modified Au(111) surface

    NASA Astrophysics Data System (ADS)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2017-10-01

    Calculations based on the first-principle density functional theory were carried out to study the possible acetylene cyclotrimerization reactions on Pd-Au(111) surface and to investigate the effect of Au atom alloying with Pd. The adsorption of C2H2, C4H4, C6H6 and the PDOS of 4d orbitals of surface Pd and Au atoms were studied. The comparison of d-band center of Pd and Au atom before and after C2H2 or C4H4 adsorption suggests that these molecules affect the activity of Pd-Au(111) surface to some degree due to the high binding energy of the adsorption. In our study, the second neighboring Pd ensembles on Pd-Au(111) surface can adsorb two acetylene molecules on parallel-bridge site of two Au atoms and one Pd atom, respectively. Csbnd C bonds are parallel to each other and two acetylenes are adsorbed face to face to produce four-membered ring C4H4 firstly. The geometric effect and electronic effect of Pd-Au(111) surface with the second neighboring Pd ensembles both help to reduce this activation barrier.

  17. Structure, bonding nature, and binding energy of alkanethiolate on As-rich GaAs (001) surface: a density functional theory study.

    PubMed

    Voznyy, Oleksandr; Dubowski, Jan J

    2006-11-30

    Chemisorption of alkanethiols on As-rich GaAs (001) surface under a low coverage condition was studied using first principles density functional calculations in a periodic supercell approach. The thiolate adsorption site, tilt angle and its direction are dictated by the high directionality of As dangling bond and sulfur 3p orbital participating in bonding and steric repulsion of the first three CH2 units from the surface. Small charge transfer between thiolate and surface, strong dependence of total energy on tilt angle, and a relatively short length of 2.28 A of the S-As bond indicate the highly covalent nature of the bonding. Calculated binding energy of 2.1 eV is consistent with the available experimental data.

  18. Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions

    DOE PAGES

    Zulick, C.; Raymond, A.; McKelvey, A.; ...

    2016-06-15

    Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

  19. Biofilm Surface Density Determines Biocide Effectiveness

    PubMed Central

    Bas, Sara; Kramer, Mateja; Stopar, David

    2017-01-01

    High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones. PMID:29276508

  20. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  1. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE PAGES

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...

    2017-04-26

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  2. Experimental study of high density foods for the Space Operations Center

    NASA Technical Reports Server (NTRS)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  3. Aligning Solution-Derived Carbon Nanotube Film with Full Surface Coverage for High-Performance Electronics Applications.

    PubMed

    Zhu, Ma-Guang; Si, Jia; Zhang, Zhiyong; Peng, Lian-Mao

    2018-06-01

    The main challenge for application of solution-derived carbon nanotubes (CNTs) in high performance field-effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution-derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on-state current I on of 290 µA µm -1 (V ds = -1.5 V and V gs = -2 V) and peak transconductance g m of 150 µS µm -1 , which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Icephobicity and the effect of water condensation on the superhydrophobic low-density polyethylene surface

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Wang, Menglei; Huang, Juan; Wang, Xian; Bin, Jiping; Peng, Chaoyi; Xing, Suli; Xiao, Jiayu; Zeng, Jingcheng; Xiao, Ximei; Fu, Xin; Gong, Huifang; Zhao, Dejian; Chen, Hong

    2015-06-01

    A superhydrophobic surface was obtained on a low-density polyethylene (LDPE) substrate using a facile method. The water contact angle and the sliding angle of the superhydrophobic LDPE surface were 155 ± 2° and 4°, respectively. The ice shear stress of the superhydrophobic LDPE surface was 2.08 times smaller than that of the flat LDPE surface. The superhydrophobic surface still showed excellent icephobicity and superhydrophobicity after undergoing a circulatory icing/deicing procedure five times. In addition, water condensation and its effect on the icephobicity of the as-prepared superhydrophobic surface were also studied.

  5. Fluorescent Fe K Emission from High Density Accretion Disks

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  6. Fast Disinfecting Antimicrobial Surfaces

    PubMed Central

    Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.

    2013-01-01

    Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651

  7. Density and structure of jadeite melt at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Yu, T.; Jing, Z.; Park, C.; Shen, G.; Wang, Y.

    2011-12-01

    Knowledge of density of magma is important for understanding magma-related processes such as volcanic activity and differentiation in the Earth's early history. Since these processes take place in Earth's interior, we need to measure the density of magma in situ at high pressures. It is also necessary to relate the density with the structure of silicate melts at high pressure and temperature and further understand the densification mechanism of magma with pressure. Here we report the density and structural data for jadeite melt up to 7 GPa,. The density measurements were carried out using a DIA-type cubic press at the 13-BM-D beamline at APS using monochromatic radiation tuned to the desired energy (~20 keV) with a Si (111) double-crystal monochromator. Intensities of the incident and transmitted X-rays were measured by two ion chambers placed before and after the press for X-ray absorption measurements. Incident and transmitted X-ray intensities were obtained by moving the incident slits perpendicular to the X-ray beam direction at 0.010 mm steps crosses the sample. Lambert-Beer law was then applied to the normalized intensities as a function of the sample position across the assembly. Density of jadeite melt was determined up to 7 GPa and 2300 K. For structural determination, high-pressure and high-temperature energy-dispersive XRD experiments were carried out by using a Paris-Edinburgh press installed at the 16-BM-B of APS. Incident X-rays were collimated by a vertical slit (0.5 mm) and a horizontal slit (0.1 mm) to irradiate the sample. Diffracted X-rays were detected by a Ge solid state detector with a 4k multi-channel analyzer, through a collimator and 5.0mm (V) by and 0.1mm (H) receiving slits. Diffraction patterns were collected until the highest intensity reached 2000 counts, at 12 angles (2theta=3, 4, 5, 7, 9, 11, 15, 20, 25, 30, 35, 39.5 degrees). The structural measurements were carried out in the pressure range from 1 to 5 GPa and at 1600 to 2000 K

  8. Surface and structure modification induced by high energy and highly charged uranium ion irradiation in monocrystal spinel

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing; Meng, Yancheng; Zhang, Hengqing; Ma, Yizhun

    2014-05-01

    Due to its high temperature properties and relatively good behavior under irradiation, magnesium aluminate spinel (MgAl2O4) is considered as a possible material to be used as inert matrix for the minor actinides burning. In this case, irradiation damage is an unavoidable problem. In this study, high energy and highly charged uranium ions (290 MeV U32+) were used to irradiate monocrystal spinel to the fluence of 1.0 × 1013 ions/cm2 to study the modification of surface and structure. Highly charged ions carry large potential energy, when they interact with a surface, the release of potential energy results in the modification of surface. Atomic force microscopy (AFM) results showed the occurrence of etching on surface after uranium ion irradiation. The etching depth reached 540 nm. The surprising efficiency of etching is considered to be induced by the deposition of potential energy with high density. The X-ray diffraction results showed that the (4 4 0) diffraction peak obviously broadened after irradiation, which indicated that the distortion of lattice has occurred. After multi-peak Gaussian fitting, four Gaussian peaks were separated, which implied that a structure with different damage layers could be formed after irradiation.

  9. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: A density-functional study

    NASA Astrophysics Data System (ADS)

    Krajčí, M.; Hafner, J.

    2013-03-01

    . Perpendicular to the A< bar{1}bar{1}bar{1} > direction the lowest energy has been found for a bilayer with three Ga atoms per surface cell in the upper layer and one Ga and one Pd in the lower part. The calculated surface energies are in agreement with a simulated cleavage experiment. However, cleavage does not result in the formation of the lowest-energy surfaces, because all possible {111} cleavage planes expose a low-energy surface on one, and a high-energy surface on the other side. The prediction of Ga-terminated surfaces has been tested against the available experimental information. The calculated surface electronic density of states is in very good agreement with photo-emission spectroscopy. Calculated STM images of the most stable surfaces agree with all details of the available experimental images. The chemical reactivity of the most stable surfaces has been studied by the adsorption of CO molecules. The adsorption energies and maximum coverages calculated for the Ga-terminated surfaces permit a reasonable interpretation of the observed thermal desorption spectra, whereas for the Pd-terminated surfaces the calculated adsorption energies are far too high.

  10. Improving density functional tight binding predictions of free energy surfaces for peptide condensation reactions in solution

    NASA Astrophysics Data System (ADS)

    Kroonblawd, Matthew; Goldman, Nir

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for chemistry that is fast relative to DFT simulation times (<10 ps), but the effects on slow chemistry and the free energy surface are not well-known. We present a force matching approach to increase the accuracy of DFTB predictions for free energy surfaces. Accelerated sampling techniques are combined with path collective variables to generate the reference DFT data set and validate fitted DFTB potentials without a priori knowledge of transition states. Accuracy of force-matched DFTB free energy surfaces is assessed for slow peptide-forming reactions by direct comparison to DFT results for particular paths. Extensions to model prebiotic chemistry under shock conditions are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Breast density estimation from high spectral and spatial resolution MRI

    PubMed Central

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  12. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 < M* < 6 × 1010 {M}⊙ , scale length 2.0 ≤ Rd ≤ 2.9 kpc, LSR circular velocity 222 ≤ Θ0 ≤ 233 {km} {{{s}}}-1, and solar circle stellar surface density 34 ≤ Σd(R0) ≤ 61 {M}⊙ {{pc}}-2. The present interarm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude {< {| {dV}/{dR}| }2> }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  13. Highly surface-roughened quasi-spherical silver powders in back electrode paste for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Liu, Shouchao; Li, Qiuying; Chen, Xiaolei; Guo, Weihong; Wu, Chifei

    2017-08-01

    In our work, highly surface-roughened quasi-spherical silver powders with controllable size and superior dispersibility, which have narrow size distribution and relatively high tap density, were successfully prepared by reducing silver nitrate with ascorbic acid in aqueous solutions. Gum arabic (AG) was selected as dispersant to prevent the agglomeration of silver particles. Furthermore, the effects of preparation conditions on the characteristics of the powders were systematically investigated. By varying the concentration of the reactants, dosage of dispersant, the feeding modes, synthesis temperature and the pH value of the mixture solution of silver nitrate and AG, the resulted silver particles displayed controllable size, different morphologies and surface roughness. The spherical silver powder with mean particle size of 1.20 µm, tap density of 4.1 g cm-3 and specific area value of 0.46 m2 g-1 was prepared by adjusting preparation conditions. The AG absorbed on the surface preventing the silver particles from diffusion and aggregation was proved by the ultraviolet spectra. Observations of SEM images showed that the as-prepared silver powders were relatively monodisperse silver spheres with highly roughened surface and the particle size was controllable from 1 µm to 5 µm, specific surface area value from approximately 0.2 m2 g-1 to 0.8 m2 g-1. X-ray diffraction (XRD) patterns, energy dispersive spectroscopy (EDS), x-ray photoelectron spectra (XPS) and thermal gravity analysis (TGA) demonstrated high crystallinity and purity of the obtained silver powders.

  14. AG Dra -- a high density plasma laboratory

    NASA Astrophysics Data System (ADS)

    Young, Peter

    2002-07-01

    A STIS observation of the symbiotic star AG Draconis yielding spectra in the range 1150--10 000 Angstrom is requested. AG Dra is a non-eclipsing binary that shows strong, narrow nebular emission lines that originate in the wind of a K giant, photoionized by a hot white dwarf. The density of the nebula is around 10^10 electrons/cm^3 and is the perfect laboratory for testing the plasma modeling codes cloudy and xstar at high densities. These codes are used for a wide range of astrophysical objects including stellar winds, accretion disks, active galactic nuclei and Seyfert galaxies, and calibrating them against high signal-to-noise spectra from comparatively simple systems is essential. AG Dra is the perfect high density laboratory for this work. In addition, many previously undetected emission lines will be found through the high sensitivity of STIS, which will allow new plasma diagnostics to be tested. These twin objectives are particularly pertinent as the high sensitivity of emphHST/COS will will permit similar high resolution spectroscopy to be applied to a whole new regime of extragalactic objects. By combining far-UV data from Ause with complementary data from STIS, we will determine ratios of emission lines from the same ion, or ions of similar ionization level. These will permit a more complete set of diagnostics than are obtainable from one instrument alone.

  15. Recent Rise in West Greenland Surface Melt and Firn Density Driven by North Atlantic SSTs and Blocking Events

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Graeter, K.; Hawley, R. L.; Marshall, H. P.; Ferris, D. G.; Lewis, G.; Birkel, S. D.; Meehan, T.; McCarthy, F.

    2017-12-01

    The Greenland Ice Sheet (GrIS) has been losing mass since at least the early 2000s, mostly due to enhanced surface melt. Approximately 40% of the surface melt currently generated on the GrIS percolates into the snow/firn and refreezes, where it has no immediate impact on GrIS mass balance or sea-level rise. However, in situ observations of surface melt are sparse, and thus it remains unclear how melt water percolation and refreezing are modifying the GrIS percolation zone under recent warming. In addition, understanding the climatic drivers behind the recent increase in melt is critical for accurately predicting future GrIS surface melt rates and contributions to sea-level rise. Here we show that there have been significant increases in melt refreeze and firn density over the past 30-50 years along a 250 km-long region of the Western Greenland percolation zone (2137 - 2218 m elevation). We collected seven shallow firn cores as part of the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS), analyzed each for melt layer stratigraphy and density, and developed timescales for each based on annual layer counting of seasonal chemical oscillations (e.g. δ18O, dust, and biogenic sulfur). The cores indicate that refrozen melt layers have increased 2- to 9-fold since 1970, with statistically significant (p < 0.05) linear trends at the five southernmost core sites. Comparisons of two GreenTrACS cores to co-located PARCA cores collected in 1998 reveal significant (p < 0.05) increases in density averaged over the top 10 m of firn ranging from 32-42 kg/m3. Recent density increases closely correspond with the locations of refrozen melt water. We use output from the MARv3.7 Regional Climate Model to assess climatic forcing of surface melt at GreenTrACS sites, and find significant summer-to-summer correlations between melt generation and the frequency of blocking high pressure centers over Greenland (represented by the Greenland Blocking Index; GBI), and

  16. High energy density capacitors for low cost applications

    NASA Astrophysics Data System (ADS)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  17. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis.

    PubMed

    Wu, Yishang; Liu, Xiaojing; Han, Dongdong; Song, Xianyin; Shi, Lei; Song, Yao; Niu, Shuwen; Xie, Yufang; Cai, Jinyan; Wu, Shaoyang; Kang, Jian; Zhou, Jianbin; Chen, Zhiyan; Zheng, Xusheng; Xiao, Xiangheng; Wang, Gongming

    2018-04-12

    Metal sulfides for hydrogen evolution catalysis typically suffer from unfavorable hydrogen desorption properties due to the strong interaction between the adsorbed H and the intensely electronegative sulfur. Here, we demonstrate a general strategy to improve the hydrogen evolution catalysis of metal sulfides by modulating the surface electron densities. The N modulated NiCo 2 S 4 nanowire arrays exhibit an overpotential of 41 mV at 10 mA cm -2 and a Tafel slope of 37 mV dec -1 , which are very close to the performance of the benchmark Pt/C in alkaline condition. X-ray photoelectron spectroscopy, synchrotron-based X-ray absorption spectroscopy, and density functional theory studies consistently confirm the surface electron densities of NiCo 2 S 4 have been effectively manipulated by N doping. The capability to modulate the electron densities of the catalytic sites could provide valuable insights for the rational design of highly efficient catalysts for hydrogen evolution and beyond.

  18. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.

    PubMed

    Adumeau, Laurent; Genevois, Coralie; Roudier, Lydia; Schatz, Christophe; Couillaud, Franck; Mornet, Stéphane

    2017-06-01

    In the context of systematically administered nanomedicines, the physicochemistry of NP surfaces must be controlled as a prerequisite to improve blood circulation time, and passive and active targeting. In particular, there is a real need to develop NP stealth and labelling for both in vivo and microscopic fluorescence imaging in a mice model. We have synthesized NIR/red dually fluorescent silica nanoparticles of 19nm covalently covered by a PEG layer of different grafting density in the brush conformational regime by using a reductive amination reaction. These particles were characterized by TEM, DRIFT, DLS, TGA, ζ potential measurements, UV-vis and fluorescence spectroscopy. Prostate tumors were generated in mice by subcutaneous injection of RM1-CMV-Fluc cells. Tumor growth was monitored by BLI after a D-luciferin injection. Four samples of PEGylated fluorescent NPs were individually intravenously injected into 6 mice (N=6, total 24 mice). Nanoparticle distribution was investigated using in vivo fluorescence reflectance imaging (FRI) over 48h and microscopy imaging was employed to localize the NPs within tumors in vitro. Fluorescent NP accumulation, due to the enhanced permeability and retention (EPR) effect, increases gradually as a function of increased PEG surface grafting density with a huge difference observed for the highest density grafting. For the highest grafting density, a blood circulation time of up to 24h was observed with a strong reduction in uptake by the liver. In vivo experimental results suggest that the biodistribution of NPs is very sensitive to slight variations in surface grafting density when the NPs present a high curvature radius. This study underlines the need to compensate a high curvature radius with a PEG-saturated NP surface to improve blood circulation and accumulation within tumors through the EPR effect. Dually fluorescent NPs PEGylated to saturation display physical properties useful for assessing the susceptibility of tumors

  19. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be

  20. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Hailing; Li, Xingwei; Wang, Gengchao

    2015-10-01

    Polyaniline (PANI) with a high specific surface area and an improved pore structure (HSSA-PANI) has been prepared by using a facile method, treating PANI nanofibers with chloroform (CHCl3), and its structure, morphology and pore structure are investigated. The specific surface area and pore volume of HSSA-PANI are 817.3 m2 g-1 and 0.6 cm3 g-1, and those of PANI are 33.6 m2 g-1 and 0.2 cm3 g-1. As electrode materials, a large specific surface area and pore volume can provide high electroactive regions, accelerate the diffusion of ions, and mitigate the electrochemical degradation of active materials. Compared with PANI, the capacity retention rate of HSSA-PANI is 90% with a growth of current density from 5.0 to 30 A g-1, and that of PANI is 29%. At a current density of 30 A g-1, the specific capacitance of HSSA-PANI still reaches 278.3 F g-1, and that of PANI is 86.7 F g-1. At a current density of 5.0 A g-1, the capacitance retention of HSSA-PANI is 53.1% after 2000 cycles, and that of PANI electrode is only 28.1%.

  1. Surface density of accumulated electrons on walls in contact with a plasma

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1975-01-01

    It is shown that the surface density of accumulated electrons on a wall in contact with a plasma can be expressed as a simple function of the Debye shielding distance in the plasma. The result may have applications to problems involving objects immersed in a space plasma.

  2. The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study.

    PubMed

    Wang, Jiayong; Yang, Mo; Deng, Debing; Qiu, Shuxia

    2017-08-11

    To explore the adsorption mechanism of NO, NH 3 , N 2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N 2 physisorption, and N 2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH 3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface. Graphical abstract NH 3 , N 2 , NO adsortion on carbon surface.

  3. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  4. Synthetic peptides derived from salivary proteins and the control of surface charge densities of dental surfaces improve the inhibition of dental calculus formation.

    PubMed

    Grohe, Bernd

    2017-08-01

    Peptides descended from the salivary proteins statherin and histatin were recently identified in saliva and the acquired enamel pellicle (AEP), a proteomic layer coated on enamel. In particular, the statherin phosphopeptide DpSpSEEKFLR (DSS) was found to adsorb to enamel-like hydroxyapatite and inhibit plaque-related crystal formation. To determine the mechanism of these processes, we studied peptide-crystal interactions based on the sequences DSS and RKFHEKHHSHRGYR (RKF). The latter is a basic histatin sequence showing antimicrobial effects. To initiate crystallization we used calcium oxalate monohydrate (COM), a rather secondary phase in the oral environment, however highly amenable to experimental analyses of nucleation and growth processes. Using electron microscopy we found that the peptides DSS, DSS-RKF and DSS-DSS all inhibit crystal formation; with DSS-DSS showing the strongest effects while RKF showed no effect. In addition, using either enamel-like or mica substrates, we found that the ratio of the substrate's surface charge densities was directly correlated with the ratio of COM nucleation rates on theses surfaces. The findings suggest that mineralization processes on enamel/AEP-films are controllable by the degree of peptide phosphorylation/acidity and the level of the enamel surface charge density. Both parameters can, when well adjusted, help to overcome periodontal disease and dental calculus formation. In addition, the presence of antimicrobial RKF will reduce the buildup of bacterial plaque. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  6. High density load bearing insulation peg

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  7. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    DOE PAGES

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; ...

    2014-12-19

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms,more » which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.« less

  8. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  9. Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    PubMed Central

    Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.

    2011-01-01

    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568

  10. Influence of propellant choice on MPD arcjet cathode surface current density distribution

    NASA Astrophysics Data System (ADS)

    Sheshadri, T. S.

    1989-10-01

    The radial current density on an MPD arcjet cathode surface is theoretically investigated for five propellants. It is found that excessive current concentration at the upstream end of the cathode occurs in the case of hydrogen. This undesirable effect is traced to the higher electrical conductivity of hydrogen plasma.

  11. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  12. Fifth International Conference on High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  13. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization.

    PubMed

    Zorn, Gilad; Castner, David G; Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi

    2015-03-01

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

  14. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.

  15. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    NASA Astrophysics Data System (ADS)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  16. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements With Modified Blackbody Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densitiesmore » can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect

  17. Modulation of electromagnetic local density of states by coupling of surface phonon-polariton

    NASA Astrophysics Data System (ADS)

    Li, Yao; Zhang, Chao-Jie; Wang, Tong-Biao; Liu, Jiang-Tao; Yu, Tian-Bao; Liao, Qing-Hua; Liu, Nian-Hua

    2017-02-01

    We studied the electromagnetic local density of state (EM-LDOS) near the surface of a one-dimensional multilayer structure (1DMS) alternately stacked by SiC and Si. EM-LDOS of a semi-infinite bulk appears two intrinsic peaks due to the resonance of surface phonon-polariton (SPhP) in SiC. In contrast with that of SiC bulk, SPhP can exist at the interface of SiC and Si for the 1DMS. The SPhPs from different interfaces can couple together, which can lead to a significant modulation of EM-LDOS. When the component widths of 1DMS are large, the spectrum of EM-LDOS exhibits oscillation behavior in the frequency regime larger than the resonance frequency of SPhP. While the component widths are small, due to the strong coupling of SPhPs, another peak appears in the EM-LDOS spectrum besides the two intrinsic ones. And the position of the new peak move toward high frequency when the width ratio of SiC and Si increases. The influences of distance from the surfaces and period of 1DMS on EM-LDOS have also been studied in detail. The results are helpful in studying the near-field radiative heat transfer and spontaneous emission.

  18. Cooling Concepts for High Power Density Magnetic Devices

    NASA Astrophysics Data System (ADS)

    Biela, Juergen; Kolar, Johann W.

    In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.

  19. High-resolution angle-resolved photoemission study of electronic structure and charge-density wave formation in HoTe3

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan

    We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.

  20. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  1. Interaction of high voltage surfaces with the space plasma. [solar arrays

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Tests were conducted using plasma densities of approximately 10 to the 5th power - 10 to the 6th power/cu cm. Insulating materials tested were polyimide (Dapton), mica and glass. Surface-area effects were found to be substantially reduced from those previously reported at lower plasma densities. The difference in typical plasma density was felt to be the major cause of this change, although a saturation effect may also be involved. At the 10 to the 5th power/cu cm plasma density range, surface effects on collection current appear limited to roughly 1 cm from the hole. A factor of several reduction of collected current was obtained with both surface scribing and a 2 x 2 cm conducting mesh. It appears possible that the effects of surface treatment might be more significant at lower plasma densities. Effects of repeated tests were also noted, with current collection decreasing with successive tests. Depending on the materials involved, the effect appeared due to either the smoothing of the inside of the insulator hole or the sputtering of insulator on the exposed conductor. A general conclusion was made from a variety of observations, that the generation of vapor is a major factor in the enhancement of collected current.

  2. High density load bearing insulation peg

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  3. Development of a High Energy Density Capacitor for Plasma Thrusters.

    DTIC Science & Technology

    1980-10-01

    AD-A091 839 MAXWELL LAOS INC SAN DIEGO CA FIG 81/3 DEVELOPMENT OF A HIGH ENERGY DENSITY CAPACITOR FOR PLASMA THRUS--ETC(U) OCT 80 A RAMRUS FO*611-77...of the program was the investigation of certain capacitor impregnants and their influence on high energy density capacitors which are employed in...PERIOD 1704,60~ 13 DEVELOPMENT OF A HIGH ENERGY DENSITY CAPA- Final Technical Report CITOR FOR PLASMA THRUSTERS July 1977 - May 1980 6 PERFORMING

  4. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor

    2016-02-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.

  5. TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules.

    PubMed

    Weishaupt, Ramon; Siqueira, Gilberto; Schubert, Mark; Tingaut, Philippe; Maniura-Weber, Katharina; Zimmermann, Tanja; Thöny-Meyer, Linda; Faccio, Greta; Ihssen, Julian

    2015-11-09

    Controlled and efficient immobilization of specific biomolecules is a key technology to introduce new, favorable functions to materials suitable for biomedical applications. Here, we describe an innovative and efficient, two-step methodology for the stable immobilization of various biomolecules, including small peptides and enzymes onto TEMPO oxidized nanofibrillated cellulose (TO-NFC). The introduction of carboxylate groups to NFC by TEMPO oxidation provided a high surface density of negative charges able to drive the adsorption of biomolecules and take part in covalent cross-linking reactions with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDAC) and glutaraldehyde (Ga) chemistry. Up to 0.27 μmol of different biomolecules per mg of TO-NFC could be reversibly immobilized by electrostatic interaction. An additional chemical cross-linking step prevented desorption of more than 80% of these molecules. Using the cysteine-protease papain as model, a highly active papain-TO-NFC conjugate was achieved. Once papain was immobilized, 40% of the initial enzymatic activity was retained, with an increase in kcat from 213 to >700 s(-1) for the covalently immobilized enzymes. The methodology presented in this work expands the range of application for TO-NFC in the biomedical field by enabling well-defined hybrid biomaterials with a high density of functionalization.

  6. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achievedmore » using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm -3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.« less

  7. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    NASA Astrophysics Data System (ADS)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  8. Plasma Disks and Rings with ``High'' Magnetic Energy Densities

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Rousseau, F.

    2006-04-01

    The nonlinear theory of rotating axisymmetric thin structures in which the magnetic field energy density is comparable with the thermal plasma energy density is formulated. The only flow velocity included in the theory is the velocity of rotation around a central object whose gravity is dominant. The periodic sequence, in the radial direction, of pairs of opposite current channels that can form is shown to lead to relatively large plasma density and pressure modulations, while the relevant magnetic surfaces can acquire a ``crystal structure.'' A new class of equilibria consisting of a series of plasma rings is identified, in the regimes where the plasma pressure is comparable to the magnetic pressure associated with the fields produced by the internal currents. The possible relevance of this result to the formation of dusty plasma rings is pointed out.

  9. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less

  10. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti

    NASA Technical Reports Server (NTRS)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide

    2017-01-01

    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  11. The effect of skin moisture on the density distribution of OH and O close to the skin surface

    NASA Astrophysics Data System (ADS)

    Wu, F.; Li, J.; Liu, F.; Zhou, X.; Lu, X.

    2018-03-01

    OH radicals and O atoms are believed to be two of the most important reactive species in various biomedical applications of atmospheric pressure plasma jets. In this study, the effect of the skin moisture on the density distribution of OH and O close to the surface of the ex vivo pig skin is investigated by using laser-induced fluorescence technology. The skin moistures used in this study are 20%, 40%, 60%, and 80%, respectively. The experiment results indicate that, at a gas flow rate of 0.5 L/min, when the skin moisture is increased, the OH density close to the skin surface increases, while the O density decreases. On the other hand, when the gas flow rate is increased to 1 L/min, the OH density close to the skin surface is less sensitive with the moisture of the skin surface. Besides, when the skin moisture is 80%, the OH density increases with the increase in the concentration of H2O in the working gas and it reaches its maximum 7.9 × 1013 cm-3 when the concentration of H2O in the working gas is about 500 ppm. The OH density starts to decrease while the H2O concentration in the working gas keeps increasing. On the order hand, the O density shows a maximum 7.4 × 1014 cm-3 when the gas flow rate is 0.5 L/min with no O2 added and the skin moisture is 20%. But, when the gas flow rate is increased to about 1 to 2 L/min, the O density achieves its maximum when 0.5% of O2 is added to the working gas. The possible reasons for these observations are discussed.

  12. High energy density aluminum battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Gilbert M.; Parans Paranthaman, Mariappan; Dai, Sheng

    Compositions and methods of making are provided for a high energy density lithium-aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a lithium metal oxide. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of lithium at the cathode.

  13. On the surface density of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Maccagni, D.; Stocke, J. T.

    1984-01-01

    Only a handful of BL Lac objects have been found as a result of systematic optical identification of serendipitous Einstein X-ray sources. By combining the data from two flux-limited complete X-ray surveys (the HEAO 1 A-2 and the Einstein Observatory Medium Sensitivity Survey) the surface density of X-ray emitting BL Lac objects is evaluated as a function of their X-ray flux. It is found that a single power law is not an acceptable representation of the BL Lac objects' X-ray log N-log S. The number-flux relationship is consistent with the Euclidean slope at 'high' flux levels but shows a drastic flattnring below fluxes of the order of 10 to the -12th ergs per sq cm/s. The implications of this result are briefly discussed with respect to the luminosity function, the cosmological evolution, and the X-ray to optical flux ratio in BL Lac objects.

  14. Properties of cutoff corrugated surfaces for corrugated horn design. [corrugation shape and density effects on scattering

    NASA Technical Reports Server (NTRS)

    Mentzer, C. A.; Peters, L., Jr.

    1974-01-01

    Corrugated horns involve a junction between the corrugated surface and a conducting ground plane. Proper horn design requires an understanding of the electromagnetic properties of the corrugated surface and this junction. An integral equation solution has been used to study the influence of corrugation density and tooth thickness on the power loss, surface current, and the scattering from a ground plane/corrugated surface junction.

  15. Molecular adsorption on metal surfaces with van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Li, Guo; Tamblyn, Isaac; Cooper, Valentino R.; Gao, Hong-Jun; Neaton, Jeffrey B.

    2012-03-01

    The adsorption of 1,4-benzenediamine (BDA) on Au(111) and azobenzene on Ag(111) is investigated using density functional theory (DFT) with the nonlocal van der Waals density functional (vdW-DF) and the semilocal Perdew-Burke-Ernzerhof functional. For BDA on Au(111), the inclusion of London dispersion interactions not only dramatically enhances the molecule-substrate binding, resulting in adsorption energies consistent with experimental results, but also significantly alters the BDA binding geometry. For azobenzene on Ag(111), vdW-DFs produce superior adsorption energies compared to those obtained with other dispersion-corrected DFT approaches. These results provide evidence for the applicability of the vdW-DF approach and serve as practical benchmarks for the investigation of molecules adsorbed on noble-metal surfaces.

  16. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    PubMed

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    PubMed Central

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan

    2017-01-01

    Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG

  18. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    PubMed

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan

    2017-01-01

    Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG

  19. Constraining Bulk Densities of Near-Earth Asteroid Surfaces from Radar Observations Using Laboratory Measurements of Permittivity

    NASA Astrophysics Data System (ADS)

    Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.

    2017-12-01

    Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.

  20. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10 23 cm ₋3more » in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  1. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE PAGES

    Harrison, Neil

    2016-08-16

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  2. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Neil

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  3. Serum osteoprotegerin levels and mammographic density among high-risk women.

    PubMed

    Moran, Olivia; Zaman, Tasnim; Eisen, Andrea; Demsky, Rochelle; Blackmore, Kristina; Knight, Julia A; Elser, Christine; Ginsburg, Ophira; Zbuk, Kevin; Yaffe, Martin; Narod, Steven A; Salmena, Leonardo; Kotsopoulos, Joanne

    2018-06-01

    Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm 2 vs. 15.2 cm 2 ; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.

  4. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. High-density digital recording

    NASA Technical Reports Server (NTRS)

    Kalil, F. (Editor); Buschman, A. (Editor)

    1985-01-01

    The problems associated with high-density digital recording (HDDR) are discussed. Five independent users of HDDR systems and their problems, solutions, and insights are provided as guidance for other users of HDDR systems. Various pulse code modulation coding techniques are reviewed. An introduction to error detection and correction head optimization theory and perpendicular recording are provided. Competitive tape recorder manufacturers apply all of the above theories and techniques and present their offerings. The methodology used by the HDDR Users Subcommittee of THIC to evaluate parallel HDDR systems is presented.

  6. Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment.

    PubMed

    Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C

    2012-10-12

    Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.

  7. Influence of immobilized quaternary ammonium group surface density on antimicrobial efficacy and cytotoxicity.

    PubMed

    Cavallaro, Alex; Mierczynska, Agnieszka; Barton, Mary; Majewski, Peter; Vasilev, Krasimir

    2016-01-01

    Bacterial colonization of medical devices causes infections and is a significant problem in healthcare. The use of antibacterial coatings is considered as a potential solution to this problem and has attracted a great deal of attention. Using concentration density gradients of immobilized quaternary ammonium compounds it was demonstrated that a specific threshold of surface concentration is required to induce significant bacterial death. It was determined that this threshold was 4.18% NR4(+) bonded nitrogen with a surface potential of + 120.4 mV. Furthermore, it is shown for the first time that adhesion of constituents of the culture medium to the quaternary ammonium modified surface eliminated any cytotoxicity towards eukaryotic cells such as primary human fibroblasts. The implications of this type of surface fouling on the antimicrobial efficacy of surface coatings are also discussed.

  8. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals.

    PubMed

    Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C

    2017-01-27

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .

  9. Work-function calculations for a symmetrical total-charge-density profile at the metallic surface

    NASA Astrophysics Data System (ADS)

    Wojciechowski, K. F.; Sobańska-Nowotnik, M.

    1983-07-01

    It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.

  10. High-Energy-Density Capacitors

    NASA Technical Reports Server (NTRS)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  11. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, S. A. M.; Ansbacher, W.; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are usedmore » to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film

  12. Interface Trap Density Reduction for Al2O3/GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition.

    PubMed

    Zhernokletov, Dmitry M; Negara, Muhammad A; Long, Rathnait D; Aloni, Shaul; Nordlund, Dennis; McIntyre, Paul C

    2015-06-17

    We correlate interfacial defect state densities with the chemical composition of the Al2O3/GaN interface in metal-oxide-semiconductor (MOS) structures using synchrotron photoelectron emission spectroscopy (PES), cathodoluminescence and high-temperature capacitance-voltage measurements. The influence of the wet chemical pretreatments involving (1) HCl+HF etching or (2) NH4OH(aq) exposure prior to atomic layer deposition (ALD) of Al2O3 were investigated on n-type GaN (0001) substrates. Prior to ALD, PES analysis of the NH4OH(aq) treated surface shows a greater Ga2O3 component compared to either HCl+HF treated or as-received surfaces. The lowest surface concentration of oxygen species is detected on the acid etched surface, whereas the NH4OH treated sample reveals the lowest carbon surface concentration. Both surface pretreatments improve electrical characteristics of MOS capacitors compared to untreated samples by reducing the Al2O3/GaN interface state density. The lowest interfacial trap density at energies in the upper band gap is detected for samples pretreated with NH4OH. These results are consistent with cathodoluminescence data indicating that the NH4OH treated samples show the strongest band edge emission compared to as-received and acid etched samples. PES results indicate that the combination of reduced carbon contamination while maintaining a Ga2O3 interfacial layer by NH4OH(aq) exposure prior to ALD results in fewer interface traps after Al2O3 deposition on the GaN substrate.

  13. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka

    USGS Publications Warehouse

    Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.

    2017-01-01

    Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.

  14. Effects of High-Density Impacts on Shielding Capability

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Lear, Dana M.

    2014-01-01

    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  15. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  16. High follicle density does not decrease sweat gland density in Huacaya alpacas.

    PubMed

    Moore, K E; Maloney, S K; Blache, D

    2015-01-01

    When exposed to high ambient temperatures, mammals lose heat evaporatively by either sweating from glands in the skin or by respiratory panting. Like other camelids, alpacas are thought to evaporate more water by sweating than panting, despite a thick fleece, unlike sheep which mostly pant in response to heat stress. Alpacas were brought to Australia to develop an alternative fibre industry to sheep wool. In Australia, alpacas can be exposed to ambient temperatures higher than in their native South America. As a young industry there is a great deal of variation in the quality and quantity of the fleece produced in the national flock. There is selection pressure towards animals with finer and denser fleeces. Because the fibre from secondary follicles is finer than that from primary follicles, selecting for finer fibres might alter the ratio of primary and secondary follicles. In turn the selection might alter sweat gland density because the sweat glands are associated with the primary follicle. Skin biopsy and fibre samples were obtained from the mid-section of 33 Huacaya alpacas and the skin sections were processed into horizontal sections at the sebaceous gland level. Total, primary, and secondary follicles and the number of sweat gland ducts were quantified. Fibre samples from each alpaca were further analysed for mean fibre diameter. The finer-fibred animals had a higher total follicle density (P<0.001) and more sweat glands (P<0.001) than the thicker-fibred animals. The fibre diameter and total follicle density were negatively correlated (R(2)=0.56, P<0.001). Given that the finer-fibred animals had higher follicle density and more sweat glands than animals with thicker fibres, we conclude that alpacas with high follicle density should not be limited for potential sweating ability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Modulating the activity of protein conjugated to gold nanoparticles by site-directed orientation and surface density of bound protein.

    PubMed

    Liu, Feng; Wang, Lei; Wang, Hongwei; Yuan, Lin; Li, Jingwen; Brash, John Law; Chen, Hong

    2015-02-18

    The key property of protein-nanoparticle conjugates is the bioactivity of the protein. The ability to accurately modulate the activity of protein on the nanoparticles at the interfaces is important in many applications. In the work reported here, modulation of the activity of protein-gold nanoparticle (AuNP) conjugates by specifically orienting the protein and by varying the surface density of the protein was investigated. Different orientations were achieved by introducing cysteine (Cys) residues at specific sites for binding to gold. We chose Escherichia coli inorganic pyrophosphatase (PPase) as a model protein and used site-directed mutagenesis to generate two mutant types (MTs) with a single Cys residue on the surface: MT1 with Cys near the active center and MT2 with Cys far from the active center. The relative activities of AuNP conjugates with wild type (WT), MT1, and MT2 were found to be 44.8%, 68.8%, and 91.2% of native PPase in aqueous solution. Site-directed orientation with the binding site far from the active center thus allowed almost complete preservation of the protein activity. The relative activity of WT and MT2 conjugates did not change with the surface density of the protein, while that of MT1 increased significantly with increasing surface density. These results demonstrate that site-directed orientation and surface density can both modulate the activity of proteins conjugated to AuNP and that orientation has a greater effect than density. Furthermore, increasing the surface density of the specifically oriented protein MT2, while having no significant effect on the specific activity of the protein, still allowed increased protein loading on the AuNP and thus increased the total protein activity. This is of great importance in the study on the interface of protein and nanoparticle and the applications for enzyme immobilization, drug delivery, and biocatalysis.

  18. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  19. Density Functional Theory Simulations of Water Adsorption and Activation on the (-201) β-Ga2 O3 Surface.

    PubMed

    Anvari, Roozbeh; Spagnoli, Dino; Parish, Giacinta; Nener, Brett

    2018-03-09

    Density functional theory calculations are used to study the molecular and dissociative adsorption of water on the (-201) β-Ga 2 O 3 surface. The effect of adsorption of different water-like species on the geometry, binding energies, vibrational spectra and the electronic structure of the surface are discussed. The study shows that although the hydrogen evolution reaction requires a small amount of energy to become energetically favourable, the over potential for activating the oxygen evolution reaction is quite high. The results of our calculations provide insight as to why a high voltage is required in experiments to activate the water-splitting reaction, whereas previous studies of gallium oxide predicted very low activation energies for other energetically more favourable facets. Application of this work to studies of GaN-based chemical sensors with gallium oxide surfaces shows that it is possible to select the gate bias so that the sensors are not influenced by water-splitting reactions. It was also found that in the region where water splitting does not occur, the surface can exist in two states, that is, water or hydroxyl terminated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    PubMed

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  2. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  3. Microwave modification of surface hydroxyl density for g-C3N4 with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    An, Na; Zhao, Yang; Mao, Zhiyong; Agrawal, Dinesh Kumar; Wang, Dajian

    2018-03-01

    Microwave modification was performed on graphitic carbon nitride (g-C3N4) photocatalysts to tail the surface hydroxyl content for enhanced photocatalytic activity in this work. The influence of microwave heating on the surface hydroxyl density was investigated by a suite of characterization methods. The microwave treated g-C3N4 (MT-g-C3N4) delivered a higher photocatalytic activity in degradation of Rhodamine B (RhB) under visible light irradiation than pristine g-C3N4 due to its improved separation efficiency of photogenerated charge carries and promoted absorption capacity of RhB reactants on surface, which resulted from the increased surface hydroxyl density induced by microwave treatment. This study provides a simple and convenient method to modify g-C3N4 materials with enhanced photocatalytic activity for the potential application in photocatalytic elimination of environmental pollutants.

  4. Interaction of sulfur dioxide with titanium-carbide nanoparticles and surfaces: A density functional study

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Rodriguez, José A.

    2003-11-01

    In the control of environmental pollution, metal carbides are potentially useful for trapping and destroying sulfur dioxide (SO2). In the present study, the density functional theory was employed to study the surface structures and electronic properties of the adsorbed SO2 on titanium carbides: metcar Ti8C12, nanocrystal Ti14C13, and a bulk TiC(001) surface. The geometries and orientations of SO2 were fully optimized on all these substrates. Our calculations show that, in spite of the high C/Ti ratio and C2 groups, metcar Ti8C12 exhibits extremely high activity towards SO2. The S-O bonds of SO2 spontaneously break on Ti8C12. The products of the decomposition reaction (S, O) interact simultaneously with Ti and C sites. The C atoms are not simple spectators, and their participation in the dissociation of SO2 is a key element for the energetics of this process. Nanocrystal Ti14C13 also displays a strong interaction with SO2. Although the dissociation of SO2 on Ti14C13 cannot proceed as easily as that on Ti8C12, it could occur by thermal activation even at very low temperature. SO2 is weakly bonded with the bulk TiC(001) surface. By thermal activation the dissociation of SO2 on a TiC(001) surface may also take place but it should be much more difficult than that on Ti14C13. Therefore, we suggest that the carbide nanoparticles (Ti8C12 and Ti14C13) should have special chemical activity towards SO2 removal associated with their "magic" structures.

  5. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)S studied by density functional theory

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2015-01-01

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  6. Large scale, highly dense nanoholes on metal surfaces by underwater laser assisted hydrogen etching near nanocrystalline boundary

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Zhang, Martin Yi; Ye, Chang; Liu, Zhikun; Liu, C. Richard; Cheng, Gary J.

    2012-03-01

    A new method to generate large scale and highly dense nanoholes is presented in this paper. By the pulsed laser irradiation under water, the hydrogen etching is introduced to form high density nanoholes on the surfaces of AISI 4140 steel and Ti. In order to achieve higher nanohole density, laser shock peening (LSP) followed by recrystallization is used for grain refinement. It is found that the nanohole density does not increase until recrystallization of the substructures after laser shock peening. The mechanism of nanohole generation is studied in detail. This method can be also applied to generate nanoholes on other materials with hydrogen etching effect.

  7. Pushing the limits of high-resolution functional MRI using a simple high-density multi-element coil design.

    PubMed

    Petridou, N; Italiaander, M; van de Bank, B L; Siero, J C W; Luijten, P R; Klomp, D W J

    2013-01-01

    Recent studies have shown that functional MRI (fMRI) can be sensitive to the laminar and columnar organization of the cortex based on differences in the spatial and temporal characteristics of the blood oxygenation level-dependent (BOLD) signal originating from the macrovasculature and the neuronal-specific microvasculature. Human fMRI studies at this scale of the cortical architecture, however, are very rare because the high spatial/temporal resolution required to explore these properties of the BOLD signal are limited by the signal-to-noise ratio. Here, we show that it is possible to detect BOLD signal changes at an isotropic spatial resolution as high as 0.55 mm at 7 T using a high-density multi-element surface coil with minimal electronics, which allows close proximity to the head. The coil comprises of very small, 1 × 2-cm(2) , elements arranged in four flexible modules of four elements each (16-channel) that can be positioned within 1 mm from the head. As a result of this proximity, tissue losses were five-fold greater than coil losses and sufficient to exclude preamplifier decoupling. When compared with a standard 16-channel head coil, the BOLD sensitivity was approximately 2.2-fold higher for a high spatial/temporal resolution (1 mm isotropic/0.4 s), multi-slice, echo planar acquisition, and approximately three- and six-fold higher for three-dimensional echo planar images acquired with isotropic resolutions of 0.7 and 0.55 mm, respectively. Improvements in parallel imaging performance (geometry factor) were up to around 1.5-fold with increasing acceleration factor, and improvements in fMRI detectability (temporal signal-to-noise ratio) were up to around four-fold depending on the distance to the coil. Although deeper lying structures may not benefit from the design, most fMRI questions pertain to the neocortex which lies within approximately 4 cm from the surface. These results suggest that the resolution of fMRI (at 7 T) can approximate levels that are

  8. Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations

    NASA Astrophysics Data System (ADS)

    Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.

    2017-12-01

    The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.

  9. Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture

    PubMed Central

    Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172

  10. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    NASA Astrophysics Data System (ADS)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  11. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  12. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    NASA Astrophysics Data System (ADS)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  13. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    PubMed

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  14. High-energy side-peak emission of exciton-polariton condensates in high density regime

    PubMed Central

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-01-01

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates–sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity–have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics. PMID:27193700

  15. Production of high-density highly-ionized helicon plasmas in the ProtoMPEX

    NASA Astrophysics Data System (ADS)

    Caneses, J. F.; Kafle, N.; Showers, M.; Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Bigelow, T.; Rapp, J.

    2017-10-01

    High-density (2-6e19 m-3) Deuterium helicon plasmas in the ProtoMPEX have been produced that successfully use differential pumping to produce neutral gas pressures suitable for testing the RF electron and ion heating concepts. To minimize collisional losses when heating electrons and ions, plasmas with very low neutral gas content (<< 0.1 Pa) in the heating sections are required. This requirement is typically not compatible with the neutral gas pressures (1-2 Pa) commonly used in high-density light-ion helicon sources. By using skimmers, a suitable gas injection scheme and long duration discharges (>0.3 s), high-density plasmas with very low neutral gas pressures (<< 0.1 Pa) in the RF heating sections have been produced. Measurements indicate the presence of a highly-ionized plasma column and that discharges lasting at least 0.3 s are required to significantly reduce the neutral gas pressure in the RF heating sections to levels suitable for investigating electron/ion RF heating concepts in this linear configuration. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  16. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  17. Keratocyte density 3 months, 15 months, and 3 years after corneal surface ablation with mitomycin C.

    PubMed

    de Benito-Llopis, Laura; Cañadas, Pilar; Drake, Pilar; Hernández-Verdejo, José Luis; Teus, Miguel A

    2012-01-01

    To study the effects of surface ablation with mitomycin C (MMC) on keratocyte population. Prospective, nonrandomized, interventional, comparative case series. Thirty two eyes treated with surface ablation with 0.02% MMC were compared with nontreated eyes at Vissum Santa Hortensia, Madrid, Spain. Keratocyte density was measured with the Heidelberg Retina Tomograph II (Rostock Cornea Module) 3, 15, and 36 to 42 months after the surgery in the anterior, mid, and posterior stroma, and compared with control eyes. Three months postoperatively, we found a lower stromal bed density compared to controls (16 993 ± 8001 vs 29 660 ± 5904 cells/mm(3), P = .0001), while there was a significantly higher cell density in the mid (30 783 ± 9300 vs 18 505 ± 1996 cells/mm(3), P = .0001) and deep stroma (30 268 ± 8321 vs 18 438 ± 2139 cells/mm(3), P = .0001). Three years after the surgery, the cellularity in the stromal bed had not significantly changed from the 3-month follow-up, but the density in the mid (18 889 ± 3474 cells/mm(3)) and posterior stroma (18 992 ± 3402 cells/mm(3)) had decreased to show no difference from controls. The mean cell density between the anterior, mid, and posterior stroma was not significantly different from controls 15 months and 3 years after the surgery. Our study suggests that there is a reorganization of the stromal cell population soon after surface ablation with MMC, with a decrease in the stromal bed compensated initially with an increase in the mid and posterior stroma. Corneal cellularity tends to normalize over time, and 3 years postoperatively the mean cell density throughout the cornea seems to maintain normal values. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    NASA Technical Reports Server (NTRS)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  19. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  20. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  1. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2000-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  2. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2001-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  3. Talbot-Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments.

    PubMed

    Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P

    2018-01-10

    Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.

  4. Surface alloying of aluminum with molybdenum by high-current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng

    2018-02-01

    The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.

  5. Plasma polymerized high energy density dielectric films for capacitors

    NASA Technical Reports Server (NTRS)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  6. Investigation of reliability of the cutoff probe by a comparison with Thomson scattering in high density processing plasmas

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Kim, Dae-Woong; Kim, Jung-Hyung; You, Shinjae

    2017-12-01

    A "cutoff probe" uses microwaves to measure the electron density in a plasma. It is particularly attractive because it is easy to fabricate and use, its measurement is immune to surface contamination by dielectric materials, and it has a straightforward analysis to measure electron density in real time. In this work, we experimentally investigate the accuracy of the cutoff probe through a detailed comparison with Thomson scattering in a low temperature, high density processing plasma. The result shows that the electron density measured by the cutoff probe is lower than that by Thomson scattering and that the discrepancy of the two results becomes smaller as the gap between the two tips increases and/or the neutral gas pressure decreases. The underestimated electron density found by the cutoff probe can be explained by the influence of the probe holder, which becomes important as the pressure increases and the gap gets closer.

  7. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  8. Development of High Power Density Micro-Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhua

    Thermoelectric generators (TEGs) are promising for the waste heat recovery in virtue of the ability to directly convert heat to electricity. Despite of their relatively low energy conversion efficiency, TEGs have many advantages including high reliability, long lifetime, and environmental friendliness. Especially, compared to conventional heat engines, TEGs are compact, scalable, and can be easily driven by small temperature differences. Potential applications of TEGs include thermal sensing, thermal management, and thermal energy harvesting to power wireless sensors and microelectronic devices such as wearable medical sensors and wristwatches. This dissertation presents my work on development of high power density non-flexible and flexible micro-TEGs for thermal energy harvesting in the ambient environment. Micro- TEGs are developed by a bottom-up approach combing electroplating and microfabrication processes. Pulsed electroplating is mainly adopted to deposit thermoelectric materials in the device fabrication. First, I collaborated with Dr. Zhou in our lab and systematically studied the effect of deposition parameters on composition, microstructure, and thermoelectric properties of the electroplated Bi2Te3 and Sb2 Te3 thin films. We demonstrated that thermoelectric properties of both Bi2Te3 and Sb2Te3 films can be enhanced by tuning the pulse off-to-on ratio. After the fundamental study on the deposition conditions, morphology, and thermoelectric properties of the electroplated materials, we fabricated a high power density cross-plane micro-TEG on the SiO2/Si substrate by integrating the pulsed electroplating with microfabrication processes. The TEG consists of a total of 127 pairs of n-type Bi2Te3 and ptype Sb2Te3 thermoelectric pillars embedded in a SU-8 matrix to enhance the overall mechanical strength of the device. Both bottom and top electrical connections are formed by electroplating, which is advantageous because of facile and low cost fabrication and low

  9. Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, V.; Grant, C. D.; McCarrick, J. F.

    2012-03-01

    A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolvedmore » infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.« less

  10. High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.

    PubMed

    Zhang, Daohong; Wu, Yunlong; Li, Ting; Huang, Yin; Zhang, Aiqing; Miao, Menghe

    2015-11-25

    Threadlike linear supercapacitors have demonstrated high potential for constructing fabrics to power electronic textiles (eTextiles). To improve the cyclic electrochemical performance and to produce power fabrics large enough for practical applications, a current collector has been introduced into the linear supercapcitors to transport charges produced by active materials along the length of the supercapacitor with high efficiency. Here, we first screened six candidate metal filaments (Pt, Au, Ag, AuAg, PtCu, and Cu) as current collectors for carbon nanotube (CNT) yarn-based linear supercapacitors. Although all of the metal filaments significantly improved the electrochemical performance of the linear supercapacitor, two supercapacitors constructed from Cu and PtCu filaments, respectively, demonstrate far better electrochemical performance than the other four supercapacitors. Further investigation shows that the surfaces of the two Cu-containing filaments are oxidized by the surrounding polymer electrolyte in the electrode. While the unoxidized core of the Cu-containing filaments remains highly conductive and functions as a current collector, the resulting CuO on the surface is an electrochemically active material. The linear supercapacitor architecture incorporating dual active materials CNT + Cu extends the potential window from 1.0 to 1.4 V, leading to significant improvement to the energy density and power density.

  11. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE PAGES

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  12. Density-matrix simulation of small surface codes under current and projected experimental noise

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.

    2017-09-01

    We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.

  13. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  14. POx/Al2O3 stacks: Highly effective surface passivation of crystalline silicon with a large positive fixed charge

    NASA Astrophysics Data System (ADS)

    Black, Lachlan E.; Kessels, W. M. M. Erwin

    2018-05-01

    Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.

  15. Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation

    PubMed Central

    Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.

    2009-01-01

    The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355

  16. Formation of Ion Beam from High Density Plasma of ECR Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izotov, I.; Razin, S.; Sidorov, A.

    2005-03-15

    One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less

  17. Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation

    NASA Astrophysics Data System (ADS)

    Schubert, Martin; Stober, Jörg; Herrmann, Albrecht; Kasparek, Walter; Leuterer, Fritz; Monaco, Francesco; Petzold, Bernhard; Plaum, Burkhard; Vorbrugg, Stefan; Wagner, Dietmar; Zohm, Hartmut

    2017-10-01

    The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.

  18. Mercury Slovenian soils: High, medium and low sample density geochemical maps

    NASA Astrophysics Data System (ADS)

    Gosar, Mateja; Šajn, Robert; Teršič, Tamara

    2017-04-01

    Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.

  19. Structural Changes in the Vanadium Sample Surface Induced by Pulsed High-Temperature Deuterium Plasma and Deuterium Ion Fluxes

    NASA Astrophysics Data System (ADS)

    Borovitskaya, I. V.; Pimenov, V. N.; Gribkov, V. A.; Padukh, M.; Bondarenko, G. G.; Gaidar, A. I.; Paramonova, V. V.; Morozov, E. V.

    2017-11-01

    The structural changes in the vanadium sample surface are studied as functions of the conditions of irradiation by pulsed high-temperature deuterium plasma and deuterium ion fluxes in the Plasma Focus installation. It is found that processes of partial evaporation, melting, and crystallization of the surface layer of vanadium samples take place in the plasma flux power density range q = 108-1010 W/cm2 and the ion flux density range q = 1010-1012 W/cm2. The surface relief is wavelike. There are microcracks, gas-filled bubbles (blisters), and traces of fracture on the surface. The blisters are failed in the solid state. The character of blister fracture is similar to that observed during usual ion irradiation in accelerators. The samples irradiated at relatively low power density ( q = 107-108 W/cm2) demonstrate the ejection of microparticles (surface fragments) on the side facing plasma. This process is assumed to be due to the fact that the unloading wave formed in the sample-target volume reaches its irradiated surface. Under certain irradiation conditions (sample-anode distance, the number of plasma pulses), a block microstructure with block sizes of several tens of microns forms on the sample surfaces. This structure is likely to form via directional crack propagation upon cooling of a thin melted surface layer.

  20. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube

    PubMed Central

    Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S.; Yasuoka, Kenji; Zeng, Xiao Cheng

    2017-01-01

    Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called “no-man’s land” under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature–pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions. PMID:28373562

  1. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    NASA Astrophysics Data System (ADS)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  2. High-density carbon nanotube buckypapers with superior transport and mechanical properties.

    PubMed

    Zhang, Ling; Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2012-09-12

    High-density buckypapers were obtained by using well-aligned carbon nanotube arrays. The density of the buckypapers was as high as 1.39 g cm(-3), which is close to the ultimate density of ideal buckypapers. Then we measured the transport and mechanical properties of the buckypapers. Our results demonstrated that its electrical and thermal conductivities could be almost linearly improved by increasing its density. In particular, its superior thermal conductivity is nearly twice that of common metals, which enables it a lightweight and more efficient heat-transfer materials. The Young's modulus of the buckypapers could reach a magnitude over 2 GPa, which is greatly improved compared with previous reported results. In view of this, our work provided a simple and convenient method to prepare high-density buckypapers with excellent transport and mechanical properties.

  3. Identification of regional activation by factorization of high-density surface EMG signals: A comparison of Principal Component Analysis and Non-negative Matrix factorization.

    PubMed

    Gallina, Alessio; Garland, S Jayne; Wakeling, James M

    2018-05-22

    In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Weak absorptions in high density planetary atmospheres measured by the cavity ring down technique.

    NASA Astrophysics Data System (ADS)

    Snels, M.; Stefani, S.; Piccioni, G.

    2014-04-01

    High density planetary atmospheres are characterized by a high opacity due to the strong absorbers. Howevere usually several transparency windows exist which allow to study the lower part of the atmosphere as well as the surface emission. The weak absorptions occurring in these transparency windows are mostly due to trace species and to continuum absorption of the major absorber(s). A good example is the atmosphere of Venus, where carbondioxide causes a high opacity throughout most of the infrared wavelengths, but also has some transparency spectral windows in the near infrared, allowing the study of low lying clouds , trace species such as water vapor and in some cases the surface emission. The cavity ring down (CRD) technique has shown to be a good tool for studying weak absorptions. Here we present a CRD apparatus which can be operated at high pressures (up to 40 bar) with a sensitivity which allows to measure attenuations up to 2x10-8 cm-1. This instrument has been used to measure the carbon dioxide absorption at pressures up to 40 bar and has been also used to measure attenuation due to Rayleigh scattering at 1.18 μm.

  5. High density scintillating glass proton imaging detector

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  6. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  7. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-01

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  8. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study.

    PubMed

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-21

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  9. High current densities above 100 K in the high-temperature superconductor HgBa2CaCu2O6+δ

    NASA Astrophysics Data System (ADS)

    Krusin-Elbaum, L.; Tsuei, C. C.; Gupta, A.

    1995-02-01

    THE recent discovery1,2 of a family of mercury-based copper oxide superconductors having transition temperatures1-3 above 130 K is of considerable technological interest. But the viability of high-temperature superconductors for many applications will ultimately depend on the size of the current density, Jc, that they are able to support, not only at high temperatures, but also in high magnetic fields. For the cuprate superconductors, and in particular for Hg-based materials, the combination of high transition temperature1-3 and large mass anisotropy implies that the transport properties will be intrinsically limited by large thermal fluctuations and short superconducting coherence lengths4. Here we report that high-quality c-axis-oriented epitaxial films of the compound HgBa2CaCu6O6+δ (Hg-1212; ref. 5) can support large in-plane current densities at temperatures higher than has been achieved for other superconductors. In low magnetic fields oriented normal to the film surface, we find Jc>~107 A cm-2 at 5 K and Jc~ 105 A cm-2 at 110 K, at least an order of magnitude larger than for Bi- or Tl-based films6-11. For in-plane magnetic fields, the critical current (~108 A cm-2) is close to the theoretical limit even at high fields, indicative of strong intrinsic pinning in this compound.

  10. Hydrodynamic Instabilities in High-Energy-Density Settings

    NASA Astrophysics Data System (ADS)

    Smalyuk, Vladimir

    2016-10-01

    Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  11. Density, Viscosity and Surface Tension of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tricyanomethanide with Benzothiophene.

    PubMed

    Domańska, Urszula; Królikowska, Marta; Walczak, Klaudia

    2014-01-01

    The effects of temperature and composition on the density and viscosity of pure benzothiophene and ionic liquid (IL), and those of the binary mixtures containing the IL 1-butyl-1-methylpyrrolidynium tricyanomethanide ([BMPYR][TCM] + benzothiophene), are reported at six temperatures (308.15, 318.15, 328.15, 338.15, 348.15 and 358.15) K and ambient pressure. The temperature dependences of the density and viscosity were represented by an empirical second-order polynomial and by the Vogel-Fucher-Tammann equation, respectively. The density and viscosity variations with compositions were described by polynomials. Excess molar volumes and viscosity deviations were calculated and correlated by Redlich-Kister polynomial expansions. The surface tensions of benzothiophene, pure IL and binary mixtures of ([BMPYR][TCM] + benzothiophene) were measured at atmospheric pressure at four temperatures (308.15, 318.15, 328.15 and 338.15) K. The surface tension deviations were calculated and correlated by a Redlich-Kister polynomial expansion. The temperature dependence of the interfacial tension was used to evaluate the surface entropy, the surface enthalpy, the critical temperature, the surface energy and the parachor for pure IL. These measurements have been provided to complete information of the influence of temperature and composition on physicochemical properties for the selected IL, which was chosen as a possible new entrainer in the separation of sulfur compounds from fuels. A qualitative analysis on these quantities in terms of molecular interactions is reported. The obtained results indicate that IL interactions with benzothiophene are strongly dependent on packing effects and hydrogen bonding of this IL with the polar solvent.

  12. Two-color QCD at high density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boz, Tamer; Skullerud, Jon-Ivar; Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  13. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    NASA Astrophysics Data System (ADS)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  14. Limiting Surface Density Method Adapted to Large Arrays of Heterogeneous Shipping Packages with Nonlinear Responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stover, Tracy E.; Baker, James S.; Ratliff, Michael D.

    The classic Limiting Surface Density (LSD) method is an empirical calculation technique for analyzing and setting mass limits for fissile items in storage arrays. LSD is a desirable method because it can reduce or eliminate the need for lengthy detailed Monte Carlo models of storage arrays. The original (or classic) method was developed based on idealized arrays of bare spherical metal items in air-spaced cubic units in a water-reflected cubic array. In this case, the geometric and material-based surface densities were acceptably correlated by linear functions. Later updates to the method were made to allow for concrete reflection rather thanmore » water, cylindrical masses rather than spheres, different material forms, and noncubic arrays. However, in the intervening four decades since those updates, little work has been done to update the method, especially for use with contemporary highly heterogeneous shipping packages that are noncubic and stored in noncubic arrays. In this work, the LSD method is reevaluated for application to highly heterogeneous shipping packages for fissile material. The package modeled is the 9975 shipping package, currently the primary package used to store fissile material at Savannah River Site’s K-Area Complex. The package is neither cubic nor rectangular but resembles nested cylinders of stainless steel, lead, aluminum, and Celotex. The fissile content is assumed to be a cylinder of plutonium metal. The packages may be arranged in arrays with both an equal number of packages per side (package cubic) and an unequal number of packages per side (noncubic). The cubic arrangements are used to derive the 9975-specific material and geometry constants for the classic linear form LSD method. The linear form of the LSD, with noncubic array adjustment, is applied and evaluated against computational models for these packages to determine the critical unit fissile mass. Sensitivity equations are derived from the classic method, and these are

  15. Limiting Surface Density Method Adapted to Large Arrays of Heterogeneous Shipping Packages with Nonlinear Responses

    DOE PAGES

    Stover, Tracy E.; Baker, James S.; Ratliff, Michael D.; ...

    2018-03-02

    The classic Limiting Surface Density (LSD) method is an empirical calculation technique for analyzing and setting mass limits for fissile items in storage arrays. LSD is a desirable method because it can reduce or eliminate the need for lengthy detailed Monte Carlo models of storage arrays. The original (or classic) method was developed based on idealized arrays of bare spherical metal items in air-spaced cubic units in a water-reflected cubic array. In this case, the geometric and material-based surface densities were acceptably correlated by linear functions. Later updates to the method were made to allow for concrete reflection rather thanmore » water, cylindrical masses rather than spheres, different material forms, and noncubic arrays. However, in the intervening four decades since those updates, little work has been done to update the method, especially for use with contemporary highly heterogeneous shipping packages that are noncubic and stored in noncubic arrays. In this work, the LSD method is reevaluated for application to highly heterogeneous shipping packages for fissile material. The package modeled is the 9975 shipping package, currently the primary package used to store fissile material at Savannah River Site’s K-Area Complex. The package is neither cubic nor rectangular but resembles nested cylinders of stainless steel, lead, aluminum, and Celotex. The fissile content is assumed to be a cylinder of plutonium metal. The packages may be arranged in arrays with both an equal number of packages per side (package cubic) and an unequal number of packages per side (noncubic). The cubic arrangements are used to derive the 9975-specific material and geometry constants for the classic linear form LSD method. The linear form of the LSD, with noncubic array adjustment, is applied and evaluated against computational models for these packages to determine the critical unit fissile mass. Sensitivity equations are derived from the classic method, and these are

  16. Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture.

    PubMed

    Detzel, Christopher J; Van Wie, Bernard J; Ivory, Cornelius F

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 10(8) cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 microm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 microm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. (c) 2010 American Institute of Chemical Engineers

  17. Conformal coating of highly structured surfaces

    DOEpatents

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  18. Hybrid system for rechargeable magnesium battery with high energy density

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf

    2015-07-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries.

  19. Hybrid system for rechargeable magnesium battery with high energy density

    PubMed Central

    Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf

    2015-01-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624

  20. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  1. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  2. Improving Density Functional Tight Binding Predictions of Free Energy Surfaces for Slow Chemical Reactions in Solution

    NASA Astrophysics Data System (ADS)

    Kroonblawd, Matthew; Goldman, Nir

    2017-06-01

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (<10 ps), but the effects on slow reactions and the free energy surface are not well-known. We present a force matching approach to improve the chemical accuracy of DFTB. Accelerated sampling techniques are combined with path collective variables to generate the reference DFT data set and validate fitted DFTB potentials. Accuracy of force-matched DFTB free energy surfaces is assessed for slow peptide-forming reactions by direct comparison to DFT for particular paths. Extensions to model prebiotic chemistry under shock conditions are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon.

    PubMed

    Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei

    2014-12-01

    Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m(2) g(-1) with optimized pore volume of 1.21 cm(3) g(-1) (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g(-1) and 100 A g(-1) i.e., 265 F g(-1) and 182 F g(-1) in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg(-1) (550 W L(-1)) and energy density 70 W h kg(-1) (32 W h L(-1)) are achieved on the base of active material loading (~10 mg cm(2)) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices.

  4. From Rice Bran to High Energy Density Supercapacitors: A New Route to Control Porous Structure of 3D Carbon

    NASA Astrophysics Data System (ADS)

    Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei

    2014-12-01

    Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m2 g-1 with optimized pore volume of 1.21 cm3 g-1 (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g-1 and 100 A g-1 i.e., 265 F g-1 and 182 F g-1 in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg-1 (550 W L-1) and energy density 70 W h kg-1 (32 W h L-1) are achieved on the base of active material loading (~10 mg cm2) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices.

  5. High-Temperature Isothermal Capacitance Transient Spectroscopy Study on Inductively Coupled Plasma Etching Damage for p-GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji

    2013-11-01

    The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.

  6. High performance, high density hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.

    1978-01-01

    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.

  7. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    PubMed

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  8. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    PubMed Central

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R.

    2015-01-01

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field. PMID:28793694

  9. Nanoparticles decorated with viral antigens are more immunogenic at low surface density.

    PubMed

    Brewer, Matthew G; DiPiazza, Anthony; Acklin, Joshua; Feng, Changyong; Sant, Andrea J; Dewhurst, Stephen

    2017-02-01

    There is an urgent need to develop protective vaccines for high priority viral pathogens. One approach known to enhance immune responses to viral proteins is to display them on a nanoparticle (NP) scaffold. However, little is known about the effect of protein density on the B cell response to antigens displayed on NPs. To address this question HIV-1 Envelope (Env) and influenza hemagglutinin (HA) were displayed on a polystyrene-based NP scaffold at various densities - corresponding to mean antigen distances that span the range encountered on naturally occurring virions. Our studies revealed that NPs displaying lower densities of Env or HA more efficiently stimulated antigen-specific B cells in vitro, as measured by calcium flux, than did NPs displaying higher antigen densities. Similarly, NPs displaying a low density of Env or HA also elicited higher titers of antigen-specific serum IgG in immunized BALB/c mice (including elevated titers of hemagglutination-inhibiting antibodies), as well as an increased frequency of antigen-specific antibody secreting cells in the lymph node, spleen and bone marrow. Importantly, our studies showed that the enhanced B cell response elicited by the lower density NPs is likely secondary to more efficient development of follicular helper CD4 T cells and germinal center B cells. These findings demonstrate that the density of antigen on a NP scaffold is a critical determinant of the humoral immune response elicited, and that high density display does not always result in an optimal response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Generation of high-density biskyrmions by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Licong; Zhang, Ying; He, Min

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  11. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  12. Generation of high-density biskyrmions by electric current

    DOE PAGES

    Peng, Licong; Zhang, Ying; He, Min; ...

    2017-06-16

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  13. High volumetric power density, non-enzymatic, glucose fuel cells.

    PubMed

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  14. High volumetric power density, non-enzymatic, glucose fuel cells

    PubMed Central

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576

  15. Anomalous evolution of Ar metastable density with electron density in high density Ar discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min; Chang, Hong-Young; You, Shin-Jae

    2011-10-15

    Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. Onmore » the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.« less

  16. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Qiu, Yejun; Yu, Jie; Deng, Xianyu; Dai, Chenglong; Bai, Xuedong

    2013-05-01

    Improvement of energy density is an urgent task for developing advanced supercapacitors. In this paper, aqueous supercapacitors with high voltage of 1.8 V and energy density of 29.1 W h kg-1 were fabricated based on carbon nanofibers (CNFs) and Na2SO4 electrolyte. The CNFs with radially grown graphene sheets (GSs) and small average diameter down to 11 nm were prepared by electrospinning and carbonization in NH3. The radially grown GSs contain between 1 and a few atomic layers with their edges exposed on the surface. The CNFs are doped with nitrogen and oxygen with different concentrations depending on the carbonizing temperature. The supercapacitors exhibit excellent cycling performance with the capacity retention over 93.7% after 5000 charging-discharging cycles. The unique structure, possessing radially grown GSs, small diameter, and heteroatom doping of the CNFs, and application of neutral electrolyte account for the high voltage and energy density of the present supercapacitors. The present supercapacitors are of high promise for practical application due to the high energy density and the advantages of neutral electrolyte including low cost, safety, low corrosivity, and convenient assembly in air.

  17. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; Al-Ostaz, Ahmed

    2016-11-01

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (-16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (-13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (-7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  18. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk

    PubMed Central

    Hafiane, Anouar; Genest, Jacques

    2015-01-01

    Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice. PMID:26674734

  19. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  20. Partitioning of organic carbon among density fractions in surface sediments of Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Hutchings, Jack A.; Savage, Candida; Curtis, Jason H.

    2016-03-01

    Transport of particles plays a major role in redistributing organic carbon (OC) along coastal regions. In particular, the global importance of fjords as sites of carbon burial has recently been shown to be even more important than previously thought. In this study, we used six surface sediments from Fiordland, New Zealand, to investigate the transport of particles and OC based on density fractionation. Bulk, biomarker, and principle component analysis were applied to density fractions with ranges of <1.6, 1.6-2.0, 2.0-2.5, and >2.5 g cm-3. Our results found various patterns of OC partitioning at different locations along fjords, likely due to selective transport of higher density but smaller size particles along fjord head-to-mouth transects. We also found preferential leaching of certain biomarkers (e.g., lignin) over others (e.g., fatty acids) during the density fractionation procedure, which altered lignin-based degradation indices. Finally, our results indicated various patterns of OC partitioning on density fractions among different coastal systems. We further propose that a combination of particle size-density fractionation is needed to better understand transport and distribution of particles and OC.